Science.gov

Sample records for numerical generalized vibration

  1. Numerical simulations of vibrating sessile drop

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar

    2016-11-01

    A vibrated drop constitutes a very rich physical system, blending both interfacial and volume phenomena. A remarkable experimental study was performed by M. Costalonga highlighting sessile drop motion subject to horizontal, vertical and oblique vibration. Several intriguing phenomena are observed such as drop walking and rapid droplet ejection. We perform three-dimensional direct numerical simulations of vibrating sessile drops where the phenomena described above are computed using the massively parallel multiphase code BLUE. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).

  2. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2000-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented.

  3. Experimental validation of a numerical model for subway induced vibrations

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Degrande, G.; Lombaert, G.

    2009-04-01

    This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.

  4. [Clinical aspects of vibration disease caused by general vibration].

    PubMed

    Tarasova, L A; Lagutina, G N; Komleva, L M; Suvorov, G A; Starozhuk, I A; Filatova, O V

    1989-01-01

    The clinico-functional examination of agricultural machine-operators, truck drivers, excavator and boring machine operators revealed that, under low-frequency general vibration, polymorphic pathologic changes occur in human organism. Those include peripheral vascular and neuritic disorders and changes in the vertebral column. The most peculiar symptoms of VD are dealt with. The data obtained show to the importance of further elaboration of differential diagnostic criteria of VD, specifying its pathogenic mechanisms and prevention measures working out.

  5. Results from Numerical General Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.

  6. Experimental and numerical investigation of turbulent flow induced pipe vibration in fully developed flow

    NASA Astrophysics Data System (ADS)

    Pittard, Matthew T.; Evans, Robert P.; Maynes, R. Daniel; Blotter, Jonathan D.

    2004-07-01

    Flow-induced pipe vibration caused by fully developed pipe flow has been observed but not fully investigated when turbulent flow prevails. This article presents experimental results that indicate a strong correlation between the volume flow rate and a measure of the pipe vibration. In this work, the standard deviation of the frequency-averaged time-series signal, measured using an accelerometer attached to the pipe, is used as the measure of pipe vibration. A numerical, fluid-structure interaction (FSI) model used to investigate the relationship between pipe wall vibration and the physical characteristics of turbulent flow is also presented. This numerical FSI approach, unlike commercial FSI software packages, which are based on Reynolds averaged Navier-Stokes flow models, is based on large eddy simulation (LES) flow models that compute the instantaneous pressure fluctuations in turbulent flow. The results from the numerical LES models also indicate a strong correlation between pipe vibration and flow rate. In general, the numerical simulations show that the standard deviation of the pipe wall vibration is proportional to the pressure fluctuations at the wall induced by the flow turbulence. This research, indicates that the pressure fluctuations on the pipe wall have a near quadratic relationship with the flow rate. Furthermore, the experimental results and the numerical modeling show that there is a definite relationship between the acceleration of the pipe (pipe vibration) and the flow rate. These last two concepts open possible avenues for the development of a non-intrusive flow sensor.

  7. Numerical analysis of strongly nonlinear extensional vibrations in elastic rods.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2007-01-01

    In the framework of transduction, nondestructive testing, and nonlinear acoustic characterization, this article presents the analysis of strongly nonlinear vibrations by means of an original numerical algorithm. In acoustic and transducer applications in extreme working conditions, such as the ones induced by the generation of high-power ultrasound, the analysis of nonlinear ultrasonic vibrations is fundamental. Also, the excitation and analysis of nonlinear vibrations is an emergent technique in nonlinear characterization for damage detection. A third-order evolution equation is derived and numerically solved for extensional waves in isotropic dissipative media. A nine-constant theory of elasticity for isotropic solids is constructed, and the nonlinearity parameters corresponding to extensional waves are proposed. The nonlinear differential equation is solved by using a new numerical algorithm working in the time domain. The finite-difference numerical method proposed is implicit and only requires the solution of a linear set of equations at each time step. The model allows the analysis of strongly nonlinear, one-dimensional vibrations and can be used for prediction as well as characterization. Vibration waveforms are calculated at different points, and results are compared for different excitation levels and boundary conditions. Amplitude distributions along the rod axis for every harmonic component also are evaluated. Special attention is given to the study of high-amplitude damping of vibrations by means of several simulations. Simulations are performed for amplitudes ranging from linear to nonlinear and weak shock.

  8. Nonlinear vibrations of buckled plates by an asymptotic numerical method

    NASA Astrophysics Data System (ADS)

    Benchouaf, Lahcen; Boutyour, El Hassan

    2016-03-01

    This work deals with nonlinear vibrations of a buckled von Karman plate by an asymptotic numerical method and harmonic balance approach. The coupled nonlinear static and dynamic problems are transformed into a sequence of linear ones solved by a finite-element method. The static behavior of the plate is first computed. The fundamental frequency of nonlinear vibrations of the plate, about any equilibrium state, is obtained. To improve the validity range of the power series, Padé approximants are incorporated. A continuation technique is used to get the whole solution. To show the effectiveness of the proposed methodology, numerical tests are presented.

  9. Estimation of spinal loading in vertical vibrations by numerical simulation.

    PubMed

    Verver, M M; van Hoof, J; Oomens, C W J; van de Wouw, N; Wismans, J S H M

    2003-11-01

    This paper describes the prediction of spinal forces in car occupants during vertical vibrations using a numerical multi-body occupant model. An increasing part of the population is exposed to whole body vibrations in vehicles. In literature, vertical vibrations and low back pain are often related to each other. The cause of these low back pains is not well understood. A numerical human model, predicting intervertebral forces, can help to understand the mechanics of the human spine during vertical vibrations. Numerical human and seat models have been used. Human model responses have been validated for vertical vibrations (rigid and standard car seat condition): simulated and experimental seat-to-human frequency response functions have been compared. The spinal shear and compressive forces have been investigated with the model. The human model seat-to-pelvis and seat-to-T1 frequency response functions in the rigid seat condition and all seat-to-human frequency response functions in the standard car seat condition approach the experimental results reasonably. The lumbar and the lower thoracic spine are subjected to the largest shear and compressive forces. The human model responses correlate reasonable with the volunteer responses. The predicted spinal forces could be used as a basis for derivation of hypothetical mechanisms and better understanding of low back pain disorders. In order to solve the problem of whole body vibration related injuries, knowledge about the interaction between human spinal vertebrae in vertical vibrations is required. This interaction cannot be measured in volunteer experiments. This paper describes the application of a numerical human model for prediction of spinal forces, that could be used as a basis for derivation of hypotheses regarding low back pain disorders.

  10. Numerical modelling of longitudinal vibrations of a sucker rod string

    NASA Astrophysics Data System (ADS)

    Shardakov, I. N.; Wasserman, I. N.

    2010-03-01

    A new technique for analyzing the dynamic behavior of a sucker rod string used in the oil well industry is presented. The main difficulty in the numerical calculation of the examined structure is a multivalued velocity—force relation determined by Coulomb's friction and by loads generated during operation of pump valves. Both the monotonic and nonmonotonic velocity—force relations are considered. A quasi-variational inequality formulation of the problem is proposed. The solution of the inequality amounts to finding the minimum of a convex nonsmooth functional at each time step by means of the Newmark difference time scheme, successive iterations and finite element discretization. The problem of functional minimization is reduced to construction of a sequence of smooth nonlinear programming problems by introducing the auxiliary variables and applying the augmented Lagrangian method. The proposed approach is used to study the longitudinal vibrations of sucker rod strings under near-real conditions. In such systems the most commonly occurring vibration modes are the stick-slip vibrations and the vibrations with natural force excited twice a cycle. The nonmonotonic character of the friction law leads to intensification of these vibrations. In the case of nonmonotonic friction law the stick-slip vibrations can occur even under the action of constant external forces.

  11. Numerical Approximations of Flow Induced Vibrations of Vocal Folds

    NASA Astrophysics Data System (ADS)

    Sváček, P.; Horáček, J.

    2010-09-01

    The paper is interested in numerical modelling of incompressible channel flow interacting with elastic part of its walls simulating vocal fold oscillations. The flow in moving domain is described with the aid of the Arbitrary Lagrangian-Eulerian method, see e.g. [1], and governed by the 2D incompressible Navier-Stokes equations. The flow model is coupled with the structural motion modelled by an aeroelastic two degrees of freedom model of the oscillating vocal folds, cf. [2], [9]. The described fluid-structure interaction problem is discretized in time and space, see also [1]. The numerical results of a channel flow modelling the glottal region of the human vocal tract including the vibrating vocal folds are shown. The vibrations of the channel walls are either prescribed (1st case) or induced by the aerodynamical forces (2nd case).

  12. Experimental and numerical study of the effect of mold vibration on aluminum castings alloys

    NASA Astrophysics Data System (ADS)

    Abu-Dheir, Numan

    2005-07-01

    The recent advances in scientific and engineering tools have allowed researchers to integrate more science into manufacturing, leading to improved and new innovative processes. As a result, important accomplishments have been reached in the area of designing and engineering new materials for various industrial applications. This subject is of critical significance because of the impact it could have on the manufacturing industry. In the casting industry, obtaining the desired microstructure and properties during solidification may reduce or eliminate the need for costly thermo-mechanical processing prior to secondary manufacturing processes. Several techniques have been developed to alter and control the microstructure of castings during solidification including semi-solid processing, electromagnetic stirring, electromagnetic vibration, and mechanical vibration. Although it is established that mold vibration can significantly influence the structure and properties of castings, however, most of the studies are generally qualitative, limited to a small range of conditions and no attempts have been made to simulate the effect of vibration on casting microstructure. In this work, a detailed experimental and numerical investigation is carried out to advance the utilization of mold vibration as an effective tool for controlling and modifying the casting microstructure. The effects of a wide range of vibration amplitudes and frequencies on the solidification kinetics, microstructure formation and mechanical properties of Al-Si alloys are examined. Results show strong influence of mold vibration on the resulting casting. The presence of porosity was significantly reduced as a result of mold vibration. In addition, the changes in microstructure and mechanical properties can be successfully represented by the changes in solidification characteristics. Increasing the vibration amplitude tends to reduce the lamellar spacing and change the silicon morphology to become more

  13. Numerical solutions of anharmonic vibration of BaO and SrO molecules

    SciTech Connect

    Pramudito, Sidikrubadi; Sanjaya, Nugraha Wanda; Sumaryada, Tony

    2016-03-11

    The Morse potential is a potential model that is used to describe the anharmonic behavior of molecular vibration between atoms. The BaO and SrO molecules, which are two almost similar diatomic molecules, were investigated in this research. Some of their properties like the value of the dissociation energy, the energy eigenvalues of each energy level, and the profile of the wavefunctions in their correspondence vibrational states were presented in this paper. Calculation of the energy eigenvalues and plotting the wave function’s profiles were performed using Numerov method combined with the shooting method. In general we concluded that the Morse potential solved with numerical methods could accurately produce the vibrational properties and the wavefunction behavior of BaO and SrO molecules from the ground state to the higher states close to the dissociation level.

  14. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.

    PubMed

    Font, José A

    2008-01-01

    This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has

  15. Ambient vibrations of unstable rock slopes - insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat

    2017-04-01

    The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.

  16. A numerical study of non-equilibrium flows with different vibrational relaxation models

    NASA Astrophysics Data System (ADS)

    Petrov, N. V.; Kirilovskiy, S. V.; Poplavskaya, T. V.; Shoev, G. V.

    2016-07-01

    Comparative analysis of a widely used Landau-Teller formula for small deviations from thermal equilibrium and its generalized form, derived from the kinetic theory of gaseous, for an arbitrary deviation from the thermal equilibrium is performed by numerical simulation. Thermally non-equilibrium flows of carbon dioxide near a sharp-edged plate, pure nitrogen flows between two symmetrically located wedges, and the N2/N mixture flow with vibrational relaxation and dissociation over a cone have been considered. A comparison has been performed with the available experimental data.

  17. Numerical manifold method for the forced vibration of thin plates during bending.

    PubMed

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method.

  18. Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending

    PubMed Central

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method. PMID:24883403

  19. Numerical Simulation for Generalized Aurora Computed Tomography

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Aso, T.; Gustavsson, B.; Tanabe, K.; Kadokura, A.; Ogawa, Y.

    2007-12-01

    The conventional method of aurora tomographic inversion is extended to a more generalized aurora computed tomography (CT). The generalized aurora CT is the method to reconstruct energy distribution of auroral precipitating electrons from multimodal data, such as electron density enhancement from the EISCAT radar and cosmic noise absorption (CNA) from imaging riometer, as well as auroral images. In this study, we evaluate the feasibility of the generalized aurora CT by numerical simulation. The forward problem is based on model calculation of auroral emission and electron density enhancement for incident electrons and the mapping of the results to the instruments. Assuming the energy and spatial distributions of the incident electrons, the three-dimensional (3D) distributions of volume emission rate and electron density are calculated. The data observed with the ALIS (Auroral Large Imaging System) cameras, the EISCAT radar, and the imaging riometer are obtained by mapping the volume emission rate and electron density to each instrument. We attempt to retrieve the initial distribution of precipitating electrons from the simulated observational data. The inversion analysis is based on the Bayesian inference, in which the problem is formulated as the maximization problem of posterior probability. The results are compared between the reconstruction from only auroral images and that from multimodal data.

  20. Symplectic time integrators for numerical general relativity

    SciTech Connect

    Richter, Ronny

    2009-05-01

    We describe how we use symplectic time integrators in numerical general relativity. Of particular interest is the free symplectic Stoermer-Verlet method and its application to the dynamical part of ADM-like equations.The behavior of this scheme is illustrated on an effectively 1+1-dimensional version of Einstein's equations that we apply to a perturbed Minkowski problem. We discuss differences between symplectic and non-symplectic integrators, showing favorable evolution properties of the symplectic Stoermer-Verlet method in this example.To handle the constraint part of the equations with a symplectic integrator one can use a partially constrained scheme that applies the RATTLE method, a modification of the Stoermer-Verlet method for holonomic constraints.

  1. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth

    PubMed Central

    Han, D.; Kedzierski, Mark A.

    2017-01-01

    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°–80°), the vibration displacement (10 µm–50 µm), the vibration frequency (5 Hz–25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described. PMID:28747812

  2. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth.

    PubMed

    Han, D; Kedzierski, Mark A

    2017-01-01

    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°-80°), the vibration displacement (10 µm-50 µm), the vibration frequency (5 Hz-25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described.

  3. Static and Vibration Analyses of General Wing Structures Using Equivalent Plate Models

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    1999-01-01

    An efficient method, using equivalent plate model, is developed for studying the static and vibration analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial functions. The present developments are evaluated by comparing the results with those obtained using MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii) free-vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii) free-vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate model are in good agreement with those obtained by the finite element method.

  4. A general model of the axle vibration in piezoelectric motors.

    PubMed

    Iula, Antonio; Pappalardo, Massimo

    2004-04-01

    In the present work a general model of the vibrational behavior of the axle of a piezoelectric motor is proposed. In this motor, a cylinder-shaped permanent magnet, which act as a rotor, is pressed in contact with an end of a steel axle by means of the magnetic forces. The other end of the axle is fitted at the center of a rotating traveling wave generator. A piezoelectric membrane, vibrating in a flexural anti-symmetrical mode, or a thick disk, vibrating in a radial anti-symmetrical mode, can be exploited as traveling wave generators. In the first case a bending moment, in the second case a transverse force is applied to the axle. In both cases, if the driving frequency coincides with a resonance frequency of the axle, the axle acts as a resonant displacement amplifier; a continuous slipping takes place between the axle and the rotor, and a torque is transmitted to the rotor. The proposed model is able to describe the axle vibrational behavior when it is excited by a bending moment, by a transverse force, and also when these two excitations are simultaneously applied. The axle is modeled as a four-port system and all its transfer functions, as well as the transversal displacement along the axle at each frequency can be easily computed. Computed results have been compared with experimental measurements carried out on two motor prototypes that exploit as traveling wave generators a membrane and a disk, respectively. A good agreement was obtained by properly taking into account the loading effect of the generator on the axle.

  5. Experimental and numerical limits in parameter studies of a hydro-aeroelastic vibration phenomenon

    NASA Astrophysics Data System (ADS)

    Seidel, Christian

    2017-07-01

    Rain-wind induced vibrations are a hydro-aeroelastic vibration phenomenon that occurs when rain and wind act simultaneously on cables, hangars and ropes. The vibration phenomena may induce oscillations with large amplitudes, thus the fatigue of construction elements is possible. The paper presents a possible fluid-mechanical interpretation of rain-wind induced vibrations. Based on this interpretation a mechanical model is deduced, in order to enable numerical investigations. In order to account for the unsteady aerodynamics a hybrid method is used, which records the lift and drag coefficients as well as the distributions of pressure and shear stress from experiments in the wind tunnel. The complex system of nonlinear differential equations is analysed concerning the stability of solutions. As an example demonstrating the border zones between numerical and experimental investigations, a parameter study for the influence of the cylinder diameter on the onset wind velocity is shown.

  6. Numerical simulation of inclination vibration in magnetic induction micromachines

    NASA Astrophysics Data System (ADS)

    Chen, J.-Y.; Zhou, J.-B.; Zhang, W.-M.; Meng, G.

    2008-02-01

    This paper studies the inclination vibration of an axial-flux magnetic induction micromachine which is supported by hydrostatic thrust bearings. A mechanical model for the rotor and the corresponding fluid-film bearing is combined with an electromagnetic force model to study the linear and nonlinear rotordynamics of the system. Results obtained for the stability show that magnetic induction micromachine would encounter severe instability problem at high speed operations. The model developed here could serve as a useful reference for design optimization and operation scheme.

  7. Numerical study of human vocal folds vibration using Immersed Finite Element Method

    NASA Astrophysics Data System (ADS)

    Wang, Xingshi; Zhang, Lucy; Krane, Michael

    2011-11-01

    The voice production procedure is a self-oscillating, fluid-structure interaction problem. In this study, the vocal folds vibration during phonation will be simulated by self-oscillated layered-structure vocal folds model, using Immersed Finite Element Method. With the numerical results, we will find out the vocal folds vibration pattern, and also show how the lung pressure, stiffness and geometry of vocal folds will affect the vocal folds vibration. With further analysis, we shall get better understanding of the dynamics of voice production. National Institute on Deafness and Other Communication Disorders.

  8. Railway cuttings and embankments: Experimental and numerical studies of ground vibration.

    PubMed

    Kouroussis, Georges; Connolly, David P; Olivier, Bryan; Laghrouche, Omar; Costa, Pedro Alves

    2016-07-01

    Railway track support conditions affect ground-borne vibration generation and propagation. Therefore this paper presents a combined experimental and numerical study into high speed rail vibrations for tracks on three types of support: a cutting, an embankment and an at grade section. Firstly, an experimental campaign is undertaken where vibrations and in-situ soil properties are measured at three Belgian rail sites. A finite element model is then developed to recreate the complex ground topology at each site. A validation is performed and it is found that although the at-grade and embankment cases show a correlation with the experimental results, the cutting case is more challenging to replicate. Despite this, each site is then analysed to determine the effect of earthworks profile on ground vibrations, with both the near and far fields being investigated. It is found that different earthwork profiles generate strongly differing ground-borne vibration characteristics, with the embankment profile generating lower vibration levels in comparison to the cutting and at-grade cases. Therefore it is concluded that it is important to consider earthwork profiles when undertaking vibration assessments. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab

    DOE PAGES

    Li, Nailu; Balas, Mark J.; Yang, Hua; ...

    2015-01-01

    This study presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore » case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less

  10. Multipath diffusion: A general numerical model

    NASA Astrophysics Data System (ADS)

    Lee, J. K. W.; Aldama, A. A.

    1992-06-01

    The effect of high-diffusivity pathways on bulk diffusion of a solute in a material has been modeled previously for simple geometries such as those in tracer diffusion experiments, but not for the geometries and boundary conditions appropriate for experiments involving bulk exchange. Using a coupled system of equations for simultaneous diffusion of a solute through two families of diffusion pathways with differing diffusivities, a general 1-D finite difference model written in FORTRAN has been developed which can be used to examine the effect of high-diffusivity paths on partial and total concentration profiles within a homogeneous isotropic sphere, infinite cylinder, and infinite slab. The partial differential equations are discretized using the θ-method/central-difference scheme, and an iterative procedure analogous to the Gauss-Seidel method is employed to solve the two systems of coupled equations. Using Fourier convergence analysis, the procedure is shown to be unconditionally convergent. Computer simulations demonstrate that a multipath diffusion mechanism can enhance significantly the bulk diffusivity of a diffusing solute species through a material. The amount of solute escaping from a material is dependent strongly on the exchange coefficients, which govern the transfer of solute from the crystal lattice to the high-diffusivity paths and vice versa. In addition, the exchange coefficients ( ϰ1, and ϰ2) seem to control not only the amount of solute that is lost, but also the shape of the concentration profile. If | K1| < | K2|, concentration profiles generally are non-Fickian in shape, typically having shallow concentration gradients near the center (radius r = 0) and steep gradients towards the outer boundary of the material ( r = R). When | K1| ⩾ | K2| a concentration profile is generated which resembles a Fickian (volume) diffusion profile with an apparent bulk diffusivity between that of the crystal lattice and that of the high-diffusivity pathways

  11. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  12. Numerical analysis of the fluidelastic vibration of a steam generator tube with loose supports

    NASA Astrophysics Data System (ADS)

    Fricker, A. J.

    1992-01-01

    The vibration and wear of U-tubes has been observed in PWR steam generators, especially in the U-bend region where the tubes experience two-phase cross-flow. In this region the tubes are supported by anti-vibration bars (AVBs); however, clearances can exist between the tubes and AVBs so that flow-induced vibration can cause impacting and sliding to occur between the two components, leading to fretting wear. A method is described for analyzing the impacting behaviour of a steam generator tube which has one or more loose supports and is fluidelastically unstable. The method uses a fluidelastic instability model to predict the damping (positive or negative) of all the modes of vibration of the tube and uses this information in a nonlinear transient analysis computer code, which includes the effects of impacting at loose supports. A comparison is made between numerical predictions and experimental results obtained from a cantilever tube array in cross-fly. The predicted changes in frequency of vibration with flow velocity agree well with the experimental values, giving some confidence in the accuracy of the method. The method is then used to analyze the fluid-elastic vibration of a steam generator U-tube with a single loose AVB support point.

  13. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    NASA Astrophysics Data System (ADS)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  14. Efficient procedure for the numerical calculation of harmonic vibrational frequencies based on internal coordinates.

    PubMed

    Miliordos, Evangelos; Xantheas, Sotiris S

    2013-08-15

    We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson's GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings in the energy calculations amount to 36N - 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. In all cases the frequencies based on internal coordinates differ on average by <1 cm(-1) from those obtained from Cartesian coordinates.

  15. Efficient Procedure for the Numerical Calculation of Harmonic Vibrational Frequencies Based on Internal Coordinates

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2013-08-15

    We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings in the energy calculations amount to 36N – 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. Finally, in all cases the frequencies based on internal coordinates differ on average by <1 cm–1 from those obtained from Cartesian coordinates.

  16. The general linear theory of dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Leonov, G. A.

    2017-07-01

    It is shown that vibrations of an elastic platform, induced by an external force f( t ) = \\sum\\limits_{j = 0}^n {{A_j}} \\sin ( {{ω _j}t + {\\varphi _j}} ), can be suppressed using n dynamic vibration absorbers with eigenfrequencies ω j .

  17. Numerical and theoretical analysis of beam vibration induced acoustic streaming and the associated heat transfer

    NASA Astrophysics Data System (ADS)

    Wan, Qun

    The purpose of this research is to numerically and analytically investigate the acoustic streaming and the associated heat transfer, which are induced by a beam vibrating in either standing or traveling waveforms. Analytical results show that the beam vibrating in standing waveforms scatters the acoustic waves into the free space, which have a larger attenuation coefficient and longer propagating traveling wavelength than those of the plane wave. In contrast to a constant Reynolds stress in the plane wave, the Reynolds stress generated by such acoustic wave is expected to drive the free space streaming away from the anti-nodes and towards nodes of the standing wave vibration. The sonic and ultrasonic streamings within the channel between the vibrating beam and a parallel stationary beam are also investigated. The acoustic streaming is utilized to cool the stationary beam, which has either a heat source attached to it or subjected to a uniform heat flux. The sonic streaming is found to be mainly the boundary layer streaming dominating the whole channel while the ultrasonic streaming is clearly composed of two boundary layer streamings near both beams and a core region streaming, which is driven by the streaming velocity at the edge of the boundary layer near the vibrating beam. The standing wave vibration of the beam induces acoustic streaming in a series of counterclockwise eddies, which is directed away from the anti-nodes and towards the nodes. The magnitude of the sonic streaming is proportional to o2A 2 while that of the ultrasonic streaming is proportional to o 3/2A2. Numerical results show that the acoustic streaming induced by the beam vibrating in either standing or traveling waveforms has almost the same cooling efficiency for the heat source and the heat flux cases although the flow and temperature fields within the channel are different. The hysteresis of the ultrasonic streaming flow patterns associated with the change of the aspect ratio of the channel

  18. [The potentials for errors in the hygienic assessment of the general vibrations in tractors].

    PubMed

    Ivanovich, E; Goranova, L; Enev, S

    1991-01-01

    The data for the parameters of the general vibrations in tractors are comparatively scanty and contradictory. In the present work are analyzed the most frequently met omissions and errors in the measurement and evaluation of the general vibrations, as well as the factors, which can effect the intensity of the general vibrations; constructive and technological peculiarities, technical state, rate of machine amortization, construction, damping qualities, and regulation of the seat, motion velocity, relief, type of the performed agricultural activity. The necessity for taking under consideration these factors in measuring the general vibrations and the hygiene interpretation of the data, as well as precise report on the daily, weekly and general exposure, in view of defining the total vibration loading, is underlined.

  19. Hybrid predictions of railway induced ground vibration using a combination of experimental measurements and numerical modelling

    NASA Astrophysics Data System (ADS)

    Kuo, K. A.; Verbraken, H.; Degrande, G.; Lombaert, G.

    2016-07-01

    Along with the rapid expansion of urban rail networks comes the need for accurate predictions of railway induced vibration levels at grade and in buildings. Current computational methods for making predictions of railway induced ground vibration rely on simplifying modelling assumptions and require detailed parameter inputs, which lead to high levels of uncertainty. It is possible to mitigate against these issues using a combination of field measurements and state-of-the-art numerical methods, known as a hybrid model. In this paper, two hybrid models are developed, based on the use of separate source and propagation terms that are quantified using in situ measurements or modelling results. These models are implemented using term definitions proposed by the Federal Railroad Administration and assessed using the specific illustration of a surface railway. It is shown that the limitations of numerical and empirical methods can be addressed in a hybrid procedure without compromising prediction accuracy.

  20. Theory and numerics of vibrational resonance in Duffing oscillators with time-delayed feedback.

    PubMed

    Jeevarathinam, C; Rajasekar, S; Sanjuán, M A F

    2011-06-01

    The influence of linear time-delayed feedback on vibrational resonance is investigated in underdamped and overdamped Duffing oscillators with double-well and single-well potentials driven by both low frequency and high frequency periodic forces. This task is performed through both theoretical approach and numerical simulation. Theoretically determined values of the amplitude of the high frequency force and the delay time at which resonance occurs are in very good agreement with the numerical simulation. A major consequence of time-delayed feedback is that it gives rise to a periodic or quasiperiodic pattern of vibrational resonance profile with respect to the time-delayed parameter. An appropriate time delay is shown to induce a resonance in an overdamped single-well system which is otherwise not possible. For a range of values of the time-delayed parameters, the response amplitude is found to be larger than in delay-time feedback-free systems.

  1. Vibration and buckling of general periodic lattice structures

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.; Williams, F. W.

    1984-01-01

    A method is presented for vibration and buckling analysis of arbitrary lattice structures having repetitive geometry in any combination of coordinate directions. The approach is based on exact member theory for representing the stiffness of an individual member subject to axial load, and in the case of vibration, undergoing harmonic oscillation. The method is an extension of previous work that was limited to specific geometries. The resulting eigenvalue problem is of the size associated with the repeating element of the structure. A computer program has been developed incorporating the theory and results are given for vibration of rectangular platforms and a large antenna structure having rotational symmetry. Buckling and vibration results for cable-stiffened rings are also given.

  2. Vibration and buckling of general periodic lattice structures

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.; Williams, F. W.

    1984-01-01

    A method is presented for vibration and buckling analysis of arbitrary lattice structures having repetitive geometry in any combination of coordinate directions. The approach is based on exact member theory for representing the stiffness of an individual member subject to axial load, and in the case of vibration, undergoing harmonic oscillation. The method is an extension of previous work that was limited to specific geometries. The resulting eigenvalue problem is of the size associated with the repeating element of the structure. A computer program has been developed incorporating the theory and results are given for vibration of rectangular platforms and a large antenna structure having rotational symmetry. Buckling and vibration results for cable-stiffened rings are also given.

  3. Generalized dimension based on morphological covering for blasting vibration signal processing

    NASA Astrophysics Data System (ADS)

    Du, Kai; Fang, Xiang

    2017-06-01

    Blasting vibration signals are the comprehensive embodiment of the blasting seismic waves with the effects of the field medium. They can reflect the characteristics of the blasting source to a certain extent. At the same time, they can reflect the features of the field medium. Motivated by this fact, this paper applies generalized dimension based on morphological covering (MC) method to characterize the nonlinearity and complexity of the blasting vibration signals. We establish the fractal dimension model according to the propagation laws and features of the signals. Based on the test data measured from rock field, the generalized dimension of the signals is calculated. Experimental results reveal that the generalized dimension of blasting vibration signals reflect the feature information of the propagation medium in the blasting field. The generalized dimension based on MC method can be regarded as a new parameter to describe the blasting vibration signal and lay the foundation for establishing a more effective prediction model of blasting vibration.

  4. Numerical Simulation and Experimental Validation of Failure Caused by Vibration of a Fan

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Han, Wu; Feng, Jianmei; Jia, Xiaohan; Peng, Xueyuan

    2017-08-01

    This paper presents the root cause analysis of an unexpected fracture occurred on the blades of a motor fan used in a natural gas reciprocating compressor unit. A finite element model was established to investigate the natural frequencies and modal shapes of the fan, and a modal test was performed to verify the numerical results. It was indicated that the numerical results agreed well with experimental data. The third order natural frequency was close to the six times excitation frequency, and the corresponding modal shape was the combination of bending and torsional vibration, which consequently contributed to low-order resonance and fracture failure of the fan. The torsional moment obtained by a torsional vibration analysis of the compressor shaft system was exerted on the numerical model of the fan to evaluate the dynamic stress response of the fan. The results showed that the stress concentration regions on the numerical model were consistent with the location of fractures on the fan. Based on the numerical simulation and experimental validation, some recommendations were given to improve the reliability of the motor fan.

  5. The influence of source-receiver interaction on the numerical prediction of railway induced vibrations

    NASA Astrophysics Data System (ADS)

    Coulier, P.; Lombaert, G.; Degrande, G.

    2014-06-01

    The numerical prediction of vibrations in buildings due to railway traffic is a complicated problem where wave propagation in the soil couples the source (railway tunnel or track) and the receiver (building). This through-soil coupling is often neglected in state-of-the-art numerical models in order to reduce the computational cost. In this paper, the effect of this simplifying assumption on the accuracy of numerical predictions is investigated. A coupled finite element-boundary element methodology is employed to analyze the interaction between a building and a railway tunnel at depth or a ballasted track at the surface of a homogeneous halfspace, respectively. Three different soil types are considered. It is demonstrated that the dynamic axle loads can be calculated with reasonable accuracy using an uncoupled strategy in which through-soil coupling is disregarded. If the transfer functions from source to receiver are considered, however, large local variations in terms of vibration insertion gain are induced by source-receiver interaction, reaching up to 10 dB and higher, although the overall wave field is only moderately affected. A global quantification of the significance of through-soil coupling is made, based on the mean vibrational energy entering a building. This approach allows assessing the common assumption in seismic engineering that source-receiver interaction can be neglected if the distance between source and receiver is sufficiently large compared to the wavelength of waves in the soil. It is observed that the interaction between a source at depth and a receiver mainly affects the power flow distribution if the distance between source and receiver is smaller than the dilatational wavelength in the soil. Interaction effects for a railway track at grade are observed if the source-receiver distance is smaller than six Rayleigh wavelengths. A similar trend is revealed if the passage of a freight train is considered. The overall influence of dynamic

  6. Numerical study on reducing the vibration of spur gear pairs with phasing

    NASA Astrophysics Data System (ADS)

    Cheon, Gill-Jeong

    2010-09-01

    A new method of reducing gear vibration was analyzed using a simple spur gear pair with phasing. This new method is based on reducing the variation in mesh stiffness by adding another pair of gears with half-pitch phasing. This reduces the variation in the mesh stiffness of the final (phasing) gear, because each gear compensates for the variation in the other's mesh stiffness. A single gear pair model with a time-varying rectangular-type mesh stiffness function and backlash was used, and the dynamic response over a wide range of speeds was obtained by numerical integration. Because of the reduced variation in mesh stiffness and the double frequency, the phasing gear greatly reduced the dynamic response and nonlinear behavior of the normal gears. The results of the analysis indicate the possibility of reducing vibration of spur gear pairs using the proposed method.

  7. Application of Numerical Simulation and Vibration Measurements for Seismic Damage Assessment of Railway Structures

    NASA Astrophysics Data System (ADS)

    Uehan, Fumiaki; Meguro, Kimiro

    In this study, the authors discuss methods to assess the future/actual damage to RC structures by using numerical simulations and vibration measurements. First, the applicability of the Applied Element Method (AEM) is examined as an assessment tool for the seismic performance of RC structures with/without retrofit. Cyclic loading tests and seismic response of RC structures are simulated. Next, a method to improve the accuracy of vibration diagnoses of earthquake damaged RC structures is discussed by using damage assessment criteria calculated with the AEM. The AEM could simulate the damage behavior of RC columns, jacketed RC columns and an actual railway viaduct. The change of natural frequencies due to damage to RC columns and an actual railway viaduct with steel jacket were also correctly estimated. Seismic performance check of structures and development of assessment criteria for damage inspection can be effectively done by the AEM.

  8. Numerical study of liquid-hydrogen droplet generation from a vibrating orifice

    NASA Astrophysics Data System (ADS)

    Xu, J.; Celik, D.; Hussaini, M. Y.; Van Sciver, S. W.

    2005-08-01

    Atomic hydrogen propellant feed systems for far-future spacecraft may utilize solid-hydrogen particle carriers for atomic species that undergo recombination to create hot rocket exhaust. Such technology will require the development of particle generation techniques. One such technique could involve the production of hydrogen droplets from a vibrating orifice that would then freeze in cryogenic helium vapor. Among other quantities, the shape and size of the droplet are of particular interest. The present paper addresses this problem within the framework of the incompressible Navier-Stokes equations for multiphase flows, in order to unravel the basic mechanisms of droplet formation with a view to control them. Surface tension, one of the most important mechanisms to determine droplet shape, is modeled as the source term in the momentum equation. Droplet shape is tracked using a volume-of-fluid approach. A dynamic meshing technique is employed to accommodate the vibration of the generator orifice. Numerically predicted droplet shapes show satisfactory agreement with photographs of droplets generated in experiments. A parametric study is carried out to understand the influence of injection velocity, nozzle vibrational frequency, and amplitude on the droplet shape and size. The computational model provides a definitive qualitative picture of the evolution of droplet shape as a function of the operating parameters. It is observed that, primarily, the orifice vibrational frequency affects the shape, the vibrational amplitude affects the time until droplet detachment from the orifice, and the injection velocity affects the size. However, it does not mean that, for example, there is no secondary effect of amplitude on shape or size.

  9. Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils

    NASA Astrophysics Data System (ADS)

    Chae, Eun Jung; Akcabay, Deniz Tolga; Lelong, Alexandra; Astolfi, Jacques Andre; Young, Yin Lu

    2016-07-01

    The objective of this work is to present combined numerical and experimental studies of natural flow-induced vibrations of flexible hydrofoils. The focus is on identifying the dependence of the foil's vibration frequencies and damping characteristics on the inflow velocity, angle of attack, and solid-to-fluid added mass ratio. Experimental results are shown for a cantilevered polyacetate (POM) hydrofoil tested in the cavitation tunnel at the French Naval Academy Research Institute (IRENav). The foil is observed to primarily behave as a chordwise rigid body and undergoes spanwise bending and twisting deformations, and the flow is observed to be effectively two-dimensional (2D) because of the strong lift retention at the free tip caused by a small gap with a thickness less than the wall boundary layer. Hence, the viscous fluid-structure interaction (FSI) model is formulated by coupling a 2D unsteady Reynolds-averaged Navier-Stokes (URANS) model with a two degree-of-freedom (2-DOF) model representing the spanwise tip bending and twisting deformations. Good agreements were observed between viscous FSI predictions and experimental measurements of natural flow-induced vibrations in fully turbulent and attached flow conditions. The foil vibrations were found to be dominated by the natural frequencies in absence of large scale vortex shedding due to flow separation. The natural frequencies and fluid damping coefficients were found to vary with velocity, angle of attack, and solid-to-fluid added mass ratio. In addition, the numerical results showed that the in-water to in-air natural frequency ratios decreased rapidly, and the fluid damping coefficients increased rapidly, as the solid-to-fluid added mass ratio decreases. Uncoupled mode (UM) linear potential theory was found to significantly over-predict the fluid damping for cases of lightweight flexible hydrofoils, and this over-prediction increased with higher velocity and lower solid-to-fluid added mass ratio.

  10. Numerical performance of the parabolized ADM formulation of general relativity

    SciTech Connect

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2008-09-15

    In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.

  11. Stochastic resonance energy harvesting from general rotating shaft vibrations

    NASA Astrophysics Data System (ADS)

    Kim, Hongjip; Tai, Wei Che; Zuo, Lei

    2017-04-01

    Many vibration energy harvesters have been developed in the past to harvest energy from rotating systems. Yet most of these harvesters are linear resonance-based harvesters whose output power drops dramatically under random excitation. This poses a serious problem because a lot of vibrations of rotating systems are stochastic. In this paper, an advanced energy harvesting mechanism is proposed to magnify power output when the excitation is random. Large power output can be produced with stochastic resonance by inputting weak periodic signal and noise excitation into a bistable system. Stick-slip and whirling vibrations which are inherently existing in various rotating shaft systems, are used to make periodic signal and noise excitation. Energy harvester with external magnet was used to compensate biased periodic force from rotating shaft. The proposed energy harvesting approach is particularly useful for high friction and low speed application such as oil drilling. Detailed analysis is conducted to prove the effectiveness of the proposed energy harvesting concept. In addition, experiments were performed to verify the feasibility of this energy harvesting strategy.

  12. Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate

    NASA Astrophysics Data System (ADS)

    Amabili, Marco; Balasubramanian, Prabakaran; Breslavsky, Ivan D.; Ferrari, Giovanni; Garziera, Rinaldo; Riabova, Kseniia

    2016-12-01

    The hyperelastic behavior of a thin square silicone rubber plate has been investigated analytically, numerically and experimentally; the case of small-amplitude vibrations has been considered, as well as the case of large static deflection under aerostatic pressure. The Mooney-Rivlin hyperelastic model has been chosen to describe the material nonlinear elasticity. The material parameters have been identified by a fitting procedure on the results of a uniaxial traction test. For the analytical model, the equations of motion have been obtained by a unified energy approach, and geometrical nonlinearities are modeled according to the Novozhilov nonlinear shell theory. A numerical model has also been developed by using a commercial Finite-Element code. In the experiments, the silicone rubber plate has been fixed to a heavy metal frame; a certain in-plane pre-load, applied by stretching the plate, has been given in order to ensure a flatness of the surface. An experimental modal analysis has been conducted; results have been used to identify the applied in-plane loads by optimization procedure with two different models: a numerical and an analytical one. The first four experimental and numerical natural modes and frequencies are in good agreement with the experiments after the pre-load identification. The static deflection has been measured experimentally for different pressures. Results have been compared to those obtained by analytical and numerical models. The static deflections are also satisfactorily compared, up to a deflection 50 times larger than the plate thickness, corresponding to a 30 percent strain.

  13. Numerical determination of the transmissibility characteristics of a squeeze film damped forced vibration system

    NASA Technical Reports Server (NTRS)

    Sutton, M. A.; Davis, P. K.

    1976-01-01

    Numerical solutions of the governing equations of motion of a liquid squeeze film damped forced vibration system were carried out to examine the feasibility of using a liquid squeeze film to cushion and protect large structures, such as buildings, located in areas of high seismic activity. The mathematical model used was that for a single degree of freedom squeeze film damped spring mass system. The input disturbance was simulated by curve fitting actual seismic data with an eleventh order Lagranging polynomial technique. Only the normal component of the seismic input was considered. The nonlinear, nonhomogeneous governing differential equation of motion was solved numerically to determine the transmissibility over a wide range of physical parameters using a fourth-order Runge-Kutta technique. It is determined that a liquid squeeze film used as a damping agent in a spring-mass system can significantly reduce the response amplitude for a seismic input disturbance.

  14. Numerical approach to unbiased and driven generalized elastic model

    NASA Astrophysics Data System (ADS)

    Nezhadhaghighi, M. Ghasemi; Chechkin, A.; Metzler, R.

    2014-01-01

    From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent β characterizing the growth of the mean squared displacement ⟨(δh)2⟩ of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments ⟨|δh|q⟩ with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and the distribution of the time averaged mean squared displacement. Finally, we study numerically the driven GEM with a constant, localized perturbation and extract the characteristics of the average drift for a tagged probe.

  15. Numerical study of a three-dimensional generalized stadium billiard

    PubMed

    Papenbrock

    2000-04-01

    We study a generalized three-dimensional stadium billiard and present strong numerical evidence that this system is completely chaotic. In this convex billiard chaos is generated by the defocusing mechanism. The construction of this billiard uses cylindrical components as the focusing elements and thereby differs from the recent approach pioneered by Bunimovich and Rehacek [Commun. Math. Phys. 189, 729 (1997)]. We investigate the stability of lower-dimensional invariant manifolds and discuss bouncing ball modes.

  16. Numerical study of a three-dimensional generalized stadium billiard

    SciTech Connect

    Papenbrock, Thomas

    2000-04-01

    We study a generalized three-dimensional stadium billiard and present strong numerical evidence that this system is completely chaotic. In this convex billiard chaos is generated by the defocusing mechanism. The construction of this billiard uses cylindrical components as the focusing elements and thereby differs from the recent approach pioneered by Bunimovich and Rehacek [Commun. Math. Phys. 189, 729 (1997)]. We investigate the stability of lower-dimensional invariant manifolds and discuss bouncing ball modes. (c) 2000 The American Physical Society.

  17. Numerical computation of gravitational field for general axisymmetric objects

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (i) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (ii) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (i) finite uniform objects covering rhombic spindles and circular toroids, (ii) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (iii) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  18. [Changes in specific sensation in pilots exposed to systematic general vibration].

    PubMed

    Podshivalov, A A; Krylov, Iu V; Zaritskiĭ, V V

    1995-01-01

    Helicopter pilots exposed to excessive general vibration demonstrate changes of specific sensation (vibrotactile, vestibular, auditory), that could be signs of occupational disorder. Those changes are increased thresholds of vibrotactile sensation, lower vestibulovegetative stability, changed vestibulospinal reflexes, more common occurrence of consistent deafness for voice frequencies in comparison with jet aircraft pilots. Experimental vibration (50-1,800 (m/s2) 2 hour) caused no changes of the vibrotactile and auditory sensation, and the modified vestibular function could prove the increased vestibular reactivity.

  19. Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua

    2017-06-01

    Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.

  20. Numerical simulation of vibration of horizontal cylinder induced by progressive waves

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Jyh; Odhiambo, E. A.; Horng, Tzyy-Leng; Borthwick, A. G. L.

    2016-02-01

    Maritime structures often comprise cylinders of small diameter relative to the prevailing wave length. This paper describes the direct forcing immersed boundary simulation of the hydroelastic behaviour of a rigid, horizontal circular cylinder in regular progressive waves. Fluid motions are numerically solved by the full Navier-Stokes equations, and the free surface by the volume-of-fluid method. The Reynolds number Re = 110, Keulegan-Carpenter number KC = 10, Froude number Fr = 0.69 and Ursell number U rs ≈ 12. A single-degree-of-freedom model is used for the elastically mounted cylinder. Velocity profiles for the stationary cylinder case have been successfully validated using experimental results. The frequency response for reduced velocities 4.5\\lt {U}R*\\lt 5.3 have been compared with theoretical data. Three transverse vibration regimes are identified: lower beating (4\\lt {U}R*\\lt 4.5); lock-in (4.7\\lt {U}R*\\lt 4.8); and upper beating (5\\lt {U}R*\\lt 10) modes. The lower and upper beating regimes exhibit varying amplitude response. The lock-in mode represents the region of fixed and maximum response. The lower beating and lock-in modes have peaks at a common vibration to wave frequency ratio {f}{{w}}* = 2. For the upper beating mode, {f}{{w}}* = 1, except for {U}R*=10 when {f}{{w}}* = 2.

  1. A general numerical analysis of time-domain NQR experiments.

    PubMed

    Harel, Elad; Cho, Herman

    2006-12-01

    We introduce a general numerical approach for solving the Liouville equation of an isolated quadrupolar nuclide that can be used to analyze the unitary dynamics of time-domain NQR experiments. A numerical treatment is necessitated by the dimensionality of the Liouville space, which precludes analytical, closed form solutions for I > 3/2. Accurate simulations of experimental nutation curves, forbidden transition intensities, powder and single crystal spectra, and off-resonance irradiation dynamics can be computed with this method. We also examine the validity of perturbative approximations where the signal intensity of a transition is proportional to the transition moment between the eigenstates of the system, thus providing a simple basis for determining selection rules. Our method allows us to calculate spectra for all values of the asymmetry parameter, eta, and sample orientations relative to the coil axis. We conclude by demonstrating the methodology for calculating the response of the quadrupole system to amplitude- and frequency-modulated pulses.

  2. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  3. Numerical modelling of ground-borne noise and vibration in buildings due to surface rail traffic

    NASA Astrophysics Data System (ADS)

    Fiala, P.; Degrande, G.; Augusztinovicz, F.

    2007-04-01

    This paper deals with the numerical computation of the structural and acoustic response of a building to an incoming wave field generated by high-speed surface railway traffic. The source model consists of a moving vehicle on a longitudinally invariant track, coupled to a layered ground modelled with a boundary element formulation. The receiver model is based on a substructuring formulation and consists of a boundary element model of the soil and a finite element model of the structure. The acoustic response of the building's rooms is computed by means of a spectral finite element formulation. The paper investigates the structural and acoustic response of a multi-story portal frame office building up to a frequency of 150 Hz to the passage of a Thalys high-speed train at constant velocity. The isolation performance of three different vibration countermeasures: a floating-floor, a room-in-room, and base-isolation, are examined.

  4. a Numerically Exact Full-Dimensional Calculation of Ro-Vibrational Levels of Water Dimer

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2017-06-01

    We have developed a new method for computing numerically exact rovibrational levels of a Van der Waals dimer with flexible monomers and applied it to water dimer, a 12-dimensional cluster. % The method uses basis functions that are products of an inter-monomer function and an intra-monomer function. The inter-monomer function is a product of Wigner functions, used to study dimers within the rigid monomer approximation. The intra-monomer functions are monomer vibrational wavefunctions. % When the coupling between inter- and intra-monomer coordinates is weak, this new basis is very efficient and only a few monomer vibrational wavefunctions are necessary. The product structure of the basis makes it efficient to use the Lanczos algorithm to calculate eigenvalues and eigenfunctions of the Hamiltonian matrix. In particular, potential matrix-vector products are evaluated, without storing the potential on a full-dimensional grid, by adapting the F-matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules with a contracted basis and an iterative eigensolver. We have obtained numerically exact and converged inter-monomer energy levels and compare these with results obtained using the 6D + 6D adiabatic approach on the CCpol-8sf ab initio potential energy surface. We have also obtained the water bend levels and their shifts. We compare with results of the previous adiabatic calculation and experiment. X.-G. Wang and T. Carrington Jr. J. Chem. Phys. 119, 101 (2003) and 129, 234102 (2008). C. Leforestier, K. Szalewicz, and A. van der Avoid, J. Chem. Phys. 137, 014305 (2012).

  5. The Vibrations Of Pre-Twisted Rotating Beams Of General Orthotropy

    NASA Astrophysics Data System (ADS)

    Chen, L.-W.; Chern, H.-K.

    1993-11-01

    A study is presented of the coupled bending-bending-torsion vibrations of a pre-twisted rotating cantilever beam of fibre-reinforced material. The free vibration and dynamic stability problems are discussed. The transverse shear deformation and rotary inertia are included. The effect of the pre-twisted angle, fibre orientation and rotation are studied. Numerical results have been calculated by using the finite element method, and they show that the effects mentioned above are more complex for orthotropic beams than for isotropic ones.

  6. Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.; Marburg, S.

    2013-04-01

    Brake squeal has become of increasing concern to the automotive industry but guidelines on how to confidently predict squeal propensity are yet to be established. While it is standard practice to use the complex eigenvalue analysis to predict unstable vibration modes, there have been few attempts to calculate their acoustic radiation. Here guidelines are developed for numerical vibration and acoustic analysis of brake squeal using models of simplified brake systems with friction contact by considering (1) the selection of appropriate elements, contact and mesh; (2) the extraction of surface velocities via forced response; and (3) the calculation of the acoustic response itself. Results indicate that quadratic tetrahedral elements offer the best option for meshing more realistic geometry. A mesh has to be sufficiently fine especially in the contact region to predict mesh-independent unstable vibration modes. Regarding the vibration response, only the direct, steady-state method with a pressurised pad and finite sliding formulation (allowing contact separation) should be used. Comparison of different numerical methods suggest that a obroadband fast multi-pole boundary element method with the Burton-Miller formulation would efficiently solve the acoustic radiation of a full brake system. Results also suggest that a pad lift-off can amplify the acoustic radiation similar to a horn effect. A horn effect is also observed for chamfered pads which are used in practice to reduce the number and strength of unstable vibration modes. These results highlight the importance of optimising the pad shape to reduce acoustic radiation of unstable vibration modes.

  7. On the numerical kinematic analysis of general parallel robotic manipulators

    SciTech Connect

    Lichun Tommy Wang; Chih Cheng Chen . Dept. of Mechanical Engineering)

    1993-06-01

    The paper presents a systematic approach for the numerical kinematic analysis of general parallel robotic manipulators. This approach consists of two parts. The first part deals with the structural analysis. Based on graph theory and the Depth First Search algorithm, a method for identifying and orientating the independent kinematic loops of the robot is developed. This method not only facilitates the assignment of the local coordinate systems attached to the robot, but also arranges them in the correct order to allow efficient recursive coordinate transformation. The second part of this approach deals with the displacement analysis. A set of recursion formulae is first developed for computing the forward coordinate transformations, and these formulae are then adopted in a two-phase computational algorithm to obtain the numerical solutions to the direct and the inverse kinematics problems. The two-phase algorithm developed in this paper is not only insensitive to the initial approximation of the solution vector, but also gives a rapid convergence rate. Furthermore, it is also useful for finding multiple solutions for the robot as well as for continuous trajectory planning, as shown by the numerical examples presented in this paper.

  8. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.

    PubMed

    Fang, Tao; Jia, Junteng; Li, Shuhua

    2016-05-05

    The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study.

  9. Numerical and Experimental Characterizations of Damping Properties of SMAs Composite for Vibration Control Systems

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Bassani, P.; Tuissi, A.; Carnevale, M.; Lecis, N.; LoConte, A.; Previtali, B.

    2012-12-01

    Shape memory alloys (SMAs) are very interesting smart materials not only for their shape memory and superelastic effects but also because of their significant intrinsic damping capacity. The latter is exhibited upon martensitic transformations and especially in martensitic state. The combination of these SMA properties with the mechanical and the lightweight of fiberglass-reinforced polymer (FGRP) is a promising solution for manufacturing of innovative composites for vibration suppression in structural applications. CuZnAl sheets, after laser patterning, were embedded in a laminated composite between a thick FGRP core and two thin outer layers with the aim of maximizing the damping capacity of the beam for passive vibration suppression. The selected SMA Cu66Zn24Al10 at.% was prepared by vacuum induction melting; the ingot was subsequently hot-and-cold rolled down to 0.2 mm thickness tape. The choice of a copper alloy is related to some advantages in comparison with NiTiCu SMA alloys, which was tested for the similar presented application in a previous study: lower cost, higher storage modulus and consequently higher damping properties in martensitic state. The patterning of the SMA sheets was performed by means of a pulsed fiber laser. After the laser processing, the SMA sheets were heat treated to obtain the desired martensitic state at room temperature. The transformation temperatures were measured by differential scanning calorimetry (DSC). The damping properties were determined, at room temperature, on full-scale sheet, using a universal testing machine (MTS), with cyclic tensile tests at different deformation amplitudes. Damping properties were also determined as a function of the temperature on miniature samples with a dynamical mechanical analyzer (DMA). Numerical modeling of the laminated composite, done with finite element method analysis and modal strain energy approaches, was performed to estimate the corresponding total damping capacity and then

  10. A numerical approach to finding general stationary vacuum black holes

    NASA Astrophysics Data System (ADS)

    Adam, Alexander; Kitchen, Sam; Wiseman, Toby

    2012-08-01

    The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon, this equation has previously been shown to be elliptic, and Ricci flow and Newton’s method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes which is general enough to include many interesting higher dimensional solutions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson’s boundary conditions. We demonstrate both Newton’s method and Ricci flow to find these Lorentzian solutions.

  11. A General Numerical Analysis of Time-Domain NQR Experiments

    SciTech Connect

    Harel, Elad; Cho, Herman M.

    2006-12-01

    We introduce a general numerical approach for solving the Liouville equation of a quadrupolar nuclide that we show can be used to analyze time-domain NQR experiments. A computer-based treatment is necessitated by the dimensionality of the Liouville space, which precludes analytical, closed form solutions for I > 3/2. Accurate simulations of experimental nutation curves, forbidden transition intensities, powder and single crystal spectra, and off-resonance irradiation dynamics can be computed with this method. We also examine the validity of perturbative approximations where the signal intensity of a transition is proportional to the transition moment between the eigenstates of the system, thus providing a simple basis for determining selection rules. Our method allows us to calculate spectra for all values of the asymmetry parameter, ?, and sample orientations relative to the coil axis. We conclude by demonstrating the methodology for calculating the response of the quadrupole system to amplitude- and frequency-modulated pulses.

  12. Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review

    NASA Astrophysics Data System (ADS)

    Ainalis, Daniel; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges

    2017-01-01

    The mining and construction industries have long been faced with considerable attention and criticism in regard to the effects of blasting. The generation of ground vibrations is one of the most significant factors associated with blasting and is becoming increasingly important as mining sites are now regularly located near urban areas. This is of concern to not only the operators of the mine but also residents. Mining sites are subjected to an inevitable compromise: a production blast is designed to fragment the utmost amount of rock possible; however, any increase in the blast can generate ground vibrations which can propagate great distances and cause structural damage or discomfort to residents in surrounding urban areas. To accurately predict the propagation of ground vibrations near these sensitive areas, the blasting process and surrounding environment must be characterised and understood. As an initial step, an accurate model of the source of blast-induced vibrations is required. This paper presents a comprehensive review of the approaches to model the blasting source in order to critically evaluate developments in the field. An overview of the blasting process and description of the various factors which influence the blast performance and subsequent ground vibrations are also presented. Several approaches to analytically model explosives are discussed. Ground vibration prediction methods focused on seed waveform and charge weight scaling techniques are presented. Finally, numerical simulations of the blasting source are discussed, including methods to estimate blasthole wall pressure time-history, and hydrodynamic codes.

  13. The rate parameters for coupled vibration-dissociation in a generalized SSH approximation. [Schwarz, Slawsky, and Herzfeld

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Huo, Winifred M.; Park, Chul

    1988-01-01

    A theoretical study of vibrational excitations and dissociations of nitrogen undergoing a nonequilibrium relaxation process upon heating and cooling is reported. The rate coefficients for collisional induced vibrational transitions and transitions from a bound vibrational state into a dissociative state have been calculated using an extension of the theory originally proposed by Schwarz (SSH) et al. (1952). High-lying vibrational states and dissociative states were explicitly included but rotational energy transfer was neglected. The transition probabilities calculated from the SSH theory were fed into the master equation, which was integrated numerically to determine the population distribution of the vibrational states as well as bulk thermodynamic properties. The results show that: (1) the transition rates have a minimum near the middle of the bound vibrational levels, causing a bottleneck in the vibrational relaxation and dissociation rates; (2) high vibrational states are always in equilibrium with the dissociative state; (3) for the heating case, only the low vibrational states relax according to the Landau-Teller theory; (4) for the cooling case, vibrational relaxation cannot be described by a rate equation; (5) Park's (1985, 1988) two-temperature model is approximately valid; and (6) the average vibrational energy removed in dissociation is about 30 percent of the dissociation energy.

  14. The rate parameters for coupled vibration-dissociation in a generalized SSH approximation. [Schwarz, Slawsky, and Herzfeld

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Huo, Winifred M.; Park, Chul

    1988-01-01

    A theoretical study of vibrational excitations and dissociations of nitrogen undergoing a nonequilibrium relaxation process upon heating and cooling is reported. The rate coefficients for collisional induced vibrational transitions and transitions from a bound vibrational state into a dissociative state have been calculated using an extension of the theory originally proposed by Schwarz (SSH) et al. (1952). High-lying vibrational states and dissociative states were explicitly included but rotational energy transfer was neglected. The transition probabilities calculated from the SSH theory were fed into the master equation, which was integrated numerically to determine the population distribution of the vibrational states as well as bulk thermodynamic properties. The results show that: (1) the transition rates have a minimum near the middle of the bound vibrational levels, causing a bottleneck in the vibrational relaxation and dissociation rates; (2) high vibrational states are always in equilibrium with the dissociative state; (3) for the heating case, only the low vibrational states relax according to the Landau-Teller theory; (4) for the cooling case, vibrational relaxation cannot be described by a rate equation; (5) Park's (1985, 1988) two-temperature model is approximately valid; and (6) the average vibrational energy removed in dissociation is about 30 percent of the dissociation energy.

  15. A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows

    NASA Technical Reports Server (NTRS)

    Chuang, H. Andrew; Verdon, Joseph M.

    1998-01-01

    The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic and aeroacoustic response behaviors of a single blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational boundaries at inlet and exit transparent to outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear analysis for blade flutter applications, via numerical results for benchmark unsteady flows, and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade, and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67, two-stage fan.

  16. Nonlinear numerical modelling and experimental validation of multilayer piezoelectric vibration energy scavengers

    NASA Astrophysics Data System (ADS)

    Blažević, D.; Zelenika, S.

    2015-05-01

    Scavenging of low-level ambient vibrations i.e. the conversion of kinetic into electric energy, is proven as effective means of powering low consumption electronic devices such as wireless sensor nodes. Cantilever based scavengers are characterised by several advantages and thus thoroughly investigated; analytical models based on a distributed parameter approach, Euler-Bernoulli beam theory and eigenvalue analysis have thus been developed and experimentally verified. Finite element models (FEM) have also been proposed employing different modelling approaches and commercial software packages with coupled analysis capabilities. An approach of using a FEM analysis of a piezoelectric cantilever bimorph under harmonic excitation is used in this work. Modal, harmonic and linear and nonlinear transient analyses are performed. Different complex dynamic effects are observed and compared to the results obtained by using a distributed parameter model. The influence of two types of finite elements and three mesh densities is also investigated. A complex bimorph cantilever, based on commercially available Midé Technology® Volture energy scavengers, is then considered. These scavengers are characterised by an intricate multilayer structure not investigated so far in literature. An experimental set-up is developed to evaluate the behaviour of the considered class of devices. The results of the modal and the harmonic FEM analyses of the behaviour of the multilayer scavengers are verified experimentally for three different tip masses and 12 different electrical load values. A satisfying agreement between numerical and experimental results is achieved.

  17. A General Framework for Multiphysics Modeling Based on Numerical Averaging

    NASA Astrophysics Data System (ADS)

    Lunati, I.; Tomin, P.

    2014-12-01

    In the last years, multiphysics (hybrid) modeling has attracted increasing attention as a tool to bridge the gap between pore-scale processes and a continuum description at the meter-scale (laboratory scale). This approach is particularly appealing for complex nonlinear processes, such as multiphase flow, reactive transport, density-driven instabilities, and geomechanical coupling. We present a general framework that can be applied to all these classes of problems. The method is based on ideas from the Multiscale Finite-Volume method (MsFV), which has been originally developed for Darcy-scale application. Recently, we have reformulated MsFV starting with a local-global splitting, which allows us to retain the original degree of coupling for the local problems and to use spatiotemporal adaptive strategies. The new framework is based on the simple idea that different characteristic temporal scales are inherited from different spatial scales, and the global and the local problems are solved with different temporal resolutions. The global (coarse-scale) problem is constructed based on a numerical volume-averaging paradigm and a continuum (Darcy-scale) description is obtained by introducing additional simplifications (e.g., by assuming that pressure is the only independent variable at the coarse scale, we recover an extended Darcy's law). We demonstrate that it is possible to adaptively and dynamically couple the Darcy-scale and the pore-scale descriptions of multiphase flow in a single conceptual and computational framework. Pore-scale problems are solved only in the active front region where fluid distribution changes with time. In the rest of the domain, only a coarse description is employed. This framework can be applied to other important problems such as reactive transport and crack propagation. As it is based on a numerical upscaling paradigm, our method can be used to explore the limits of validity of macroscopic models and to illuminate the meaning of

  18. Parametric design-based modal damped vibrational piezoelectric energy harvesters with arbitrary proof mass offset: Numerical and analytical validations

    NASA Astrophysics Data System (ADS)

    Lumentut, Mikail F.; Howard, Ian M.

    2016-02-01

    This paper focuses on the primary development of novel numerical and analytical techniques of the modal damped vibration energy harvesters with arbitrary proof mass offset. The key equations of electromechanical finite element discretisation using the extended Lagrangian principle are revealed and simplified to give matrix and scalar forms of the coupled system equations, indicating the most relevant numerical technique for the power harvester research. To evaluate the performance of the numerical study, the analytical closed-form boundary value equations have been developed using the extended Hamiltonian principle. The results from the electromechanical frequency response functions (EFRFs) derived from two theoretical studies show excellent agreement with experimental studies. The benefit of the numerical technique is in providing effective and quick predictions for analysing parametric designs and physical properties of piezoelectric materials. Although analytical technique provides a challenging process for analysing the complex smart structure, it shows complementary study for validating the numerical technique.

  19. Experimental and numerical modeling of Czochralski crystal growth under axial vibrational control of the melt

    NASA Astrophysics Data System (ADS)

    Avetissov, I. Ch.; Sukhanova, E. A.; Sadovskii, A. P.; Kostikov, V. A.; Zharikov, E. V.

    2010-04-01

    A novel scheme of application of axial vibration control (AVC) technique for Czochralski crystal growth has been realized by means of oscillating baffle submerged under the growing crystal. Modeling of heat-mass transfer in the growth system has been produced by both physical experiments with water-glycerol mixture and computer simulations using FLUENT software. The laminar vibrational flows, which suppressed thermoconvectional flows, have been arranged in the proposed AVC configuration. The vibrational flows were stable and well controlled in the viscosity range 1-400 cPz, whenever the crystal-melt interface was under or over the melt surface. The direction of the vibrational flows was favorable for crystal growth. Simulations demonstrated that the shape of the crystal-melt interface is strongly dependent on vibrational parameters.

  20. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame

    NASA Astrophysics Data System (ADS)

    Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-07-01

    We present a new numerical method to construct a rotational-vibrational Hamiltonian of a general polyatomic molecule in the Eckart frame as a power series expansion in terms of curvilinear internal coordinates. The expansion of the kinetic energy operator of an arbitrary order is obtained numerically using an automatic differentiation (AD) technique. The method is applicable to molecules of arbitrary size and structure and is flexible for choosing various types of internal coordinates. A new way of solving the Eckart-frame equations for curvilinear coordinates also based on the AD technique is presented. The resulting accuracy of the high-order expansion coefficients for the kinetic energy operator using our numerical technique is comparable to that obtained by symbolic differentiation, with the advantage of being faster and less demanding in memory. Examples for H2CO, NH3, PH3, and CH3Cl molecules demonstrate the advantages of the curvilinear internal coordinates and the Eckart molecular frame for accurate ro-vibrational calculations. Our results show that very high accuracy and quick convergence can be achieved even with moderate expansions if curvilinear coordinates are employed, which is important for applications involving large polyatomic molecules.

  1. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame.

    PubMed

    Yachmenev, Andrey; Yurchenko, Sergei N

    2015-07-07

    We present a new numerical method to construct a rotational-vibrational Hamiltonian of a general polyatomic molecule in the Eckart frame as a power series expansion in terms of curvilinear internal coordinates. The expansion of the kinetic energy operator of an arbitrary order is obtained numerically using an automatic differentiation (AD) technique. The method is applicable to molecules of arbitrary size and structure and is flexible for choosing various types of internal coordinates. A new way of solving the Eckart-frame equations for curvilinear coordinates also based on the AD technique is presented. The resulting accuracy of the high-order expansion coefficients for the kinetic energy operator using our numerical technique is comparable to that obtained by symbolic differentiation, with the advantage of being faster and less demanding in memory. Examples for H2CO, NH3, PH3, and CH3Cl molecules demonstrate the advantages of the curvilinear internal coordinates and the Eckart molecular frame for accurate ro-vibrational calculations. Our results show that very high accuracy and quick convergence can be achieved even with moderate expansions if curvilinear coordinates are employed, which is important for applications involving large polyatomic molecules.

  2. Generalized Database Management System Support for Numeric Database Environments.

    ERIC Educational Resources Information Center

    Dominick, Wayne D.; Weathers, Peggy G.

    1982-01-01

    This overview of potential for utilizing database management systems (DBMS) within numeric database environments highlights: (1) major features, functions, and characteristics of DBMS; (2) applicability to numeric database environment needs and user needs; (3) current applications of DBMS technology; and (4) research-oriented and…

  3. A fundamental numerical and theoretical study for the vibrational properties of nanowires

    NASA Astrophysics Data System (ADS)

    Zhan, H. F.; Gu, Y. T.

    2012-06-01

    Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a non-constant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler-Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.

  4. A numerical model for calculating vibration from a railway tunnel embedded in a full-space

    NASA Astrophysics Data System (ADS)

    Hussein, M. F. M.; Hunt, H. E. M.

    2007-08-01

    Vibration generated by underground railways transmits to nearby buildings causing annoyance to inhabitants and malfunctioning to sensitive equipment. Vibration can be isolated through countermeasures by reducing the stiffness of railpads, using floating-slab tracks and/or supporting buildings on springs. Modelling of vibration from underground railways has recently gained more importance on account of the need to evaluate accurately the performance of vibration countermeasures before these are implemented. This paper develops an existing model, reported by Forrest and Hunt, for calculating vibration from underground railways. The model, known as the Pipe-in-Pipe model, has been developed in this paper to account for anti-symmetrical inputs and therefore to model tangential forces at the tunnel wall. Moreover, three different arrangements of supports are considered for floating-slab tracks, one which can be used to model directly-fixed slabs. The paper also investigates the wave-guided solution of the track, the tunnel, the surrounding soil and the coupled system. It is shown that the dynamics of the track have significant effect on the results calculated in the wavenumber-frequency domain and therefore an important role on controlling vibration from underground railways.

  5. Experimental and numerical study on vibration of the full-revolving propulsion ship stern

    NASA Astrophysics Data System (ADS)

    Liu, Chang-qing; Che, Chi-dong; Shen, Xiao-han

    2015-03-01

    In order to solve the severe vibration problems of an ocean engineering ship with a full-revolving propulsion system, the navigation tests, including forced vibration response test and modal test, are carried out in its stern. It is concluded from the comparison of the time-domain waveform and spectrum from different measurement points that three main factors lead to a high-level stern vibration. Firstly, the specific dynamic stiffness of a water tank is relatively small compared with its neighbor hold, which makes it act like a vibration isolator preventing vibrational energy transmitting to the main hold. Secondly, there exists high-density local modes in the working frequency range of the main engine and thus the local resonance occurs. Thirdly, the abnormal engagement of gears caused by the large deflection of the shaft bearing due to its low mounting rigidity leads to violent extra impulse excitations at high speeds. Then the modification against the dynamic defects is given by simply improving the specific stiffness of the water tanks. And the effect is validated by the FEM calculation. Some important experience is obtained with the problems being solved, which is useful in the design of ships with the same propulsion system. It is also believed that the dynamic consideration is as important as the static analysis for the ships, and that most of the vibration problems may be avoided with a proper acoustic design.

  6. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  7. A general numerical model for wave rotor analysis

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel W.

    1992-01-01

    Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.

  8. A general numerical model for wave rotor analysis

    NASA Astrophysics Data System (ADS)

    Paxson, Daniel W.

    1992-07-01

    Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.

  9. Verification of an empirical prediction method for railway induced vibrations by means of numerical simulations

    NASA Astrophysics Data System (ADS)

    Verbraken, H.; Lombaert, G.; Degrande, G.

    2011-04-01

    Vibrations induced by the passage of trains are a major environmental concern in urban areas. In practice, vibrations are often predicted using empirical methods such as the detailed vibration assessment procedure of the Federal Railroad Administration (FRA) of the U.S. Department of Transportation. This procedure allows predicting ground surface vibrations and re-radiated noise in buildings. Ground vibrations are calculated based on force densities, measured when a vehicle is running over a track, and line source transfer mobilities, measured on site to account for the effect of the local geology on wave propagation. Compared to parametric models, the advantage of this approach is that it inherently takes into account all important parameters. It can only be used, however, when an appropriate estimation of the force density is available. In this paper, analytical expressions are derived for the force density and the line source transfer mobility of the FRA procedure. The derivation of these expressions is verified using a coupled finite element-boundary element method.

  10. A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION

    EPA Science Inventory

    Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...

  11. A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION

    EPA Science Inventory

    Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...

  12. Numerical and experimental analysis of metamaterials with quasi-zero effect for vibration isolation

    NASA Astrophysics Data System (ADS)

    Anvar, Valeev

    2017-07-01

    The article is devoted to the idea of metamaterials with quasi-zero stiffness for vibration isolation. Metametarials can provide a special and unique material properties. Principles of systems with quasi-zero stiffness can be applied in this researches. Metamaterial with a low rigidity in a certain point. Consequently, low natural frequency vibration isolation and high efficiency can be obtained. Computer simulation shows a large enough margin of safety, and proves the existence of forces with quasi-zero stiffness characteristics. The calculation showed that the metamaterial has a natural frequency below 1 Hz. Experimental study shows force characteristics with quasi-zero stiffness. So, this metamaterial can be very effective and compact mean of vibration isolation

  13. Numerical and semiclassical analysis of some generalized Casimir pistons

    SciTech Connect

    Schaden, M.

    2009-05-15

    The Casimir force due to a scalar field in a cylinder of radius r with a spherical cap of radius R>r is computed numerically in the world-line approach. A geometrical subtraction scheme gives the finite interaction energy that determines the Casimir force. The spectral function of convex domains is obtained from a probability measure on convex surfaces that is induced by the Wiener measure on Brownian bridges the convex surfaces are the hulls of. Due to reflection positivity, the vacuum force on the piston by a scalar field satisfying Dirichlet boundary conditions is attractive in these geometries, but the strength and short-distance behavior of the force depend strongly on the shape of the piston casing. For a cylindrical casing with a hemispherical head, the force on the piston does not depend on the dimension of the casing at small piston elevation a<numerically approaches F{sub cas}(a<numerical results for the small-distance behavior of the force within statistical errors, whereas the proximity force approximation is off by one order of magnitude when R{approx}r.

  14. Numerical methods for a general class of porous medium equations

    SciTech Connect

    Rose, M. E.

    1980-03-01

    The partial differential equation par. deltau/par. deltat + par. delta(f(u))/par. deltax = par. delta(g(u)par. deltau/par. deltax)/par. deltax, where g(u) is a non-negative diffusion coefficient that may vanish for one or more values of u, was used to model fluid flow through a porous medium. Error estimates for a numerical procedure to approximate the solution are derived. A revised version of this report will appear in Computers and Mathematics with Applications.

  15. Numerical implementation of generalized Coddington equations for ophthalmic lens design

    NASA Astrophysics Data System (ADS)

    Rojo, P.; Royo, S.; Ramírez, J.; Madariaga, I.

    2014-02-01

    A method for general implementation in any software platform of the generalized Coddington equations is presented, developed, and validated within a Matlab environment. The ophthalmic lens design strategy is presented thoroughly, and the basic concepts of generalized ray tracing are introduced. The methodology for ray tracing is shown to include two inter-related processes. Firstly, finite ray tracing is used to provide the main direction of propagation of the considered ray at the incidence point of interest. Afterwards, generalized ray tracing provides the principal curvatures of the local wavefront at that point, and its orientation after being refracted by the lens. The curvature values of the local wavefront are interpreted as the sagital and tangential powers of the lens at the point of interest. The proposed approach is validated using a double-check of the calculated lens performance in the spherical lens case: while finite ray tracing is validated using a commercial ray tracing software, generalized ray tracing is validated using a software application for ophthalmic lens design based on the classical version of Coddington equations. Equations of the complete tracing process are developed in detail for the case of generic astigmatic ophthalmic lenses as an example. Three-dimensional representation of the sagital and tangential powers of the ophthalmic lens at all directions of gaze then becomes possible, and results are presented for lenses with different geometries.

  16. Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection

    NASA Astrophysics Data System (ADS)

    James, Ashley J.; Smith, Marc K.; Glezer, Ari

    2003-02-01

    Vibration-induced droplet ejection is a novel way to create a spray. In this method, a liquid drop is placed on a vertically vibrating solid surface. The vibration leads to the formation of waves on the free surface. Secondary droplets break off from the wave crests when the forcing amplitude is above a critical value. When the forcing frequency is small, only low-order axisymmetric wave modes are excited, and a single secondary droplet is ejected from the tip of the primary drop. When the forcing frequency is high, many high-order non-axisymmetric modes are excited, the motion is chaotic, and numerous small secondary droplets are ejected simultaneously from across the surface of the primary drop. In both frequency regimes a crater may form that collapses to create a liquid spike from which droplet ejection occurs. An axisymmetric, incompressible, Navier Stokes solver was developed to simulate the low-frequency ejection process. A volume-of-fluid method was used to track the free surface, with surface tension incorporated using the continuum-surface-force method. A time sequence of the simulated interface shape compared favourably with an experimental sequence. The dynamics of the droplet ejection process was investigated, and the conditions under which ejection occurs and the effect of the system parameters on the process were determined.

  17. General mapping between random walks and thermal vibrations in elastic networks: fractal networks as a case study.

    PubMed

    Reuveni, Shlomi; Granek, Rony; Klafter, Joseph

    2010-10-01

    We present an approach to mapping between random walks and vibrational dynamics on general networks. Random walk occupation probabilities, first passage time distributions and passage probabilities between nodes are expressed in terms of thermal vibrational correlation functions. Recurrence is demonstrated equivalent to the Landau-Peierls instability. Fractal networks are analyzed as a case study. In particular, we show that the spectral dimension governs whether or not the first passage time distribution is well represented by its mean. We discuss relevance to universal features arising in protein vibrational dynamics.

  18. Intensification of syngas ignition through the excitation of CO molecule vibrations: a numerical study

    NASA Astrophysics Data System (ADS)

    Starik, A. M.; Sharipov, A. S.; Titova, N. S.

    2010-06-01

    A comparative analysis of the kinetic mechanisms that proceed in CO-O2 and syngas-air mixtures when CO molecule vibrations are excited by laser radiation with a wavelength of 4.7 µm and when the laser radiation energy supplied to the gas is spent on heating the mixture is conducted. The efficiencies of both methods of combustion initiation are compared. The simulation shows that the excitation of CO molecule vibrations by laser photons allows significant intensification of the chain processes both in CO-O2(air) and in syngas-air mixtures. This method is much more effective in shortening the induction time and in decreasing the ignition temperature than the method of laser-induced thermal ignition. It was found that in order to ensure the identical delay time it is necessary to add a noticeably higher energy in the case of heating the gas by laser radiation than when exciting the CO molecule vibrations. In addition, a low temperature ignition of the mixture with laser-excited CO molecules makes it possible to raise the efficiency of conversion of the reactant chemical energy to the thermal energy released during combustion compared with the method of heating the mixture by laser radiation.

  19. Branch switching at Hopf bifurcation analysis via asymptotic numerical method: Application to nonlinear free vibrations of rotating beams

    NASA Astrophysics Data System (ADS)

    Bekhoucha, Ferhat; Rechak, Said; Duigou, Laëtitia; Cadou, Jean-Marc

    2015-05-01

    This paper deals with the computation of backbone curves bifurcated from a Hopf bifurcation point in the framework of nonlinear free vibrations of a rotating flexible beams. The intrinsic and geometrical equations of motion for anisotropic beams subjected to large displacements are used and transformed with Galerkin and harmonic balance methods to one quadratic algebraic equation involving one parameter, the pulsation. The latter is treated with the asymptotic numerical method using Padé approximants. An algorithm, equivalent to the Lyapunov-Schmidt reduction is proposed, to compute the bifurcated branches accurately from a Hopf bifurcation point, with singularity of co-rank 2, related to a conservative and gyroscopic dynamical system steady state, toward a nonlinear periodic state. Numerical tests dealing with clamped, isotropic and composite, rotating beams show the reliability of the proposed method reinforced by accurate results.

  20. Numerical study on the free vibration of carbon nanocones resting on elastic foundation using nonlocal shell model

    NASA Astrophysics Data System (ADS)

    Ansari, Reza; Torabi, Jalal

    2016-12-01

    Employing the variational differential quadrature method, the free vibration of carbon nanocones (CNCs) embedded in an elastic foundation, is studied based on nonlocal elasticity theory. On the basis of the first-order shear deformation theory, the energy functional of the CNC is presented and then discretized by employing the generalized differential quadrature method in the axial direction and periodic differential operators in the circumferential direction. According to Hamilton's principle and using matrix relations, the reduced forms of mass and stiffness matrices are readily obtained. The results of present study are compared to those obtained by molecular mechanics to verify the proposed approach. In addition, the effects of nonlocal parameter, boundary conditions, semi-apex angle and both Winkler and Pasternak coefficients of elastic foundation are examined on the vibrational behavior of CNCs. The results indicate that the increase in nonlocal parameter and elastic foundation coefficients decreases and increases the fundamental frequency of CNCs, respectively.

  1. Generalized propagation of light through optical systems. II. Numerical implications.

    PubMed

    Tessmer, Manuel; Gross, Herbert

    2015-12-01

    We present an algorithm implemented in a MATLAB toolbox that is able to compute the wave propagation of coherent visible light through macroscopic lenses. The mathematical operations that complete the status at the end of the first paper of this sequence, where only limited configurations of the propagation direction were allowed toward arbitrarily directed input beam computations, are provided. With their help, high numerical aperture (NA) field tracing is made possible that is based on fast Fourier routines and is Maxwell exact in the limit of macroscopic structures and large curvature radii, including reflection and transmission. Whereas the curvature-dependent terms in the Helmholtz equation are under analytical control through the first perturbation order in the curvature, they are only included in the propagation distance in the current investigation for the sake of reasonable time consumption. We give a number of examples that demonstrate the strengths of our approach, describe essential differences from other approaches that were not obvious when Paper 1 was written, and list a number of drawbacks and possible simplifications to overcome them.

  2. A general numerical analysis program for the superconducting quasiparticle mixer

    NASA Technical Reports Server (NTRS)

    Hicks, R. G.; Feldman, M. J.; Kerr, A. R.

    1986-01-01

    A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.

  3. A general classification of New World Leishmania using numerical zymotaxonomy.

    PubMed

    Cupolillo, E; Grimaldi, G; Momen, H

    1994-03-01

    More than 250 strains of Leishmania isolated from different localities and hosts in the New World were analyzed by enzyme electrophoresis, and their electromorphic profiles were compared with 19 reference strains representing most of the described species of this parasite. The 18 enzymic loci analyzed were very polymorphic, and the strains were classified into 44 zymodemes, each grouping strains with the same enzyme profiles. Each zymodeme was considered as an elementary taxon and the phenetic and phylogenetic relationships were determined by agglomerative hierarchical, ordination, and cladistic techniques. The different classification methods produced very similar results. The 44 zymodemes could be clustered into two groups, corresponding to the subgenera Leishmania and Viannia, by the numerical methods. The subgenus Viannia was shown to be monophyletic and could be further divided into species complexes representing L. braziliensis, L. naiffi, and L. guyanensis/L. panamensis/L. shawi, as well as some isolated taxa including L. lainsoni. The subgenus Leishmania, on the other hand, was polyphyletic, with New World isolates related to L. major clustered separately from the L. mexicana species complex. Most of the other zymodemes in this group represented independent taxa. The results confirm Viannia as a valid taxon but suggest that the status of the subgenus Leishmania should be further investigated. Leishmania braziliensis and L. naiffi were shown to be the most polymorphic species, while L. guyanensis, in spite of being the most common species found in this study, was remarkably homogeneous. The only variants were found south of the Amazon river. North of this river, the species was monomorphic.

  4. A numerical method for determining the natural vibration characteristics of rotating nonuniform cantilever blades

    NASA Technical Reports Server (NTRS)

    White, W. F., Jr.; Malatino, R. E.

    1975-01-01

    A method is presented for determining the free vibration characteristics of a rotating blade having nonuniform spanwise properties and cantilever boundary conditions. The equations which govern the coupled flapwise, chordwise, and torsional motion of such a blade are solved using an integrating matrix method. By expressing the equations of motion and matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the equations are formulated into an eigenvalue problem whose solutions may be determined by conventional methods. Computer results are compared with experimental data.

  5. [Study on the vibrational spectra characterization of synthetic jadeite jade made by General electric Company].

    PubMed

    Cao, Shu-Min; Qi, Li-Jian; Guo, Qing-Hong; Zhong, Zeng-Qiu; Qiu, Zhi-Li; Li, Zhi-Gang

    2008-04-01

    The object of the present study is the synthetic jadeite jade produced by American General Electric Corporation. Fourier transform infrared spectroscopy (FTIR) and Laser Raman spectroscopy were used to test its spectral properties in order to examine the feature of this kind of synthetic jadeite jade by vibrational spectroscopy and to figure out the mark for discriminate synthetic jadeite jade from natural jadeite jade. The study shows that GE synthetic jadeite jade is identical with natural jadeite jade in the main on fingerprint region in FTIR; There are clearly differences in the 2 000 -4 000 cm(-1) functional region in FTIR: a group of frequencies at 3 375, 3 471 and 3 614 cm(-1) indicate vibration absorption of O-H. GE synthetic jadeite jade has proven consistent with natural jadeite jade in the laser Raman spectra by a group of sharp scattering peaks at 376, 700, 989 and 1 039 cm(-1). In addition these scattering peaks show an intact crystal shape. The FTIR peaks and Raman spectral peaks shift to higher frequencies showing GE synthetic jadeite jade lacking isomorphism of heavy positive ions.

  6. A numerical-perturbation method for the nonlinear analysis of structural vibrations

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Mook, D. T.; Lobitz, D. W.

    1974-01-01

    A numerical-perturbation method is proposed for the determination of the nonlinear forced response of structural elements. Purely analytical techniques are capable of determining the response of structural elements having simple geometries and simple variations in thickness and properties, but they are not applicable to elements with complicated structure and boundaries. Numerical techniques are effective in determining the linear response of complicated structures, but they are not optimal for determining the nonlinear response of even simple elements when modal interactions take place due to the complicated nature of the response. Therefore, the optimum is a combined numerical and perturbation technique. The present technique is applied to beams with varying cross sections.

  7. Numerical and experimental study of unsteady flow field and vibration in radial inflow turbines

    SciTech Connect

    Kreuz-Ihli, T.; Filsinger, D.; Schulz, A.; Wittig, S.

    2000-04-01

    The blades of turbocharger impellers are exposed to unsteady aerodynamic forces, which cause blade vibrations and may lead to failures. An indispensable requirement for a safe design of radial inflow turbines is a detailed knowledge of the exciting forces. Up to now, only a few investigations relating to unsteady aerodynamic forces in radial turbines have been presented. To give a detailed insight into the complex phenomena, a comprehensive research project was initiated at the Institut fuer Thermische Stroemungsmaschinen, at the University of Karlsruhe. A turbocharger test rig was installed in the high-pressure, high-temperature laboratory of the institute. The present paper gives a description of the test rig design and the measuring techniques. The flow field in a vaneless radial inflow turbine was analyzed using laser-Doppler anemometry. First results of unsteady flow field investigations in the turbine scroll and unsteady phase-resolved measurements of the flow field in the turbine rotor will be discussed. Moreover, results from finite element calculations analyzing frequencies and mode shapes are presented. As vibrations in turbines of turbochargers are assumed to be predominantly excited by unsteady aerodynamic forces, a method to predict the actual transient flow in a radial turbine utilizing the commercial Navier-Stokes solver TASCflow3d was developed. Results of the unsteady calculations are presented and comparisons with the measured unsteady flow field are made. As a major result, the excitation effect of the tongue region in a vaneless radial inflow turbine can be demonstrated.

  8. Transition densities in the context of the generalized rotation-vibration model

    NASA Astrophysics Data System (ADS)

    Morales Botero, D. F.; Chamon, L. C.; Carlson, B. V.

    2017-10-01

    A collective model for the description of heavy-ion nuclear structure, called the generalized rotation-vibration model (GRVM), was proposed in an earlier paper. In the present work, we use this model to study transition densities for the low-lying states of several nuclei. In order to evaluate the accuracy of the model, we test the GRVM transition densities in the description of experimental results corresponding to elastic and inelastic electron-nucleus scattering. We also compare the GRVM densities with those arising from microscopic Dirac-Hartree-Bogoliubov theoretical calculations. The GRVM transition densities can be used in future works to calculate folding-type coupling potentials in coupled-channel data analyses for heavy-ion systems.

  9. A general purpose cold finger using a vibration-free mounted He closed-cycle cryostata)

    NASA Astrophysics Data System (ADS)

    Boolchand, P.; Lemon, G. H.; Bresser, W. J.; Enzweiler, R. N.; Harris, R.

    1995-04-01

    A method for mounting a He closed-cycle cryostat which consists of an exchange gas envelope around the cold head to cool an independently supported sample mount as in model DE202 with a DMX-20 interface from APD Cryogenics, Inc. is described. No detectable vibration of the sample mount is observed as evaluated using 57Fe Mössbauer spectroscopy and a piezoelectric accelerometer. Using a 25 μm thick α-Fe foil a linewidth of 0.231(3) mm/s at 300 K with the refrigerator on and the same linewidth with the refrigerator off is observed. The easy optical access afforded by such a cold finger makes it an economical general purpose laboratory tool for performing low-T spectroscopic investigations, such as microwave, optical, γ-ray, x-ray and neutron-scattering measurements. Other applications include electrical transport, SIMS, RBS, and rare-gas matrix isolation.

  10. Vibrational circular dichroism in general anisotropic thin solid films: measurement and theoretical approach.

    PubMed

    Buffeteau, Thierry; Lagugné-Labarthet, François; Sourisseau, Claude

    2005-06-01

    In this study, the measurement of the true vibrational circular dichroism (VCD) spectrum is considered from an experimental and theoretical approach for any general anisotropic thin solid sample exhibiting linear as well as circular birefringence (LB, CB) and dichroism (LD, CD) properties. For this purpose, we have made use of a simple model alpha-helix polypeptide, namely, the poly(gamma-benzyl-L-glutamate) or PBLG, reference sample possessing a well-known VCD spectrum and giving rise to slightly oriented films by deposition onto a solid substrate. Also, we have used a different Fourier transform infrared modulation of polarization (PM-FTIR) optical setup with two-channel electronic processing in order to record the PM-VLD and PM-VCD spectra for various sample orientations in its film plane. All the corresponding general relations of the expected intensities in these experiments and the related properly designed calibration measurements were established using the Stokes-Mueller formalism; in addition, the residual birefringence of the optical setup and the transmittance anisotropy of the detector were estimated. From a comparative study of the results obtained in solution and in the solid state, we then propose a simple new experimental procedure to extract the true VCD spectrum of an oriented PBLG thin film: its consists of calculating the half-sum of two spectra recorded at theta and at theta +/- 90 degrees sample orientations. Moreover, the complete linear and circular birefringence and dichroism properties of the ordered PBLG thin film are estimated in the amide I and amide II vibrational regions. This allows us to establish for any sample orientation various theoretical simulations of the VCD spectra that agree nicely with the observed experimental results; this confirms that the measurement of LD and LB is in this case a prerequisite in simulating the true VCD spectrum of a partly oriented anisotropic sample. This validates our combined experimental and

  11. A numerical investigation of flow induced vibrations in a rocket engine manifold

    NASA Astrophysics Data System (ADS)

    Peugeot, John W.

    2011-12-01

    Flow induced vibrations are common in liquid rocket engine components and have been the subject of several recent studies within the Space Shuttle and Delta launch vehicle programs. Understanding how unsteady flow phenomena develop is important when investigating failures in existing hardware and in the design of new propulsion systems. In this study, a subsonic turbulent flow in a rocket engine manifold is analyzed using a compressible form of the viscous flow equations coupled with a hybrid RANS-DES turbulence model. It is found that vortex shedding and pressure perturbations within a manifold significantly influence the stability of shear layers and flow through exit cooling tubes. By adding a chamfer to the inlet of the cooling tubes, it was demonstrated that greater shear layer stability can be obtaIned at a given pressure ratio.

  12. Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives

    NASA Astrophysics Data System (ADS)

    Sun, Limin; Chen, Lin

    2015-01-01

    This study extends dynamic understanding of a taut cable with a viscous damper at arbitrary location to that with a general linear viscoelastic (VE) damper portrayed by a five-parameter fractional derivative model (FDM). The FDM is able to describe a generalized relationship between force and deformation of viscoelastic dampers (material) in a wide frequency range, which can simulate a practical damper including its support condition or a secondary tie between neighboring cables. Free vibrations of the passively controlled cable system have then been formulated analytically through complex modal analysis. For the restricted case that the FDM is installed close to one cable anchorage, asymptotic solutions for the system complex frequency and modal damping are presented; explicit formulas have also been derived to determine the maximal attainable damping and corresponding optimum FDM parameters, based on which effects of frequency-dependent damper properties are appreciated. Considering the FDM located at arbitrary location, the three distinct regimes of frequency evolutions observed for a cable with a viscous damper have been generalized to that with a VE damper; also, new characteristics of the regime diagram and the frequency evolution in each regime are observed.

  13. A numerical scheme for the identification of hybrid systems describing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    A cubic spline based Galerkin-like method is developed for the identification of a class of hybrid systems which describe the transverse vibration to flexible beams with attached tip bodies. The identification problem is formulated as a least squares fit to data subject to the system dynamics given by a coupled system of ordnary and partial differential equations recast as an abstract evolution equation (AEE) in an appropriate infinite dimensional Hilbert space. Projecting the AEE into spline-based subspaces leads naturally to a sequence of approximating finite dimensional identification problems. The solutions to these problems are shown to exist, are relatively easily computed, and are shown to, in some sense, converge to solutions to the original identification problem. Numerical results for a variety of examples are discussed.

  14. A numerical analysis of the influence of tram characteristics and rail profile on railway traffic ground-borne noise and vibration in the Brussels Region.

    PubMed

    Kouroussis, G; Pauwels, N; Brux, P; Conti, C; Verlinden, O

    2014-06-01

    Nowadays, damage potentially caused by passing train in dense cities is of increasing concern and restricts improvement to the interconnection of various public transport offers. Although experimental studies are common to quantify the effects of noise and vibration on buildings and on people, their reach is limited since the causes of vibrations can rarely be deduced from data records. This paper presents the numerical calculations that allow evaluating the main contributions of railway-induced ground vibrations in the vicinity of buildings. The reference case is the Brussels Region and, more particularly, the T2000 tram circulating in Brussels city. Based on a pertinent selection of the vibration assessment indicators and a numerical prediction approach, various results are presented and show that the free-field analysis is often improperly used in this kind of analysis as the interaction of soil and structure is required. Calculated high ground vibrations stem from singular rail surface defects. The use of resilient wheels is recommended in order to reduce the ground-borne noise and vibration to permissible values.

  15. Numerical investigation of nonlinear vibration for rotor-seal system of centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhou, W. J.; Yang, Y. C.; Xing, G. K.; Wang, L. Q.

    2013-12-01

    The exciting force in the seal is an important factor for the stability of a multiple stage centrifugal pump. With the speed increasing, the rotor system of multiple stage centrifugal pump presents some nonlinear characters. In order to provide supports for the research of nonlinear characters of multiple stage centrifugal pump, a rotor-seal system model of centrifugal pump is presented and the Muszynska nonlinear seal model is used to express the seal exciting force with multiple parameters in the paper. The fourth-order Runge-Kutta method is also used to determine the vibration response at the impeller place and obtain bifurcation diagram, axis orbit, phase diagram as well as Poincaré Map. The bifurcation results show that the rotor-seal system would be stable under a lower speed and change to be unstable as the rotor speed increases. Various multi-periodic motions and quasi-periodic motions are found showing the complicated motions in the rotor-seal system under nonlinear seal forces.

  16. Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations.

    PubMed

    Talebi, Maryam; Setareh, Milad; Saffar-Avval, Majid; Hosseini Abardeh, Reza

    2017-04-01

    Application of ultrasonic waves for heat transfer augmentation has been proposed in the last few decades. Due to limited researches on acoustic streaming induced by ultrasonic oscillation, the effect of ultrasonic waves on natural convection heat transfer is the main purpose of this paper. At first, natural convection on up-ward-facing heating surface in a cylindrical enclosure filled with air is investigated numerically by the finite difference method, then the effect of upper surface oscillation on convection heat transfer is considered. The conservation equations in Lagrangian approach and compressible fluid are assumed for the numerical simulation. Results show that acoustic pressure will become steady after some milliseconds also pressure oscillation amplitude and acoustic velocity components will be constant therefore steady state velocity is used for solving energy equation. Results show that Enhancement of heat transfer coefficient can be up to 175% by induced ultrasonic waves. In addition, the effect of different parameters on acoustic streaming and heat transfer has been studied.

  17. Experimental evidence, numerics, and theory of vibrational resonance in bistable systems.

    PubMed

    Baltanás, J P; López, L; Blechman, I I; Landa, P S; Zaikin, A; Kurths, J; Sanjuán, M A F

    2003-06-01

    We consider an overdamped bistable oscillator subject to the action of a biharmonic force with very different frequencies, and study the response of the system when the parameters of the high-frequency force are varied. A resonantlike behavior is obtained when the amplitude or the frequency of this force is modified in an experiment performed by means of an analog circuit. This behavior, confirmed by numerical simulations, is explained on the basis of a theoretical approach.

  18. On a generalized laminate theory with application to bending, vibration, and delamination buckling in composite laminates

    SciTech Connect

    Barbero, E.J.

    1989-01-01

    In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminated cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.

  19. Transverse vibrations of shear-deformable beams using a general higher order theory

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1993-01-01

    A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.

  20. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  1. Numerical investigation of two-degree-of-freedom vortex-induced vibration of a circular cylinder in oscillatory flow

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    2013-05-01

    Two-degree-of-freedom (2dof) vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow is investigated numerically. The direction of the oscillatory flow is perpendicular to the spanwise direction of the circular cylinder. Simulations are carried out for the Keulegan-Carpenter (KC) numbers of 10, 20 and 40 and the Reynolds numbers ranging from 308 to 9240. The ratio of the Reynolds number to the reduced velocity is 308. At KC=10, the amplitude of the primary frequency component is much larger than those of other frequency components. Most vibrations for KC=20 and 40 have multiple frequencies. The primary frequency of the response in the cross-flow direction decreases with the increasing reduced velocity, except when the reduced velocity is very small. Because the calculated primary frequencies of the response in the cross-flow direction are multiple of the oscillatory flow frequency in most of the calculated cases, the responses are classified into single-frequency mode, double-frequency mode, triple frequency mode, etc. If the reduced velocity is in the range where the VIV is transiting from one mode to another, the vibration is very irregular.For each KC number the range of the reduced velocity can be divided into a cross-flow-in-phase regime (low Vr), where the response and the hydrodynamic force in the cross-flow direction synchronize, and a cross-flow-anti-phase regime (high Vr), where the response and the hydrodynamic force in the cross-flow direction are in anti-phase with each other. The boundary values of Vr between the cross-flow-in-phase and the cross-flow-anti-phase regimes are 7, 9 and 11 for KC=10, 20 and 40, respectively. For KC=20, another cross-flow-anti-phase regime is found between 15≤Vr≤19. Similarly the in-line-in-phase and the in-line-anti-phase regimes are also identified for the response in the in-line direction. It is found that the boundary value of Vr between the in-line-in-phase and the in-line-anti-phase regimes is

  2. The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics

    NASA Astrophysics Data System (ADS)

    Borrelli, Raffaele; Gelin, Maxim F.

    2016-12-01

    A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac-Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.

  3. Two Generalized Higher Order Theories in Free Vibration Studies of Multilayered Plates

    NASA Astrophysics Data System (ADS)

    MESSINA, A.

    2001-04-01

    This paper presents an extension of two-dimensional models for the analysis of freely vibrating laminated plates. The extension concerns the enlargement of higher order theories, recently introduced by different authors in several forms, to encompass higher order terms over the cubic one usually taken into consideration. Higher order effects such as rotatory inertia and transverse shear stress are naturally included without any shear correction factors. Namely, two different models are introduced by expanding, on different functional bases, displacements (D2D) and transverse shear stresses in conjunction with displacements (M2D). The expansion is considered to be consistent with the traction-type boundary condition on the external surfaces of the plate. The governing equations and associated boundary conditions are consistently obtained by the classical Hamilton's variational principle and Reissner's mixed variational theorem. Both models are equivalent single layer type and, therefore, differ according to the layer-wise descriptions, preserve the independence of the number of unknown variables on the number of layers. However, this feature is presented together with intrinsic physical violations for both models. Model D2D violates the interlaminar stress continuity requirement and model M2D violates in a weaker from the same requirement (derivatives are not piecewise continuous), besides neglecting the transverse normal stress. The importance of completely fulfilling the mentioned continuity is then discussed once the relevant governing equations are tailored for the cylindrical bending condition. The effectiveness of the models is indicated by making numerical comparisons with the exact three-dimensional theory of the elasticity for several lamination schemes, angle/cross-ply lay-ups, and characteristic geometric ratios for low and higher frequencies.

  4. Modal wavefront reconstruction over general shaped aperture by numerical orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Jingfei; Li, Xinhua; Gao, Zhishan; Wang, Shuai; Sun, Wenqing; Wang, Wei; Yuan, Qun

    2015-03-01

    In practical optical measurements, the wavefront data are recorded by pixelated imaging sensors. The closed-form analytical base polynomial will lose its orthogonality in the discrete wavefront database. For a wavefront with an irregularly shaped aperture, the corresponding analytical base polynomials are laboriously derived. The use of numerical orthogonal polynomials for reconstructing a wavefront with a general shaped aperture over the discrete data points is presented. Numerical polynomials are orthogonal over the discrete data points regardless of the boundary shape of the aperture. The performance of numerical orthogonal polynomials is confirmed by theoretical analysis and experiments. The results demonstrate the adaptability, validity, and accuracy of numerical orthogonal polynomials for estimating the wavefront over a general shaped aperture from regular boundary to an irregular boundary.

  5. Numerical Investigation of Compressor Non-Synchronous Vibration with Full Annulus Rotor-Stator Interaction

    NASA Astrophysics Data System (ADS)

    Espinal, Daniel

    The objective of this research is to investigate and confirm the periodicity of the Non-Synchronous Vibration (NSV) mechanism of a GE axial compressor with a full-annulus simulation. A second objective is to develop a high fidelity single-passage tool with time-accurate unsteady capabilities able to capture rotor-stator interactions and NSV excitation response. A high fidelity methodology for axial turbomachinery simulation is developed using the low diffusion shock-capturing Riemann solver with high order schemes, the Spalart-Allmaras turbulence closure model, the fully conservative unsteady sliding BC for rotor-stator interaction with extension to full-annulus and single-passage configurations, and the phase lag boundary conditions applied to rotor-stator interface and circumferential BC. A URANS solver is used and captures the NSV flow excitation frequency of 2439 Hz, which agrees reasonably well with the measured NSV frequency of 2600 Hz from strain gage test data. It is observed that the circumferentially traveling vortex formed in the vicinity of the rotor tip propagates at the speed of a non-engine order frequency and causes the NSV. The vortex travels along the suction surface of the blade and crosses the passage outlet near blade trailing edge. Such a vortex motion trajectory repeats in each blade passage and generates two low pressure regions due to the vortex core positions, one at the leading edge and one at the trailing edge, both are oscillating due to the vortex coming and leaving. These two low pressure regions create a pair of coupling forces that generates a torsion moment causing NSV. The full-annulus simulation shows that the circumferentially traveling vortex has fairly periodical behavior and is a full annulus structure. Also, frequencies below the NSV excitation frequency of 2439 Hz with large amplitudes in response to flow-separation related phenomena are present. This behavior is consistent with experimental measurements. For

  6. A general numerical approximation of construction of axisymmetric ideal plastic plane deformation of a granular material

    NASA Astrophysics Data System (ADS)

    Damanhuri, Nor Alisa; Ayob, Syafikah

    2017-09-01

    A general numerical approximation of the stress equilibrium equations and constructing axisymmetric ideal plastic plane deformation of a granular material is considered. The stress components are assumed to satisfy the Coulomb yield criterion and the self-weight of the material is neglected. The standard method of numerical approximation leads to the construction of the small segments of the stress characteristic field. Using the Matlab program, the method is applied to a problem of granular indentation by a smooth flat surface.

  7. Modal wavefront estimation from its slopes by numerical orthogonal transformation method over general shaped aperture.

    PubMed

    Ye, Jingfei; Wang, Wei; Gao, Zhishan; Liu, Zhiying; Wang, Shuai; Benítez, Pablo; Miñano, Juan C; Yuan, Qun

    2015-10-05

    Wavefront estimation from the slope-based sensing metrologies zis important in modern optical testing. A numerical orthogonal transformation method is proposed for deriving the numerical orthogonal gradient polynomials as numerical orthogonal basis functions for directly fitting the measured slope data and then converting to the wavefront in a straightforward way in the modal approach. The presented method can be employed in the wavefront estimation from its slopes over the general shaped aperture. Moreover, the numerical orthogonal transformation method could be applied to the wavefront estimation from its slope measurements over the dynamic varying aperture. The performance of the numerical orthogonal transformation method is discussed, demonstrated and verified by the examples. They indicate that the presented method is valid, accurate and easily implemented for wavefront estimation from its slopes.

  8. Numerical treatment of the spherically symmetric solutions of a generalized Fisher-Kolmogorov-Petrovsky-Piscounov equation

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.; Medina-Ramírez, I. E.; Puri, A.

    2009-09-01

    In the present work, the connection of the generalized Fisher-KPP equation to physical and biological fields is noted. Radially symmetric solutions to the generalized Fisher-KPP equation are considered, and analytical results for the positivity and asymptotic stability of solutions to the corresponding time-independent elliptic differential equation are quoted. An energy analysis of the generalized theory is carried out with further physical applications in mind, and a numerical method that consistently approximates the energy of the system and its rate of change is presented. The method is thoroughly tested against analytical and numerical results on the classical Fisher-KPP equation, the Heaviside equation, and the generalized Fisher-KPP equation with logistic nonlinearity and Heaviside initial profile, obtaining as a result that our method is highly stable and accurate, even in the presence of discontinuities. As an application, we establish numerically that, under the presence of suitable initial conditions, there exists a threshold for the relaxation time with the property that solutions to the problems considered are nonnegative if and only if the relaxation time is below a critical value. An analytical prediction is provided for the Heaviside equation, against which we verify the validity of our computational code, and numerical approximations are provided for several generalized Fisher-KPP problems.

  9. [The influence of vibration training in combination with general magnetotherapy on dynamics of performance efficiency in athletes].

    PubMed

    Mikheev, A A; Volchkova, O A; Voronitskiĭ, N E

    2010-01-01

    The objective of this study was to evaluate effects of a combined treatment including vibrostimulation and magnetotherapy on the working capacity of athletes. Participants of the study were 8 male judo wrestlers. It was shown that implementation of a specialized training program comprising seances of vibration loading and general magnetotherapy 40 and 60 min in duration respectively during 3 consecutive days produced marked beneficial effect on the hormonal status of the athletes. Specifically, the three-day long treatment resulted in a significant increase of blood cortisol and testosterone levels considered to be an objective sign of improved performance parameters in athletes engaged in strength and speed sports. The optimal length of vibration training during 3 days of specialized training is estimated at 20 to 40 minutes supplemented by general magnetotherapy for 60 minutes.

  10. Study and numerical solution of a generalized mathematical model of isothermal adsorption

    SciTech Connect

    Komissarov, Yu.A.; Vetokhin, V.N.; Tsenev, V.A.; Gordeeva, E.L.

    1995-06-01

    A generalized mathematical model of isothermal adsorption that takes into account mass transfer on the surface of a particle, diffusion in micro- and macropores, and dispersion along the length of the apparatus is considered The parameters {lambda} and {var_phi}{sup 2} determine the dominating effect of any of the mass transfer mechanisms of the adsorption process. A numerical algorithm for solving the generalized adsorption model is suggested.

  11. The application of generalized, cyclic, and modified numerical integration algorithms to problems of satellite orbit computation

    NASA Technical Reports Server (NTRS)

    Chesler, L.; Pierce, S.

    1971-01-01

    Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program.

  12. Sensitivity to general and specific numerical features in typical achievers and children with mathematics learning disability.

    PubMed

    Rotem, Avital; Henik, Avishai

    2015-01-01

    We examined the development of sensitivity to general and specific numerical features in typical achievers and in 6th and 8th graders with mathematics learning disability (MLD), using two effects in mental multiplication: operand-relatedness (i.e., difficulty in avoiding errors that are related to the operands via a shared multiplication row) and decade-consistency (i.e., difficulty in avoiding errors that are operand related and also share a decade with the true result). Responses to decade-consistent products were quick but erroneous. In line with the processing sequence in adults, children first became sensitive to the general numerical feature of operand-relatedness (typical achievers--from 3rd grade; children with MLD in 8th grade) and only later to the specific feature of decade-consistency (typical achievers--from 4th grade, but only from 6th grade in a mature pattern). Implications of the numerical sensitivity in children with MLD are discussed.

  13. Improved numerical Cherenkov instability suppression in the generalized PSTD PIC algorithm

    NASA Astrophysics Data System (ADS)

    Godfrey, Brendan B.; Vay, Jean-Luc

    2015-11-01

    The family of generalized Pseudo-Spectral Time Domain (including the Pseudo-Spectral Analytical Time Domain) Particle-in-Cell algorithms offers substantial versatility for simulating particle beams and plasmas, and well written codes using these algorithms run reasonably fast. When simulating relativistic beams and streaming plasmas in multiple dimensions, they are, however, subject to the numerical Cherenkov instability. Previous studies have shown that instability growth rates can be reduced substantially by modifying slightly the transverse fields as seen by the streaming particles. Here, we offer an approach which completely eliminates the fundamental mode of the numerical Cherenkov instability while minimizing the transverse field corrections. The procedure, numerically computed residual growth rates (from weaker, higher order instability aliases), and comparisons with simulations using the code Warp are presented. In some instances, there are no numerical instabilities whatsoever, at least in the linear regime.

  14. ORDMET: A General Algorithm for Constructing All Numerical Solutions to Ordered Metric Data

    ERIC Educational Resources Information Center

    McClelland, Gary; Coombs, Clyde H.

    1975-01-01

    ORDMET is applicable to structures obtained from additive conjoint measurement designs, unfolding theory, general Fechnerian scaling, types of multidimensional scaling, and ordinal multiple regression. A description is obtained of the space containing all possible numerical representations which can satisfy the structure, size, and shape of which…

  15. Experiments and numerical simulations of nonlinear vibration responses of an assembly with friction joints - Application on a test structure named "Harmony"

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.

    2016-03-01

    In presence of friction, the frequency response function of a metallic assembly is strongly dependent on the excitation level. The local stick-slip behavior at the friction interfaces induces energy dissipation and local stiffness softening. These phenomena are studied both experimentally and numerically on a test structure named "Harmony". Concerning the numerical part, a classical complete methodology from the finite element and friction modeling to the prediction of the nonlinear vibrational response is implemented. The well-known Harmonic Balance Method with a specific condensation process on the nonlinear frictional elements is achieved. Also, vibration experiments are performed to validate not only the finite element model of the test structure named "Harmony" at low excitation levels but also to investigate the nonlinear behavior of the system on several excitation levels. A scanning laser vibrometer is used to measure the nonlinear behavior and the local stick-slip movement near the contacts.

  16. Numerically pricing American options under the generalized mixed fractional Brownian motion model

    NASA Astrophysics Data System (ADS)

    Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying

    2016-06-01

    In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.

  17. The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling

    NASA Astrophysics Data System (ADS)

    Valentin, J.; Capron, A.; Jongmans, D.; Baillet, L.; Bottelin, P.; Donze, F.; Larose, E.; Mangeney, A.

    2017-02-01

    Seismic noise measurements (ambient vibrations) have been increasingly used in rock slope stability assessment for both investigation and monitoring purposes. Recent studies made on gravitational hazard revealed significant spectral amplification at given frequencies and polarization of the wave-field in the direction of maximum rock slope displacement. Different properties (resonance frequencies, polarization and spectral ratio amplitudes) can be derived from the spectral analysis of the seismic noise to characterize unstable rock masses. The objective here is to identify the dynamic parameters that could be used to gain information on prone-to-fall rock columns' geometry. To do so, the dynamic response of prone-to-fall columns to seismic noise has been studied on two different sites exhibiting cliff-like geometry. Dynamic parameters (main resonance frequency and spectral ratio amplitudes) that could characterize the column decoupling were extracted from seismic noise and their variations were studied taking into account the external environmental parameter fluctuations. Based on this analysis, a two-dimensional numerical model has been set up to assess the influence of the rear vertical fractures identified on both sites on the rock column motion response. Although a simple relation was found between spectral ratio amplitudes and the rock column slenderness, it turned out that the resonance frequency is more stable than the spectral ratio amplitudes to characterize this column decoupling, provided that the elastic properties of the column can be estimated. The study also revealed the effect of additional remote fractures on the dynamic parameters, which in turn could be used for detecting the presence of such discontinuities.

  18. The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling

    NASA Astrophysics Data System (ADS)

    Valentin, J.; Capron, A.; Jongmans, D.; Baillet, L.; Bottelin, P.; Donze, F.; Larose, E.; Mangeney, A.

    2016-11-01

    Seismic noise measurements (ambient vibrations) have been increasingly used in rock slope stability assessment for both investigation and monitoring purposes. Recent studies made on gravitational hazard revealed significant spectral amplification at given frequencies and polarization of the wave-field in the direction of maximum rock slope displacement. Different properties (resonance frequencies, polarization, and spectral ratio amplitudes) can be derived from the spectral analysis of the seismic noise to characterize unstable rock masses. The objective here is to identify the dynamic parameters that could be used to gain information on prone-to-fall rock columns geometry. To do so, the dynamic response of prone-to-fall columns to seismic noise has been studied on two different sites exhibiting cliff-like geometry. Dynamic parameters (main resonance frequency and spectral ratio amplitudes) that could characterize the column decoupling were extracted from seismic noise and their variations were studied taking into account the external environmental parameter fluctuations. Based on this analysis, a two-dimensional numerical model has been set up to assess the influence of the rear vertical fractures identified on both sites on the rock column motion response. Although a simple relation was found between spectral ratio amplitudes and the rock column slenderness, it turned out that the resonance frequency is more stable than the spectral ratio amplitudes to characterize this column decoupling, provided that the elastic properties of the column can be estimated. The study also revealed the effect of additional remote fractures on the dynamic parameters, which in turn could be used for detecting the presence of such discontinuities.

  19. Numerical validation of the generalized Harvey-Shack surface scatter theory

    NASA Astrophysics Data System (ADS)

    Choi, Narak; Harvey, James E.

    2013-11-01

    The generalized Harvey-Shack (GHS) surface scatter theory is numerically compared to the classical small perturbation method, the Kirchhoff approximation method, and the rigorous method of moments for one-dimensional ideally conducting surfaces whose surface power spectral density function is Gaussian or exhibits an inverse power law (fractal) behavior. In spite of its simple analytic form, our numerical comparison shows that the new GHS theory is valid (with reasonable accuracy) over a broader range of surface parameter space than either of the two classical surface scatter theories.

  20. Application of the generalized Euler series transformation for calculation of vibration-rotation energy levels of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Kruglova, T. V.

    2004-01-01

    The detailed spectroscope information about highly excited molecules and radicals such us as H+3, H2, HI, H2O, CH2 is needed for a number of applications in the field of laser physics, astrophysics and chemistry. Studies of highly excited molecular vibration-rotation states face several problems connected with slowly convergence or even divergences of perturbation expansions. The physical reason for a perturbation expansion divergence is the large amplitude motion and strong vibration-rotation coupling. In this case one needs to use the special method of series summation. There were a number of papers devoted to this problem: papers 1-10 in the reference list are only example of studies on this topic. The present report is aimed at the application of GET method (Generalized Euler Transformation) to the diatomic molecule. Energy levels of a diatomic molecule is usually represented as Dunham series on rotational J(J+1) and vibrational (V+1/2) quantum numbers (within the perturbation approach). However, perturbation theory is not applicable for highly excited vibration-rotation states because the perturbation expansion in this case becomes divergent. As a consequence one need to use special method for the series summation. The Generalized Euler Transformation (GET) is known to be efficient method for summing of slowly convergent series, it was already used for solving of several quantum problems Refs.13 and 14. In this report the results of Euler transformation of diatomic molecule Dunham series are presented. It is shown that Dunham power series can be represented of functional series that is equivalent to its partial summation. It is also shown that transformed series has the butter convergent properties, than the initial series.

  1. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S.

    2016-09-01

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into ;thick; strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single ;thick; strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip-structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.

  2. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    SciTech Connect

    Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S.

    2016-09-15

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.

  3. Numerical solution of shock and ramp compression for general material properties

    SciTech Connect

    Swift, D C

    2009-01-28

    A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.

  4. Numerical investigation of entropy generation in unsteady MHD generalized Couette flow with variable electrical conductivity.

    PubMed

    Chinyoka, T; Makinde, O D

    2013-01-01

    The thermodynamic second law analysis is utilized to investigate the inherent irreversibility in an unsteady hydromagnetic generalized Couette flow with variable electrical conductivity in the presence of induced electric field. Based on some simplified assumption, the model nonlinear governing equations are obtained and solved numerically using semidiscretization finite difference techniques. Effects of various thermophysical parameters on the fluid velocity, temperature, current density, skin friction, the Nusselt number, entropy generation number, and the Bejan number are presented graphically and discussed quantitatively.

  5. Numerical Investigation of Entropy Generation in Unsteady MHD Generalized Couette Flow with Variable Electrical Conductivity

    PubMed Central

    Chinyoka, T.; Makinde, O. D.

    2013-01-01

    The thermodynamic second law analysis is utilized to investigate the inherent irreversibility in an unsteady hydromagnetic generalized Couette flow with variable electrical conductivity in the presence of induced electric field. Based on some simplified assumption, the model nonlinear governing equations are obtained and solved numerically using semidiscretization finite difference techniques. Effects of various thermophysical parameters on the fluid velocity, temperature, current density, skin friction, the Nusselt number, entropy generation number, and the Bejan number are presented graphically and discussed quantitatively. PMID:23956691

  6. Numerical stability of the Z4c formulation of general relativity

    NASA Astrophysics Data System (ADS)

    Cao, Zhoujian; Hilditch, David

    2012-06-01

    We study numerical stability of different approaches to the discretization of a conformal decomposition of the Z4 formulation of general relativity. We demonstrate that in the linear, constant coefficient regime a novel discretization for tensors is formally numerically stable with a method of lines time integrator. We then perform a full set of “apples with apples” tests on the nonlinear system, and thus present numerical evidence that both the new and standard discretizations are, in some sense, numerically stable in the nonlinear regime. The results of the Z4c numerical tests are compared with those of Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK) evolutions. We typically do not employ the Z4c constraint damping scheme and find that in the robust stability and gauge wave tests the Z4c evolutions result in lower constraint violation at the same resolution as the BSSNOK evolutions. In the gauge wave tests, we find that the Z4c evolutions maintain the desired convergence factor over many more light-crossing times than the BSSNOK tests. The difference in the remaining tests is marginal.

  7. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors.

    PubMed

    Nie, Xuqing; Li, Shengyi; Shi, Feng; Hu, Hao

    2014-02-20

    The smoothing effect of the rigid lap plays an important role in controlling midspatial frequency errors (MSFRs). At present, the pressure distribution between the polishing pad and processed surface is mainly calculated by Mehta's bridging model. However, this classic model does not work for the irregular MSFR. In this paper, a generalized numerical model based on the finite element method (FEM) is proposed to solve this problem. First, the smoothing polishing (SP) process is transformed to a 3D elastic structural FEM model, and the governing matrix equation is gained. By virtue of the boundary conditions applied to the governing matrix equation, the nodal displacement vector and nodal force vector of the pad can be attained, from which the pressure distribution can be extracted. In the partial contact condition, the iterative method is needed. The algorithmic routine is shown, and the applicability of the generalized numerical model is discussed. The detailed simulation is given when the lap is in contact with the irregular surface of different morphologies. A well-designed SP experiment is conducted in our lab to verify the model. A small difference between the experimental data and simulated result shows that the model is totally practicable. The generalized numerical model is applied on a Φ500  mm parabolic surface. The calculated result and measured data after the SP process have been compared, which indicates that the model established in this paper is an effective method to predict the SP process.

  8. The experimental validation of a numerical model for the prediction of the vibrations in the free field produced by road traffic

    NASA Astrophysics Data System (ADS)

    Lombaert, G.; Degrande, G.

    2003-04-01

    The objective of the present paper is the experimental validation of a numerical model for the prediction of traffic-induced vibrations. The vibrations in the free field, generated by the passage of a vehicle on an uneven road, are predicted in two stages. First, the equations of motion of the vehicle are solved to determine the dynamic axle loads. Next, these axle loads are applied to the road and the free field vibrations are computed. An elaborate measurement campaign has been set up to validate this model. The response of a Volvo FL6 truck and the response in the free field have been measured simultaneously during the passage of the truck over an artificial road unevenness. The parameters related to the vehicle, the road and the soil have been determined experimentally. A comparison of the predicted and the measured response demonstrates the predictive qualities of the numerical model. Furthermore, the results provide a clear insight in the influence of the vehicle speed on the vehicle's and the free field response.

  9. Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel

    SciTech Connect

    Baczewski, Andrew D.; Bond, Stephen D.

    2013-01-01

    Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel.

  10. Numerical study into the morphology and formation mechanisms of three-dimensional particle structures in vibrated cylindrical cavities with various heating conditions

    NASA Astrophysics Data System (ADS)

    Lappa, Marcello

    2016-10-01

    The present analysis extends the author's earlier work [Lappa, Phys. Fluids 26, 093301 (2014), 10.1063/1.4893078] on the properties of patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow. It is shown that under certain conditions, when subjected to vibrations to induce natural flow, nonisothermal fluids with dispersed solid particles are characterized by intervals of solid-pattern-forming behavior due to particle rearrangements preceded by intervals in which no recognizable structures of solid matter can be detected. The dynamics of these systems are highly nonlinear in nature. Because this family of particle attractors is known to exhibit strong sensitivity to the symmetry properties of the considered vibrated system and related geometrical constraints, the present study attempts to clarify the related dynamics in a geometry with curved walls (cylindrical enclosure). In particular, by assuming vibrations always directed perpendicularly to the imposed temperature gradient, we show that the morphology, spatial extension (percentage of physical volume occupied), separation (spatial distance), and mechanisms responsible for the formation of the resulting particle structures change significantly according to whether the temperature gradient is parallel or perpendicular to the symmetry axis of the cylinder. This indicates that the physics is not invariant with respect to 90° rotations in space of the specific forcing considered (direction of the imposed temperature gradient and associated perpendicular vibrations). Additional insights into the problem are obtained by assessing separately the influence played by the time-averaged (mean) and oscillatory effects. According to the numerical results, the intriguing diversity of particle agglomerates results from the different role or importance played by (curved or straight) boundaries in constraining particles and from the different structure and topology of the

  11. Development of a time-dependent numerical model for the assessment of non-stationary pharyngoesophageal tissue vibrations after total laryngectomy.

    PubMed

    Hüttner, Björn; Luegmair, Georg; Patel, Rita R; Ziethe, Anke; Eysholdt, Ulrich; Bohr, Christopher; Sebova, Irina; Semmler, Marion; Döllinger, Michael

    2015-01-01

    Laryngeal cancer due to, e.g., extensive smoking and/or alcohol consumption can necessitate the excision of the entire larynx. After such a total laryngectomy, the voice generating structures are lost and with that the quality of life of the concerning patients is drastically reduced. However, the vibrations of the remaining tissue in the so called pharyngoesophageal (PE) segment can be applied as alternative sound generator. Tissue, scar, and geometric aspects of the PE-segment determine the postoperative substitute voice characteristic, being highly important for the future live of the patient. So far, PE-dynamics are simulated by a biomechanical model which is restricted to stationary vibrations, i.e., variations in pitch and amplitude cannot be handled. In order to investigate the dynamical range of PE-vibrations, knowledge about the temporal processes during substitute voice production is of crucial interest. Thus, time-dependent model parameters are suggested in order to quantify non-stationary PE-vibrations and drawing conclusions on the temporal characteristics of tissue stiffness, oscillating mass, pressure, and geometric distributions within the PE-segment. To adapt the numerical model to the PE-vibrations, an automatic, block-based optimization procedure is applied, comprising a combined global and local optimization approach. The suggested optimization procedure is validated with 75 synthetic data sets, simulating non-stationary oscillations of differently shaped PE-segments. The application to four high-speed recordings is shown and discussed. The correlation between model and PE-dynamics is ≥ 97%.

  12. Physical formulation and numerical algorithm for simulating N immiscible incompressible fluids involving general order parameters

    SciTech Connect

    Dong, S.

    2015-02-15

    We present a family of physical formulations, and a numerical algorithm, based on a class of general order parameters for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids with given densities, dynamic viscosities, and pairwise surface tensions. The N-phase formulations stem from a phase field model we developed in a recent work based on the conservations of mass/momentum, and the second law of thermodynamics. The introduction of general order parameters leads to an extremely strongly-coupled system of (N−1) phase field equations. On the other hand, the general form enables one to compute the N-phase mixing energy density coefficients in an explicit fashion in terms of the pairwise surface tensions. We show that the increased complexity in the form of the phase field equations associated with general order parameters in actuality does not cause essential computational difficulties. Our numerical algorithm reformulates the (N−1) strongly-coupled phase field equations for general order parameters into 2(N−1) Helmholtz-type equations that are completely de-coupled from one another. This leads to a computational complexity comparable to that for the simplified phase field equations associated with certain special choice of the order parameters. We demonstrate the capabilities of the method developed herein using several test problems involving multiple fluid phases and large contrasts in densities and viscosities among the multitude of fluids. In particular, by comparing simulation results with the Langmuir–de Gennes theory of floating liquid lenses we show that the method using general order parameters produces physically accurate results for multiple fluid phases.

  13. Do Different Types of School Mathematics Development Depend on Different Constellations of Numerical versus General Cognitive Abilities?

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher

    2010-01-01

    The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word…

  14. Vibration absorbers for chatter suppression: A new analytical tuning methodology

    NASA Astrophysics Data System (ADS)

    Sims, Neil D.

    2007-04-01

    Vibration absorbers have been widely used to suppress undesirable vibrations in machining operations, with a particular emphasis on avoiding chatter. However, it is well known that for vibration absorbers to function effectively their stiffness and damping must be accurately tuned based upon the natural frequency of the vibrating structure. For general vibration problems, suitable tuning strategies were developed by Den Hartog and Brock over 50 years ago. However, the special nature of the chatter stability problem means that this classical tuning methodology is no longer optimal. Consequently, vibration absorbers for chatter mitigation have generally been tuned using ad hoc methods, or numerical or graphical approaches. The present article introduces a new analytical solution to this problem, and demonstrates its performance using time domain milling simulations. A 40-50% improvement in the critical limiting depth of cut is observed, compared to the classically tuned vibration absorber.

  15. A general rigorous quantum dynamics algorithm to calculate vibrational energy levels of pentaatomic molecules

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Gen

    2009-08-01

    An exact variational algorithm is presented for calculating vibrational energy levels of pentaatomic molecules without any dynamical approximation. The quantum mechanical Hamiltonian of the system is expressed in a set of orthogonal coordinates defined by four scattering vectors in the body-fixed frame. The eigenvalue problem is solved using a two-layer Lanczos iterative diagonalization method in a mixed grid/basis set. A direct product potential-optimized discrete variable representation (PO-DVR) basis is used for the radial coordinates while a non-direct product finite basis representation (FBR) is employed for the angular variables. The two-layer Lanczos method requires only the actions of the Hamiltonian operator on the Lanczos vectors, where the potential-vector products are accomplished via a pseudo-spectral transform technique. By using Jacobi, Radau and orthogonal satellite vectors, we have proposed 21 types of orthogonal coordinate systems so that the algorithm is capable of describing most five-atom systems with small and/or large amplitude vibrational motions. Finally, an universal program ( PetroVib) has been developed. Its applications to the molecules CH and HO2-, and the van der Waals cluster HeCl are also discussed.

  16. Generalization Evaluation of Machine Learning Numerical Observers for Image Quality Assessment

    PubMed Central

    Kalayeh, Mahdi M.; Marin, Thibault; Brankov, Jovan G.

    2014-01-01

    In this paper, we present two new numerical observers (NO) based on machine learning for image quality assessment. The proposed NOs aim to predict human observer performance in a cardiac perfusion-defect detection task for single-photon emission computed tomography (SPECT) images. Human observer (HumO) studies are now considered to be the gold standard for task-based evaluation of medical images. However such studies are impractical for use in early stages of development for imaging devices and algorithms, because they require extensive involvement of trained human observers who must evaluate a large number of images. To address this problem, numerical observers (also called model observers) have been developed as a surrogate for human observers. The channelized Hotelling observer (CHO), with or without internal noise model, is currently the most widely used NO of this kind. In our previous work we argued that development of a NO model to predict human observers' performance can be viewed as a machine learning (or system identification) problem. This consideration led us to develop a channelized support vector machine (CSVM) observer, a kernel-based regression model that greatly outperformed the popular and widely used CHO. This was especially evident when the numerical observers were evaluated in terms of generalization performance. To evaluate generalization we used a typical situation for the practical use of a numerical observer: after optimizing the NO (which for a CHO might consist of adjusting the internal noise model) based upon a broad set of reconstructed images, we tested it on a broad (but different) set of images obtained by a different reconstruction method. In this manuscript we aim to evaluate two new regression models that achieve accuracy higher than the CHO and comparable to our earlier CSVM method, while dramatically reducing model complexity and computation time. The new models are defined in a Bayesian machine-learning framework: a channelized

  17. Generalization Evaluation of Machine Learning Numerical Observers for Image Quality Assessment.

    PubMed

    Kalayeh, Mahdi M; Marin, Thibault; Brankov, Jovan G

    2013-06-01

    In this paper, we present two new numerical observers (NO) based on machine learning for image quality assessment. The proposed NOs aim to predict human observer performance in a cardiac perfusion-defect detection task for single-photon emission computed tomography (SPECT) images. Human observer (HumO) studies are now considered to be the gold standard for task-based evaluation of medical images. However such studies are impractical for use in early stages of development for imaging devices and algorithms, because they require extensive involvement of trained human observers who must evaluate a large number of images. To address this problem, numerical observers (also called model observers) have been developed as a surrogate for human observers. The channelized Hotelling observer (CHO), with or without internal noise model, is currently the most widely used NO of this kind. In our previous work we argued that development of a NO model to predict human observers' performance can be viewed as a machine learning (or system identification) problem. This consideration led us to develop a channelized support vector machine (CSVM) observer, a kernel-based regression model that greatly outperformed the popular and widely used CHO. This was especially evident when the numerical observers were evaluated in terms of generalization performance. To evaluate generalization we used a typical situation for the practical use of a numerical observer: after optimizing the NO (which for a CHO might consist of adjusting the internal noise model) based upon a broad set of reconstructed images, we tested it on a broad (but different) set of images obtained by a different reconstruction method. In this manuscript we aim to evaluate two new regression models that achieve accuracy higher than the CHO and comparable to our earlier CSVM method, while dramatically reducing model complexity and computation time. The new models are defined in a Bayesian machine-learning framework: a channelized

  18. First-principle calculation of reduced masses in vibrational analysis using generalized internal coordinates: some crucial aspects and examples.

    PubMed

    Stare, Jernej

    2007-01-01

    In this paper we present and analyze the most essential aspects of reduced masses along generalized internal coordinates. The definition of reduced masses in the internal coordinate formalism is established through the Wilson G-matrix concept and includes sophisticated relations between internal and Cartesian coordinates. Moreover, reduced masses in internal coordinates are, in general, no longer constant but coordinate-dependent. Based on the approach presented earlier [Stare, J.; Balint-Kurti, G. G. J. Phys. Chem. A 2003, 107, 7204-7214] and on our experience with reduced masses discussed in this paper, we have developed a robust program for the calculation of Wilson G-matrix elements and their functional coordinate dependence. The approach is based on the first principles and can be used in virtually any (internal) coordinate set. Since the program allows for projection of any kind of nuclear motion on the selected internal coordinates, the method is particularly suitable for ab initio or DFT potential energy functions calculated by partial geometry optimization. Moreover, reduced masses obtained by this program can be used as a decision tool for selecting the most appropriate internal coordinates for the considered vibrational problem and for the inclusion or omission of the kinetic coupling terms in the vibrational Hamiltonian.

  19. Quantum mechanical calculations of vibrational population inversion in chemical reactions - Numerically exact L-squared-amplitude-density study of the H2Br reactive system

    NASA Technical Reports Server (NTRS)

    Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.

    1988-01-01

    Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.

  20. A modified Fourier solution for vibration analysis of moderately thick laminated annular sector plates with general boundary conditions, internal radial line and circumferential arc supports

    NASA Astrophysics Data System (ADS)

    Pang, Fuzhen; Li, Haichao; Miao, Xuhong; Wang, Xueren

    2017-01-01

    In this paper, a modified Fourier solution based on the first-order shear deformation theory is developed for the free vibration problem of moderately thick composite laminated annular sector plates with general boundary conditions, internal radial line and circumferential arc supports. In this solution approach, regardless of boundary conditions, the displacement and rotation components of the sector plate are written in the form of the trigonometric series expansion in which several auxiliary terms are added to ensure and accelerate the convergence of the series. Each of the unknown coefficients is taken as the generalized coordinate and determined using the Raleigh- Ritz method. The accuracy and reliability of the present solution are validated by the comparison with the results found in the literature, and numerous new results for composite laminated annular sector plates considering various kinds of boundary conditions are presented. Comprehensive studies on the effects of elastic restraint parameters, layout schemes and locations of line/arc supports are also made.New results are obtained for laminated annular sector plates subjected to elastic boundary restraints and arbitrary internal radial line and circumferential arc supports in both directions, and they may serve as benchmark solutions for future researches.

  1. A generalized method for calibration of parameters in numerical models for landslide runout prediction

    NASA Astrophysics Data System (ADS)

    Cepeda, J.; Lacasse, S.; Nadim, F.

    2014-12-01

    The evaluation of runout is a key aspect in hazard and risk assessments of highly mobile landslides, which frequently cause significant loss of life and property. Both, empirical methods and numerical models can be used for predicting runout behavior, with preference for the latter when estimates of the spatial distribution and time evolution of landslide depths and velocities are required, as in the calculation of expected losses and the design of mitigation works. The input material parameters for numerical models can be directly measured in very few situations due to scale problems or to rheologies not being reproducible in experimental conditions. In most cases, these parameters need to be calibrated by back-analyses where runout simulations are fitted to field observations (footprint, maximum velocities, final depths, etc.). This fitting has normally been performed by comparing the observed and simulated runout area visually and only in few cases quantitative comparisons have been made, but still based only in the planimetric area. The present contribution proposes a new method for quantitatively calibrating material parameters in numerical models for landslide runout prediction. The basis for the procedure is the application of classification statistics to observed runout variables (e.g., planimetric area, depths, velocities) and sets of simulations obtained from a range of input material parameters and rheological models. A first version of the method was put forward recently. This consisted in calculating discrete classifiers for a single landslide and performing simulations for a deterministic set of input variables. The method herein presented is a generalized formulation that allows addressing the following situations: (a) calibration for a set of landslide cases; (b) stochastic input variables; (c) multiple rheologies; and (d) uncertainty in the observed runout variables. The generalized procedure is illustrated with case studies of highly mobile

  2. Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference frame

    SciTech Connect

    Azarnykh, Dmitrii Litvinov, Sergey; Adams, Nikolaus A.

    2016-06-01

    A well established approach for the computation of turbulent flow without resolving all turbulent flow scales is to solve a filtered or averaged set of equations, and to model non-resolved scales by closures derived from transported probability density functions (PDF) for velocity fluctuations. Effective numerical methods for PDF transport employ the equivalence between the Fokker–Planck equation for the PDF and a Generalized Langevin Model (GLM), and compute the PDF by transporting a set of sampling particles by GLM (Pope (1985) [1]). The natural representation of GLM is a system of stochastic differential equations in a Lagrangian reference frame, typically solved by particle methods. A representation in a Eulerian reference frame, however, has the potential to significantly reduce computational effort and to allow for the seamless integration into a Eulerian-frame numerical flow solver. GLM in a Eulerian frame (GLMEF) formally corresponds to the nonlinear fluctuating hydrodynamic equations derived by Nakamura and Yoshimori (2009) [12]. Unlike the more common Landau–Lifshitz Navier–Stokes (LLNS) equations these equations are derived from the underdamped Langevin equation and are not based on a local equilibrium assumption. Similarly to LLNS equations the numerical solution of GLMEF requires special considerations. In this paper we investigate different numerical approaches to solving GLMEF with respect to the correct representation of stochastic properties of the solution. We find that a discretely conservative staggered finite-difference scheme, adapted from a scheme originally proposed for turbulent incompressible flow, in conjunction with a strongly stable (for non-stochastic PDE) Runge–Kutta method performs better for GLMEF than schemes adopted from those proposed previously for the LLNS. We show that equilibrium stochastic fluctuations are correctly reproduced.

  3. Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference frame

    NASA Astrophysics Data System (ADS)

    Azarnykh, Dmitrii; Litvinov, Sergey; Adams, Nikolaus A.

    2016-06-01

    A well established approach for the computation of turbulent flow without resolving all turbulent flow scales is to solve a filtered or averaged set of equations, and to model non-resolved scales by closures derived from transported probability density functions (PDF) for velocity fluctuations. Effective numerical methods for PDF transport employ the equivalence between the Fokker-Planck equation for the PDF and a Generalized Langevin Model (GLM), and compute the PDF by transporting a set of sampling particles by GLM (Pope (1985) [1]). The natural representation of GLM is a system of stochastic differential equations in a Lagrangian reference frame, typically solved by particle methods. A representation in a Eulerian reference frame, however, has the potential to significantly reduce computational effort and to allow for the seamless integration into a Eulerian-frame numerical flow solver. GLM in a Eulerian frame (GLMEF) formally corresponds to the nonlinear fluctuating hydrodynamic equations derived by Nakamura and Yoshimori (2009) [12]. Unlike the more common Landau-Lifshitz Navier-Stokes (LLNS) equations these equations are derived from the underdamped Langevin equation and are not based on a local equilibrium assumption. Similarly to LLNS equations the numerical solution of GLMEF requires special considerations. In this paper we investigate different numerical approaches to solving GLMEF with respect to the correct representation of stochastic properties of the solution. We find that a discretely conservative staggered finite-difference scheme, adapted from a scheme originally proposed for turbulent incompressible flow, in conjunction with a strongly stable (for non-stochastic PDE) Runge-Kutta method performs better for GLMEF than schemes adopted from those proposed previously for the LLNS. We show that equilibrium stochastic fluctuations are correctly reproduced.

  4. Measured Vibration Effect of Numerous Sine Swept Harmonics on Random Shaker Applied to Effective Flight Model Representative Dummy

    NASA Astrophysics Data System (ADS)

    Polome, J.

    2012-07-01

    This paper presents the performance methodology and the achieved results of a vibration test campaign. The test performed by shaker simulates an unusual acoustic excitation containing a harmonic serial superimposed on random noise seen by electronic flight equipment. The paper is focused on main experimental aspects resulting of “helicopter simulation” capability applied on (representative) dummy electronic equipment. Wide internal instrumentation shows that the equipment is effectively answering to the stimuli by resonances excitation.

  5. Vibrational optical activity of chiral carbon nanoclusters treated by a generalized π-electron method

    SciTech Connect

    Nagy, Péter R.; Surján, Péter R.; Szabados, Ágnes

    2014-01-28

    Cross sections of inelastic light scattering accompanied by vibronic excitation in large conjugated carbon structures is assessed at the π-electron level. Intensities of Raman and vibrational Raman optical activity (VROA) spectra of fullerenes are computed, relying on a single electron per atom. When considering only first neighbor terms in the Hamiltonian (a tight-binding (TB) type or Hückel-model), Raman intensities are captured remarkably well, based on comparison with frequency-dependent linear response of the self-consistent field (SCF) method. Resorting to π-electron levels when computing spectral intensities brings a beneficial reduction in computational cost as compared to linear response SCF. At difference with total intensities, the first neighbor TB model is found inadequate for giving the left and right circularly polarized components of the scattered light, especially when the molecular surface is highly curved. To step beyond first neighbor approximation, an effective π-electron Hamiltonian, including interaction of all sites is derived from the all-electron Fockian, in the spirit of the Bloch-equation. Chiroptical cross-sections computed by this novel π-electron method improve upon first-neighbor TB considerably, with no increase in computational cost. Computed VROA spectra of chiral fullerenes, such as C{sub 76} and C{sub 28}, are reported for the first time, both by conventional linear response SCF and effective π-electron models.

  6. Oxygenation to Bovine Blood in Artificial Heart and Lung Using Vibrating Flow Pump: Experiment and Numerical Analysis Based on Non-Newtonian Model

    NASA Astrophysics Data System (ADS)

    Shintaku, Hirofumi; Yonemura, Tsubasa; Tsuru, Kazuaki; Isoyama, Takashi; Yambe, Tomoyuki; Kawano, Satoyuki

    In this study, we construct an experimental apparatus for a prototype artificial heart and lung (AHL) by installing hollow fibers into the cylindrical tube of the vibrating flow pump (VFP). The oxygenation characteristics are investigated both by experiments using bovine blood and by numerical analyses based on the computational fluid dynamics. The analyses are carried out at the Reynolds numbers Re ranged from O(1) to O(103), which are determined based on the experimental conditions. The blood flow and the diffusion of oxygen gas are analyzed based on the Newtonian/non-Newtonian, unsteady, incompressible and axisymmetric Navier-Stokes equations, and the advection-diffusion equation. The results show that the oxygenation rate increases in proportion to Re1/3, where the phenomenon corresponds to the decreasing thickness of the concentration boundary layer with Re. Although the effects of the vibrating flow and the rheology of the blood are clearly appeared on the velocity field, their effects on the gas exchange are relatively small at the ranges of prescribed Reynolds numbers. Furthermore, the numerical results in terms of the oxygenation rate are compared with the experimental ones. The basic design data of VFP were accumulated for the development of AHL in the clinical applications.

  7. Fixtureless geometric inspection of nonrigid parts using "generalized numerical inspection fixture"

    NASA Astrophysics Data System (ADS)

    Radvar Esfahlan, Hassan

    Free-form nonrigid parts form the substance of today's automotive and aerospace industries. These parts have different shapes in free state due to their dimensional and geometric variations, gravity and residual strains. For the geometric inspection of such compliant parts, special inspection fixtures, in combination with coordinate measuring systems (CMM) and/or optical data acquisition devices (scanners) are used. This inevitably causes additional costs and delays that result in a lack of competitiveness in the industry. The goal of this thesis is to facilitate the dimensional and geometrical inspection of flexible components from a point cloud without using a jig or secondary conformation operation. More specifically, we aim to develop a methodology to localize and quantify the profile defects in the case of thin shells which are typical to the aerospace and automotive industries. The presented methodology is based on the fact that the interpoint geodesic distance between any two points of a shape remains unchangeable during an isometric deformation. This study elaborates on the theory and general methods for the metrology of nonrigid parts. We have developed a Generalized Numerical Inspection Fixture (GNIF), a robust methodology which merges existing technologies in metric and computational geometry, nonlinear dimensionality reduction techniques, and finite element methods to introduce a general approach to the fixtureless geometrical inspection of nonrigid parts.

  8. Do Different Types of School Mathematics Development Depend on Different Constellations of Numerical versus General Cognitive Abilities?

    PubMed Central

    Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher

    2010-01-01

    The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (n=280; 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations (PCs), and word problems (WPs) in fall and then reassessed on PCs and WPs in spring. Development was indexed via latent change scores, and the interplay between numerical and domain-general abilities was analyzed via multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of PC and WP development. Yet, for PC development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for WP development, the set of domain- general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive. PMID:20822213

  9. Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities?

    PubMed

    Fuchs, Lynn S; Geary, David C; Compton, Donald L; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Bryant, Joan D; Schatschneider, Christopher

    2010-11-01

    The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word problems in fall and then reassessed on procedural calculations and word problems in spring. Development was indexed by latent change scores, and the interplay between numerical and domain-general abilities was analyzed by multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of procedural calculations and word problems development. Yet, for procedural calculations development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for word problems development, the set of domain-general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive.

  10. Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report

    SciTech Connect

    Prinja, Anil K.

    2000-12-31

    The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset are amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a

  11. Numerical assessment of fore-and-aft suspension performance to reduce whole-body vibration of wheel loader drivers

    NASA Astrophysics Data System (ADS)

    Fleury, Gérard; Mistrot, Pierre

    2006-12-01

    While driving off-road vehicles, operators are exposed to whole-body vibration acting in the fore-and-aft direction. Seat manufacturers supply products equipped with fore-and-aft suspension but only a few studies report on their performance. This work proposes a computational approach to design fore-and-aft suspensions for wheel loader seats. Field tests were conducted in a quarry to analyse the nature of vibration to which the driver was exposed. Typical input signals were recorded to be reproduced in the laboratory. Technical specifications are defined for the suspension. In order to evaluate the suspension vibration attenuation performance, a model of a sitting human body was developed and coupled to a seat model. The seat model combines the models of each suspension component. A linear two-degree-of-freedom model is used to describe the dynamic behaviour of the sitting driver. Model parameters are identified by fitting the computed apparent mass frequency response functions to the measured values. Model extensions are proposed to investigate postural effects involving variations in hands and feet positions and interaction of the driver's back with the backrest. Suspension design parameters are firstly optimized by computing the seat/man model response to sinusoidal acceleration. Four criteria including transmissibility, interaction force between the driver's back and the backrest and relative maximal displacement of the suspension are computed. A new suspension design with optimized features is proposed. Its performance is checked from calculations of the response of the seat/man model subjected to acceleration measured on the wheel loader during real work conditions. On the basis of the computed values of the SEAT factors, it is found possible to design a suspension that would increase the attenuation provided by the seat by a factor of two.

  12. Combined experimental and numerical investigation of energy harness utilizing vortex induced vibration over half cylinder using piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Ahmed, Md. Tusher; Hossain, Md. Tanver; Rahman, Md. Ashiqur

    2017-06-01

    Energy harvesting technology has the ability to create self-powered electronic systems that do not rely on battery power for their operation. Wind energy can be converted into electricity via a piezoelectric transducer during the air flow over a cylinder. The vortex-induced vibration over the cylinder causes the piezoelectric beam to vibrate. Thus useful electric energy at the range 0.2-0.3V is found which can be useful for self-powering small electronic devices. In the present study, prototypes of micro-energy harvester with a shape of 65 mm × 37 mm × 0.4 mm are developed and tested for airflow over D-shaped bluff body for diameters of 15, 20 and 28mm in an experimental setup consisting of a long wind tunnel of 57cm × 57cm with variable speeds of the motor for different flow velocities and the experimental setup is connected at the downstream where flow velocity is the maximum. Experimental results show that the velocity and induced voltage follows a regular linear pattern. A maximum electrical potential of 140 mV for velocity of 1.1 ms-1 at a bluff body diameter of 15 mm is observed in the energy harvester that can be applied in many practical cases for self-powering electronic devices. The simulation of this energy harvesting phenomena is then simulated using COMSOLE multi-physics. Diameter of the bluff bodies as well as flow velocity and size of cantilever beam are varied and the experimental findings are found to be in good agreement with the simulated ones. The simulations along with the experimental data show the possibility of generating electricity from vortex induced vibration and can be applied in many practical cases for self-powering electronic devices.

  13. Generalized monotone method and numerical approach for coupled reaction diffusion systems

    NASA Astrophysics Data System (ADS)

    Sowmya, M.; Vatsala, Aghalaya S.

    2017-01-01

    Study of coupled reaction diffusion systems are very useful in various branches of science and engineering. In this paper, we provide a methodology to construct the solution for the coupled reaction diffusion systems, with initial and boundary conditions, where the forcing function is the sum of an increasing and decreasing function. It is known that the generalized monotone method coupled with coupled lower and upper solutions yield monotone sequences which converges uniformly and monotonically to coupled minimal and maximal solutions. In addition, the interval of existence is guaranteed by the lower and upper solutions, which are relatively easy to compute. Using the lower and upper solutions as the initial approximation, we develop a method to compute the sequence of coupled lower and upper solutions on the interval or on the desired interval of existence. Further, if the uniqueness conditions are satisfied, the coupled minimal and maximal solutions converge to the unique solution of the reaction diffusion systems. We will provide some numerical results as an application of our numerical methodology.

  14. Numerical models for stationary superfluid neutron stars in general relativity with realistic equations of state

    NASA Astrophysics Data System (ADS)

    Sourie, Aurélien; Oertel, Micaela; Novak, Jérôme

    2016-04-01

    We present a numerical model for uniformly rotating superfluid neutron stars in a fully general relativistic framework with, for the first time, realistic microphysics including entrainment. We compute stationary and axisymmetric configurations of neutron stars composed of two fluids, namely superfluid neutrons and charged particles (protons and electrons), rotating with different rates around a common axis. Both fluids are coupled by entrainment, a nondissipative interaction which in the case of a nonvanishing relative velocity between the fluids causes the fluid momenta to be not aligned with the respective fluid velocities. We extend the formalism put forth by Comer and Joynt in order to calculate the equation of state (EOS) and entrainment parameters for an arbitrary relative velocity as far as superfluidity is maintained. The resulting entrainment matrix fulfills all necessary sum rules, and in the limit of small relative velocity our results agree with Fermi liquid theory ones derived to lowest order in the velocity. This formalism is applied to two new nuclear equations of state which are implemented in the numerical model, which enables us to obtain precise equilibrium configurations. The resulting density profiles and moments of inertia are discussed employing both EOSs, showing the impact of entrainment and the dependence on the EOS.

  15. The sensitivity of the general circulation to Arctic Sea ice boundaries - A numerical experiment

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Johnson, W. T.

    1978-01-01

    Results are presented for a set of numerical experiments conducted with the Goddard (formerly GISS) general circulation model. The experiments were designed to test the model atmospheric response to a single fixed and specified parameter, the total ice cover in the Davis Strait, Barents Sea, East Greenland Sea, Sea of Okhotsk and Bering Sea. Margin variations are considered that are substantially smaller than those involved in ice age or ice-free Arctic simulations. Anomaly is defined as the mean of two runs corresponding to climatological maximum sea ice conditions. Model results indicate that the ice margin anomalies are capable of altering local climates in certain regions of high and middle latitudes. Possible interactions between high latitudes and subtropical regions are suggested.

  16. The sensitivity of the general circulation to Arctic Sea ice boundaries - A numerical experiment

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Johnson, W. T.

    1978-01-01

    Results are presented for a set of numerical experiments conducted with the Goddard (formerly GISS) general circulation model. The experiments were designed to test the model atmospheric response to a single fixed and specified parameter, the total ice cover in the Davis Strait, Barents Sea, East Greenland Sea, Sea of Okhotsk and Bering Sea. Margin variations are considered that are substantially smaller than those involved in ice age or ice-free Arctic simulations. Anomaly is defined as the mean of two runs corresponding to climatological maximum sea ice conditions. Model results indicate that the ice margin anomalies are capable of altering local climates in certain regions of high and middle latitudes. Possible interactions between high latitudes and subtropical regions are suggested.

  17. A numerical algorithm to propagate navigation error covariance matrices associated with generalized strapdown inertial measurement units

    NASA Technical Reports Server (NTRS)

    Weir, Kent A.; Wells, Eugene M.

    1990-01-01

    The design and operation of a Strapdown Navigation Analysis Program (SNAP) developed to perform covariance analysis on spacecraft inertial-measurement-unit (IMU) navigation errors are described and demonstrated. Consideration is given to the IMU modeling subroutine (with user-specified sensor characteristics), the data input procedures, state updates and the simulation of instrument failures, the determination of the nominal trajectory, the mapping-matrix and Monte Carlo covariance-matrix propagation methods, and aided-navigation simulation. Numerical results are presented in tables for sample applications involving (1) the Galileo/IUS spacecraft from its deployment from the Space Shuttle to a point 10 to the 8th ft from the center of the earth and (2) the TDRS-C/IUS spacecraft from Space Shuttle liftoff to a point about 2 h before IUS deployment. SNAP is shown to give reliable results for both cases, with good general agreement between the mapping-matrix and Monte Carlo predictions.

  18. Influence of numerical model decisions on the flow-induced vibration of a computational vocal fold model

    PubMed Central

    Shurtz, Timothy E.; Thomson, Scott L.

    2012-01-01

    Computational vocal fold models are often used to study the physics of voice production. In this paper the sensitivity of predicted vocal fold flow-induced vibration and resulting airflow patterns to several modeling selections is explored. The location of contact lines used to prevent mesh collapse and assumptions of symmetry were found to influence airflow patterns. However, these variables had relatively little effect on the vibratory response of the vocal fold model itself. Model motion was very sensitive to Poisson’s ratio. The importance of these parameter sensitivities in the context of vocal fold modeling is discussed. PMID:23794762

  19. Numerical model of Zeeman splitting of ro-vibrational lines in the fundamental band of NO molecule

    NASA Astrophysics Data System (ADS)

    Borkov, Yu. G.; Sulakshina, O. N.; Klimachev, Yu. M.

    2016-07-01

    This paper presents the results of calculation the LMR spectrograms of NO molecule in a variable magnetic field with maximum induction up to 6 T for probed CO laser lines. For the simulation of the LMR spectrum a numerical model was developed. This model is based on the numerical diagonalization the matrix of the effective molecular Hamiltonian, which includes Zeeman operator corresponding to interaction an external magnetic field with NO molecule. The comparison of calculated and experimental spectrograms has shown that the numerical model is very reliable and can reproduce the location of absorption peaks measured in a damped oscillating magnetic field.

  20. Variation of student numerical and figural reasoning approaches by pattern generalization type, strategy use and grade level

    NASA Astrophysics Data System (ADS)

    El Mouhayar, Rabih; Jurdak, Murad

    2016-02-01

    This paper explored variation of student numerical and figural reasoning approaches across different pattern generalization types and across grade level. An instrument was designed for this purpose. The instrument was given to a sample of 1232 students from grades 4 to 11 from five schools in Lebanon. Analysis of data showed that the numerical reasoning approach seems to be more dominant than the figural reasoning approach for the near and far pattern generalization types but not for the immediate generalization type. The findings showed that for the recursive strategy, the numerical reasoning approach seems to be more dominant than the figural reasoning approach for each of the three pattern generalization types. However, the figural reasoning approach seems to be more dominant than the numerical reasoning approach for the functional strategy, for each generalization type. The findings also showed that the numerical reasoning was more dominant than the figural reasoning in lower grade levels (grades 4 and 5) for each generalization type. In contrast, the figural reasoning became more dominant than the numerical reasoning in the upper grade levels (grades 10 and 11).

  1. Full-dimensional quantum calculations of vibrational spectra of six-atom molecules. I. Theory and numerical results

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Gen

    2004-02-01

    Two quantum mechanical Hamiltonians have been derived in orthogonal polyspherical coordinates, which can be formed by Jacobi and/or Radau vectors etc., for the study of the vibrational spectra of six-atom molecules. The Hamiltonians are expressed in an explicit Hermitian form in the spatial representation. Their matrix representations are described in both full discrete variable representation (DVR) and mixed DVR/nondirect product finite basis representation (FBR) bases. The two-layer Lanczos iteration algorithm [H.-G. Yu, J. Chem. Phys. 117, 8190 (2002)] is employed to solve the eigenvalue problem of the system. A strategy regarding how to carry out the Hamiltonian-vector products for a high-dimensional problem is discussed. By exploiting the inversion symmetry of molecules, a unitary sequential 1D matrix-vector multiplication algorithm is proposed to perform the action of the Hamiltonian on the wavefunction in a symmetrically adapted DVR or FBR basis in the azimuthal angular variables. An application to the vibrational energy levels of the molecular hydrogen trimer (H2)3 in full dimension (12D) is presented. Results show that the rigid-H2 approximation can underestimate the binding energy of the trimer by 27%. Finally, it is demonstrated that the two-layer Lanczos algorithm is also capable of computing the eigenvectors of the system with minor effort.

  2. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  3. Stability and free vibration analyses of an orthotropic singly symmetric Timoshenko beam-column with generalized end conditions

    NASA Astrophysics Data System (ADS)

    Monsalve-Cano, J. F.; Darío Aristizábal-Ochoa, J.

    2009-12-01

    The stability and free vibration analyses (i.e., buckling, natural frequencies and modal shapes) of an orthotropic singly symmetric 3D Timoshenko beam-column with generalized boundary conditions (i.e., with bending and torsional semirigid restraints and lateral bracings as well as lumped masses at both ends) subjected to an eccentric end axial load are presented in a classical manner. The five governing equations of dynamic equilibrium (i.e., two transverse shear equations, two bending moment equations and pure torsional moment equation) are sufficient to determine the natural frequencies and the corresponding modal shapes of the beam-column in the two principal planes of bending and torsion about its longitudinal axis. The proposed model includes the coupling effects among: (1) the deformations due to bending, shear and pure torsion; (2) inertias (translational, rotational and torsional) of all masses considered; (3) eccentric axial loads applied at the ends, and (4) restraints at the supports (bending, torsional and lateral bracings at both ends of the member). However, the effects of axial deformations and warping torsion produced by the axial load are not included; consequently the proposed model is not capable of capturing the phenomena of torsional buckling or combined lateral bending-torsional buckling. The proposed analytical model indicates that the stability and dynamic response of beam-columns are highly sensitive to the coupling effects, particularly in members with both ends free to rotate. The natural frequencies and modal shapes can be determined from the eigenvalues of a full 4×4 matrix for vibration in the plane of symmetry (using the uncoupled equations of transverse force and moment equilibrium at both ends) and from a full 6×6 matrix for the coupled shear-bending-torsional vibration (using the coupled equations of transverse shear, bending and torsional moment equilibrium at both ends). Also, it is shown that the proposed method reproduces the

  4. Global numerical simulations of the rise of vortex-mediated pulsar glitches in full general relativity

    NASA Astrophysics Data System (ADS)

    Sourie, A.; Chamel, N.; Novak, J.; Oertel, M.

    2017-02-01

    In this paper, we study in detail the role of general relativity on the global dynamics of giant pulsar glitches as exemplified by Vela. For this purpose, we carry out numerical simulations of the spin up triggered by the sudden unpinning of superfluid vortices. In particular, we compute the exchange of angular momentum between the core neutron superfluid and the rest of the star within a two-fluid model including both (non-dissipative) entrainment effects and (dissipative) mutual friction forces. Our simulations are based on a quasi-stationary approach using realistic equations of state (EoSs). We show that the evolution of the angular velocities of both fluids can be accurately described by an exponential law. The associated characteristic rise time τr, which can be precisely computed from stationary configurations only, has a form similar to that obtained in the Newtonian limit. However, general relativity changes the structure of the star and leads to additional couplings between the fluids due to frame-dragging effects. As a consequence, general relativity can have a large impact on the actual value of τr: the errors incurred by using Newtonian gravity are thus found to be as large as ˜40 per cent for the models considered. Values of the rise time are calculated for Vela and compared with current observational limits. Finally, we study the amount of gravitational waves emitted during a glitch. Simple expressions are obtained for the corresponding characteristic amplitudes and frequencies. The detectability of glitches through gravitational wave observatories is briefly discussed.

  5. Energy conservation in the transient response of nonlinear beam vibration problems subjected to pulse loading - A numerical approach

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.

    1984-01-01

    The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system. It is also shown that while the fundamental response is contained in a first mode envelope, the fluctuations caused by the higher order modes must be resolved.

  6. Energy conservation in the transient response of nonlinear beam vibration problems subjected to pulse loading - A numerical approach

    NASA Technical Reports Server (NTRS)

    Moyer, E. T., Jr.

    1984-01-01

    The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system. It is also shown that while the fundamental response is contained in a first mode envelope, the fluctuations caused by the higher order modes must be resolved.

  7. A general spectral method for the numerical simulation of one-dimensional interacting fermions

    NASA Astrophysics Data System (ADS)

    Clason, Christian; von Winckel, Gregory

    2012-02-01

    This work introduces a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. The approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An efficient MATLAB program for the assembly of the stiffness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. This program allows the accurate discretization of systems with multiple fermions subject to arbitrary potentials, e.g., for verifying the accuracy of multi-particle approximations such as Hartree-Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the time-dependent Schrödinger equation. Program summaryProgram title: assembleFermiMatrix Catalogue identifier: AEKO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 102 No. of bytes in distributed program, including test data, etc.: 2294 Distribution format: tar.gz Programming language: MATLAB Computer: Any architecture supported by MATLAB Operating system: Any supported by MATLAB; tested under Linux (x86-64) and Mac OS X (10.6) RAM: Depends on the data Classification: 4.3, 2.2 Nature of problem: The direct numerical solution of the multi-particle one-dimensional Schrödinger equation in a quantum well is challenging due to the exponential growth in the number of degrees of freedom with increasing particles. Solution method: A nodal spectral Galerkin scheme is used where the basis functions are constructed to obey the antisymmetry relations of the fermionic wave

  8. Presenting Numerical Modelling of Explosive Volcanic Eruption to a General Public

    NASA Astrophysics Data System (ADS)

    Demaria, C.; Todesco, M.; Neri, A.; Blasi, G.

    2001-12-01

    Numerical modeling of explosive volcanic eruptions has been widely applied, during the last decades, to study pyroclastic flows dispersion along volcano's flanks and to evaluate their impact on urban areas. Results from these transient multi-phase and multi-component simulations are often reproduced in form of computer animations, representing the spatial and temporal evolution of relevant flow variables (such as temperature, or particle concentration). Despite being a sophisticated, technical tool to analyze and share modeling results within the scientific community, these animations truly look like colorful cartoons showing an erupting volcano and are especially suited to be shown to a general public. Thanks to their particular appeal, and to the large interest usually risen by exploding volcanoes, these animations have been presented several times on television and magazines and are currently displayed in a permanent exposition, at the Vesuvius Observatory in Naples. This work represents an effort to produce an accompanying tool for these animations, capable of explaining to a large audience the scientific meaning of what can otherwise look as a graphical exercise. Dealing with research aimed at the study of dangerous, explosive volcanoes, improving the general understanding of these scientific results plays an important role as far as risk perception is concerned. An educated population has better chances to follow an appropriate behavior, i.e.: one that could lead, on the long period, to a reduction of the potential risk. In this sense, a correct divulgation of scientific results, while improving the confidence of the population in the scientific community, should belong to the strategies adopted to mitigate volcanic risk. Due to the relevance of the long term final goal of such divulgation experiment, this work represents an interdisciplinary effort, combining scientific expertise and specific competence from the modern communication science and risk

  9. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.

    PubMed

    Sarifuddin; Chakravarty, S; Mandal, P K; Layek, G C

    2008-01-01

    An updated numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses is developed. A shear-thinning fluid modelling the deformation dependent viscosity of blood is considered for the characterization of generalized Newtonian behaviour of blood. The arterial model is treated as two-dimensional and axisymmetric with an outline of the stenosis obtained from a three-dimensional casting of a mildly stenosed artery. The full Navier-Stokes equations governing blood flow are written in the dimensionless form and the solution is accomplished by finite time-step advancement through their finite difference staggered grid representations. The marker and cell (MAC) method comprising the use of a set of marker particles moving with the fluid is used for the purpose. Results are obtained for three differently shaped stenoses - irregular, smooth and cosine curve representations. The present results do agree well with those of existing investigations in the steady state, but contrary to their conclusions the present findings demonstrate that the excess pressure drop across the cosine and the smooth stenoses is caused by neither their smoothness nor their higher degree of symmetry relative to the irregular stenosis, but is rather an effect of area cover with respect to the irregular stenosis. This effect clearly prevails throughout the entire physiological range of Reynolds numbers. Further the in-depth study in flow patterns reveals the development of flow separation zones in the diverging part of the stenosis towards the arterial wall, and they are influenced by non-Newtonian blood rheology, distensibility of the wall and flow unsteadiness in order to validate the applicability of the present model.

  10. Generalized ``thick'' strip modelling for vortex-induced vibration of long flexible cylinders

    NASA Astrophysics Data System (ADS)

    Bao, Yan; Palocios, Rafael; Sherwin, Spencer; Nektar++ Collaboration

    2015-11-01

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip theory-based 2D models, the fluid domain is divided into ``thick'' strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this model is able to cover the situations of fully resolved 3D model and 2D strip theory model. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single ``thick'' strip would request the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip-structure interactions. This work is supported by EPSRC grant EP/K037536/1. Acknowledge UK Turbulence Consortium (UKTC) for ARCHER time under EPSRC grant EP/L000261/1.

  11. Effects on the torsional vibration behavior in the investigation of dental implant osseointegration using resonance frequency analysis: a numerical approach.

    PubMed

    Zhai, Min; Li, Bing; Li, Dehua

    2017-02-07

    Resonance frequency analysis (RFA) methods are widely used to assess implant stability, particularly the Osstell(®) device. The potential effects associated with this method have been discussed in the literature. Torsional RFA (T-RFA), mentioned in our previous study, could represent a new measurement method. The purpose of this study was to simulate T-shaped and Osstell(®) transducer-implant-bone system models; compare their vibration modes and corresponding resonance frequencies; and investigate the effects of their parameters, such as the effective implant length (EIL), bone quality, and osseointegration level, on the torsional resonance frequency (TRF) and bending resonance frequency (BRF) using three-dimensional finite element analysis. Following the finite element model validation, the TRFs and BRFs for three different EILs and four types of bone quality were obtained, and the change rates during 25 degrees of osseointegration were observed. The analysis showed that an increase in the EIL and a decrease in bone quality have less effect on the declination rate of TRFs than on that of BRFs. TRFs are highly sensitive to the stiffness of the implant-bone interface during the healing period. It was concluded that T-RFA has better sensitivity and specificity.

  12. Assignment of terahertz vibrational modes of L-glutamine using density functional theory within generalized-gradient approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Zhang, Zhao-Hui; Zhao, Xiao-Yan; Zhang, Tian-Yao; Yan, Fang; Shen, Jiang

    2015-07-01

    The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds. We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-gradient approximation (GGA), Perdew-Burke-Ernzerhof (PBE), PBE for solids (PBEsol), PBE with Wu-Cohen exchange (WC), and dispersion-corrected PBE, to investigate the effect of these intermolecular contacts on the absorption spectra of glutamine in the terahertz frequency range. Among these calculations, the solid-state simulated results obtained using the WC method exhibit a good agreement with the measured absorption spectra, and the absorption features are assigned with the help of WC. This indicates that the vibrational modes of glutamine were related to the combination of intramolecular and intermolecular motions, the intramolecular modes were dominated by rocking or torsion involving functional groups; the intermolecular modes mainly result from the translational motions of individual molecules, and the rocking of the hydrogen-bonded functional groups. Project supported by the National Natural Science Foundation of China (Grant Nos. 61302007 and 60977065), the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-SD-12-016A), and the Engineering Research Center of Industrial Spectrum Imaging of Beijing, China.

  13. Generalized Langevin dynamics simulation: numerical integration and application of the generalized Langevin equation with an exponential model for the friction kernel

    NASA Astrophysics Data System (ADS)

    Wan, Shun Zhou; Wang, Cun Xin; Shi, Yun Yu

    An efficient procedure is introduced for a generalized Langevin dynamics simulation when the exponential model is taken for the friction kernel. The leap frog algorithm is used for numerical integration of the generalized Langevin equation. Simulation with this model has been performed on a cyclic undecapeptide, cyclosporin A (CPA). By comparison with the results obtained from previous simulations, the method proves to be reliable and efficient in the simulation of CPA.

  14. Engine dynamic analysis with general nonlinear finite element codes. Part 2: Bearing element implementation overall numerical characteristics and benchmaking

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.

    1982-01-01

    Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.

  15. A general spectral method for the numerical simulation of one-dimensional interacting fermions

    NASA Astrophysics Data System (ADS)

    Clason, Christian; von Winckel, Gregory

    2012-08-01

    This software implements a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. The approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An efficient Matlab program for the assembly of the stiffness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. This program allows the accurate discretization of systems with multiple fermions subject to arbitrary potentials, e.g., for verifying the accuracy of multi-particle approximations such as Hartree-Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the time-dependent Schrödinger equation. The new version includes a Python implementation of the presented approach. New version program summaryProgram title: assembleFermiMatrix Catalogue identifier: AEKO_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKO_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 No. of bytes in distributed program, including test data, etc.: 5418 Distribution format: tar.gz Programming language: MATLAB/GNU Octave, Python Computer: Any architecture supported by MATLAB, GNU Octave or Python Operating system: Any supported by MATLAB, GNU Octave or Python RAM: Depends on the data Classification: 4.3, 2.2. External routines: Python 2.7+, NumPy 1.3+, SciPy 0.10+ Catalogue identifier of previous version: AEKO_v1_0 Journal reference of previous version: Comput. Phys. Commun. 183 (2012) 405 Does the new version supersede the previous version?: Yes Nature of problem: The direct numerical

  16. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    SciTech Connect

    Pruess, K.

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  17. Numerical solutions of boundary value problems for variable coefficient generalized KdV equations using Lie symmetries

    NASA Astrophysics Data System (ADS)

    Vaneeva, O. O.; Papanicolaou, N. C.; Christou, M. A.; Sophocleous, C.

    2014-09-01

    The exhaustive group classification of a class of variable coefficient generalized KdV equations is presented, which completes and enhances results existing in the literature. Lie symmetries are used for solving an initial and boundary value problem for certain subclasses of the above class. Namely, the found Lie symmetries are applied in order to reduce the initial and boundary value problem for the generalized KdV equations (which are PDEs) to an initial value problem for nonlinear third-order ODEs. The latter problem is solved numerically using the finite difference method. Numerical solutions are computed and the vast parameter space is studied.

  18. Automatic generation of force fields and property surfaces for use in variational vibrational calculations of anharmonic vibrational energies and zero-point vibrational averaged properties.

    PubMed

    Kongsted, Jacob; Christiansen, Ove

    2006-09-28

    An automatic and general procedure for the calculation of geometrical derivatives of the energy and general property surfaces for molecular systems is developed and implemented. General expressions for an n-mode representation are derived, where the n-mode representation includes only the couplings between n or less degrees of freedom. The general expressions are specialized to derivative force fields and property surfaces, and a scheme for calculation of the numerical derivatives is implemented. The implementation is interfaced to electronic structure programs and may be used for both ground and excited electronic states. The implementation is done in the context of a vibrational structure program and can be used in combination with vibrational self-consistent field (VSCF), vibrational configuration interaction (VCI), vibrational Moller-Plesset, and vibrational coupled cluster calculations of anharmonic wave functions and calculation of vibrational averaged properties at the VSCF and VCI levels. Sample calculations are presented for fundamental vibrational energies and vibrationally averaged dipole moments and frequency dependent polarizabilities and hyperpolarizabilities of water and formaldehyde.

  19. Variation of Student Numerical and Figural Reasoning Approaches by Pattern Generalization Type, Strategy Use and Grade Level

    ERIC Educational Resources Information Center

    El Mouhayar, Rabih; Jurdak, Murad

    2016-01-01

    This paper explored variation of student numerical and figural reasoning approaches across different pattern generalization types and across grade level. An instrument was designed for this purpose. The instrument was given to a sample of 1232 students from grades 4 to 11 from five schools in Lebanon. Analysis of data showed that the numerical…

  20. Variation of Student Numerical and Figural Reasoning Approaches by Pattern Generalization Type, Strategy Use and Grade Level

    ERIC Educational Resources Information Center

    El Mouhayar, Rabih; Jurdak, Murad

    2016-01-01

    This paper explored variation of student numerical and figural reasoning approaches across different pattern generalization types and across grade level. An instrument was designed for this purpose. The instrument was given to a sample of 1232 students from grades 4 to 11 from five schools in Lebanon. Analysis of data showed that the numerical…

  1. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability.

    PubMed

    Cowan, Richard; Powell, Daisy

    2014-02-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills such as number system knowledge and estimation. This study of 3rd graders (N = 258) finds both domain-general and numerical factors contribute independently to explaining variation in 3 significant arithmetic skills: basic calculation fluency, written multidigit computation, and arithmetic word problems. Estimation accuracy and number system knowledge show the strongest associations with every skill, and their contributions are independent of both each other and other factors. Different domain-general factors independently account for variation in each skill. Numeral comparison, a single digit processing skill, uniquely accounts for variation in basic calculation. Subsamples of children with MLD (at or below 10th percentile, n = 29) are compared with low achievement (LA, 11th to 25th percentiles, n = 42) and typical achievement (above 25th percentile, n = 187). Examination of these and subsets with persistent difficulties supports a multiple deficits view of number difficulties: Most children with number difficulties exhibit deficits in both domain-general and numerical factors. The only factor deficit common to all persistent MLD children is in multidigit skills. These findings indicate that many factors matter but multidigit skills matter most in 3rd grade mathematical achievement.

  2. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    ERIC Educational Resources Information Center

    Cowan, Richard; Powell, Daisy

    2014-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…

  3. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    PubMed Central

    2013-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills such as number system knowledge and estimation. This study of 3rd graders (N = 258) finds both domain-general and numerical factors contribute independently to explaining variation in 3 significant arithmetic skills: basic calculation fluency, written multidigit computation, and arithmetic word problems. Estimation accuracy and number system knowledge show the strongest associations with every skill, and their contributions are independent of both each other and other factors. Different domain-general factors independently account for variation in each skill. Numeral comparison, a single digit processing skill, uniquely accounts for variation in basic calculation. Subsamples of children with MLD (at or below 10th percentile, n = 29) are compared with low achievement (LA, 11th to 25th percentiles, n = 42) and typical achievement (above 25th percentile, n = 187). Examination of these and subsets with persistent difficulties supports a multiple deficits view of number difficulties: Most children with number difficulties exhibit deficits in both domain-general and numerical factors. The only factor deficit common to all persistent MLD children is in multidigit skills. These findings indicate that many factors matter but multidigit skills matter most in 3rd grade mathematical achievement. PMID:24532854

  4. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    ERIC Educational Resources Information Center

    Cowan, Richard; Powell, Daisy

    2014-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…

  5. Numerical investigation of magneto-nanoparticles for unsteady 3D generalized Newtonian liquid flow

    NASA Astrophysics Data System (ADS)

    Ahmad, Latif; Khan, Masood; Khan, Waqar Azeem

    2017-09-01

    The impact of Buongiorno's model in flow of a 3D unsteady Sisko fluid is discussed in the presence of zero mass nanoparticles flux conditions. The 3D unsteady Sisko fluid equations are first simplified through classical boundary layer approximations and then non-dimensionalized by employing the suitable transformations. The numerical solutions for the resulting flow, heat and mass transfer have been computed by utilizing the two different numerical techniques, namely the bvp4c function in Matlab and the shooting technique with the Runge-Kutta Fehlberg and Newton-Raphson methods. The results of the numerical computations are described in terms of the temperature and concentration plots. The distinct behaviors of nanoliquid velocity, temperature and concentration distributions for shear-thinning and shear-thickening are reported. It is perceived from the results that the effect of Brownian motion becomes negligible for the newly suggested revised relation. To see the validity of the numerical computations, we compare the results of the numerical techniques bvp4c with an efficient numerical method, namely the shooting technique and the RK45 Fehlberg method and perceived an excellent correlation between these methods.

  6. [Morphological changes of hemomicrocirculatory bed of the organs of rat masticatory apparatus after the exposure to general vibration and during pharmacologic correction].

    PubMed

    Gaĭvoronskiĭ, I V; Iordanishvili, A K; Kovalevskiĭ, A M

    2013-01-01

    The effect of chronic exposure to general vibration on the state of hemomicrocirculatory bed in the organs of rat masticatory apparatus and the efficacy of antihypoxants and adaptogens for its pharmacological prophylaxis was studied. The experiments were performed in 210 albino male rats aged 8 to 30 weeks. The intact rats served as control. Transcapillary injections with 1% collargol solution, histological, electron microscopic and morphometric methods were used. It was found that chronic exposure to general vibration induced a hemodynamic disturbances at the level of hemomicrocirculatory bed vessels in the organs of masticatory apparatus with subsequent hypoxia. Electron microscopic study revealed the damage of the cellular ultrastructure in the endotheliocytes of blood vessels of the hemomicrocirculatory bed. Antihypoxants, adaptogens and their combinations demonstrated a pronounced protective effect

  7. A general discrete variable method to calculate vibrational energy levels of three- and four-atom molecules

    NASA Astrophysics Data System (ADS)

    Bramley, Matthew J.; Carrington, Tucker, Jr.

    1993-12-01

    We present a general variational method to calculate vibrational energy levels of polyatomic molecules without dynamical approximation. The method is based on a Lanczos algorithm, which does not require storage of the Hamiltonian matrix. The rate-determining step of each Lanczos iteration is the evaluation of the product of the matrix and a trial vector. We use simple product basis functions and write the Hamiltonian as a sum of factorizable terms. With n one-dimensional functions in each of f dimensions, the matrix-vector product requires no more than cnf+1 multiplications for a single term involving c coordinates. Choosing a (potential optimized) discrete variable representation (DVR) in each dimension, the potential energy matrix is diagonal. The rate-determining step is now the multiplication of a vector by the kinetic energy matrix and c is effectively (with rare exceptions) at most two. The nf+1 scaling holds for both diagonal and mixed second derivative operators. The method is directly applicable to any three-atom and any nonlinear four-atom molecule. We use a variety of coordinate systems (Jacobi, Radau, a hybrid of the two, and bond), for which the total number of factorizable terms in the exact kinetic energy operator is never large, to calculate very well-converged band origins of H2O up to 22 000 cm-1, of H+3 up to 18 000 cm-1, and of CH2O up to 5700 cm-1; and low-lying levels of H2O2. The results for CH2O are new, and those for H+3 clarify the causes of discrepancies in published work. The product basis results in very large matrices (up to 500 000×500 000 for four atoms), but the cost is within an order of magnitude of that of contracted-basis approaches using explicit diagonalization. While contracted basis approaches are molecule and Hamiltonian specific, it was possible to apply the DVR-Lanczos method to all the examples presented here with a single computer program. The principal advantage of our method is thus its generality, and in this

  8. Polariton condensation threshold investigation through the numerical resolution of the generalized Gross-Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Gargoubi, Hamis; Guillet, Thierry; Jaziri, Sihem; Balti, Jalloul; Guizal, Brahim

    2016-10-01

    We present a numerical approach for the solution of the dissipative Gross-Pitaevskii equation coupled to the reservoir equation governing the exciton-polaritons Bose-Einstein condensation. It is based on the finite difference method applied to space variables and on the fourth order Range-Kutta algorithm applied to the time variable. Numerical tests illustrate the stability and accuracy of the proposed scheme. Then results on the behavior of the condensate under large Gaussian pumping and around the threshold are presented. We determine the threshold through the particular behavior of the self-energy and characterize it by tracking the establishment time of the steady state.

  9. Polariton condensation threshold investigation through the numerical resolution of the generalized Gross-Pitaevskii equation.

    PubMed

    Gargoubi, Hamis; Guillet, Thierry; Jaziri, Sihem; Balti, Jalloul; Guizal, Brahim

    2016-10-01

    We present a numerical approach for the solution of the dissipative Gross-Pitaevskii equation coupled to the reservoir equation governing the exciton-polaritons Bose-Einstein condensation. It is based on the finite difference method applied to space variables and on the fourth order Range-Kutta algorithm applied to the time variable. Numerical tests illustrate the stability and accuracy of the proposed scheme. Then results on the behavior of the condensate under large Gaussian pumping and around the threshold are presented. We determine the threshold through the particular behavior of the self-energy and characterize it by tracking the establishment time of the steady state.

  10. Mediation Effects of Latent Numerical Abilities on the Associations between Domain General Competencies and Fraction Knowledge

    ERIC Educational Resources Information Center

    Ye, Ai; Hansen, Nicole; Resnick, Ilyse; Carrique, Jessica; Jordan, Nancy

    2016-01-01

    The purpose of the present study was to reveal the developmental pathway from third grade cognitive competencies to sixth grade conceptual and procedural fraction knowledge through the intervening whole numerical skills at fifth grade. The study used empirical data that come from 536 students in nine schools across two Delaware public school…

  11. Calculating impedance vibrator antennas

    NASA Astrophysics Data System (ADS)

    Eminov, S. I.

    2017-07-01

    The technique of analytical reversal of a hypersingular equation is used to solve the equation of an impedance vibrator antenna. A numerical method for solving the equation is developed, and its efficiency is demonstrated.

  12. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: a pilot randomized controlled trial.

    PubMed

    Zhang, Li; Weng, Changshui; Liu, Miao; Wang, Qiuhua; Liu, Liming; He, Yao

    2014-01-01

    To study the effects of whole-body vibration exercises on the mobility function, balance and general health status, and its feasibility as an intervention in frail elderly patients. Pilot randomized controlled trial. Forty-four frail older persons (85.27 ± 3.63 years) meeting the Fried Frailty Criteria. All eligible subjects were randomly assigned to the experimental group, who received a whole-body vibration exercise alone (vibration amplitude: 1-3 mm; frequency: 6-26 Hz; 4-5 bouts × 60 seconds; 3-5 times weekly), or a control group, who received usual care and exercises for eight weeks. The Timed Up and Go Test, 30-second chair stand test, lower extremities muscle strength, balance function, balance confidence and General Health Status were assessed at the beginning of the study, after four weeks and eight weeks of the intervention. Whole-body vibration exercise reduced the time of the Timed Up and Go Test (40.47 ± 15.94 s to 21.34 ± 4.42 s), improved the bilateral knees extensor strength (6.96 ± 1.70 kg to 11.26 ± 2.08 kg), the posture stability (surface area ellipse: 404.58 ± 177.05 to 255.95 ± 107.28) and General Health Status (Short-form Health Survey score: 24.51 ± 10.69 and 49.63 ± 9.85 to 45.03 ± 11.15 and 65.23 ± 9.39, respectively). The repeated-measures ANOVA showed that there were significant differences in the Timed Up and Go Test, 30-second chair stand test, bilateral knees extensor strength, activities-specific balance confidence score and general health status between the two groups (P < 0.05). No side-effects were observed during the training. Whole-body vibration exercise is a safe and effective method that can improve the mobility, knee extensor strength, balance and the general health status in the frail elderly.

  13. Some Numerical Methods for Exponential Analysis with Connection to a General Identification Scheme for Linear Processes

    DTIC Science & Technology

    1980-11-01

    generalized nodel described by Eykhoff [1, 2], Astrom and Eykhoff [3], and on pages 209-220 of Eykhoff [4]. The origin of the general- ized model can be...aspects of process-parameter estimation," IEEE Trans. Auto. Control, October 1963, pp. 347-357. 3. K. J. Astrom and P. Eykhoff, "System

  14. A variable timestep generalized Runge-Kutta method for the numerical integration of the space-time diffusion equations

    SciTech Connect

    Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.

    1991-09-01

    A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs.

  15. Engine dynamic analysis with general nonlinear finite element codes. II - Bearing element implementation, overall numerical characteristics and benchmarking

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Adams, M.; Lam, P.; Fertis, D.; Zeid, I.

    1982-01-01

    Second-year efforts within a three-year study to develop and extend finite element (FE) methodology to efficiently handle the transient/steady state response of rotor-bearing-stator structure associated with gas turbine engines are outlined. The two main areas aim at (1) implanting the squeeze film damper element into a general purpose FE code for testing and evaluation; and (2) determining the numerical characteristics of the FE-generated rotor-bearing-stator simulation scheme. The governing FE field equations are set out and the solution methodology is presented. The choice of ADINA as the general-purpose FE code is explained, and the numerical operational characteristics of the direct integration approach of FE-generated rotor-bearing-stator simulations is determined, including benchmarking, comparison of explicit vs. implicit methodologies of direct integration, and demonstration problems.

  16. CABARET scheme for the numerical solution of aeroacoustics problems: Generalization to linearized one-dimensional Euler equations

    NASA Astrophysics Data System (ADS)

    Goloviznin, V. M.; Karabasov, S. A.; Kozubskaya, T. K.; Maksimov, N. V.

    2009-12-01

    A generalization of the CABARET finite difference scheme is proposed for linearized one-dimensional Euler equations based on the characteristic decomposition into local Riemann invariants. The new method is compared with several central finite difference schemes that are widely used in computational aeroacoustics. Numerical results for the propagation of an acoustic wave in a homogeneous field and the refraction of this wave through a contact discontinuity obtained on a strongly nonuniform grid are presented.

  17. Numerical Simulations of Blood Flow in a Stenosed Vessel under Different Flow Rates using a Generalized Oldroyd-B Model

    NASA Astrophysics Data System (ADS)

    Bodnár, T.; Sequeira, A.; Pirkl, L.

    2009-09-01

    The present paper discusses the influence and importance of the application of generalized Newtonian and generalized viscoelastic models to blood flow simulations. A simple shear-thinning viscosity model together with a Oldroyd-B model for the viscoelastic part of the stress was applied to a simplified test case of stenosed vessel. The direct comparison between results of Newtonian and non-Newtonian flows is presented for various flow rates. The aim of the study is to test the applicability of the presented numerical method to this type of flows.

  18. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, F. B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at NASA Lewis. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. Transient and steady-state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single-mesh-gear noise test rig are modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  19. Preliminary sizing of vibration absorber for space mast structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.; Mccomb, H. G., Jr.; Peebles, S. W.

    1982-01-01

    A simple method of sizing a vibration absorber for a large, cantilevered flexible mast is presented. The method is based on Den Hartog's vibration absorber theory for two-degree-of-freedom systems. Generalized design curves are presented as well as specific numerical results for a candidate space experiment in which a long flexible antenna mast is attached to the shuttle orbiter and dynamically excited by orbiter accelerations. Results indicate that for large flexible masts, the mass of the vibration absorber required to meet stringent tip deflection tolerances becomes prohibitively large.

  20. A novel numerical flux for the 3D Euler equations with general equation of state

    NASA Astrophysics Data System (ADS)

    Toro, Eleuterio F.; Castro, Cristóbal E.; Lee, Bok Jik

    2015-12-01

    Here we extend the flux vector splitting approach recently proposed in E.F. Toro and M.E. Vázquez-Cendón (2012) [42]. The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.

  1. A Numerical Treatment of the Rf SQUID: I. General Properties andNoise Energy

    SciTech Connect

    Kleiner, Reinhold; Koelle, Dieter; Clarke, John

    2007-01-15

    We investigate the characteristics and noise performance of rf Superconducting Quantum Interference Devices (SQUIDs) by solving the corresponding Langevin equations numerically and optimizing the model parameters with respect to noise energy. After introducing the basic concepts of the numerical simulations, we give a detailed discussion of the performance of the SQUID as a function of all relevant parameters. The best performance is obtained in the crossover region between the dispersive and dissipative regimes, characterized by an inductance parameter {beta}{prime}{sub L} {triple_bond} 2{pi}LI{sub 0}/{Phi}{sub 0} {approx} 1; L is the loop inductance, I{sub 0} the critical current of the Josephson junction, and {phi}{sub 0} the flux quantum. In this regime, which is not well explored by previous analytical approaches, the lowest (intrinsic) values of noise energy are a factor of about 2 above previous estimates based on analytical approaches. However, several other analytical predictions, such as the inverse proportionality of the noise energy on the tank circuit quality factor and the square of the coupling coefficient between the tank circuit and the SQUID loop, could not be well reproduced. The optimized intrinsic noise energy of the rf SQUID is superior to that of the dc SQUID at all temperatures. Although for technologically achievable parameters this advantage shrinks, particularly at low thermal fluctuation levels, we give an example for realistic parameters that leads to a noise energy comparable to that of the dc SQUID even in this regime.

  2. Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution

    NASA Astrophysics Data System (ADS)

    Safarpour, Hamed; Mohammadi, Kianoosh; Ghadiri, Majid

    2017-04-01

    In this article, the vibrational analysis of temperature-dependent cylindrical functionally graded (FG) microshells surrounded by viscoelastic a foundation is investigated by means of the modified couple stress theory (MCST). MCST is applied to this model to be productive in design and analysis of micro actuators and micro sensors. The modeled cylindrical FG microshell, its equations of motion and boundary conditions are derived by Hamilton's principle and the first-order shear deformation theory (FSDT). For the first time, in the present study, functionally graded length scale parameter which changes along the thickness has been considered in the temperature-dependent cylindrical FG microshell. The accuracy of the present model is verified with previous studies and also with those obtained by analytical Navier method. The novelty of the current study is consideration of viscoelastic foundation, various thermal loadings and size effect as well as satisfying various boundary conditions implemented on the temperature-dependent cylindrical FG microshell using MCST. Generalized differential quadrature method (GDQM) is applied to discretize the equations of motion. Then, some factors are investigated such as the influence of length to radius ratio, damping, Winkler and Pasternak foundations, different temperature changes, circumferential wave numbers, and boundary conditions on natural frequency of the cylindrical FG microshell. The results have many applications such as modeling of microrobots and biomedical microsystems.

  3. Using ambient vibration measurements for risk assessment at an urban scale: from numerical proof of concept to Beirut case study (Lebanon)

    NASA Astrophysics Data System (ADS)

    Salameh, Christelle; Bard, Pierre-Yves; Guillier, Bertrand; Harb, Jacques; Cornou, Cécile; Gérard, Jocelyne; Almakari, Michelle

    2017-04-01

    Post-seismic investigations repeatedly indicate that structures having frequencies close to foundation soil frequencies exhibit significantly heavier damages (Caracas 1967; Mexico 1985; Pujili, Ecuador 1996; L'Aquila 2009). However, observations of modal frequencies of soils and buildings in a region or within a current seismic risk analysis are not fully considered together, even when past earthquakes have demonstrated that coinciding soil and building frequencies leads to greater damage. The present paper thus focuses on a comprehensive numerical analysis to investigate the effect of coincidence between site and building frequencies. A total of 887 realistic soil profiles are coupled with a set of 141 single-degree-of-freedom elastoplastic oscillators, and their combined (nonlinear) response is computed for both linear and nonlinear soil behaviors, for a large number (60) of synthetic input signals with various PGA levels and frequency contents. The associated damage is quantified on the basis of the maximum displacement as compared to both yield and ultimate post-elastic displacements, according to the RISK-UE project recommendations (Lagomarsino and Giovinazzi in Bull Earthq Eng 4(4):415-443, 2006), and compared with the damage obtained in the case of a similar building located on rock. The correlation between this soil/rock damage increment and a number of simplified mechanical and loading parameters is then analyzed using a neural network approach. The results emphasize the key role played by the building/soil frequency ratio even when both soil and building behave nonlinearly; other important parameters are the PGA level, the soil/rock velocity contrast and the building ductility. A numerical investigation based on simulation of ambient noise for the whole set of 887 profiles also indicates that the amplitude of H/ V ratio may be considered as a satisfactory proxy for site amplification when applied to measurements at urban scale. A very easy implementation

  4. Vibration syndrome

    PubMed Central

    Stewart, Alice M.; Goda, D. F

    1970-01-01

    Stewart, Alice M., and Goda, D. F. (1970).Brit. J. industr. Med.,27, 19-27. Vibration syndrome. Raynaud's phenomenon, or the finger blanching of men who work with vibrating tools, is undoubtedly due to vasospasm. Nevertheless the abnormal element in the situation is not a series of traumatized nerve endings but a deposition of callus under the palmar surfaces of fingers and thumbs. This deposition is a late consequence of the most distinctive, but not necessarily the most painful, of the numerous effects incurred as a result of the tool speed being completely out of the control of the operator and of the tool/component rebound being only partially under his control. The replacement of soft finger pads by rigid callus is also the only consequence of hard manual work to show how necessary it is for a structure like a finger–which is largely composed of bones, joints, tendons, and skin–to have a reservoir, the equivalent of a blood-filled sponge, between every joint to accommodate any sudden reduction in blood volume, or indeed any sudden increase in the volume of blood held in the arteries and veins relative to the amount held in the capillaries. It is still a moot point whether users of vibrating tools have more arm complaints of a serious nature than other manual workers. They do, however, have a multiplicity of aches and pains, ascribable to various causes including tool speed and tool/component rebound, which are in toto very sensitive to such things as blunt impacts, hard components, heavy tools, awkward jobs, and inept handling of tools, whether the ineptness be due to inexperience or to advancing age. Users of vibrating tools have more pain in the hands and wrists than in the elbows and shoulders, but the pain tends to persist longer in the latter sites than in the former sites. PMID:5418915

  5. A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the Winkler-Pasternak foundations with general elastic boundary conditions

    NASA Astrophysics Data System (ADS)

    Zarepour, Misagh; Amirhosein Hosseini, Seyed

    2016-08-01

    This study presents an examination of nonlinear free vibration of a nanobeam under electro-thermo-mechanical loading with elastic medium and various boundary conditions, especially the elastic boundary condition. The nanobeam is modeled as an Euler-Bernoulli beam. The von Kármán strain-displacement relationship together with Hamilton’s principle and Eringen’s theory are employed to derive equations of motion. The nonlinear free vibration frequency is obtained for simply supported (S-S) and elastic supported (E-E) boundary conditions. E-E boundary condition is a general and actual form of boundary conditions and it is chosen because of more realistic behavior. By applying the differential transform method (DTM), the nanobeam’s natural frequencies can be easily obtained for the two different boundary conditions mentioned above. Performing a precise study led to investigation of the influences of nonlocal parameter, temperature change, spring constants (either for elastic medium or boundary condition) and imposed electric potential on the nonlinear free vibration characteristics of nanobeam. The results for S-S and E-E nanobeams are compared with each other. In order to validate the results, some comparisons are presented between DTM results and open literature to show the accuracy of this new approach. It has been discovered that DTM solves the equations with minimum calculation cost.

  6. TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow

    SciTech Connect

    Pruess, K.

    1991-05-01

    TOUGH2 is a numerical simulation program for nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, and unsaturated zone hydrology. A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures, facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. This report includes a detailed description of governing equations, program architecture, and user features. Enhancements in data inputs relative to TOUGH are described, and a number of sample problems are given to illustrate code applications. 46 refs., 29 figs., 12 tabs.

  7. Femtochemistry in the electronic ground state: Dynamic Stark control of vibrational dynamics

    NASA Astrophysics Data System (ADS)

    Shu, Chuan-Cun; Thomas, Esben F.; Henriksen, Niels E.

    2017-09-01

    We study the interplay of vibrational and rotational excitation in a diatomic molecule due to the non-resonant dynamic Stark effect. With a fixed peak intensity, optimal Gaussian pulse durations for maximizing vibrational or rotational transitions are obtained analytically and confirmed numerically for the H2 and Cl2 molecules. In general, pulse trains or more advanced pulse shaping techniques are required in order to obtain significant vibrational excitation. To that end, we demonstrate that a high degree of selectivity between vibrational and rotational excitation is possible with a suitably phase-modulated Gaussian pulse.

  8. Approach to equilibrium of a quantum system and generalization of the Montroll-Shuler equation for vibrational relaxation of a molecular oscillator

    NASA Astrophysics Data System (ADS)

    Kenkre, V. M.; Chase, M.

    2017-08-01

    The approach to equilibrium of a quantum mechanical system in interaction with a bath is studied from a practical as well as a conceptual point of view. Explicit memory functions are derived for given models of bath couplings. If the system is a harmonic oscillator representing a molecule in interaction with a reservoir, the generalized master equation derived becomes an extension into the coherent domain of the well-known Montroll-Shuler equation for vibrational relaxation and unimolecular dissociation. A generalization of the Bethe-Teller result regarding energy relaxation is found for short times. The theory has obvious applications to relaxation dynamics at ultra-short times as in observations on the femtosecond time scale and to the investigation of quantum coherence at those short times. While vibrational relaxation in chemical physics is a primary target of the study, another system of interest in condensed matter physics, an electron or hole in a lattice subjected to a strong DC electric field that gives rise to well-known Wannier-Stark ladders, is naturally addressed with the theory. Specific system-bath interactions are explored to obtain explicit details of the dynamics. General phenomenological descriptions of the reservoir are considered rather than specific microscopic realizations.

  9. Numerical Solution of the Incompressible Navier-Stokes Equations in Three-dimensional Generalized Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.; Kwak, D.; Chang, J. L. C.

    1986-01-01

    Numerically solving the incompressible Navier-Stokes equations is known to be time consuming and expensive. Testing of the INS3D computers code, which solves these equations with the use of the pseudocompressibility method, shows this method to be an efficient way to obtain the steady state solution. The effects of the waves introduced by the pseudocompressibility method are analyzed and criteria are set and tested for the choice of the pseudocompressibility parameter which governs the artificial sound speed. The code is tested using laminar flow over a two dimensional backward-facing step, and laminar flow over a two dimensional circular cylinder. The results of the computations over the backward-facing step are in excellent agreement with experimental results. The transient solution of the flow over the cylinder impulsively started from rest is in good agreement with experimental results. However, the computed frequency of periodic shedding of vortices behind the cylinder is not in agreement with the experimental value. For a three dimensional test case, computations were conducted for a cylinder end wall junction. The saddle point separation and horseshoe vortex system appear in the computed field. The solution also shows secondary vortex filaments which wrap around the cylinder and spiral up in the wake.

  10. Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters

    NASA Astrophysics Data System (ADS)

    Fienga, A.; Laskar, J.; Exertier, P.; Manche, H.; Gastineau, M.

    2015-11-01

    In this paper, are given numerical estimations of the sensitivity of the latest version of the INPOP planetary ephemerides (INPOP13c) to GR parameters: the PPN parameters β γ and the oblateness of the Sun J2^{⊙}. Time variations of the gravitational mass of the Sun μ are also considered. A first estimation is obtained by fitting these parameters with the classic method of least squares to planetary observations together with other parameters used for planetary ephemeris construction. A second approach is investigated using a new method of construction of alternative ephemerides. They are based on the same dynamical modeling and observational samples but in a non-GR framework with non-zero or non-unity GR parameters. Some alternative ephemerides are found to be close to INPOP13c and acceptable intervals of GR parameters are then defined at the light of the present INPOP13c accuracy. These intervals are compared with the one obtained with the direct least square estimation and with those extracted from the literature. No violation of GR is at this point noticeable.

  11. A general numerical method evaluating three-dimensional eye rotations by scanning laser ophthalmoscopy.

    PubMed

    Ott, D; Lades, M; Holthoff, K; Eckmiller, R

    1990-07-01

    A general computational method is described to specify completely the rotational state of the eye in three dimensions by scanning laser ophthalmoscopy (SLO). The method uses the simplex algorithm to fit the eye's rotational parameters to data given by n individually selected ocular fundus landmarks before and after the eye rotation. The rotational parameters are expressed as the rotation vector and three spherical Euler angles. The method, which was implemented in the C programming language, can be applied for various eye movement measurements in clinical and laboratory environments, including SLO.

  12. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  13. Numerical study of a multigrid method with four smoothing methods for the incompressible Navier-Stokes equations in general coordinates

    NASA Technical Reports Server (NTRS)

    Zeng, S.; Wesseling, P.

    1993-01-01

    The performance of a linear multigrid method using four smoothing methods, called SCGS (Symmetrical Coupled GauBeta-Seidel), CLGS (Collective Line GauBeta-Seidel), SILU (Scalar ILU), and CILU (Collective ILU), is investigated for the incompressible Navier-Stokes equations in general coordinates, in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and compared by application to test problems. The numerical results show that CILU is the most robust, SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU follow, and SILU is the worst.

  14. A new trigonometric spline approach to numerical solution of generalized nonlinear Klien-Gordon equation.

    PubMed

    Mat Zin, Shazalina; Abbas, Muhammad; Majid, Ahmad Abd; Ismail, Ahmad Izani Md

    2014-01-01

    The generalized nonlinear Klien-Gordon equation plays an important role in quantum mechanics. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline is presented for the approximate solution of this equation with Dirichlet boundary conditions. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Several examples are discussed to exhibit the feasibility and capability of the approach. The absolute errors and L∞ error norms are also computed at different times to assess the performance of the proposed approach and the results were found to be in good agreement with known solutions and with existing schemes in literature.

  15. A New Trigonometric Spline Approach to Numerical Solution of Generalized Nonlinear Klien-Gordon Equation

    PubMed Central

    Mat Zin, Shazalina; Abbas, Muhammad; Abd Majid, Ahmad; Md Ismail, Ahmad Izani

    2014-01-01

    The generalized nonlinear Klien-Gordon equation plays an important role in quantum mechanics. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline is presented for the approximate solution of this equation with Dirichlet boundary conditions. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Several examples are discussed to exhibit the feasibility and capability of the approach. The absolute errors and error norms are also computed at different times to assess the performance of the proposed approach and the results were found to be in good agreement with known solutions and with existing schemes in literature. PMID:24796483

  16. Numerical evaluation of the acoustic radiation from planar structures with general baffle conditions using wavelets.

    PubMed

    Langley, R S

    2007-02-01

    A method is presented for computing the acoustic radiation from baffled, unbaffled, or partially baffled planar structures. The surface displacement and the surface pressure are expressed in terms of wavelets, and the acoustic dynamic stiffness (baffled case) or the acoustic receptance (unbaffled case) between any two wavelets is derived in closed form. The wavelets are employed with translation only (i.e., no dilation), and the jinc function is used; the Hankel transform of this function is the Heavyside step function, and this feature greatly simplifies the analysis. There is a trivial mapping between the wavelet amplitudes and the physical motion of the structure, and hence the dynamic stiffness and receptance results can readily be used to derive the acoustic dynamic stiffness matrix (by inverting the receptance matrix in the unbaffled case) in any set of generalized coordinates. Partially baffled systems can then be studied by substructuring the dynamic stiffness matrix. A set of example problems is considered in which the method is used to compute the resistive and reactive radiation efficiency of a range of benchmark systems.

  17. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    SciTech Connect

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing

  18. Generalized Vibrational Perturbation Theory for Rotovibrational Energies of Linear, Symmetric and Asymmetric Tops: Theory, Approximations, and Automated Approaches to Deal with Medium-to-Large Molecular Systems.

    PubMed

    Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo

    2015-08-05

    Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods.

  19. Generalized Vibrational Perturbation Theory for Rotovibrational Energies of Linear, Symmetric and Asymmetric Tops: Theory, Approximations, and Automated Approaches to Deal with Medium-to-Large Molecular Systems

    PubMed Central

    Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo

    2015-01-01

    Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods. © 2015 Wiley Periodicals, Inc. PMID:26345131

  20. Individual differences in children's mathematics achievement: The roles of symbolic numerical magnitude processing and domain-general cognitive functions.

    PubMed

    Vanbinst, K; De Smedt, B

    2016-01-01

    This contribution reviewed the available evidence on the domain-specific and domain-general neurocognitive determinants of children's arithmetic development, other than nonsymbolic numerical magnitude processing, which might have been overemphasized as a core factor of individual differences in mathematics and dyscalculia. We focused on symbolic numerical magnitude processing, working memory, and phonological processing, as these determinants have been most researched and their roles in arithmetic can be predicted against the background of brain imaging data. Our review indicates that symbolic numerical magnitude processing is a major determinant of individual differences in arithmetic. Working memory, particularly the central executive, also plays a role in learning arithmetic, but its influence appears to be dependent on the learning stage and experience of children. The available evidence on phonological processing suggests that it plays a more subtle role in children's acquisition of arithmetic facts. Future longitudinal studies should investigate these factors in concert to understand their relative contribution as well as their mediating and moderating roles in children's arithmetic development.

  1. Numerical study of blow-up and dispersive shocks in solutions to generalized Korteweg-de Vries equations

    NASA Astrophysics Data System (ADS)

    Klein, C.; Peter, R.

    2015-06-01

    We present a detailed numerical study of solutions to general Korteweg-de Vries equations with critical and supercritical nonlinearity, both in the context of dispersive shocks and blow-up. We study the stability of solitons and show that they are unstable against being radiated away and blow-up. In the L2 critical case, the blow-up mechanism by Martel, Merle and Raphaël can be numerically identified. In the limit of small dispersion, it is shown that a dispersive shock always appears before an eventual blow-up. In the latter case, always the first soliton to appear will blow up. It is shown that the same type of blow-up as for the perturbations of the soliton can be observed which indicates that the theory by Martel, Merle and Raphaël is also applicable to initial data with a mass much larger than the soliton mass. We study the scaling of the blow-up time t∗ in dependence of the small dispersion parameter ɛ and find an exponential dependence t∗(ɛ) and that there is a minimal blow-up time t0∗ greater than the critical time of the corresponding Hopf solution for ɛ → 0. To study the cases with blow-up in detail, we apply the first dynamic rescaling for generalized Korteweg-de Vries equations. This allows to identify the type of the singularity.

  2. Numerical computation of gravitational field of general extended body and its application to rotation curve study of galaxies

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2017-06-01

    Reviewed are recently developed methods of the numerical integration of the gravitational field of general two- or three-dimensional bodies with arbitrary shape and mass density distribution: (i) an axisymmetric infinitely-thin disc (Fukushima 2016a, MNRAS, 456, 3702), (ii) a general infinitely-thin plate (Fukushima 2016b, MNRAS, 459, 3825), (iii) a plane-symmetric and axisymmetric ring-like object (Fukushima 2016c, AJ, 152, 35), (iv) an axisymmetric thick disc (Fukushima 2016d, MNRAS, 462, 2138), and (v) a general three-dimensional body (Fukushima 2016e, MNRAS, 463, 1500). The key techniques employed are (a) the split quadrature method using the double exponential rule (Takahashi and Mori, 1973, Numer. Math., 21, 206), (b) the precise and fast computation of complete elliptic integrals (Fukushima 2015, J. Comp. Appl. Math., 282, 71), (c) Ridder's algorithm of numerical differentiaion (Ridder 1982, Adv. Eng. Softw., 4, 75), (d) the recursive computation of the zonal toroidal harmonics, and (e) the integration variable transformation to the local spherical polar coordinates. These devices succesfully regularize the Newton kernel in the integrands so as to provide accurate integral values. For example, the general 3D potential is regularly integrated as Φ (\\vec{x}) = - G \\int_0^∞ ( \\int_{-1}^1 ( \\int_0^{2π} ρ (\\vec{x}+\\vec{q}) dψ ) dγ ) q dq, where \\vec{q} = q (√{1-γ^2} cos ψ, √{1-γ^2} sin ψ, γ), is the relative position vector referred to \\vec{x}, the position vector at which the potential is evaluated. As a result, the new methods can compute the potential and acceleration vector very accurately. In fact, the axisymmetric integration reproduces the Miyamoto-Nagai potential with 14 correct digits. The developed methods are applied to the gravitational field study of galaxies and protoplanetary discs. Among them, the investigation on the rotation curve of M33 supports a disc-like structure of the dark matter with a double-power-law surface

  3. Frequency-Dependent Attenuation of Blasting Vibration Waves

    NASA Astrophysics Data System (ADS)

    Zhou, Junru; Lu, Wenbo; Yan, Peng; Chen, Ming; Wang, Gaohui

    2016-10-01

    The dominant frequency, in addition to the peak particle velocity, is a critical factor for assessing adverse effects of the blasting vibration on surrounding structures; however, it has not been fully considered in blasting design. Therefore, the dominant frequency-dependent attenuation mechanism of blast-induced vibration is investigated in the present research. Starting with blasting vibration induced by a spherical charge propagating in an infinite viscoelastic medium, a modified expression of the vibration amplitude spectrum was derived to reveal the frequency dependency of attenuation. Then, ground vibration induced by more complex and more commonly used cylindrical charge that propagates in a semi-infinite viscoelastic medium was analyzed by numerical simulation. Results demonstrate that the absorptive property of the medium results in the frequency attenuation versus distance, whereas a rapid drop or fluctuation occurs during the attenuation of ground vibration. Fluctuation usually appears at moderate to far field, and the dominant frequency generally decreases to half the original value when rapid drop occurs. The decay rate discrepancy between different frequency components and the multimodal structure of vibration spectrum lead to the unsmooth frequency-dependent attenuation. The above research is verified by two field experiments. Furthermore, according to frequency-based vibration standards, frequency drop and fluctuation should be considered when evaluating blast safety. An optimized piecewise assessment is proposed for more accurate evaluation: With the frequency drop point as the breakpoint, the assessment is divided into two independent sections along the propagating path.

  4. Fuzzy Vibration Control of a Smart Plate

    NASA Astrophysics Data System (ADS)

    Muradova, Aliki D.; Stavroulakis, Georgios E.

    2013-04-01

    Vibration suppression of a smart thin elastic rectangular plate is considered. The plate is subjected to external disturbances and generalized control forces, produced, for instance, by electromechanical feedback. A nonlinear controller is designed, based on fuzzy inference. The initial-boundary value problem is spatially discretized by means of the time spectral method. The implicit Newmark-beta method is employed for time integration. Two numerical algorithms are proposed. The techniques have been implemented within MATLAB with the use of the Fuzzy Logic Toolbox. Representative numerical results are given.

  5. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Transportation § 3280.903 General requirements for designing the... manufactured home shall be designed, in terms of its structural, plumbing, mechanical and electrical systems... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false General requirements for designing...

  6. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Transportation § 3280.903 General requirements for designing the... manufactured home shall be designed, in terms of its structural, plumbing, mechanical and electrical systems... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General requirements for designing...

  7. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Transportation § 3280.903 General requirements for designing the... manufactured home shall be designed, in terms of its structural, plumbing, mechanical and electrical systems... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false General requirements for designing...

  8. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Transportation § 3280.903 General requirements for designing the... manufactured home shall be designed, in terms of its structural, plumbing, mechanical and electrical systems... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false General requirements for designing...

  9. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Transportation § 3280.903 General requirements for designing the... manufactured home shall be designed, in terms of its structural, plumbing, mechanical and electrical systems... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false General requirements for designing...

  10. Generalized semi-analytical finite difference method for dispersion curves calculation and numerical dispersion analysis for Lamb waves.

    PubMed

    Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J

    2014-09-01

    The paper presents an efficient and accurate method for dispersion curve calculation and analysis of numerical models for guided waves. The method can be used for any arbitrarily selected anisotropic material. The proposed approach utilizes the wave equation and through-thickness-only discretization of anisotropic, layered plates to obtain the Lamb wave characteristics. Thus, layered structures, such as composites, can be analyzed in a straightforward manner. A general framework for the proposed analysis is given, along with application examples. Although these examples are based on the local interaction simulation approach for elastic waves propagation, the proposed methodology can be easily adopted for other methods (e.g., finite elements). The method can be also used to study the influence of discretization parameters on dispersion curves estimates.

  11. An eddy resolving numerical study of the general circulation and deep-water formation in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Mantziafou, A.; Lascaratos, A.

    2004-07-01

    General circulation and deep-water formation (DWF) processes in the Adriatic basin in a climatological year were numerically simulated in a high-resolution (1/20th of a degree) implementation of the Princeton Ocean Model (POM). The "perpetual" year atmospheric data were computed from the ECMWF Reanalysis data (1°×1°) covering the period 1979-1994. The model reproduces the main basin features of the general circulation, water mass distribution and their seasonal variability. The Adriatic Deep Water exiting through the Otranto Strait is produced with two different mechanisms inside the basin: (a) by open ocean deep convection over the Southern Adriatic Pit and Middle Adriatic Pit (b) on the continental shelf of the Northern and Middle Adriatic. The estimated contributions of both mechanisms suggest that 82% of the Adriatic Deep Water is formed inside the Southern Adriatic Pit, while all the higher density water in this water mass comes from the northern regions. The role of mesoscale eddies at the periphery of the dense-water chimney in the Southern Adriatic Pit was examined and their contribution to the lateral buoyancy flux, during the convection process, found to be small. The DWF rate at Otranto Strait is 0.28 Sv with σθ over 29.15. The sensitivity of the DWF processes to interannual variability of the buoyancy forcing and river runoff was assessed with a number of process-study numerical experiments. In these experiments the effect of an imposed "extreme" buoyancy forcing during 1 year, on the DWF rates, was to modify them during the specific year, but the effects were still present in the following normal climatological year. This shows that the DWF rates and their mass characteristics at a specific year depend not only on the atmospheric conditions prevailing that specific year but on the previous year's as well, thus leading to the concept of a "memory" of the basin.

  12. Active vibration control of a plate using vibration gradients

    NASA Astrophysics Data System (ADS)

    Kaizuka, T.; Nakano, K.

    2016-09-01

    Minimization of the squared transverse velocity at a measurement point does not guarantee the global vibration reduction for the whole structure, and the control result is dependent on the measurement point. Flexibility of the sensor placement is usually limited in practice. If the measurement point is near the nodal line of the mode, this mode cannot be decreased effectively and even increased by the control force. This study investigates the control method with the error criterion being the sum of the squared vibration velocity and the squared vibration gradients (spatial gradients) at a measurement point. Since the spatial distributions of the vibration velocity and its gradients are different, the aforementioned problem caused by the nodal line are mitigated. The numerical examples indicate that the performance of the control including the vibration gradients is less dependent on the measurement point, and this method achieves a better global vibration reduction, than the conventional method, i.e., minimization of the squared vibration velocity.

  13. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  14. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as...

  15. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  16. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  17. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  18. Vertical Distribution of Vibrationally Excited Hydroxyl

    NASA Astrophysics Data System (ADS)

    Grygalashvyly, Mykhaylo; Becker, Erich; Sonnemann, Gerd

    2016-04-01

    Knowledge about the vertical distribution of the vibrationally excited states of hydroxyl (OH*) is important for the interpretation of airglow measurements with respect to dynamical processes in the mesopause region. We derive an approximate analytical expression for the distribution of OH* that highlights the dependence on atomic oxygen and temperature. In addition, we use an advanced numerical model for the formation and relaxation of OH* and investigate the distributions of the different vibrationally exited states of OH*. For the production of OH*, the model includes the reaction of atomic hydrogen with ozone, as well as the reaction of atomic oxygen with hydroperoxy radicals. As loss processes we include 1) deactivation by atomic oxygen, molecular oxygen, and molecular nitrogen, 2) spontaneous emission, and 3) loss due to chemical reaction with atomic oxygen. All these processes take the dependence on the vibrational number into account. The quenching by molecular and atomic oxygen is parameterized by a multi-quantum relaxation scheme. This diagnostic model for OH* has been implemented as part of a chemistry-transport model that is driven by the dynamics simulated with the KMCM (Kühlungsborn Mechanistic general Circulation Model). Numerical results confirm that emission from excited states with higher vibrational number is weaker and emanates from higher altitudes. In addition we find that the OH*-peak altitudes depend significantly on season and latitude. This behavior is mainly controlled by the corresponding variations of atomic oxygen and temperature, as is also confirmed by the aforementioned approximate theory.

  19. Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation

    PubMed Central

    Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

    2015-01-01

    In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems. PMID:25811858

  20. Comparisons of observed seasonal climate features with a winter and summer numerical simulation produced with the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shukla, J.; Mintz, Y.; Wu, M. L.; Godbole, R.; Herman, G.; Sud, Y.

    1979-01-01

    Results are presented from numerical simulations performed with the general circulation model (GCM) for winter and summer. The monthly mean simulated fields for each integration are compared with observed geographical distributions and zonal averages. In general, the simulated sea level pressure and upper level geopotential height field agree well with the observations. Well simulated features are the winter Aleutian and Icelandic lows, the summer southwestern U.S. low, the summer and winter oceanic subtropical highs in both hemispheres, and the summer upper level Tibetan high and Atlantic ridge. The surface and upper air wind fields in the low latitudes are in good agreement with the observations. The geographical distirbutions of the Earth-atmosphere radiation balance and of the precipitation rates over the oceans are well simulated, but not all of the intensities of these features are correct. Other comparisons are shown for precipitation along the ITCZ, rediation balance, zonally averaged temperatures and zonal winds, and poleward transports of momentum and sensible heat.

  1. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

    PubMed

    Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

    2015-01-01

    In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.

  2. Free vibrations of delaminated beams

    NASA Technical Reports Server (NTRS)

    Shen, M.-H. H.; Grady, J. E.

    1992-01-01

    Free vibration of laminated composite beams is studied. The effect of interply delaminations on natural frequencies and mode shapes is evaluated both analytically and experimentally. A generalized vibrational principle is used to formulate the equation of motion and associated boundary conditions for the free vibration of a composite beam with a delamination of arbitrary size and location. The effect of coupling between longitudinal vibration and bending vibration is considered. This coupling effect is shown to significantly affect the calculated natural frequencies and mode shapes of the delaminated beam.

  3. Vibration analysis for the comfort assessment of superyachts

    NASA Astrophysics Data System (ADS)

    Pais, Tatiana; Moro, Lorenzo; Boote, Dario; Biot, Marco

    2017-09-01

    Comfort levels on modern superyachts have recently been the object of specific attention of the most important Classification Societies, which issued new rules and regulations for evaluating noise and vibration maximum levels. These rules are named "Comfort Class Rules" and set the general criteria for noise and vibration measurements in different vessels' areas, as well as the maximum noise and vibration limit values. As far as the vibration assessment is concerned, the Comfort Class Rules follow either the ISO 6954:1984 standard or the ISO 6954:2000. After an introduction to these relevant standards, the authors herein present a procedure developed to predict the vibration levels on ships. This procedure builds on finite element linear dynamic analysis and is applied to predict the vibration levels on a 60 m superyacht considered as a case study. The results of the numerical simulations are then benchmarked against experimental data acquired during the sea trial of the vessel. This analysis also allows the authors to evaluate the global damping ratio to be used by designers in the vibration analysis of superyachts.

  4. Formulation of numerical procedures for dynamic analysis of spinning structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1986-01-01

    The paper presents the descriptions of recently developed numerical algorithms that prove to be useful for the solution of the free vibration problem of spinning structures. First, a generalized procedure for the computation of nodal centrifugal forces in a finite element owing to any specified spin rate is derived in detail. This is followed by a description of an improved eigenproblem solution procedure that proves to be economical for the free vibration analysis of spinning structures. Numerical results are also presented which indicate the efficacy of the currently developed procedures.

  5. Vibrations in a moving flexible robot arm

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.; Wei, Jin-Duo

    1987-01-01

    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  6. Fourier Analysis Of Vibrations Of Round Structures

    NASA Technical Reports Server (NTRS)

    Davis, Gary A.

    1990-01-01

    Fourier-series representation developed for analysis of vibrations in complicated, round structures like turbopump impellers. Method eliminates guesswork involved in characterization of shapes of vibrational modes. Easy way to characterize complicated modes, leading to determination of responsiveness of given mode to various forcing functions. Used in conjunction with finite-element numerical simulation of vibrational modes of structure.

  7. È VIVO: Virtual eruptions at Vesuvius; A multimedia tool to illustrate numerical modeling to a general public

    NASA Astrophysics Data System (ADS)

    Todesco, Micol; Neri, Augusto; Demaria, Cristina; Marmo, Costantino; Macedonio, Giovanni

    2006-07-01

    Dissemination of scientific results to the general public has become increasingly important in our society. When science deals with natural hazards, public outreach is even more important: on the one hand, it contributes to hazard perception and it is a necessary step toward preparedness and risk mitigation; on the other hand, it contributes to establish a positive link of mutual confidence between scientific community and the population living at risk. The existence of such a link plays a relevant role in hazard communication, which in turn is essential to mitigate the risk. In this work, we present a tool that we have developed to illustrate our scientific results on pyroclastic flow propagation at Vesuvius. This tool, a CD-ROM that we developed joining scientific data with appropriate knowledge in communication sciences is meant to be a first prototype that will be used to test the validity of this approach to public outreach. The multimedia guide contains figures, images of real volcanoes and computer animations obtained through numerical modeling of pyroclastic density currents. Explanatory text, kept as short and simple as possible, illustrates both the process and the methodology applied to study this very dangerous natural phenomenon. In this first version, the CD-ROM will be distributed among selected categories of end-users together with a short questionnaire that we have drawn to test its readability. Future releases will include feedback from the users, further advancement of scientific results as well as a higher degree of interactivity.

  8. Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrödinger equation with generalized q-deformed Morse potential

    NASA Astrophysics Data System (ADS)

    Ikhdair, Sameer M.

    2009-06-01

    The analytic solutions of the spatially-dependent mass Schrödinger equation of diatomic molecules with the centrifugal term l(l+1)/r2 for the generalized q-deformed Morse potential are obtained approximately by means of a parametric generalization of the Nikiforov-Uvarov (NU) method combined with the Pekeris approximation scheme. The energy eigenvalues and the corresponding normalized radial wave functions are calculated in closed form with a physically motivated choice of a reciprocal Morse-like mass function, m(r)=m0/(1-δe)2,0⩽δ<1, where a and re are the range of the potential and the equilibrium position of the nuclei. The constant mass case when δ→0 is also studied. The energy states for H 2, LiH, HCl and CO diatomic molecules are calculated and compared favourably well with those obtained by using other approximation methods for arbitrary vibrational n and rotational l quantum numbers.

  9. Skyrmion vibration modes within the rational map ansatz

    SciTech Connect

    Lin, W. T.; Piette, B.

    2008-06-15

    We study the vibration modes of the Skyrme model within the rational map ansatz. We show that the vibrations of the radial profiles and the rational maps are decoupled and we consider explicitly the cases B=1, B=2, and B=4. We then compare our results with the vibration modes obtained numerically by Barnes et al. and show that qualitatively the rational map reproduces the vibration modes obtained numerically but that the vibration frequencies of these modes do not match very well.

  10. Vibrations of a rectangular orthotropic plate with free edges: Analysis and solution of an infinite system

    NASA Astrophysics Data System (ADS)

    Papkov, S. O.

    2015-03-01

    A new asymptotically exact solution is obtained for the problem of transverse vibrations of a rectangular orthotropic plate with free edges. The general solution to the vibration equation is constructed as the sum of Fourier series with unknown coefficients, which are related by a homogeneous quasi-regular infinite system of linear algebraic equations. Analysis of the infinite system makes it possible to determine the power-law asymptotics for a nontrivial solution to the system, which makes it possible to calculate the natural vibration frequencies and to construct the corresponding eigenmodes. Examples of numerical calculations for real materials are presented.

  11. Estimating the effects of structural vibration on adaptive optics system performance.

    PubMed

    Powell, Keith

    2011-05-20

    This paper presents analytical tools developed for estimating the effects of structural vibration on closed-loop adaptive optics system image quality. The general equation for the normalized intensity distribution of an image subject to structural vibration is derived. The resulting two-dimensional theoretical point spread function is computed numerically and compared with empirical data obtained on sky at the Multiple Mirror Telescope Observatory. A simplified analytical expression for the normalized intensity distribution is derived for long exposures and used to quantify the effects on Strehl and spot full width at half-maximum as a function of vibration amplitude, telescope diameter, and observation wavelength.

  12. Modeling and analysis of vibration effects on signal quality for angular multiplexed holographic data storage

    NASA Astrophysics Data System (ADS)

    Ishii, Toshiki; Shimada, Ken-ichi; Hoshizawa, Taku; Takashima, Yuzuru

    2016-09-01

    A practical optical system design that takes into account environmental factors is highly desirable. However, it is in general a time-consuming process, which requires a massive iterations of simulations. This is also one of the bottlenecks of the optical design of angular multiplexed holographic data storage systems. To develop a practical method to evaluate the effect of vibrations, a three-dimensional vibration model is developed. The model describes the vibration effect on normalized intensity on the basis of a single statistical figure of merit. Such a single figure of merits is adopted for designing a robust and efficient write strategy, which is applicable to a wide range of vibration waveforms to increase write data transfer rate. Also, optimum optical system parameters are identified. We propose a numerical aperture of 0.572 and a pixel pitch of 6.9 µm which can improve capacity and data transfer rate without sacrificing the vibration margin.

  13. Numerical simulation of 137Cs and (239,240)Pu concentrations by an ocean general circulation model.

    PubMed

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi

    2003-01-01

    We simulated the spatial distributions and the temporal variations of 137Cs and (239,240)Pu concentrations in the ocean by using the ocean general circulation model which was developed by National Center of Atmospheric Research. These nuclides are introduced into seawaters from global fallout due to atmospheric nuclear weapons tests. The distribution of radioactive deposition on the world ocean is estimated from global precipitation data and observed values of annual deposition of radionuclides at the Meteorological Research Institute in Japan and several observed points in New Zealand. Radionuclides from global fallout have been transported by advection, diffusion and scavenging, and this concentration reduces by radioactive decay in the ocean. We verified the results of the model calculations by comparing simulated values of 137Cs and (239,240)Pu in seawater with the observed values included in the Historical Artificial Radionuclides in the HAM database, which has been constructed by the Meteorological Research Institute. The vertical distributions of the calculated 137Cs concentrations were in good agreement and are in good agreement with the observed profiles in the 1960s up to 250 m, in the 1970s up to 500 m, in the 1980s up to 750 m and in the 1990s up to 750 m. However, the calculated 137Cs concentrations were underestimated compared with the observed 137Cs at the deeper layer. This may suggest other transport processes of 137Cs to deep waters. The horizontal distributions of 137Cs concentrations in surface water could be simulated. A numerical tracer release experiment was performed to explain the horizontal distribution pattern. A maximum (239,240)Pu concentration layer occurs at an intermediate depth for both observed and calculated values, which is formed by particle scavenging. The horizontal distributions of the calculated (239,240)Pu concentrations in surface water could be simulated by considering the scavenging effect.

  14. The effective damping approach to design a dynamic vibration absorber using Coriolis force

    NASA Astrophysics Data System (ADS)

    Viet, L. D.; Anh, N. D.; Matsuhisa, H.

    2011-04-01

    In this paper, the vibration reduction of a pendulum structure with dynamic vibration absorber (DVA) using Coriolis force is investigated. When the pendulum structure is subjected to a single harmonic excitation, the effective damping of Coriolis force is used with the second-order approximations to obtain the closed forms of optimal parameters of the DVA. The closed forms obtained show that the natural frequency of the absorber should be tuned to twice that of the pendulum. The closed forms of optimal parameters are verified by numerical optimization. The modified forms of optimal parameters are proposed to be used in case of general excitation. Base on this modified form, the design procedure is demonstrated by the numerical calculation of the free vibration and wind-induced vibration of a ropeway gondola.

  15. Vibration Prediction Method of Electric Machines by using Experimental Transfer Function and Magnetostatic Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Saito, A.; Kuroishi, M.; Nakai, H.

    2016-09-01

    This paper concerns the noise and structural vibration caused by rotating electric machines. Special attention is given to the magnetic-force induced vibration response of interior-permanent magnet machines. In general, to accurately predict and control the vibration response caused by the electric machines, it is inevitable to model not only the magnetic force induced by the fluctuation of magnetic fields, but also the structural dynamic characteristics of the electric machines and surrounding structural components. However, due to complicated boundary conditions and material properties of the components, such as laminated magnetic cores and varnished windings, it has been a challenge to compute accurate vibration response caused by the electric machines even after their physical models are available. In this paper, we propose a highly-accurate vibration prediction method that couples experimentally-obtained discrete structural transfer functions and numerically-obtained distributed magnetic-forces. The proposed vibration synthesis methodology has been applied to predict vibration responses of an interior permanent magnet machine. The results show that the predicted vibration response of the electric machine agrees very well with the measured vibration response for several load conditions, for wide frequency ranges.

  16. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  17. Vibration isolation

    NASA Technical Reports Server (NTRS)

    Bastin, Paul

    1990-01-01

    Viewgraphs on vibration isolation are presented. Techniques to control and isolate centrifuge disturbances were identified. Topics covered include: disturbance sources in the microgravity environment; microgravity assessment criteria; life sciences centrifuge; flight support equipment for launch; active vibration isolation system; active balancing system; and fuzzy logic control.

  18. A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel

    NASA Astrophysics Data System (ADS)

    Hussein, M. F. M.; Hunt, H. E. M.

    2009-03-01

    This paper presents a new method for modelling floating-slab tracks with discontinuous slabs in underground railway tunnels. The track is subjected to a harmonic load moving with a constant velocity. The model consists of two sub-models. The first is an infinite track with periodic double-beam unit formulated as a periodic infinite structure. The second is modelled with a new version of the Pipe-in-Pipe (PiP) model that accounts for a tunnel wall embedded in a half-space. The two sub-models are coupled by writing the force transmitted from the track to the tunnel as a continuous function using Fourier series representation and satisfying the compatibility condition. The displacements at the free surface are calculated for a track with discontinuous slab and compared with those of a track with continuous slab. The results show that the far-field vibration can be significantly increased due to resonance frequencies of slabs for tracks with discontinuous slabs.

  19. Statistical analysis of vibration in tyres

    NASA Astrophysics Data System (ADS)

    Le Bot, Alain; Bazari, Zakia; Klein, Philippe; Lelong, Joël

    2017-03-01

    The vibration in tyres submitted to random forces in the contact zone is investigated with the model of prestressed orthotropic plate on visco-elastic foundation. It is shown that beyond a cut-on frequency a single wave propagates whose speed is directional-dependent. A systematic numerical exploration of the governing equation solutions shows that three regimes may exist in such plates. These are modal field, diffuse field and free field. For actual tyres which present a high level of damping, the passage from low to high frequencies generally explores the modal and free field regimes but not the diffuse field regime.

  20. Vibrational autoionization in polyatomic molecules.

    PubMed

    Pratt, S T

    2005-01-01

    The vibrationally autoionizing Rydberg states of small polyatomic molecules provide a fascinating laboratory in which to study fundamental nonadiabatic processes. In this review, recent results on the vibrational mode dependence of vibrational autoionization are discussed. In general, autoionization rates depend strongly on the character of the normal mode driving the process and on the electronic character of the Rydberg electron. Although quantitative calculations based on multichannel quantum defect theory are available for some polyatomic molecules, including H3, only qualitative information exists for most molecules. This review shows how qualitative information, such as Walsh diagrams along different normal coordinates of the molecule, can provide insight into the vibrational autoionization rates.

  1. A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model

    NASA Technical Reports Server (NTRS)

    Cao, Yiding; Faghri, Amir; Chang, Won Soon

    1989-01-01

    An enthalpy transforming scheme is proposed to convert the energy equation into a nonlinear equation with the enthalpy, E, being the single dependent variable. The existing control-volume finite-difference approach is modified so it can be applied to the numerical performance of Stefan problems. The model is tested by applying it to a three-dimensional freezing problem. The numerical results are in agreement with those existing in the literature. The model and its algorithm are further applied to a three-dimensional moving heat source problem showing that the methodology is capable of handling complicated phase-change problems with fixed grids.

  2. A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model

    NASA Technical Reports Server (NTRS)

    Cao, Yiding; Faghri, Amir; Chang, Won Soon

    1989-01-01

    An enthalpy transforming scheme is proposed to convert the energy equation into a nonlinear equation with the enthalpy, E, being the single dependent variable. The existing control-volume finite-difference approach is modified so it can be applied to the numerical performance of Stefan problems. The model is tested by applying it to a three-dimensional freezing problem. The numerical results are in agreement with those existing in the literature. The model and its algorithm are further applied to a three-dimensional moving heat source problem showing that the methodology is capable of handling complicated phase-change problems with fixed grids.

  3. Automatic Generation of Analytic Equations for Vibrational and Rovibrational Constants from Fourth-Order Vibrational Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Matthews, Devin A.; Gong, Justin Z.; Stanton, John F.

    2014-06-01

    The derivation of analytic expressions for vibrational and rovibrational constants, for example the anharmonicity constants χij and the vibration-rotation interaction constants α^B_r, from second-order vibrational perturbation theory (VPT2) can be accomplished with pen and paper and some practice. However, the corresponding quantities from fourth-order perturbation theory (VPT4) are considerably more complex, with the only known derivations by hand extensively using many layers of complicated intermediates and for rotational quantities requiring specialization to orthorhombic cases or the form of Watson's reduced Hamiltonian. We present an automatic computer program for generating these expressions with full generality based on the adaptation of an existing numerical program based on the sum-over-states representation of the energy to a computer algebra context. The measures taken to produce well-simplified and factored expressions in an efficient manner are discussed, as well as the framework for automatically checking the correctness of the generated equations.

  4. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  5. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  6. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  7. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  8. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  9. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  10. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  11. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1)...

  12. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  13. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  14. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  15. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  16. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  17. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  18. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  19. Vibrational Diver

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  20. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  1. Generalized Free-Surface Effect and Random Vibration Theory: a new tool for computing moment magnitudes of small earthquakes using borehole data

    NASA Astrophysics Data System (ADS)

    Malagnini, Luca; Dreger, Douglas S.

    2016-07-01

    Although optimal, computing the moment tensor solution is not always a viable option for the calculation of the size of an earthquake, especially for small events (say, below Mw 2.0). Here we show an alternative approach to the calculation of the moment-rate spectra of small earthquakes, and thus of their scalar moments, that uses a network-based calibration of crustal wave propagation. The method works best when applied to a relatively small crustal volume containing both the seismic sources and the recording sites. In this study we present the calibration of the crustal volume monitored by the High-Resolution Seismic Network (HRSN), along the San Andreas Fault (SAF) at Parkfield. After the quantification of the attenuation parameters within the crustal volume under investigation, we proceed to the spectral correction of the observed Fourier amplitude spectra for the 100 largest events in our data set. Multiple estimates of seismic moment for the all events (1811 events total) are obtained by calculating the ratio of rms-averaged spectral quantities based on the peak values of the ground velocity in the time domain, as they are observed in narrowband-filtered time-series. The mathematical operations allowing the described spectral ratios are obtained from Random Vibration Theory (RVT). Due to the optimal conditions of the HRSN, in terms of signal-to-noise ratios, our network-based calibration allows the accurate calculation of seismic moments down to Mw < 0. However, because the HRSN is equipped only with borehole instruments, we define a frequency-dependent Generalized Free-Surface Effect (GFSE), to be used instead of the usual free-surface constant F = 2. Our spectral corrections at Parkfield need a different GFSE for each side of the SAF, which can be quantified by means of the analysis of synthetic seismograms. The importance of the GFSE of borehole instruments increases for decreasing earthquake's size because for smaller earthquakes the bandwidth available

  2. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  3. The Physics of Vibration

    NASA Astrophysics Data System (ADS)

    Pippard, A. B.

    1989-11-01

    The study of vibration in physical systems is an important part of almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. Following this the book turns to the treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar. In Part II the emphasis turns to quantum systems, that is those systems which can only be adequately described by quantum mechanics. The treatment concentrates on vibrations in atoms and molecules and their interaction with electromagnetic radiation. The similarities of classical and quantum methods are stressed and the limits of the classical treatment are examined. Throughout the book, each phenomenon discussed is illustrated with many examples and theory and experiment are compared. Although the reader may find that the physics discussed is demanding and the concepts are subtle in places, all mathematics used is familiar to both engineers and experimental scientists. Although not a textbook this is a useful introduction to the more advanced mathematical treatment of vibrations as it bridges the gap between the basic principles and more specialized concepts. It will be of great interest to advanced undergraduates and postgraduates as well as applied mathematicians, physicists and engineers in university and industry.

  4. Development of a numerical procedure to map a general 3-d body onto a near-circle

    NASA Technical Reports Server (NTRS)

    Hommel, M. J.

    1986-01-01

    Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.

  5. Development of a numerical procedure to map a general 3-d body onto a near-circle

    NASA Technical Reports Server (NTRS)

    Hommel, M. J.

    1986-01-01

    Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.

  6. Optimum vibration control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.; Studer, P.

    1988-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  7. Optimum vibration control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  8. Experimental modeling of cavitation occurring at vibration

    NASA Astrophysics Data System (ADS)

    Gaynutdinova, D. F.; Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    The article investigates the problem of effects in two-stage centrifugal pumps due to hydro-gas-dynamic processes resulting from vibrations of design elements which are difficult to forecast. Numerical and experimental simulation of this problem was conducted. The experiment discovered cavitation effects brought about by the vibrations. The area of cavitations was plotted. Dependence of cavitation bubble concentration on amplitude and frequency of the vibrations was found.

  9. Electron-vibration relaxation in oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Heritier, K. L.; Panesi, M.

    2016-06-01

    An ideal chemical reactor model is used to study the vibrational relaxation of oxygen molecules in their ground electronic state, X3Σg-, in presence of free electrons. The model accounts for vibrational non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules. The vibrational levels of the molecules are treated as separate species, allowing for non-Boltzmann distributions of their population. The electron and vibrational temperatures are varied in the range [0-20,000] K. Numerical results show a fast energy transfer between oxygen molecules and free electron, which causes strong deviation of the vibrational distribution function from Boltzmann distribution, both in heating and cooling conditions. Comparison with Landau-Teller model is considered showing a good agreement for electron temperature range [2000-12,000] K. Finally analytical fit of the vibrational relaxation time is given.

  10. Parameter Reconstruction of Vibration Systems from Partial Eigeninformation

    PubMed Central

    Lin, Matthew M.

    2013-01-01

    Quadratic matrix polynomials are fundamental to vibration analysis. Because of the predetermined interconnectivity among the constituent elements and the mandatory nonnegativity of the physical parameters, most given vibration systems will impose some inherent structure on the coefficients of the corresponding quadratic matrix polynomials. In the inverse problem of reconstructing a vibration system from its observed or desirable dynamical behavior, respecting the intrinsic structure becomes important and challenging both theoretically and practically. The issue of whether a structured inverse eigenvalue problem is solvable is problem dependent and has to be addressed structure by structure. In an earlier work, physical systems that can be modeled under the paradigm of a serially linked mass-spring system have been considered via specifically formulated inequality systems. In this paper, the framework is generalized to arbitrary generally linked systems. In particular, given any configuration of interconnectivity in a mass-spring system, this paper presents a mechanism that systematically and automatically generates a corresponding inequality system. A numerical approach is proposed to determine whether the inverse problem is solvable and, if it is so, computes the coefficient matrices while providing an estimate of the residual error. The most important feature of this approach is that it is problem independent, that is, the approach is general and robust for any kind of physical configuration. The ideas discussed in this paper have been implemented into a software package by which some numerical experiments are reported. PMID:23966750

  11. Active vibration control in Duffing mechanical systems using dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Beltrán-Carbajal, F.; Silva-Navarro, G.

    2014-07-01

    This paper deals with the multi-frequency harmonic vibration suppression problem in forced Duffing mechanical systems using passive and active linear mass-spring-damper dynamic vibration absorbers. An active vibration absorption scheme is proposed to extend the vibrating energy dissipation capability of a passive dynamic vibration absorber for multiple excitation frequencies and, simultaneously, to perform reference position trajectory tracking tasks planned for the nonlinear primary system. A differential flatness-based disturbance estimation scheme is also described to estimate the unknown multiple time-varying frequency disturbance signal affecting the differentially flat nonlinear vibrating mechanical system dynamics. Some numerical simulation results are provided to show the efficient performance of the proposed active vibration absorption scheme and the fast estimation of the vibration disturbance signal.

  12. Natural vibration dynamics of Rainbow Bridge, Utah

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Thorne, M. S.; Wood, J. R.; Doyle, S.; Stanfield, E.; White, B.

    2015-12-01

    We measured resonant frequencies of Rainbow Bridge, Utah, one of the world's longest rock spans, during a field experiment recording ambient vibration data. Measurements were generated over 20 hours on March 23-24, 2015 using two broadband three-component seismometers placed on the bridge, and compared to concurrent data from nearby reference stations 20 and 220 m distant. We identified seven distinct modes of vibration for Rainbow Bridge between 1 and 6 Hz. Data for each resonant frequency was then analyzed to determine the frequency-dependent polarization vector in an attempt to clarify mode shapes; e.g. the fundamental mode represents out-of-plane horizontal flexure. We compared experimental data to results of 3D numerical modal analysis, using a new photogrammetric model of Rainbow Bridge generated in this study imported into COMSOL Multiphysics. Results compare well with measured data for seven of the first eight modeled modes, matching vibrational frequencies and polarization orientations generally within 10%. Only predicted mode 6 was not explicitly apparent in our experimental data. Large site-to-reference spectral ratios resolved from experimental data indicate high amplification on the bridge as compared to nearby bedrock.

  13. Vibration Induced Microfluidic Atomization

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie; Qi, Aisha; Friend, James

    2008-11-01

    We demonstrate rapid generation of micron aerosol droplets in a microfluidic device in which a fluid drop is exposed to surface vibration as it sits atop a piezoelectric substrate. Little, however, is understood about the processes by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory and numerical modelling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Droplets form due to the axisymmetric break-up of cylindrical liquid jets ejected as a consequence of interfacial destabilization. Their 10 μm size correlates with the jet radius and the instability wavelength, both determined from a viscous-capillary dominant force balance and confirmed through a numerical solution. With the exception of drops that spread into thin films with thicknesses on the order of the boundary layer dimension, the free surface is always observed to vibrate at the capillary-viscous resonance frequency despite the surface vibration frequency being several orders larger. This is contrary to common assumptions used in deriving subharmonic models resulting in a Mathieu equation, which has commonly led to spurious predictions in the droplet size.

  14. Two-Dimensional Spectroscopy of Coupled Vibrations with the Optimized Mean-Trajectory Approximation

    PubMed Central

    Gerace, Mallory; Loring, Roger F.

    2013-01-01

    The optimized mean-trajectory (OMT) approximation is a semiclassical representation of the nonlinear vibrational response function used to compute multidimensional infrared spectra. In this method, response functions are calculated from a sequence of classical trajectories linked by discontinuities representing the effects of radiation-matter interactions, thus providing an approximation to quantum dynamics using classical inputs. This approach was previously formulated and assessed numerically for a single anharmonic degree of freedom. Our previous work is generalized here in two respects. First, the derivation of the OMT is extended to any number of coupled anharmonic vibrations by determining semiclassical approximations for pairs of double-sided Feynman diagrams. Second, an efficient numerical procedure is developed for calculating two-dimensional infrared spectra of coupled anharmonic vibrations in the OMT approximation. The OMT approximation is shown to reproduce the fundamental features of the quantum response function including both coherence and population dynamics. PMID:23924378

  15. A Novel Numerical Algorithm for Simulation of Initiation, Propagation and Coalescence of Flaws Subject to Internal Fluid Pressure and Vertical Stress in the Framework of General Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Bi, J.; Zhou, X. P.

    2017-07-01

    A novel numerical model in the framework of General Particle Dynamics is proposed to simulate the coupling effects of the vertical stress and the internal hydraulic pressure on the stress field around the tips of the flaw as well as the propagation and coalescence of cracks. In this proposed method, interaction among discrete particles is formulated using the virtual-bond method. Fractures of the virtual bonds among particles are determined by the Hoek-Brown damage evolution law of rocks. The fractured virtual bonds can only bear the compressive and frictional behaviors between two particles, while the unbroken virtual bonds can bear the tensile, shear and compressive behaviors. Furthermore, a novel generated particle method is proposed to simulate the flow of fissure water. The numerical results show that the water pressure plays a key role in the stress fields around flaw tips as well as the propagation paths and the coalescence pattern of wing and secondary cracks.

  16. Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe

    SciTech Connect

    Liu, J.; Strzalka, J; Tronin, A; Johansson, J; Blasie, J

    2009-01-01

    We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the

  17. Vibrational spectroscopy

    Treesearch

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  18. Generalized Linear Mixed Models for Binary Data: Are Matching Results from Penalized Quasi-Likelihood and Numerical Integration Less Biased?

    PubMed Central

    Benedetti, Andrea; Platt, Robert; Atherton, Juli

    2014-01-01

    Background Over time, adaptive Gaussian Hermite quadrature (QUAD) has become the preferred method for estimating generalized linear mixed models with binary outcomes. However, penalized quasi-likelihood (PQL) is still used frequently. In this work, we systematically evaluated whether matching results from PQL and QUAD indicate less bias in estimated regression coefficients and variance parameters via simulation. Methods We performed a simulation study in which we varied the size of the data set, probability of the outcome, variance of the random effect, number of clusters and number of subjects per cluster, etc. We estimated bias in the regression coefficients, odds ratios and variance parameters as estimated via PQL and QUAD. We ascertained if similarity of estimated regression coefficients, odds ratios and variance parameters predicted less bias. Results Overall, we found that the absolute percent bias of the odds ratio estimated via PQL or QUAD increased as the PQL- and QUAD-estimated odds ratios became more discrepant, though results varied markedly depending on the characteristics of the dataset Conclusions Given how markedly results varied depending on data set characteristics, specifying a rule above which indicated biased results proved impossible. This work suggests that comparing results from generalized linear mixed models estimated via PQL and QUAD is a worthwhile exercise for regression coefficients and variance components obtained via QUAD, in situations where PQL is known to give reasonable results. PMID:24416249

  19. Stress analysis of vibrating pipelines

    NASA Astrophysics Data System (ADS)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  20. High-resolution numerical simulation of Venus atmosphere by AFES (Atmospheric general circulation model For the Earth Simulator)

    NASA Astrophysics Data System (ADS)

    Sugimoto, Norihiko; AFES project Team

    2016-10-01

    We have developed an atmospheric general circulation model (AGCM) for Venus on the basis of AFES (AGCM For the Earth Simulator) and performed a high-resolution simulation (e.g., Sugimoto et al., 2014a). The highest resolution is T639L120; 1920 times 960 horizontal grids (grid intervals are about 20 km) with 120 vertical layers (layer intervals are about 1 km). In the model, the atmosphere is dry and forced by the solar heating with the diurnal and semi-diurnal components. The infrared radiative process is simplified by adopting Newtonian cooling approximation. The temperature is relaxed to a prescribed horizontally uniform temperature distribution, in which a layer with almost neutral static stability observed in the Venus atmosphere presents. A fast zonal wind in a solid-body rotation is given as the initial state.Starting from this idealized superrotation, the model atmosphere reaches a quasi-equilibrium state within 1 Earth year and this state is stably maintained for more than 10 Earth years. The zonal-mean zonal flow with weak midlatitude jets has almost constant velocity of 120 m/s in latitudes between 45°S and 45°N at the cloud top levels, which agrees very well with observations. In the cloud layer, baroclinic waves develop continuously at midlatitudes and generate Rossby-type waves at the cloud top (Sugimoto et al., 2014b). At the polar region, warm polar vortex surrounded by a cold latitude band (cold collar) is well reproduced (Ando et al., 2016). As for horizontal kinetic energy spectra, divergent component is broadly (k > 10) larger than rotational component compared with that on Earth (Kashimura et al., in preparation). We will show recent results of the high-resolution run, e.g., small-scale gravity waves attributed to large-scale thermal tides. Sugimoto, N. et al. (2014a), Baroclinic modes in the Venus atmosphere simulated by GCM, Journal of Geophysical Research: Planets, Vol. 119, p1950-1968.Sugimoto, N. et al. (2014b), Waves in a Venus general

  1. Polarization effects in the N-bar+N{yields}{pi}+l{sup +}+l{sup -} reaction: General analysis and numerical estimations

    SciTech Connect

    Gakh, G. I.; Rekalo, A. P.; Tomasi-Gustafsson, E.; Boucher, J.; Gakh, A. G.

    2011-02-15

    A general formalism is developed to calculate the cross section and the polarization observables for the reaction N-bar+N{yields}{pi}+l{sup +}+l{sup -}. The matrix element and the observables are expressed in terms of six scalar amplitudes (complex functions of three kinematical variables) that determine the reaction dynamics. The numerical predictions are given in the frame of a particular model in the kinematical range accessible in the antiproton annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR).

  2. Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  3. Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  4. Numerical evolutions of a black hole-neutron star system in full general relativity: Head-on collision

    SciTech Connect

    Loeffler, Frank; Rezzolla, Luciano; Ansorg, Marcus

    2006-11-15

    We present the first simulations in full general relativity of the head-on collision between a neutron star and a black hole of comparable mass. These simulations are performed through the solution of the Einstein equations combined with an accurate solution of the relativistic hydrodynamics equations via high-resolution shock-capturing techniques. The initial data is obtained by following the York-Lichnerowicz conformal decomposition with the assumption of time symmetry. Unlike other relativistic studies of such systems, no limitation is set for the mass ratio between the black hole and the neutron star, nor on the position of the black hole, whose apparent horizon is entirely contained within the computational domain. The latter extends over {approx}400M and is covered with six levels of fixed mesh refinement. Concentrating on a prototypical binary system with mass ratio {approx}6, we find that although a tidal deformation is evident the neutron star is accreted promptly and entirely into the black hole. While the collision is completed before {approx}300M, the evolution is carried over up to {approx}1700M, thus providing time for the extraction of the gravitational-wave signal produced and allowing for a first estimate of the radiative efficiency of processes of this type.

  5. Numerical modeling of orbit-spin coupling accelerations in a Mars general circulation model: Implications for global dust storm activity

    NASA Astrophysics Data System (ADS)

    Mischna, Michael A.; Shirley, James H.

    2017-07-01

    We employ the MarsWRF general circulation model (GCM) to test the predictions of a new physical hypothesis: a weak coupling of the orbital and rotational angular momenta of extended bodies is predicted to give rise to cycles of intensification and relaxation of circulatory flows within atmospheres. The dynamical core of MarsWRF has been modified to include the orbit-spin coupling accelerations due to solar system dynamics for the years 1920-2030. The modified GCM is subjected to extensive testing and verification. We compare forced and unforced model outcomes for large-scale zonal and meridional flows, and for near-surface wind velocities and surface wind stresses. The predicted cycles of circulatory intensification and relaxation within the modified GCM are observed. Most remarkably, the modified GCM reproduces conditions favorable for the occurrence of perihelion-season global-scale dust storms (GDSs) on Mars in years in which such storms were observed. A strengthening of the meridional overturning circulation during the dust storm season occurs in the GCM in all recorded years with perihelion-season global-scale dust storms. The increased upwelling produced in the southern hemisphere in southern summer may facilitate the transport of dust to high altitudes in the Mars atmosphere during the dust storm season, where radiative heating may further strengthen the circulation. Significantly increased surface winds and surface wind stresses are also obtained. These may locally facilitate dust lifting from the surface. Based on comparison to the historical record, there is a strong likelihood of a perihelion-season GDS in Mars year 33 and/or Mars year 34.

  6. Good Vibrations

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes

  7. Vibration of gold nanobeam with variable thermal conductivity: state-space approach

    NASA Astrophysics Data System (ADS)

    Youssef, H. M.

    2013-10-01

    The non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate are the two significant effects in the nanoscale beam. In the present work, the solution of vibration of gold nanobeam resonator induced by thermal shock is developed in the context of generalized thermoelasticity with variable thermal conductivity. State-space and Laplace transform methods are used to determine the lateral vibration, the temperature, the displacement, the strain, the stress, and the strain-stress energy. The numerical results have been studied and represented graphically with some comparisons to stand on the effects of the variability of thermal conductivity.

  8. Optimal active vibration absorber - Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1993-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  9. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  10. Nonlinear vibration absorption for a flexible arm via a virtual vibration absorber

    NASA Astrophysics Data System (ADS)

    Bian, Yushu; Gao, Zhihui

    2017-07-01

    A semi-active vibration absorption method is put forward to attenuate nonlinear vibration of a flexible arm based on the internal resonance. To maintain the 2:1 internal resonance condition and the desirable damping characteristic, a virtual vibration absorber is suggested. It is mathematically equivalent to a vibration absorber but its frequency and damping coefficients can be readily adjusted by simple control algorithms, thereby replacing those hard-to-implement mechanical designs. Through theoretical analyses and numerical simulations, it is proven that the internal resonance can be successfully established for the flexible arm, and the vibrational energy of flexible arm can be transferred to and dissipated by the virtual vibration absorber. Finally, experimental results are presented to validate the theoretical predictions. Since the proposed method absorbs rather than suppresses vibrational energy of the primary system, it is more convenient to reduce strong vibration than conventional active vibration suppression methods based on smart material actuators with limited energy output. Furthermore, since it aims to establish an internal vibrational energy transfer channel from the primary system to the vibration absorber rather than directly respond to external excitations, it is especially applicable for attenuating nonlinear vibration excited by unpredictable excitations.

  11. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  12. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1993-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  13. Monte Carlo study of vibrational relaxation processes

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.

    1991-01-01

    A new model is proposed for the computation of vibrational nonequilibrium in the direct simulation Monte Carlo method (DSMC). This model permits level to level vibrational transitions for the first time in a Monte Carlo flowfield simulation. The model follows the Landau-Teller theory for a harmonic oscillator in which the rates of transition are related to an experimental correlation for the vibrational relaxation time. The usual method for simulating such processes in the DSMC technique applies a constant exchange probability to each collision and the vibrational energy is treated as a continuum. A comparison of these two methods is made for the flow of nitrogen over a wedge. Significant differences exist for the vibrational temperatures computed. These arise as a consequence of the incorrect application of a constant exchange probability in the old method. It is found that the numerical performances of the two vibrational relaxation models are equal.

  14. Eckart frame vibration-rotation Hamiltonians: Contravariant metric tensor

    SciTech Connect

    Pesonen, Janne

    2014-02-21

    Eckart frame is a unique embedding in the theory of molecular vibrations and rotations. It is defined by the condition that the Coriolis coupling of the reference structure of the molecule is zero for every choice of the shape coordinates. It is far from trivial to set up Eckart kinetic energy operators (KEOs), when the shape of the molecule is described by curvilinear coordinates. In order to obtain the KEO, one needs to set up the corresponding contravariant metric tensor. Here, I derive explicitly the Eckart frame rotational measuring vectors. Their inner products with themselves give the rotational elements, and their inner products with the vibrational measuring vectors (which, in the absence of constraints, are the mass-weighted gradients of the shape coordinates) give the Coriolis elements of the contravariant metric tensor. The vibrational elements are given as the inner products of the vibrational measuring vectors with themselves, and these elements do not depend on the choice of the body-frame. The present approach has the advantage that it does not depend on any particular choice of the shape coordinates, but it can be used in conjunction with all shape coordinates. Furthermore, it does not involve evaluation of covariant metric tensors, chain rules of derivation, or numerical differentiation, and it can be easily modified if there are constraints on the shape of the molecule. Both the planar and non-planar reference structures are accounted for. The present method is particular suitable for numerical work. Its computational implementation is outlined in an example, where I discuss how to evaluate vibration-rotation energies and eigenfunctions of a general N-atomic molecule, the shape of which is described by a set of local polyspherical coordinates.

  15. Reduced elbow extension torque during vibrations.

    PubMed

    Friesenbichler, Bernd; Coza, Aurel; Nigg, Benno M

    2012-08-31

    Impact sports and vibration platforms trigger vibrations within soft tissues and the skeleton. Although the long-term effects of vibrations on the body have been studied extensively, the acute effects of vibrations are little understood. This study determined the influence of acute vibrations at different frequencies and elbow angles on maximal isometric elbow extension torque and muscle activity. Vibrations were generated by a pneumatic vibrator attached to the lever of a dynamometer, and were applied on the forearm of 15 healthy female subjects. The subjects were instructed to push maximally against the lever at three different elbow angles, while extension torque and muscle activity were quantified and compared between vibration and non-vibration (control) conditions. A change in vibration frequency had no significant effects on torque and muscle activity although vibrations in general decreased the maximal extension torque relative to the control by 1.8% (±5.7%, p>0.05), 7.4% (±7.9%, p<0.01), and 5.0% (±8.2%, p<0.01) at elbow angles of 60°, 90°, and 120°, respectively. Electromyographic activity increased significantly between ∼30% and 40% in both triceps and biceps with vibrations. It is speculated that a similar increase in muscle activity between agonist and antagonist, in combination with an unequal increase in muscle moment arms about the elbow joint, limit the maximal extension torque during exposure to vibrations. This study showed that maximal extension torque decreased during vibration exposure while muscle activity increased and suggests that vibrations may be counterproductive during activities requiring maximal strength but potentially beneficial for strength training.

  16. Free vibrations of delaminated beams

    NASA Technical Reports Server (NTRS)

    Shen, M.-H. H.; Grady, J. E.

    1991-01-01

    Free vibration of laminated composite beams is studied. The effect of interply delaminations on natural frequencies and mode shapes is evaluated both analytically and experimentally. The equation of motion and associated boundary conditions are derived for the free vibration of a composite beam with a delamination of arbitrary size and location. A generalized variational principle is used to formulate the equation of motion, taking into account the interlaminar stress concentration at the crack-tips. This is accomplished by introducing a 'crack function' into the beam's compatibility relations. This function has its maximum value at the crack tip and decays exponentially in the longitudinal direction. The rate of exponential decay is determined by a least-square fit with the experimental results. The effect of coupling between longitudinal vibration and bending vibration is considered in the present study. This coupling effect is found to significantly affect the natural frequencies and mode shapes of the delaminated beam.

  17. Vibrational Control of a Nonlinear Elastic Panel

    NASA Technical Reports Server (NTRS)

    Chow, P. L.; Maestrello, L.

    1998-01-01

    The paper is concerned with the stabilization of the nonlinear panel oscillation by an active control. The control is actuated by a combination of additive and parametric vibrational forces. A general method of vibrational control is presented for stabilizing panel vibration satisfying a nonlinear beam equation. To obtain analytical results, a perturbation technique is used in the case of weak nonlinearity. Possible application to other types of problems is briefly discussed.

  18. Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function.

    PubMed

    Smeland, Olav B; Frei, Oleksandr; Kauppi, Karolina; Hill, W David; Li, Wen; Wang, Yunpeng; Krull, Florian; Bettella, Francesco; Eriksen, Jon A; Witoelar, Aree; Davies, Gail; Fan, Chun C; Thompson, Wesley K; Lam, Max; Lencz, Todd; Chen, Chi-Hua; Ueland, Torill; Jönsson, Erik G; Djurovic, Srdjan; Deary, Ian J; Dale, Anders M; Andreassen, Ole A

    2017-10-01

    Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and

  19. Meshfree natural vibration analysis of 2D structures

    NASA Astrophysics Data System (ADS)

    Kosta, Tomislav; Tsukanov, Igor

    2014-02-01

    Determination of resonance frequencies and vibration modes of mechanical structures is one of the most important tasks in the product design procedure. The main goal of this paper is to describe a pioneering application of the solution structure method (SSM) to 2D structural natural vibration analysis problems and investigate the numerical properties of the method. SSM is a meshfree method which enables construction of the solutions to the engineering problems that satisfy exactly all prescribed boundary conditions. This method is capable of using spatial meshes that do not conform to the shape of a geometric model. Instead of using the grid nodes to enforce boundary conditions, it employs distance fields to the geometric boundaries and combines them with the basis functions and prescribed boundary conditions at run time. This defines unprecedented geometric flexibility of the SSM as well as the complete automation of the solution procedure. In the paper we will explain the key points of the SSM as well as investigate the accuracy and convergence of the proposed approach by comparing our results with the ones obtained using analytical methods or traditional finite element analysis. Despite in this paper we are dealing with 2D in-plane vibrations, the proposed approach has a straightforward generalization to model vibrations of 3D structures.

  20. Optimization of a vacuum chamber for vibration measurements.

    PubMed

    Danyluk, Mike; Dhingra, Anoop

    2011-10-01

    A 200 °C high vacuum chamber has been built to improve vibration measurement sensitivity. The optimized design addresses two significant issues: (i) vibration measurements under high vacuum conditions and (ii) use of design optimization tools to reduce operating costs. A test rig consisting of a cylindrical vessel with one access port has been constructed with a welded-bellows assembly used to seal the vessel and enable vibration measurements in high vacuum that are comparable with measurements in air. The welded-bellows assembly provides a force transmissibility of 0.1 or better at 15 Hz excitation under high vacuum conditions. Numerical results based on design optimization of a larger diameter chamber are presented. The general constraints on the new design include material yield stress, chamber first natural frequency, vibration isolation performance, and forced convection heat transfer capabilities over the exterior of the vessel access ports. Operating costs of the new chamber are reduced by 50% compared to a preexisting chamber of similar size and function.

  1. Microgravity vibration isolation: Optimal preview and feedback control

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Grodsinsky, C. M.; Allaire, P. E.; Lewis, D. W.

    1992-01-01

    In order to achieve adequate low-frequency vibration isolation for certain space experiments an active control is needed, due to inherent passive-isolator limitations. Proposed here are five possible state-space models for a one-dimensional vibration isolation system with a quadratic performance index. The five models are subsets of a general set of nonhomogeneous state space equations which includes disturbance terms. An optimal control is determined, using a differential equations approach, for this class of problems. This control is expressed in terms of constant, Linear Quadratic Regulator (LQR) feedback gains and constant feedforward (preview) gains. The gains can be easily determined numerically. They result in a robust controller and offers substantial improvements over a control that uses standard LQR feedback alone.

  2. Stability of the fluid interface in a Hele-Shaw cell subjected to horizontal vibrations

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Lyubimov, D. V.; Sadilov, E. S.; Popov, D. M.

    2017-07-01

    The stability of the horizontal interface of two immiscible viscous fluids in a Hele-Shaw cell subject to gravity and horizontal vibrations is studied. The problem is reduced to the generalized Hill equation, which is solved analytically by the multiple scale method and numerically. The long-wave instability, the resonance (parametric resonance) excitation of waves at finite frequencies of vibrations (for the first three resonances), and the limit of high-frequency vibrations are studied analytically under the assumption of small amplitudes of vibrations and small viscosity. For finite amplitudes of vibrations, finite wave numbers, and finite viscosity, the study is performed numerically. The influence of the specific natural control parameters and physical parameters of the system on its instability threshold is discussed. The results provide extension to other results [J. Bouchgl, S. Aniss, and M. Souhar, Phys. Rev. E 88, 023027 (2013), 10.1103/PhysRevE.88.023027], where the authors considered a similar problem but took into account viscosity in the basic state and did not consider it in the equations for perturbations.

  3. Vibrational dynamics of DNA. I. Vibrational basis modes and couplings

    NASA Astrophysics Data System (ADS)

    Lee, Chewook; Park, Kwang-Hee; Cho, Minhaeng

    2006-09-01

    Carrying out density functional theory calculations of four DNA bases, base derivatives, Watson-Crick (WC) base pairs, and multiple-layer base pair stacks, we studied vibrational dynamics of delocalized modes with frequency ranging from 1400to1800cm-1. These modes have been found to be highly sensitive to structure fluctuation and base pair conformation of DNA. By identifying eight fundamental basis modes, it is shown that the normal modes of base pairs and multilayer base pair stacks can be described by linear combinations of these vibrational basis modes. By using the Hessian matrix reconstruction method, vibrational coupling constants between the basis modes are determined for WC base pairs and multilayer systems and are found to be most strongly affected by the hydrogen bonding interaction between bases. It is also found that the propeller twist and buckle motions do not strongly affect vibrational couplings and basis mode frequencies. Numerically simulated IR spectra of guanine-cytosine and adenine-thymine bases pairs as well as of multilayer base pair stacks are presented and described in terms of coupled basis modes. It turns out that, due to the small interlayer base-base vibrational interactions, the IR absorption spectrum of multilayer base pair system does not strongly depend on the number of base pairs.

  4. The analysis of nonstationary vibration data

    NASA Technical Reports Server (NTRS)

    Piersol, Allan G.

    1987-01-01

    The general methodology for the analysis of arbitrary nonstationary random data is reviewed. A specific parametric model, called the product model, that has applications to space vehicle launch vibration data analysis is discussed. Illustrations are given using the nonstationary launch vibration data measured on the Space Shuttle orbiter vehicle.

  5. FEMVib, an ab initio multi-dimensional solver for probing vibrational dynamics in polyatomic molecules and free radicals

    NASA Astrophysics Data System (ADS)

    Xu, Dong

    Accurate prediction of the vibrational spectra in polyatomic molecules and free radicals depends on obtaining high quality solutions to the vibrational Schrodinger equation. The quantum simple harmonic oscillator provides the traditional first approximation for modeling molecular vibrational states. Rarely does a vibrational analysis extend beyond this first approximation, and harmonic energy levels are routinely used to predict the infrared spectra and other dynamical properties of molecules. However, there are many large-amplitude molecular motions that are extremely anharmonic, including internal torsions about atom-atom single bonds, bending and stretching of weak bonds in van der Waals complexes, and isomerization along relocalization coordinates in free radicals. In these cases, the harmonic treatment provided by electronic structure quantum chemistry packages is completely inadequate. Furthermore, the anharmonicity often includes strong coupling among two or more distinct vibrational coordinates, necessitating a multi-dimensional analysis of the vibrational Schrodinger equation along the coupled coordinates. A novel ab initio solver package, FEMVib, is developed within the finite element method (FEM) framework. A mixed programming paradigm that combines C++, Fortran and Python is employed to take advantage of existing numerical libraries. FEMVib has been rigorously tested to resolve the eigenvalues and wavefunctions of hundreds of vibrational energy states to high accuracy and precision. It may be used to calculate the complete vibrational spectra of triatomic molecules or to approximate larger systems through a "relaxed" model that allows complete coupling of up to three selected vibrational coordinates. FEMVib provides physical chemists with a general, robust and accurate computational tool for molecular vibrational analysis.

  6. Nonlinear vibration of moderately thick anti-symmetric angle-ply shallow spherical shell

    NASA Astrophysics Data System (ADS)

    Chia, C. Y.; Chia, D. S.

    1992-08-01

    Equations of motion for the large-amplitude flexural vibration of an anti-symmetrically laminated angle-ply shallow spherical shell with rectangular planform are derived by use of Hamilton's principle. The effects of transverse shear and rotatory inertia are included in this study. A solution is formulated in the form of generalized double Fourier series with time-dependent coefficients and satisfies the five boundary conditions along each of simply supported edges. The Galerkin procedure furnishes an infinite system of ordinary differential equations for the time-dependent coefficients. These equations can be truncated to obtain any desired degree of accuracy. The method of harmonic balance is used for a solution. Numerical results for nonlinear free vibrations of isotropic, orthotropic and laminated shallow shells are presented graphically for various shell parameters and lamination geometries. The transverse shear effect on the shell frequency of vibration is discussed in some detail.

  7. The shift of harmonics with different initial vibrational states in the H{}_{2}^{+} molecular ion

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Pan, Xue-Fei; Xu, Tong-Tong; Liu, Xue-Shen

    2017-05-01

    Molecular high-order harmonic generation of H{}2+ and its isotopes is investigated by numerical simulations of the non-Born-Oppenheimer time-dependent Schrödinger equations. The general characteristic of the typical high-order harmonic generation (HHG) spectra for the H{}2+ molecule indicates that only the odd harmonics can be generated. Here we show that how the initial vibrational states and nuclear dynamics break down this standard characteristic, i.e. a redshift or blueshift of the harmonics appears. We investigate the effect of the initial vibrational states on the redshift or blueshift of the HHG spectrum under trapezoidal laser pulses. The ionization probability and time-frequency analysis are used to illustrate the physical mechanism of the shift of the harmonics. We also show the HHG spectra from the different isotopes of H2+ molecule with different initial vibrational states.

  8. Maneuver and vibration control of flexible manipulators using variable-speed control moment gyros

    NASA Astrophysics Data System (ADS)

    Hu, Quan; Zhang, Jingrui

    2015-08-01

    In this paper, the variable-speed control moment gyros (VS-CMGs) are adopted as actuators for vibration suppression of space flexible manipulators. They are directly mounted on the flexible links of the manipulator. Such system can be viewed as a flexible multibody system in chain topology actuated by both joint motors and VS-CMGs. We first develop a general approach for establishing the system equations of motion through Kane's method. Then, two controllers are designed for trajectory tracking and vibration suppression: one is an inverse dynamics control, whereas the other is based on the singular perturbation method. The proposed two control strategies are applied to a free-flying platform with a flexible manipulator. Sample numerical results show that the VS-CMGs can significantly suppress the induced vibration of the flexible links during the large angle maneuver.

  9. Chaotic vortex induced vibrations

    SciTech Connect

    Zhao, J.; Sheridan, J.; Leontini, J. S.; Lo Jacono, D.

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  10. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  11. In-plane vibration analysis of annular plates with arbitrary boundary conditions.

    PubMed

    Shi, Xianjie; Shi, Dongyan; Qin, Zhengrong; Wang, Qingshan

    2014-01-01

    In comparison with the out-of-plane vibrations of annular plates, far less attention has been paid to the in-plane vibrations which may also play a vital important role in affecting the sound radiation from and power flows in a built-up structure. In this investigation, a generalized Fourier series method is proposed for the in-plane vibration analysis of annular plates with arbitrary boundary conditions along each of its edges. Regardless of the boundary conditions, the in-plane displacement fields are invariantly expressed as a new form of trigonometric series expansions with a drastically improved convergence as compared with the conventional Fourier series. All the unknown expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. Unlike most of the existing studies, the presented method can be readily and universally applied to a wide spectrum of in-plane vibration problems involving different boundary conditions, varying material, and geometric properties with no need of modifying the basic functions or adapting solution procedures. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current solution for predicting the in-plane vibration characteristics of annular plates subjected to different boundary conditions.

  12. Active control of high-frequency vibration: Optimisation using the hybrid modelling method

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Langley, Robin S.

    2012-06-01

    This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time.

  13. Decoherence by coupling to internal vibrational modes

    NASA Astrophysics Data System (ADS)

    Brun, Todd A.; Mlodinow, Leonard

    2016-11-01

    We consider a composite system consisting of coupled particles, and investigate decoherence due to coupling of the center-of-mass degree of freedom to the internal vibrational degrees of freedom. For a composite system of bound particles, we show that in general such a decoherence effect exists, and leads to suppression of interference between different paths of the center-of-mass. For the special case of harmonically-bound particles moving in an external potential, we show that the coupling between the center-of-mass and internal degrees of freedom takes the form of parametric driving of the vibrational degrees of freedom, and that nontrivial coupling depends on the second derivative of the external potential. We find a solution to this parametric driving problem in one dimension for a fixed center-of-mass trajectory. We also propose a measure of compositeness, which quantifies the extent to which such a composite system cannot be approximated as a single, indivisible particle. We perform numerical simulations for a simple interference experiment, consisting of two wave packets scattering off of a square well, and show a close connection between suppression of interference and entanglement between the center-of-mass and internal degrees of freedom, which depends on the initial state of the internal mode. We also calculate the measure of compositeness for this system.

  14. Systematic vibration thermodynamic properties of bromine

    NASA Astrophysics Data System (ADS)

    Liu, G. Y.; Sun, W. G.; Liao, B. T.

    2015-11-01

    Based on the analysis of the maturity and finiteness of vibrational levels of bromine molecule in ground state and evaluating the effect on statistical computation, according to the elementary principles of quantum statistical theorem, using the full set of bromine molecular vibrational levels determined with algebra method, the statistical contribution for bromine systematical macroscopic thermodynamic properties is discussed. Thermodynamic state functions Helmholtz free energy, entropy and observable vibration heat capacity are calculated. The results show that the determination of full set of vibrational levels and maximum vibrational quantum number is the key in the correct statistical analysis of bromine systematical thermodynamic property. Algebra method results are clearly different from data of simple harmonic oscillator and the related algebra method results are no longer analytical but numerical and are superior to simple harmonic oscillator results. Compared with simple harmonic oscillator's heat capacities, the algebra method's heat capacities are more consistent with the experimental data in the given temperature range of 600-2100 K.

  15. Vibrational Properties of Hydrogen-Bonded Systems Using the Multireference Generalization to the "On-the-Fly" Electronic Structure within Quantum Wavepacket ab Initio Molecular Dynamics (QWAIMD).

    PubMed

    Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S

    2014-06-10

    agreement with experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational fundamentals and combination bands. These agree well with experiments and other theories.

  16. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  17. Optimisation of Dynamic Vibration Absorbers Over a Frequency Band

    NASA Astrophysics Data System (ADS)

    Rade, Domingos Alves; Steffen, Valder

    2000-09-01

    This paper is focused on the reduction of vibration levels of mechanical systems using dynamic vibration absorbers (DVAs). A general methodology is proposed for the optimum selection of DVA parameters so as to guarantee the efficiency of those devices over a previously selected frequency band. The presented methodology utilises a substructure coupling technique exploring frequency response functions (FRFs), which enables one to calculate the FRFs of the composite structure (primary system+DVAs), from the FRFs of the primary structure and the theoretical expressions of the FRFs of the DVAs. The FRFs of the composite structure, which are expressed as functions of the DVA parameters, are then used to define scalar performance indexes related to the vibration levels of the composite structure over the selected frequency band. These performance indexes are optimised with respect to the DVA parameters by solving a general non-linear constrained optimisation problem. The first part of the paper is devoted to the formulation of the substructure coupling method and the optimisation procedures. Numerical applications using experimentally acquired FRFs are then presented to illustrate the main features of the proposed methodology.

  18. Numerical analysis of stiffened shells of revolution. Volume 3: Users' manual for STARS-2B, 2V, shell theory automated for rotational structures, 2 (buckling, vibrations), digital computer programs

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.

    1973-01-01

    The User's manual for the shell theory automated for rotational structures (STARS) 2B and 2V (buckling, vibrations) is presented. Several features of the program are: (1) arbitrary branching of the shell meridians, (2) arbitrary boundary conditions, (3) minimum input requirements to describe a complex, practical shell of revolution structure, and (4) accurate analysis capability using a minimum number of degrees of freedom.

  19. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  20. Vibration and noise analysis of a gear transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.

    1993-01-01

    This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.

  1. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  2. ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins.

    PubMed

    Ruiz-Blanco, Yasser B; Paz, Waldo; Green, James; Marrero-Ponce, Yovani

    2015-05-16

    The exponential growth of protein structural and sequence databases is enabling multifaceted approaches to understanding the long sought sequence-structure-function relationship. Advances in computation now make it possible to apply well-established data mining and pattern recognition techniques to these data to learn models that effectively relate structure and function. However, extracting meaningful numerical descriptors of protein sequence and structure is a key issue that requires an efficient and widely available solution. We here introduce ProtDCal, a new computational software suite capable of generating tens of thousands of features considering both sequence-based and 3D-structural descriptors. We demonstrate, by means of principle component analysis and Shannon entropy tests, how ProtDCal's sequence-based descriptors provide new and more relevant information not encoded by currently available servers for sequence-based protein feature generation. The wide diversity of the 3D-structure-based features generated by ProtDCal is shown to provide additional complementary information and effectively completes its general protein encoding capability. As demonstration of the utility of ProtDCal's features, prediction models of N-linked glycosylation sites are trained and evaluated. Classification performance compares favourably with that of contemporary predictors of N-linked glycosylation sites, in spite of not using domain-specific features as input information. ProtDCal provides a friendly and cross-platform graphical user interface, developed in the Java programming language and is freely available at: http://bioinf.sce.carleton.ca/ProtDCal/ . ProtDCal introduces local and group-based encoding which enhances the diversity of the information captured by the computed features. Furthermore, we have shown that adding structure-based descriptors contributes non-redundant additional information to the features-based characterization of polypeptide systems. This

  3. General anisotropic doubly-curved shell theory: A differential quadrature solution for free vibrations of shells and panels of revolution with a free-form meridian

    NASA Astrophysics Data System (ADS)

    Tornabene, Francesco; Liverani, Alfredo; Caligiana, Gianni

    2012-10-01

    The Generalized Differential Quadrature (GDQ) method is applied to study the dynamic behavior of anisotropic doubly-curved shells and panels of revolution with a free-form meridian. The First-order Shear Deformation Theory (FSDT) is used to analyze the above mentioned moderately thick structural elements. In order to include the effect of the initial curvature in the evaluation of the stress resultants three different approaches, specifically Qatu approach, Toorani-Lakis approach and Reissner-Mindlin approach, are considered and compared. An improvement of the Classical Reissner-Mindlin Theory (CRMT) using a different kinematical model is considered. By so doing a generalization of the theory of anisotropic doubly-curved shells and panels of revolution is proposed. Four different anisotropic shell theories, namely General First-order Shear Deformation Theory by Qatu (GFSDTQ), General First-order Shear Deformation Theory by Toorani-Lakis (GFSDTTL), General First-order Shear Deformation Theory by Reissner-Mindlin (GFSDTRM) and Classical Reissner-Mindlin Theory (CRMT), are compared in order to show the differences and the accuracy of these theories. The solution is given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. Results are obtained taking the meridian and circumferential coordinates into account, without using the Fourier modal expansion methodology. Furthermore, GDQ results are compared with those obtained by using commercial programs such as Abaqus, Ansys, Nastran, Straus and Pro/Mechanica. Very good agreement is observed.

  4. Aeolic vibration of aerial electricity transmission cables

    NASA Astrophysics Data System (ADS)

    Avila, A.; Rodriguez-Vera, Ramon; Rayas, Juan A.; Barrientos, Bernardino

    2005-02-01

    A feasibility study for amplitude and frequency vibration measurement in aerial electricity transmission cable has been made. This study was carried out incorporating a fringe projection method for the experimental part and horizontal taut string model for theoretical one. However, this kind of model ignores some inherent properties such as cable sag and cable inclination. Then, this work reports advances on aeolic vibration considering real cables. Catenary and sag are considered in our theoretical model in such a way that an optical theodolite for measuring has been used. Preliminary measurements of the catenary as well as numerical simulation of a sagged cable vibration are given.

  5. Vibration modeling and supression in tennis racquets.

    SciTech Connect

    Farrar, C. R.; Buechler, M. A.; Espino, Luis; Thompson, G. A.

    2003-01-01

    The size of the 'sweet spot' is one measure of tennis racquet performance. In terms of vibration, the sweet spot is determined by the placement of nodal lines across the racquet head. In this studx the vibrational characteristics of a tennis racquet are explorod to discover the size and location of the sweet spot. A numerical model of the racquet is developed using finite element analysis and the model is verified using the results from an experimental modal analysis. The affects of string tension on the racquet's sweet spot and mode shapes are then quantified. An investigation is also carried out to determine how add-on vibrational datnpers affect the sweet spot.

  6. Mass and position determination of an accreted particle from the vibration of a beam-based nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Ma, Shujun; Xiu, Qiang

    2017-02-01

    We present a generalized theoretical analysis of the vibration of a micro/nano bridge resonator with a particle at an arbitrary location by considering the combined effect of the beam stiffness and string tension in the resonator. By combining resonant frequencies of at most three consecutive symmetric vibration modes, the developed model can unambiguously resolve the particle mass and position. The methodology is verified using published results. The finding is further validated numerically by finite element modeling using a microbridge with and without an added particle, which proves that the method resolves the particle mass and position with high accuracy.

  7. Numerical integration of gravitational field for general three-dimensional objects and its application to gravitational study of grand design spiral arm structure

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2016-12-01

    We present a method to integrate the gravitational field for general three-dimensional objects. By adopting the spherical polar coordinates centred at the evaluation point as the integration variables, we numerically compute the volume integral representation of the gravitational potential and of the acceleration vector. The variable transformation completely removes the algebraic singularities of the original integrals. The comparison with exact solutions reveals around 15 digits accuracy of the new method. Meanwhile, the six digit accuracy of the integrated gravitational field is realized by around 106 evaluations of the integrand per evaluation point, which costs at most a few seconds at a PC with Intel Core i7-4600U CPU running at 2.10 GHz clock. By using the new method, we show the gravitational field of a grand design spiral arm structure as an example. The computed gravitational field shows not only spiral shaped details but also a global feature composed of a thick oblate spheroid and a thin disc. The developed method is directly applicable to the electromagnetic field computation by means of Coulomb's law, the Biot-Savart law, and their retarded extensions. Sample FORTRAN 90 programs and test results are electronically available.

  8. LSENS: A General Chemical Kinetics and Sensitivity Analysis Code for homogeneous gas-phase reactions. Part 1: Theory and numerical solution procedures

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.

  9. Suppression of rotary unbalance spin-up vibration using passive and semi-active vibration absorbers

    NASA Astrophysics Data System (ADS)

    Begg, Colin Duncan

    -up rates. As the spin-up rate increases, differences grow progressively larger. At very high spin-up rates, the maximum vibration amplitude of the optimal system could be approximately three-quarters of that of the FRF-Shaping design. Piezoelectric absorbers with inductive-resistive shunts are evaluated to determine their viability for dual passive absorber applications. Experimental investigations are conducted to validate general findings from the model-based simulation study of dual absorbers. The physical structures of the mechanical and piezoelectric absorber systems are found to be fundamentally different. However, despite more complex basic parameter definitions and a less straightforward design process, the piezoelectric absorbers are found to provide vibration suppression comparable to that of the mechanical absorbers. Finally, semi-active, variable stiffness control of a single DVA is examined. An existing open-loop control scheme (Walsh and Lamancusa, 1992) prescribes a multiple-stepped, optimal absorber stiffness profile. The optimal stiffness profile is determined using model-based simulation and a multivariable feasible direction search. The complexity of the scheme and the associated computation cost prompted a search for a simpler control method. From insights gained in the parametric study of the dual passive absorbers in this thesis, a new, single variable stiffness control law is developed. This law, which requires the definition of only a single variable and a simple numerical line search to determine the optimal parameter, is found to be highly effective across a broad range of spin-up rates. The reduced computational effort and simplification of implementation make the new scheme an attractive alternative for suppressing spin-up vibration with semi-active DVA control.

  10. Radial vibrations of BPS skyrmions

    NASA Astrophysics Data System (ADS)

    Adam, C.; Haberichter, M.; Romanczukiewicz, T.; Wereszczynski, A.

    2016-11-01

    We study radial vibrations of spherically symmetric Skyrmions in the Bogomol'nyi-Prasad-Sommerfield Skyrme model. Concretely, we numerically solve the linearized field equations for small fluctuations in a Skyrmion background, both for linearly stable oscillations and for (unstable) resonances. This is complemented by numerical solutions of the full nonlinear system, which confirm all the results of the linear analysis. In all cases, the resulting fundamental excitation provides a rather accurate value for the Roper resonance, supporting the hypothesis that the Bogomol'nyi-Prasad-Sommerfield Skyrme model already gives a reasonable approximate description of this resonance. Furthermore, for many potentials additional higher resonances appear, again in agreement with known experimental results.

  11. Vibrational force constants for acetaldehyde

    NASA Astrophysics Data System (ADS)

    Nikolova, B.

    1990-05-01

    The vibrational force field of ethanal (acetaldehyde), CH 3CHO, is refined by using procedures with differential increments for the force constants (Commun. Dep. Chem., Bulg. Acad. Sci., 21/3 (1988) 433). The characteristics general valence force constants of the high-dimensional symmetry classes of ethanal, A' of tenth and A″ of fifth order, are determined for the experimental assignment of bands. The low barrier to hindered internal rotation about the single carbon—carbon bond is quantitatively estimated on the grounds of normal vibrational analysis.

  12. Tunneling ionization of vibrationally excited nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Zon, Boris A.

    2015-09-01

    Ionization of molecular nitrogen plays an important role in the process of light-filament formation in air. In the present paper we theoretically investigated tunneling ionization of the valence 3 σg and 1 πu shells in a N2 molecule using a strong near-infrared laser field. This research is based on our previously proposed theory of anti-Stokes-enhanced tunneling ionization with quantum accounting for the vibrationally excited states of the molecules [A. S. Kornev and B. A. Zon, Phys. Rev. A 86, 043401 (2012), 10.1103/PhysRevA.86.043401]. We demonstrated that if the N2 molecule is ionized from the ground vibrational state, then the contribution of the 1 πu orbital is 0.5%. In contrast, for vibrationally excited states with a certain angle between the light polarization vector and the molecule axis, both shells can compete and even reverse their contributions due to the anti-Stokes mechanism. The structure constants of molecular orbitals are extracted from numerical solutions to the Hartree-Fock equations. This approach correctly takes into account the exchange interaction. Quantum consideration of vibrational motion results in the occurrence of the critical vibrational state, the tunneling ionization from which has the maximum rate. The numbers of the critical vibrational states are different for different valence shells. In addition, quantum description of vibrations changes the rate of ionization from the ground vibrational state by 20%-40% in comparison with the quasiclassical results.

  13. Toward structurally integrated locally resonant metamaterials for vibration attenuation

    NASA Astrophysics Data System (ADS)

    Schmied, Jascha U.; Sugino, Christopher; Bergamini, Andrea; Ermanni, Paolo; Ruzzene, Massimo; Erturk, Alper

    2017-04-01

    In this contribution, we explore the use of locally resonant metamaterials for multi-functional structural load- bearing concepts using analytical, numerical, and experimental techniques. Locally resonant metamaterials exhibit bandgaps at wavelengths much larger than the lattice dimension. This is a promising feature for low- frequency vibration attenuation. The presented work aims to investigate highly integrated structural concepts and experimentally validated prototypes for vibration reduction in load-bearing applications. The goal is to explore and extend the design space of lightweight structural systems, by designing multi-functional periodic structural elements, preserving structural stiffness while concurrently enabling sufficiently wideband damping performance over a target frequency range of interest. Following a generalized theoretical modeling framework for bandgap design and analysis in finite structures, the focus is placed on the design, fabrication, and analysis of a load-carrying frame development with internally resonant components. Finite-element modeling is employed to design and analyze the frequency response of the frame and simplified analytical solution is compared with this numerical solution. Experimental validations are presented for a 3D-printed prototype. The effects of various parameters are reported both based on numerical and experimental findings.

  14. Study of the vibration of bulkhead-stiffened cylindrical shells by laser-based methods

    NASA Astrophysics Data System (ADS)

    Zhu, Ninghui

    The first part of this dissertation work deals with an experimental study of the vibration behavior of bulkhead stiffened cylindrical shells by using laser-based vibration measurement methods. Holographic interferometry and laser speckle photography are first demonstrated on revealing the dynamic behavior of a 22 ft long cylindrical shell. These methods are thereafter further explored to study the vibration characteristic of cylindrical shells with different stiffeners such as a full bulkhead or a partial bulkhead. Many experimentally obtained holograms and specklegrams reveal interesting features of the vibration of bulkhead stiffened cylindrical shells. The experimentally obtained results are compared with those obtained from a finite element model developed by General Dynamic Electric Boat Division, and the finite element model is generally validated. Mode localization theory is used to explain some interesting findings in experiments and the reason of some discrepancies between the finite element analysis and experiment results. The presence of irregularities in a weakly coupled structure such as a bulkhead-stiffened cylindrical shell is shown to be able to localize the modes of vibration and inhibit the propagation of vibration within the shell. A numerical simulation based on the finite element modal analysis indicates the validation of this explanation of the experimental findings. Thereafter, the eigensolutions of disordered, plate-stiffened cylindrical shell stiffened are derived by the use of receptance method. Numerical calculations are thereafter performed based upon this model and indeed reveal the exist of localized vibration in this kind of structure. This analytical study provides physical insights into the mode localization phenomenon in stiffened cylindrical shell type of structures from a more systematic manner. The conditions and the effect of mode localization on natural frequencies and mode shapes of cylindrical shell structure are also

  15. Restudy of the Ground Vibrational State of Hydrazine Using the Generalized IAM-like Treatment for the Amino-Wagging Tunneling Motion.

    PubMed

    Pyka, Jan; Ohashi, Nobukimi

    2001-05-01

    The amino-wagging tunneling process in hydrazine was treated using the generalized IAM-like method developed by Hougen and Coudert, and Hamiltonian matrix elements were derived for each symmetry species in the combined group-theoretical and IAM-like treatment. Ground state microwave absorption transition data of hydrazine were least squares analyzed again in this treatment to determine axis switching angles for the amino-wagging tunneling process. Copyright 2001 Academic Press.

  16. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  17. Surface Acoustic Wave (SAW) Vibration Sensors

    PubMed Central

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  18. Eckart ro-vibrational Hamiltonians via the gateway Hamilton operator: Theory and practice

    NASA Astrophysics Data System (ADS)

    Szalay, Viktor

    2017-03-01

    Recently, a general expression for Eckart-frame Hamilton operators has been obtained by the gateway Hamiltonian method [V. Szalay, J. Chem. Phys. 142, 174107 (2015) and V. Szalay, J. Chem. Phys. 143, 064104 (2015)]. The kinetic energy operator in this general Hamiltonian is nearly identical to that of the Eckart-Watson operator even when curvilinear vibrational coordinates are employed. Its different realizations correspond to different methods of calculating Eckart displacements. There are at least two different methods for calculating such displacements: rotation and projection. In this communication, the application of Eckart Hamiltonian operators constructed by rotation and projection, respectively, is numerically demonstrated in calculating vibrational energy levels. The numerical examples confirm that there is no need for rotation to construct an Eckart ro-vibrational Hamiltonian. The application of the gateway method is advantageous even when rotation is used since it obviates the need for differentiation of the matrix rotating into the Eckart frame. Simple geometrical arguments explain that there are infinitely many different methods for calculating Eckart displacements. The geometrical picture also suggests that a unique Eckart displacement vector may be defined as the shortest (mass-weighted) Eckart displacement vector among Eckart displacement vectors corresponding to configurations related by rotation. Its length, as shown analytically and demonstrated by numerical examples, is equal to or less than that of the Eckart displacement vector one can obtain by rotation to the Eckart frame.

  19. Dynamic vibration absorbers for vibration control within a frequency band

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Li, Deyu; Cheng, Li

    2011-04-01

    The use of dynamic vibration absorbers to control the vibration of a structure in both narrow and broadbands is discussed in this paper. As a benchmark problem, a plate incorporating multiple vibration absorbers is formulated, leading to an analytical solution when the number of absorbers yields one. Using this analytical solution, control mechanisms of the vibration absorber in different frequency bandwidths are studied; the coupling properties due to the introduction of the absorber into the host structure are analyzed; and the control performance of the absorber in different control bandwidths is examined with respect to its damping and location. It is found that the interaction between the plate and the absorber by means of the reaction force from the absorber plays a dominant role in a narrow band control, while in a relatively broadband control the dissipation by the absorber damping governs the control performance. When control bandwidth further enlarges, the optimal locations of the absorbers are not only affected by the targeted mode, but also by the other plate modes. These locations need to be determined after establishing a trade-off between the targeted mode and other modes involved in the coupling. Finally, numerical findings are assessed based on a simply-supported plate and a fair agreement between the predicted and measured results is obtained.

  20. Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. II. Numerical simulations, spectral entropy, and correlation times.

    PubMed

    Steyn-Ross, D A; Steyn-Ross, M L; Wilcocks, L C; Sleigh, J W

    2001-07-01

    In our two recent papers [M.L. Steyn-Ross et al., Phys. Rev. E 60, 7299 (1999); 64, 011917 (2001)] we presented clinical evidence for a general anesthetic-induced phase change in the cerebral cortex, and showed how the significant features of the cortical phase change (biphasic power surge, spectral energy redistribution, "heat capacity" divergence), could be explained using a stochastic single-macrocolumn model of the cortex. The model predictions were based on rather strong "adiabatic" assumptions which assert that the mean-field excitatory and inhibitory macrocolumn voltages are "slow" variables whose equilibration times are much longer than those of the input "currents" that drive the macrocolumn. In the present paper we test the adiabatic assumption by running numerical simulations of the stochastic differential equations. These simulations confirm the number and nature of the steady-state solutions, the growth of fluctuation power at transition, and the redistribution of spectral energy towards lower frequencies. We use spectral entropy to quantify these changes in the power spectral density, and to show that the spectral entropy should decrease markedly at the point of transition. This prediction agrees with recent clinical findings by Viertiö-Oja and colleagues [J. Clinical Monitoring Computing 16, 60 (2000)]. Our modeling work shows that there is an inverse relationship between spectral entropy H and correlation time T of the soma-voltage fluctuations: H inversely proportional to (ln T). In a theoretical analysis we prove that this proportionality becomes exact for an ideal Lorentzian process. These findings suggest that by monitoring the changes in EEG correlation time, it should be possible to track changes in the state of patient consciousness.

  1. Vibration for Pain Reduction in a Plastic Surgery Clinic.

    PubMed

    Eichhorn, Mitchell George; Karadsheh, Murad Jehad; Krebiehl, Johanna Ruth; Ford, Dawn Marie; Ford, Ronald D

    2016-01-01

    Patients can experience significant pain during routine procedures in the plastic surgery clinic. Methods for clinical pain reduction are often impractical, time-consuming, or ineffective. Vibration is a safe, inexpensive, and highly applicable modality for pain reduction that can be readily utilized for a wide variety of procedures. This study evaluated the use of vibration as a viable pain-reduction strategy in the clinical plastic surgery setting. Patients requiring at least 2 consecutive procedures that are considered painful were enrolled in the study. These included injections, staple removal, and suture removal. In the same patient, one half of the procedures were performed without vibration and the other half with vibration. After completing the procedures, the patients rated their pain with vibration and without vibration. The patient and the researcher also described the experience with a short questionnaire. Twenty-eight patients were enrolled in the study. Patients reported significantly less pain on the Numeric Rating Scale pain scale when vibration was used compared with the control group (p < .001). The average pain score was 3.46 without vibration and 1.93 with vibration, and vibration with injections resulted in the greatest improvement. Eighty-six percent of the patients claimed that vibration significantly reduced their pain. Vibration is an effective method of pain reduction. It significantly reduces the pain experienced by patients during minor office procedures. Given its practicality and ease of use, it is a welcome tool in the plastic surgery clinic.

  2. Interactive numerals

    PubMed Central

    2017-01-01

    Although Arabic numerals (like ‘2016’ and ‘3.14’) are ubiquitous, we show that in interactive computer applications they are often misleading and surprisingly unreliable. We introduce interactive numerals as a new concept and show, like Roman numerals and Arabic numerals, interactive numerals introduce another way of using and thinking about numbers. Properly understanding interactive numerals is essential for all computer applications that involve numerical data entered by users, including finance, medicine, aviation and science. PMID:28484609

  3. Vibration driven random walk in a Chladni experiment

    NASA Astrophysics Data System (ADS)

    Grabec, Igor

    2017-01-01

    Drifting of sand particles bouncing on a vibrating membrane of a Chladni experiment is characterized statistically. Records of trajectories reveal that bounces are circularly distributed and random. The mean length of their horizontal displacement is approximately proportional to the vibration amplitude above the critical level and amounts about one fourth of the corresponding bounce height. For the description of horizontal drifting of particles a model of vibration driven random walk is proposed that yields a good agreement between experimental and numerically simulated data.

  4. Non-Linear Vibration Characteristics of Clamped Laminated Shallow Shells

    NASA Astrophysics Data System (ADS)

    ABE, A.; KOBAYASHI, Y.; YAMADA, G.

    2000-07-01

    This paper examines non-linear free vibration characteristics of first and second vibration modes of laminated shallow shells with rigidly clamped edges. Non-linear equations of motion for the shells based on the first order shear deformation and classical shell theories are derived by means of Hamilton's principle. We apply Galerkin's procedure to the equations of motion in which eigenvectors for first and second modes of linear vibration obtained by the Ritz method are employed as trial functions. Then simultaneous non-linear ordinary differential equations are derived in terms of amplitudes of the first and second vibration modes. Backbone curves for the first and second vibration modes are solved numerically by the Gauss-Legendre integration method and the shooting method respectively. The effects of lamination sequences and transverse shear deformation on the behavior are discussed. It is also shown that the motion of the first vibration mode affects the response for the second vibration mode.

  5. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates

    NASA Astrophysics Data System (ADS)

    Ebrahimy, Farzad; Hosseini, S. Hamed S.

    2016-10-01

    The nonlinear electroelastic vibration behavior of viscoelastic nanoplates is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the vibration analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small-scale effects, van der Waals interaction, Winkler and Pasternak elastic coefficients, the viscidity and aspect ratio of the nanoplate on its nonlinear vibrational characteristics. It is explicitly shown that the electroelastic vibration behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates which are fundamental elements in nanoelectromechanical systems.

  6. Analytic calculations of anharmonic infrared and Raman vibrational spectra.

    PubMed

    Cornaton, Yann; Ringholm, Magnus; Louant, Orian; Ruud, Kenneth

    2016-02-07

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives-that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used.

  7. Analytic calculations of anharmonic infrared and Raman vibrational spectra

    PubMed Central

    Louant, Orian; Ruud, Kenneth

    2016-01-01

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673

  8. Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration

    NASA Astrophysics Data System (ADS)

    Zhou, D. F.; Li, J.; Hansen, C. H.

    2011-11-01

    Track-induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic balance method is employed to investigate the stability and amplitude of the self-excited vibration, which provides an explanation of the phenomenon that track-induced self-excited vibration generally occurs at a specified amplitude and frequency. To eliminate the self-excited vibration, an improved LMS (Least Mean Square) cancellation algorithm with phase correction (C-LMS) is employed. The harmonic balance analysis shows that the C-LMS cancellation algorithm can completely suppress the self-excited vibration. To achieve adaptive cancellation, a frequency estimator similar to the tuner of a TV receiver is employed to provide the C-LMS algorithm with a roughly estimated reference frequency. Numerical simulation and experiments undertaken on the CMS-04 vehicle show that the proposed adaptive C-LMS algorithm can effectively eliminate the self-excited vibration over a wide frequency range, and that the robustness of the algorithm suggests excellent potential for application to EMS maglev systems.

  9. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  10. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  11. INS3D - NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL GENERALIZED CURVILINEAR COORDINATES (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Kwak, D.

    1994-01-01

    INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far

  12. INS3D - NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL GENERALIZED CURVILINEAR COORDINATES (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    Biyabani, S. R.

    1994-01-01

    INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far

  13. The spectrum of vibration modes in soft opals.

    PubMed

    Cheng, W; Wang, J J; Jonas, U; Steffen, W; Fytas, G; Penciu, R S; Economou, E N

    2005-09-22

    Numerous vibrational modes of spherical submicrometer particles in fabricated soft opals are experimentally detected by Brillouin light scattering and theoretically identified by their spherical harmonics by means of single-phonon scattering-cross-section calculations. The particle size polydispersity is reflected in the line shape of the low-frequency modes, whereas lattice vibrations are probably responsible for the observed overdamped transverse mode.

  14. Magnetically levitated autoparametric broadband vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Kurmann, L.; Jia, Y.; Manoli, Y.; Woias, P.

    2016-11-01

    Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation.

  15. Hermetically sealed vibration damper

    NASA Technical Reports Server (NTRS)

    Wheatley, D. G.

    1969-01-01

    Simple fluidic vibration damper for installation at each pivotal mounting between gimbals isolates inertial measuring units from external vibration and other disruptive forces. Installation between each of the three gimbal axes can dampen vibration and shock in any direction while permitting free rotation of the gimbals.

  16. Tunable Passive Vibration Suppressor

    NASA Technical Reports Server (NTRS)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  17. Vibration-translation energy transfer in vibrationally excited diatomic molecules. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.

  18. Broadband vibration energy harvester utilizing three out-of-plane modes of one vibrating body

    NASA Astrophysics Data System (ADS)

    Park, Shi-Baek; Jang, Seon-Jun; Kim, In-Ho; Choi, Yong Je

    2017-10-01

    In this paper, we introduce the concept, design equation, and realization of a broadband electromagnetic vibrational energy harvester. The spatial vibrating system in the proposed harvester is arranged to have three out-of-plane vibration modes. We devise the design method for its three natural frequencies and accompanying modes and apply it to the broadband energy harvesting by locating three frequencies close to each other. The numerical simulation and the experimental results show that it satisfies the designated frequencies as well as the enhanced bandwidth for power generation.

  19. C-130J Human Vibration

    DTIC Science & Technology

    2005-08-01

    Organisation DSTO-TR-1756 ABSTRACT Human exposure to whole - body vibration (WBV) has been associated with a variety of changes in health...1.2.1 Whole - body Vibration (WBV) ................................................................... 3 1.2.2 Local vibration ...amplitude transmissibility VDV vibration dose value VWF vibration -induced white finger WBV whole body vibration DSTO-TR-1756 1 1. Introduction

  20. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  1. On the non-linear vibrations of a projectile

    NASA Astrophysics Data System (ADS)

    Rath, P. C.; Sharma, S. M.

    1981-08-01

    The Nonlinear Magnus effect on the nutational oscillations of a missile has been studied. In particular the existence of self-sustained vibrations has been proved. A numerical method is suggested to obtain the limit cycles wherever they exist.

  2. [Occupational therapy for work-related damage induced by mechanical vibration].

    PubMed

    Foti, C; Ciocchetti, E; Antignani, E; Pitruzzella, M; Laurini, A

    2010-01-01

    Vibrations are defined as repeated oscillatory movements of a body; they can be transmitted by contact to humans. From the point of view of physics, vibrations can be differentiated on the basis of frequency, wavelength, amplitude of the oscillation, velocity and acceleration. As far as concerns occupational hazards, two risk factors have been identified: the first involves low frequency vibrations (vehicle drivers), while the second involves high frequency vibrations (manual percussion tools). The transmission of vibration energy can be localized or generalized. Tertiary prevention of exposure to vibrations is based on the use of anti-vibration gloves (for vibrations of the hand and arm) and on anti-vibration shoes (for vibrations of the whole body). The damage caused by vibrations is due to reduced blood circulation and mechanical stimulation in the joints exposed.

  3. The nonlinear piezoelectric tuned vibration absorber

    NASA Astrophysics Data System (ADS)

    Soltani, P.; Kerschen, G.

    2015-07-01

    This paper proposes a piezoelectric vibration absorber, termed the nonlinear piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is designed according to a principle of similarity, i.e., the NPTVA should be an electrical analog of the nonlinear host system. Analytical formulas for the NPTVA parameters are derived using the homotopy perturbation method. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning rule is developed for piezoelectric vibration absorbers.

  4. Direct simulation with vibration-dissociation coupling

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Hassan, H. A.

    1992-01-01

    The majority of implementations of the Direct Simulation Monte Carlo (DSMC) method of Bird do not account for vibration-dissociation coupling. Haas and Boyd have proposed the vibrationally-favored dissociation model to accomplish this task. This model requires measurements of induction distance to determine model constants. A more general expression has been derived that does not require any experimental input. The model is used to calculate one-dimensional shock waves in nitrogen and the flow past a lunar transfer vehicle (LTV). For the conditions considered in the simulation, the influence of vibration-dissociation coupling on heat transfer in the stagnation region of the LTV can be significant.

  5. Characteristics of steady vibration in a rotating hub-beam system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  6. Prediction of vibrations induced by underground railway traffic in Beijing

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Liu, W. F.; Degrande, G.; Lombaert, G.; Liu, W. N.

    2008-02-01

    This paper examines the problem of subway induced vibrations on line 4 of Beijing metro, which is currently under construction and is planned to pass in close proximity of the Physics Laboratory of Beijing University. The laboratory has a lot of equipment that is very sensitive to traffic induced vibrations and future operation of metro line 4 is a matter of concern. Hence, it is important to study the influence of subway induced vibrations inside the laboratory and to propose a viable solution to mitigate the vibrations. In this paper, the tunnel north of Chengfulu station is modelled using a coupled periodic FE-BE model and the free-field response due to moving trains is predicted. In addition, vibration measurements have been performed on the site of the Physics Laboratory to estimate the existing vibration levels due to road traffic. The predicted and measured vibrations are superimposed to assess the vibrations due to the combined effect of road and railway traffic in the vicinity of the Physics Laboratory. Apart from the numerical investigations, vibration measurements have also been performed on a similar site at line 1 of Beijing metro to substantiate the estimated results on metro line 4. Finally, it is studied how the vibrations can be controlled using a floating slab track, which is widely used as an effective measure of vibration isolation in tunnels. The efficiency of a 7.9 Hz floating slab track as a vibration countermeasure is assessed in this paper. This study demonstrates the applicability of the numerical model for the relevant assessment of subway induced vibrations and its use to study the performance of different track structures in the tunnel.

  7. Anti-vibration gloves?

    PubMed

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered.

  8. Random vibration and reliability of composite structures

    NASA Astrophysics Data System (ADS)

    Cederbaum, Gabriel; Elishakoff, Isaac; Aboudi, Jacob; Librescu, Liviu

    A presentation is given of a wide spectrum of problems related to the random response and the reliability of composite structures. The general topics addressed include: random vibration of laminated composite plates, dynamic response of moderately thick laminated composite shells to random excitation, response of laminated plates to nonstationary random excitation, reliability of composite laminated plates, micromechanics of fiber-reinforced composites, random vibration of viscoelastic laminated plates, reliability of composites based on micromechanically predicted strength and fatigue criteria.

  9. Slew maneuver control of flexible spacecraft for vibration suppression

    NASA Astrophysics Data System (ADS)

    Okubo, H.

    2017-03-01

    This paper presents the input shaping technique for reducing the vibrations of flexible structures under attitude control inputs applied to the flexible spacecraft. The input shaping profile is investigated for the effective suppression of transient vibrations of modal responses. It is applied to the input commands to minimize the residual vibrations and suppress the overshoot of the modal responses. The results of numerical simulations, using a simple dynamic model of a flexible spacecraft, show that the input shaping technique is useful for suppressing the residual vibrations caused by attitude maneuvers.

  10. Application of impact dampers in vibration control of flexible structures

    NASA Technical Reports Server (NTRS)

    Akl, Fred A.; Butt, Aamir S.

    1995-01-01

    Impact dampers belong to the category of passive vibration devices used to attenuate the vibration of discrete and continuous systems. An impact damper generally consists of a mass which is allowed to travel freely between two defined stops. Under the right conditions, the vibration of the structure to which the impact damper is attached will cause the mass of the impact damper to strike the structure. Previous analytical and experimental research work on the effect of impact dampers in attenuating the vibration of discrete and continuous systems have demonstrated their effectiveness. It has been shown in this study that impact dampers can increase the intrinsic damping of a lightly-damped flexible structure. The test structure consists of a slender flexible beam supported by a pin-type support at one end and supported by a linear helical flexible spring at another location. Sinusoidal excitation spanning the first three natural frequencies was applied in the horizontal plane. The orientation of the excitation and the test structure in the horizontal plane minimizes the effect of gravity on the behavior of the test structure. The excitation was applied using a linear sine sweep technique. The span of the test structure, the mass of the impact damper, the distance of travel, and the location of the impact damper along the span of the test structure were varied. The damping ratio are estimated for sixty test configurations. The results show that the impact damper significantly increases the damping ratio of the test structure. Statistical analysis of the results using the method of multiple linear regression indicates that a reasonable fit has been accomplished. It is concluded that additional experimental analysis of flexible structures in microgravity environment is needed in order to achieve a better understanding of the behavior of impact damper under conditions of microgravity. Numerical solution of the behavior of flexible structures equipped with impact

  11. Eggshell Cutter Using Ultrasonic Vibration

    NASA Astrophysics Data System (ADS)

    Miura, Hikaru

    2003-05-01

    An eggshell cutting apparatus which utilizes ultrasonic vibration was developed, replacing the conventional apparatus which uses an air cutter, to cut eggshells at the blunt end of eggs. Two ultrasonic vibration sources were used: one with longitudinal vibration only and the other with torsional vibration plus longitudinal vibration. Eggshell cutting experiments using these vibration sources were conducted. The eggshell cutting time sharply decreased with increasing longitudinal vibration amplitude as well as increasing input power. When the source with torsional vibration plus longitudinal vibration was used and the amplitude of longitudinal vibration was 12 μm or less, the torsional vibration was effective for cutting eggshells. Furthermore, at the same input power, the eggshell cutting time by the source with longitudinal vibration only was shorter than that by the source with torsional vibration plus longitudinal vibration. When an egg was cut using the apparatus, there was essentially no cutting noise and the cut surface was smooth.

  12. Vibrations of Bladed Disk Assemblies

    DTIC Science & Technology

    1991-03-29

    OF PI"iPONMING ONGANIZATION W OFFICE SYMSOL 7a. NAPAG d1rmoNiTo.iNG OAGANIZATION Purdue Research Foundation LOOAGSS IC41Y. Staff .A&R ZIP Code) 7b...8217 PRF grant #670-1667. The objective of the proposed research was to gain a fundamental understanding of how and why periodically configured mechanical...bladed-disk research literature, numerical studies which show that uneven amplitudes of vibration in perturbed cyclic systems can arise both under strong

  13. Thermal Vibrational Convection

    NASA Astrophysics Data System (ADS)

    Gershuni, G. Z.; Lyubimov, D. V.

    1998-08-01

    Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.

  14. Active vibration isolation using decentralized velocity feedback control

    NASA Astrophysics Data System (ADS)

    Brennan, Michael J.; Elliott, Stephen J.; Huang, X.

    2003-03-01

    Isolating a piece of delicate equipment from the vibration of a base structure is of practical importance in a number of engineering fields. Examples are the isolation of instrument boxes in aeroplane and the isolation of telescopes and antennas in satellites. In the majority of cases, the base is flexible and vibrates with an upredictable waveform which has a broadband spectrum. The active isolation of a vibration-sensitive equipment structure from a vibrating base is studied in this paper. Passive anti-vibration mounts are widely used to support the equipment and protect it from severe base vibration. However, conventional passive mounts suffer from an inherent trade-off between high frequency isolation and amplification of vibration at the fundamental mounted resonance frequency. General the best isolation performance is achieved by using an active system in combination with a passive mount, where the fundamental resonance can be actively controlled without reducing the high frequency performance.

  15. Vibration analysis of composite laminate plate excited by piezoelectric actuators.

    PubMed

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-03-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control.

  16. Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators

    PubMed Central

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121

  17. Vibrational nonequilibrium effects on diatomic dissociation rates

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1993-01-01

    The collision-induced dissociation rate of diatomic molecules from a ladder of rotational and anharmonic vibrational states is developed, and the correction for vibrational nonequilibrium is considered. The result is similar to an analytic correction derived by Hammerling et al. (1959) for harmonic oscillators. An empirical correction algorithm suggested by Park (1987, 1990) gives similar results when vibrational temperature is comparable to kinetic temperature but underestimates the dissociation rate when vibrational temperature is small compared with the kinetic temperature. This algorithm uses an effective temperature in the experimentally determined Arrhenius expression for the rate coefficient, which is a weighted average of the vibrational and kinetic temperature, whereas theory indicates that kinetic temperature should appear only in the exponential term of the Arrhenius expression. Nevertheless, an effective temperature can always be found that will numerically duplicate the proper rate coefficient at any given condition, but a constant weighting factor cannot be expected to provide this. However, the algorithm can he adjusted to give reasonable results over a range of conditions if the geometric weighting factor is taken to be a simple linear function of the ratio of vibrational to kinetic temperature in the gas.

  18. Frequency adjustable MEMS vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  19. Vibration Testing of an Operating Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Goodnight, Thomas W.

    2000-01-01

    The NASA John H. Glenn Research Center and the U.S. Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC) was recently tested to verify its survivability and capability of withstanding its expected launch random vibration environment. The TDC was fully operational (producing power) during the random vibration testing. The output power of the convertor was measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges were also present which provided information on the dynamic characteristics of the TDC and an indication of any possible damage due to vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling TDC was extremely successful. The TDC survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.

  20. Rejecting harmonic vibrations at Gemini with real-time vibration tracking

    NASA Astrophysics Data System (ADS)

    Rippa, Mathew J.; Bonnet, Henri; Hayward, Thomas L.; Trujillo, Chadwick; Cavedoni, Chas P.; Cumming, Tom; Yamasaki, Chris; Masuda, Neal; Bagano, Cy; Hardash, Steve

    2016-08-01

    Fighting vibrations on large telescopes is an arduous task. At Gemini, vibrations originating from cryogenic coolers have been shown to degrade the optical wavefront, in certain cases by as much as 40%. This paper discusses a general solution to vibration compensation by tracking the real time vibration state of the telescope and using M2 to apply corrections. Two approaches are then presented: an open loop compensation at M2 based on the signal of accelerometers at the M1 glass, and a closed loop compensation at M2 based on optical measurements from the wave front sensor. The paper elaborates on the pros and cons of each approach and the challenges faced during commissioning. A conclusion is presented with the final results of vibration tracking integrated with operations.

  1. A Comparison of Molecular Vibrational Theory to Huckel Molecular Orbital Theory.

    ERIC Educational Resources Information Center

    Keeports, David

    1986-01-01

    Compares the similar mathematical problems of molecular vibrational calculations (at any intermediate level of sophistication) and molecular orbital calculations (at the Huckel level). Discusses how the generalizations of Huckel treatment of molecular orbitals apply to vibrational theory. (TW)

  2. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.

  3. A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hoseinzadeh, M. S.; Khadem, S. E.

    2014-03-01

    Thermoelastic damping (TED) is a major factor of dissipating energy in the vibration control of nanodevices. On the other hand, application of classic theory in the study of nanostructures is not reasonable. In this paper, a model based on nonlocal shell theory, accounting for the small-scale effects, is used to investigate thermoelastic vibration behavior and damping of double-walled carbon nanotubes (DWCNTs) with simply supported boundary conditions. The inner and outer carbon nanotubes are considered as two individual thin shells. The set of general thermoelastic coupled equations are numerically solved. The results show that the small-scale effects decrease natural frequencies and increase thermoelastic damping compared to the local model, especially for the coaxial frequency and large circumferential wave numbers. The numerical results also show that when the radius of nanotubes rises, the influence of small-size effect on natural frequencies and thermoelastic damping drops dramatically.

  4. Vibrating fuel grapple. [LMFBR

    DOEpatents

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  5. Vibrating fuel grapple

    DOEpatents

    Chertock, deceased, Alan J.; Fox, Jack N.; Weissinger, Robert B.

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  6. Comments on “Application of generalized differential transform method to multi-order fractional differential equations”, Vedat Suat Erturk, Shaher Momani, Zaid Odibat [Commun Nonlinear Sci Numer Simul 2008;13:1642 54

    NASA Astrophysics Data System (ADS)

    Arikoglu, Aytac; Ozkol, Ibrahim

    2008-10-01

    In this note, we would like to point some similarities between the study [Erturk VS, Momani S, Odibat Z. Application of generalized differential transform method to multi-order fractional differential equations. Commun Nonlinear Sci Numer Simul. doi:10.1016/j.cnsns.2007.02.006] with the already existing one [Arikoglu A, Ozkol I. Solution of fractional differential equations by using differential transform method. Chaos Soliton Fract. 10.1016/j.chaos.2006.09.004].

  7. Numerical study of the structural and vibrational properties of amorphous Ta{sub 2}O{sub 5} and TiO{sub 2}-doped Ta{sub 2}O{sub 5}

    SciTech Connect

    Damart, T.; Coillet, E.; Rodney, D.; Tanguy, A.

    2016-05-07

    Using classical molecular dynamics simulations, we synthesized amorphous Ta{sub 2}O{sub 5} and amorphous TiO{sub 2}-doped Ta{sub 2}O{sub 5}. We show that Ta{sub 2}O{sub 5} is composed primarily of six-folded Ta atoms forming octahedra that are either organized in chain-like structures or share edges or faces. When Ta{sub 2}O{sub 5} is doped with TiO{sub 2}, Ti atoms form equally five- and six-folded polyhedra that perturb but do not break the network structure of the glass. Performing a vibrational eigenmode analysis and projecting the eigenmodes on the rocking, stretching, and bending motions of the Ta-2O and Ta-3O bonds, we provide an atomic-scale analysis that substantiates the interpretations of Raman spectra of amorphous Ta{sub 2}O{sub 5}. This eigenmode analysis also reveals the key role played by Ti atoms in the 5 to 12 THz range.

  8. Adaptive vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Behrens, Sam; Ward, John; Davidson, Josh

    2007-04-01

    By scavenging energy from their local environment, portable electronic devices such as mobile phones, radios and wireless sensors can achieve greater run-times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy, through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilise a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaption to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27 - 34%. However, simulations of a more electro-mechanical efficient and lightly damped transducer show conversion efficiencies in excess of 80%.

  9. VIBRATION DAMPING AND SHOCK MOUNT

    DOEpatents

    Stevens, D.J.; Forman, G.W.

    1963-12-10

    A shock absorbing mount in which vibrations are damped by an interference fit between relatively movable parts of the mount is described. A pair of generally cup-shaped parts or members have skirt portions disposed in an oppositely facing nesting relationship with the skirt of one member frictionally engaging the skirt of the other. The outermost skirt may be slotted to provide spring-like segments which embrace the inner skirt for effecting the interference fit. Belleville washers between the members provide yieldable support for a load carried by the mount. When a resonant frequency of vibration forces acting upon the moumt attains a certain level the kinetic energy of these forces is absorbed by sliding friction between the parts. (AEC)

  10. Vibration and acoustic environments for payload/cargo integration

    NASA Technical Reports Server (NTRS)

    Hill, R. E.; Coody, M. C.

    1983-01-01

    Shuttle orbiter launch vibration and acoustic environments for cargo bay/payload interfaces are predicted. Data acquired during Shuttle flight tests are compared with the preflight estimates. Vibration response data for payload attachment locations are presented, along with acoustic data in the form of noise-level spectra measured at various locations in the cargo bay and space averages of the noise levels. It is shown that the payload-bay vibration and acoustic environments are generally less severe than predicted.

  11. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar

  12. H2 optimization of three-element type dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Asami, Toshihiko; Nishihara, Osamu

    2002-06-01

    The dynamic vibration absorber (DVA) is a passive vibration control device which is attached to a vibrating body (called a primary system) subjected to exciting force or motion. In this paper, we will discuss an optimization problem of the three- element-type DVA on the basis of the H2 optimization criterion. The objective of the H2 optimization is to reduce the total vibration energy of the system for overall frequencies; the total area under the power spectrum response curve is minimized in this criterion. If the system is subjected to random excitation instead of sinusoidal excitation, then the H2 optimization is probably more desirable than the popular H(infinity ) optimization. In the past decade there has been increasing interest in the three-element type DVA. However, most previous studies on this type of DVA were based on the H(infinity ) optimization design, and no one has been able to find the algebraic solution as of yet. We found a closed-form exact solution for a special case where the primary system has no damping. Furthermore, the general case solution including the damped primary system is presented in the form of a numerical solution. The optimum parameters obtained here are compared to those of the conventional Voigt type DVA. They are also compared to other optimum parameters based on the H(infinity ) criterion.

  13. Preparation research on novel dampers used in large optical telescope's noise and vibrations attenuating system

    NASA Astrophysics Data System (ADS)

    Dong, Xiu-ping; Yang, Jian-chun; Zhang, Li

    2010-10-01

    General rubber damping materials used in noise and vibrations attenuating system can not adapt large optical telescope's working temperatures and environments. While Metal Rubber material which has loose, reticulate structures can endure high or low temperatures, rigorous space environments, erosions, aging, volatilization and radiations due to its metallic properties because it is made of stainless steel wires of φ 0.1~0.3 mm. When the MR damping component is uploaded with vibrating force, the displacement will cause intense frictions between wires' surfaces which will dissipate abundant energy and thus it can serve as dampers like natural rubbers. Since Metal Rubber components are prepared by compression moulding, various complex shapes of dampers can be produced conveniently to fulfill large optical telescope's noise and vibrations attenuating tasks. Based on the Metal Rubber component's four preparation approaches, helix-making, planar roughcast-weaving, planar roughcast-rolling and 3D roughcast punching, a ring-shaped 3D parametrical numerical model is founded by CAD technology. Definitely, this modeling research work may support the optimization of the current trial and try preparation of MR component and it will provide necessary foundations for its further application in noise and vibrations attenuating system in large optical telescopes.

  14. Matrix of the covariance of covariance of acceleration responses for damage detection from ambient vibration measurements

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Law, S. S.

    2010-05-01

    A new matrix on the covariance of covariance is formed from the auto/cross-correlation function of acceleration responses of a structure under white noise ambient excitation. The components of the covariance matrix are proved to be function of the modal parameters (modal frequency, mode shape, and damping parameter) of the structure. Information from all the vibration modes of the structure limited by the sampling frequency contributes to these components. The formulated covariance matrix contains more information on the vibration modes of the structure that cannot be obtained by the general methods for extracting modal parameters. When the component of the covariance matrix is used for damage detection, it is found more sensitive to local stiffness reduction than the first few modal frequencies and mode shapes obtained from ambient excitation. A simply supported 31 bar plane truss structure is studied numerically where a multiple damage scenario with different noise levels is identified with satisfactory results.

  15. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Azimi, Majid; Mirjavadi, Seyed Sajad; Shafiei, Navvab; Hamouda, A. M. S.

    2017-01-01

    The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton's principle. The small-scale effect has been considered using the nonlocal Eringen's elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are cantilever type of boundary conditions. Presented numerical results are validated by comparing the obtained results with the published results in the literature. The influences of the nonlocal small-scale parameter, angular velocity, hub radius, FG index and also thermal effects on the frequencies of the FG nanobeams are investigated in detail.

  16. Investigation of a cup-shaped ultrasonic transducer operated in the full-wave vibrational mode.

    PubMed

    Xu, Long

    2015-05-01

    Cup-shaped horn has significant applications in ultrasonic machining, such as continuous bonding of plastic sheet or strips. Generally, it is excited by a sandwich piezoelectric transducer and both together constitute a cup-shaped ultrasound transducer (CUT). To provide a concise theoretical model for its engineering applications, the equivalent circuit of the cup-shaped ultrasonic transducer is deduced and the resonance/anti-resonance frequency equations are obtained. Meanwhile, the vibrational characteristics of the cup-shaped ultrasonic transducer have been investigated by using the analytical and numerical methods, and then confirmed by the experiment. The results show that the cup-shaped horn has a distinctive equivalent circuit, and the cup-shaped ultrasonic transducer has a good vibrational performance.

  17. Influence of Combined Whole-Body Vibration Plus G-Loading on Visual Performance

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Beutter, Brent Robert; Kaiser, Mary K.; McCann, Robert S.; Stone, Leland S.; Anderson, Mark R.; Renema, Fritz; Paloski, William H.

    2009-01-01

    Recent engineering analyses of the integrated Ares-Orion stack show that vibration levels for Orion crews have the potential to be much higher than those experienced in Gemini, Apollo, and Shuttle vehicles. Of particular concern to the Constellation Program (CxP) is the 12 Hz thrust oscillation (TO) that the Ares-I rocket develops during the final 20 seconds preceding first-stage separation, at maximum G-loading. While the structural-dynamic mitigations being considered can assure that vibration due to TO is reduced to below the CxP crew health limit, it remains to be determined how far below this limit vibration must be reduced to enable effective crew performance during launch. Moreover, this "performance" vibration limit will inform the operations concepts (and crew-system interface designs) for this critical phase of flight. While Gemini and Apollo studies provide preliminary guidance, the data supporting the historical limits were obtained using less advanced interface technologies and very different operations concepts. In this study, supported by the Exploration Systems Mission Directorate (ESMD) Human Research Program, we investigated display readability-a fundamental prerequisite for any interaction with electronic crew-vehicle interfaces-while observers were subjected to 12 Hz vibration superimposed on the 3.8 G loading expected for the TO period of ascent. Two age-matched groups of participants (16 general population and 13 Crew Office) performed a numerical display reading task while undergoing sustained 3.8 G loading and whole-body vibration at 0, 0.15, 0.3, 0.5, and 0.7 g in the eyeballs in/out (x-axis) direction. The time-constrained reading task used an Orion-like display with 10- and 14-pt non-proportional sans-serif fonts, and was designed to emulate the visual acquisition and processing essential for crew system monitoring. Compared to the no-vibration baseline, we found no significant effect of vibration at 0.15 and 0.3 g on task error rates (ER

  18. First-principles-based calculations of vibrational normal modes in polyatomic materials with translational symmetry: application to PETN molecular crystal.

    PubMed

    Velizhanin, Kirill A; Kilina, Svetlana; Sewell, Thomas D; Piryatinski, Andrei

    2008-10-23

    Numerical studies of vibrational energy transport and associated (non)linear infrared and Raman response in polyatomic materials require knowledge of the multidimensional vibrational potential-energy surface and the ability to perform normal-mode analysis on that potential. The presence of translational symmetry, as in crystals, leads to the observed dispersion of the unit cell normal modes and has to be accounted for in calculations of energy transfer rates and other spectroscopic quantities. Here we report on the implementation of a computational approach that combines the generalized supercell method and density functional theory electronic structure calculations to investigate the vibrational structure in translationally symmetric materials containing relatively large numbers of atoms in the unit cell (58 atoms in the present study). The method is applied to calculate the phonon and vibron dispersion relations and the vibrational density of states in pentaerythritol tetranitrate (PETN) molecular crystal which is an important energetic material. The results set the stage for future investigations of vibrational energy transport and associated nonlinear spectroscopic signatures in this class of materials.

  19. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: Experiment and simulation

    PubMed Central

    Zhang, Zhaoyan; Hieu Luu, Trung

    2012-01-01

    Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed. PMID:22978891

  20. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  1. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  2. [Vibration on agricultural tractors].

    PubMed

    Peretti, Alessandro; Delvecchio, Simone; Bonomini, Francesco; di Bisceglie, Anita Pasqua; Colosio, Claudio

    2013-01-01

    In the article, details related to the diffusion of agricultural tractors in Italy are given and considerations about the effects of vibration on operators, the sources of vibration and suggestions to reduce them are presented. The acceleration values observed in Italy amongst 244 tractors and levels of worker exposure are shown by means of histograms. The relevant data variability is discussed.

  3. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.; Priddy, T.G.

    1990-03-21

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis. 1 fig.

  4. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.

    1991-08-27

    An apparatus is discussed for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 {degrees} around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  5. Force limited vibration testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1991-01-01

    A new method of conducting lab vibration tests of spacecraft equipment was developed to more closely simulate the vibration environment experienced when the spacecraft is launched on a rocket. The improved tests are tailored to identify equipment design and workmanship problems without inducing artificial failures that would not have occurred at launch. These new, less destructive types of vibration tests are essential to JPL's protoflight test approach in which lab testing is conducted using the flight equipment, often one of a kind, to save time and money. In conventional vibration tests, only the input vibratory motion is specified; the feedback, or reaction force, between the test item and the vibration machine is ignored. Most test failures occur when the test item goes into resonance, and the reaction force becomes very large. It has long been recognized that the large reaction force is a test artifact which does not occur with the lightweight, flexible mounting structures characteristic of spacecraft and space vehicles. In new vibration tests, both the motion and the force provided to the test item by the vibration machine are controlled, so that the vibration ride experienced by the test item is as in flight.

  6. A judging principle of crucial vibrational transmission paths in plates

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Li, Dong-Xu; Jiang, Jian-Ping; Liao, Yi-Huan

    2016-10-01

    This paper developed a judging principle of crucial vibrational transmission path (VTP) in plates. Novel generalized definitions of VTPs are given referred to the meaning of streamlines. And by comparing governing equations, the similarity between energy flow and fluid motion is firstly found so that an analytic method of VTPs in plates is proposed by analogy with fluid motion. Hereafter, the crucial VTP is defined for energy flows at objective points and relative judging criteria is given. Finally, based on two numerical experiments of passive control, the judging principle is indirectly verified by comparing the reduction effects of energy flows at focused points and relative judgment results of crucial VTPs. This paper is meaningful for analyzing and applying the VTPs in plates to guide the control design in future.

  7. Symmetry-Adapted Ro-vibrational Basis Functions for Variational Nuclear Motion Calculations: TROVE Approach.

    PubMed

    Yurchenko, Sergei N; Yachmenev, Andrey; Ovsyannikov, Roman I

    2017-09-12

    We present a general, numerically motivated approach to the construction of symmetry-adapted basis functions for solving ro-vibrational Schrödinger equations. The approach is based on the property of the Hamiltonian operator to commute with the complete set of symmetry operators and, hence, to reflect the symmetry of the system. The symmetry-adapted ro-vibrational basis set is constructed numerically by solving a set of reduced vibrational eigenvalue problems. In order to assign the irreducible representations associated with these eigenfunctions, their symmetry properties are probed on a grid of molecular geometries with the corresponding symmetry operations. The transformation matrices are reconstructed by solving overdetermined systems of linear equations related to the transformation properties of the corresponding wave functions on the grid. Our method is implemented in the variational approach TROVE and has been successfully applied to many problems covering the most important molecular symmetry groups. Several examples are used to illustrate the procedure, which can be easily applied to different types of coordinates, basis sets, and molecular systems.

  8. Diffusion of vibrations in disordered systems

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Kozub, V. I.; Parshin, D. A.

    2013-01-01

    We consider diffusion of vibrations in random lattices with translational invariance. Above the frequency ωIR corresponding to the Ioffe-Regel crossover (and depending on the strength of disorder), phonons cannot propagate through the lattice and transfer energy. At the same time, most of the vibrations in this range are not localized. We show that these delocalized excitations are similar to diffusons introduced by P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten (see, e.g., Phil. Mag. B 79, 1715 (1999)) to describe heat transport in glasses. In this range the energy in the lattice is transferred by means of diffusion of vibrational excitations. We have calculated the diffusivity of the modes D(ω) using both the direct numerical solution of Newton equations and the Edwards-Thouless formula. It is nearly constant above ωIR and goes to zero at the localization threshold.

  9. Stability and chaotification of vibration isolation floating raft systems with time-delayed feedback control

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, D. L.; Fu, Y. M.; Zhou, J. X.

    2011-09-01

    This paper presents a systematic study on the stability of a two-dimensional vibration isolation floating raft system with a time-delayed feedback control. Based on the generalized Sturm criterion, the critical control gain for the delay-independent stability region and critical time delays for the stability switches are derived. The critical conditions can provide a theoretical guidance of chaotification design for line spectra reduction. Numerical simulations verify the correctness of the approach. Bifurcation analyses reveal that chaotification is more likely to occur in unstable region defined by these critical conditions, and the stiffness of the floating raft and mass ratio are the sensitive parameters to reduce critical control gain.

  10. Computational procedures for evaluating the sensitivity derivatives of vibration frequencies and Eigenmodes of framed structures

    NASA Technical Reports Server (NTRS)

    Fetterman, Timothy L.; Noor, Ahmed K.

    1987-01-01

    Computational procedures are presented for evaluating the sensitivity derivatives of the vibration frequencies and eigenmodes of framed structures. Both a displacement and a mixed formulation are used. The two key elements of the computational procedure are: (a) Use of dynamic reduction techniques to substantially reduce the number of degrees of freedom; and (b) Application of iterative techniques to improve the accuracy of the derivatives of the eigenmodes. The two reduction techniques considered are the static condensation and a generalized dynamic reduction technique. Error norms are introduced to assess the accuracy of the eigenvalue and eigenvector derivatives obtained by the reduction techniques. The effectiveness of the methods presented is demonstrated by three numerical examples.

  11. Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber

    NASA Astrophysics Data System (ADS)

    Detroux, T.; Habib, G.; Masset, L.; Kerschen, G.

    2015-08-01

    The nonlinear tuned vibration absorber (NLTVA) is a recently developed nonlinear absorber which generalizes Den Hartog's equal peak method to nonlinear systems. If the purposeful introduction of nonlinearity can enhance system performance, it can also give rise to adverse dynamical phenomena, including detached resonance curves and quasiperiodic regimes of motion. Through the combination of numerical continuation of periodic solutions, bifurcation detection and tracking, and global analysis, the present study identifies boundaries in the NLTVA parameter space delimiting safe, unsafe and unacceptable operations. The sensitivity of these boundaries to uncertainty in the NLTVA parameters is also investigated.

  12. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

    NASA Astrophysics Data System (ADS)

    Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer

    2016-01-01

    In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  13. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinnella, P.

    1990-01-01

    The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.

  14. Stability and chaotification of vibration isolation floating raft systems with time-delayed feedback control.

    PubMed

    Li, Y L; Xu, D L; Fu, Y M; Zhou, J X

    2011-09-01

    This paper presents a systematic study on the stability of a two-dimensional vibration isolation floating raft system with a time-delayed feedback control. Based on the generalized Sturm criterion, the critical control gain for the delay-independent stability region and critical time delays for the stability switches are derived. The critical conditions can provide a theoretical guidance of chaotification design for line spectra reduction. Numerical simulations verify the correctness of the approach. Bifurcation analyses reveal that chaotification is more likely to occur in unstable region defined by these critical conditions, and the stiffness of the floating raft and mass ratio are the sensitive parameters to reduce critical control gain.

  15. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  16. Vibration in textile mills.

    PubMed

    Sorainen, E

    1988-12-01

    The vibration in nine halls of the six weaving mills was measured in 1978-80. The measurements were taken at regular intervals in the working area of the weavers, which was the wooden support attached to the machine or the floor of the textile mill. The accelerometer was mounted with screws onto the working area, and all vibration samples were analyzed immediately, in situ. The vibration of the floor was tangent to or exceeded slightly the "reduced comfort boundary" specified in International Standard ISO 2631/1 (1985) only in the areas where the floor was not against the ground. The greatest amount of vibration occurred on the supports which had been attached to the machines. On these supports the vibration in places exceeded the "fatigue-decreased proficiency boundary."

  17. Modeling of flexible waveguides for ultrasonic vibrations transmission: longitudinal and flexural vibrations of non-deformed waveguide.

    PubMed

    Stepanenko, Dmitry A; Minchenya, Vladimir T

    2010-03-01

    The article presents the mathematical model allowing to investigate longitudinal and flexural vibrations of stepped flexible waveguides with transitional section without regard to various vibration modes interaction. The model uses original numerical-analytic calculations based on analytical solutions of the equation of waveguide steps vibrations and their continuous matching with numerical solution of the equation of transitional section vibrations. The proposed model can be considered as an initial approximation to the solution of the problem of flexible waveguides design, which makes it possible to determine and validate effective methods of its addressing. Resonant curves of longitudinal and flexural vibrations of two-step waveguide are traced for the given vibration frequency. Step lengths values providing simultaneous resonance of longitudinal and flexural vibrations for the given frequency are determined. Validity of the proposed model is proved by the results of finite elements method (FEM) modeling using ANSYS software. Application of Timoshenko's model instead of Euler-Bernoulli's model for description of flexural vibrations enabled reduction of relative deviation of resonant frequencies calculated using ANSYS from the value specified during resonant curves tracing down to negligible value (0.17%).

  18. Transient analysis of vibrations in nonideal multilayered piezoelectric devices

    SciTech Connect

    Hodgdon, M.L.

    1980-11-01

    A numerical method of solving the equations involved in the transient vibration analysis of nonideal multilayered piezoelectric is presented. The use of the computer code WONDY IV in obtaining the solution, a numerical example and experimental data is described. In addition, a method is included for approximating the values of creep or relaxation functions from steady-state attenuation data.

  19. Transient analysis of vibrations in nonideal multilayered piezoelectric devices

    NASA Astrophysics Data System (ADS)

    Hodgdon, M. L.

    1980-11-01

    A numerical method of solving the equations involved in the transient vibration analysis of nonideal multilayered piezoelectric devices is presented. The use of the computer code WONDY 4 in obtaining the solution, a numerical example, and experimental data is described. In addition, a method is included for approximating the values of creep or relaxation functions from steady state attenuation data.

  20. Design of a nonlinear torsional vibration absorber

    NASA Astrophysics Data System (ADS)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  1. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  2. 14 CFR 23.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a) The applicant must determine the magnitude of the propeller...

  3. 14 CFR 23.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a) The applicant must determine the magnitude of the propeller...

  4. 14 CFR 23.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a) The applicant must determine the magnitude of the propeller...

  5. 14 CFR 23.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a) The applicant must determine the magnitude of the propeller...

  6. 14 CFR 23.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a) The applicant must determine the magnitude of the propeller...

  7. 47 CFR 10.530 - Common vibration cadence.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM Equipment Requirements... market devices for public use under part 10 that include a vibration cadence capability that meets the... under part 10. (c) A device may include the capability to mute the vibration cadence. ...

  8. Structural source identification using a generalized Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Aucejo, M.

    2014-10-01

    This paper addresses the problem of identifying mechanical exciting forces from vibration measurements. The proposed approach is based on a generalized Tikhonov regularization that allows taking into account prior information on the measurement noise as well as on the main characteristics of sources to identify like its sparsity or regularity. To solve such a regularization problem efficiently, a Generalized Iteratively Reweighted Least-Squares (GIRLS) algorithm is introduced. Proposed numerical and experimental validations reveal the crucial role of prior information in the quality of the source identification and the performance of the GIRLS algorithm.

  9. Heat, cold, noise, and vibration

    SciTech Connect

    Horvath, S.M.; Bedi, J.F. )

    1990-03-01

    Exposure to a cold environment induces a number of physiological alterations, the most serious being hypothermia. This state can occur in all individuals, but the very young and the elderly are more susceptible. Environmental and industrially generated high ambient temperature can place further stress on aged individuals and workers, resulting in a complex symptom picture. Morbidity and death may result from such exposures. Causative factors have been identified. Noise exposure induces hearing losses above those secondary to the aging process. Psychophysiological effects during noise exposure are considered to result from the sympathetic activity secondary to a general stress reaction. Vibration from the use of power tools results in Raynaud's phenomenon. However, modification of power tools has reduced the symptoms associated with vibration exposure. Termination of exposure to vibration appears eventually to reduce symptoms related to white-finger spasms. Interaction between these stressors has not been clarified because of the complex effects of each. The need for additional information about the response to these stressors is evident. 38 references.

  10. Nozzle flow with vibrational nonequilibrium

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Landry, J. G.

    1995-01-01

    This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model

  11. Vibrational dephasing in matter-wave interferometers

    NASA Astrophysics Data System (ADS)

    Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.

    2017-03-01

    Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.

  12. A hybrid nonlinear vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Towfighian, Shahrzad

    2017-06-01

    Vibration energy harvesting converts mechanical energy from ambient sources to electricity to power remote sensors. Compared to linear resonators that have poor performance away from their natural frequency, nonlinear vibration energy harvesters perform better because they use vibration energy over a broader spectrum. We present a hybrid nonlinear energy harvester that combines bi-stability with internal resonance to increase the frequency bandwidth. A two-fold increase in the frequency bandwidth can be obtained compared to a bi-stable system with fixed magnets. The harvester consists of a piezoelectric cantilever beam carrying a movable magnet facing a fixed magnet. A spring allows the magnet to move along the beam and it provides an extra stored energy to further increase the amplitude of vibration acting as a mechanical amplifier. An electromechanically coupled mathematical model of the system is presented to obtain the dynamic response of the cantilever beam, the movable magnet and the output voltage. The perturbation method of multiple scales is applied to solve these equations and obtain approximate analytical solutions. The effects of various system parameters on the frequency responses are investigated. The numerical approaches of the long time integration (Runge-Kutta method) and the shooting technique are used to verify the analytical results. The results of this study can be used to improve efficiency in converting wasted mechanical vibration to useful electrical energy by broadening the frequency bandwidth.

  13. Hindi Numerals.

    ERIC Educational Resources Information Center

    Bright, William

    In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…

  14. Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  15. Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Braithwaite, David W.

    2016-01-01

    In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…

  16. Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Heo, Seok; Jeong, Moonsan

    2009-04-01

    This paper is concerned with the dynamic modelling, active vibration controller design and experiments for a cylindrical shell equipped with piezoelectric sensors and actuators. The dynamic model was derived by using Rayleigh-Ritz method based on the Donnel-Mushtari shell theory. The actuator equations which relate the applied voltages to the generalized force and sensor equations which relate the generalized displacements to the sensor output voltages for the piezoelectric wafer were derived based on the pin-force model. The equations of motion along with the piezoelectric sensor equations were then reduced to modal forms considering the modes of interest. An aluminium shell was fabricated to demonstrate the effectiveness of the modelling and control techniques. The boundary conditions at both ends of the shell were assumed to be a shear diaphragm in the numerical analysis. Theoretical natural frequencies of the aluminium shell were then calculated and compared to experimental result. They were in good agreement with experimental result for the first two free-vibration modes. The multi-input and multi-output positive position feedback controller, which can cope with the first two vibration modes, was designed based on the block-inverse theory and was implemented digitally using the DSP board. The experimental results showed that vibrations of the cylindrical shell can be successfully suppressed by the piezoelectric actuator and the proposed controller.

  17. Electron-impact vibrational excitation rates in the flow field of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.-H.

    1985-01-01

    This paper examines the vibrational excitation rate processes expected in the flow field of aeroassisted orbital transfer vehicles (AOTVs). An analysis of the multiple-quantum vibrational excitation processes by electron impact is made to predict the vibrational excitation cross sections, rate coefficients, and relaxation times which control vibrational temperature. The expression for the rate of electron-vibration energy transfer is derived by solving the system of master equations which account for the multiple-level transitions. The vibrational excitation coefficients, which are the prerequisite physical quantities in solving the obtained vibrational equation, are calculated based on the theoretically predicted cross sections. These cross sections are obtained from quantum mechanical calculations, based on the concept that vibrational excitation of molecules by electron impact occurs through formation of an intermediate negative ion state. Finally, the modified Landau-Teller-type rate equation, which is suitable for the numerical calculations for the AOTV flow fields, is suggested.

  18. Pattern classification by a neurofuzzy network: application to vibration monitoring.

    PubMed

    Meesad, P; Yen, G G

    2000-01-01

    An innovative neurofuzzy network is proposed herein for pattern classification applications, specifically for vibration monitoring. A fuzzy set interpretation is incorporated into the network design to handle imprecise information. A neural network architecture is used to automatically deduce fuzzy if-then rules based on a hybrid supervised learning scheme. The neurofuzzy classifier proposed is equipped with a one-pass, on-line, and incremental learning algorithm. This network can be considered a self-organized classifier with the ability to adaptively learn new information without forgetting old knowledge. The classification performance of the proposed neurofuzzy network is validated on the Fisher's Iris data, which is a well-known benchmark data set. For the generalization capability, the neurofuzzy network can achieve 97.33% correct classification. In addition, to demonstrate the efficiency and effectiveness of the proposed neurofuzzy paradigm, numerical simulations have been performed using the Westland data set. The Westland data set consists of vibration data collected from a US Navy CH-46E helicopter test stand. Using a simple fast Fourier transform technique for feature extraction, the proposed neurofuzzy network has shown promising results. Using various torque levels for training and testing, the network achieved 100% correct classification.

  19. Spontaneous and stimulated Raman studies of vibrational dephasing in condensed phases

    SciTech Connect

    Cornelius, P.A.

    1980-05-01

    Vibrational dephasing in condensed phases is studied from both a theoretical and experimental standpoint. A theory is presented which describes the dynamics of motional or exchange processes in weakly perturbed systems. This general formalism, which has been previously used to describe motional narrowing in magnetic resonance, is applied to vibrational spectroscopy. The model treats the case of a high frequency vibration anharmonically coupled to a low-frequency vibration. Intermolecular exchange of low frequency vibrational quanta results in a temperature dependent broadening and frequency shift of the high frequency vibration. Analysis of experimental data by this model yields both the exchange rates and the anharmonic couplings.

  20. Molecular vibrational trapping revisited: a case study with D2+

    PubMed Central

    Badankó, Péter; Halász, Gábor J.; Vibók, Ágnes

    2016-01-01

    The present theoretical study is concerned with the vibrational trapping or bond hardening, which is a well-known phenomenon predicted by a dressed state representation of small molecules like and in an intense laser field. This phenomenon is associated with a condition where the energy of the light induced, vibrational level coincides with one of the vibrational levels on the field-free potential curve, which at the same time maximizes the wave function overlap between these two levels. One-dimensional numerical simulations were performed to investigate this phenomenon in a more quantitative way than has been done previously by calculating the photodissociation probability of for a wide range of photon energy. The obtained results undoubtedly show that the nodal structure of the field-free vibrational wave functions plays a decisive role in the vibrational trapping, in addition to the current understanding of this phenomenon. PMID:27550642

  1. Vibration harvesting in traffic tunnels to power wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Wischke, M.; Masur, M.; Kröner, M.; Woias, P.

    2011-08-01

    Monitoring the traffic and the structural health of traffic tunnels requires numerous sensors. Powering these remote and partially embedded sensors from ambient energies will reduce maintenance costs, and improve the sensor network performance. This work reports on vibration levels detected in railway and road tunnels as a potential energy source for embedded sensors. The measurement results showed that the vibrations at any location in the road tunnel and at the wall in the railway tunnel are too small for useful vibration harvesting. In contrast, the railway sleeper features usable vibrations and sufficient mounting space. For this application site, a robust piezoelectric vibration harvester was designed and equipped with a power interface circuit. Within the field test, it is demonstrated that sufficient energy is harvested to supply a microcontroller with a radio frequency (RF) interface.

  2. The Role of Resonant Vibrations in Electronic Energy Transfer

    PubMed Central

    Somsen, Oscar J. G.; Novoderezhkin, Vladimir I.; Mančal, Tomáš; van Grondelle, Rienk

    2016-01-01

    Abstract Nuclear vibrations play a prominent role in the spectroscopy and dynamics of electronic systems. As recent experimental and theoretical studies suggest, this may be even more so when vibrational frequencies are resonant with transitions between the electronic states. Herein, a vibronic multilevel Redfield model is reported for excitonically coupled electronic two‐level systems with a few explicitly included vibrational modes and interacting with a phonon bath. With numerical simulations the effects of the quantized vibrations on the dynamics of energy transfer and coherence in a model dimer are illustrated. The resonance between the vibrational frequency and energy gap between the sites leads to a large delocalization of vibronic states, which then results in faster energy transfer and longer‐lived mixed coherences. PMID:26910485

  3. Vibration-assisted resonance in photosynthetic excitation-energy transfer

    NASA Astrophysics Data System (ADS)

    Irish, E. K.; Gómez-Bombarelli, R.; Lovett, B. W.

    2014-07-01

    Understanding how the effectiveness of natural photosynthetic energy-harvesting systems arises from the interplay between quantum coherence and environmental noise represents a significant challenge for quantum theory. Recently it has begun to be appreciated that discrete molecular vibrational modes may play an important role in the dynamics of such systems. Here we present a microscopic mechanism by which intramolecular vibrations may be able to contribute to the efficiency and directionality of energy transfer. Excited vibrational states create resonant pathways through the system, supporting fast and efficient energy transport. Vibrational damping together with the natural downhill arrangement of molecular energy levels gives intrinsic directionality to the energy flow. Analytical and numerical results demonstrate a significant enhancement of the efficiency and directionality of energy transport that can be directly related to the existence of resonances between vibrational and excitonic levels.

  4. Relating normal vibrational modes to local vibrational modes: benzene and naphthalene.

    PubMed

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2013-07-01

    Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F (q) (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f (x) with the help of the transformation matrix U = WB (†)(BWB (†))(-1) (B: Wilson's B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M (-1) (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C-H and C-C bond strength.

  5. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  6. Vibrational energy transport in the presence of intrasite vibrational energy redistribution.

    PubMed

    Schade, Marco; Hamm, Peter

    2009-07-28

    The mechanism of vibrational energy flow is studied in a regime where a diffusion equation is likely to break down, i.e., on length scales of a few chemical bonds and time scales of a few picoseconds. This situation occurs, for example, during photochemical reactions in protein environment. To that end, a toy model is introduced that on the one hand mimics the vibrational normal mode distribution of proteins, and on the other hand is small enough to numerically time propagate the system fully quantum mechanically. Comparing classical and quantum-mechanical results, the question is addressed to what extent the classical nature of the molecular dynamics simulations (which would be the only choice for the modeling of a real molecular system) affects the vibrational energy flow mechanism. Small differences are found which are due to the different ways classical and quantum mechanics distribute thermal energy over vibrational modes. In either case, a ballistic and a diffusive phase can be identified. For these small length and time scales, the latter is governed by intrasite vibrational energy redistribution, since vibrational energy does not necessarily thermalize completely within individual peptide units. Overall, the model suggests a picture that unifies many of the observations made recently in experiments.

  7. Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Li, Quan; Fan, Jiansheng; Nie, Jianguo; Li, Quanwang; Chen, Yu

    2010-09-01

    This paper investigates vibration characteristics of footbridge induced by crowd random walking, and presents the application of multiple tuned mass dampers (MTMD) in suppressing crowd-induced vibration. A single foot force model for the vertical component of walking-induced force is developed, avoiding the phase angle inaccessibility of the continuous walking force. Based on the single foot force model, the crowd-footbridge random vibration model, in which pedestrians are modeled as a crowd flow characterized with the average time headway, is developed to consider the worst vibration state of footbridge. In this random vibration model, an analytic formulation is developed to calculate the acceleration power spectral density in arbitrary position of footbridge with arbitrary span layout. Resonant effect is observed as the footbridge natural frequencies fall within the frequency bandwidth of crowd excitation. To suppress the excessive acceleration for human normal walking comfort, a MTMD system is used to improve the footbridge dynamic characteristics. According to the random vibration model, an optimization procedure, based on the minimization of maximum root-mean-square (rms) acceleration of footbridge, is introduced to determine the optimal design parameters of MTMD system. Numerical analysis shows that the proposed MTMD designed by random optimization procedure, is more effective than traditional MTMD design methodology in reducing dynamic response during crowd-footbridge resonance, and that the proper frequency spacing enlargement will effectively reduce the off-tuning effect of MTMD.

  8. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  9. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect

    Robert A. Houze, Jr.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  10. Features of vibrations of structural inhomogeneous solid media

    NASA Astrophysics Data System (ADS)

    Karimbaev, Telman; Baishagirov, Khairulla; Nurgaliyeva, Saltanat

    2017-09-01

    Homogeneous or quasi-homogeneous classic models of deformation are generally used at a mathematical de-scription of deformation composite materials (CM). These theories, however, are limited within initial conditions and do not cover the most important properties of CM: heterogeneity of inertia and elasticity of components, their interaction when deforming, etc. Among the models that complement the classical theories, it is possible to allocate the so-called theory of mixture where CM is considered as two (or more) interacting homogeneous continuum. Therefore, the model increase of motion freedom degrees of the particles of such heterogeneous medium allows each component of CM to show their inertial properties. This leads to the identification of such exclusive features as "bifurcation of fre-quencies", i.e., to description of motion on each form of normal modes at two different frequencies. In the research this phenomenon was investigated by the analysis of biquadratic equation obtained at solving the proper value problem of heterogeneous medium, and was verified by testing the normal mode of frequencies of blades made of CM. In the particular case there was received a simple calculation formula for determination of bar technical frequencies from CM on the basis of the characteristic equation of natural vibrations. In this case the numerical results for the lower forms of the vibration normal mode coincide with the experimental data for homogeneous medium. The characteristic equation contains the introduced physical parameters of the two-component theory; therefore, it describes the other forms of vibration. However, in this case the freedom of structural fluctuations of CM each component is limited to their coupling and interaction, providing continuity and shared the compound materials.

  11. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  12. Seminar on Understanding Digital Control and Analysis in Vibration Test Systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The advantages of the digital methods over the analog vibration methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing, (2) methods of computer-controlled sinewave vibration testing, and (3) methods of computer-controlled shock testing. General algorithms are described in the form of block diagrams and flow diagrams.

  13. Influences of Quantum Mechanically Mixed Electronic and Vibrational Pigment States in 2D Electronic Spectra of Photosynthetic Systems: Strong Electronic Coupling Cases

    SciTech Connect

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-09-07

    In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck-Condon active vibrational modes in the resonant condition. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures. However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment electronic coupling. In this paper, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer with an off-resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small. Finally, the electronic-vibrational quantum mixtures do not

  14. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  15. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  16. Shaft vibrations in turbomachinery excited by cracks

    NASA Technical Reports Server (NTRS)

    Grabowski, B.

    1982-01-01

    During the past years the dynamic behavior of rotors with cracks has been investigated mainly theoretically. This paper deals with the comparison of analytical and experimental results of the dynamics of a rotor with an artificial crack. The experimental results verify the crack model used in the analysis. They show the general possibility to determine a crack by extended vibration control.

  17. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  18. Vibration-translation energy transfer in anharmonic diatomic molecules. II - The vibrational quantum-number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.

  19. Vibration-translation energy transfer in anharmonic diatomic molecules. II - The vibrational quantum-number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.

  20. Countermeasure for reducing vibrations of a building for running trains

    SciTech Connect

    Yonekura, Yorio

    1995-12-01

    This paper describes the with vibration reduction effect of a railway station building, by making use of special rail fastening devices and track girders for running trains set on the second floor. To estimate the vibration reduction effect, dynamic interaction between trains, supporting girders and building members was analyzed numerically. In order to make a few corrections for calculated values, correction coefficients were introduced by comparing analytical values with measured ones obtained by running trains.