Numerical methods for engine-airframe integration
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.
Automatic numerical integration methods for Feynman integrals through 3-loop
NASA Astrophysics Data System (ADS)
de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Olagbemi, O.
2015-05-01
We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities.
ERIC Educational Resources Information Center
Sozio, Gerry
2009-01-01
Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…
Singularity Preserving Numerical Methods for Boundary Integral Equations
NASA Technical Reports Server (NTRS)
Kaneko, Hideaki (Principal Investigator)
1996-01-01
In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.
Comparison of four stable numerical methods for Abel's integral equation
NASA Technical Reports Server (NTRS)
Murio, Diego A.; Mejia, Carlos E.
1991-01-01
The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.
Path Integrals and Exotic Options:. Methods and Numerical Results
NASA Astrophysics Data System (ADS)
Bormetti, G.; Montagna, G.; Moreni, N.; Nicrosini, O.
2005-09-01
In the framework of Black-Scholes-Merton model of financial derivatives, a path integral approach to option pricing is presented. A general formula to price path dependent options on multidimensional and correlated underlying assets is obtained and implemented by means of various flexible and efficient algorithms. As an example, we detail the case of Asian call options. The numerical results are compared with those obtained with other procedures used in quantitative finance and found to be in good agreement. In particular, when pricing at the money (ATM) and out of the money (OTM) options, path integral exhibits competitive performances.
A method for direct numerical integration of the Boltzmann equation
NASA Technical Reports Server (NTRS)
Cheremisin, F. G.
1972-01-01
The principal difficulties in numerical solution of the Boltzmann equation are considered. The study is aimed at formulating a numerical solution in such a manner that it contains a minimum amount of excess information at the distribution function level. It is pointed out that the accurate calculation of the distribution function at each point in phase space requires a tremendous number of operations, due to the necessity of solving five-fold quadratures in the collision integral. This results in the operational memory of the digital computer being insufficient to store all the data on the distribution functions at the necessary points in phase space. An algorithm is constructed involving successive iterations of the Boltzmann equation which does not require storage of each step of the new distribution function.
Integrated numerical methods for hypersonic aircraft cooling systems analysis
NASA Technical Reports Server (NTRS)
Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.
1992-01-01
Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.
Numerical integration of population models satisfying conservation laws: NSFD methods.
Mickens, Ronald E
2007-10-01
Population models arising in ecology, epidemiology and mathematical biology may involve a conservation law, i.e. the total population is constant. In addition to these cases, other situations may occur for which the total population, asymptotically in time, approach a constant value. Since it is rarely the situation that the equations of motion can be analytically solved to obtain exact solutions, it follows that numerical techniques are needed to provide solutions. However, numerical procedures are only valid if they can reproduce fundamental properties of the differential equations modeling the phenomena of interest. We show that for population models, involving a dynamical conservation law the use of nonstandard finite difference (NSFD) methods allows the construction of discretization schemes such that they are dynamically consistent (DC) with the original differential equations. The paper will briefly discuss the NSFD methodology, the concept of DC, and illustrate their application to specific problems for population models.
Numerical Simulation of Antennas with Improved Integral Equation Method
NASA Astrophysics Data System (ADS)
Ma, Ji; Fang, Guang-You; Lu, Wei
2015-08-01
Simulating antennas around a conducting object is a challenge task in computational electromagnetism, which is concerned with the behaviour of electromagnetic fields. To analyze this model efficiently, an improved integral equation-fast Fourier transform (IE-FFT) algorithm is presented in this paper. The proposed scheme employs two Cartesian grids with different size and location to enclose the antenna and the other object, respectively. On the one hand, IE-FFT technique is used to store matrix in a sparse form and accelerate the matrix-vector multiplication for each sub-domain independently. On the other hand, the mutual interaction between sub-domains is taken as the additional exciting voltage in each matrix equation. By updating integral equations several times, the whole electromagnetic system can achieve a stable status. Finally, the validity of the presented method is verified through the analysis of typical antennas in the presence of a conducting object. Supported by in part China Postdoctoral Science Foundation under Grant No. 2014M550839, and in part by the Key Research Program of the Chinese Academy of Sciences under Grant No. KGZD-EW-603
NASA Astrophysics Data System (ADS)
Min, Xiaoyi
This thesis first presents the study of the interaction of electromagnetic waves with three-dimensional heterogeneous, dielectric, magnetic, and lossy bodies by surface integral equation modeling. Based on the equivalence principle, a set of coupled surface integral equations is formulated and then solved numerically by the method of moments. Triangular elements are used to model the interfaces of the heterogeneous body, and vector basis functions are defined to expand the unknown current in the formulation. The validity of this formulation is verified by applying it to concentric spheres for which an exact solution exists. The potential applications of this formulation to a partially coated sphere and a homogeneous human body are discussed. Next, this thesis also introduces an efficient new set of integral equations for treating the scattering problem of a perfectly conducting body coated with a thin magnetically lossy layer. These electric field integral equations and magnetic field integral equations are numerically solved by the method of moments (MoM). To validate the derived integral equations, an alternative method to solve the scattering problem of an infinite circular cylinder coated with a thin magnetic lossy layer has also been developed, based on the eigenmode expansion. Results for the radar cross section and current densities via the MoM and the eigenmode expansion method are compared. The agreement is excellent. The finite difference time domain method is subsequently implemented to solve a metallic object coated with a magnetic thin layer and numerical results are compared with that by the MoM. Finally, this thesis presents an application of the finite-difference time-domain approach to the problem of electromagnetic receiving and scattering by a cavity -backed antenna situated on an infinite conducting plane. This application involves modifications of Yee's model, which applies the difference approximations of field derivatives to differential
NASA Astrophysics Data System (ADS)
Shen, Fabin; Wang, Anbo
2006-02-01
The numerical calculation of the Rayleigh-Sommerfeld diffraction integral is investigated. The implementation of a fast-Fourier-transform (FFT) based direct integration (FFT-DI) method is presented, and Simpson's rule is used to improve the calculation accuracy. The sampling interval, the size of the computation window, and their influence on numerical accuracy and on computational complexity are discussed for the FFT-DI and the FFT-based angular spectrum (FFT-AS) methods. The performance of the FFT-DI method is verified by numerical simulation and compared with that of the FFT-AS method.
Feasibility study of the numerical integration of shell equations using the field method
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1973-01-01
The field method is developed for arbitrary open branch domains subjected to general linear boundary conditions. Although closed branches are within the scope of the method, they are not treated here. The numerical feasibility of the method has been demonstrated by implementing it in a computer program for the linear static analysis of open branch shells of revolution under asymmetric loads. For such problems the field method eliminates the well-known numerical problem of long subintervals associated with the rapid growth of extraneous solutions. Also, the method appears to execute significantly faster than other numerical integration methods.
Some numerical methods for integrating systems of first-order ordinary differential equations
NASA Technical Reports Server (NTRS)
Clark, N. W.
1969-01-01
Report on numerical methods of integration includes the extrapolation methods of Bulirsch-Stoer and Neville. A comparison is made nith the Runge-Kutta and Adams-Moulton methods, and circumstances are discussed under which the extrapolation method may be preferred.
NASA Technical Reports Server (NTRS)
Sidi, A.; Israeli, M.
1986-01-01
High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.
NASA Astrophysics Data System (ADS)
Tang, Xiaojun
2016-04-01
The main purpose of this work is to provide multiple-interval integral Gegenbauer pseudospectral methods for solving optimal control problems. The latest developed single-interval integral Gauss/(flipped Radau) pseudospectral methods can be viewed as special cases of the proposed methods. We present an exact and efficient approach to compute the mesh pseudospectral integration matrices for the Gegenbauer-Gauss and flipped Gegenbauer-Gauss-Radau points. Numerical results on benchmark optimal control problems confirm the ability of the proposed methods to obtain highly accurate solutions.
NASA Technical Reports Server (NTRS)
Rosenbaum, J. S.
1976-01-01
If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.
Numerical method to solve Cauchy type singular integral equation with error bounds
NASA Astrophysics Data System (ADS)
Setia, Amit; Sharma, Vaishali; Liu, Yucheng
2017-01-01
Cauchy type singular integral equations with index zero naturally occur in the field of aerodynamics. Literature is very much developed for these equations and Chebyshevs polynomials are most frequently used to solve these integral equations. In this paper, a residual based Galerkins method has been proposed by using Legendre polynomial as basis functions to solve Cauchy singular integral equation of index zero. It converts the Cauchy singular integral equation into system of equations which can be easily solved. The test examples are given for illustration of proposed numerical method. Error bounds are derived as well as implemented in all the test examples.
NASA Astrophysics Data System (ADS)
Gu, Boliang; Nihei, Kurt T.; Myer, Larry R.
1996-07-01
This paper describes a boundary integral equation method for simulating two-dimensional elastic wave propagation in a rock mass with nonwelded discontinuities, such as fractures, joints, and faults. The numerical formulation is based on the three-dimensional boundary integral equations that are reduced to two dimensions by numerical integration along the axis orthogonal to the plane of interest. The numerical technique requires the assembly and solution of the coefficient matrix only for the first time step, resulting in a significant reduction in computational time. Nonwelded discontinuities are each treated as an elastic contact between blocks of a fractured rock mass. Across such an elastic contact, seismic stresses are continuous and particle displacements are discontinuous by an amount which is proportional to the stress on the discontinuity and inversely to the specific stiffness of the discontinuity. Simulations demonstrate that such formulated boundary element method successfully models elastic wave propagation along and across a single fracture generated by a line source.
A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1984-01-01
The efficiency of several algorithms used for numerical integration of stiff ordinary differential equations was compared. The methods examined included two general purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes were applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code available for the integration of combustion kinetic rate equations. It is shown that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient then evaluating the temperature by integrating its time-derivative.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; Beerli, Peter; Zeng, Xiankui; Lu, Dan; Tao, Yuezan
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamic integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.
Peskin, Michael E
2003-02-13
In upper-division undergraduate physics courses, it is desirable to give numerical problem-solving exercises integrated naturally into weekly problem sets. I explain a method for doing this that makes use of the built-in class structure of the Java programming language. I also supply a Java class library that can assist instructors in writing programs of this type.
Numerical methods for estimating J integral in models with regular rectangular meshes
NASA Astrophysics Data System (ADS)
Kozłowiec, B.
2017-02-01
Cracks and delaminations are the common structural degradation mechanisms studied recently using numerous methods and techniques. Among them, numerical methods based on FEM analyses are in widespread commercial use. The scope of these methods has focused i.e. on energetic approach to linear elastic fracture mechanics (LEFM) theory, encompassing such quantities as the J-integral and the energy release rate G. This approach enables to introduce damage criteria of analyzed structures without dealing with the details of the physical singularities occurring at the crack tip. In this paper, two numerical methods based on LEFM are used to analyze both isotropic and orthotropic specimens and the results are compared with well-known analytical solutions as well as (in some cases) VCCT results. These methods are optimized for industrial use with simple, rectangular meshes. The verification is made based on two dimensional mode partitioning.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Turkel, E.
1980-01-01
New methods are introduced for the time integration of the Fourier and Chebyshev methods of solution for dynamic differential equations. These methods are unconditionally stable, even though no matrix inversions are required. Time steps are chosen by accuracy requirements alone. For the Fourier method both leapfrog and Runge-Kutta methods are considered. For the Chebyshev method only Runge-Kutta schemes are tested. Numerical calculations are presented to verify the analytic results. Applications to the shallow water equations are presented.
Spiking neural network simulation: numerical integration with the Parker-Sochacki method.
Stewart, Robert D; Bair, Wyeth
2009-08-01
Mathematical neuronal models are normally expressed using differential equations. The Parker-Sochacki method is a new technique for the numerical integration of differential equations applicable to many neuronal models. Using this method, the solution order can be adapted according to the local conditions at each time step, enabling adaptive error control without changing the integration timestep. The method has been limited to polynomial equations, but we present division and power operations that expand its scope. We apply the Parker-Sochacki method to the Izhikevich 'simple' model and a Hodgkin-Huxley type neuron, comparing the results with those obtained using the Runge-Kutta and Bulirsch-Stoer methods. Benchmark simulations demonstrate an improved speed/accuracy trade-off for the method relative to these established techniques.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1994-01-01
It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.
A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1984-01-01
A comparison of the efficiency of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations is presented. The methods examined include two general-purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient than evaluating the temperature by integrating its time-derivative.
Fourth-Order Method for Numerical Integration of Age- and Size-Structured Population Models
Iannelli, M; Kostova, T; Milner, F A
2008-01-08
In many applications of age- and size-structured population models, there is an interest in obtaining good approximations of total population numbers rather than of their densities. Therefore, it is reasonable in such cases to solve numerically not the PDE model equations themselves, but rather their integral equivalents. For this purpose quadrature formulae are used in place of the integrals. Because quadratures can be designed with any order of accuracy, one can obtain numerical approximations of the solutions with very fast convergence. In this article, we present a general framework and a specific example of a fourth-order method based on composite Newton-Cotes quadratures for a size-structured population model.
2006-09-30
αηηx + βη = 0 (1) where co = gh , α = 3co / 2h and . The KdV equation has the generalized Fourier solution (for periodic and/or quasi... numerical integration of the partial differential equations of surface water waves is the long-term goal of this work. The approach is a...applications of the method. APPROACH We first consider the shallow water equation known as the Korteweg-deVries ( KdV ) equation ): ηt + coηx
Taylor series method of numerical integration of the N-body problem
NASA Astrophysics Data System (ADS)
Alesova, Irina M.; Babadzanjanz, Levon K.; Pototskaya, Irina Yu.; Pupysheva, Yulia Yu.; Saakyan, Artur T.
2017-07-01
Many differential equations of Dynamics (i.e. Celestial Mechanics, Molecular Dynamics, and so on) one can reduce to polynomial form, i.e. to system of differential equations with polynomial (in unknowns) right-hand sides. First, we show how to obtain such polynomial system fifth, fourth and third degree for classical Newtonian N-body problem. After that, we present comparative data (the relative errors of the coordinates and velocities of bodies and CPU times) for numerical integration of these systems on the interval [0, T] using two different Taylor series method algorithms.
McCammon, R.B.; Finch, W.I.; Kork, J.O.; Bridges, N.J.
1994-01-01
An integrated data-directed numerical method has been developed to estimate the undiscovered mineral endowment within a given area. The method has been used to estimate the undiscovered uranium endowment in the San Juan Basin, New Mexico, U.S.A. The favorability of uranium concentration was evaluated in each of 2,068 cells defined within the Basin. Favorability was based on the correlated similarity of the geologic characteristics of each cell to the geologic characteristics of five area-related deposit models. Estimates of the undiscovered endowment for each cell were categorized according to deposit type, depth, and cutoff grade. The method can be applied to any mineral or energy commodity provided that the data collected reflect discovered endowment. ?? 1994 Oxford University Press.
NASA Astrophysics Data System (ADS)
Enukashvily, Isaac M.
1980-11-01
An extension of Bleck' method and of the method of moments is developed for the numerical integration of the kinetic equation of coalescence and breakup of cloud droplets. The number density function nk(x,t) in each separate cloud droplet packet between droplet mass grid points (xk,xk+1) is represented by an expansion in orthogonal polynomials with a given weighting function wk(x,k). The expansion coefficients describe the deviations of nk(x,t) from wk(x,k). In this way droplet number concentrations, liquid water contents and other moments in each droplet packet are conserved, and the problem of solving the kinetic equation is replaced by one of solving a set of coupled differential equations for the moments of the number density function nk(x,t). Equations for these moments in each droplet packet are derived. The method is tested against existing solutions of the coalescence equation. Numerical results are obtained when Bleck's uniform distribution hypothesis for nk(x,t) and Golovin's asymptotic solution of the coalescence equation is chosen for the, weighting function wk(x, k). A comparison between numerical results computed by Bleck's method and by the method of this study is made. It is shown that for the correct computation of the coalescence and breakup interactions between cloud droplet packets it is very important that the, approximation of the nk(x,t) between grid points (xk,xk+1) satisfies the conservation conditions for the number concentration, liquid water content and other moments of the cloud droplet packets. If these conservation conditions are provided, even the quasi-linear approximation of the nk(x,t) in comparison with Berry's six-point interpolation will give reasonable results which are very close to the existing analytic solutions.
NASA Technical Reports Server (NTRS)
Banyukevich, A.; Ziolkovski, K.
1975-01-01
A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.
Numerical integration methods and layout improvements in the context of dynamic RNA visualization.
Shabash, Boris; Wiese, Kay C
2017-05-30
RNA visualization software tools have traditionally presented a static visualization of RNA molecules with limited ability for users to interact with the resulting image once it is complete. Only a few tools allowed for dynamic structures. One such tool is jViz.RNA. Currently, jViz.RNA employs a unique method for the creation of the RNA molecule layout by mapping the RNA nucleotides into vertexes in a graph, which we call the detailed graph, and then utilizes a Newtonian mechanics inspired system of forces to calculate a layout for the RNA molecule. The work presented here focuses on improvements to jViz.RNA that allow the drawing of RNA secondary structures according to common drawing conventions, as well as dramatic run-time performance improvements. This is done first by presenting an alternative method for mapping the RNA molecule into a graph, which we call the compressed graph, and then employing advanced numerical integration methods for the compressed graph representation. Comparing the compressed graph and detailed graph implementations, we find that the compressed graph produces results more consistent with RNA drawing conventions. However, we also find that employing the compressed graph method requires a more sophisticated initial layout to produce visualizations that would require minimal user interference. Comparing the two numerical integration methods demonstrates the higher stability of the Backward Euler method, and its resulting ability to handle much larger time steps, a high priority feature for any software which entails user interaction. The work in this manuscript presents the preferred use of compressed graphs to detailed ones, as well as the advantages of employing the Backward Euler method over the Forward Euler method. These improvements produce more stable as well as visually aesthetic representations of the RNA secondary structures. The results presented demonstrate that both the compressed graph representation, as well as the Backward
van Zon, Ramses; Hernández de la Peña, Lisandro; Peslherbe, Gilles H; Schofield, Jeremy
2008-10-01
In this paper, the imaginary-time path-integral representation of the canonical partition function of a quantum system and nonequilibrium work fluctuation relations are combined to yield methods for computing free-energy differences in quantum systems using nonequilibrium processes. The path-integral representation is isomorphic to the configurational partition function of a classical field theory, to which a natural but fictitious Hamiltonian dynamics is associated. It is shown that if this system is prepared in an equilibrium state, after which a control parameter in the fictitious Hamiltonian is changed in a finite time, then formally the Jarzynski nonequilibrium work relation and the Crooks fluctuation relation hold, where work is defined as the change in the energy as given by the fictitious Hamiltonian. Since the energy diverges for the classical field theory in canonical equilibrium, two regularization methods are introduced which limit the number of degrees of freedom to be finite. The numerical applicability of the methods is demonstrated for a quartic double-well potential with varying asymmetry. A general parameter-free smoothing procedure for the work distribution functions is useful in this context.
NASA Astrophysics Data System (ADS)
Lang, Zhi-Guo; Tan, Jiu-Bin
2009-11-01
In order to improve the precision of profile measurement based on ultra-precise thin light beam scanning, an assessment method that compares different numerical integration algorithms in frequency-domain is put forward. The compared numerical integration methods are regarded as recursive digital filters. Through comparing their functions of frequency response in frequency-domain, the delivering role of noise with different frequencies can be analyzed directly and clearly in the process of integrating measured slope data. Analyzing results show that the method of cubic spline is better than trapezoidal, Simpson and 3/8 Simpson rules.
Robust numerical method for integration of point-vortex trajectories in two dimensions
NASA Astrophysics Data System (ADS)
Smith, Spencer A.; Boghosian, Bruce M.
2011-05-01
The venerable two-dimensional (2D) point-vortex model plays an important role as a simplified version of many disparate physical systems, including superfluids, Bose-Einstein condensates, certain plasma configurations, and inviscid turbulence. This system is also a veritable mathematical playground, touching upon many different disciplines from topology to dynamic systems theory. Point-vortex dynamics are described by a relatively simple system of nonlinear ordinary differential equations which can easily be integrated numerically using an appropriate adaptive time stepping method. As the separation between a pair of vortices relative to all other intervortex length scales decreases, however, the computational time required diverges. Accuracy is usually the most discouraging casualty when trying to account for such vortex motion, though the varying energy of this ostensibly Hamiltonian system is a potentially more serious problem. We solve these problems by a series of coordinate transformations: We first transform to action-angle coordinates, which, to lowest order, treat the close pair as a single vortex amongst all others with an internal degree of freedom. We next, and most importantly, apply Lie transform perturbation theory to remove the higher-order correction terms in succession. The overall transformation drastically increases the numerical efficiency and ensures that the total energy remains constant to high accuracy.
Robust numerical method for integration of point-vortex trajectories in two dimensions.
Smith, Spencer A; Boghosian, Bruce M
2011-05-01
The venerable two-dimensional (2D) point-vortex model plays an important role as a simplified version of many disparate physical systems, including superfluids, Bose-Einstein condensates, certain plasma configurations, and inviscid turbulence. This system is also a veritable mathematical playground, touching upon many different disciplines from topology to dynamic systems theory. Point-vortex dynamics are described by a relatively simple system of nonlinear ordinary differential equations which can easily be integrated numerically using an appropriate adaptive time stepping method. As the separation between a pair of vortices relative to all other intervortex length scales decreases, however, the computational time required diverges. Accuracy is usually the most discouraging casualty when trying to account for such vortex motion, though the varying energy of this ostensibly Hamiltonian system is a potentially more serious problem. We solve these problems by a series of coordinate transformations: We first transform to action-angle coordinates, which, to lowest order, treat the close pair as a single vortex amongst all others with an internal degree of freedom. We next, and most importantly, apply Lie transform perturbation theory to remove the higher-order correction terms in succession. The overall transformation drastically increases the numerical efficiency and ensures that the total energy remains constant to high accuracy.
NASA Astrophysics Data System (ADS)
Assari, Pouria; Dehghan, Mehdi
2017-05-01
In this paper a simple and effective method is given for the numerical solution of nonlinear one- and two-dimensional Fredholm integral equations of the second kind with weakly singular kernels. The general framework of the new scheme is based on the collocation method together with radial basis functions (RBFs) constructed on scattered points in which all integrals are computed via quadrature formulae. In order to approximate the singular integrals appeared in the scheme, we introduce a special quadrature formula, since these integrals cannot be estimated by classical integration rules. The method does not require any cell structures, so it is meshless and consequently is independent of the geometry of the domain. We also present the error analysis of the proposed method and demonstrate that the convergence rate of the approach is arbitrarily high for infinitely smooth RBFs. Finally, numerical examples are included to show the validity and efficiency of the new technique and confirm the theoretical error estimates.
Cuba: Multidimensional numerical integration library
NASA Astrophysics Data System (ADS)
Hahn, Thomas
2016-08-01
The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.
NASA Astrophysics Data System (ADS)
Calvisi, Michael; Manmi, Kawa; Wang, Qianxi
2014-11-01
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. The nonspherical dynamics of contrast agents are thought to play an important role in both diagnostic and therapeutic applications, for example, causing the emission of subharmonic frequency components and enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces. A three-dimensional model for nonspherical contrast agent dynamics based on the boundary integral method is presented. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents to the nonspherical case. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. Numerical analyses for the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The results show that the presence of a coating significantly reduces the oscillation amplitude and period, increases the ultrasound pressure amplitude required to incite jetting, and reduces the jet width and velocity.
NASA Astrophysics Data System (ADS)
Kalogiratou, Z.; Monovasilis, Th.; Simos, T. E.
2016-12-01
In this work we consider trigonometrically fitted two step hybrid methods for the numerical solution of second-order initial value problems. We follow the approach of Simos and derive trigonometrically fitting conditions for methods with five stages. As an example we modify a seventh order method and apply to three well known oscillatory problems.
Comparison of symbolic and numerical integration methods for an assumed-stress hybrid shell element
NASA Technical Reports Server (NTRS)
Rengarajan, Govind; Knight, Norman F., Jr.; Aminpour, Mohammad A.
1993-01-01
Hybrid shell elements have long been regarded with reserve by the commercial finite element developers despite the high degree of reliability and accuracy associated with such formulations. The fundamental reason is the inherent higher computational cost of the hybrid approach as compared to the displacement-based formulations. However, a noteworthy factor in favor of hybrid elements is that numerical integration to generate element matrices can be entirely avoided by the use of symbolic integration. In this paper, the use of the symbolic computational approach is presented for an assumed-stress hybrid shell element with drilling degrees of freedom and the significant time savings achieved is demonstrated through an example.
Numerical integration of variational equations.
Skokos, Ch; Gerlach, E
2010-09-01
We present and compare different numerical schemes for the integration of the variational equations of autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of various degrees of freedom and investigate their efficiency in accurately reproducing well-known properties of chaos indicators such as the Lyapunov characteristic exponents and the generalized alignment indices. We find that the best numerical performance is exhibited by the "tangent map method," a scheme based on symplectic integration techniques which proves to be optimal in speed and accuracy. According to this method, a symplectic integrator is used to approximate the solution of the Hamilton equations of motion by the repeated action of a symplectic map S , while the corresponding tangent map TS is used for the integration of the variational equations. A simple and systematic technique to construct TS is also presented.
1992-01-01
mathematical papers which describe various locking effects and analyze methods (mainly mixed methods ) to overcome it. However, the treatment in these...finite element method in various areas, such as the numerical approximation of three-dimensional PDEs anu integral equations, the investigation of mixed ... methods for these versions and, most importantly, the uniform approximation of parameter-dependent problems by these versions. By the p version, we
A Numerical Methods Course Based on B-Learning: Integrated Learning Design and Follow Up
ERIC Educational Resources Information Center
Cepeda, Francisco Javier Delgado
2013-01-01
Information and communication technologies advance continuously, providing a real support for learning processes. Learning technologies address areas which previously have corresponded to face-to-face learning, while mobile resources are having a growing impact on education. Numerical Methods is a discipline and profession based on technology. In…
NASA Technical Reports Server (NTRS)
Chan, William M.
1992-01-01
The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.
Time transformations and Cowell's method. [for numerical integration of satellite motion equations
NASA Technical Reports Server (NTRS)
Velez, C. E.; Hilinski, S.
1978-01-01
The precise numerical integration of Cowell's equations of satellite motion is frequently performed with an independent variable s defined by an equation of the form dt = cr to the n-th power ds, where t represents time, r the radial distance from the center of attraction, c is a constant, and n is a parameter. This has been primarily motivated by the 'uniformizing' effects of such a transformation resulting in desirable 'analytic' stepsize control for elliptical orbits. This report discusses the 'proper' choice of the parameter n defining the independent variable s for various types of orbits and perturbation models, and develops a criterion for its selection.
ICM: an Integrated Compartment Method for numerically solving partial differential equations
Yeh, G.T.
1981-05-01
An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.
Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.
1991-09-01
A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs.
NASA Technical Reports Server (NTRS)
Yaros, S. F.; Carlson, J. R.; Chandrasekaran, B.
1986-01-01
An effort has been undertaken at the NASA Langley Research Center to assess the capabilities of available computational methods for use in propulsion integration design studies of transonic transport aircraft, particularly of pylon/nacelle combinations which exhibit essentially no interference drag. The three computer codes selected represent state-of-the-art computational methods for analyzing complex configurations at subsonic and transonic flight conditions. These are: EULER, a finitie volume solution of the Euler equation; VSAERO, a panel solution of the Laplace equation; and PPW, a finite difference solution of the small disturbance transonic equations. In general, all three codes have certain capabilities that allow them to be of some value in predicting the flows about transport configurations, but all have limitations. Until more accurate methods are available, careful application and interpretation of the results of these codes are needed.
NASA Technical Reports Server (NTRS)
Yaros, Steven F.; Carlson, John R.; Chandrasekaran, Balasubramanyan
1986-01-01
An effort has been undertaken at the NASA Langley Research Center to assess the capabilities of available computational methods for use in propulsion integration design studies of transonic transport aircraft, particularly of pylon/nacelle combinations which exhibit essentially no interference drag. The three computer codes selected represent state-of-the-art computational methods for analyzing complex configurations at subsonic and transonic flight conditions. These are: EULER, a finite volume solution of the Euler equation; VSAERO, a panel solution of the Laplace equation; and PPW, a finite difference solution of the small disturbance transonic equations. In general, all three codes have certain capabilities that allow them to be of some value in predicting the flows about transport configurations, but all have limitations. Until more accurate methods are available, careful application and interpretation of the results of these codes are needed.
NASA Astrophysics Data System (ADS)
Hellmich, S.; Mottola, S.; Hahn, G.; Kührt, E.; Hlawitschka, M.
2014-07-01
Simulations of dynamical processes in planetary systems represent an important tool for studying the orbital evolution of the systems [1--3]. Using modern numerical integration methods, it is possible to model systems containing many thousands of objects over timescales of several hundred million years. However, in general, supercomputers are needed to get reasonable simulation results in acceptable execution times [3]. To exploit the ever-growing computation power of Graphics Processing Units (GPUs) in modern desktop computers, we implemented cuSwift, a library of numerical integration methods for studying long-term dynamical processes in planetary systems. cuSwift can be seen as a re-implementation of the famous SWIFT integrator package written by Hal Levison and Martin Duncan. cuSwift is written in C/CUDA and contains different integration methods for various purposes. So far, we have implemented three algorithms: a 15th-order Radau integrator [4], the Wisdom-Holman Mapping (WHM) integrator [5], and the Regularized Mixed Variable Symplectic (RMVS) Method [6]. These algorithms treat only the planets as mutually gravitationally interacting bodies whereas asteroids and comets (or other minor bodies of interest) are treated as massless test particles which are gravitationally influenced by the massive bodies but do not affect each other or the massive bodies. The main focus of this work is on the symplectic methods (WHM and RMVS) which use a larger time step and thus are capable of integrating many particles over a large time span. As an additional feature, we implemented the non-gravitational Yarkovsky effect as described by M. Brož [7]. With cuSwift, we show that the use of modern GPUs makes it possible to speed up these methods by more than one order of magnitude compared to the single-core CPU implementation, thereby enabling modest workstation computers to perform long-term dynamical simulations. We use these methods to study the influence of the Yarkovsky
NASA Astrophysics Data System (ADS)
Lileg, Klemens
1990-12-01
The electric field integral equation is solved for a cylindrical antenna of arbitrary radius with flat endcaps using the method of moments. Trigonometric subdomain functions are used as basis functions; the weighting functions have the same shape as the basis functions (Galerkin's method). For the endcaps the approximation of the program NEC is used; the excitation is due to a homogeneous field in a gap in the center of the antenna. No analytical approximations are employed in the evaluation of the integrals needed for the computation of the impedance matrix. The admittance so obtained converges better than that found with the help of NEC, but in many cases it is not completely satisfactory. Therefore, the approximate condition for the endcaps are introduced, and trigonometric subdomain functions analogous to those used on the cylinder are used as basis functions. All additional evaluations are done without approximations. The results for the admittance converge in all cases even for a small number of segments. The impedance is measured for a number of monopoles of various radii above a conducting plane; for all frequencies good agreement with the calculation is obtained.
Bhattacharya, Amitabh; Kesarkar, Tejas
2016-10-01
A combination of finite difference (FD) and boundary integral (BI) methods is used to formulate an efficient solver for simulating unsteady Stokes flow around particles. The two-dimensional (2D) unsteady Stokes equation is being solved on a Cartesian grid using a second order FD method, while the 2D steady Stokes equation is being solved near the particle using BI method. The two methods are coupled within the viscous boundary layer, a few FD grid cells away from the particle, where solutions from both FD and BI methods are valid. We demonstrate that this hybrid method can be used to accurately solve for the flow around particles with irregular shapes, even though radius of curvature of the particle surface is not resolved by the FD grid. For dilute particle concentrations, we construct a virtual envelope around each particle and solve the BI problem for the flow field located between the envelope and the particle. The BI solver provides velocity boundary condition to the FD solver at "boundary" nodes located on the FD grid, adjacent to the particles, while the FD solver provides the velocity boundary condition to the BI solver at points located on the envelope. The coupling between FD method and BI method is implicit at every time step. This method allows us to formulate an O(N) scheme for dilute suspensions, where N is the number of particles. For semidilute suspensions, where particles may cluster, an envelope formation method has been formulated and implemented, which enables solving the BI problem for each individual particle cluster, allowing efficient simulation of hydrodynamic interaction between particles even when they are in close proximity. The method has been validated against analytical results for flow around a periodic array of cylinders and for Jeffrey orbit of a moving ellipse in shear flow. Simulation of multiple force-free irregular shaped particles in the presence of shear in a 2D slit flow has been conducted to demonstrate the robustness of
NASA Astrophysics Data System (ADS)
Bhattacharya, Amitabh; Kesarkar, Tejas
2016-10-01
A combination of finite difference (FD) and boundary integral (BI) methods is used to formulate an efficient solver for simulating unsteady Stokes flow around particles. The two-dimensional (2D) unsteady Stokes equation is being solved on a Cartesian grid using a second order FD method, while the 2D steady Stokes equation is being solved near the particle using BI method. The two methods are coupled within the viscous boundary layer, a few FD grid cells away from the particle, where solutions from both FD and BI methods are valid. We demonstrate that this hybrid method can be used to accurately solve for the flow around particles with irregular shapes, even though radius of curvature of the particle surface is not resolved by the FD grid. For dilute particle concentrations, we construct a virtual envelope around each particle and solve the BI problem for the flow field located between the envelope and the particle. The BI solver provides velocity boundary condition to the FD solver at "boundary" nodes located on the FD grid, adjacent to the particles, while the FD solver provides the velocity boundary condition to the BI solver at points located on the envelope. The coupling between FD method and BI method is implicit at every time step. This method allows us to formulate an O (N ) scheme for dilute suspensions, where N is the number of particles. For semidilute suspensions, where particles may cluster, an envelope formation method has been formulated and implemented, which enables solving the BI problem for each individual particle cluster, allowing efficient simulation of hydrodynamic interaction between particles even when they are in close proximity. The method has been validated against analytical results for flow around a periodic array of cylinders and for Jeffrey orbit of a moving ellipse in shear flow. Simulation of multiple force-free irregular shaped particles in the presence of shear in a 2D slit flow has been conducted to demonstrate the robustness of
Numerical integration using Wang Landau sampling
NASA Astrophysics Data System (ADS)
Li, Y. W.; Wüst, T.; Landau, D. P.; Lin, H. Q.
2007-09-01
We report a new application of Wang-Landau sampling to numerical integration that is straightforward to implement. It is applicable to a wide variety of integrals without restrictions and is readily generalized to higher-dimensional problems. The feasibility of the method results from a reinterpretation of the density of states in statistical physics to an appropriate measure for numerical integration. The properties of this algorithm as a new kind of Monte Carlo integration scheme are investigated with some simple integrals, and a potential application of the method is illustrated by the evaluation of integrals arising in perturbation theory of quantum many-body systems.
Numerical Integration: One Step at a Time
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2016-01-01
This article looks at the effects that adding a single extra subdivision has on the level of accuracy of some common numerical integration routines. Instead of automatically doubling the number of subdivisions for a numerical integration rule, we investigate what happens with a systematic method of judiciously selecting one extra subdivision for…
Numerical Integration: One Step at a Time
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2016-01-01
This article looks at the effects that adding a single extra subdivision has on the level of accuracy of some common numerical integration routines. Instead of automatically doubling the number of subdivisions for a numerical integration rule, we investigate what happens with a systematic method of judiciously selecting one extra subdivision for…
Numerical methods in acoustics
NASA Astrophysics Data System (ADS)
Candel, S. M.
This paper presents a survey of some computational techniques applicable to acoustic wave problems. Recent advances in wave extrapolation methods, spectral methods and boundary integral methods are discussed and illustrated by specific calculations.
NASA Astrophysics Data System (ADS)
Gaudreault, Stéphane; Pudykiewicz, Janusz A.
2016-10-01
The exponential propagation methods were applied in the past for accurate integration of the shallow water equations on the sphere. Despite obvious advantages related to the exact solution of the linear part of the system, their use for the solution of practical problems in geophysics has been limited because efficiency of the traditional algorithm for evaluating the exponential of Jacobian matrix is inadequate. In order to circumvent this limitation, we modify the existing scheme by using the Incomplete Orthogonalization Method instead of the Arnoldi iteration. We also propose a simple strategy to determine the initial size of the Krylov space using information from previous time instants. This strategy is ideally suited for the integration of fluid equations where the structure of the system Jacobian does not change rapidly between the subsequent time steps. A series of standard numerical tests performed with the shallow water model on a geodesic icosahedral grid shows that the new scheme achieves efficiency comparable to the semi-implicit methods. This fact, combined with the accuracy and the mass conservation of the exponential propagation scheme, makes the presented method a good candidate for solving many practical problems, including numerical weather prediction.
NASA Astrophysics Data System (ADS)
Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian
2016-04-01
Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a
NASA Astrophysics Data System (ADS)
Kashirin, A. A.; Smagin, S. I.; Taltykina, M. Yu.
2016-04-01
Interior and exterior three-dimensional Dirichlet problems for the Helmholtz equation are solved numerically. They are formulated as equivalent boundary Fredholm integral equations of the first kind and are approximated by systems of linear algebraic equations, which are then solved numerically by applying an iteration method. The mosaic-skeleton method is used to speed up the solution procedure.
Giurgiutiu, V.; Ionita, A.; Dillard, D.A.; Graffeo, J.K.
1996-12-31
Fracture mechanics analysis of adhesively bonded joints has attracted considerable attention in recent years. A possible approach to the analysis of adhesive layer cracks is to study a brittle adhesive between 2 elastic half-planes representing the substrates. A 2-material 3-region elasticity problem is set up and has to be solved. A modeling technique based on the work of Fleck, Hutchinson, and Suo is used. Two complex potential problems using Muskelishvili`s formulation are set up for the 3-region, 2-material model: (a) a distribution of edge dislocations is employed to simulate the crack and its near field; and (b) a crack-free problem is used to simulate the effect of the external loading applied in the far field. Superposition of the two problems is followed by matching tractions and displacements at the bimaterial boundaries. The Cauchy principal value integral is used to treat the singularities. Imposing the traction-free boundary conditions over the entire crack length yielded a linear system of two integral equations. The parameters of the problem are Dundurs` elastic mismatch coefficients, {alpha} and {beta}, and the ratio c/H representing the geometric position of the crack in the adhesive layer.
Fast methods to numerically integrate the Reynolds equation for gas fluid films
NASA Technical Reports Server (NTRS)
Dimofte, Florin
1992-01-01
The alternating direction implicit (ADI) method is adopted, modified, and applied to the Reynolds equation for thin, gas fluid films. An efficient code is developed to predict both the steady-state and dynamic performance of an aerodynamic journal bearing. An alternative approach is shown for hybrid journal gas bearings by using Liebmann's iterative solution (LIS) for elliptic partial differential equations. The results are compared with known design criteria from experimental data. The developed methods show good accuracy and very short computer running time in comparison with methods based on an inverting of a matrix. The computer codes need a small amount of memory and can be run on either personal computers or on mainframe systems.
Introduction to Numerical Methods
Schoonover, Joseph A.
2016-06-14
These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.
NASA Astrophysics Data System (ADS)
Doummar, Joanna; Kassem, Assaad
2017-04-01
In the framework of a three-year PEER (USAID/NSF) funded project, flow in a Karst system in Lebanon (Assal) dominated by snow and semi arid conditions was simulated and successfully calibrated using an integrated numerical model (MIKE-She 2016) based on high resolution input data and detailed catchment characterization. Point source infiltration and fast flow pathways were simulated by a bypass function and a high conductive lens respectively. The approach consisted of identifying all the factors used in qualitative vulnerability methods (COP, EPIK, PI, DRASTIC, GOD) applied in karst systems and to assess their influence on recharge signals in the different hydrological karst compartments (Atmosphere, Unsaturated zone and Saturated zone) based on the integrated numerical model. These parameters are usually attributed different weights according to their estimated impact on Groundwater vulnerability. The aim of this work is to quantify the importance of each of these parameters and outline parameters that are not accounted for in standard methods, but that might play a role in the vulnerability of a system. The spatial distribution of the detailed evapotranspiration, infiltration, and recharge signals from atmosphere to unsaturated zone to saturated zone was compared and contrasted among different surface settings and under varying flow conditions (e.g., in varying slopes, land cover, precipitation intensity, and soil properties as well point source infiltration). Furthermore a sensitivity analysis of individual or coupled major parameters allows quantifying their impact on recharge and indirectly on vulnerability. The preliminary analysis yields a new methodology that accounts for most of the factors influencing vulnerability while refining the weights attributed to each one of them, based on a quantitative approach.
NASA Astrophysics Data System (ADS)
Svetushkov, N. N.
2016-11-01
The paper deals with a numerical algorithm to reduce the overall system of integral equations describing the heat transfer process at any geometrically complex area (both twodimensional and three-dimensional), to the iterative solution of a system of independent onedimensional integral equations. This approach has been called "string method" and has been used to solve a number of applications, including the problem of the detonation wave front for the calculation of heat loads in pulse detonation engines. In this approach "the strings" are a set of limited segments parallel to the coordinate axes, into which the whole solving area is divided (similar to the way the strings are arranged in a tennis racket). Unlike other grid methods where often for finding solutions, the values of the desired function in the region located around a specific central point here in each iteration step is determined by the solution throughout the length of the one-dimensional "string", which connects the two end points and set them values and determine the temperature distribution along all the strings in the first step of an iterative procedure.
NASA Astrophysics Data System (ADS)
Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.
2015-02-01
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet
Chern, I-Liang
1994-08-01
Two versions of a control volume method on a symmetrized icosahedral grid are proposed for solving the shallow-water equations on a sphere. One version expresses of the equations in the 3-D Cartersian coordinate system, while the other expresses the equations in the northern/southern polar sterographic coordinate systems. The pole problem is avoided because of these expressions in both versions and the quasi-homogenity of the icosahedral grid. Truncation errors and convergence tests of the numerical gradient and divergent operators associated with this method are studied. A convergence tests of the numerical gradient and divergent operators associated with this method are studied. A convergence test for a steady zonal flow is demonstrated. Several simulations of Rossby-Haurwitz waves with various numbers are also performed.
NASA Technical Reports Server (NTRS)
Chan, William M.
1992-01-01
This project forms part of the long term computational effort to simulate the time dependent flow over the integrated Space Shuttle vehicle (orbiter, solid rocket boosters (SRB's), external tank (ET), and attach hardware) during its ascent mode for various nominal and abort flight conditions. Due to the limitations of experimental data such as wind tunnel wall effects and the difficulty of safely obtaining valid flight data, numerical simulations are undertaken to supplement the existing data base. This data can then be used to predict the aerodynamic behavior over a wide range of flight conditions. Existing computational results show relatively good overall comparison with experiments but further refinement is required to reduce numerical errors and to obtain finer agreements over a larger parameter space. One of the important goals of this project is to obtain better comparisons between numerical simulations and experiments. In the simulations performed so far, the geometry has been simplified in various ways to reduce the complexity so that useful results can be obtained in a reasonable time frame due to limitations in computer resources. In this project, the finer details of the major components of the Space Shuttle are modeled better by including more complexity in the geometry definition. Smaller components not included in early Space Shuttle simulations will now be modeled and gridded.
Numerical multi-loop integrals and applications
NASA Astrophysics Data System (ADS)
Freitas, A.
2016-09-01
Higher-order radiative corrections play an important role in precision studies of the electroweak and Higgs sector, as well as for the detailed understanding of large backgrounds to new physics searches. For corrections beyond the one-loop level and involving many independent mass and momentum scales, it is in general not possible to find analytic results, so that one needs to resort to numerical methods instead. This article presents an overview of a variety of numerical loop integration techniques, highlighting their range of applicability, suitability for automatization, and numerical precision and stability. In a second part of this article, the application of numerical loop integration methods in the area of electroweak precision tests is illustrated. Numerical methods were essential for obtaining full two-loop predictions for the most important precision observables within the Standard Model. The theoretical foundations for these corrections will be described in some detail, including aspects of the renormalization, resummation of leading log contributions, and the evaluation of the theory uncertainty from missing higher orders.
Numerical integration of asymptotic solutions of ordinary differential equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
NASA Astrophysics Data System (ADS)
Mehrmann, Volker; Xu, Hongguo
2000-11-01
We study classical control problems like pole assignment, stabilization, linear quadratic control and H[infinity] control from a numerical analysis point of view. We present several examples that show the difficulties with classical approaches and suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.
Symplectic time integrators for numerical general relativity
Richter, Ronny
2009-05-01
We describe how we use symplectic time integrators in numerical general relativity. Of particular interest is the free symplectic Stoermer-Verlet method and its application to the dynamical part of ADM-like equations.The behavior of this scheme is illustrated on an effectively 1+1-dimensional version of Einstein's equations that we apply to a perturbed Minkowski problem. We discuss differences between symplectic and non-symplectic integrators, showing favorable evolution properties of the symplectic Stoermer-Verlet method in this example.To handle the constraint part of the equations with a symplectic integrator one can use a partially constrained scheme that applies the RATTLE method, a modification of the Stoermer-Verlet method for holonomic constraints.
Safouhi, Hassan . E-mail: hassan.safouhi@ualberta.ca; Berlu, Lilian
2006-07-20
Molecular overlap-like quantum similarity measurements imply the evaluation of overlap integrals of two molecular electronic densities related by Dirac delta function. When the electronic densities are expanded over atomic orbitals using the usual LCAO-MO approach (linear combination of atomic orbitals), overlap-like quantum similarity integrals could be expressed in terms of four-center overlap integrals. It is shown that by introducing the Fourier transform of delta Dirac function in the integrals and using the Fourier transform approach combined with the so-called B functions, one can obtain analytic expressions of the integrals under consideration. These analytic expressions involve highly oscillatory semi-infinite spherical Bessel functions, which are the principal source of severe numerical and computational difficulties. In this work, we present a highly efficient algorithm for a fast and accurate numerical evaluation of these multicenter overlap-like quantum similarity integrals over Slater type functions. This algorithm is based on the SD-bar approach due to Safouhi. Recurrence formulae are used for a better control of the degree of accuracy and for a better stability of the algorithm. The numerical result section shows the efficiency of our algorithm, compared with the alternatives using the one-center two-range expansion method, which led to very complicated analytic expressions, the epsilon algorithm and the nonlinear D-bar transformation.
Numerical integration of diffraction integrals for a circular aperture
NASA Astrophysics Data System (ADS)
Cooper, I. J.; Sheppard, C. J. R.; Sharma, M.
It is possible to obtain an accurate irradiance distribution for the diffracted wave field from an aperture by the numerical evaluation of the two-dimensional diffraction integrals using a product-integration method in which Simpson's 1/3 rule is applied twice. The calculations can be done quickly using a standard PC by utilizing matrix operations on complex numbers with Matlab. The diffracted wave field can be calculated from the plane of the aperture to the far field without introducing many of the standard approximations that are used to give Fresnel or Fraunhofer diffraction. The numerical method is used to compare the diffracted irradiance distribution from a circular aperture as predicted by Kirchhoff, Rayleigh-Sommerfeld 1 and Rayleigh-Sommerfeld 2 diffraction integrals.
Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto
2015-01-01
The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was
Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto
2015-01-01
The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was
NASA Astrophysics Data System (ADS)
Virgo, Simon; Ankit, Kumar; Nestler, Britta; Urai, Janos L.
2016-04-01
Crack-seal veins form in a complex interplay of coupled thermal, hydraulic, mechanical and chemical processes. Their formation and cyclic growth involves brittle fracturing and dilatancy, phases of increased fluid flow and the growth of crystals that fill the voids and reestablish the mechanical strength. Existing numerical models of vein formation focus on selected aspects of the coupled process. Until today, no model exists that is able to use a realistic representation of the fracturing AND sealing processes, simultaneously. To address this challenge, we propose the bidirectional coupling of two numerical methods that have proven themselves as very powerful to model the fundamental processes acting in crack-seal systems: Phase-field and the Discrete Element Method (DEM). The phase-field Method was recently successfully extended to model the precipitation of quartz crystals from an aqueous solution and applied to model the sealing of a vein over multiple opening events (Ankit et al., 2013; Ankit et al., 2015a; Ankit et al., 2015b). The advantage over former, purely kinematic approaches is that in phase-field, the crystal growth is modeled based on thermodynamic and kinetic principles. Different driving forces for microstructure evolution, such as chemical bulk free energy, interfacial energy, elastic strain energy and different transport processes, such as mass diffusion and advection, can be coupled and the effect on the evolution process can be studied in 3D. The Discrete Element Method was already used in several studies to model the fracturing of rocks and the incremental growth of veins by repeated fracturing (Virgo et al., 2013; Virgo et al., 2014). Materials in DEM are represented by volumes of packed spherical particles and the response to the material to stress is modeled by interaction of the particles with their nearest neighbours. For rocks, in 3D, the method provides a realistic brittle failure behaviour. Exchange Routines are being developed that
NASA Astrophysics Data System (ADS)
Saylor, Rick D.; Ford, Gregory D.
The integration of systems of ordinary differential equations (ODEs) that arise in atmospheric photochemistry is of significant concern to tropospheric and stratospheric chemistry modelers. As a consequence of the stiff nature of these ODE systems, their solution requires a large fraction of the total computational effort in three-dimensional chemical model simulations. Several integration techniques have been proposed and utilized over the years in an attempt to provide computationally efficient, yet accurate, solutions to chemical kinetics ODES. In this work, we present a comparison of some of these techniques and argue that valid comparisons of ODE solvers must take into account the trade-off between solution accuracy and computational efficiency. Misleading comparison results can be obtained by neglecting the fact that any ODE solution method can be made faster or slower by manipulation of the appropriate error tolerances or time steps. Comparisons among ODE solution techniques should therefore attempt to identify which technique can provide the most accurate solution with the least computational effort over the entire range of behavior of each technique. We present here a procedure by which ODE solver comparisons can achieve this goal. Using this methodology, we compare a variety of integration techniques, including methods proposed by Hesstvedt et al. (1978, Int. J. Chem. Kinet.10, 971-994), Gong and Cho (1993, Atmospheric Environment27A, 2147-2160), Young and Boris (1977, J. phys. Chem.81, 2424-2427) and Hindmarsh (1983, In Scientific Computing (edited by Stepleman R. S. et al.), pp. 55-64. North-Holland, Amsterdam). We find that Gear-type solvers such as the Livermore Solver for ordinary differential equations (LSODE) and the sparse-matrix version of LSODE (LSODES) provide the most accurate solution of our test problems with the least computational effort.
Efficient numerical evaluation of Feynman integrals
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Jian; Yan, Qi-Shu; Zhao, Xiaoran
2016-03-01
Feynman loop integrals are a key ingredient for the calculation of higher order radiation effects, and are responsible for reliable and accurate theoretical prediction. We improve the efficiency of numerical integration in sector decomposition by implementing a quasi-Monte Carlo method associated with the CUDA/GPU technique. For demonstration we present the results of several Feynman integrals up to two loops in both Euclidean and physical kinematic regions in comparison with those obtained from FIESTA3. It is shown that both planar and non-planar two-loop master integrals in the physical kinematic region can be evaluated in less than half a minute with accuracy, which makes the direct numerical approach viable for precise investigation of higher order effects in multi-loop processes, e.g. the next-to-leading order QCD effect in Higgs pair production via gluon fusion with a finite top quark mass. Supported by the Natural Science Foundation of China (11305179 11475180), Youth Innovation Promotion Association, CAS, IHEP Innovation (Y4545170Y2), State Key Lab for Electronics and Particle Detectors, Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y4KF061CJ1), Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA-EXC 1098)
Numerical Methods for Initial Value Problems.
1980-07-01
of general multistep methods for ordinary differential equations a4 to implement an efficient algorithm for the solution of stiff equations . Still...integral equations II. Roundoff error for variants of Gaussian elimination III. Multistep methods for ordinary differential equations IV. Multi-grid...62 -! Paige III. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS ....... 63 1. Equivalent Forms of Multistep
Numerical integration of ordinary differential equations of various orders
NASA Technical Reports Server (NTRS)
Gear, C. W.
1969-01-01
Report describes techniques for the numerical integration of differential equations of various orders. Modified multistep predictor-corrector methods for general initial-value problems are discussed and new methods are introduced.
NASA Technical Reports Server (NTRS)
Emukashvily, I. M.
1982-01-01
An extension of the method of moments is developed for the numerical integration of the kinetic equations of droplet spectra evolution by condensation/evaporation and by coalescence/breakup processes. The number density function n sub k (x,t) in each separate droplet packet between droplet mass grid points (x sub k, x sub k+1) is represented by an expansion in orthogonal polynomials with a given weighting function. In this way droplet number concentrations, liquid water contents and other moments in each droplet packet are conserved and the problem of solving the kinetic equations is replaced by one of solving a set of coupled differential equations for the number density function moments. The method is tested against analytic solutions of the corresponding kinetic equations. Numerical results are obtained for different coalescence/breakup and condensation/evaporation kernels and for different initial droplet spectra. Also droplet mass grid intervals, weighting functions, and time steps are varied.
Sun, Kerang
2015-09-01
A three-dimensional finite element model is constructed to simulate the experimental conditions presented in a paper published in this journal [Goltz et al., 2009. Validation of two innovative methods to measure contaminant mass flux in groundwater. Journal of Contaminant Hydrology 106 (2009) 51-61] where the modified integral pumping test (MIPT) method was found to significantly underestimate the specific discharge in an artificial aquifer. The numerical model closely replicates the experimental configuration with explicit representation of the pumping well column and skin, allowing for the model to simulate the wellbore flow in the pumping well as an integral part of the porous media flow in the aquifer using the equivalent hydraulic conductivity approach. The equivalent hydraulic conductivity is used to account for head losses due to friction within the wellbore of the pumping well. Applying the MIPT method on the model simulated piezometric heads resulted in a specific discharge that underestimates the true specific discharge in the experimental aquifer by 18.8%, compared with the 57% underestimation of mass flux by the experiment reported by Goltz et al. (2009). Alternative simulation shows that the numerical model is capable of approximately replicating the experiment results when the equivalent hydraulic conductivity is reduced by an order of magnitude, suggesting that the accuracy of the MIPT estimation could be improved by expanding the physical meaning of the equivalent hydraulic conductivity to account for other factors such as orifice losses in addition to frictional losses within the wellbore. Numerical experiments also show that when applying the MIPT method to estimate hydraulic parameters, use of depth-integrated piezometric head instead of the head near the pump intake can reduce the estimation error resulting from well losses, but not the error associated with the well not being fully screened.
NASA Astrophysics Data System (ADS)
Sun, Kerang
2015-09-01
A three-dimensional finite element model is constructed to simulate the experimental conditions presented in a paper published in this journal [Goltz et al., 2009. Validation of two innovative methods to measure contaminant mass flux in groundwater. Journal of Contaminant Hydrology 106 (2009) 51-61] where the modified integral pumping test (MIPT) method was found to significantly underestimate the specific discharge in an artificial aquifer. The numerical model closely replicates the experimental configuration with explicit representation of the pumping well column and skin, allowing for the model to simulate the wellbore flow in the pumping well as an integral part of the porous media flow in the aquifer using the equivalent hydraulic conductivity approach. The equivalent hydraulic conductivity is used to account for head losses due to friction within the wellbore of the pumping well. Applying the MIPT method on the model simulated piezometric heads resulted in a specific discharge that underestimates the true specific discharge in the experimental aquifer by 18.8%, compared with the 57% underestimation of mass flux by the experiment reported by Goltz et al. (2009). Alternative simulation shows that the numerical model is capable of approximately replicating the experiment results when the equivalent hydraulic conductivity is reduced by an order of magnitude, suggesting that the accuracy of the MIPT estimation could be improved by expanding the physical meaning of the equivalent hydraulic conductivity to account for other factors such as orifice losses in addition to frictional losses within the wellbore. Numerical experiments also show that when applying the MIPT method to estimate hydraulic parameters, use of depth-integrated piezometric head instead of the head near the pump intake can reduce the estimation error resulting from well losses, but not the error associated with the well not being fully screened.
Determination of geopotential coefficients by efficient numerical integration techniques
NASA Astrophysics Data System (ADS)
Hansen, R. A.
An efficient, high accuracy, double integration method which evaluates the iterated form of the surface integral representations of the geopotential coefficients is presented. The efficiency and high accuracy of this method is obtained by the utilization of the Romberg numerical integration scheme. Additional efficiency is obtained by computing the inner integral which is common to many different coefficients only once. This method was tested using a test case earth which represented the basic features of the earth's potential field.
A numerical method of regenerator
NASA Astrophysics Data System (ADS)
Zhu, Shaowei; Matsubara, Yoichi
2004-02-01
A numerical method for regenerators is introduced in this paper. It is not only suitable for the regenerators in cryocoolers and Stirling engines, but also suitable for the stacks in acoustic engines and the pulse tubes in pulse tube refrigerators. The numerical model is one dimensional periodic unsteady flow model. The numerical method is based on the control volume concept with the implicitly solve method. The iteration acceleration method, which considers the one-dimensional periodic unsteady problem as the steady two-dimensional problem, is used for decreasing the calculation time. By this method, the regenerator in an inertance tube pulse tube refrigerator was simulated. The result is useful for understanding how the inefficiency of the regenerator changes with the inertance effect.
Teaching Numerical Integration in a Revitalized Calculus.
ERIC Educational Resources Information Center
Fay, Temple H.
1990-01-01
Described is an approach to the derivation of numerical integration formulas. Students develop their own formulas using polynomial interpolation and determine error estimates. The Newton-Cotes formulas and error analysis are reviewed. (KR)
An Integrative Theory of Numerical Development
ERIC Educational Resources Information Center
Siegler, Robert; Lortie-Forgues, Hugues
2014-01-01
Understanding of numerical development is growing rapidly, but the volume and diversity of findings can make it difficult to perceive any coherence in the process. The integrative theory of numerical development posits that a coherent theme is present, however--progressive broadening of the set of numbers whose magnitudes can be accurately…
The numerical evaluation of a challenging integral
NASA Astrophysics Data System (ADS)
Gautschi, Walter
2008-12-01
Standard numerical analysis tools, combined with elementary calculus, are deployed to evaluate a densely and wildly oscillatory integral that had been proposed as a computational problem in the SIAM 100-Digit Challenge. Numerical results are presented to accuracies up to 64 decimal digits.
Numerical Integral of Resistance Coefficients in Diffusion
NASA Astrophysics Data System (ADS)
Zhang, Q. S.
2017-01-01
The resistance coefficients in the screened Coulomb potential of stellar plasma are evaluated to high accuracy. I have analyzed the possible singularities in the integral of scattering angle. There are possible singularities in the case of an attractive potential. This may result in a problem for the numerical integral. In order to avoid the problem, I have used a proper scheme, e.g., splitting into many subintervals where the width of each subinterval is determined by the variation of the integrand, to calculate the scattering angle. The collision integrals are calculated by using Romberg’s method, therefore the accuracy is high (i.e., ∼10‑12). The results of collision integrals and their derivatives for ‑7 ≤ ψ ≤ 5 are listed. By using Hermite polynomial interpolation from those data, the collision integrals can be obtained with an accuracy of 10‑10. For very weakly coupled plasma (ψ ≥ 4.5), analytical fittings for collision integrals are available with an accuracy of 10‑11. I have compared the final results of resistance coefficients with other works and found that, for a repulsive potential, the results are basically the same as others’ for an attractive potential, the results in cases of intermediate and strong coupling show significant differences. The resulting resistance coefficients are tested in the solar model. Comparing with the widely used models of Cox et al. and Thoul et al., the resistance coefficients in the screened Coulomb potential lead to a slightly weaker effect in the solar model, which is contrary to the expectation of attempts to solve the solar abundance problem.
Orientation of the earth by numerical integration
NASA Technical Reports Server (NTRS)
Fajemirokun, F. A.; Hotter, F. D.; Mueller, I. I.
1976-01-01
A fundamental problem is the determination of the orientation of the earth in the celestial coordinate system. Classical reductions for precession and nutation can be expected to be consistent with the present-day observations, however, corrections to the classical theory are difficult to model because of the large number of coefficients involved. Consequently, a portion of the research has been devoted to numerically integrating the Eulerian equations of motion for a rigid earth and considering the six initial conditions of the integration as unknowns. Comparison of the three adjusted Eulerian angles from the numerical integration over 1000 days indicates agreement with classical theory to within 0.003 seconds of arc.
Numerical relativity and spectral methods
NASA Astrophysics Data System (ADS)
Grandclement, P.
2016-12-01
The term numerical relativity denotes the various techniques that aim at solving Einstein's equations using computers. Those computations can be divided into two families: temporal evolutions on the one hand and stationary or periodic solutions on the other one. After a brief presentation of those two classes of problems, I will introduce a numerical tool designed to solve Einstein's equations: the KADATH library. It is based on the the use of spectral methods that can reach high accuracy with moderate computational resources. I will present some applications about quasicircular orbits of black holes and boson star configurations.
Numerical methods for turbulent flow
NASA Technical Reports Server (NTRS)
Turner, James C., Jr.
1988-01-01
It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.
Numerical comparison between DHF and RHF methods
NASA Astrophysics Data System (ADS)
Kobus, J.; Jaskolski, W.
1987-10-01
A detailed numerical comparison of the Dirac-Hartree-Fock method and the relativistic Hartree-Fock (RHF) method of Cowan and Griffith (1976) is presented, considering the total energy, the orbital energies, and the one-electron and two-electron integrals. The RHF method is found to yield accurate values of the relativistic transition energies. Using accurate values of the correlation corrections for p-electron and d-electron systems, the usefulness of the RHF method in obtaining relativistic corrections to the differential term energies is demonstrated. Advantages of the method for positron scattering on heavy systems are also pointed out.
Numerical methods for molecular dynamics
Skeel, R.D.
1991-01-01
This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.
Fibonacci numerical integration on a sphere
NASA Astrophysics Data System (ADS)
Hannay, J. H.; Nye, J. F.
2004-12-01
For elementary numerical integration on a sphere, there is a distinct advantage in using an oblique array of integration sampling points based on a chosen pair of successive Fibonacci numbers. The pattern has a familiar appearance of intersecting spirals, avoiding the local anisotropy of a conventional latitude longitude array. Besides the oblique Fibonacci array, the prescription we give is also based on a non-uniform scaling used for one-dimensional numerical integration, and indeed achieves the same order of accuracy as for one dimension: error ~N-6 for N points. This benefit of Fibonacci is not shared by domains of integration with boundaries (e.g., a square, for which it was originally proposed); with non-uniform scaling the error goes as N-3, with or without Fibonacci. For experimental measurements over a sphere our prescription is realized by a non-uniform Fibonacci array of weighted sampling points.
Translation and integration of numerical atomic orbitals in linear molecules
Heinäsmäki, Sami
2014-02-14
We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.
Highly Parallel, High-Precision Numerical Integration
Bailey, David H.; Borwein, Jonathan M.
2005-04-22
This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.
Numerical methods for multibody systems
NASA Technical Reports Server (NTRS)
Glowinski, Roland; Nasser, Mahmoud G.
1994-01-01
This article gives a brief summary of some results obtained by Nasser on modeling and simulation of inequality problems in multibody dynamics. In particular, the augmented Lagrangian method discussed here is applied to a constrained motion problem with impulsive inequality constraints. A fundamental characteristic of the multibody dynamics problem is the lack of global convexity of its Lagrangian. The problem is transformed into a convex analysis problem by localization (piecewise linearization), where the augmented Lagrangian has been successfully used. A model test problem is considered and a set of numerical experiments is presented.
Numerical methods in heat transfer
Lewis, R.W.; Morgan, K.; Schrefler, B.A.
1983-01-01
Topics discussed in this book include modelling the effects of fire, ablation, heat flow in porous rock, thermal stress and dissolving coal. Alternative energy sources such as geothermal reservoirs and solar radiation are also discussed. Includes bibliographies at the end of the papers, a cited author index, and a subject index. Contents, abridged: Exact finite element solutions for linear steady state thermal problems. Steep gradient modelling in diffusion problems. Numerical solution of coupled conduction-convection problems using lumped-parameter methods. The prediction of turbulent heat transfer by the finite element methods. The influence of creep and transformation plasticity in the analysis of stresses due to heat treatment. Heat and moisture movement in wood composite materials during the pressing operation-a simplified model. Index.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, J.; Mathematics and Computer Science; Rush Univ.
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Spectral Methods for Numerical Relativity.
Grandclément, Philippe; Novak, Jérôme
2009-01-01
Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole-binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole-binary mergers.
Numerical integration routines for near-earth operations
NASA Technical Reports Server (NTRS)
Powers, W. F.
1973-01-01
Two general purpose numerical integration schemes were built into the NASA-JSC computer system. The state-of-the-art of numerical integration, the particular integrators built into the JSC computer system, and the use of the new integration packages are described. Background information about numerical integration and the variable-order, variable-stepsize Adams numerical integration technique is discussed. Results concerning the PEACE parameter optimization program are given along with recommendations and conclusions.
Numerical integration of discontinuous functions: moment fitting and smart octree
NASA Astrophysics Data System (ADS)
Hubrich, Simeon; Di Stolfo, Paolo; Kudela, László; Kollmannsberger, Stefan; Rank, Ernst; Schröder, Andreas; Düster, Alexander
2017-07-01
A fast and simple grid generation can be achieved by non-standard discretization methods where the mesh does not conform to the boundary or the internal interfaces of the problem. However, this simplification leads to discontinuous integrands for intersected elements and, therefore, standard quadrature rules do not perform well anymore. Consequently, special methods are required for the numerical integration. To this end, we present two approaches to obtain quadrature rules for arbitrary domains. The first approach is based on an extension of the moment fitting method combined with an optimization strategy for the position and weights of the quadrature points. In the second approach, we apply the smart octree, which generates curved sub-cells for the integration mesh. To demonstrate the performance of the proposed methods, we consider several numerical examples, showing that the methods lead to efficient quadrature rules, resulting in less integration points and in high accuracy.
Numerical methods used in fusion science numerical modeling
NASA Astrophysics Data System (ADS)
Yagi, M.
2015-04-01
The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.
Numerical solution of nonlinear Hammerstein fuzzy functional integral equations
NASA Astrophysics Data System (ADS)
Enkov, Svetoslav; Georgieva, Atanaska; Nikolla, Renato
2016-12-01
In this work we investigate nonlinear Hammerstein fuzzy functional integral equation. Our aim is to provide an efficient iterative method of successive approximations by optimal quadrature formula for classes of fuzzy number-valued functions of Lipschitz type to approximate the solution. We prove the convergence of the method by Banach's fixed point theorem and investigate the numerical stability of the presented method with respect to the choice of the first iteration. Finally, illustrative numerical experiment demonstrate the accuracy and the convergence of the proposed method.
Numerical solution methods for viscoelastic orthotropic materials
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1988-01-01
Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.
Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes
NASA Technical Reports Server (NTRS)
Abrams, D.; Williams, C.
1999-01-01
We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.
Linearized Implicit Numerical Method for Burgers' Equation
NASA Astrophysics Data System (ADS)
Mukundan, Vijitha; Awasthi, Ashish
2016-12-01
In this work, a novel numerical scheme based on method of lines (MOL) is proposed to solve the nonlinear time dependent Burgers' equation. The Burgers' equation is semi discretized in spatial direction by using MOL to yield system of nonlinear ordinary differential equations in time. The resulting system of nonlinear differential equations is integrated by an implicit finite difference method. We have not used Cole-Hopf transformation which gives less accurate solution for very small values of kinematic viscosity. Also, we have not considered nonlinear solvers that are computationally costlier and take more running time.In the proposed scheme nonlinearity is tackled by Taylor series and the use of fully discretized scheme is easy and practical. The proposed method is unconditionally stable in the linear sense. Furthermore, efficiency of the proposed scheme is demonstrated using three test problems.
Correcting numerical integration errors caused by small aliasing errors
Smallwood, D.O.
1997-11-01
Small sampling errors can have a large effect on numerically integrated waveforms. An example is the integration of acceleration to compute velocity and displacement waveforms. These large integration errors complicate checking the suitability of the acceleration waveform for reproduction on shakers. For waveforms typically used for shaker reproduction, the errors become significant when the frequency content of the waveform spans a large frequency range. It is shown that these errors are essentially independent of the numerical integration method used, and are caused by small aliasing errors from the frequency components near the Nyquist frequency. A method to repair the integrated waveforms is presented. The method involves using a model of the acceleration error, and fitting this model to the acceleration, velocity, and displacement waveforms to force the waveforms to fit the assumed initial and final values. The correction is then subtracted from the acceleration before integration. The method is effective where the errors are isolated to a small section of the time history. It is shown that the common method to repair these errors using a high pass filter is sometimes ineffective for this class of problem.
RELAP-7 Numerical Stabilization: Entropy Viscosity Method
R. A. Berry; M. O. Delchini; J. Ragusa
2014-06-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.
1991-04-01
SUMMARY OF COMPLETED PROJECT (for public use) The summary (about 200 words) must be self-contained and intellegible to a scientifically literate reader...dialogue among re- searchers in symbolic methods and numerical computation, and their appli- cations in certain disciplines of artificial intelligence...Lozano-Perez Purdue University Artificial Intelligence Laboratory West Lafayette, IN 47907 Massachusetts Institute of Technology (317) 494-6181 545
Adaptive geometric numerical integration for point vortex dynamics.
San Miguel, A
2006-10-01
In this paper we describe a variable stepsize integration method for the Hamiltonian dynamics of point vortices based on the explicit symplectic Zhang and Qin scheme. The adapted method is also explicit and preserves the reversible structure of the flow. In order to check the behavior of this adaptive method a numerical study of the exchange-scattering phenomenon in the three-vortex problem is made. The symmetry of the orbit and the energy evolution are discussed for the exchange-scattering model. A long-term integration of this and other models composed also of three vortices indicates that the adaptive Zhang-Qin method has good properties of efficiency and preservation of the first integrals associated with point vortex systems.
Stability of numerical integration techniques for transient rotor dynamics
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1977-01-01
A finite element model of a rotor bearing system was analyzed to determine the stability limits of the forward, backward, and centered Euler; Runge-Kutta; Milne; and Adams numerical integration techniques. The analysis concludes that the highest frequency mode determines the maximum time step for a stable solution. Thus, the number of mass elements should be minimized. Increasing the damping can sometimes cause numerical instability. For a uniform shaft, with 10 mass elements, operating at approximately the first critical speed, the maximum time step for the Runge-Kutta, Milne, and Adams methods is that which corresponds to approximately 1 degree of shaft movement. This is independent of rotor dimensions.
New Numerical Integrators Based on Solvability and Splitting
2007-11-02
display a currently valid OMB control number. 1. REPORT DATE 03 JAN 2005 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE New...Group Methods And Control Theory Workshop Held on 28 June 2004 - 1 July 2004., The original document contains color images. 14. ABSTRACT 15...Mechanics, NMR spectroscopy, infrared divergences in QED, control theory,... 1.1 Magnus expansion (IV) NEW NUMERICAL INTEGRATORS BASED ON SOLVABILITY AND
Excel spreadsheet in teaching numerical methods
NASA Astrophysics Data System (ADS)
Djamila, Harimi
2017-09-01
One of the important objectives in teaching numerical methods for undergraduates’ students is to bring into the comprehension of numerical methods algorithms. Although, manual calculation is important in understanding the procedure, it is time consuming and prone to error. This is specifically the case when considering the iteration procedure used in many numerical methods. Currently, many commercial programs are useful in teaching numerical methods such as Matlab, Maple, and Mathematica. These are usually not user-friendly by the uninitiated. Excel spreadsheet offers an initial level of programming, which it can be used either in or off campus. The students will not be distracted with writing codes. It must be emphasized that general commercial software is required to be introduced later to more elaborated questions. This article aims to report on a teaching numerical methods strategy for undergraduates engineering programs. It is directed to students, lecturers and researchers in engineering field.
Implicit Numerical Methods in Meteorology
NASA Technical Reports Server (NTRS)
Augenbaum, J.
1984-01-01
The development of a fully implicit finite-difference model, whose time step is chosen solely to resolve accurately the physical flow of interest is discussed. The method is based on an operator factorization which reduces the dimensionality of the implicit approach: at each time step only (spatially) one-dimensional block-tridiagonal linear systems must be solved. The scheme uses two time levels and is second-order accurate in time. Compact implicit spatial differences are used, yielding fourth-order accuracy both vertically and horizontally. In addition, the development of a fully interactive computer code is discussed. With this code the user will have a choice of models, with various levels of accuracy and sophistication, which are imbedded, as subsets of the fully implicit 3D code.
Numerical Methods For Chemically Reacting Flows
NASA Technical Reports Server (NTRS)
Leveque, R. J.; Yee, H. C.
1990-01-01
Issues related to numerical stability, accuracy, and resolution discussed. Technical memorandum presents issues in numerical solution of hyperbolic conservation laws containing "stiff" (relatively large and rapidly changing) source terms. Such equations often used to represent chemically reacting flows. Usually solved by finite-difference numerical methods. Source terms generally necessitate use of small time and/or space steps to obtain sufficient resolution, especially at discontinuities, where incorrect mathematical modeling results in unphysical solutions.
A simple, reliable and efficient scheme for automatic numerical integration
NASA Astrophysics Data System (ADS)
Pérez-Jordá, JoséM.; San-Fabián, Emilio; Moscardó, Federico
1992-06-01
A scheme for automatic numerical integration is presented. It uses the change of variable x=1+( {2}/{π}){[1+ {2}/{3}(1-z 2)]z√1-z 2 - arccosz} to transform the integral to be computed, ∫ 1-1f( x) d x, into ( {16}/{3π})∫ 1-1f(x)(1-z 2)√1-z 2dz , which is approximated by successive n-points Gauss-Chebyshev quadrature formulas of the second kind ( In). Due to the special nature of their abscissas and weights, a sequence of formulas I 1, I 3, I 7,…, I {(n-1)}/{2}, I n, I 2n+1 may be generated, such that I2 n+1 may be computed with only n + 1 new integrand evaluations, using the previous value of In. An error estimation is proposed for I2 n+1 , which only needs two previous values of the sequence ( In and I {(n+1)}/{2}). The algorithm may be implemented by a very short program (a FORTRAN 77 version is included) that spends practically all its running time in integrand evaluations. It is compared with other methods for automatic numerical integration (trapezoidal rule, Simpson's rule, Romberg's method, an adaptive Gauss-Kronrod rule and Clenshaw-Curtis method) over a broad set of 20 functions. We conclude that the present method is very simple and reliable and is the most efficient among the methods tested here. Possible applications in density functional theory are explored.
Applying integrals of motion to the numerical solution of differential equations
NASA Technical Reports Server (NTRS)
Jezewski, D. J.
1979-01-01
A method is developed for using the integrals of systems of nonlinear, ordinary differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scaler or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.
Applying integrals of motion to the numerical solution of differential equations
NASA Technical Reports Server (NTRS)
Vezewski, D. J.
1980-01-01
A method is developed for using the integrals of systems of nonlinear, ordinary, differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scalar or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.
Efficient numerical integration of neutrino oscillations in matter
NASA Astrophysics Data System (ADS)
Casas, F.; D'Olivo, J. C.; Oteo, J. A.
2016-12-01
A special purpose solver, based on the Magnus expansion, well suited for the integration of the linear three neutrino oscillations equations in matter is proposed. The computations are speeded up to two orders of magnitude with respect to a general numerical integrator, a fact that could smooth the way for massive numerical integration concomitant with experimental data analyses. Detailed illustrations about numerical procedure and computer time costs are provided.
A fast numerical integrator for relativistic charged particle tracking
NASA Astrophysics Data System (ADS)
Qiang, Ji
2017-09-01
In this paper, we report on a fast second-order numerical integrator to solve the Lorentz force equations of a relativistic charged particle in electromagnetic fields. This numerical integrator shows less numerical error than the popular Boris algorithm in tracking the relativistic particle subject to electric and magnetic space-charge fields and requires less number of operations than another recently proposed relativistic integrator.
Integrated College Methods Courses.
ERIC Educational Resources Information Center
Freeland, Kent; Willis, Melinda
This study compared the performance of two groups of preservice teachers at Kentucky's Morehead State University. One group had taken four of their methods courses (reading, language arts, social studies, and mathematics) in an integrated fashion from four faculty members. This group was termed the block group. The other group (the nonblock group)…
NASA Astrophysics Data System (ADS)
Mengistu, Haile; Tessema, Abera; Abiye, Tamiru; Demlie, Molla; Lin, Haili
2015-05-01
Improved groundwater flow conceptualization was achieved using environmental stable isotope (ESI) and hydrochemical information to complete a numerical groundwater flow model with reasonable certainty. The study aimed to assess the source of excess water at a pumping shaft located near the town of Stilfontein, North West Province, South Africa. The results indicate that the water intercepted at Margaret Shaft comes largely from seepage of a nearby mine tailings dam (Dam 5) and from the upper dolomite aquifer. If pumping at the shaft continues at the current rate and Dam 5 is decommissioned, neighbouring shallow farm boreholes would dry up within approximately 10 years. Stable isotope data of shaft water indicate that up to 50 % of the pumped water from Margaret Shaft is recirculated, mainly from Dam 5. The results are supplemented by tritium data, demonstrating that recent recharge is taking place through open fractures as well as man-made underground workings, whereas hydrochemical data of fissure water samples from roughly 950 m below ground level exhibit mine-water signatures. Pumping at the shaft, which captures shallow groundwater as well as seepage from surface dams, is a highly recommended option for preventing flooding of downstream mines. The results of this research highlight the importance of additional methods (ESI and hydrochemical analyses) to improve flow conceptualization and numerical modelling.
Perception of numerical methods in rarefied gasdynamics
NASA Technical Reports Server (NTRS)
Bird, G. A.
1989-01-01
The relationships between various numerical methods applied to problems in rarefied gasdynamics are discussed, with emphasis on conflicting viewpoints and computational requirements associated with physical simulation versus the numerical solution of the Boltzmann equation. The basic differences between the molecular dynamics and direct simulation methods are shown to affect their applicability to dense and rarefied flows. Methods for the probabilistic selection of representative collision in the direct simulation Monte Carlo method are reviewed. A method combining the most desirable features of the earlier methods is presented.
Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Wilton, Donald R.; Khayat, Michael A.
2007-01-01
Recently, significant progress has been made in the handling of singular and nearly-singular potential integrals that commonly arise in the Boundary Element Method (BEM). To facilitate object-oriented programming and handling of higher order basis functions, cancellation techniques are favored over techniques involving singularity subtraction. However, gradients of the Newton-type potentials, which produce hypersingular kernels, are also frequently required in BEM formulations. As is the case with the potentials, treatment of the near-hypersingular integrals has proven more challenging than treating the limiting case in which the observation point approaches the surface. Historically, numerical evaluation of these near-hypersingularities has often involved a two-step procedure: a singularity subtraction to reduce the order of the singularity, followed by a boundary contour integral evaluation of the extracted part. Since this evaluation necessarily links basis function, Green s function, and the integration domain (element shape), the approach ill fits object-oriented programming concepts. Thus, there is a need for cancellation-type techniques for efficient numerical evaluation of the gradient of the potential. Progress in the development of efficient cancellation-type procedures for the gradient potentials was recently presented. To the extent possible, a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. However, since the gradient kernel involves singularities of different orders, we also require that the transformation leaves remaining terms that are analytic. The terms "normal" and "tangential" are used herein with reference to the source element. Also, since computational formulations often involve the numerical evaluation of both potentials and their gradients, it is highly desirable that a single integration procedure efficiently handles both.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
Klein, R I; Stone, J M
2007-11-20
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.
Numerical Methods for Nonlinear Hillslope Transport Laws
NASA Astrophysics Data System (ADS)
Perron, J. T.
2008-12-01
The numerical methods used to solve nonlinear sediment transport equations often set restrictive limits on the stability and accuracy of landscape evolution models. This is especially true for hillslope transport laws in which sediment flux increases nonlinearly as the surface slope approaches a limiting value. Standard explicit finite difference methods applied to such laws are subject to fundamental limits on numerical stability that require time steps much shorter than the timescales over which landscapes evolve, creating a heavy computational burden. Methods that rely on cell-to-cell sediment routing schemes can introduce significant errors that may not be obvious unless the numerical solution is compared with a known solution. I present a new, implicit method for nonlinear hillslope transport that builds on a previously proposed approach to modeling alluvial sediment transport but avoids the use of a cell-to-cell sediment routing scheme. Comparisons of numerical solutions with analytic solutions in one and two dimensions show that the new method retains the accuracy of the explicit method while allowing timesteps several orders of magnitude longer than the maximum timesteps permitted by the explicit method. The method can be adapted to any transport law in which the expression for sediment flux is differentiable, including coupled systems in which sediment flux is a function of quantities such as soil depth.
Error Estimates for Numerical Integration Rules
ERIC Educational Resources Information Center
Mercer, Peter R.
2005-01-01
The starting point for this discussion of error estimates is the fact that integrals that arise in Fourier series have properties that can be used to get improved bounds. This idea is extended to more general situations.
Multistep integration formulas for the numerical integration of the satellite problem
NASA Technical Reports Server (NTRS)
Lundberg, J. B.; Tapley, B. D.
1981-01-01
The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.
Numerical methods for nonlinear hillslope transport laws
NASA Astrophysics Data System (ADS)
Perron, J. Taylor
2011-06-01
The numerical methods used to solve nonlinear sediment transport equations often set very restrictive limits on the stability and accuracy of landscape evolution models. This is especially true for hillslope transport laws in which sediment flux increases nonlinearly as the surface slope approaches a limiting value. Explicit-time finite difference methods applied to such laws are subject to fundamental limits on numerical stability that require time steps much shorter than the timescales over which landscapes evolve, creating a heavy computational burden. I present an implicit method for nonlinear hillslope transport that builds on a previously proposed approach to modeling alluvial sediment transport and improves stability and accuracy by avoiding the direct calculation of sediment flux. This method can be adapted to any transport law in which the expression for sediment flux is differentiable. Comparisons of numerical solutions with analytic solutions in one and two dimensions show that the implicit method retains the accuracy of a standard explicit method while permitting time steps several orders of magnitude longer than the maximum stable time step for the explicit method. The ability to take long time steps affords a substantial savings in overall computation time, despite the implicit method's higher per-iteration computational cost. Implicit models for hillslope evolution also offer a distinct advantage when modeling the response of hillslopes to incising channels.
Numerical Methods through Open-Ended Projects
ERIC Educational Resources Information Center
Cline, Kelly S.
2005-01-01
We present a design for a junior level numerical methods course that focuses on a series of five open-ended projects in applied mathematics. These projects were deliberately designed to present many of the ambiguities and complexities that appear any time we use mathematics in the real world, and so they offered the students a variety of possible…
Incompatible numerical manifold method for fracture problems
NASA Astrophysics Data System (ADS)
Wei, Gaofeng; Li, Kaitai; Jiang, Haihui
2010-05-01
The incompatible numerical manifold method (INMM) is based on the finite cover approximation theory, which provides a unified framework for problems dealing with continuum and discontinuities. The incompatible numerical manifold method employs two cover systems as follows. The mathematical cover system provides the nodes for forming finite covers of the solution domain and the weighted functions, and the physical cover system describes geometry of the domain and the discontinuous surfaces therein. In INMM, the mathematical finite cover approximation theory is used to model cracks that lead to interior discontinuities in the process of displacement. Therefore, the discontinuity is treated mathematically instead of empirically by the existing methods. However, one cover of a node is divided into two irregular sub-covers when the INMM is used to model the discontinuity. As a result, the method sometimes causes numerical errors at the tip of a crack. To improve the precision of the INMM, the analytical solution is used at the tip of a crack, and thus the cover displacement functions are extended with higher precision and computational efficiency. Some numerical examples are given.
A numerical method of detecting singularity
NASA Technical Reports Server (NTRS)
Laporte, M.; Vignes, J.
1978-01-01
A numerical method is reported which determines a value C for the degree of conditioning of a matrix. This value is C = 0 for a singular matrix and has progressively larger values for matrices which are increasingly well-conditioned. This value is C sub = C max sub max (C defined by the precision of the computer) when the matrix is perfectly well conditioned.
A numerical method for predicting hypersonic flowfields
NASA Technical Reports Server (NTRS)
Maccormack, Robert W.; Candler, Graham V.
1989-01-01
The flow about a body traveling at hypersonic speed is energetic enough to cause the atmospheric gases to chemically react and reach states in thermal nonequilibrium. The prediction of hypersonic flowfields requires a numerical method capable of solving the conservation equations of fluid flow, the chemical rate equations for specie formation and dissociation, and the transfer of energy relations between translational and vibrational temperature states. Because the number of equations to be solved is large, the numerical method should also be as efficient as possible. The proposed paper presents a fully implicit method that fully couples the solution of the fluid flow equations with the gas physics and chemistry relations. The method flux splits the inviscid flow terms, central differences of the viscous terms, preserves element conservation in the strong chemistry source terms, and solves the resulting block matrix equation by Gauss Seidel line relaxation.
A numerical method for predicting hypersonic flowfields
NASA Technical Reports Server (NTRS)
Maccormack, Robert W.; Candler, Graham V.
1989-01-01
The flow about a body traveling at hypersonic speed is energetic enough to cause the atmospheric gases to chemically react and reach states in thermal nonequilibrium. The prediction of hypersonic flowfields requires a numerical method capable of solving the conservation equations of fluid flow, the chemical rate equations for specie formation and dissociation, and the transfer of energy relations between translational and vibrational temperature states. Because the number of equations to be solved is large, the numerical method should also be as efficient as possible. The proposed paper presents a fully implicit method that fully couples the solution of the fluid flow equations with the gas physics and chemistry relations. The method flux splits the inviscid flow terms, central differences of the viscous terms, preserves element conservation in the strong chemistry source terms, and solves the resulting block matrix equation by Gauss Seidel line relaxation.
Numerical Approximation to the Thermodynamic Integrals
NASA Astrophysics Data System (ADS)
Johns, S. M.; Ellis, P. J.; Lattimer, J. M.
1996-12-01
We approximate boson thermodynamic integrals as polynomials in two variables chosen to give the correct limiting expansion and to smoothly interpolate into other regimes. With 10 free parameters, an accuracy of better than 0.009% is achieved for the pressure, internal energy density, and number density. We also revisit the fermion case, originally addressed by Eggleton, Faulkner, & Flannery (1973), and substantially improve the accuracy of their fits.
Numerical Methods for Explosion Plume Predictions
1993-03-12
AD-A262 343 6 NAVSWC TR 91-718 A -22~4..v~w•T ,,-., I II It ill/111111 ti(. NUMERICAL METHODS FOR EXPLOSION PLUME PREDICTIONS BY W.G. SZYMCZAK AND A...METHODS FOR EXPLOSION PLUME PREDICTIONS BY W. G. SZYMCZAK AND A. B. WARDLAW RESEARCH AND TECHNOLOGY DEPARTMENT 12 MARCH 1993 Approved for public release...2 TABLES Table Page 3-1 SHALLOW DEPTH EXPLOSION BUBBLE INITIAL DATA
A hybrid numerical method for orbit correction
White, G.; Himel, T.; Shoaee, H.
1997-09-01
The authors describe a simple hybrid numerical method for beam orbit correction in particle accelerators. The method overcomes both degeneracy in the linear system being solved and respects boundaries on the solution. It uses the Singular Value Decomposition (SVD) to find and remove the null-space in the system, followed by a bounded Linear Least Squares analysis of the remaining recast problem. It was developed for correcting orbit and dispersion in the B-factory rings.
On the numeric integration of dynamic attitude equations
NASA Technical Reports Server (NTRS)
Crouch, P. E.; Yan, Y.; Grossman, Robert
1992-01-01
We describe new types of numerical integration algorithms developed by the authors. The main aim of the algorithms is to numerically integrate differential equations which evolve on geometric objects, such as the rotation group. The algorithms provide iterates which lie on the prescribed geometric object, either exactly, or to some prescribed accuracy, independent of the order of the algorithm. This paper describes applications of these algorithms to the evolution of the attitude of a rigid body.
Accelerated Adaptive Integration Method
2015-01-01
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083
Numerical integration and optimization of motions for multibody dynamic systems
NASA Astrophysics Data System (ADS)
Aguilar Mayans, Joan
This thesis considers the optimization and simulation of motions involving rigid body systems. It does so in three distinct parts, with the following topics: optimization and analysis of human high-diving motions, efficient numerical integration of rigid body dynamics with contacts, and motion optimization of a two-link robot arm using Finite-Time Lyapunov Analysis. The first part introduces the concept of eigenpostures, which we use to simulate and analyze human high-diving motions. Eigenpostures are used in two different ways: first, to reduce the complexity of the optimal control problem that we solve to obtain such motions, and second, to generate an eigenposture space to which we map existing real world motions to better analyze them. The benefits of using eigenpostures are showcased through different examples. The second part reviews an extensive list of integration algorithms used for the integration of rigid body dynamics. We analyze the accuracy and stability of the different integrators in the three-dimensional space and the rotation space SO(3). Integrators with an accuracy higher than first order perform more efficiently than integrators with first order accuracy, even in the presence of contacts. The third part uses Finite-time Lyapunov Analysis to optimize motions for a two-link robot arm. Finite-Time Lyapunov Analysis diagnoses the presence of time-scale separation in the dynamics of the optimized motion and provides the information and methodology for obtaining an accurate approximation to the optimal solution, avoiding the complications that timescale separation causes for alternative solution methods.
Daeva, S.G.; Setukha, A.V.
2015-03-10
A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.
Hyperbolic conservation laws and numerical methods
NASA Technical Reports Server (NTRS)
Leveque, Randall J.
1990-01-01
The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.
Statistical Methods in Integrative Genomics.
Richardson, Sylvia; Tseng, George C; Sun, Wei
2016-06-01
Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions.
Statistical Methods in Integrative Genomics
Richardson, Sylvia; Tseng, George C.; Sun, Wei
2016-01-01
Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions. PMID:27482531
On the use of the line integral in the numerical treatment of conservative problems
NASA Astrophysics Data System (ADS)
Brugnano, Luigi; Iavernaro, Felice
2016-06-01
We sketch out the use of the line integral as a tool to devise numerical methods suitable for conservative and, in particular, Hamiltonian problems. The monograph [3] presents the fundamental theory on line integral methods and this short note aims at exploring some aspects and results emerging from their study.
Frequency responses and resolving power of numerical integration of sampled data
NASA Astrophysics Data System (ADS)
Yaroslavsky, L. P.; Moreno, A.; Campos, J.
2005-04-01
Methods of numerical integration of sampled data are compared in terms of their frequency responses and resolving power. Compared, theoretically and by numerical experiments, are trapezoidal, Simpson, Simpson-3/8 methods, method based on cubic spline data interpolation and Discrete Fourier Transform (DFT) based method. Boundary effects associated with DFT- based and spline-based methods are investigated and an improved Discrete Cosine Transform based method is suggested and shown to be superior to all other methods both in terms of approximation to the ideal continuous integrator and of the level of the boundary effects.
Canonical algorithms for numerical integration of charged particle motion equations
NASA Astrophysics Data System (ADS)
Efimov, I. N.; Morozov, E. A.; Morozova, A. R.
2017-02-01
A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.
Numerical methods for molecular dynamics. Progress report
Skeel, R.D.
1991-12-31
This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.
Integral Deferred Correction methods for scientific computing
NASA Astrophysics Data System (ADS)
Morton, Maureen Marilla
Since high order numerical methods frequently can attain accurate solutions more efficiently than low order methods, we develop and analyze new high order numerical integrators for the time discretization of ordinary and partial differential equations. Our novel methods address some of the issues surrounding high order numerical time integration, such as the difficulty of many popular methods' construction and handling the effects of disparate behaviors produce by different terms in the equations to be solved. We are motivated by the simplicity of how Deferred Correction (DC) methods achieve high order accuracy [72, 27]. DC methods are numerical time integrators that, rather than calculating tedious coefficients for order conditions, instead construct high order accurate solutions by iteratively improving a low order preliminary numerical solution. With each iteration, an error equation is solved, the error decreases, and the order of accuracy increases. Later, DC methods were adjusted to include an integral formulation of the residual, which stabilizes the method. These Spectral Deferred Correction (SDC) methods [25] motivated Integral Deferred Corrections (IDC) methods. Typically, SDC methods are limited to increasing the order of accuracy by one with each iteration due to smoothness properties imposed by the gridspacing. However, under mild assumptions, explicit IDC methods allow for any explicit rth order Runge-Kutta (RK) method to be used within each iteration, and then an order of accuracy increase of r is attained after each iteration [18]. We extend these results to the construction of implicit IDC methods that use implicit RK methods, and we prove analogous results for order of convergence. One means of solving equations with disparate parts is by semi-implicit integrators, handling a "fast" part implicitly and a "slow" part explicitly. We incorporate additive RK (ARK) integrators into the iterations of IDC methods in order to construct new arbitrary order
A numerical method to model excitable cells.
Joyner, R W; Westerfield, M; Moore, J W; Stockbridge, N
1978-01-01
We have extended a fast, stable, and accurate method for the numerical solution of cable equations to include changes in geometry and membrane properties in order to model a single excitable cell realistically. In addition, by including the provision that the radius may be a function of distance along an axis, we have achieved a general and powerful method for simulating a cell with any number of branched processes, any or all of which may be nonuniform in diameter, and with no restriction on the branching pattern. PMID:656539
Gauge Drift in Numerical Integrations of the Lagrange Planetary Equations
NASA Astrophysics Data System (ADS)
Murison, M. A.; Efroimsky, M.
2003-08-01
Efroimsky (2002) and Newman & Efroimsky (2003) recognized that the Lagrange and Delaunay planetary equations of celestial mechanics may be generalized to allow transformations analogous to the familiar gauge transformations in electrodynamics. As usually presented, the Lagrange equations, which are derived by the method of variation of parameters (invented by Euler and Lagrange for this very purpose), assume the Lagrange constraint, whereby a certain combination of parameter time derivatives is arbitrarily equated to zero. This particular constraint ensures an osculating orbit that is unique. The transformation of the description, as given by the (time-varying) osculating elements, into that given by the Cartesian coordinates and velocities is invertible. Relaxing the constraint enables one to substitute instead an arbitrary gauge function. This breaks the uniqueness and invertibility between the orbit instantaneously described by the orbital elements and the position and velocity components (i.e., many different orbits, precessing at different rates, can at a given instant share the same physical position and physical velocity through space). However, the orbit described by the (varying) orbital elements obeying a different gauge is no longer osculating. In numerical calculations that integrate the traditional Lagrange and Delaunay equations, even starting off in a certain (say, Lagrange's) gauge, some fraction of the numerical errors will, nevertheless, diffuse into violation of the chosen constraint. This results in an unintended ``gauge drift''. Geometrically, numerical errors cause the trajectory in phase space to leave the gauge-defined submanifold to which the motion was constrained, so that it is then moving on a different submanifold. The method of Lagrange multipliers can be utilized to return the motion to the original submanifold (e.g., Nacozy 1971, Murison 1989). Alternatively, the accumulated gauge drift may be compensated by a gauge transformation
NASA Astrophysics Data System (ADS)
von Manteuffel, Andreas; Schabinger, Robert M.
2017-04-01
We study a recently-proposed approach to the numerical evaluation of multi-loop Feynman integrals using available sector decomposition programs. As our main example, we consider the two-loop integrals for the αα s corrections to Drell-Yan lepton production with up to one massive vector boson in physical kinematics. As a reference, we evaluate these planar and non-planar integrals by the method of differential equations through to weight five. Choosing a basis of finite integrals for the numerical evaluation with SecDec 3 leads to tremendous performance improvements and renders the otherwise problematic seven-line topologies numerically accessible. As another example, basis integrals for massless QCD three loop form factors are evaluated with FIESTA 4. Here, employing a basis of finite integrals results in an overall speedup of more than an order of magnitude.
Multigrid method for integral equations and automatic programs
NASA Technical Reports Server (NTRS)
Lee, Hosae
1993-01-01
Several iterative algorithms based on multigrid methods are introduced for solving linear Fredholm integral equations of the second kind. Automatic programs based on these algorithms are introduced using Simpson's rule and the piecewise Gaussian rule for numerical integration.
Convergence analysis for numerical solution of Fredholm integral equation by Sinc approximation
NASA Astrophysics Data System (ADS)
Maleknejad, K.; Mollapourasl, R.; Alizadeh, M.
2011-06-01
In this study one of the new techniques is used to solve numerical problems involving integral equations known as Sinc-collocation method. This method has been shown to be a powerful numerical tool for finding accurate solutions. So, in this article, some properties of the Sinc-collocation method required for our subsequent development are given and are utilized to reduce integral equation of the first kind to some algebraic equations. Then by a theorem we show error in the approximation of the solution decays at an exponential rate. Finally, numerical examples are included to demonstrate the validity and applicability of the technique.
2002-05-01
are given by xj = x+ hξj. (1.3) For the example given in Figure 1.1, the upper limit of j is n = 6. In a terminology consistent with Henrici [3...University of Cincinnati, 1996. [3] P. Henrici . Discrete variable methods in ordinary differential equations. John Wiley & Sons Inc., New York, 1962. [4] D
Recursive integral method for transmission eigenvalues
NASA Astrophysics Data System (ADS)
Huang, Ruihao; Struthers, Allan A.; Sun, Jiguang; Zhang, Ruming
2016-12-01
Transmission eigenvalue problems arise from inverse scattering theory for inhomogeneous media. These non-selfadjoint problems are numerically challenging because of a complicated spectrum. In this paper, we propose a novel recursive contour integral method for matrix eigenvalue problems from finite element discretizations of transmission eigenvalue problems. The technique tests (using an approximate spectral projection) if a region contains eigenvalues. Regions that contain eigenvalues are subdivided and tested recursively until eigenvalues are isolated with a specified precision. The method is fully parallel and requires no a priori spectral information. Numerical examples show the method is effective and robust.
Efficient numerical methods for nonlinear Schrodinger equations
NASA Astrophysics Data System (ADS)
Liang, Xiao
The nonlinear Schrodinger equations are widely used to model a number of important physical phenomena, including solitary wave propagations in optical fibers, deep water turbulence, laser beam transmissions, and the Bose-Einstein condensation, just to mention a few. In the field of optics and photonics, the systems of nonlinear Schrodinger equations can be used to model multi-component solitons and the interaction of self-focusing laser beams. In three spatial dimensions, the nonlinear Schrodinger equation is known as the Gross-Pitaevskii equation, which models the soliton in a low-cost graded-index fiber. Recently, research on nonlinear space fractional Schrodinger equations, which capture the self-similarity in the fractional environment, has become prevalent. Our study includes the systems of multi-dimensional nonlinear space fractional Schrodinger equations. To solve the systems of multi-dimensional nonlinear Schrodinger equations efficiently, several novel numerical methods are presented. The central difference and quartic spline approximation based exponential time differencing Crank-Nicolson method is introduced for solving systems of one- and two-dimensional nonlinear Schrodinger equations. A local extrapolation is employed to achieve fourth-order accuracy in time. The numerical examples include the transmission of a self-focusing laser beam. The local discontinuous Galerkin methods combined with the fourth-order exponential time differencing Runge-Kutta time discretization are studied for solving the systems of nonlinear Schrodinger equations with hyperbolic terms, which are critical in modeling optical solitons in the birefringent fibers. The local discontinuous Galerkin method is able to achieve any order of accuracy in space, thanks to the usage of piecewise polynomial spaces. The exponential time differencing methods are employed to deal with the coupled nonlinearities for the reason that there is no need to solve nonlinear systems at every time step
Numerical analysis method for linear induction machines.
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1972-01-01
A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.
Numerical methods for finding stationary gravitational solutions
NASA Astrophysics Data System (ADS)
Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson
2016-07-01
The wide applications of higher dimensional gravity and gauge/gravity duality have fuelled the search for new stationary solutions of the Einstein equation (possibly coupled to matter). In this topical review, we explain the mathematical foundations and give a practical guide for the numerical solution of gravitational boundary value problems. We present these methods by way of example: resolving asymptotically flat black rings, singly spinning lumpy black holes in anti-de Sitter (AdS), and the Gregory-Laflamme zero modes of small rotating black holes in AdS{}5× {S}5. We also include several tools and tricks that have been useful throughout the literature.
Numerical analysis method for linear induction machines.
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1972-01-01
A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.
Numerical Method and Analysis of Consistency for Electrodiffusion Problem
NASA Astrophysics Data System (ADS)
Filipek, R.; Szyszkiewicz, K.; Danielewski, M.; Lewenstam, A.
2007-12-01
Numerical procedure based on method of lines for time-dependent electrodiffusion transport is developed. Finite difference space discretization with suitably selected weights based on a non-uniform grid is applied. Consistency of this method and the method put forward by Brumleve and Buck are analyzed and compared. The resulting stiff system of ODEs is effectively solved using the Radau IIa integrator. The applications to selected electrochemical systems: liquid junction, bi-ionic case and fused salts have been tested. Results for ion-selective electrodes are demonstrated.
Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics
2007-09-30
1) is a natural two-space-dimension extension of the KdV equation . The periodic KP solutions include directional spreading in the wave field: y η...of the nonlinear preprocessor in the new approach for obtaining numerical solutions to nonlinear wave equations . I will now do so, but without many...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion
Application of numerical methods to elasticity imaging.
Castaneda, Benjamin; Ormachea, Juvenal; Rodríguez, Paul; Parker, Kevin J
2013-03-01
Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity.
Mathematica with a Numerical Methods Course
NASA Astrophysics Data System (ADS)
Varley, Rodney
2003-04-01
An interdisciplinary "Numerical Methods" course has been shared between physics, mathematics and computer science since 1992 at Hunter C. Recently, the lectures and workshops for this course have become formalized and placed on the internet at http://www.ph.hunter.cuny.edu (follow the links "Course Listings and Websites" >> "PHYS385 (Numerical Methods)". Mathematica notebooks for the lectures are available for automatic download (by "double clicking" the lecture icon) for student use in the classroom or at home. AOL (or Netscape/Explorer) can be used provided Mathematica (or the "free" MathReader) has been made a "helper application". Using Mathematica has the virtue that mathematical equations (no LaTex required) can easily be included with the text and Mathematica's graphing is easy to use. Computational cells can be included within the notebook and students may easily modify the calculation to see the result of "what if..." questions. Homework is sent as Mathematica notebooks to the instructor via the internet and the corrected workshops are returned in the same manner. Most exam questions require computational solutions.
A numerical method for interface problems in elastodynamics
NASA Technical Reports Server (NTRS)
Mcghee, D. S.
1984-01-01
The numerical implementation of a formulation for a class of interface problems in elastodynamics is discussed. This formulation combines the use of the finite element and boundary integral methods to represent the interior and the exteriro regions, respectively. In particular, the response of a semicylindrical alluvial valley in a homogeneous halfspace to incident antiplane SH waves is considered to determine the accuracy and convergence of the numerical procedure. Numerical results are obtained from several combinations of the incidence angle, frequency of excitation, and relative stiffness between the inclusion and the surrounding halfspace. The results tend to confirm the theoretical estimates that the convergence is of the order H(2) for the piecewise linear elements used. It was also observed that the accuracy descreases as the frequency of excitation increases or as the relative stiffness of the inclusion decreases.
Numerical solution of a class of integral equations arising in two-dimensional aerodynamics
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M. A.
1978-01-01
We consider the numerical solution of a class of integral equations arising in the determination of the compressible flow about a thin airfoil in a ventilated wind tunnel. The integral equations are of the first kind with kernels having a Cauchy singularity. Using appropriately chosen Hilbert spaces, it is shown that the kernel gives rise to a mapping which is the sum of a unitary operator and a compact operator. This allows the problem to be studied in terms of an equivalent integral equation of the second kind. A convergent numerical algorithm for its solution is derived by using Galerkin's method. It is shown that this algorithm is numerically equivalent to Bland's collocation method, which is then used as the method of computation. Extensive numerical calculations are presented establishing the validity of the theory.
Homogenization and Numerical Methods for Hyperbolic Equations
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo
1990-01-01
This dissertation studies three aspects of analysis and numerical methods for partial differential equations with oscillatory solutions. 1. Homogenization theory for certain linear hyperbolic equations is developed. We derive the homogenized convection equations for linear convection problems with rapidly varying velocity in space and time. We find that the oscillatory solutions are very sensitive to the arithmetic properties of certain parameters, such as the corresponding rotation number and the ratio between the components of the mean velocity field in linear convection. We also show that the oscillatory velocity field in two dimensional incompressible flow behaves like shear flows. 2. The homogenization of scalar nonlinear conservation laws in several space variables with oscillatory initial data is also discussed. We prove that the initial oscillations will be eliminated for any positive time when the equations are non-degenerate. This is also true for degenerate equations if there is enough mixing among the initial oscillations in the degenerate direction. Otherwise, the initial oscillation, for which the homogenized equation is obtained, will survive and be propagated. The large-time behavior of conservation laws with several space variables is studied. We show that, under a new nondegenerate condition (the second derivatives of the flux functions are linearly independent in any interval), a piecewise smooth periodic solution with converge strongly to the mean value of initial data. This generalizes Glimm and Lax's result for the one dimensional problem (3). 3. Numerical simulations of the oscillatory solutions are also carried out. We give some error estimate for varepsilon-h resonance ( varepsilon: oscillation wave length, h: numerical step) and prove essential convergence (24) of order alpha < 1 for some numerical schemes. These include upwind schemes and particle methods for linear hyperbolic equations with oscillatory coefficients. A stochastic analysis
Numerical methods for problems in computational aeroacoustics
NASA Astrophysics Data System (ADS)
Mead, Jodi Lorraine
1998-12-01
A goal of computational aeroacoustics is the accurate calculation of noise from a jet in the far field. This work concerns the numerical aspects of accurately calculating acoustic waves over large distances and long time. More specifically, the stability, efficiency, accuracy, dispersion and dissipation in spatial discretizations, time stepping schemes, and absorbing boundaries for the direct solution of wave propagation problems are determined. Efficient finite difference methods developed by Tam and Webb, which minimize dispersion and dissipation, are commonly used for the spatial and temporal discretization. Alternatively, high order pseudospectral methods can be made more efficient by using the grid transformation introduced by Kosloff and Tal-Ezer. Work in this dissertation confirms that the grid transformation introduced by Kosloff and Tal-Ezer is not spectrally accurate because, in the limit, the grid transformation forces zero derivatives at the boundaries. If a small number of grid points are used, it is shown that approximations with the Chebyshev pseudospectral method with the Kosloff and Tal-Ezer grid transformation are as accurate as with the Chebyshev pseudospectral method. This result is based on the analysis of the phase and amplitude errors of these methods, and their use for the solution of a benchmark problem in computational aeroacoustics. For the grid transformed Chebyshev method with a small number of grid points it is, however, more appropriate to compare its accuracy with that of high- order finite difference methods. This comparison, for an order of accuracy 10-3 for a benchmark problem in computational aeroacoustics, is performed for the grid transformed Chebyshev method and the fourth order finite difference method of Tam. Solutions with the finite difference method are as accurate. and the finite difference method is more efficient than, the Chebyshev pseudospectral method with the grid transformation. The efficiency of the Chebyshev
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
Cai, Wei
2014-05-15
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equations such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.
Integrated product definition representation for agile numerical control applications
Simons, W.R. Jr.; Brooks, S.L.; Kirk, W.J. III; Brown, C.W.
1994-11-01
Realization of agile manufacturing capabilities for a virtual enterprise requires the integration of technology, management, and work force into a coordinated, interdependent system. This paper is focused on technology enabling tools for agile manufacturing within a virtual enterprise specifically relating to Numerical Control (N/C) manufacturing activities and product definition requirements for these activities.
Monograph - The Numerical Integration of Ordinary Differential Equations.
ERIC Educational Resources Information Center
Hull, T. E.
The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…
Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals
NASA Technical Reports Server (NTRS)
Fink, Patricia W.; Wilton, D. R.; Khayat, Michael A.
2007-01-01
Simple and efficient numerical procedures for evaluating the gradient of Newton-type potentials are presented. Convergences of both normal and tangential components of the gradient are examined. The convergence of the vector potential is also examined, and it is shown that the scheme for handling near-hypersingular integrals also is effective for the nearly singular potential terms.
Numerical Inversion of Integral Equations for Medical Imaging and Geophysics
1988-12-13
Equations for Medical Imaging and Geophysics (Unclassified) 12 PERSONAL AUTHOR(S) Frank Stenger 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT...9r~S NUMERICAL INVERSION OF INTEGRAL EQUATIONS FOR MEDICAL IMAGING AND GEOPHYSICS FINAL REPORT AUTHOR OF REPORT: Frank Stenger December 13, 1988
NASA Technical Reports Server (NTRS)
Chesler, L.; Pierce, S.
1971-01-01
Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program.
Witkowski, W.R.; Eldred, M.S.; Harding, D.C.
1994-09-01
The use of state-of-the-art numerical analysis tools to determine the optimal design of a radioactive material (RAM) transportation container is investigated. The design of a RAM package`s components involves a complex coupling of structural, thermal, and radioactive shielding analyses. The final design must adhere to very strict design constraints. The current technique used by cask designers is uncoupled and involves designing each component separately with respect to its driving constraint. With the use of numerical optimization schemes, the complex couplings can be considered directly, and the performance of the integrated package can be maximized with respect to the analysis conditions. This can lead to more efficient package designs. Thermal and structural accident conditions are analyzed in the shape optimization of a simplified cask design. In this paper, details of the integration of numerical analysis tools, development of a process model, nonsmoothness difficulties with the optimization of the cask, and preliminary results are discussed.
Technical Report: Scalable Parallel Algorithms for High Dimensional Numerical Integration
Masalma, Yahya; Jiao, Yu
2010-10-01
We implemented a scalable parallel quasi-Monte Carlo numerical high-dimensional integration for tera-scale data points. The implemented algorithm uses the Sobol s quasi-sequences to generate random samples. Sobol s sequence was used to avoid clustering effects in the generated random samples and to produce low-discrepancy random samples which cover the entire integration domain. The performance of the algorithm was tested. Obtained results prove the scalability and accuracy of the implemented algorithms. The implemented algorithm could be used in different applications where a huge data volume is generated and numerical integration is required. We suggest using the hyprid MPI and OpenMP programming model to improve the performance of the algorithms. If the mixed model is used, attention should be paid to the scalability and accuracy.
Ensemble-type numerical uncertainty information from single model integrations
Rauser, Florian Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of the influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
COMPARING NUMERICAL METHODS FOR ISOTHERMAL MAGNETIZED SUPERSONIC TURBULENCE
Kritsuk, Alexei G.; Collins, David; Norman, Michael L.; Xu Hao E-mail: dccollins@lanl.gov
2011-08-10
Many astrophysical applications involve magnetized turbulent flows with shock waves. Ab initio star formation simulations require a robust representation of supersonic turbulence in molecular clouds on a wide range of scales imposing stringent demands on the quality of numerical algorithms. We employ simulations of supersonic super-Alfvenic turbulence decay as a benchmark test problem to assess and compare the performance of nine popular astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. These applications employ a variety of numerical approaches, including both split and unsplit, finite difference and finite volume, divergence preserving and divergence cleaning, a variety of Riemann solvers, and a range of spatial reconstruction and time integration techniques. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss the convergence of various characteristics for the turbulence decay test and the impact of various components of numerical schemes on the accuracy of solutions. The nine codes gave qualitatively the same results, implying that they are all performing reasonably well and are useful for scientific applications. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the
Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence
NASA Astrophysics Data System (ADS)
Kritsuk, Alexei G.; Nordlund, Åke; Collins, David; Padoan, Paolo; Norman, Michael L.; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Müller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D.; Vogel, Christian; Xu, Hao
2011-08-01
Many astrophysical applications involve magnetized turbulent flows with shock waves. Ab initio star formation simulations require a robust representation of supersonic turbulence in molecular clouds on a wide range of scales imposing stringent demands on the quality of numerical algorithms. We employ simulations of supersonic super-Alfvénic turbulence decay as a benchmark test problem to assess and compare the performance of nine popular astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. These applications employ a variety of numerical approaches, including both split and unsplit, finite difference and finite volume, divergence preserving and divergence cleaning, a variety of Riemann solvers, and a range of spatial reconstruction and time integration techniques. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss the convergence of various characteristics for the turbulence decay test and the impact of various components of numerical schemes on the accuracy of solutions. The nine codes gave qualitatively the same results, implying that they are all performing reasonably well and are useful for scientific applications. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the
An efficient numerical method for orbit computations
NASA Astrophysics Data System (ADS)
Palacios, M.; Abad, A.; Elipe, A.
1992-08-01
A nonstandard formulation of perturbed Keplerian motion is set forth based on the analysis by Deprit (1975) and incorporating quaternions to integrate the equations of motion. The properties of quaternions are discussed and applied to the portion of the equations of motion describing the rotations between the space frame and the departure frame. Angular momentum is assumed to be constant, and a redundant set of variables is introduced to test the equations of motion for different step sizes. The method is analyzed for the cases of artificial satellites in Keplerian circular orbits, Keplerian elliptical orbits, and zonal harmonics. The present formulation is shown to adequately represent the dynamical behavior while avoiding small inclinations. The rotations described by quaternions require less arithmetic operations and therefore save computation time, and the accuracy of the solutions are improved by at least two significant digits.
Microwave Breast Imaging System Prototype with Integrated Numerical Characterization
Haynes, Mark; Stang, John; Moghaddam, Mahta
2012-01-01
The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm. We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model. PMID:22481906
Numerical methods for analyzing electromagnetic scattering
NASA Technical Reports Server (NTRS)
Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.
1985-01-01
Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield.
On the stability of numerical integration routines for ordinary differential equations.
NASA Technical Reports Server (NTRS)
Glover, K.; Willems, J. C.
1973-01-01
Numerical integration methods for the solution of initial value problems for ordinary vector differential equations may be modelled as discrete time feedback systems. The stability criteria discovered in modern control theory are applied to these systems and criteria involving the routine, the step size and the differential equation are derived. Linear multistep, Runge-Kutta, and predictor-corrector methods are all investigated.
Numerical implementation of constitutive integration for rate-independent elastoplasticity
NASA Astrophysics Data System (ADS)
Zeng, L. F.; Horrigmoe, G.; Andersen, R.
1996-09-01
In this paper, constitutive integration for rate-independent, small deformation elastoplasticity is studied. Smooth yield surfaces and work/strain hardening are assumed. Both associative or non-associative flow rules are considered. An Euler backward algorithm is applied for constitutive integration. Tangent moduli that are consistent with the Euler backward algorithm, i.e. a so-called consistent tangent operator, are derived. Emphasis is placed on numerical implementation of the Eular backward algorithm into finite element codes using such a consistent tangent operator. In particular, a commercial code ANSYS is considered. Numerical examples, including materials sensitive and insensitive to hydrostatic stress, are used for the verification of the implementation. A comparison of the algorithmic performance to an explicit Euler forward algorithm is given and the superiority of the Euler backward algorithm is demonstrated.
[Numerical methods for multi-fluid flows]. Final progress report
Pozrikidis, C.
1998-07-21
The central objective of this research has been to develop efficient numerical methods for computing multi-fluid flows with large interfacial deformations, and apply these methods to study the rheology of suspensions of deformable particles with viscous and non-Newtonian interfacial behavior. The mathematical formulation employs boundary-integral, immersed-boundary, and related numerical methods. Particles of interest include liquid drops with constant surface tension and capsules whose interfaces exhibit viscoelastic and incompressible characteristics. In one family of problems, the author has considered the shear-driven and pressure-driven flow of a suspension of two-dimensional liquid drops with ordered and random structure. In a second series of investigations, the author carried out dynamic simulations of two-dimensional, unbounded, doubly-periodic shear flows with random structure. Another family of problems addresses the deformation of three-dimensional capsules whose interfaces exhibit isotropic surface tension, viscous, elastic, or incompressible behavior, in simple shear flow. The numerical results extend previous asymptotic theories for small deformations and illuminate the mechanism of membrane rupture.
Romá, Federico; Cugliandolo, Leticia F; Lozano, Gustavo S
2014-08-01
We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under the expected conditions. We test the algorithm on a benchmark problem: the dynamics of a uniformly magnetized ellipsoid. We investigate the influence of various parameters, and in particular, we analyze the efficiency of the numerical integration, in terms of the number of steps needed to reach a chosen long time with a given accuracy.
The instanton method and its numerical implementation in fluid mechanics
NASA Astrophysics Data System (ADS)
Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias
2015-08-01
A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.
Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies
Safta, Cosmin; Najm, Habib N.; Phipps, Eric Todd
2014-09-01
Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.
Fast integral methods for integrated optical systems simulations: a review
NASA Astrophysics Data System (ADS)
Kleemann, Bernd H.
2015-09-01
Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non
Numerical Research of Airframe/Engine Integrative Hypersonic Vehicle
2007-11-02
paper, an engineering method and a finite volume method based on the center of grid are developed for preliminary research of interested integrative...development of hypersonic technology, advanced experimental, analytical and computational methods are being exploited in the design of hypersonic...configurations to obtain excellent aerodynamic characteristics[5]. Due to the limitation of test capabilities to model all the impossible flight conditions
Wang-Landau integration --- The application of Wang-Landau sampling in numerical integration
NASA Astrophysics Data System (ADS)
Li, Ying Wai; Wuest, Thomas; Landau, David P.; Qing Lin, Hai
2007-03-01
Wang-Landau sampling was first introduced to simulate the density of states in energy space for various physical systems. This technique can be extended to numerical integrations due to certain similarities in nature of these two problems. It can be further applied to study quantum many-body systems. We report the feasibility of this application by discussing the correspondence between Wang-Landau integration and Wang-Landau sampling for Ising model. Numerical results for 1D and 2D integrations are shown. In particular, the utilization of this algorithm in the periodic lattice Anderson model is discussed as an illustrative example.
Integration methods for molecular dynamics
Leimkuhler, B.J.; Reich, S.; Skeel, R.D.
1996-12-31
Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches. 48 refs., 2 figs.
Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions
NASA Astrophysics Data System (ADS)
Dubovyk, I.; Gluza, J.; Riemann, T.; Usovitsch, J.
Mellin-Barnes (MB) techniques applied to integrals emerging in particle physics perturbative calculations are summarized. New versions of AMBRE packages which construct planar and nonplanar MB representations are shortly discussed. The numerical package MBnumerics.m is presented for the first time which is able to calculate with a high precision multidimensional MB integrals in Minkowskian regions. Examples are given for massive vertex integrals which include threshold effects and several scale parameters.
Multivariate numerical integration via fluctuationlessness theorem: Case study
NASA Astrophysics Data System (ADS)
Baykara, N. A.; Gürvit, Ercan
2017-01-01
In this work we come up with the statement of the Fluctuationlessness theorem recently conjectured and proven by M. Demiralp and its application to numerical integration of univariate functions by restructuring the Taylor expansion with explicit remainder term. The Fluctuationlessness theorem is stated. Following this step an orthonormal basis set is formed and the necessary formulae for calculating the coefficients of the three term recursion formula are constructed. Then for multivariate numerical integration, instead of dealing with a single formula for multiple remainder terms, a new approach that is already mentioned for bivariate functions is taken into consideration. At every step of a multivariate integration one variable is considered and the others are held constant. In such a way, this gives us the possibility to get rid of the complexity of calculations. The trivariate case is taken into account and its generalization is step by step explained. At the final stage implementations are done for some trivariate functions and the results are tabulated together with the implementation times.
Numerical methods for determining interstitial oxygen in silicon
Stevenson, J.O.; Medernach, J.W.
1995-01-01
The interstitial oxygen (O{sub i}) concentration in Czochralski silicon and the subsequent SiO{sub x} precipitation are important parameters for integrated circuit fabrication. Uncontrolled SiO{sub x} precipitation during processing can create detrimental mechanical and electrical effects that contribute to poor performance. An inability to consistently and accurately measure the initial O{sub i} concentration in heavily doped silicon has led to contradictory results regarding the effects of dopant type and concentration on SiO{sub x} precipitation. The authors have developed a software package for reliably determining and comparing O{sub i} in heavily doped silicon. The SiFTIR{copyright} code implements three independent oxygen analysis methods in a single integrated package. Routine oxygen measurements are desirable over a wide range of silicon resistivities, but there has been confusion concerning which of the three numerical methods is most suitable for the low resistivity portion of the continuum. A major strength of the software is an ability to rapidly produce results for all three methods using only a single Fourier Transform Infrared Spectroscopy (FTIR) spectrum as input. This ability to perform three analyses on a single data set allows a detailed comparison of the three methods across the entire range of resistivities in question. Integrated circuit manufacturers could use the enabling technology provided by SiFTIR{copyright} to monitor O{sub i} content. Early detection of O{sub i} using this diagnostic could be beneficial in controlling SiO{sub x} precipitation during integrated circuit processing.
Higher order time integration methods for two-phase flow
NASA Astrophysics Data System (ADS)
Kees, Christopher E.; Miller, Cass T.
Time integration methods that adapt in both the order of approximation and time step have been shown to provide efficient solutions to Richards' equation. In this work, we extend the same method of lines approach to solve a set of two-phase flow formulations and address some mass conservation issues from the previous work. We analyze these formulations and the nonlinear systems that result from applying the integration methods, placing particular emphasis on their index, range of applicability, and mass conservation characteristics. We conduct numerical experiments to study the behavior of the numerical models for three test problems. We demonstrate that higher order integration in time is more efficient than standard low-order methods for a variety of practical grids and integration tolerances, that the adaptive scheme successfully varies the step size in response to changing conditions, and that mass balance can be maintained efficiently using variable-order integration and an appropriately chosen numerical model formulation.
Adaptive Numerical Integration for Item Response Theory. Research Report. ETS RR-07-06
ERIC Educational Resources Information Center
Antal, Tamás; Oranje, Andreas
2007-01-01
Well-known numerical integration methods are applied to item response theory (IRT) with special emphasis on the estimation of the latent regression model of NAEP [National Assessment of Educational Progress]. An argument is made that the Gauss-Hermite rule enhanced with Cholesky decomposition and normal approximation of the response likelihood is…
Numerical simulation of the integrated space shuttle vehicle in ascent
NASA Technical Reports Server (NTRS)
Buning, P. G.; Chiu, I. T.; Obayashi, S.; Rizk, Y. M.; Steger, J. L.
1988-01-01
A simulation of the flow about the integrated space shuttle vehicle in ascent mode has been undertaken for various flight conditions using the Chimera composite grid discretization approach. Overset body-conforming grids were used to represent each geometric component, and an implicit approximately factored finite-difference procedure was used to solve the three-dimensional thin-layer Navier-Stokes equations. The computational results have been compared with both wind tunnel and flight test data. Although relatively good agreement is obtained with the experimental data, further refinement and evaluation of numerical error is under way.
Zou, Ling; Zhao, Haihua; Kim, Seung Jun
2016-11-16
In this study, the classical Welander’s oscillatory natural circulation problem is investigated using high-order numerical methods. As originally studied by Welander, the fluid motion in a differentially heated fluid loop can exhibit stable, weakly instable, and strongly instable modes. A theoretical stability map has also been originally derived from the stability analysis. Numerical results obtained in this paper show very good agreement with Welander’s theoretical derivations. For stable cases, numerical results from both the high-order and low-order numerical methods agree well with the non-dimensional flow rate analytically derived. The high-order numerical methods give much less numerical errors compared to themore » low-order methods. For stability analysis, the high-order numerical methods could perfectly predict the stability map, while the low-order numerical methods failed to do so. For all theoretically unstable cases, the low-order methods predicted them to be stable. The result obtained in this paper is a strong evidence to show the benefits of using high-order numerical methods over the low-order ones, when they are applied to simulate natural circulation phenomenon that has already gain increasing interests in many future nuclear reactor designs.« less
Zou, Ling; Zhao, Haihua; Kim, Seung Jun
2016-11-16
In this study, the classical Welander’s oscillatory natural circulation problem is investigated using high-order numerical methods. As originally studied by Welander, the fluid motion in a differentially heated fluid loop can exhibit stable, weakly instable, and strongly instable modes. A theoretical stability map has also been originally derived from the stability analysis. Numerical results obtained in this paper show very good agreement with Welander’s theoretical derivations. For stable cases, numerical results from both the high-order and low-order numerical methods agree well with the non-dimensional flow rate analytically derived. The high-order numerical methods give much less numerical errors compared to the low-order methods. For stability analysis, the high-order numerical methods could perfectly predict the stability map, while the low-order numerical methods failed to do so. For all theoretically unstable cases, the low-order methods predicted them to be stable. The result obtained in this paper is a strong evidence to show the benefits of using high-order numerical methods over the low-order ones, when they are applied to simulate natural circulation phenomenon that has already gain increasing interests in many future nuclear reactor designs.
Numerical Methods for Partial Differential Equations.
1984-01-09
114). The pursuit of a linear-time solution led Brent and Luk to consider Jacobi methods . They have found an implementation using an n/2 xn/2 array...cyclic Jacobi method . It takes 0(n) time to perform a sweep of the method, and 0(log n) sweeps for the method to converge 1 1. Brent and Luk have...Hestenes algorithm that, in real arithmetic, is an exact analogue of their Jacobi method applied to the eigenproblem for ATA. The array requires 0(rnn
Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer
D. S. Lucas
2004-10-01
A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.
Numerical methods in Markov chain modeling
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef; Stewart, William J.
1989-01-01
Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.
Interpolation Method Needed for Numerical Uncertainty
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, Marcel; Schallhorn, Paul A.
2014-01-01
Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors.
Quantum Calisthenics: Gaussians, The Path Integral and Guided Numerical Approximations
Weinstein, Marvin; /SLAC
2009-02-12
It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for the behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will
Perturbative Methods in Path Integration
NASA Astrophysics Data System (ADS)
Johnson-Freyd, Theodore Paul
This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the
Numerical analysis of the orthogonal descent method
Shokov, V.A.; Shchepakin, M.B.
1994-11-01
The author of the orthogonal descent method has been testing it since 1977. The results of these tests have only strengthened the need for further analysis and development of orthogonal descent algorithms for various classes of convex programming problems. Systematic testing of orthogonal descent algorithms and comparison of test results with other nondifferentiable optimization methods was conducted at TsEMI RAN in 1991-1992 using the results.
Numerical methods for reduction of topside ionograms
NASA Technical Reports Server (NTRS)
Mcculley, L.
1972-01-01
Several alternative methods for solving the group height equation are presented. Three of these are now in operation at Ames Research Center and use data contained in a single ionogram trace. From the data an electron density profile N(h) is computed. If the ionogram also exhibits other traces, reverse ionogram traces are computed, using the N(h) profile, for comparison with the redundant data. When agreement is poor, the initial data trace is reinterpreted, another N(h) profile computed, and the reverse traces generated once again. This process is repeated until a desired degree of consistency is achieved. To reduce the necessity for human intervention and eliminate decision making required in conjunction with the preceding methods, a method is proposed that accepts as input, all data from a single ionogram. In general, no electron density function will satisfy these data exactly, but a best N(h) profile can be computed. Finally, a method is described that eliminates the need to assume that the ionosphere is spherically stratified. Horizontal gradients in electron density are detected and accounted for by processing several ionograms from the same satellite pass simultaneously. This idea is derived as an extension of one of the basic methods.
Numerical modeling of mineral dissolution - precipitation kinetics integrating interfacial processes
NASA Astrophysics Data System (ADS)
Azaroual, M. M.
2016-12-01
The mechanisms of mineral dissolution/precipitation are complex and interdependent. Within a same rock, the geochemical modelling may have to manage kinetic reactions with high ratios between the most reactive minerals (i.e., carbonates, sulfate salts, etc.) and less reactive minerals (i.e., silica, alumino-silicates, etc.). These ratios (higher than 10+6) induce numerical instabilities for calculating mass and energy transfers between minerals and aqueous phases at the appropriate scales of time and space. The current scientific debate includes: i) changes (or not) of the mineral reactive surface with the progress of the dissolution/precipitation reactions; ii) energy jumps (discontinuity) in the thermodynamic affinity function of some dissolution/precipitation reactions and iii) integration of processes at the "mineral - aqueous solution" interfaces for alumino-silicates, silica and carbonates. In recent works dealing with the specific case of amorphous silica, measurements were performed on nano-metric cross-sections indicating the presence of surface layer between the bulk solution and the mineral. This thin layer is composed by amorphous silica and hydrated silica "permeable" to the transfer of water and ionic chemical constituents. The boundary/interface between the initial mineral and the silica layer is characterized by a high concentration jump of chemical products at the nanoscale and some specific interfacial dissolution/precipitation processes.In this study, the results of numerical simulations dealing with different mechanisms of silicate and carbonate dissolution/precipitation reactions and integrating interfacial processes will be discussed. The application of this approach to silica precipitation is based on laboratory experiments and it highlights the significant role of the "titration" surface induced by surface complexation reactions in the determination of the kinetics of precipitation.
Examination of Numerical Integration Accuracy and Modeling for GRACE-FO and GRACE-II
NASA Astrophysics Data System (ADS)
McCullough, C.; Bettadpur, S.
2012-12-01
As technological advances throughout the field of satellite geodesy improve the accuracy of satellite measurements, numerical methods and algorithms must be able to keep pace. Currently, the Gravity Recovery and Climate Experiment's (GRACE) dual one-way microwave ranging system can determine changes in inter-satellite range to a precision of a few microns; however, with the advent of laser measurement systems nanometer precision ranging is a realistic possibility. With this increase in measurement accuracy, a reevaluation of the accuracy inherent in the linear multi-step numerical integration methods is necessary. Two areas where this can be a primary concern are the ability of the numerical integration methods to accurately predict the satellite's state in the presence of numerous small accelerations due to operation of the spacecraft attitude control thrusters, and due to small, point-mass anomalies on the surface of the Earth. This study attempts to quantify and minimize these numerical errors in an effort to improve the accuracy of modeling and propagation of these perturbations; helping to provide further insight into the behavior and evolution of the Earth's gravity field from the more capable gravity missions in the future.
A numerical simulation method for aircraft infrared imaging
NASA Astrophysics Data System (ADS)
Zhou, Yue; Wang, Qiang; Li, Ting; Hu, Haiyang
2017-06-01
Numerical simulation of infrared (IR) emission from aircraft is of great significance for military and civilian applications. In this paper, the narrow band k-distribution (NBK) model is used to calculate radiative properties of non-gray gases in the hot exhaust plume. With model parameters derived from the high resolution spectral database HITEMP 2010, the NBK model is validated by comparisons with exact line by line (LBL) results and experimental data. Based on the NBK model, a new finite volume and back ray tracing (FVBRT) method is proposed to solve the radiative transfer equations and produce IR imaging. Calculated results by the FVBRT method are compared with experimental data and available results in open references, which shows the FVBRT method can maintain good accuracy while producing IR images with better rendering effects. Finally, the NBK model and FVBRT method are integrated to calculate IR signature of an aircraft. The IR images and spatial distributions of radiative intensity are compared and analyzed in both 3 - 5 μm band and 8 - 12 μm band to provide references for engineering applications.
Space-time adaptive numerical methods for geophysical applications.
Castro, C E; Käser, M; Toro, E F
2009-11-28
In this paper we present high-order formulations of the finite volume and discontinuous Galerkin finite-element methods for wave propagation problems with a space-time adaptation technique using unstructured meshes in order to reduce computational cost without reducing accuracy. Both methods can be derived in a similar mathematical framework and are identical in their first-order version. In their extension to higher order accuracy in space and time, both methods use spatial polynomials of higher degree inside each element, a high-order solution of the generalized Riemann problem and a high-order time integration method based on the Taylor series expansion. The static adaptation strategy uses locally refined high-resolution meshes in areas with low wave speeds to improve the approximation quality. Furthermore, the time step length is chosen locally adaptive such that the solution is evolved explicitly in time by an optimal time step determined by a local stability criterion. After validating the numerical approach, both schemes are applied to geophysical wave propagation problems such as tsunami waves and seismic waves comparing the new approach with the classical global time-stepping technique. The problem of mesh partitioning for large-scale applications on multi-processor architectures is discussed and a new mesh partition approach is proposed and tested to further reduce computational cost.
Numerical Methods Using B-Splines
NASA Technical Reports Server (NTRS)
Shariff, Karim; Merriam, Marshal (Technical Monitor)
1997-01-01
The seminar will discuss (1) The current range of applications for which B-spline schemes may be appropriate (2) The property of high-resolution and the relationship between B-spline and compact schemes (3) Comparison between finite-element, Hermite finite element and B-spline schemes (4) Mesh embedding using B-splines (5) A method for the incompressible Navier-Stokes equations in curvilinear coordinates using divergence-free expansions.
Modelling asteroid brightness variations. I - Numerical methods
NASA Technical Reports Server (NTRS)
Karttunen, H.
1989-01-01
A method for generating lightcurves of asteroid models is presented. The effects of the shape of the asteroid and the scattering law of a surface element are distinctly separable, being described by chosen functions that can easily be changed. The shape is specified by means of two functions that yield the length of the radius vector and the normal vector of the surface at a given point. The general shape must be convex, but spherical concavities producing macroscopic shadowing can also be modeled.
Gallego, Rafael; Castro, Mario; López, Juan M
2007-11-01
We present a comparison between finite differences schemes and a pseudospectral method applied to the numerical integration of stochastic partial differential equations that model surface growth. We have studied, in 1+1 dimensions, the Kardar, Parisi, and Zhang model (KPZ) and the Lai, Das Sarma, and Villain model (LDV). The pseudospectral method appears to be the most stable for a given time step for both models. This means that the time up to which we can follow the temporal evolution of a given system is larger for the pseudospectral method. Moreover, for the KPZ model, a pseudospectral scheme gives results closer to the predictions of the continuum model than those obtained through finite difference methods. On the other hand, some numerical instabilities appearing with finite difference methods for the LDV model are absent when a pseudospectral integration is performed. These numerical instabilities give rise to an approximate multiscaling observed in earlier numerical simulations. With the pseudospectral approach no multiscaling is seen in agreement with the continuum model.
Integrated numerical prediction of atomization process of liquid hydrogen jet
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Ohira, Katsuhide; Okabayashi, Kazuki; Chitose, Keiko
2008-05-01
The 3-D structure of the liquid atomization behavior of an LH jet flow through a pinhole nozzle is numerically investigated and visualized by a new type of integrated simulation technique. The present computational fluid dynamics (CFD) analysis focuses on the thermodynamic effect on the consecutive breakup of a cryogenic liquid column, the formation of a liquid film, and the generation of droplets in the outlet section of the pinhole nozzle. Utilizing the governing equations for a high-speed turbulent cryogenic jet flow through a pinhole nozzle based on the thermal nonequilibrium LES-VOF model in conjunction with the CSF model, an integrated parallel computation is performed to clarify the detailed atomization process of a high-speed LH2 jet flow through a pinhole nozzle and to acquire data, which is difficult to confirm by experiment, such as atomization length, liquid core shape, droplet-size distribution, spray angle, droplet velocity profiles, and thermal field surrounding the atomizing jet flow. According to the present computation, the cryogenic atomization rate and the LH2 droplets-gas two-phase flow characteristics are found to be controlled by the turbulence perturbation upstream of the pinhole nozzle, hydrodynamic instabilities at the gas-liquid interface and shear stress between the liquid core and the periphery of the LH2 jet. Furthermore, calculation of the effect of cryogenic atomization on the jet thermal field shows that such atomization extensively enhances the thermal diffusion surrounding the LH2 jet flow.
Efficient Numerical Methods for Stable Distributions
2007-11-02
0 and cutoffs c1 = −128 and c2 = +127 are used, corresponding to the common values used in digital signal processing. Five new functions for discrete...variables using the Chambers- Mallows - Stuck method, rounding them to the nearest integer, and then cutting off if the value is too high or too low...within the common matlab environment they use. We comment briefly on the commercialization of this in the last section. 3 -100 -50 0 50 100 0. 0 0. 01 0
A numerical method for predicting hypersonic flowfields
NASA Technical Reports Server (NTRS)
Maccormack, Robert W.; Candler, Graham V.
1988-01-01
The flow about a body traveling at hypersonic speed is energetic enough to cause the atmospheric gases to react chemically and reach states in thermal nonequilibrium. In this paper, a new procedure based on Gauss-Seidel line relaxation is shown to solve the equations of hypersonic flow fields containing finite reaction rate chemistry and thermal nonequilibrium. The method requires a few hundred time steps and small computer times for axisymmetric flows about simple body shapes. The extension to more complex two-dimensional body geometries appears straightforward.
A numerical method for predicting hypersonic flowfields
NASA Technical Reports Server (NTRS)
Maccormack, Robert W.; Candler, Graham V.
1988-01-01
The flow about a body traveling at hypersonic speed is energetic enough to cause the atmospheric gases to react chemically and reach states in thermal nonequilibrium. In this paper, a new procedure based on Gauss-Seidel line relaxation is shown to solve the equations of hypersonic flow fields containing finite reaction rate chemistry and thermal nonequilibrium. The method requires a few hundred time steps and small computer times for axisymmetric flows about simple body shapes. The extension to more complex two-dimensional body geometries appears straightforward.
Numerical methods for hypersonic boundary layer stability
NASA Technical Reports Server (NTRS)
Malik, M. R.
1990-01-01
Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.
Impact of Energy Slope Averaging Methods on Numerical Solution of 1D Steady Gradually Varied Flow
NASA Astrophysics Data System (ADS)
Artichowicz, Wojciech; Prybytak, Dzmitry
2015-12-01
In this paper, energy slope averaging in the one-dimensional steady gradually varied flow model is considered. For this purpose, different methods of averaging the energy slope between cross-sections are used. The most popular are arithmetic, geometric, harmonic and hydraulic means. However, from the formal viewpoint, the application of different averaging formulas results in different numerical integration formulas. This study examines the basic properties of numerical methods resulting from different types of averaging.
Numerical methods for analyzing electromagnetic scattering
NASA Technical Reports Server (NTRS)
Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.
1985-01-01
Attenuation properties of the normal modes in an overmoded waveguide coated with a lossy material were analyzed. It is found that the low-order modes, can be significantly attenuated even with a thin layer of coating if the coating material is not too lossy. A thinner layer of coating is required for large attenuation of the low-order modes if the coating material is magnetic rather than dielectric. The Radar Cross Section (RCS) from an uncoated circular guide terminated by a perfect electric conductor was calculated and compared with available experimental data. It is confirmed that the interior irradiation contributes to the RCS. The equivalent-current method based on the geometrical theory of diffraction (GTD) was chosen for the calculation of the contribution from the rim diffraction. The RCS reduction from a coated circular guide terminated by a PEC are planned schemes for the experiments are included. The waveguide coated with a lossy magnetic material is suggested as a substitute for the corrugated waveguide.
NASA Astrophysics Data System (ADS)
Mesa, F.; Medina, F.
2006-12-01
This work presents a new implementation of the mixed potential integral equation (MPIE) for planar structures that can include ferrite layers arbitrarily magnetized. The implementation of the MPIE here reported is carried out in the space domain. Thus it will combine the well-known numerical advantages of working with potentials as well as the flexibility for analyzing nonrectangular shape conductors with the additional ability of including anisotropic layers of arbitrarily magnetized ferrites. In this way, our approach widens the scope of the space domain MPIE and sets this method as a very efficient and versatile numerical tool to deal with a wide class of planar microwave circuits and antennas.
Comparing numerical integration schemes for time-continuous car-following models
NASA Astrophysics Data System (ADS)
Treiber, Martin; Kanagaraj, Venkatesan
2015-02-01
When simulating trajectories by integrating time-continuous car-following models, standard integration schemes such as the fourth-order Runge-Kutta method (RK4) are rarely used while the simple Euler method is popular among researchers. We compare four explicit methods both analytically and numerically: Euler's method, ballistic update, Heun's method (trapezoidal rule), and the standard RK4. As performance metrics, we plot the global discretization error as a function of the numerical complexity. We tested the methods on several time-continuous car-following models in several multi-vehicle simulation scenarios with and without discontinuities such as stops or a discontinuous behavior of an external leader. We find that the theoretical advantage of RK4 (consistency order 4) only plays a role if both the acceleration function of the model and the trajectory of the leader are sufficiently often differentiable. Otherwise, we obtain lower (and often fractional) consistency orders. Although, to our knowledge, Heun's method has never been used for integrating car-following models, it turns out to be the best scheme for many practical situations. The ballistic update always prevails over Euler's method although both are of first order.
Comparisons of numerical methods with respect to convectively dominated problems
NASA Astrophysics Data System (ADS)
Wang, Yongqi; Hutter, Kolumban
2001-11-01
A series of numerical schemes: first-order upstream, Lax-Friedrichs; second-order upstream, central difference, Lax-Wendroff, Beam-Warming, Fromm; third-order QUICK, QUICKEST and high resolution flux-corrected transport and total variation diminishing (TVD) methods are compared for one-dimensional convection-diffusion problems. Numerical results show that the modified TVD Lax-Friedrichs method is the most competent method for convectively dominated problems with a steep spatial gradient of the variables. Copyright
Numerical evaluation of two-center integrals over Slater type orbitals
NASA Astrophysics Data System (ADS)
Kurt, S. A.; Yükçü, N.
2016-03-01
Slater Type Orbitals (STOs) which one of the types of exponential type orbitals (ETOs) are used usually as basis functions in the multicenter molecular integrals to better understand physical and chemical properties of matter. In this work, we develop algorithms for two-center overlap and two-center two-electron hybrid and Coulomb integrals which are calculated with help of translation method for STOs and some auxiliary functions by V. Magnasco's group. We use Mathematica programming language to produce algorithms for these calculations. Numerical results for some quantum numbers are presented in the tables. Consequently, we compare our obtained numerical results with the other known literature results and other details of evaluation method are discussed.
Numerical evaluation of two-center integrals over Slater type orbitals
Kurt, S. A.; Yükçü, N.
2016-03-25
Slater Type Orbitals (STOs) which one of the types of exponential type orbitals (ETOs) are used usually as basis functions in the multicenter molecular integrals to better understand physical and chemical properties of matter. In this work, we develop algorithms for two-center overlap and two-center two-electron hybrid and Coulomb integrals which are calculated with help of translation method for STOs and some auxiliary functions by V. Magnasco’s group. We use Mathematica programming language to produce algorithms for these calculations. Numerical results for some quantum numbers are presented in the tables. Consequently, we compare our obtained numerical results with the other known literature results and other details of evaluation method are discussed.
A fifth order implicit method for the numerical solution of differential-algebraic equations
NASA Astrophysics Data System (ADS)
Skvortsov, L. M.
2015-06-01
An implicit two-step Runge-Kutta method of fifth order is proposed for the numerical solution of differential and differential-algebraic equations. The location of nodes in this method makes it possible to estimate the values of higher derivatives at the initial and terminal points of an integration step. Consequently, the proposed method can be regarded as a finite-difference analog of the Obrechkoff method. Numerical results, some of which are presented in this paper, show that our method preserves its order while solving stiff equations and equations of indices two and three. This is the main advantage of the proposed method as compared with the available ones.
A numerical method for vortex sheet roll-up
NASA Technical Reports Server (NTRS)
Krasny, R.
1986-01-01
The problem of computing vortex sheet roll-up from periodic analytic initial data is studied. Previous theoretical and numerical work is reviewed. Computational difficulties arising from ill posedness and singularity formation are discussed. A desingularization method is proposed to diminish these difficulties. Computations indicate that this approach converges past the time at which previous numerical investigations have failed to converge.
Comparing Three Types of Numerical Techniques for the Integration of Perturbed Satellite Motion
Robinson, Eric
2010-06-21
This project compares the computational efficiency, stability/accuracy, and precision of various numerical integration schemes to determine which is most appropriate for use in conjunction analysis of satellite orbits. Specifically, this project examines a few of the top Runge-Kutta, extrapolation, and multistep algorithms, combining both previous research in this field with new analysis to form the final conclusion. In addition, a method is proposed for using dense output to expedite orbit calculations.
Numerical modelling methods for predicting antenna performance on aircraft
NASA Astrophysics Data System (ADS)
Kubina, S. J.
1983-09-01
Typical case studies that involve the application of Moment Methods to the prediction of the radiation characteristics of antennas in the HF frequency band are examined. The examples consist of the analysis of a shorted transmission line HF antenna on a CHSS-2/Sea King helicopter, wire antennas on the CP-140/Aurora patrol aircraft and a long dipole antenna on the Space Shuttle Orbiter spacecraft. In each of these cases the guidelines for antenna modeling by the use of the program called the Numerical Electromagnetic Code are progressively applied and results are compared to measurements made by the use of scale-model techniques. In complex examples of this type comparisons based on individual radiation patterns are insufficient for the validation of computer models. A volumetric method of radiation pattern comparison is used based on criteria that result from pattern integration and that are related to communication system performance. This is supplemented by hidden-surface displays of an entire set of conical radiation patterns resulting from measurements and computations. Antenna coupling considerations are discussed for the case of the dual HF installation on the CP-140/Aurora aircraft.
a Numerical Method for Scattering from Acoustically Soft and Hard Thin Bodies in Two Dimensions
NASA Astrophysics Data System (ADS)
YANG, S. A.
2002-03-01
This paper presents a numerical method for predicting the acoustic scattering from two-dimensional (2-D) thin bodies. Both the Dirichlet and Neumann problems are considered. Applying the thin-body formulation leads to the boundary integral equations involving weakly singular and hypersingular kernels. Completely regularizing these kinds of singular kernels is thus the main concern of this paper. The basic subtraction-addition technique is adopted. The purpose of incorporating a parametric representation of the boundary surface with the integral equations is two-fold. The first is to facilitate the numerical implementation for arbitrarily shaped bodies. The second one is to facilitate the expansion of the unknown function into a series of Chebyshev polynomials. Some of the resultant integrals are evaluated by using the Gauss-Chebyshev integration rules after moving the series coefficients to the outside of the integral sign; others are evaluated exactly, including the modified hypersingular integral. The numerical implementation basically includes only two parts, one for evaluating the ordinary integrals and the other for solving a system of algebraic equations. Thus, the current method is highly efficient and accurate because these two solution procedures are easy and straightforward. Numerical calculations consist of the acoustic scattering by flat and curved plates. Comparisons with analytical solutions for flat plates are made.
NASA Astrophysics Data System (ADS)
Smokty, Oleg I.
2017-02-01
The mirror reflection principle and radiation field photometrical invariants given by the author have been applied to find uniform slab brightness coefficients by using modified linear singular integral equations. On this basis, certain mathematical aspects of the numerical realization of the angular discretization method to solve the linear singular integral equations for brightness coefficients photometrical invariants of an arbitrary optical thickness homogeneous slab.
Some Comments on Numerical Methods for Chaos Problems
NASA Astrophysics Data System (ADS)
Miller, R. H.
1996-03-01
Hamiltonian systems with chaotic regions are particularly slippery to treat numerically. Numerical treatments can introduce nonphysical features. Simple examples illustrate some of the pitfalls. Integer, or discrete, arithmetic is a favorite “workaround.” While it does not cure chaos, it clarifies the interaction of computational methods with the underlying mathematical structure. Be forewarned: I won't give any prescription that is guaranteed to give a good and reliable method to handle chaotic problems numerically. Instead, I'll stress a few of the concerns and describe one or two pitfalls.
NASA Astrophysics Data System (ADS)
Cooper, I. J.; Sheppard, C. J. R.; Roy, M.
2005-08-01
A comprehensive matrix method based upon a two-dimensional form of Simpson's 1/3 rule (2DSC method) to integrate numerically the vector form of the fundamental diffraction integrals is described for calculating the characteristics of the focal region for a converging polarized spherical wave. The only approximation needed in using the 2DSC method is the Kirchhoff boundary conditions at the aperture. The 2DSC method can be used to study the focusing of vector beams with different polarizations and profiles and for different filters over a large range of numerical apertures or Fresnel numbers.
ERIC Educational Resources Information Center
Johnson, K. J.
1979-01-01
This workshop was for participants who were interested in developing a numerical methods course. The contents of a numerical methods text were covered, with special emphasis on nonlinear least squares analysis, and the Runge-Kutta method of integrating systems of first-order differential equations. (BB)
A numerical method for phase-change problems
NASA Technical Reports Server (NTRS)
Kim, Charn-Jung; Kaviany, Massoud
1990-01-01
A highly accurate and efficient finite-difference method for phase-change problems with multiple moving boundaries of irregular shape is developed by employing a coordinate transformation that immobilizes moving boundaries and preserves the conservative forms of the original governing equations. The numerical method is first presented for one-dimensional phase-change problems (involving large density variation between phases, heat generation, and multiple moving boundaries) and then extended to solve two-dimensional problems (without change of densities between phases). Numerical solutions are obtained non-iteratively using an explicit treatment of the interfacial mass and energy balances and an implicit treatment of the temperature field equations. The accuracy and flexibility of the present numerical method are verified by solving some phase-change problems and comparing the results with existing analytical, semi-analytical and numerical solutions. Results indicate that one- and two-dimensional phase-change problems can be handled easily with excellent accuracies.
A numerical method for phase-change problems
NASA Technical Reports Server (NTRS)
Kim, Charn-Jung; Kaviany, Massoud
1990-01-01
A highly accurate and efficient finite-difference method for phase-change problems with multiple moving boundaries of irregular shape is developed by employing a coordinate transformation that immobilizes moving boundaries and preserves the conservative forms of the original governing equations. The numerical method is first presented for one-dimensional phase-change problems (involving large density variation between phases, heat generation, and multiple moving boundaries) and then extended to solve two-dimensional problems (without change of densities between phases). Numerical solutions are obtained non-iteratively using an explicit treatment of the interfacial mass and energy balances and an implicit treatment of the temperature field equations. The accuracy and flexibility of the present numerical method are verified by solving some phase-change problems and comparing the results with existing analytical, semi-analytical and numerical solutions. Results indicate that one- and two-dimensional phase-change problems can be handled easily with excellent accuracies.
Mixed time integration methods for transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Liu, W. K.
1982-01-01
The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.
Numerical methods in vehicle system dynamics: state of the art and current developments
NASA Astrophysics Data System (ADS)
Arnold, M.; Burgermeister, B.; Führer, C.; Hippmann, G.; Rill, G.
2011-07-01
Robust and efficient numerical methods are an essential prerequisite for the computer-based dynamical analysis of engineering systems. In vehicle system dynamics, the methods and software tools from multibody system dynamics provide the integration platform for the analysis, simulation and optimisation of the complex dynamical behaviour of vehicles and vehicle components and their interaction with hydraulic components, electronical devices and control structures. Based on the principles of classical mechanics, the modelling of vehicles and their components results in nonlinear systems of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs) of moderate dimension that describe the dynamical behaviour in the frequency range required and with a level of detail being characteristic of vehicle system dynamics. Most practical problems in this field may be transformed to generic problems of numerical mathematics like systems of nonlinear equations in the (quasi-)static analysis and explicit ODEs or DAEs with a typical semi-explicit structure in the dynamical analysis. This transformation to mathematical standard problems allows to use sophisticated, freely available numerical software that is based on well approved numerical methods like the Newton-Raphson iteration for nonlinear equations or Runge-Kutta and linear multistep methods for ODE/DAE time integration. Substantial speed-ups of these numerical standard methods may be achieved exploiting some specific structure of the mathematical models in vehicle system dynamics. In the present paper, we follow this framework and start with some modelling aspects being relevant from the numerical viewpoint. The focus of the paper is on numerical methods for static and dynamic problems, including software issues and a discussion which method fits best for which class of problems. Adaptive components in state-of-the-art numerical software like stepsize and order control in time integration are
ERIC Educational Resources Information Center
Motter, Wendell L.
It is noted that there are some integrals which cannot be evaluated by determining an antiderivative, and these integrals must be subjected to other techniques. Numerical integration is one such method; it provides a sum that is an approximate value for some integral types. This module's purpose is to introduce methods of numerical integration and…
Effective numerical method of spectral analysis of quantum graphs
NASA Astrophysics Data System (ADS)
Barrera-Figueroa, Víctor; Rabinovich, Vladimir S.
2017-05-01
We present in the paper an effective numerical method for the determination of the spectra of periodic metric graphs equipped by Schrödinger operators with real-valued periodic electric potentials as Hamiltonians and with Kirchhoff and Neumann conditions at the vertices. Our method is based on the spectral parameter power series method, which leads to a series representation of the dispersion equation, which is suitable for both analytical and numerical calculations. Several important examples demonstrate the effectiveness of our method for some periodic graphs of interest that possess potentials usually found in quantum mechanics.
Carbon Dioxide Dispersion in the Combustion Integrated Rack Simulated Numerically
NASA Technical Reports Server (NTRS)
Wu, Ming-Shin; Ruff, Gary A.
2004-01-01
When discharged into an International Space Station (ISS) payload rack, a carbon dioxide (CO2) portable fire extinguisher (PFE) must extinguish a fire by decreasing the oxygen in the rack by 50 percent within 60 sec. The length of time needed for this oxygen reduction throughout the rack and the length of time that the CO2 concentration remains high enough to prevent the fire from reigniting is important when determining the effectiveness of the response and postfire procedures. Furthermore, in the absence of gravity, the local flow velocity can make the difference between a fire that spreads rapidly and one that self-extinguishes after ignition. A numerical simulation of the discharge of CO2 from PFE into the Combustion Integrated Rack (CIR) in microgravity was performed to obtain the local velocity and CO2 concentration. The complicated flow field around the PFE nozzle exits was modeled by sources of equivalent mass and momentum flux at a location downstream of the nozzle. The time for the concentration of CO2 to reach a level that would extinguish a fire anywhere in the rack was determined using the Fire Dynamics Simulator (FDS), a computational fluid dynamics code developed by the National Institute of Standards and Technology specifically to evaluate the development of a fire and smoke transport. The simulation shows that CO2, as well as any smoke and combustion gases produced by a fire, would be discharged into the ISS cabin through the resource utility panel at the bottom of the rack. These simulations will be validated by comparing the results with velocity and CO2 concentration measurements obtained during the fire suppression system verification tests conducted on the CIR in March 2003. Once these numerical simulations are validated, portions of the ISS labs and living areas will be modeled to determine the local flow conditions before, during, and after a fire event. These simulations can yield specific information about how long it takes for smoke and
Asymptotic-induced numerical methods for conservation laws
NASA Technical Reports Server (NTRS)
Garbey, Marc; Scroggs, Jeffrey S.
1990-01-01
Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.
Black shale weathering: An integrated field and numerical modeling study
NASA Astrophysics Data System (ADS)
Bolton, E. W.; Wildman, R. A., Jr.; Berner, R. A.; Eckert, J. O., Jr.; Petsch, S. T.; Mok, U.; Evans, B.
2003-04-01
We present an integrated study of black shale weathering in a near surface environment. Implications of this study contribute to our understanding of organic matter oxidation in uplifted sediments, along with erosion and reburial of ancient unoxidized organic matter, as major controls on atmospheric oxygen levels over geologic time. The field study used to launch the modeling effort is based on core samples from central-eastern Kentucky near Clay City (Late Devonian New Albany/Ohio Shale), where the strata are essentially horizontal. Samples from various depth intervals (up to 12 m depth) were analyzed for texture (SEM images), porosity fraction (0.02 to 0.1), and horizontal and vertical permeability (water and air permeabilities differ due to the fine-grained nature of the sediments, but are on the order of 0.01 to 1. millidarcies, respectively). Chemical analyses were also performed for per cent C, N, S, and basic mineralogy was determined (clays, quartz, pyrite, in addition to organic matter). The samples contained from 2 to 15 per cent ancient (non-modern soil) organic matter. These results were used in the creation of a numerical model for kinetically controlled oxidation of the organic matter within the shale (based on kinetics from Chang and Berner, 1999). The one-dimensional model includes erosion, oxygen diffusion in the partially saturated vadose zone as well as water percolation and solute transport. This study extends the studies of Petsch (2000) and the weathering component of Lasaga and Ohmoto (2002) to include more reactions (e.g., pyrite oxidation to sulfuric acid and weathering of silicates due to low pH) and to resolve the near-surface boundary layer. The model provides a convenient means of exploring the influence of variable rates of erosion, oxygen level, rainfall, as well as physical and chemical characteristics of the shale on organic matter oxidation.
Liu, Fang; Lin, Lin; Vigil-Fowler, Derek; Lischner, Johannes; Kemper, Alexander F.; Sharifzadeh, Sahar; Jornada, Felipe H. da; Deslippe, Jack; Yang, Chao; and others
2015-04-01
We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit of using different self energy expressions to perform the numerical convolution at different frequencies.
Exponential Methods for the Time Integration of Schroedinger Equation
Cano, B.; Gonzalez-Pachon, A.
2010-09-30
We consider exponential methods of second order in time in order to integrate the cubic nonlinear Schroedinger equation. We are interested in taking profit of the special structure of this equation. Therefore, we look at symmetry, symplecticity and approximation of invariants of the proposed methods. That will allow to integrate till long times with reasonable accuracy. Computational efficiency is also our aim. Therefore, we make numerical computations in order to compare the methods considered and so as to conclude that explicit Lawson schemes projected on the norm of the solution are an efficient tool to integrate this equation.
Numerical methods for solving ODEs on the infinity computer
NASA Astrophysics Data System (ADS)
Mazzia, F.; Sergeyev, Ya. D.; Iavernaro, F.; Amodio, P.; Mukhametzhanov, M. S.
2016-10-01
New algorithms for the numerical solution of Ordinary Differential Equations (ODEs) with initial conditions are proposed. They are designed for working on a new kind of a supercomputer - the Infinity Computer - that is able to deal numerically with finite, infinite and infinitesimal numbers. Due to this fact, the Infinity Computer allows one to calculate the exact derivatives of functions using infinitesimal values of the stepsize. As a consequence, the new methods are able to work with the exact values of the derivatives, instead of their approximations. Within this context, variants of one-step multi-point methods closely related to the classical Taylor formulae and to the Obrechkoff methods are considered. To get numerical evidence of the theoretical results, test problems are solved by means of the new methods and the results compared with the performance of classical methods.
Numerical integration of structural elements in NIKE3D and DYNA3D
NASA Astrophysics Data System (ADS)
Maker, B. N.; Whirley, R. G.; Engelmann, B. E.
1992-08-01
The beam and shell elements found in many linear elastic finite element codes accept integrated cross sectional properties as input, and produce solutions using classical beam and shell theory. These theories are built upon the equation of resultant forces and moments with integrals of assumed stress distributions over the cross section. In contrast, the structural elements in NIKE3D and DYNA3D are formulated to represent nonlinear geometric and material behavior. Thus stress distributions may not necessarily be representable by simple functions of cross section variables. In NIKE3D and DYNA3D, the Hughes-Liu beam element and all shell elements accommodate these more general stress distributions by computing stresses at various points in the cross section. The integration of stresses within each element is then performed numerically, using a variety of methods. This report describes these numerical integration procedures in detail, and highlights their application to engineering problems. Several other features of the structural elements are also described, including force and moment resultants, user-defined reference surfaces, and user-defined integration rules. Finally, the shear correction factor is described in a section which relates results from NIKE3D and DYNA3D to those obtained from classical beam theory.
Method for Numerical Solution of the Stationary Schrödinger Equation
NASA Astrophysics Data System (ADS)
Knyazev, S. Yu.; Shcherbakova, E. E.
2017-02-01
The aim of this work is to describe a method of numerical solution of the stationary Schrödinger equation based on the integral equation that is identical to the Schrödinger equation. The method considered here allows one to find the eigenvalues and eigensolutions for quantum-mechanical problems of different dimensionality. The method is tested by solving problems for one-dimensional and two-dimensional quantum oscillators, and results of these tests are presented. Satisfactory agreement of the results obtained using this numerical method with well-known analytical solutions is demonstrated.
An iterative analytic—numerical method for scattering from a target buried beneath a rough surface
NASA Astrophysics Data System (ADS)
Xu, Run-Wen; Guo, Li-Xin; Wang, Rui
2014-11-01
An efficiently iterative analytical—numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The basic idea is to employ the Kirchhoff approximation (KA) to accelerate the boundary integral method (BIM). Below the rough surface, an iterative system is designed between the rough surface and the target. The KA is used to simulate the initial field on the rough surface based on the Fresnel theory, while the target is analyzed by the boundary integral method to obtain a precise result. The fields between the rough surface and the target can be linked by the boundary integral equations below the rough surface. The technique presented here is highly efficient in terms of computational memory, time, and versatility. Numerical simulations of two typical models are carried out to validate the method.
Subleading poles in the numerical unitarity method at two loops
NASA Astrophysics Data System (ADS)
Abreu, S.; Febres Cordero, F.; Ita, H.; Jaquier, M.; Page, B.
2017-05-01
We describe the unitarity approach for the numerical computation of two-loop integral coefficients of scattering amplitudes. It is well known that the leading propagator singularities of an amplitude's integrand are related to products of tree amplitudes. At two loops, Feynman diagrams with doubled propagators appear naturally, which lead to subleading pole contributions. In general, it is not known how these contributions can be directly expressed in terms of a product of on-shell tree amplitudes. We present a universal algorithm to extract these subleading pole terms by releasing some of the on-shell conditions. We demonstrate the new approach by numerically computing two-loop four-gluon integral coefficients.
A numerical method for approximating antenna surfaces defined by discrete surface points
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Acosta, R.
1985-01-01
A simple numerical method for the quadratic approximation of a discretely defined reflector surface is described. The numerical method was applied to interpolate the surface normal of a parabolic reflector surface from a grid of nine closest surface points to the point of incidence. After computing the surface normals, the geometrical optics and the aperture integration method using the discrete Fast Fourier Transform (FFT) were applied to compute the radiaton patterns for a symmetric and an offset antenna configurations. The computed patterns are compared to that of the analytic case and to the patterns generated from another numerical technique using the spline function approximation. In the paper, examples of computations are given. The accuracy of the numerical method is discussed.
EFFECTS OF DIFFERENT NUMERICAL INTERFACE METHODS ON HYDRODYNAMICS INSTABILITY
FRANCOIS, MARIANNE M.; DENDY, EDWARD D.; LOWRIE, ROBERT B.; LIVESCU, DANIEL; STEINKAMP, MICHAEL J.
2007-01-11
The authors compare the effects of different numerical schemes for the advection and material interface treatments on the single-mode Rayleigh-Taylor instability, using the RAGE hydro-code. The interface growth and its surface density (interfacial area) versus time are investigated. The surface density metric shows to be better suited to characterize the difference in the flow, than the conventional interface growth metric. They have found that Van Leer's limiter combined to no interface treatment leads to the largest surface area. Finally, to quantify the difference between the numerical methods they have estimated the numerical viscosity in the linear-regime at different scales.
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
NASA Technical Reports Server (NTRS)
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
2003-01-01
Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.
[Etnography as an Integrative Method].
Gómez, Ángela Viviana Pérez
2012-06-01
Ethnography is understood from three perspectives: approach, methodology and text. In the health field, ethnography can be used not only from the standpoint of the research process, but also from the very instances of medical consultation, diagnose and treatment. The pacient appreciates the fact of being heard and understood as a subject who has her/his own story and is involved in a particular culture related to her/his own status and to the effectsa caused by life experiences. Analysis of the literature related to ethnography, participanting observation and an relationship between health and qualitative research. There is a diversity of opinions and attitudes about ethnography, its validity and usefulness as well as in considerations related to its method and the techniques that nourish it. Ethnography is an integrative approach that may resorty to multiple tools for collecting, analyzing and interpreting the data. Therefore, ethnography constitutes an option for the physician when performing individual assessment. Ethnography provides an opportunity to approach the reality of an individual or group of individuals in order to obtain information about the matter under investigation, its understanding and interpretation. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Numerical solutions of the GEW equation using MLS collocation method
NASA Astrophysics Data System (ADS)
Kaplan, Ayşe Gül; Dereli, Yılmaz
In this paper, the generalized equal width wave (GEW) equation is solved by using moving least squares collocation (MLSC) method. To test the accuracy of the method some numerical experiments are presented. The motion of single solitary waves, the interaction of two solitary waves and the Maxwellian initial condition problems are chosen as test problems. For the single solitary wave motion whose analytical solution was known L2, L∞ error norms and pointwise rates of convergence were calculated. Also mass, energy and momentum invariants were calculated for every test problems. Obtained numerical results are compared with some earlier works. It is seen that the method is very efficient and reliable due to obtained numerical results are very satisfactorily. Stability analysis of difference equation was done by applying the moving least squares collocation method for GEW equation.
Numeric Modified Adomian Decomposition Method for Power System Simulations
Dimitrovski, Aleksandar D; Simunovic, Srdjan; Pannala, Sreekanth
2016-01-01
This paper investigates the applicability of numeric Wazwaz El Sayed modified Adomian Decomposition Method (WES-ADM) for time domain simulation of power systems. WESADM is a numerical method based on a modified Adomian decomposition (ADM) technique. WES-ADM is a numerical approximation method for the solution of nonlinear ordinary differential equations. The non-linear terms in the differential equations are approximated using Adomian polynomials. In this paper WES-ADM is applied to time domain simulations of multimachine power systems. WECC 3-generator, 9-bus system and IEEE 10-generator, 39-bus system have been used to test the applicability of the approach. Several fault scenarios have been tested. It has been found that the proposed approach is faster than the trapezoidal method with comparable accuracy.
Overview: Applications of numerical optimization methods to helicopter design problems
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
There are a number of helicopter design problems that are well suited to applications of numerical design optimization techniques. Adequate implementation of this technology will provide high pay-offs. There are a number of numerical optimization programs available, and there are many excellent response/performance analysis programs developed or being developed. But integration of these programs in a form that is usable in the design phase should be recognized as important. It is also necessary to attract the attention of engineers engaged in the development of analysis capabilities and to make them aware that analysis capabilities are much more powerful if integrated into design oriented codes. Frequently, the shortcoming of analysis capabilities are revealed by coupling them with an optimization code. Most of the published work has addressed problems in preliminary system design, rotor system/blade design or airframe design. Very few published results were found in acoustics, aerodynamics and control system design. Currently major efforts are focused on vibration reduction, and aerodynamics/acoustics applications appear to be growing fast. The development of a computer program system to integrate the multiple disciplines required in helicopter design with numerical optimization technique is needed. Activities in Britain, Germany and Poland are identified, but no published results from France, Italy, the USSR or Japan were found.
Integrated navigation method based on inertial navigation system and Lidar
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi
2016-04-01
An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.
Integrating Numerical Computation into the Modeling Instruction Curriculum
ERIC Educational Resources Information Center
Caballero, Marcos D.; Burk, John B.; Aiken, John M.; Thoms, Brian D.; Douglas, Scott S.; Scanlon, Erin M.; Schatz, Michael F.
2014-01-01
Numerical computation (the use of a computer to solve, simulate, or visualize a physical problem) has fundamentally changed the way scientific research is done. Systems that are too difficult to solve in closed form are probed using computation. Experiments that are impossible to perform in the laboratory are studied numerically. Consequently, in…
Integrating Numerical Computation into the Modeling Instruction Curriculum
ERIC Educational Resources Information Center
Caballero, Marcos D.; Burk, John B.; Aiken, John M.; Thoms, Brian D.; Douglas, Scott S.; Scanlon, Erin M.; Schatz, Michael F.
2014-01-01
Numerical computation (the use of a computer to solve, simulate, or visualize a physical problem) has fundamentally changed the way scientific research is done. Systems that are too difficult to solve in closed form are probed using computation. Experiments that are impossible to perform in the laboratory are studied numerically. Consequently, in…
Investigating Convergence Patterns for Numerical Methods Using Data Analysis
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2013-01-01
The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…
Investigating Convergence Patterns for Numerical Methods Using Data Analysis
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2013-01-01
The article investigates the patterns that arise in the convergence of numerical methods, particularly those in the errors involved in successive iterations, using data analysis and curve fitting methods. In particular, the results obtained are used to convey a deeper level of understanding of the concepts of linear, quadratic, and cubic…
A numerical method for solving singular De`s
Mahaver, W.T.
1996-12-31
A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.
Numerical implementation of the integral-transform solution to Lamb's point-load problem
NASA Astrophysics Data System (ADS)
Georgiadis, H. G.; Vamvatsikos, D.; Vardoulakis, I.
The present work describes a procedure for the numerical evaluation of the classical integral-transform solution of the transient elastodynamic point-load (axisymmetric) Lamb's problem. This solution involves integrals of rapidly oscillatory functions over semi-infinite intervals and inversion of one-sided (time) Laplace transforms. These features introduce difficulties for a numerical treatment and constitute a challenging problem in trying to obtain results for quantities (e.g. displacements) in the interior of the half-space. To deal with the oscillatory integrands, which in addition may take very large values (pseudo-pole behavior) at certain points, we follow the concept of Longman's method but using as accelerator in the summation procedure a modified Epsilon algorithm instead of the standard Euler's transformation. Also, an adaptive procedure using the Gauss 32-point rule is introduced to integrate in the vicinity of the pseudo-pole. The numerical Laplace-transform inversion is based on the robust Fourier-series technique of Dubner/Abate-Crump-Durbin. Extensive results are given for sub-surface displacements, whereas the limit-case results for the surface displacements compare very favorably with previous exact results.
Numerical Integration with GeoGebra in High School
ERIC Educational Resources Information Center
Herceg, Dorde; Herceg, Dragoslav
2010-01-01
The concept of definite integral is almost always introduced as the Riemann integral, which is defined in terms of the Riemann sum, and its geometric interpretation. This definition is hard to understand for high school students. With the aid of mathematical software for visualisation and computation of approximate integrals, the notion of…
Numerical Integration with GeoGebra in High School
ERIC Educational Resources Information Center
Herceg, Dorde; Herceg, Dragoslav
2010-01-01
The concept of definite integral is almost always introduced as the Riemann integral, which is defined in terms of the Riemann sum, and its geometric interpretation. This definition is hard to understand for high school students. With the aid of mathematical software for visualisation and computation of approximate integrals, the notion of…
Numerical solution of a diffusion problem by exponentially fitted finite difference methods.
D'Ambrosio, Raffaele; Paternoster, Beatrice
2014-01-01
This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by employing a general purpose solver.
25 Years of Self-organized Criticality: Numerical Detection Methods
NASA Astrophysics Data System (ADS)
McAteer, R. T. James; Aschwanden, Markus J.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Pruessner, Gunnar; Morales, Laura; Ireland, Jack; Abramenko, Valentyna
2016-01-01
The detection and characterization of self-organized criticality (SOC), in both real and simulated data, has undergone many significant revisions over the past 25 years. The explosive advances in the many numerical methods available for detecting, discriminating, and ultimately testing, SOC have played a critical role in developing our understanding of how systems experience and exhibit SOC. In this article, methods of detecting SOC are reviewed; from correlations to complexity to critical quantities. A description of the basic autocorrelation method leads into a detailed analysis of application-oriented methods developed in the last 25 years. In the second half of this manuscript space-based, time-based and spatial-temporal methods are reviewed and the prevalence of power laws in nature is described, with an emphasis on event detection and characterization. The search for numerical methods to clearly and unambiguously detect SOC in data often leads us outside the comfort zone of our own disciplines—the answers to these questions are often obtained by studying the advances made in other fields of study. In addition, numerical detection methods often provide the optimum link between simulations and experiments in scientific research. We seek to explore this boundary where the rubber meets the road, to review this expanding field of research of numerical detection of SOC systems over the past 25 years, and to iterate forwards so as to provide some foresight and guidance into developing breakthroughs in this subject over the next quarter of a century.
SAMSAN- MODERN NUMERICAL METHODS FOR CLASSICAL SAMPLED SYSTEM ANALYSIS
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
SAMSAN was developed to aid the control system analyst by providing a self consistent set of computer algorithms that support large order control system design and evaluation studies, with an emphasis placed on sampled system analysis. Control system analysts have access to a vast array of published algorithms to solve an equally large spectrum of controls related computational problems. The analyst usually spends considerable time and effort bringing these published algorithms to an integrated operational status and often finds them less general than desired. SAMSAN reduces the burden on the analyst by providing a set of algorithms that have been well tested and documented, and that can be readily integrated for solving control system problems. Algorithm selection for SAMSAN has been biased toward numerical accuracy for large order systems with computational speed and portability being considered important but not paramount. In addition to containing relevant subroutines from EISPAK for eigen-analysis and from LINPAK for the solution of linear systems and related problems, SAMSAN contains the following not so generally available capabilities: 1) Reduction of a real non-symmetric matrix to block diagonal form via a real similarity transformation matrix which is well conditioned with respect to inversion, 2) Solution of the generalized eigenvalue problem with balancing and grading, 3) Computation of all zeros of the determinant of a matrix of polynomials, 4) Matrix exponentiation and the evaluation of integrals involving the matrix exponential, with option to first block diagonalize, 5) Root locus and frequency response for single variable transfer functions in the S, Z, and W domains, 6) Several methods of computing zeros for linear systems, and 7) The ability to generate documentation "on demand". All matrix operations in the SAMSAN algorithms assume non-symmetric matrices with real double precision elements. There is no fixed size limit on any matrix in any
SAMSAN- MODERN NUMERICAL METHODS FOR CLASSICAL SAMPLED SYSTEM ANALYSIS
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
SAMSAN was developed to aid the control system analyst by providing a self consistent set of computer algorithms that support large order control system design and evaluation studies, with an emphasis placed on sampled system analysis. Control system analysts have access to a vast array of published algorithms to solve an equally large spectrum of controls related computational problems. The analyst usually spends considerable time and effort bringing these published algorithms to an integrated operational status and often finds them less general than desired. SAMSAN reduces the burden on the analyst by providing a set of algorithms that have been well tested and documented, and that can be readily integrated for solving control system problems. Algorithm selection for SAMSAN has been biased toward numerical accuracy for large order systems with computational speed and portability being considered important but not paramount. In addition to containing relevant subroutines from EISPAK for eigen-analysis and from LINPAK for the solution of linear systems and related problems, SAMSAN contains the following not so generally available capabilities: 1) Reduction of a real non-symmetric matrix to block diagonal form via a real similarity transformation matrix which is well conditioned with respect to inversion, 2) Solution of the generalized eigenvalue problem with balancing and grading, 3) Computation of all zeros of the determinant of a matrix of polynomials, 4) Matrix exponentiation and the evaluation of integrals involving the matrix exponential, with option to first block diagonalize, 5) Root locus and frequency response for single variable transfer functions in the S, Z, and W domains, 6) Several methods of computing zeros for linear systems, and 7) The ability to generate documentation "on demand". All matrix operations in the SAMSAN algorithms assume non-symmetric matrices with real double precision elements. There is no fixed size limit on any matrix in any
Algebraic Stabilization of Explicit Numerical Integration for Extremely Stiff Reaction Networks
Guidry, Mike W
2012-01-01
In contrast to the prevailing view in the literature, it is shown that even extremely stiff sets of ordinary differential equations may be solved efficiently by explicit methods if limiting algebraic solutions are used to stabilize the numerical integration. The stabilizing algebra differs essentially for systems well removed from equilibrium and those near equilibrium. Explicit asymptotic and quasi-steady-state methods that are appropriate when the system is only weakly equilibrated are examined first. These methods are then extended to the case of close approach to equilibrium through a new implementation of partial equilibrium approximations. Using stringent tests with astrophysical thermonuclear networks, evidence is provided that these methods can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and integration timestepping comparable to that of implicit methods. Because explicit methods can execute a timestep faster and scale more favorably with network size than implicit algorithms, our results suggest that algebraically stabilized explicit methods might enable integration of larger reaction networks coupled to fluid dynamics than has been feasible previously for a variety of disciplines.
The numerical mirage method for photothermal characterization of materials.
Demko, Michael T; Hostler, Stephen R; Abramson, Alexis R
2008-04-01
Noncontact thermal measurement techniques offer rapid thermal characterization without modification or destruction of the sample being studied. A simple and versatile method has been developed, termed the "numerical mirage method," that utilizes the transient photothermal deflection of a laser beam traversing a modulated temperature gradient. This method expands the range and simplifies the experimental procedure of traditional mirage methods. A numerical solver is used to create accurate deflection profile models and a linear curve fitting routine is developed, from which the thermal diffusivity of a material may be determined. This method allows for rapid modification of sample and heating configurations. Verification of the method is performed on bismuth and fused quartz reference samples, and good agreement with literature is obtained.
Numerical results for extended field method applications. [thin plates
NASA Technical Reports Server (NTRS)
Donaldson, B. K.; Chander, S.
1973-01-01
This paper presents the numerical results obtained when a new method of analysis, called the extended field method, was applied to several thin plate problems including one with non-rectangular geometry, and one problem involving both beams and a plate. The numerical results show that the quality of the single plate solutions was satisfactory for all cases except those involving a freely deflecting plate corner. The results for the beam and plate structure were satisfactory even though the structure had a freely deflecting corner.
Nonlinear vibrations of buckled plates by an asymptotic numerical method
NASA Astrophysics Data System (ADS)
Benchouaf, Lahcen; Boutyour, El Hassan
2016-03-01
This work deals with nonlinear vibrations of a buckled von Karman plate by an asymptotic numerical method and harmonic balance approach. The coupled nonlinear static and dynamic problems are transformed into a sequence of linear ones solved by a finite-element method. The static behavior of the plate is first computed. The fundamental frequency of nonlinear vibrations of the plate, about any equilibrium state, is obtained. To improve the validity range of the power series, Padé approximants are incorporated. A continuation technique is used to get the whole solution. To show the effectiveness of the proposed methodology, numerical tests are presented.
A numerical method for acoustic oscillations in tubes
NASA Technical Reports Server (NTRS)
Gary, John M.
1988-01-01
A numerical method to obtain the neutral curve for the onset of acoustic oscillations in a helium-filled tube is described. Such oscillations can cause a serious heat loss in the plumbing associated with liquid helium dewars. The problem is modelled by a second-order, ordinary differential eigenvalue problem for the pressure perturbation. The numerical method to find the eigenvalues and track the resulting points along the neutral curve is tailored to this problem. The results show that a tube with a uniform temperature gradient along it is much more stable than one where the temperature suddenly jumps from the cold to the hot value in the middle of the tube.
Self-Adaptive Filon's Integration Method and Its Application to Computing Synthetic Seismograms
NASA Astrophysics Data System (ADS)
Zhang, Hai-Ming; Chen, Xiao-Fei
2001-03-01
Based on the principle of the self-adaptive Simpson integration method, and by incorporating the `fifth-order' Filon's integration algorithm [Bull. Seism. Soc. Am. 73(1983)913], we have proposed a simple and efficient numerical integration method, i.e., the self-adaptive Filon's integration method (SAFIM), for computing synthetic seismograms at large epicentral distances. With numerical examples, we have demonstrated that the SAFIM is not only accurate but also very efficient. This new integration method is expected to be very useful in seismology, as well as in computing similar oscillatory integrals in other branches of physics.
Numerical orbit integration efficiency of the Delaunay-Similar elements
NASA Technical Reports Server (NTRS)
Pierce, S.
1974-01-01
Orbit equations with a set of conservative and a set of nonconservative perturbing potentials were considered. Scheifele's DS formulation of these equations has dependent variables similar to Delaunay's orbital elements with the true anomaly as the independent variable. Efficiency curves of computing cost v.s. accuracy were constructed for Adams integrators of order of 2 through 15 with several correcting algorithms and for a Runga-Kutta integrator. Considering stability regions, choices were made for the optimally efficient integration modes for the DS elements. Integrating in these modes reduces computing costs for a specified accuracy.
Numerical solution of random singular integral equation appearing in crack problems
NASA Technical Reports Server (NTRS)
Sambandham, M.; Srivatsan, T. S.; Bharucha-Reid, A. T.
1986-01-01
The solution of several elasticity problems, and particularly crack problems, can be reduced to the solution of one-dimensional singular integral equations with a Cauchy-type kernel or to a system of uncoupled singular integral equations. Here a method for the numerical solution of random singular integral equations of Cauchy type is presented. The solution technique involves a Chebyshev series approximation, the coefficients of which are the solutions of a system of random linear equations. This method is applied to the problem of periodic array of straight cracks inside an infinite isotropic elastic medium and subjected to a nonuniform pressure distribution along the crack edges. The statistical properties of the random solution are evaluated numerically, and the random solution is used to determine the values of the stress-intensity factors at the crack tips. The error, expressed as the difference between the mean of the random solution and the deterministic solution, is established. Values of stress-intensity factors at the crack tip for different random input functions are presented.
Numerical solution of random singular integral equation appearing in crack problems
NASA Technical Reports Server (NTRS)
Sambandham, M.; Srivatsan, T. S.; Bharucha-Reid, A. T.
1986-01-01
The solution of several elasticity problems, and particularly crack problems, can be reduced to the solution of one-dimensional singular integral equations with a Cauchy-type kernel or to a system of uncoupled singular integral equations. Here a method for the numerical solution of random singular integral equations of Cauchy type is presented. The solution technique involves a Chebyshev series approximation, the coefficients of which are the solutions of a system of random linear equations. This method is applied to the problem of periodic array of straight cracks inside an infinite isotropic elastic medium and subjected to a nonuniform pressure distribution along the crack edges. The statistical properties of the random solution are evaluated numerically, and the random solution is used to determine the values of the stress-intensity factors at the crack tips. The error, expressed as the difference between the mean of the random solution and the deterministic solution, is established. Values of stress-intensity factors at the crack tip for different random input functions are presented.
Numerical methods for solving terminal optimal control problems
NASA Astrophysics Data System (ADS)
Gornov, A. Yu.; Tyatyushkin, A. I.; Finkelstein, E. A.
2016-02-01
Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton's method or Bellman's quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.
NASA Technical Reports Server (NTRS)
Lundberg, J. B.; Feulner, M. R.; Abusali, P. A. M.; Ho, C. S.
1991-01-01
The method of modified back differences, a technique that significantly reduces the numerical integration errors associated with crossing shadow boundaries using a fixed-mesh multistep integrator without a significant increase in computer run time, is presented. While Hubbard's integral approach can produce significant improvements to the trajectory solution, the interpolation method provides the best overall results. It is demonstrated that iterating on the point mass term correction is also important for achieving the best overall results. It is also shown that the method of modified back differences can be implemented with only a small increase in execution time.
High accuracy mantle convection simulation through modern numerical methods
NASA Astrophysics Data System (ADS)
Kronbichler, Martin; Heister, Timo; Bangerth, Wolfgang
2012-10-01
Numerical simulation of the processes in the Earth's mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth's core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth's mantle, and discusses their implementation in the Open Source code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. ASPECT relies on the numerical software packages DEAL.II and TRILINOS, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs.
Numerical methods and calculations for droplet flow, heating and ignition
NASA Technical Reports Server (NTRS)
Dwyer, H. A.; Sanders, B. R.; Dandy, D.
1982-01-01
A numerical method was devised and employed to solve a variety of problems related to liquid droplet combustion. The basic transport equations of mass, momentum and energy were formulated in terms of generalized nonorthogonal coordinates, which allows for adaptive griding and arbitrary particle shape. Example problems are solved for internal droplet heating, droplet ignition and high Reynolds number flow over a droplet.
A numerical method for unsteady aerodynamics via acoustics
NASA Technical Reports Server (NTRS)
Hodge, Steve
1991-01-01
Formal solutions to the wave equation may be conveniently described within the framework of generalized function theory. A generalized function theory is used to yield a formulation and formal solution of a wave equation describing oscillation of a flat plate from which a numerical method may be derived.
NASA Astrophysics Data System (ADS)
Ortleb, Sigrun; Seidel, Christian
2017-07-01
In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
The linear transonic perturbation integral equation previously derived for nonlifting airfoils is formulated for lifting cases. In order to treat shock wave motions, a strained coordinate system is used in which the shock location is invariant. The tangency boundary conditions are either formulated using the thin airfoil approximation or by using the analytic continuation concept. A direct numerical solution to this equation is derived in contrast to the iterative scheme initially used, and results of both lifting and nonlifting examples indicate that the method is satisfactory.
An improved mixed numerical-experimental method for stress field calculation
NASA Astrophysics Data System (ADS)
Lopes, H. M. R.; Guedes, R. M.; Vaz, M. A.
2007-07-01
In this work a numerical-experimental method is used to study the dynamic behavior of an aluminum plate subjected to a small mass impact. The out-of-plane displacements, due to transient bending wave propagation, were assessed for successive time instants, using double pulse TV-holography, also known as pulsed ESPI. The experimental setup and the image processing methods were improved to allow the calculation of the plate transient stress field. Integral transforms are used to obtain the strain fields from spatial derivatives of displacements noisy data. A numerical simulation of the plate transient response was carried out with FEM Ansys ®. For this purpose a PZT transducer was used to record the impact force history, which was inputted in the numerical model. Finally, the comparisons between numerical and experimental results are presented in order to validate the present methodology.
Numerical methods for aerothermodynamic design of hypersonic space transport vehicles
NASA Astrophysics Data System (ADS)
Wanie, K. M.; Brenneis, A.; Eberle, A.; Heiss, S.
1993-04-01
The requirement of the design process of hypersonic vehicles to predict flow past entire configurations with wings, fins, flaps, and propulsion system represents one of the major challenges for aerothermodynamics. In this context computational fluid dynamics has come up as a powerful tool to support the experimental work. A couple of numerical methods developed at MBB designed to fulfill the needs of the design process are described. The governing equations and fundamental details of the solution methods are shortly reviewed. Results are given for both geometrically simple test cases and realistic hypersonic configurations. Since there is still a considerable lack of experience for hypersonic flow calculations an extensive testing and verification is essential. This verification is done by comparison of results with experimental data and other numerical methods. The results presented prove that the methods used are robust, flexible, and accurate enough to fulfill the strong needs of the design process.
Willis, Catherine; Rubin, Jacob
1987-01-01
In this paper we consider examples of chemistry-affected transport processes in porous media. A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters.
Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank
NASA Technical Reports Server (NTRS)
LeClair, A. C.; Hedayat, A.; Majumdar, A. K.
2017-01-01
This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.
Numerical aperture of multimode fibers by several methods - Resolving differences
NASA Astrophysics Data System (ADS)
Franzen, Douglas L.; Young, Matt; Cherin, Allen H.; Head, E. D.; Hackert, Michael J.
1989-06-01
An industry-wide study among members of the Electronic Industries Association was conducted to document differences among three numerical aperture measurement methods. Results on 12 multimode graded-index fibers indicate systematic differences exist among commonly used far-field and index-profile techniques. Differences can be explained by a wavelength-dependent factor and choice of definitions. Conversion factors can be used to relate the various methods.
Efficient numerical methods for entropy-linear programming problems
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Gasnikova, E. B.; Nesterov, Yu. E.; Chernov, A. V.
2016-04-01
Entropy-linear programming (ELP) problems arise in various applications. They are usually written as the maximization of entropy (minimization of minus entropy) under affine constraints. In this work, new numerical methods for solving ELP problems are proposed. Sharp estimates for the convergence rates of the proposed methods are established. The approach described applies to a broader class of minimization problems for strongly convex functionals with affine constraints.
A novel gas-droplet numerical method for spray combustion
NASA Technical Reports Server (NTRS)
Chen, C. P.; Shang, H. M.; Jiang, Y.
1991-01-01
This paper presents a non-iterative numerical technique for computing time-dependent gas-droplet flows. The method is a fully-interacting combination of Eulerian fluid and Lagrangian particle calculation. The interaction calculations between the two phases are formulated on a pressure-velocity coupling procedure based on the operator-splitting technique. This procedure eliminates the global iterations required in the conventional particle-source-in-cell (PSIC) procedure. Turbulent dispersion calculations are treated by a stochastic procedure. Numerical calculations and comparisons with available experimental data, as well as efficiency assessments are given for some sprays typical of spray combustion applications.
Numerical methods and computers used in elastohydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Tripp, J. H.
1982-01-01
Some of the methods of obtaining approximate numerical solutions to boundary value problems that arise in elastohydrodynamic lubrication are reviewed. The highlights of four general approaches (direct, inverse, quasi-inverse, and Newton-Raphson) are sketched. Advantages and disadvantages of these approaches are presented along with a flow chart showing some of the details of each. The basic question of numerical stability of the elastohydrodynamic lubrication solutions, especially in the pressure spike region, is considered. Computers used to solve this important class of lubrication problems are briefly described, with emphasis on supercomputers.
Approximate and exact numerical integration of the gas dynamic equations
NASA Technical Reports Server (NTRS)
Lewis, T. S.; Sirovich, L.
1979-01-01
A highly accurate approximation and a rapidly convergent numerical procedure are developed for two dimensional steady supersonic flow over an airfoil. Examples are given for a symmetric airfoil over a range of Mach numbers. Several interesting features are found in the calculation of the tail shock and the flow behind the airfoil.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Astrophysics Data System (ADS)
Cerro, J. A.; Scotti, S. J.
1991-07-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Simple numerical method for predicting steady compressible flows
NASA Technical Reports Server (NTRS)
Vonlavante, Ernst; Nelson, N. Duane
1986-01-01
A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.
Numerical methods for solving the Boltzmann equation (a review)
NASA Technical Reports Server (NTRS)
Limar, Y. F.; Shakhov, Y. M.; Shidlovskiy, V. P.
1972-01-01
The methods are reviewed which are utilized in principal attempts to obtain the numerical solution or modeling of the Boltzmann equation over a broad range of Knudsen numbers. The primary methods considered are the Monte Carlo and the discrete velocities methods. The conculsions drawn from the analysis include the following: (1) The Monte Carlo methods are not well suited in the area of small Knudsen numbers. (2) Among the Monte Carlo methods, the Bird method appears to be the most attractive, since it is more directly related to the Boltzmann equation. (3) The deterministic methods, which include the discrete ordinate technique, offer great possibilities but require exceedingly large computer times. (4) The use of approximating equations in combination with the discrete velocities method will possibly improve computation time and reduce the required memory volume.
Numerical multistep methods for the efficient solution of quantum mechanics and related problems
NASA Astrophysics Data System (ADS)
Anastassi, Z. A.; Simos, T. E.
2009-10-01
In this paper we present the recent development in the numerical integration of the Schrödinger equation and related systems of ordinary differential equations with oscillatory solutions, such as the N-body problem. We examine several types of multistep methods (explicit, implicit, predictor-corrector, hybrid) and several properties (P-stability, trigonometric fitting of various orders, phase fitting, high phase-lag order, algebraic order). We analyze the local truncation error and the stability of the methods. The error for the Schrödinger equation is also presented, which reveals the relation of the error to the energy. The efficiency of the methods is evaluated through the integration of five problems. Figures are presented and analyzed and some general conclusions are made. Code written in Maple is given for the development of all methods analyzed in this paper. Also the subroutines written in Matlab, that concern the integration of the methods, are presented.
Garzón-Alvarado, D A; Linero, D
2012-01-01
In this study, a computational model of bone remodelling problem as proposed by Weinans et al. (1992) is described and solved by other temporal integration techniques different from the Euler scheme. This model considers three types of numerical integration schemes of the evolution of the material density during the remodelling: Euler, Heun and Runge-Kutta methods. Also the strain and the density field are obtained inside each element, at Gauss points or at the nodes of the mesh. A square plate with 1.00 m of side subjected to non-uniform pressure is simulated with two meshes of quadrilateral element with size [Formula: see text] and [Formula: see text] m. Two increments time size: [Formula: see text] and [Formula: see text] days are used. The results show that Euler, Heun and Runge-Kutta's methods correctly approached the problem of bone remodelling and that there were no appreciable differences in the patterns obtained by the mesh and time step used. In contrast, using an element-based approach and node-based approach, substantial differences were produced in bone remodelling density pattern. 'Chess board' type discontinuities were found in the element approach near the applied pressure area, as were well-defined columns away from this. The node-based approach showed continuity in density distribution. These patterns were well represented by the methods for resolving the density equation. This study concluded that any method of time integration could be used for these meshes and time steps size.
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
1984-01-01
The efficiency and accuracy of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations are compared. The methods examined include two general-purpose codes, EPISODE and LSODE, and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an interactive solution of the algebraic energy conservation equation to compute the temperature does not result in significant errors. In addition, this method is more efficient than evaluating the temperature by integrating its time derivative. Significant reductions in computational work are realized by updating the rate constants (k = at(supra N) N exp(-E/RT) only when the temperature change exceeds an amount delta T that is problem dependent. An approximate expression for the automatic evaluation of delta T is derived and is shown to result in increased efficiency.
Damping identification in frequency domain using integral method
NASA Astrophysics Data System (ADS)
Guo, Zhiwei; Sheng, Meiping; Ma, Jiangang; Zhang, Wulin
2015-03-01
A new method for damping identification of linear system in frequency domain is presented, by using frequency response function (FRF) with integral method. The FRF curve is firstly transformed to other type of frequency-related curve by changing the representations of horizontal and vertical axes. For the newly constructed frequency-related curve, integral is conducted and the area forming from the new curve is used to determine the damping. Three different methods based on integral are proposed in this paper, which are called FDI-1, FDI-2 and FDI-3 method, respectively. For a single degree of freedom (Sdof) system, the formulated relation of each method between integrated area and loss factor is derived theoretically. The numeral simulation and experiment results show that, the proposed integral methods have high precision, strong noise resistance and are very stable in repeated measurements. Among the three integral methods, FDI-3 method is the most recommended because of its higher accuracy and simpler algorithm. The new methods are limited to linear system in which modes are well separated, and for closely spaced mode system, mode decomposition process should be conducted firstly.
Impact of numerical integration on gas curtain simulations
Rider, W.; Kamm, J.
2000-11-01
In recent years, we have presented a less than glowing experimental comparison of hydrodynamic codes with the gas curtain experiment (e.g., Kamm et al. 1999a). Here, we discuss the manner in which the details of the hydrodynamic integration techniques may conspire to produce poor results. This also includes some progress in improving the results and agreement with experimental results. Because our comparison was conducted on the details of the experimental images (i.e., their detailed structural information), our results do not conflict with previously published results of good agreement with Richtmyer-Meshkov instabilities based on the integral scale of mixing. New experimental and analysis techniques are also discussed.
Comparison of photopeak integration methods
NASA Astrophysics Data System (ADS)
Kennedy, G.
1990-12-01
Several methods for the calculation of gamma-ray photopeak areas have been compared for the case of a small peak on a high Compton background. 980 similar spectra were accumulated with a germanium detector using a weak 137Cs source to produce a peak at 662 keV on a Compton background generated by a 60Co source. A computer program was written to calculate the area of the 662 keV peak using the total- and partial-peak-area methods, a modification of Sterlinski's method, Loska's method and least-squares fitting of Gaussian peak shapes with linear and quadratic background. The precision attained was highly dependent on the number of channels used to estimate the background, and the best precision, about 9.5%, was obtained with the partial-peak-area method, the modified Sterlinski method and least-squares fitting with variable peak position, fixed peak width and linear background. The methods were also evaluated for their sensitivity to uncertainty in the peak centroid position. Considering precision, ease of use, reliability and universal applicability, the total-peak-area method using several channels for background estimation and the least-squares-fitting method are recommended.
Monte Carlo Method for Solving the Fredholm Integral Equations of the Second Kind
NASA Astrophysics Data System (ADS)
ZhiMin, Hong; ZaiZai, Yan; JianRui, Chen
2012-12-01
This article is concerned with a numerical algorithm for solving approximate solutions of Fredholm integral equations of the second kind with random sampling. We use Simpson's rule for solving integral equations, which yields a linear system. The Monte Carlo method, based on the simulation of a finite discrete Markov chain, is employed to solve this linear system. To show the efficiency of the method, we use numerical examples. Results obtained by the present method indicate that the method is an effective alternate method.
Numerical Polynomial Homotopy Continuation Method and String Vacua
Mehta, Dhagash
2011-01-01
Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less
Computational methods for aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
Simple numerical method for solving the steady Euler equations
NASA Technical Reports Server (NTRS)
Von Lavante, E.; Melson, N. Duane
1987-01-01
A numerical method for solving the isenthalpic form of the governing equations for compressible inviscid flows is developed. The method is based on the concept of flux vector splitting in its implicit form and is tested on several demanding configurations. Time marching to steady state is accelerated by the implementation of the multigrid procedure which very effectively increases the rate of convergence. Steady-state results are obtained for various test cases. Only short computational times are required due to the relative efficiency of the basic method.
A Numerical Method for Incompressible Flow with Heat Transfer
NASA Technical Reports Server (NTRS)
Sa, Jong-Youb; Kwak, Dochan
1997-01-01
A numerical method for the convective heat transfer problem is developed for low speed flow at mild temperatures. A simplified energy equation is added to the incompressible Navier-Stokes formulation by using Boussinesq approximation to account for the buoyancy force. A pseudocompressibility method is used to solve the resulting set of equations for steady-state solutions in conjunction with an approximate factorization scheme. A Neumann-type pressure boundary condition is devised to account for the interaction between pressure and temperature terms, especially near a heated or cooled solid boundary. It is shown that the present method is capable of predicting the temperature field in an incompressible flow.
Projected discrete ordinates methods for numerical transport problems
Larsen, E.W.
1985-01-01
A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.
An Extended Prolog Architecture for Integrated Symbolic and Numerical Executions
1988-06-14
clauses. The Data 10ur current experimental system is a Xenologic model X-1 [5) co-processor with a Sun 3/160 host. The X-1 is an improved, commercial...stimulating interactions with Professor William Kahan, Robert Owen of Bipolar Integrated Technology incoporated, the staff at Xenologic incoporated, and
Simpson's Rule by Rectangles: A Numerical Approach to Integration.
ERIC Educational Resources Information Center
Powell, Martin
1985-01-01
Shows that Simpson's rule can be obtained as the average of three simple rectangular approximations and can therefore be introduced to students before they meet any calculus. In addition, the accuracy of the rule (which is for exact cubes) can be exploited to introduce the topic of integration. (JN)
Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
Khoromskaia, Venera; Khoromskij, Boris N
2015-12-21
We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.
NASA Astrophysics Data System (ADS)
Shen, Kaixian
1990-12-01
The orbits of Iapetus and Titan have been generated by numerical integration using Gauss-Jackson method, and fitted to 1414 astrometric observations of Iapetus-Titan. The fit yielded well-determined value of the dynamical flattening J2 of Saturn and the mass ration Saturn/Sun.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Fast and stable numerical method for neuronal modelling
NASA Astrophysics Data System (ADS)
Hashemi, Soheil; Abdolali, Ali
2016-11-01
Excitable cell modelling is of a prime interest in predicting and targeting neural activity. Two main limits in solving related equations are speed and stability of numerical method. Since there is a tradeoff between accuracy and speed, most previously presented methods for solving partial differential equations (PDE) are focused on one side. More speed means more accurate simulations and therefore better device designing. By considering the variables in finite differenced equation in proper time and calculating the unknowns in the specific sequence, a fast, stable and accurate method is introduced in this paper for solving neural partial differential equations. Propagation of action potential in giant axon is studied by proposed method and traditional methods. Speed, consistency and stability of the methods are compared and discussed. The proposed method is as fast as forward methods and as stable as backward methods. Forward methods are known as fastest methods and backward methods are stable in any circumstances. Complex structures can be simulated by proposed method due to speed and stability of the method.
NASA Astrophysics Data System (ADS)
Darabi, E.; Ahmadi, V.
2009-03-01
A quantum well optoelectronic integrated amplifier-switch is proposed, in which the device operation mode (amplification or switching) is independent of input light polarization. It is composed of a tensile-strained periodic coupled-double-quantum well heterojunction phototransistor and a compressive strained multi quantum wells laser diode. This structure shows unresolved heavy hole and light hole transitions due to applying tensile strain in absorption region of phototransistor. Hence, the absorption spectra for TE and TM polarizations are almost equal which provide polarization independent operation. A rigorous numerical analysis based on the device rate equations for dynamic response and relative intensity noise is presented, for which we calculate the laser diode gain and phototransistor electroabsorption coefficient. The Hamiltonian of strained quantum well structure is numerically solved by Transfer matrix method taking into accounts the valence band mixing between heavy hole and light hole. In order to calculate the electroabsorption coefficient, the exciton equation is solved numerically in momentum space using Gaussian Quadrature method. Langevin noise in laser part, phototransistor current noise, input power noise and noise due to the internal optical feedback from laser to phototransistor are considered as the device noise sources. It is shown that the higher gain of the phototransistor for TM polarization and lower threshold current of compressive strained laser diode lead to reduction of the RIN in amplification mode.
Numerical methods for control optimization in linear systems
NASA Astrophysics Data System (ADS)
Tyatyushkin, A. I.
2015-05-01
Numerical methods are considered for solving optimal control problems in linear systems, namely, terminal control problems with control and phase constraints and time-optimal control problems. Several algorithms with various computer storage requirements are proposed for solving these problems. The algorithms are intended for finding an optimal control in linear systems having certain features, for example, when the reachable set of a system has flat faces.
Fast Numerical Methods for Stochastic Partial Differential Equations
2016-04-15
AFRL-AFOSR-VA-TR-2016-0156 Fast Numerical Methods for Stochastic Partial Differential Equations Hongmei Chi Florida Agricultural and Mechanical...University Tallahassee Final Report 04/15/2016 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ RTA2...Arlington, Virginia 22203 Air Force Research Laboratory Air Force Materiel Command REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 1. REPORT
Robust rotational-velocity-Verlet integration methods
NASA Astrophysics Data System (ADS)
Rozmanov, Dmitri; Kusalik, Peter G.
2010-05-01
Two rotational integration algorithms for rigid-body dynamics are proposed in velocity-Verlet formulation. The first method uses quaternion dynamics and was derived from the original rotational leap-frog method by Svanberg [Mol. Phys. 92, 1085 (1997)]; it produces time consistent positions and momenta. The second method is also formulated in terms of quaternions but it is not quaternion specific and can be easily adapted for any other orientational representation. Both the methods are tested extensively and compared to existing rotational integrators. The proposed integrators demonstrated performance at least at the level of previously reported rotational algorithms. The choice of simulation parameters is also discussed.
A bin integral method for solving the kinetic collection equation
NASA Astrophysics Data System (ADS)
Wang, Lian-Ping; Xue, Yan; Grabowski, Wojciech W.
2007-09-01
A new numerical method for solving the kinetic collection equation (KCE) is proposed, and its accuracy and convergence are investigated. The method, herein referred to as the bin integral method with Gauss quadrature (BIMGQ), makes use of two binwise moments, namely, the number and mass concentration in each bin. These two degrees of freedom define an extended linear representation of the number density distribution for each bin following Enukashvily (1980). Unlike previous moment-based methods in which the gain and loss integrals are evaluated for a target bin, the concept of source-bin pair interactions is used to transfer bin moments from source bins to target bins. Collection kernels are treated by bilinear interpolations. All binwise interaction integrals are then handled exactly by Gauss quadrature of various orders. In essence the method combines favorable features in previous spectral moment-based and bin-based pair-interaction (or flux) methods to greatly enhance the logic, consistency, and simplicity in the numerical method and its implementation. Quantitative measures are developed to rigorously examine the accuracy and convergence properties of BIMGQ for both the Golovin kernel and hydrodynamic kernels. It is shown that BIMGQ has a superior accuracy for the Golovin kernel and a monotonic convergence behavior for hydrodynamic kernels. Direct comparisons are also made with the method of Berry and Reinhardt (1974), the linear flux method of Bott (1998), and the linear discrete method of Simmel et al. (2002).
Modeling collisional processes in plasmas using discontinuous numerical methods
NASA Astrophysics Data System (ADS)
Miller, Sean
Fluid-based plasma models are typically applied to parameter regimes where a local thermal equilibrium is assumed. The applicability of this regime is valid for many plasmas, however, it is limited to plasma dynamics dominated by collisional effects. This study attempts to extend the validity of the collisional fluid regime using an anisotropic 13-moment fluid model derived from the Pearson type-IV probability distribution. The model explicitly evolves the heat flux hyperbolically alongside the density, momentum, and energy in order to capture dynamics usually restricted to costly kinetic models. Each particle species is modeled individually and collectively coupled through electromagnetic and collision operators. To remove electromagnetic divergence errors inherent to numerical representations of Maxwell's equations, both hyperbolic and parabolic cleaning methods are presented. The plasma models are implemented using high-order finite volume and discontinuous Galerkin numerical methods designed for unstructured meshes. The unstructured code framework, numerical methods, and plasma models were developed in the University of Washington's WARPXM code for use on heterogeneous accelerated clusters.
Numerical simulation of boundary layers. Part 1: Weak formulation and numerical method
NASA Technical Reports Server (NTRS)
Spalart, P. R.
1986-01-01
A numerical method designed to solve the time-dependent, three-dimensional, incompressible Navier-Stokes equations in boundary layers is presented. The fluid domain is the half-space over a flat plate, and periodic conditions are applied in the horizontal directions. The discretization is spectral. The basis functions are divergence-free and a weak formulation of the momentum equation is used, which eliminates the pressure term. An exponential mapping and Jacobi polynomials are used in the semi-infinite direction, with the irrotational component receiving special treatment. Issues related to the accuracy, stability and efficiency of the method are discussed. Very fast convergence is demonstrated on some model problems with smooth solutions. The method has also been shown to accurately resolve the fine scales of transitional and turbulent boundary layers.
Numerical simulation of pseudoelastic shape memory alloys using the large time increment method
NASA Astrophysics Data System (ADS)
Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad
2017-04-01
The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.
Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus
NASA Astrophysics Data System (ADS)
Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.
2015-05-01
We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.
Testing the accuracy and stability of spectral methods in numerical relativity
Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.
2007-01-15
The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test.
Andean Mountain Building: An Integrated Topographic, GPS, Seismological and Numerical Study
NASA Technical Reports Server (NTRS)
Liu, Mian; Stein, Seth
2003-01-01
The main objective of this project was to better understand the geodynamics controlling the mountain building and topographic evolution in the central Andes using an integrated approach that combines GPS, seismological, and numerical studies.
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.
1973-01-01
Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.
An explicit mixed numerical method for mesoscale model
NASA Technical Reports Server (NTRS)
Hsu, H.-M.
1981-01-01
A mixed numerical method has been developed for mesoscale models. The technique consists of a forward difference scheme for time tendency terms, an upstream scheme for advective terms, and a central scheme for the other terms in a physical system. It is shown that the mixed method is conditionally stable and highly accurate for approximating the system of either shallow-water equations in one dimension or primitive equations in three dimensions. Since the technique is explicit and two time level, it conserves computer and programming resources.
Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer
Lucas, D.S.
2004-10-03
This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.
New numerical method to study phase transitions and its applications
Lee, Jooyoung; Kosterlitz, J.M.
1991-11-01
We present a powerful method of identifying the nature of transitions by numerical simulation of finite systems. By studying the finite size scaling properties of free energy barrier between competing states, we can identify unambiguously a weak first order transition even when accessible system sizes are L/{xi} < 0.05 as in the five state Potts model in two dimensions. When studying a continuous phase transition we obtain quite accurate estimates of critical exponents by treating it as a field driven first order transition. The method has been successfully applied to various systems.
NASA Astrophysics Data System (ADS)
Hedan, S.; Valle, V.; Cottron, M.
2010-06-01
Contrary to J-integral values calculated from the 2D numerical model, calculated J-integrals [1] in the 3D numerical and 3D experimental cases are not very close with J-integral used in the literature. We can note a problem of structure which allows three-dimensional effects surrounding the crack tip to be seen. The aim of this paper is to determine the zone where the Jintegral formulation of the literature is sufficient to estimate the energy release rate (G) for the 3D cracked structure. For that, a numerical model based on the finite element method and an experimental setup are used. A grid method is adapted to experimentally determine the in-plane displacement fields around a crack tip in a Single-Edge-Notch (SEN) tensile polymer (PMMA) specimen. This indirect method composed of experimental in-plane displacement fields and of 2 theoretical formulations, allows the experimental J-integral on the free-surface to be determined and the results obtaining by the 3D numerical simulations to be confirmed.
Numerical approximation of weakly singular integrals on a triangle
NASA Astrophysics Data System (ADS)
Serafini, Giada
2016-10-01
In this paper, we propose product cubature rules based on the polynomial approximation in order to evaluate the following integrals I (F ;y )= ∫TK (x ,y ) F (x )ω (x )d x , where x = (x1, x2), y = (y1, y2), K is a "weakly"singular or a "nearly"singular kernel, T the domain T is the triangle of vertices (0, 0), (0, 1), (1, 0), f is a given bivariate function defined on T and ω is a proper weight function.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.; Jacobsen, S. E.
1986-01-01
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.
A Numerical Method for Synthesizing Atmospheric Temperature and Humidity Profiles.
NASA Astrophysics Data System (ADS)
Tatarskaia, Maia S.; Lataitis, Richard J.; Boba Stankov, B.; Tatarskii, Viatcheslav V.
1998-07-01
A numerical technique is described for synthesizing realistic atmospheric temperature and humidity profiles. The method uses an ensemble of radiosonde measurements collected at a site of interest. Erroneous profiles are removed by comparing their likelihood with prevailing meteorological conditions. The remaining profiles are decomposed using the method of empirical orthogonal functions. The corresponding eigenprofiles and the statistics of the expansion coefficients are used to numerically generate synthetic profiles that obey the same statistics (i.e., have the same mean, variability, and vertical correlation) as the initial dataset. The technique was applied to a set of approximately 1000 temperature and humidity soundings made in Denver, Colorado, during the winter months of 1991-95. This dataset was divided into four cloud classification categories and daytime and nighttime launches to better characterize typical profiles for the eight cases considered. It was found that 97% of the variance in the soundings could be accounted for by using only five eigenprofiles in the reconstructions. Ensembles of numerically generated profiles can be used to test the accuracy of various retrieval algorithms under controlled conditions not usually available in practice.
A fully implicit numerical method for single-fluid resistive magnetohydrodynamics
Reynolds, Daniel R. . E-mail: drreynolds@ucsd.edu; Samtaney, Ravi . E-mail: samtaney@pppl.gov; Woodward, Carol S. . E-mail: cswoodward@llnl.gov
2006-11-20
We present a nonlinearly implicit, conservative numerical method for integration of the single-fluid resistive MHD equations. The method uses a high-order spatial discretization that preserves the solenoidal property of the magnetic field. The fully coupled PDE system is solved implicitly in time, providing for increased interaction between physical processes as well as additional stability over explicit-time methods. A high-order adaptive time integration is employed, which in many cases enables time steps ranging from one to two orders of magnitude larger than those constrained by the explicit CFL condition. We apply the solution method to illustrative examples relevant to stiff magnetic fusion processes which challenge the efficiency of explicit methods. We provide computational evidence showing that for such problems the method is comparably accurate with explicit-time simulations, while providing a significant runtime improvement due to its increased temporal stability.
NASA Astrophysics Data System (ADS)
Xie, Guizhong; Zhang, Dehai; Zhang, Jianming; Meng, Fannian; Du, Wenliao; Wen, Xiaoyu
2016-12-01
As a widely used numerical method, boundary element method (BEM) is efficient for computer aided engineering (CAE). However, boundary integrals with near singularity need to be calculated accurately and efficiently to implement BEM for CAE analysis on thin bodies successfully. In this paper, the distance in the denominator of the fundamental solution is first designed as an equivalent form using approximate expansion and the original sinh method can be revised into a new form considering the minimum distance and the approximate expansion. Second, the acquisition of the projection point by Newton-Raphson method is introduced. We acquire the nearest point between the source point and element edge by solving a cubic equation if the location of the projection point is outside the element, where boundary integrals with near singularity appear. Finally, the subtriangles of the local coordinate space are mapped into the integration space and the sinh method is applied in the integration space. The revised sinh method can be directly performed in the integration element. Averification test of our method is proposed. Results demonstrate that our method is effective for regularizing the boundary integrals with near singularity.
Quantum-classical path integral. II. Numerical methodology
NASA Astrophysics Data System (ADS)
Lambert, Roberto; Makri, Nancy
2012-12-01
We present a quantum-classical methodology for propagating the density matrix of a system coupled to a polyatomic (large molecular or solvent) environment. The system is treated via a full path integral, while the dynamics of the environment is approximated in terms of classical trajectories. We obtain quantum-classical path integral (QCPI) expressions in which the trajectories can undergo transitions to other quantum states at regular time intervals, but the cumulative probability of these transitions is governed by the local strength of the state-to-state coupling as well as the magnitude of the solvent reorganization energy. If quantum effects in the coordinates of the environment are relatively weak, an inexpensive random hop approximation leads to accurate descriptions of the dynamics. We describe a systematic iterative scheme for including quantum mechanical corrections for the solvent by gradually accounting for nonlocal "quantum memory" effects. As the length of the included memory approaches the decoherence time of the environment, the iterative QCPI procedure converges to the full QCPI result. The methodology is illustrated with application to dissipative symmetric and asymmetric two-level systems.
Analysis of free turbulent shear flows by numerical methods
NASA Technical Reports Server (NTRS)
Korst, H. H.; Chow, W. L.; Hurt, R. F.; White, R. A.; Addy, A. L.
1973-01-01
Studies are described in which the effort was essentially directed to classes of problems where the phenomenologically interpreted effective transport coefficients could be absorbed by, and subsequently extracted from (by comparison with experimental data), appropriate coordinate transformations. The transformed system of differential equations could then be solved without further specifications or assumptions by numerical integration procedures. An attempt was made to delineate different regimes for which specific eddy viscosity models could be formulated. In particular, this would account for the carryover of turbulence from attached boundary layers, the transitory adjustment, and the asymptotic behavior of initially disturbed mixing regions. Such models were subsequently used in seeking solutions for the prescribed two-dimensional test cases, yielding a better insight into overall aspects of the exchange mechanisms.
Numerically stable formulas for a particle-based explicit exponential integrator
NASA Astrophysics Data System (ADS)
Nadukandi, Prashanth
2015-05-01
Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the particle finite element method. Algebraically, this scheme involves two steps: (1) the solution of tangent curves for piecewise linear vector fields defined on simplicial meshes and (2) the solution of line integrals of piecewise linear vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general applicability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential functions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients in these expressions are defined in a piecewise manner, i.e. in a prescribed neighbourhood of removable singularities their series approximations are computed. An optimal series approximation of divided differences is presented which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.
Numerical simulation of a lattice polymer model at its integrable point
NASA Astrophysics Data System (ADS)
Bedini, A.; Owczarek, A. L.; Prellberg, T.
2013-07-01
We revisit an integrable lattice model of polymer collapse using numerical simulations. This model was first studied by Blöte and Nienhuis (1989 J. Phys. A: Math. Gen. 22 1415) and it describes polymers with some attraction, providing thus a model for the polymer collapse transition. At a particular set of Boltzmann weights the model is integrable and the exponents ν = 12/23 ≈ 0.522 and γ = 53/46 ≈ 1.152 have been computed via identification of the scaling dimensions xt = 1/12 and xh = -5/48. We directly investigate the polymer scaling exponents via Monte Carlo simulations using the pruned-enriched Rosenbluth method algorithm. By simulating this polymer model for walks up to length 4096 we find ν = 0.576(6) and γ = 1.045(5), which are clearly different from the predicted values. Our estimate for the exponent ν is compatible with the known θ-point value of 4/7 and in agreement with very recent numerical evaluation by Foster and Pinettes (2012 J. Phys. A: Math. Theor. 45 505003).
The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods
NASA Astrophysics Data System (ADS)
Degasperis, Antonio; Conforti, Matteo; Baronio, Fabio; Wabnitz, Stefan; Lombardo, Sara
2011-06-01
The spectral theory of the integrable partial differential equations which model the resonant interaction of three waves is considered with the purpose of numerically solving the direct spectral problem for both vanishing and non vanishing boundary values. Methods of computing both the continuum spectrum data and the discrete spectrum eigenvalues are given together with examples of such computations. The explicit spectral representation of the Manley-Rowe invariants is also displayed.
AN EFFICIENT NUMERICAL METHOD FOR THE SOLUTION OF THE L2 OPTIMAL MASS TRANSFER PROBLEM*
Haber, Eldad; Rehman, Tauseef; Tannenbaum, Allen
2010-01-01
In this paper we present a new computationally efficient numerical scheme for the minimizing flow approach for the computation of the optimal L2 mass transport mapping. In contrast to the integration of a time dependent partial differential equation proposed in [S. Angenent, S. Haker, and A. Tannenbaum, SIAM J. Math. Anal., 35 (2003), pp. 61–97], we employ in the present work a direct variational method. The efficacy of the approach is demonstrated on both real and synthetic data. PMID:21278828
A numerical method for the dynamics of non-spherical cavitation bubbles
NASA Technical Reports Server (NTRS)
Lucca, G.; Prosperetti, A.
1982-01-01
A boundary integral numerical method for the dynamics of nonspherical cavitation bubbles in inviscid incompressible liquids is described. Only surface values of the velocity potential and its first derivatives are involved. The problem of solving the Laplace equation in the entire domain occupied by the liquid is thus avoided. The collapse of a bubble in the vicinity of a solid wall and the collapse of three bubbles with collinear centers are considered.
Numerical method for gas dynamics combining characteristic and conservation concepts
NASA Technical Reports Server (NTRS)
Coakley, T. J.
1981-01-01
An efficient implicit numerical method that solves the compressible Navier-Stokes equations in arbitrary curvilinear coordinates by the finite-volume technique is presented. An intrinsically dissipative difference scheme and a fully implicit treatment of boundary conditions, based on characteristic and conservation concepts, are used to improve stability and accuracy. Efficiency is achieved by using a diagonal form of the implicit algorithm and spatially varying time-steps. Comparisons of various schemes and methods are presented for one- and two-dimensional flows, including transonic separated flow past a thick circular-arc airfoil in a channel. The new method is equal to or better than a version of MacCormack's hybrid method in accuracy and it converges to a steady state up to an order of magnitude faster.
Performance analysis of a mirror by numerical iterative method.
Park, Kwijong; Cho, Myung; Lee, Dae-Hee; Moon, Bongkon
2014-12-29
Zernike polynomials are generally used to predict the optical performance of a mirror. However, it can also be done by a numerical iterative method. As piston, tip, tilt, and defocus (P.T.T.F) aberrations can be easily removed by optical alignment, we iteratively used a rotation transformation and a paraboloid graph subtraction for removal of the aberrations from a raw deformation of the optical surface through a Finite Element Method (FEM). The results of a 30 cm concave circular mirror corrected by the iterative method were almost the same as those yielded by Zernike polynomial fitting, and the computational time was fast. In addition, a concave square mirror whose surface area is π was analyzed in order to visualize the deformation maps of a general mirror aperture shape. The iterative method can be applicable efficiently because it does not depend on the mirror aperture shape.
Numerical method for gas dynamics combining characteristic and conservation concepts
NASA Technical Reports Server (NTRS)
Coakley, T. J.
1981-01-01
An efficient implicit numerical method that solves the compressible Navier-Stokes equations in arbitrary curvilinear coordinates by the finite-volume technique is presented. An intrinsically dissipative difference scheme and a fully implicit treatment of boundary conditions, based on characteristic and conservation concepts, are used to improve stability and accuracy. Efficiency is achieved by using a diagonal form of the implicit algorithm and spatially varying time-steps. Comparisons of various schemes and methods are presented for one- and two-dimensional flows, including transonic separated flow past a thick circular-arc airfoil in a channel. The new method is equal to or better than a version of MacCormack's hybrid method in accuracy and it converges to a steady state up to an order of magnitude faster.
Numerical renormalization group method for quantum impurity systems
NASA Astrophysics Data System (ADS)
Bulla, Ralf; Costi, Theo A.; Pruschke, Thomas
2008-04-01
In the early 1970s, Wilson developed the concept of a fully nonperturbative renormalization group transformation. When applied to the Kondo problem, this numerical renormalization group (NRG) method gave for the first time the full crossover from the high-temperature phase of a free spin to the low-temperature phase of a completely screened spin. The NRG method was later generalized to a variety of quantum impurity problems. The purpose of this review is to give a brief introduction to the NRG method, including some guidelines for calculating physical quantities, and to survey the development of the NRG method and its various applications over the last 30 years. These applications include variants of the original Kondo problem such as the non-Fermi-liquid behavior in the two-channel Kondo model, dissipative quantum systems such as the spin-boson model, and lattice systems in the framework of the dynamical mean-field theory.
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge
Numerical investigation of premixed combustion in a porous burner with integrated heat exchanger
NASA Astrophysics Data System (ADS)
Farzaneh, Meisam; Shafiey, Mohammad; Ebrahimi, Reza; Shams, Mehrzad
2012-07-01
In this paper, we perform a numerical analysis of a two-dimensional axisymmetric problem arising in premixed combustion in a porous burner with integrated heat exchanger. The physical domain consists of two zones, porous and heat exchanger zones. Two dimensional Navier-Stokes equations, gas and solid energy equations, and chemical species transport equations are solved and heat release is described by a multistep kinetics mechanism. The solid matrix is modeled as a gray medium, and the finite volume method is used to solve the radiative transfer equation to calculate the local radiation source/sink in the solid phase energy equation. Special attention is given to model heat transfer between the hot gas and the heat exchanger tube. Thus, the corresponding terms are added to the energy equations of the flow and the solid matrix. Gas and solid temperature profiles and species mole fractions on the burner centerline, predicted 2D temperature fields, species concentrations and streamlines are presented. Calculated results for temperature profiles are compared to experimental data. It is shown that there is good agreement between the numerical solutions and the experimental data and it is concluded that the developed numerical program is an excellent tool to investigate combustion in porous burner.
Method of optical image coding by time integration
NASA Astrophysics Data System (ADS)
Evtikhiev, Nikolay N.; Starikov, Sergey N.; Cheryomkhin, Pavel A.; Krasnov, Vitaly V.; Rodin, Vladislav G.
2012-06-01
Method of optical image coding by time integration is proposed. Coding in proposed method is accomplished by shifting object image over photosensor area of digital camera during registration. It results in optically calculated convolution of original image with shifts trajectory. As opposed to optical coding methods based on the use of diffractive optical elements the described coding method is feasible for implementation in totally incoherent light. The method was preliminary tested by using LC monitor for image displaying and shifting. Shifting of object image is realized by displaying video consisting of frames with image to be encoded at different locations on screen of LC monitor while registering it by camera. Optical encoding and numerical decoding of test images were performed successfully. Also more practical experimental implementation of the method with use of LCOS SLM Holoeye PLUTO VIS was realized. Objects images to be encoded were formed in monochromatic spatially incoherent light. Shifting of object image over camera photosensor area was accomplished by displaying video consisting of frames with blazed gratings on LCOS SLM. Each blazed grating deflects reflecting from SLM light at different angle. Results of image optical coding and encoded images numerical restoration are presented. Obtained experimental results are compared with results of numerical modeling. Optical image coding with time integration could be used for accessible quality estimation of optical image coding using diffractive optical elements or as independent optical coding method which can be implemented in incoherent light.
Novel Parallel Numerical Methods for Radiation& Neutron Transport
Brown, P N
2001-03-06
In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both.
The numerical methods for the fluid flow of UCMCWS
Zhang Wenfu; Li Hui; Zhu Shuquan; Wang Zuna
1997-12-31
As an alternative for diesel oil for internal combustion engines, the fluid flow state of Ultra Clean Micronized Coal-Water Slurry (UCMCWS) in mini pipe and nozzle of a diesel engine must be known. In the laboratory three kinds of UCMCWS have been made with coal containing less than 0.8% ash, viscosity less than 600 mPa.s and concentration between 50% and 56%. Because the UCMCWS is a non-Newtonian fluid, there are no analytical resolution for pipe flow, especially in inlet and outlet sections. In this case using the numerical methods to research the flow state of UCMCWS is a useful method. Using the method of finite element, the flow state of UCMCWS in inlet and outlet sections (similar to a nozzle) have been studied. The distribution of velocity at different pressures of UCMCWS in outlet and inlet sections have been obtained. The result of the numerical methods is the efficient base for the pipe and nozzle design.
Numerical methods and measurement systems for nonlinear magnetic circuits (abstract)
NASA Astrophysics Data System (ADS)
Heitbrink, Axel; Dieter Storzer, Hans; Beyer, Adalbert
1994-05-01
In the past years an increasing interest in calculation methods of circuits containing magnetic nonlinearities could be observed. For this reason a new method was developed which makes it possible to calculate the steady state solution of such circuits by the help of an interactive cad program. The modular concept of the software allows to separate the circuit into nonlinear and linear subnetworks. When regarding nonlinear magnetic elements one can choose between several numerical models for the description of the hysteresis loops or an inbuilt realtime measurement system can be activated to get the dynamic hysteresis loops. The measurement system is also helpful for the parameter extraction for the numerical hysteresis models. A modified harmonic-balance algorithm and a set of iteration schemes is used for solving the network function. The combination of the realtime measurement system and modern numerical methods brings up a productive total concept for the exact calculation of nonlinear magnetic circuits. A special application class will be discussed which is given by earth-leakage circuit breakers. These networks contain a toroidal high permeable NiFe alloy and a relay as nonlinear elements (cells) and some resistors, inductors, and capacitors as linear elements. As input dc signals at the primary winding of the core any curveform must be regarded, especially 135° phasecutted pulses. These signals with extreme higher frequency components make it impossible to use numerical models for the description of the nonlinear behavior of the core and the relays. So for both elements the realtime measurement system must be used during the iteration process. During each iteration step the actual magnetization current is sent to the measurement system, which measures the dynamic hysteresis loop at the probe. These values flow back into the iteration process. A graphic subsystem allows a look at the waveforms of all voltages and current when the iterations take place. One
EMERGY METHODS: VALUABLE INTEGRATED ASSESSMENT TOOLS
NHEERL's Atlantic Ecology Division is investigating emergy methods as tools for integrated assessment in several projects evaluating environmental impacts, policies, and alternatives for remediation and intervention. Emergy accounting is a methodology that provides a quantitative...
EMERGY METHODS: VALUABLE INTEGRATED ASSESSMENT TOOLS
NHEERL's Atlantic Ecology Division is investigating emergy methods as tools for integrated assessment in several projects evaluating environmental impacts, policies, and alternatives for remediation and intervention. Emergy accounting is a methodology that provides a quantitative...
Explicit Integration of Extremely Stiff Reaction Networks: Partial Equilibrium Methods
Guidry, Mike W; Billings, J. J.; Hix, William Raphael
2013-01-01
In two preceding papers [1,2] we have shown that, when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the new partial equilibrium methods, give an integration scheme that plausibly can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that algebraically stabilized explicit methods may offer alternatives to implicit integration of even extremely stiff systems, and that these methods may permit integration of much larger networks than have been feasible previously in a variety of fields.
Numerical Analysis of a Finite Element/Volume Penalty Method
NASA Astrophysics Data System (ADS)
Maury, Bertrand
The penalty method makes it possible to incorporate a large class of constraints in general purpose Finite Element solvers like freeFEM++. We present here some contributions to the numerical analysis of this method. We propose an abstract framework for this approach, together with some general error estimates based on the discretization parameter ɛ and the space discretization parameter h. As this work is motivated by the possibility to handle constraints like rigid motion for fluid-particle flows, we shall pay a special attention to a model problem of this kind, where the constraint is prescribed over a subdomain. We show how the abstract estimate can be applied to this situation, in the case where a non-body-fitted mesh is used. In addition, we describe how this method provides an approximation of the Lagrange multiplier associated to the constraint.
A short introduction to numerical methods used in cosmological N-body simulations
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech
2015-12-01
We give a short introduction to modern numerical methods commonly used in cosmological N-body simulations. First, we present some simple considerations based on linear perturbation theory which indicate the necessity for N-body simulations. Then, based on a working example of the publicly available gadget-2 code, we describe particle mesh and Barnes-Hut oct-tree methods used in numerical gravity N-body solvers. We also briefly discuss methods used in an elementary hydrodynamic implementation used for baryonic gas. Next, we give a very basic description of time integration of equations of motion commonly used in N-body codes. Finally we describe the Zeldovitch approximation as an example method for generating initial conditions for computer simulations.
Numerical methods for high-dimensional probability density function equations
Cho, H.; Venturi, D.; Karniadakis, G.E.
2016-01-15
In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker–Planck and Dostupov–Pugachev equations), random wave theory (Malakhov–Saichev equations) and coarse-grained stochastic systems (Mori–Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.
Numerical methods for high-dimensional probability density function equations
NASA Astrophysics Data System (ADS)
Cho, H.; Venturi, D.; Karniadakis, G. E.
2016-01-01
In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker-Planck and Dostupov-Pugachev equations), random wave theory (Malakhov-Saichev equations) and coarse-grained stochastic systems (Mori-Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.
Calculation of free-fall trajectories using numerical optimization methods.
NASA Technical Reports Server (NTRS)
Hull, D. G.; Fowler, W. T.; Gottlieb, R. G.
1972-01-01
An important problem in space flight is the calculation of trajectories for nonthrusting vehicles between fixed points in a given time. A new procedure based on Hamilton's principle for solving such two-point boundary-value problems is presented. It employs numerical optimization methods to perform the extremization required by Hamilton's principle. This procedure is applied to the calculation of an Earth-Moon trajectory. The results show that the initial guesses required to obtain an iteration procedure which converges are not critical and that convergence can be obtained to any predetermined degree of accuracy.
Numerical Methods for Computing Turbulence-Induced Noise
2005-12-16
consider the finite dimensional subspace Vhl C Vh . Let vhi -= phlu be the optimal representation of u in Vhl and phi : V+_+ Vhl be the appropriate...mapping. We consider the following numerical method which is obtained by replacing h with hi in (2.4). Find uhl E Vhi , such that B(whi, uhl) + M(whUhl, f...the same functional form of the model that leads to the optimal solution on Vh, also leads to the optimal solution on Vhi . Thus, requiring uhl = vh
Simple numerical method for predicting steady compressible flows
NASA Technical Reports Server (NTRS)
Von Lavante, E.; Melson, N. Duane
1987-01-01
The present numerical method for the solution of the isenthalpic form of the governing equations for compressible viscous and inviscid flows has its basis in the concept of flux vector splitting in its implicit form, and has been tested in the cases of several difficult viscous and inviscid configurations. An acceleration of time-marching to steady state is accomplished by implementing a multigrid procedure which effectively increases the convergence rate. The steady state results obtained are largely of good quality, and required only short computational times.
Calculation of free-fall trajectories using numerical optimization methods.
NASA Technical Reports Server (NTRS)
Hull, D. G.; Fowler, W. T.; Gottlieb, R. G.
1972-01-01
An important problem in space flight is the calculation of trajectories for nonthrusting vehicles between fixed points in a given time. A new procedure based on Hamilton's principle for solving such two-point boundary-value problems is presented. It employs numerical optimization methods to perform the extremization required by Hamilton's principle. This procedure is applied to the calculation of an Earth-Moon trajectory. The results show that the initial guesses required to obtain an iteration procedure which converges are not critical and that convergence can be obtained to any predetermined degree of accuracy.
Numerical prediction of interfacial instabilities: Sharp interface method (SIM)
NASA Astrophysics Data System (ADS)
Nourgaliev, R. R.; Liou, M.-S.; Theofanous, T. G.
2008-04-01
We introduce a sharp interface method (SIM) for the direct numerical simulation of unstable fluid-fluid interfaces. The method is based on the level set approach and the structured adaptive mesh refinement technology, endowed with a corridor of irregular, cut-cell grids that resolve the interfacial region to third-order spatial accuracy. Key in that regard are avoidance of numerical mixing, and a least-squares interpolation method that is supported by irregular datasets distinctly on each side of the interface. Results on test problems show our method to be free of the spurious current problem of the continuous surface force method and to converge, on grid refinement, at near-theoretical rates. Simulations of unstable Rayleigh-Taylor and viscous Kelvin-Helmholtz flows are found to converge at near-theoretical rates to the exact results over a wide range of conditions. Further, we show predictions of neutral-stability maps of the viscous Kelvin-Helmholtz flows (Yih instability), as well as self-selection of the most unstable wave-number in multimode simulations of Rayleigh-Taylor instability. All these results were obtained with a simple seeding of random infinitesimal disturbances of interface-shape, as opposed to seeding by a complete eigenmode. For other than elementary flows the latter would normally not be available, and extremely difficult to obtain if at all. Sample comparisons with our code adapted to mimic typical diffuse interface treatments were not satisfactory for shear-dominated flows. On the other hand the sharp dynamics of our method would appear to be compatible and possibly advantageous to any interfacial flow algorithm in which the interface is represented as a discrete Heaviside function.
A Fourier collocation time domain method for numerically solving Maxwell's equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1991-01-01
A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.
A numerical method for the solution of the bidomain equations in cardiac tissue.
Keener, J. P.; Bogar, K.
1998-03-01
A numerical scheme for efficient integration of the bidomain model of action potential propagation in cardiac tissue is presented. The scheme is a mixed implicit-explicit scheme with no stability time step restrictions and requires that only linear systems of equations be solved at each time step. The method is faster than a fully explicit scheme and there is no increase in algorithmic complexity to use this method instead of a fully explicit method. The speedup factor depends on the timestep size, which can be set solely on the basis of the demands for accuracy. (c) 1998 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Wang, Qiao; Zhou, Wei; Cheng, Yonggang; Ma, Gang; Chang, Xiaolin
2017-04-01
A line integration method (LIM) is proposed to calculate the domain integrals for 3D problems. In the proposed method, the domain integrals are transformed into boundary integrals and only line integrals on straight lines are needed to be computed. A background cell structure is applied to further simplify the line integrals and improve the accuracy. The method creates elements only on the boundary, and the integral lines are created from the boundary elements. The procedure is quite suitable for the boundary element method, and we have applied it to 3D situations. Directly applying the method is time-consuming since the complexity of the computational time is O( NM), where N and M are the numbers of nodes and lines, respectively. To overcome this problem, the fast multipole method is used with the LIM for large-scale computation. The numerical results show that the proposed method is efficient and accurate.
Numerical integration of detector response functions via Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Kelly, K. J.; O'Donnell, J. M.; Gomez, J. A.; Taddeucci, T. N.; Devlin, M.; Haight, R. C.; White, M. C.; Mosby, S. M.; Neudecker, D.; Buckner, M. Q.; Wu, C. Y.; Lee, H. Y.
2017-09-01
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated in this way can be used to create Monte Carlo simulation output spectra a factor of ∼ 1000 × faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. This method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.
Numerical integration of detector response functions via Monte Carlo simulations
Kelly, Keegan John; O'Donnell, John M.; Gomez, Jaime A.; ...
2017-06-13
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated inmore » this way can be used to create Monte Carlo simulation output spectra a factor of ~1000× faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. Here, this method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.« less
NASA Astrophysics Data System (ADS)
Muthuvalu, Mohana Sundaram; Aruchunan, Elayaraja; Akhir, Mohd Kamalrulzaman Md; Sulaiman, Jumat; Karim, Samsul Ariffin Abdul
2014-10-01
In this paper, application of the Half-Sweep Successive Over-Relaxation (HSSOR) iterative method is extended by solving second order composite closed Newton-Cotes quadrature (2-CCNC) system. The performance of HSSOR method in solving 2-CCNC system is comparatively studied by their application on linear Fredholm integral equations of the second kind. The derivation and implementation of the method are discussed. In addition, numerical results by solving two test problems are included and compared with the standard Gauss-Seidel (GS) and Successive Over-Relaxation (SOR) methods. Numerical results demonstrate that HSSOR method is an efficient method among the tested methods.
Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra
NASA Astrophysics Data System (ADS)
Partov, Doncho; Kantchev, Vesselin
2011-09-01
The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete E c (t) is assumed to be constant in time `t'. The obtained results from the both models are compared.
Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra
NASA Astrophysics Data System (ADS)
Partov, Doncho; Kantchev, Vesselin
2011-09-01
The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete Ec(t) is assumed to be constant in time `t'. The obtained results from the both models are compared.
Numerical methods for large eddy simulation of acoustic combustion instabilities
NASA Astrophysics Data System (ADS)
Wall, Clifton T.
Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.
1986-01-01
The goal of this project is the development of an optimization algorithm for use with a solar cell model. It is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junctions depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm has been developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAPID). SCAPID uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the operation of a solar cell. A major obstacle is that the numerical methods used in SCAPID require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the value associated with the maximum efficiency. This problem has been alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution. Adapting SCAPID so that it could be called iteratively by the optimization code provided another means of reducing the cpu time required to complete an optimization. Instead of calculating the entire I-V curve, as is usually done in SCAPID, only the efficiency is calculated (maximum power voltage and current) and the solution from previous calculations is used to initiate the next solution.
A numerical method for solving the Vlasov equation
NASA Technical Reports Server (NTRS)
Satofuka, N.
1982-01-01
A numerical procedure is derived for the solution of the Vlasov-Poisson system of equations in two phase-space variables. Derivatives with respect to the phase-space variables are approximated by a weighted sum of the values of the distribution function at property chosen neighboring points. The resulting set of ordinary differential equations is then solved by using an appropriate time intergration scheme. The accuracy of the proposed method is tested with some simple model problems. The results for the free streaming case, linear Landau damping, and nonlinear Landau damping are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient.
Numerical modeling of spray combustion with an advanced VOF method
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul
1995-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.
Numerical Methods and Simulations of Complex Multiphase Flows
NASA Astrophysics Data System (ADS)
Brady, Peter
Multiphase flows are an important part of many natural and technological phenomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impossible and experimental investigations very difficult. Thus, high-fidelity numerical simulations can play a pivotal role in understanding these systems. This dissertation describes numerical methods developed for complex multiphase flows and the simulations performed using these methods. First, the issue of multiphase code verification is addressed. Code verification answers the question "Is this code solving the equations correctly?" The method of manufactured solutions (MMS) is a procedure for generating exact benchmark solutions which can test the most general capabilities of a code. The chief obstacle to applying MMS to multiphase flow lies in the discontinuous nature of the material properties at the interface. An extension of the MMS procedure to multiphase flow is presented, using an adaptive marching tetrahedron style algorithm to compute the source terms near the interface. Guidelines for the use of the MMS to help locate coding mistakes are also detailed. Three multiphase systems are then investigated: (1) the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus, (2) the flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom endwall, and (3) the atomization of a single drop subjected to a high shear turbulent flow. The systems are simulated numerically by solving the full multiphase Navier-Stokes equations coupled to the various equations of state and a level set interface tracking scheme based on the refined level set grid method. The codes have been parallelized using MPI in order to take advantage of today's very large parallel computational
Numerical methods for assessment of the ship's pollutant emissions
NASA Astrophysics Data System (ADS)
Jenaru, A.; Acomi, N.
2016-08-01
The maritime transportation sector constitutes a source of atmospheric pollution. To avoid or minimize ships pollutant emissions the first step is to assess them. Two methods of estimation of the ships’ emissions are proposed in this paper. These methods prove their utility for shipboard and shore based management personnel from the practical perspective. The methods were demonstrated for a product tanker vessel where a permanent monitoring system for the pollutant emissions has previously been fitted. The values of the polluting agents from the exhaust gas were determined for the ship from the shipyard delivery and were used as starting point. Based on these values, the paper aimed at numerical assessing of ship's emissions in order to determine the ways for avoiding environmental pollution: the analytical method of determining the concentrations of the exhaust gas components, by using computation program MathCAD, and the graphical method of determining the concentrations of the exhaust gas components, using variation diagrams of the parameters, where the results of the on board measurements were introduced, following the application of pertinent correction factors. The results should be regarded as a supporting tool during the decision making process linked to the reduction of ship's pollutant emissions.
NASA Astrophysics Data System (ADS)
Zhou, Guangming; Liu, Chang; Cai, Deng'an; Li, Wenlong; Wang, Xiaopei
2016-11-01
An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus.
An accurate real-time model of maglev planar motor based on compound Simpson numerical integration
NASA Astrophysics Data System (ADS)
Kou, Baoquan; Xing, Feng; Zhang, Lu; Zhou, Yiheng; Liu, Jiaqi
2017-05-01
To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.
Numerical method for the stochastic projected Gross-Pitaevskii equation
NASA Astrophysics Data System (ADS)
Rooney, S. J.; Blakie, P. B.; Bradley, A. S.
2014-01-01
We present a method for solving the stochastic projected Gross-Pitaevskii equation (SPGPE) for a three-dimensional weakly interacting Bose gas in a harmonic-oscillator trapping potential. The SPGPE contains the challenge of both accurately evolving all modes in the low-energy classical region of the system, and evaluating terms from the number-conserving scattering reservoir process. We give an accurate and efficient procedure for evaluating the scattering terms using a Hermite-polynomial based spectral-Galerkin representation, which allows us to precisely implement the low-energy mode restriction. Stochastic integration is performed using the weak semi-implicit Euler method. We extensively characterize the accuracy of our method, finding a faster-than-expected rate of stochastic convergence. Physical consistency of the algorithm is demonstrated by considering thermalization of initially random states.
Numerical method for the stochastic projected Gross-Pitaevskii equation.
Rooney, S J; Blakie, P B; Bradley, A S
2014-01-01
We present a method for solving the stochastic projected Gross-Pitaevskii equation (SPGPE) for a three-dimensional weakly interacting Bose gas in a harmonic-oscillator trapping potential. The SPGPE contains the challenge of both accurately evolving all modes in the low-energy classical region of the system, and evaluating terms from the number-conserving scattering reservoir process. We give an accurate and efficient procedure for evaluating the scattering terms using a Hermite-polynomial based spectral-Galerkin representation, which allows us to precisely implement the low-energy mode restriction. Stochastic integration is performed using the weak semi-implicit Euler method. We extensively characterize the accuracy of our method, finding a faster-than-expected rate of stochastic convergence. Physical consistency of the algorithm is demonstrated by considering thermalization of initially random states.
A method for improving time-stepping numerics
NASA Astrophysics Data System (ADS)
Williams, P. D.
2012-04-01
In contemporary numerical simulations of the atmosphere, evidence suggests that time-stepping errors may be a significant component of total model error, on both weather and climate time-scales. This presentation will review the available evidence, and will then suggest a simple but effective method for substantially improving the time-stepping numerics at no extra computational expense. The most common time-stepping method is the leapfrog scheme combined with the Robert-Asselin (RA) filter. This method is used in the following atmospheric models (and many more): ECHAM, MAECHAM, MM5, CAM, MESO-NH, HIRLAM, KMCM, LIMA, SPEEDY, IGCM, PUMA, COSMO, FSU-GSM, FSU-NRSM, NCEP-GFS, NCEP-RSM, NSEAM, NOGAPS, RAMS, and CCSR/NIES-AGCM. Although the RA filter controls the time-splitting instability in these models, it also introduces non-physical damping and reduces the accuracy. This presentation proposes a simple modification to the RA filter. The modification has become known as the RAW filter (Williams 2011). When used in conjunction with the leapfrog scheme, the RAW filter eliminates the non-physical damping and increases the amplitude accuracy by two orders, yielding third-order accuracy. (The phase accuracy remains second-order.) The RAW filter can easily be incorporated into existing models, typically via the insertion of just a single line of code. Better simulations are obtained at no extra computational expense. Results will be shown from recent implementations of the RAW filter in various atmospheric models, including SPEEDY and COSMO. For example, in SPEEDY, the skill of weather forecasts is found to be significantly improved. In particular, in tropical surface pressure predictions, five-day forecasts made using the RAW filter have approximately the same skill as four-day forecasts made using the RA filter (Amezcua, Kalnay & Williams 2011). These improvements are encouraging for the use of the RAW filter in other models.
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
A flexible importance sampling method for integrating subgrid processes
NASA Astrophysics Data System (ADS)
Raut, E. K.; Larson, V. E.
2016-01-01
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that contains both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.
Multistep and Multistage Boundary Integral Methods for the Wave Equation
NASA Astrophysics Data System (ADS)
Banjai, Lehel
2009-09-01
We describe how time-discretized wave equation in a homogeneous medium can be solved by boundary integral methods. The time discretization can be a multistep, Runge-Kutta, or a more general multistep-multistage method. The resulting convolutional system of boundary integral equations falls in the family of convolution quadratures of Ch. Lubich. In this work our aim is to discuss a new technique for efficiently solving the discrete convolutional system and to present large scale 3D numerical experiments with a wide range of time-discretizations that have up to now not appeared in print. One of the conclusions is that Runge-Kutta methods are often the method of choice even at low accuracy; yet, in connection with hyperbolic problems BDF (backward difference formulas) have been predominant in the literature on convolution quadrature.
Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods
NASA Technical Reports Server (NTRS)
Bauer, Frank (Technical Monitor); Folta, David; Beckman, Mark
2002-01-01
Sun-Earth libration point orbits serve as excellent locations for scientific investigations. These orbits are often selected to minimize environmental disturbances and maximize observing efficiency. Trajectory design in support of libration orbits is ever more challenging as more complex missions are envisioned in the next decade. Trajectory design software must be further enabled to incorporate better understanding of the libration orbit solution space and thus improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple libration missions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes algorithm and software development. The recently launched Microwave Anisotropy Probe (MAP) and upcoming James Webb Space Telescope (JWST) and Constellation-X missions are examples of the use of improved numerical methods for attaining constrained orbital parameters and controlling their dynamical evolution at the collinear libration points. This paper presents a history of libration point missions, a brief description of the numerical and dynamical design techniques including software used, and a sample of future GSFC mission designs.
Explicit Integration of Extremely Stiff Reaction Networks: Asymptotic Methods
Guidry, Mike W; Budiardja, R.; Feger, E.; Billings, J. J.; Hix, William Raphael; Messer, O.E.B.; Roche, K. J.; McMahon, E.; He, M.
2013-01-01
We show that, even for extremely stiff systems, explicit integration may compete in both accuracy and speed with implicit methods if algebraic methods are used to stabilize the numerical integration. The stabilizing algebra differs for systems well removed from equilibrium and those near equilibrium. This paper introduces a quantitative distinction between these two regimes and addresses the former case in depth, presenting explicit asymptotic methods appropriate when the system is extremely stiff but only weakly equilibrated. A second paper [1] examines quasi-steady-state methods as an alternative to asymptotic methods in systems well away from equilibrium and a third paper [2] extends these methods to equilibrium conditions in extremely stiff systems using partial equilibrium methods. All three papers present systematic evidence for timesteps competitive with implicit methods. Because explicit methods can execute a timestep faster than an implicit method, our results imply that algebraically stabilized explicit algorithms may offer a means to integration of larger networks than have been feasible previously in various disciplines.
Numerical method of characteristics for one-dimensional blood flow
NASA Astrophysics Data System (ADS)
Acosta, Sebastian; Puelz, Charles; Rivière, Béatrice; Penny, Daniel J.; Rusin, Craig G.
2015-08-01
Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.
Numerical Method of Characteristics for One-Dimensional Blood Flow.
Acosta, Sebastian; Puelz, Charles; Riviére, Béatrice; Penny, Daniel J; Rusin, Craig G
2015-08-01
Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.
Numerical Method of Characteristics for One–Dimensional Blood Flow
Puelz, Charles; Riviére, Béatrice; Penny, Daniel J.; Rusin, Craig G.
2015-01-01
Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant. PMID:25931614
Advances in numerical solutions to integral equations in liquid state theory
NASA Astrophysics Data System (ADS)
Howard, Jesse J.
Solvent effects play a vital role in the accurate description of the free energy profile for solution phase chemical and structural processes. The inclusion of solvent effects in any meaningful theoretical model however, has proven to be a formidable task. Generally, methods involving Poisson-Boltzmann (PB) theory and molecular dynamic (MD) simulations are used, but they either fail to accurately describe the solvent effects or require an exhaustive computation effort to overcome sampling problems. An alternative to these methods are the integral equations (IEs) of liquid state theory which have become more widely applicable due to recent advancements in the theory of interaction site fluids and the numerical methods to solve the equations. In this work a new numerical method is developed based on a Newton-type scheme coupled with Picard/MDIIS routines. To extend the range of these numerical methods to large-scale data systems, the size of the Jacobian is reduced using basis functions, and the Newton steps are calculated using a GMRes solver. The method is then applied to calculate solutions to the 3D reference interaction site model (RISM) IEs of statistical mechanics, which are derived from first principles, for a solute model of a pair of parallel graphene plates at various separations in pure water. The 3D IEs are then extended to electrostatic models using an exact treatment of the long-range Coulomb interactions for negatively charged walls and DNA duplexes in aqueous electrolyte solutions to calculate the density profiles and solution thermodynamics. It is found that the 3D-IEs provide a qualitative description of the density distributions of the solvent species when compared to MD results, but at a much reduced computational effort in comparison to MD simulations. The thermodynamics of the solvated systems are also qualitatively reproduced by the IE results. The findings of this work show the IEs to be a valuable tool for the study and prediction of
Numerical algorithms for highly oscillatory dynamic system based on commutator-free method
NASA Astrophysics Data System (ADS)
Li, Wencheng; Deng, Zichen; Zhang, Suying
2007-04-01
In the present paper, an efficiently improved modified Magnus integrator algorithm based on commutator-free method is proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the second-order dynamic systems are transferred to the frame of reference by introducing new variable so that highly oscillatory behaviour inherited from the entries. Then the modified Magnus integrator method based on local linearization is appropriately designed for solving the above new form. And some optimized strategies for reducing the number of function evaluations and matrix operations are also suggested. Finally, several numerical examples for highly oscillatory dynamic systems, such as Airy equation, Bessel equation, Mathieu equation, are presented to demonstrate the validity and effectiveness of the proposed method.
Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A
2012-12-01
In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated.
Numerical optimization method for packing regular convex polygons
NASA Astrophysics Data System (ADS)
Galiev, Sh. I.; Lisafina, M. S.
2016-08-01
An algorithm is presented for the approximate solution of the problem of packing regular convex polygons in a given closed bounded domain G so as to maximize the total area of the packed figures. On G a grid is constructed whose nodes generate a finite set W on G, and the centers of the figures to be packed can be placed only at some points of W. The problem of packing these figures with centers in W is reduced to a 0-1 linear programming problem. A two-stage algorithm for solving the resulting problems is proposed. The algorithm finds packings of the indicated figures in an arbitrary closed bounded domain on the plane. Numerical results are presented that demonstrate the effectiveness of the method.
A mathematical model and numerical method for thermoelectric DNA sequencing
NASA Astrophysics Data System (ADS)
Shi, Liwei; Guilbeau, Eric J.; Nestorova, Gergana; Dai, Weizhong
2014-05-01
Single nucleotide polymorphisms (SNPs) are single base pair variations within the genome that are important indicators of genetic predisposition towards specific diseases. This study explores the feasibility of SNP detection using a thermoelectric sequencing method that measures the heat released when DNA polymerase inserts a deoxyribonucleoside triphosphate into a DNA strand. We propose a three-dimensional mathematical model that governs the DNA sequencing device with a reaction zone that contains DNA template/primer complex immobilized to the surface of the lower channel wall. The model is then solved numerically. Concentrations of reactants and the temperature distribution are obtained. Results indicate that when the nucleoside is complementary to the next base in the DNA template, polymerization occurs lengthening the complementary polymer and releasing thermal energy with a measurable temperature change, implying that the thermoelectric conceptual device for sequencing DNA may be feasible for identifying specific genes in individuals.
Performance of Several High Order Numerical Methods for Supersonic Combustion
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.; Don, Wai Sun; Mansour, Nagi N. (Technical Monitor)
2001-01-01
The performance of two recently developed numerical methods by Yee et al. and Sjoegreen and Yee using postprocessing nonlinear filters is examined for a 2-D multiscale viscous supersonic react-live flow. These nonlinear filters can improve nonlinear instabilities and at the same time can capture shock/shear waves accurately. They do not, belong to the class of TVD, ENO or WENO schemes. Nevertheless, they combine stable behavior at discontinuities and detonation without smearing the smooth parts of the flow field. For the present study, we employ a fourth-order Runge-Kutta in time and a sixth-order non-dissipative spatial base scheme for the convection and viscous terms. We denote the resulting nonlinear filter schemes ACM466-RK4 and WAV66-RK4.
Numerical simulation on snow melting phenomena by CIP method
NASA Astrophysics Data System (ADS)
Mizoe, H.; Yoon, Seong Y.; Josho, M.; Yabe, T.
2001-04-01
A numerical scheme based on the C-CUP method to simulate melting phenomena in snow is proposed. To calculate these complex phenomena we introduce the phase change, elastic-plastic model, porous model, and verify each model by using some simple examples. This scheme is applied to a practical model, such as the snow piled on the insulator of electrical transmission line, in which snow is modeled as a compound material composed of air, water, and ice, and is calculated by elastic-plastic model. The electric field between two electrodes is solved by the Poisson equation giving the Joule heating in the energy conservation that eventually leads to snow melting. Comparison is made by changing the fraction of water in the snow to see its effect on melting process for the cases of applied voltage of 50 and 500 kV on the two electrodes.
Performance of Several High Order Numerical Methods for Supersonic Combustion
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.; Don, Wai Sun; Mansour, Nagi N. (Technical Monitor)
2001-01-01
The performance of two recently developed numerical methods by Yee et al. and Sjoegreen and Yee using postprocessing nonlinear filters is examined for a 2-D multiscale viscous supersonic react-live flow. These nonlinear filters can improve nonlinear instabilities and at the same time can capture shock/shear waves accurately. They do not, belong to the class of TVD, ENO or WENO schemes. Nevertheless, they combine stable behavior at discontinuities and detonation without smearing the smooth parts of the flow field. For the present study, we employ a fourth-order Runge-Kutta in time and a sixth-order non-dissipative spatial base scheme for the convection and viscous terms. We denote the resulting nonlinear filter schemes ACM466-RK4 and WAV66-RK4.
Simultaneous source-mask optimization: a numerical combining method
NASA Astrophysics Data System (ADS)
Mülders, Thomas; Domnenko, Vitaliy; Küchler, Bernd; Klimpel, Thomas; Stock, Hans-Jürgen; Poonawala, Amyn A.; Taravade, Kunal N.; Stanton, William A.
2010-09-01
A new method for simultaneous Source-Mask Optimization (SMO) is presented. In order to produce optimum imaging fidelity with respect to exposure lattitude, depth of focus (DoF) and mask error enhancement factor (MEEF) the presented method aims to leverage both, the available degrees of freedom of a pixelated source and those available for the mask layout. The approach described in this paper is designed as to work with dissected mask polygons. The dissection of the mask patterns is to be performed in advance (before SMO) with the Synopsys Proteus OPC engine, providing the available degrees of freedom for mask pattern optimization. This is similar to mask optimization done for optical proximity correction (OPC). Additionally, however, the illumination source will be simultaneously optimized. The SMO approach borrows many of the performance enhancement methods of OPC software for mask correction, but is especially designed as to simultaneously optimize a pixelated source shape as nowadays available in production environments. Designed as a numerical optimization approach the method is able to assess in acceptable times several hundreds of thousands source-mask combinations for small, critical layout snippets. This allows a global optimization scheme to be applied to the SMO problem which is expected to better explore the optimization space and thus to yield an improved solution quality compared to local optimizations methods. The method is applied to an example system for investigating the impact of source constraints on the SMO results. Also, it is investigated how well possibly conflicting goals of low MEEF and large DoF can be balanced.
Methods of geometrical integration in accelerator physics
NASA Astrophysics Data System (ADS)
Andrianov, S. N.
2016-12-01
In the paper we consider a method of geometric integration for a long evolution of the particle beam in cyclic accelerators, based on the matrix representation of the operator of particles evolution. This method allows us to calculate the corresponding beam evolution in terms of two-dimensional matrices including for nonlinear effects. The ideology of the geometric integration introduces in appropriate computational algorithms amendments which are necessary for preserving the qualitative properties of maps presented in the form of the truncated series generated by the operator of evolution. This formalism extends both on polarized and intense beams. Examples of practical applications are described.
NASA Astrophysics Data System (ADS)
Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.
2017-08-01
While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.
Advanced numerical methods and software approaches for semiconductor device simulation
CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.
2000-03-23
In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.
Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation
Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.
2000-01-01
In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less
Introduction to finite-difference methods for numerical fluid dynamics
Scannapieco, E.; Harlow, F.H.
1995-09-01
This work is intended to be a beginner`s exercise book for the study of basic finite-difference techniques in computational fluid dynamics. It is written for a student level ranging from high-school senior to university senior. Equations are derived from basic principles using algebra. Some discussion of partial-differential equations is included, but knowledge of calculus is not essential. The student is expected, however, to have some familiarity with the FORTRAN computer language, as the syntax of the computer codes themselves is not discussed. Topics examined in this work include: one-dimensional heat flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and two-dimensional incompressible fluid flow with additions of the equations of heat flow and the {Kappa}-{epsilon} model for turbulence transport. Emphasis is placed on numerical instabilities and methods by which they can be avoided, techniques that can be used to evaluate the accuracy of finite-difference approximations, and the writing of the finite-difference codes themselves. Concepts introduced in this work include: flux and conservation, implicit and explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided which defines these and other terms.
NASA Astrophysics Data System (ADS)
Pilz, Tobias; Francke, Till; Bronstert, Axel
2016-04-01
Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.
Ziółkowski, Andrzej
2014-12-15
Nonlinear light propagation in photorefractive media can be analyzed by numerical methods. The presented numerical approach has regard to the effects of time nonlocality. Two algorithms are presented, and compared in terms of physical results and computing times. The possibility to address the issue of time nonlocality in two ways is attributed to the fact that, it is possible to completely separate carrier dynamics evaluation and wave equation calculation. This in turn, allows to choose a short integration time for carrier dynamics and a longer one to solve the wave equation. The tests of the methods were carried out for a one-carrier model that describes most of photorefractive media, and for a model with bipolar transport and hot electron effect, used in descriptions of semiconductor materials.
Rider, William; Kamm, J. R.; Tomkins, C. D.; Zoldi, C. A.; Prestridge, K. P.; Marr-Lyon, M.; Rightley, P. M.; Benjamin, R. F.
2002-01-01
We consider the detailed structures of mixing flows for Richtmyer-Meshkov experiments of Prestridge et al. [PRE 00] and Tomkins et al. [TOM 01] and examine the most recent measurements from the experimental apparatus. Numerical simulations of these experiments are performed with three different versions of high resolution finite volume Godunov methods. We compare experimental data with simulations for configurations of one and two diffuse cylinders of SF{sub 6} in air using integral measures as well as fractal analysis and continuous wavelet transforms. The details of the initial conditions have a significant effect on the computed results, especially in the case of the double cylinder. Additionally, these comparisons reveal sensitive dependence of the computed solution on the numerical method.
Differential temperature integrating diagnostic method and apparatus
Doss, James D.; McCabe, Charles W.
1976-01-01
A method and device for detecting the presence of breast cancer in women by integrating the temperature difference between the temperature of a normal breast and that of a breast having a malignant tumor. The breast-receiving cups of a brassiere are each provided with thermally conductive material next to the skin, with a thermistor attached to the thermally conductive material in each cup. The thermistors are connected to adjacent arms of a Wheatstone bridge. Unbalance currents in the bridge are integrated with respect to time by means of an electrochemical integrator. In the absence of a tumor, both breasts maintain substantially the same temperature, and the bridge remains balanced. If the tumor is present in one breast, a higher temperature in that breast unbalances the bridge and the electrochemical cells integrate the temperature difference with respect to time.
NASA Astrophysics Data System (ADS)
Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey
2015-04-01
The proposed method is considered on an example of hydrothermodynamics and atmospheric chemistry models [1,2]. In the development of the existing methods for constructing numerical schemes possessing the properties of total approximation for operators of multiscale process models, we have developed a new variational technique, which uses the concept of adjoint integrating factors. The technique is as follows. First, a basic functional of the variational principle (the integral identity that unites the model equations, initial and boundary conditions) is transformed using Lagrange's identity and the second Green's formula. As a result, the action of the operators of main problem in the space of state functions is transferred to the adjoint operators defined in the space of sufficiently smooth adjoint functions. By the choice of adjoint functions the order of the derivatives becomes lower by one than those in the original equations. We obtain a set of new balance relationships that take into account the sources and boundary conditions. Next, we introduce the decomposition of the model domain into a set of finite volumes. For multi-dimensional non-stationary problems, this technique is applied in the framework of the variational principle and schemes of decomposition and splitting on the set of physical processes for each coordinate directions successively at each time step. For each direction within the finite volume, the analytical solutions of one-dimensional homogeneous adjoint equations are constructed. In this case, the solutions of adjoint equations serve as integrating factors. The results are the hybrid discrete-analytical schemes. They have the properties of stability, approximation and unconditional monotony for convection-diffusion operators. These schemes are discrete in time and analytic in the spatial variables. They are exact in case of piecewise-constant coefficients within the finite volume and along the coordinate lines of the grid area in each
Thomas, L.D.; Alexander, M.H.; Johnson, B.R.; Lester Jr., W. A.; Light, J.C.; McLenithan, K.D.; Parker, G.A.; Redmon, M.J.; Schmalz, T.G.; Secrest, D.; Walker, R.B.
1980-07-01
The numerical solution of coupled, second-order differential equations is a fundamental problem in theoretical physics and chemistry. There are presently over 20 commonly used methods. Unbiased comparisons of the methods are difficult to make and few have been attempted. Here we report a comparison of 11 different methods applied to 3 different test problems. The test problems have been constructed to approximate chemical systems of current research interest and to be representative of the state of the art in inelastic molecular collisions. All calculations were done on the same computer and the attempt was made to do all calculations to the same level of accuracy. The results of the initial tests indicated that an improved method might be obtained by using different methods in different integration regions. Such a hybrid program was developed and found to be at least 1.5 to 2.0 times faster than any individual method.
Method to integrate full particle orbit in toroidal plasmas
NASA Astrophysics Data System (ADS)
Wei, X. S.; Xiao, Y.; Kuley, A.; Lin, Z.
2015-09-01
It is important to integrate full particle orbit accurately when studying charged particle dynamics in electromagnetic waves with frequency higher than cyclotron frequency. We have derived a form of the Boris scheme using magnetic coordinates, which can be used effectively to integrate the cyclotron orbit in toroidal geometry over a long period of time. The new method has been verified by a full particle orbit simulation in toroidal geometry without high frequency waves. The full particle orbit calculation recovers guiding center banana orbit. This method has better numeric properties than the conventional Runge-Kutta method for conserving particle energy and magnetic moment. The toroidal precession frequency is found to match that from guiding center simulation. Many other important phenomena in the presence of an electric field, such as E × B drift, Ware pinch effect and neoclassical polarization drift are also verified by the full orbit simulation.
Integrated force method versus displacement method for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Berke, L.; Gallagher, R. H.
1991-01-01
A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.
Integrated force method versus displacement method for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.
1990-01-01
A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.
NASA Astrophysics Data System (ADS)
Álvaro, M.; Carretero, M.; Bonilla, L. L.
2012-05-01
We present a finite difference method to solve a new type of nonlocal hydrodynamic equations that arise in the theory of spatially inhomogeneous Bloch oscillations in semiconductor superlattices. The hydrodynamic equations describe the evolution of the electron density, electric field and the complex amplitude of the Bloch oscillations for the electron current density and the mean energy density. These equations contain averages over the Bloch phase which are integrals of the unknown electric field and are derived by singular perturbation methods. Among the solutions of the hydrodynamic equations, at a 70 K lattice temperature, there are spatially inhomogeneous Bloch oscillations coexisting with moving electric field domains and Gunn-type oscillations of the current. At higher temperature (300 K) only Bloch oscillations remain. These novel solutions are found for restitution coefficients in a narrow interval below their critical values and disappear for larger values. We use an efficient numerical method based on an implicit second-order finite difference scheme for both the electric field equation (of drift-diffusion type) and the parabolic equation for the complex amplitude. Double integrals appearing in the nonlocal hydrodynamic equations are calculated by means of expansions in modified Bessel functions. We use numerical simulations to ascertain the convergence of the method. If the complex amplitude equation is solved using a first order scheme for restitution coefficients near their critical values, a spurious convection arises that annihilates the complex amplitude in the part of the superlattice that is closer to the cathode. This numerical artifact disappears if the space step is appropriately reduced or we use the second-order numerical scheme.
Numerical Comparison of Periodic MoM (Method of Moments) and BMIA (Banded Matrix Iteration Method)
NASA Technical Reports Server (NTRS)
Kim, Y.; Rodriguez, E.; Michel, T.
1995-01-01
The most popular numerical technique in rough surface scattering is the Method of Moments (MoM). Since the scattering patch size is finite, the edge current must be suppressed to obtain accurate scattering cross sections. Two standard ways to minimize the edge current are periodic boundary conditions and incident wave tapering. We compare the accuracy & computational requirements of these methods.
Numerical Comparison of Periodic MoM (Method of Moments) and BMIA (Banded Matrix Iteration Method)
NASA Technical Reports Server (NTRS)
Kim, Y.; Rodriguez, E.; Michel, T.
1995-01-01
The most popular numerical technique in rough surface scattering is the Method of Moments (MoM). Since the scattering patch size is finite, the edge current must be suppressed to obtain accurate scattering cross sections. Two standard ways to minimize the edge current are periodic boundary conditions and incident wave tapering. We compare the accuracy & computational requirements of these methods.
Properties-preserving high order numerical methods for a kinetic eikonal equation
NASA Astrophysics Data System (ADS)
Luo, Songting; Payne, Nicholas
2017-02-01
For the BGK (Bhatnagar-Gross-Krook) equation in the large scale hyperbolic limit, the density of particles can be transformed as the Hopf-Cole transformation, where the phase function converges uniformly to the viscosity solution of an effective Hamilton-Jacobi equation, referred to as the kinetic eikonal equation. In this work, we present efficient high order finite difference methods for numerically solving the kinetic eikonal equation. The methods are based on monotone schemes such as the Godunov scheme. High order weighted essentially non-oscillatory techniques and Runge-Kutta procedures are used to obtain high order accuracy in both space and time. The effective Hamiltonian is determined implicitly by a nonlinear equation given as integrals with respect to the velocity variable. Newton's method is applied to solve the nonlinear equation, where integrals with respect to the velocity variable are evaluated either by a Gauss quadrature formula or as expansions with respect to moments of the Maxwellian. The methods are designed such that several key properties such as the positivity of the viscosity solution and the positivity of the effective Hamiltonian are preserved. Numerical experiments are presented to demonstrate the effectiveness of the methods.
Efficiency and Accuracy Verification of the Explicit Numerical Manifold Method for Dynamic Problems
NASA Astrophysics Data System (ADS)
Qu, X. L.; Wang, Y.; Fu, G. Y.; Ma, G. W.
2015-05-01
The original numerical manifold method (NMM) employs an implicit time integration scheme to achieve higher computational accuracy, but its efficiency is relatively low, especially when the open-close iterations of contact are involved. To improve its computational efficiency, a modified version of the NMM based on an explicit time integration algorithm is proposed in this study. The lumped mass matrix, internal force and damping vectors are derived for the proposed explicit scheme. A calibration study on P-wave propagation along a rock bar is conducted to investigate the efficiency and accuracy of the developed explicit numerical manifold method (ENMM) for wave propagation problems. Various considerations in the numerical simulations are discussed, and parametric studies are carried out to obtain an insight into the influencing factors on the efficiency and accuracy of wave propagation. To further verify the capability of the proposed ENMM, dynamic stability assessment for a fractured rock slope under seismic effect is analysed. It is shown that, compared to the original NMM, the computational efficiency of the proposed ENMM can be significantly improved.
An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion
NASA Astrophysics Data System (ADS)
Li, Eric; He, Z. C.; Wang, G.; Liu, G. R.
2017-07-01
The phononics crystals (PCs) are periodic man-made composite materials. In this paper, a mass-redistributed finite element method (MR-FEM) is formulated to study the wave propagation within liquid PCs with hard inclusion. With a perfect balance between stiffness and mass in the MR-FEM model, the dispersion error of longitudinal wave is minimized by redistribution of mass. Such tuning can be easily achieved by adjusting the parameter r that controls the location of integration points of mass matrix. More importantly, the property of mass conservation in the MR-FEM model indicates that the locations of integration points inside or outside the element are immaterial. Four numerical examples are studied in this work, including liquid PCs with cross and circle hard inclusions, different size of inclusion and defect. Compared with standard finite element method, the numerical results have verified the accuracy and effectiveness of MR-FEM. The proposed MR-FEM is a unique and innovative numerical approach with its outstanding features, which has strong potentials to study the stress wave within multi-physics PCs.
NASA Astrophysics Data System (ADS)
Lambert, J.; Josselin, E.; Ryde, N.; Faure, A.
2015-08-01
Context. The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Results: The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide variety of astrophysical problems.
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
Chartier, Timothy P.
2011-03-08
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise to medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.
Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0
NASA Astrophysics Data System (ADS)
Borowka, Sophia; Carter, Jonathon; Heinrich, Gudrun
2013-02-01
We present the program SecDec 2.0, which contains various new features. First, it allows the numerical evaluation of multi-loop integrals with no restriction on the kinematics. Dimensionally regulated ultraviolet and infrared singularities are isolated via sector decomposition, while threshold singularities are handled by a deformation of the integration contour in the complex plane. As an application, we present numerical results for various massive two-loop four-point diagrams. SecDec 2.0 also contains new useful features for the calculation of more general parameter integrals, related for example to phase space integrals. Program summaryProgram title: SecDec 2.0 Catalogue identifier: AEIR_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 156829 No. of bytes in distributed program, including test data, etc.: 2137907 Distribution format: tar.gz Programming language: Wolfram Mathematica, Perl, Fortran/C++. Computer: From a single PC to a cluster, depending on the problem. Operating system: Unix, Linux. RAM: Depending on the complexity of the problem Classification: 4.4, 5, 11.1. Catalogue identifier of previous version: AEIR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182(2011)1566 Does the new version supersede the previous version?: Yes Nature of problem: Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in gauge theories. Numerical integration in the presence of integrable singularities (e.g., kinematic thresholds). Solution method: Algebraic extraction of singularities in dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization
A numerical solution method for acoustic radiation from axisymmetric bodies
NASA Technical Reports Server (NTRS)
Caruthers, John E.; Raviprakash, G. K.
1995-01-01
A new and very efficient numerical method for solving equations of the Helmholtz type is specialized for problems having axisymmetric geometry. It is then demonstrated by application to the classical problem of acoustic radiation from a vibrating piston set in a stationary infinite plane. The method utilizes 'Green's Function Discretization', to obtain an accurate resolution of the waves using only 2-3 points per wave. Locally valid free space Green's functions, used in the discretization step, are obtained by quadrature. Results are computed for a range of grid spacing/piston radius ratios at a frequency parameter, omega R/c(sub 0), of 2 pi. In this case, the minimum required grid resolution appears to be fixed by the need to resolve a step boundary condition at the piston edge rather than by the length scale imposed by the wave length of the acoustic radiation. It is also demonstrated that a local near-field radiation boundary procedure allows the domain to be truncated very near the radiating source with little effect on the solution.
Exact and quasi exact numerical methods for giant magnetic molecules
NASA Astrophysics Data System (ADS)
Schnack, Jürgen
2012-02-01
The determination of the energy spectra of large magnetic molecules is a demanding numerical problem. In this contribution we demonstrate that theory has advanced very much in recent years. We first show that it is possible to diagonalize the Heisenberg Hamiltonian by employing the spin-rotational symmetry SU(2) in combination with arbitrary point-group symmetries [1]. This goes far beyond earlier approaches and enables us to evaluate thermodynamic observables such as the magnetization and spectroscopic data for molecules as large as the famous ferric wheel Fe10 with a Hilbert space dimension of more than 60 Millions. Then we explain how the finite-temperature Lanczos method can be applied to magnetic molecules in order to determine thermodynamic functions for Hilbert spaces as large as up to 1 Billion [2]. The new method enables us to discuss the magnetic properties of the highly frustrated Keplerate molecule W72V30 which behaves like a finite size Kagome lattice antiferromagnet. [4pt] [1] R. Schnalle and J. Schnack, Int. Rev. Phys. Chem. 29 (2010) 403; R. Schnalle, J. Schnack, Phys. Rev. B 79 (2009) 104419. [0pt] [2] J. Schnack, O. Wendland, Eur. Phys. J. B 78 (2010) 535-541.
Integral equation methods for vesicle electrohydrodynamics in three dimensions
NASA Astrophysics Data System (ADS)
Veerapaneni, Shravan
2016-12-01
In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.
Bioluminescent bioreporter integrated circuit detection methods
Simpson, Michael L.; Paulus, Michael J.; Sayler, Gary S.; Applegate, Bruce M.; Ripp, Steven A.
2005-06-14
Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for detection of particular analytes, including ammonia and estrogen compounds.
Collaborative Teaching of an Integrated Methods Course
ERIC Educational Resources Information Center
Zhou, George; Kim, Jinyoung; Kerekes, Judit
2011-01-01
With an increasing diversity in American schools, teachers need to be able to collaborate in teaching. University courses are widely considered as a stage to demonstrate or model the ways of collaboration. To respond to this call, three authors team taught an integrated methods course at an urban public university in the city of New York.…
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.
Implicit integration methods for dislocation dynamics
NASA Astrophysics Data System (ADS)
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.
2015-03-01
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. This paper investigates the viability of high-order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.
Blood viscosity measurement: an integral method using Doppler ultrasonic profiles
NASA Astrophysics Data System (ADS)
Flaud, P.; Bensalah, A.
2005-12-01
The aim of this work is to present a new indirect and noninvasive method for the measurement of the Newtonian blood viscosity. Based on an integral form of the axial Navier-Stokes equation, this method is particularly suited for in vivo investigations using ultrasonic arterial blood velocity profiles. Its main advantage is that it is applicable to periodic as well as non periodic flows. Moreover it does not require classical filtering methods enhancing signal to noise ratio of the physiological signals. This method only requires the knowledge of the velocimetric data measured inside a spatially and temporally optimized zone of the Doppler velocity profiles. The results obtained using numerical simulation as well as in vitro or in vivo experiments prove the effectiveness of the method. It is then well adapted to the clinical environment as a systematic quasi on-line method for the measurement of the blood viscosity.
Handwritten numeral verification method using distribution maps of structural features
NASA Astrophysics Data System (ADS)
Itoh, Nobuyasu; Takahashi, Hiroyasu
1990-08-01
Character recognition methods can be categorized into two major approaches. One is pattern matching, which is little affected by topological changes such as breaks in strokes. The other is structural analysis, which tolerates distorted characters only if the topological features of their undistorted versions are kept. We developed a new recognition method for hand-written numerals by combining the merits of the two approaches. The recognition process consists of three steps: (1) an input character is recognized by a patternmatching method, which reduces the number of possible categories to 1.5 on the average, (2) the character is yenfled to be true, false, or uncertain by a structural analysis method that we have newly developed, and (3) special heuristic verification logics are applied to uncertain characters. In the second step, the new structural analysis method uses the positions and directions of terminal points extracted from thinned character images as a main feature. The extracted terminal points are labeled according to a structural-feature distribution map prepared for each category. The generated labels are matched with template label sets constructed by statistical analysis. The characteristics of the method are as follows: (1) it copes with distortion of hand-written characters by using distribution maps for the positions and directions of feature points, and (2) distribution maps can be automatically generated from statistical data in learning samples and easily tuned interactively. The merits of combining the two methods are as follows: (1) the advantages of both pattern matching and structural analysis are obtained, (2) the probabilities of steps 2 and 3 needing to be executed are 22% and 9% respectively, which hardly affect the total processing time, and (3) as a result of steps 1 and 2, only a small number of special logics are required. In a test using unconstrained hand-written characters of low quality, the recognition rate and substitution
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
Improved numerical methods for turbulent viscous recirculating flows
NASA Technical Reports Server (NTRS)
Vandoormaal, J. P.; Turan, A.; Raithby, G. D.
1986-01-01
The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.
NASA Astrophysics Data System (ADS)
DiPaola, Milo
A numerical procedure for predicting boundary layer development on airfoils at moderate Reynolds numbers is presented. A 2-equation, integral boundary layer approximation is used to represent the development of the steady boundary layer along the airfoil surface. Both laminar and turbulent boundary layers can be modeled. Laminar-turbulent transition is predicted using an "en" method. The boundary layer prediction is similar to that developed by M. Drela and implemented in the XFOIL software. A set of nonlinear, integral boundary layer differential equations are discretized and coupled to a set of edge velocity equations from an inviscid potential flow solver. The nonlinear system is solved with a full Newton's method. Several discretizations and coupling techniques are tested. Results are presented for various design iterations and NACA profiles.
Fidelity of the Integrated Force Method Solution
NASA Technical Reports Server (NTRS)
Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya
2002-01-01
The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.
The numerical solution of ordinary differential equations by the Taylor series method
NASA Technical Reports Server (NTRS)
Silver, A. H.; Sullivan, E.
1973-01-01
A programming implementation of the Taylor series method is presented for solving ordinary differential equations. The compiler is written in PL/1, and the target language is FORTRAN IV. The reduction of a differential system to rational form is described along with the procedures required for automatic numerical integration. The Taylor method is compared with two other methods for a number of differential equations. Algorithms using the Taylor method to find the zeroes of a given differential equation and to evaluate partial derivatives are presented. An annotated listing of the PL/1 program which performs the reduction and code generation is given. Listings of the FORTRAN routines used by the Taylor series method are included along with a compilation of all the recurrence formulas used to generate the Taylor coefficients for non-rational functions.
Extremal polynomials and methods of optimization of numerical algorithms
Lebedev, V I
2004-10-31
Chebyshev-Markov-Bernstein-Szegoe polynomials C{sub n}(x) extremal on [-1,1] with weight functions w(x)=(1+x){sup {alpha}}(1- x){sup {beta}}/{radical}(S{sub l}(x)) where {alpha},{beta}=0,1/2 and S{sub l}(x)={pi}{sub k=1}{sup m}(1-c{sub k}T{sub l{sub k}}(x))>0 are considered. A universal formula for their representation in trigonometric form is presented. Optimal distributions of the nodes of the weighted interpolation and explicit quadrature formulae of Gauss, Markov, Lobatto, and Rado types are obtained for integrals with weight p(x)=w{sup 2}(x)(1-x{sup 2}){sup -1/2}. The parameters of optimal Chebyshev iterative methods reducing the error optimally by comparison with the initial error defined in another norm are determined. For each stage of the Fedorenko-Bakhvalov method iteration parameters are determined which take account of the results of the previous calculations. Chebyshev filters with weight are constructed. Iterative methods of the solution of equations containing compact operators are studied.
An advanced Gibbs-Duhem integration method: theory and applications.
van 't Hof, A; Peters, C J; de Leeuw, S W
2006-02-07
The conventional Gibbs-Duhem integration method is very convenient for the prediction of phase equilibria of both pure components and mixtures. However, it turns out to be inefficient. The method requires a number of lengthy simulations to predict the state conditions at which phase coexistence occurs. This number is not known from the outset of the numerical integration process. Furthermore, the molecular configurations generated during the simulations are merely used to predict the coexistence condition and not the liquid- and vapor-phase densities and mole fractions at coexistence. In this publication, an advanced Gibbs-Duhem integration method is presented that overcomes above-mentioned disadvantage and inefficiency. The advanced method is a combination of Gibbs-Duhem integration and multiple-histogram reweighting. Application of multiple-histogram reweighting enables the substitution of the unknown number of simulations by a fixed and predetermined number. The advanced method has a retroactive nature; a current simulation improves the predictions of previously computed coexistence points as well. The advanced Gibbs-Duhem integration method has been applied for the prediction of vapor-liquid equilibria of a number of binary mixtures. The method turned out to be very convenient, much faster than the conventional method, and provided smooth simulation results. As the employed force fields perfectly predict pure-component vapor-liquid equilibria, the binary simulations were very well suitable for testing the performance of different sets of combining rules. Employing Lorentz-Hudson-McCoubrey combining rules for interactions between unlike molecules, as opposed to Lorentz-Berthelot combining rules for all interactions, considerably improved the agreement between experimental and simulated data.
NASA Astrophysics Data System (ADS)
Liu, Yong; Wang, Pengfei; Huang, Gang
2015-02-01
A simple and useful method, the sliding temporal correlation (STC) analysis, is employed in the present work to investigate the predictable time (PT) of two typical chaotic numerical models (Lorenz system and Chen chaotic system) and reliable computing times (RCT) of an atmospheric general circulation model (ECHAM5). Through kinds of numerical experiments, results indicate that the maximal prediction time of Lorenz system (and Chen chaotic system) detected by STC method is coherent well with that by classical error limitation method, suggesting the effective role of the STC method. Then, taking the geopotential height for example, the RCT of ECHAM5 and potential impact factors such as the integration time step, initial condition, and model's resolution are explored. Results reveal that (1) the high-value areas of the RCT are mainly situated in the tropics, and the global mean RCT (GMRCT) decreases from with the time step increasing; (2) the ocean forcing can enlarge the difference of the RCT between that averaged over the Southern Hemisphere (SH) and Northern Hemisphere (NH), which implies the RCT in the NH may be more sensitive to the computation error than that in the SH; (3) the model's RCT also displays significant seasonality having longer (about 1-2 days) GMRCT in the experiment integrating from winter than that from summer; (4) the RCT of the high-resolution (T106) ECHAM5 shows similar spatial feature to that of low-resolution (T63) ECHAM5, but the GMRCT and hemispheric difference decreases.
Numerical Weather Predictions Evaluation Using Spatial Verification Methods
NASA Astrophysics Data System (ADS)
Tegoulias, I.; Pytharoulis, I.; Kotsopoulos, S.; Kartsios, S.; Bampzelis, D.; Karacostas, T.
2014-12-01
During the last years high-resolution numerical weather prediction simulations have been used to examine meteorological events with increased convective activity. Traditional verification methods do not provide the desired level of information to evaluate those high-resolution simulations. To assess those limitations new spatial verification methods have been proposed. In the present study an attempt is made to estimate the ability of the WRF model (WRF -ARW ver3.5.1) to reproduce selected days with high convective activity during the year 2010 using those feature-based verification methods. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. By alternating microphysics (Ferrier, WSM6, Goddard), boundary layer (YSU, MYJ) and cumulus convection (Kain--Fritsch, BMJ) schemes, a set of twelve model setups is obtained. The results of those simulations are evaluated against data obtained using a C-Band (5cm) radar located at the centre of the innermost domain. Spatial characteristics are well captured but with a variable time lag between simulation results and radar data. Acknowledgements: This research is cofinanced by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007--2013).
Numerical methods for incompressible viscous flows with engineering applications
NASA Technical Reports Server (NTRS)
Rose, M. E.; Ash, R. L.
1988-01-01
A numerical scheme has been developed to solve the incompressible, 3-D Navier-Stokes equations using velocity-vorticity variables. This report summarizes the development of the numerical approximation schemes for the divergence and curl of the velocity vector fields and the development of compact schemes for handling boundary and initial boundary value problems.
Numerical methods for problems involving the Drazin inverse
NASA Technical Reports Server (NTRS)
Meyer, C. D., Jr.
1979-01-01
The objective was to try to develop a useful numerical algorithm for the Drazin inverse and to analyze the numerical aspects of the applications of the Drazin inverse relating to the study of homogeneous Markov chains and systems of linear differential equations with singular coefficient matrices. It is felt that all objectives were accomplished with a measurable degree of success.
Stable unitary integrators for the numerical implementation of continuous unitary transformations
NASA Astrophysics Data System (ADS)
Savitz, Samuel; Refael, Gil
2017-09-01
The technique of continuous unitary transformations has recently been used to provide physical insight into a diverse array of quantum mechanical systems. However, the question of how to best numerically implement the flow equations has received little attention. The most immediately apparent approach, using standard Runge-Kutta numerical integration algorithms, suffers from both severe inefficiency due to stiffness and the loss of unitarity. After reviewing the formalism of continuous unitary transformations and Wegner's original choice for the infinitesimal generator of the flow, we present a number of approaches to resolving these issues including a choice of generator which induces what we call the "uniform tangent decay flow" and three numerical integrators specifically designed to perform continuous unitary transformations efficiently while preserving the unitarity of flow. We conclude by applying one of the flow algorithms to a simple calculation that visually demonstrates the many-body localization transition.
Molecular Line Emission from Multifluid Shock Waves. I. Numerical Methods and Benchmark Tests
NASA Astrophysics Data System (ADS)
Ciolek, Glenn E.; Roberge, Wayne G.
2013-05-01
We describe a numerical scheme for studying time-dependent, multifluid, magnetohydrodynamic shock waves in weakly ionized interstellar clouds and cores. Shocks are modeled as propagating perpendicular to the magnetic field and consist of a neutral molecular fluid plus a fluid of ions and electrons. The scheme is based on operator splitting, wherein time integration of the governing equations is split into separate parts. In one part, independent homogeneous Riemann problems for the two fluids are solved using Godunov's method. In the other, equations containing the source terms for transfer of mass, momentum, and energy between the fluids are integrated using standard numerical techniques. We show that, for the frequent case where the thermal pressures of the ions and electrons are Lt magnetic pressure, the Riemann problems for the neutral and ion-electron fluids have a similar mathematical structure which facilitates numerical coding. Implementation of the scheme is discussed and several benchmark tests confirming its accuracy are presented, including (1) MHD wave packets ranging over orders of magnitude in length- and timescales, (2) early evolution of multifluid shocks caused by two colliding clouds, and (3) a multifluid shock with mass transfer between the fluids by cosmic-ray ionization and ion-electron recombination, demonstrating the effect of ion mass loading on magnetic precursors of MHD shocks. An exact solution to an MHD Riemann problem forming the basis for an approximate numerical solver used in the homogeneous part of our scheme is presented, along with derivations of the analytic benchmark solutions and tests showing the convergence of the numerical algorithm.
MOLECULAR LINE EMISSION FROM MULTIFLUID SHOCK WAVES. I. NUMERICAL METHODS AND BENCHMARK TESTS
Ciolek, Glenn E.; Roberge, Wayne G. E-mail: roberw@rpi.edu
2013-05-01
We describe a numerical scheme for studying time-dependent, multifluid, magnetohydrodynamic shock waves in weakly ionized interstellar clouds and cores. Shocks are modeled as propagating perpendicular to the magnetic field and consist of a neutral molecular fluid plus a fluid of ions and electrons. The scheme is based on operator splitting, wherein time integration of the governing equations is split into separate parts. In one part, independent homogeneous Riemann problems for the two fluids are solved using Godunov's method. In the other, equations containing the source terms for transfer of mass, momentum, and energy between the fluids are integrated using standard numerical techniques. We show that, for the frequent case where the thermal pressures of the ions and electrons are << magnetic pressure, the Riemann problems for the neutral and ion-electron fluids have a similar mathematical structure which facilitates numerical coding. Implementation of the scheme is discussed and several benchmark tests confirming its accuracy are presented, including (1) MHD wave packets ranging over orders of magnitude in length- and timescales, (2) early evolution of multifluid shocks caused by two colliding clouds, and (3) a multifluid shock with mass transfer between the fluids by cosmic-ray ionization and ion-electron recombination, demonstrating the effect of ion mass loading on magnetic precursors of MHD shocks. An exact solution to an MHD Riemann problem forming the basis for an approximate numerical solver used in the homogeneous part of our scheme is presented, along with derivations of the analytic benchmark solutions and tests showing the convergence of the numerical algorithm.
Simulation and design of high precision unit processes via numerical methods
NASA Astrophysics Data System (ADS)
Stafford, Roger
1988-08-01
SDRC has developed new computer codes specifically tailored for precise and fist simulations of manufacturing processes. Critical aspects of unit processes involve nonlinear transient heat transfer coupled with slow creeping flow. Finite element methods are chosen. Numerical algorithms are adopted which are specifically suited to the problem. Key elements of these simulations are outlined. SDRC has integrated unit process simulations with CAD/CAM design systems, analysis graphics systems, automated inspection, and data base. An example will illustrate data flow, simulation results, and how engineers are using these tools to design new processes for large complex parts.
Reduced-complexity numerical method for optimal gate synthesis
NASA Astrophysics Data System (ADS)
Sridharan, Srinivas; Gu, Mile; James, Matthew R.; McEneaney, William M.
2010-10-01
Although quantum computers have the potential to efficiently solve certain problems considered difficult by known classical approaches, the design of a quantum circuit remains computationally difficult. It is known that the optimal gate-design problem is equivalent to the solution of an associated optimal-control problem; the solution to which is also computationally intensive. Hence, in this article, we introduce the application of a class of numerical methods (termed the max-plus curse of dimensionality-free techniques) that determine the optimal control, thereby synthesizing the desired unitary gate. The application of this technique to quantum systems has a growth in complexity that depends on the cardinality of the control-set approximation rather than the much larger growth with respect to spatial dimensions in approaches based on gridding of the space, which is used in previous research. This technique is demonstrated by obtaining an approximate solution for the gate synthesis on SU(4)—a problem that is computationally intractable by grid-based approaches.
Package for integrated optic circuit and method
Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.
1998-08-04
A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.
Package for integrated optic circuit and method
Kravitz, Stanley H.; Hadley, G. Ronald; Warren, Mial E.; Carson, Richard F.; Armendariz, Marcelino G.
1998-01-01
A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.
A Method for Obtaining Integrable Couplings
NASA Astrophysics Data System (ADS)
Zhang, Yu-Sen; Chen, Wei; Liao, Bo; Gong, Xin-Bo
2006-06-01
By making use of the vector product in R3, a commuting operation is introduced so that R3 becomes a Lie algebra. The resulting loop algebra tilde R3 is presented, from which the well-known AKNS hierarchy is produced. Again via applying the superposition of the commuting operations of the Lie algebra, a commuting operation in R6 is constructed so that R6 becomes a Lie algebra. Thanks to the corresponding loop algebra tilde R3 of the Lie algebra R3, the integrable coupling of the AKNS system is obtained. The method presented in this paper is rather simple and can be used to work out integrable coupling systems of the other known integrable hierarchies of soliton equations.
Monte Carlo methods for multidimensional integration for European option pricing
NASA Astrophysics Data System (ADS)
Todorov, V.; Dimov, I. T.
2016-10-01
In this paper, we illustrate examples of highly accurate Monte Carlo and quasi-Monte Carlo methods for multiple integrals related to the evaluation of European style options. The idea is that the value of the option is formulated in terms of the expectation of some random variable; then the average of independent samples of this random variable is used to estimate the value of the option. First we obtain an integral representation for the value of the option using the risk neutral valuation formula. Then with an appropriations change of the constants we obtain a multidimensional integral over the unit hypercube of the corresponding dimensionality. Then we compare a specific type of lattice rules over one of the best low discrepancy sequence of Sobol for numerical integration. Quasi-Monte Carlo methods are compared with Adaptive and Crude Monte Carlo techniques for solving the problem. The four approaches are completely different thus it is a question of interest to know which one of them outperforms the other for evaluation multidimensional integrals in finance. Some of the advantages and disadvantages of the developed algorithms are discussed.
An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Shivakumar, K. N.
1990-01-01
An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented.
Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods
NASA Astrophysics Data System (ADS)
Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi
2010-06-01
Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.
Orbit determination based on meteor observations using numerical integration of equations of motion
NASA Astrophysics Data System (ADS)
Dmitriev, Vasily; Lupovka, Valery; Gritsevich, Maria
2015-11-01
Recently, there has been a worldwide proliferation of instruments and networks dedicated to observing meteors, including airborne and future space-based monitoring systems . There has been a corresponding rapid rise in high quality data accumulating annually. In this paper, we present a method embodied in the open-source software program "Meteor Toolkit", which can effectively and accurately process these data in an automated mode and discover the pre-impact orbit and possibly the origin or parent body of a meteoroid or asteroid. The required input parameters are the topocentric pre-atmospheric velocity vector and the coordinates of the atmospheric entry point of the meteoroid, i.e. the beginning point of visual path of a meteor, in an Earth centered-Earth fixed coordinate system, the International Terrestrial Reference Frame (ITRF). Our method is based on strict coordinate transformation from the ITRF to an inertial reference frame and on numerical integration of the equations of motion for a perturbed two-body problem. Basic accelerations perturbing a meteoroid's orbit and their influence on the orbital elements are also studied and demonstrated. Our method is then compared with several published studies that utilized variations of a traditional analytical technique, the zenith attraction method, which corrects for the direction of the meteor's trajectory and its apparent velocity due to Earth's gravity. We then demonstrate the proposed technique on new observational data obtained from the Finnish Fireball Network (FFN) as well as on simulated data. In addition, we propose a method of analysis of error propagation, based on general rule of covariance transformation.
NASA Astrophysics Data System (ADS)
Nakamura, Gen; Wang, Haibing
2017-05-01
Consider the problem of reconstructing unknown Robin inclusions inside a heat conductor from boundary measurements. This problem arises from active thermography and is formulated as an inverse boundary value problem for the heat equation. In our previous works, we proposed a sampling-type method for reconstructing the boundary of the Robin inclusion and gave its rigorous mathematical justification. This method is non-iterative and based on the characterization of the solution to the so-called Neumann- to-Dirichlet map gap equation. In this paper, we give a further investigation of the reconstruction method from both the theoretical and numerical points of view. First, we clarify the solvability of the Neumann-to-Dirichlet map gap equation and establish a relation of its solution to the Green function associated with an initial-boundary value problem for the heat equation inside the Robin inclusion. This naturally provides a way of computing this Green function from the Neumann-to-Dirichlet map and explains what is the input for the linear sampling method. Assuming that the Neumann-to-Dirichlet map gap equation has a unique solution, we also show the convergence of our method for noisy measurements. Second, we give the numerical implementation of the reconstruction method for two-dimensional spatial domains. The measurements for our inverse problem are simulated by solving the forward problem via the boundary integral equation method. Numerical results are presented to illustrate the efficiency and stability of the proposed method. By using a finite sequence of transient input over a time interval, we propose a new sampling method over the time interval by single measurement which is most likely to be practical.
Numerical solution of differential algebraic equations (DAEs) by mix-multistep method
NASA Astrophysics Data System (ADS)
Rahim, Yong Faezah; Suleiman, Mohamed; Ibrahim, Zarina Bibi
2014-06-01
Differential Algebraic Equations (DAEs) are regarded as stiff Ordinary Differential Equations (ODEs). Therefore they are solved using implicit method such as Backward Differentiation Formula (BDF) type of methods which require the use of Newton iteration which need much computational effort. However, not all of the ODEs in DAE system are stiff. In this paper, we describe a new technique for solving DAE, where the ODEs are treated as non-stiff at the start of the integration and putting the non-stiff ODEs into stiff subsystem should instability occurs. Adams type of method is used to solve the non-stiff part and BDF method for solving the stiff part. This strategy is shown to be competitive in terms of computational effort and accuracy. Numerical experiments are presented to validate its efficiency.
On testing a subroutine for the numerical integration of ordinary differential equations
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1973-01-01
This paper discusses how to numerically test a subroutine for the solution of ordinary differential equations. Results obtained with a variable order Adams method are given for eleven simple test cases.-
NASA Technical Reports Server (NTRS)
Schneider, Harold
1959-01-01
This method is investigated for semi-infinite multiple-slab configurations of arbitrary width, composition, and source distribution. Isotropic scattering in the laboratory system is assumed. Isotropic scattering implies that the fraction of neutrons scattered in the i(sup th) volume element or subregion that will make their next collision in the j(sup th) volume element or subregion is the same for all collisions. These so-called "transfer probabilities" between subregions are calculated and used to obtain successive-collision densities from which the flux and transmission probabilities directly follow. For a thick slab with little or no absorption, a successive-collisions technique proves impractical because an unreasonably large number of collisions must be followed in order to obtain the flux. Here the appropriate integral equation is converted into a set of linear simultaneous algebraic equations that are solved for the average total flux in each subregion. When ordinary diffusion theory applies with satisfactory precision in a portion of the multiple-slab configuration, the problem is solved by ordinary diffusion theory, but the flux is plotted only in the region of validity. The angular distribution of neutrons entering the remaining portion is determined from the known diffusion flux and the remaining region is solved by higher order theory. Several procedures for applying the numerical method are presented and discussed. To illustrate the calculational procedure, a symmetrical slab ia vacuum is worked by the numerical, Monte Carlo, and P(sub 3) spherical harmonics methods. In addition, an unsymmetrical double-slab problem is solved by the numerical and Monte Carlo methods. The numerical approach proved faster and more accurate in these examples. Adaptation of the method to anisotropic scattering in slabs is indicated, although no example is included in this paper.
Active Problem Solving and Applied Research Methods in a Graduate Course on Numerical Methods
ERIC Educational Resources Information Center
Maase, Eric L.; High, Karen A.
2008-01-01
"Chemical Engineering Modeling" is a first-semester graduate course traditionally taught in a lecture format at Oklahoma State University. The course as taught by the author for the past seven years focuses on numerical and mathematical methods as necessary skills for incoming graduate students. Recent changes to the course have included Visual…
Active Problem Solving and Applied Research Methods in a Graduate Course on Numerical Methods
ERIC Educational Resources Information Center
Maase, Eric L.; High, Karen A.
2008-01-01
"Chemical Engineering Modeling" is a first-semester graduate course traditionally taught in a lecture format at Oklahoma State University. The course as taught by the author for the past seven years focuses on numerical and mathematical methods as necessary skills for incoming graduate students. Recent changes to the course have included Visual…
Moreira, S F; Belinha, J; Dinis, L M J S; Jorge, R M Natal
2014-09-01
In this work the maxillary central incisor is numerically analysed with an advance discretization technique--Natural Neighbour Radial Point Interpolation Method (NNRPIM). The NNRPIM permits to organically determine the nodal connectivity, which is essential to construct the interpolation functions. The NNRPIM procedure, based uniquely in the computational nodal mesh discretizing the problem domain, allows to obtain autonomously the required integration mesh, permitting to numerically integrate the differential equations ruling the studied physical phenomenon. A numerical analysis of a tooth structure using a meshless method is presented for the first time. A two-dimensional model of the maxillary central incisor, based on the clinical literature, is established and two distinct analyses are performed. First, a complete elasto-static analysis of the incisor/maxillary structure using the NNRPIM is evaluated and then a non-linear iterative bone tissue remodelling analysis of the maxillary bone, surrounding the central incisive, is performed. The obtained NNRPIM solutions are compared with other numerical methods solutions available in the literature and with clinical cases. The results show that the NNRPIM is a suitable numerical method to analyse numerically dental biomechanics problems.
A method of numerically controlled machine part programming
NASA Technical Reports Server (NTRS)
1970-01-01
Computer program is designed for automatically programmed tools. Preprocessor computes desired tool path and postprocessor computes actual commands causing machine tool to follow specific path. It is used on a Cincinnati ATC-430 numerically controlled machine tool.
Multistep Methods for Integrating the Solar System
1988-07-01
Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects
Basic numerical methods. [of unsteady and transonic flow
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Van Dalsem, William R.
1989-01-01
Some of the basic finite-difference schemes that can be used to solve the nonlinear equations that describe unsteady inviscid and viscous transonic flow are reviewed. Numerical schemes for solving the unsteady Euler and Navier-Stokes, boundary-layer, and nonlinear potential equations are described. Emphasis is given to the elementary ideas used in constructing various numerical procedures, not specific details of any one procedure.
Review of Methods and Approaches for Deriving Numeric ...
EPA will propose numeric criteria for nitrogen/phosphorus pollution to protect estuaries, coastal areas and South Florida inland flowing waters that have been designated Class I, II and III , as well as downstream protective values (DPVs) to protect estuarine and marine waters. In accordance with the formal determination and pursuant to a subsequent consent decree, these numeric criteria are being developed to translate and implement Florida’s existing narrative nutrient criterion, to protect the designated use that Florida has previously set for these waters, at Rule 62-302.530(47)(b), F.A.C. which provides that “In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna.” Under the Clean Water Act and EPA’s implementing regulations, these numeric criteria must be based on sound scientific rationale and reflect the best available scientific knowledge. EPA has previously published a series of peer reviewed technical guidance documents to develop numeric criteria to address nitrogen/phosphorus pollution in different water body types. EPA recognizes that available and reliable data sources for use in numeric criteria development vary across estuarine and coastal waters in Florida and flowing waters in South Florida. In addition, scientifically defensible approaches for numeric criteria development have different requirements that must be taken into consider
Numerical tracing of energetic electron microsignatures: methods and applications
NASA Astrophysics Data System (ADS)
Andriopoulou, M.; Roussos, E.; Krupp, N.; Paranicas, C.; Thomsen, M. F.; Krimigis, S. M.; Dougherty, M. K.
2012-12-01
One of the most sensitive methods to measure weak, non-corotational velocity components in Saturn's magnetosphere is the detection and analysis of the energetic electron microsignature locations. Microsignatures are typically very sharp and narrow energetic electron flux dropouts observed in the inner saturnian magnetosphere and at locations that map magnetically close to the orbits of the planet's icy moons. Microsignatures form after the drifting electrons encounter one of these moons and get absorbed. Since the resulting cavities cannot refill within the local, moon-magnetosphere interaction region, they propagate in the magnetosphere with the properties of the pre-depleted energetic electrons. Microsignatures may survive up to 1.5 rotations around the planet, and for that reason they are excellent tools for tracing the shape of the magnetospheric particle drift shells. In all tracing studies up to now, however, calculations were performed assuming a dipole field configuration and corotation-driven azimuthal electric fields. These assumptions allow for straightforward, analytical solutions of the equations of motion. Aspects that are usually neglected are related to the detection of the microsignatures, such as the finite energy width and complex response of the detector channels that record the relevant signals. Furthermore, the role of the weak, non-corotational and/or non-dipolar drift components becomes important as the energy of the electrons increases, since corotation and magnetic drifts tend to cancel out between about 400 keV and few MeV. Neglecting these weak drifts at high energies can be a source of large systematic errors in the tracing procedure. In this study we demonstrate how all these assumptions and simplifications may affect the quality and the outcome of the microsignature analysis. We then show how the use of the correct system of equations and numerical tracing helps to understand all major observational aspects of microsignatures (e
A numerical method that conserves the Runge-Lenz vector
NASA Astrophysics Data System (ADS)
Liu, Fu-yao; Wu, Xin; Lu, Ben-kui
An exhaustive discussion is carried out on isolating integrals and the trapezoidal formula which can conserve the Runge-Lenz vector. An isolating integral is an invariant that restricts the region of particle motion. The autonomous integrable Hamiltonian system with n degrees of freedom has only n mutually involutive independent isolating integrals, and the existence of other isolating integrals is meaningful to the particle motion. In the Kepler two-body system there exist the energy integral, the angular momentum integral and the Runge-Lenz vector. These correspond to 3 independent isolating integrals in the case of plane motion, and to 5 in the case of space motion. In the former, the integrals makes up the symmetry group SO (3) of the system, which can be transformed into the symmetry group of the two-dimensional isotropic harmonic oscillator through the Levi-Civita transformation, which is accurately conserved by the trapezoidal formula. On the other hand, in the case of space motion, the strict conservation of the energy and angular momentum inegrals and the Runge-Lenz vector by the trapezoidal formula is manifested in the 5 Kepler orbital elements a, e, i,and ω.
NASA Astrophysics Data System (ADS)
Darabi, E.; Ahmadi, V.; Mirabbaszadeh, K.
2006-03-01
A rigorous numerical analysis for dynamic response of a voltage-tunable optoelectronic integrated device is presented. The device is composed of a coupled periodic multi quantum wells heterojunction phototransistor (CP-MQW HPT) integrated over a strained quantum well laser diode. The model is based on small signal analysis of device rate equations, for which we require to calculate laser diode gain and HPT electro-absorption coefficient. The Hamiltonian of quantum well laser diode structure is numerically solved by transfer matrix method taking in to account the strain effect and band mixing between heavy hole and light hole. The results are used to obtain laser diode gain. In order to calculate the electroabsorption coefficient, the exciton equation is solved numerically in momentum space using combination of the Transfer matrix method and Gaussian quadrature method. The valence band mixing is also considered here. The quantum confined Stark effect in the absorption spectra results in changes in the optical gain of the device which provides voltage tunability for the device. Based on the model, we show that the device has two operation modes: amplification for small optical feedback coefficient and switching for higher values.
Application of boundary integral method to elastoplastic analysis of V-notched beams
NASA Technical Reports Server (NTRS)
Rzasnicki, W.; Mendelson, A.
1975-01-01
The boundary integral equation method was applied in the solution of the plane elastoplastic problems. The use of this method was illustrated by obtaining stress and strain distributions for a number of specimens with a single edge notch and subjected to pure bending. The boundary integral equation method reduced the nonhomogeneous biharmonic equation to two coupled Fredholm-type integral equations. These integral equations were replaced by a system of simultaneous algebraic equations and solved numerically in conjunction with the method of successive elastic solutions.
Application of boundary integral method to elastoplastic analysis of V-notched beams
NASA Technical Reports Server (NTRS)
Rzasnicki, W.; Mendelson, A.; Albers, L. U.; Raftopoulos, D. D.
1974-01-01
The boundary integral equation method was applied in the solution of the plane elastoplastic problem. The use of this method was illustrated by obtaining stress and strain distributions for a number of specimens with a single-edge notch and subjected to pure bending. The boundary integral equation method reduced the inhomogeneous biharmonic equation to two coupled Fredholm-type integral equations. These integral equations were replaced by a system of simultaneous algebraic equations and solved numerically in conjunction with a method of successive elastic solutions.
Application of boundary integral method to elastoplastic analysis of v-notched beams
NASA Technical Reports Server (NTRS)
Rzasnicki, W.; Mendelson, A.
1974-01-01
The boundary integral equation method was applied in the solution of the plane elastoplastic problems. The use of this method was illustrated by obtaining stress and strain distributions for a number of specimens with a single edge notch and subjected to pure bending. The boundary integral equation method reduced the non-homogeneous biharmonic equation to two coupled Fredholm-type integral equations. These integral equations were replaced by a system of simultaneous algebraic equations and solved numerically in conjunction with the method of successive elastic solutions.
Numerical simulations of multicomponent ecological models with adaptive methods.
Owolabi, Kolade M; Patidar, Kailash C
2016-01-08
The study of dynamic relationship between a multi-species models has gained a huge amount of scientific interest over the years and will continue to maintain its dominance in both ecology and mathematical ecology in the years to come due to its practical relevance and universal existence. Some of its emergence phenomena include spatiotemporal patterns, oscillating solutions, multiple steady states and spatial pattern formation. Many time-dependent partial differential equations are found combining low-order nonlinear with higher-order linear terms. In attempt to obtain a reliable results of such problems, it is desirable to use higher-order methods in both space and time. Most computations heretofore are restricted to second order in time due to some difficulties introduced by the combination of stiffness and nonlinearity. Hence, the dynamics of a reaction-diffusion models considered in this paper permit the use of two classic mathematical ideas. As a result, we introduce higher order finite difference approximation for the spatial discretization, and advance the resulting system of ODE with a family of exponential time differencing schemes. We present the stability properties of these methods along with the extensive numerical simulations for a number of multi-species models. When the diffusivity is small many of the models considered in this paper are found to exhibit a form of localized spatiotemporal patterns. Such patterns are correctly captured in the local analysis of the model equations. An extended 2D results that are in agreement with Turing typical patterns such as stripes and spots, as well as irregular snakelike structures are presented. We finally show that the designed schemes are dynamically consistent. The dynamic complexities of some ecological models are studied by considering their linear stability analysis. Based on the choices of parameters in transforming the system into a dimensionless form, we were able to obtain a well-balanced system that
A Fast Numerical Method for a Nonlinear Black-Scholes Equation
NASA Astrophysics Data System (ADS)
Koleva, Miglena N.; Vulkov, Lubin G.
2009-11-01
In this paper we will present an effective numerical method for the Black-Scholes equation with transaction costs for the limiting price u(s, t;a). The technique combines the Rothe method with a two-grid (coarse-fine) algorithm for computation of numerical solutions to initial boundary-values problems to this equation. Numerical experiments for comparison the accuracy ant the computational cost of the method with other known numerical schemes are discussed.
Integrated compartment method application to the transient heat transfer in gas-cooled reactor
Chen, N.C.J.; Yeh, G.T.
1983-04-01
Integrated Compartment Method (ICM), an effective numerical integration algorithm, was developed to solve the transient heat conduction coupled with convection. Application of the ICM to the mathematical model simulating a graphite test structure heated in an annular flow stream of hot helium has been successfully demonstrated. However, the model validation can not be performed until experimental data become available.
Integrated Compartment Method appication to the transient heat transfer in gas-cooled reactor
Chen, N.C.J.; Yeh, G.T.
1983-01-01
Integrated Compartment Method (ICM), an effective numerical integration algorithm, was developed to solve the transient heat conduction coupled with convection. Application of the ICM to the mathematical model simulating a graphite test structure heated in an annular flow stream of hot helium has been successfully demonstrated. However, the model validation can not be performed until experimental data become available.
A numerical analysis method for evaluating rod lenses using the Monte Carlo method.
Yoshida, Shuhei; Horiuchi, Shuma; Ushiyama, Zenta; Yamamoto, Manabu
2010-12-20
We propose a numerical analysis method for evaluating GRIN lenses using the Monte Carlo method. Actual measurements of the modulation transfer function (MTF) of a GRIN lens using this method closely match those made by conventional methods. Experimentally, the MTF is measured using a square wave chart, and is then calculated based on the distribution of output strength on the chart. In contrast, the general method using computers evaluates the MTF based on a spot diagram made by an incident point light source. However the results differ greatly from those from experiments. We therefore developed an evaluation method similar to the experimental system based on the Monte Carlo method and verified that it more closely matches the experimental results than the conventional method.
NASA Astrophysics Data System (ADS)
Sotiropoulos, F.; Kang, S.; Chamorro, L. P.; Hill, C.
2011-12-01
The field of MHK energy is still in its infancy lagging approximately a decade or more behind the technology and development progress made in wind energy engineering. Marine environments are characterized by complex topography and three-dimensional (3D) turbulent flows, which can greatly affect the performance and structural integrity of MHK devices and impact the Levelized Cost of Energy (LCoE). Since the deployment of multi-turbine arrays is envisioned for field applications, turbine-to-turbine interactions and turbine-bathymetry interactions need to be understood and properly modeled so that MHK arrays can be optimized on a site specific basis. Furthermore, turbulence induced by MHK turbines alters and interacts with the nearby ecosystem and could potentially impact aquatic habitats. Increased turbulence in the wake of MHK devices can also change the shear stress imposed on the bed ultimately affecting the sediment transport and suspension processes in the wake of these structures. Such effects, however, remain today largely unexplored. In this work a science-based approach integrating state-of-the-art experimentation with high-resolution computational fluid dynamics is proposed as a powerful strategy for optimizing the performance of MHK devices and assessing environmental impacts. A novel numerical framework is developed for carrying out Large-Eddy Simulation (LES) in arbitrarily complex domains with embedded MHK devices. The model is able to resolve the geometrical complexity of real-life MHK devices using the Curvilinear Immersed Boundary (CURVIB) method along with a wall model for handling the flow near solid surfaces. Calculations are carried out for an axial flow hydrokinetic turbine mounted on the bed of rectangular open channel on a grid with nearly 200 million grid nodes. The approach flow corresponds to fully developed turbulent open channel flow and is obtained from a separate LES calculation. The specific case corresponds to that studied
NASA Astrophysics Data System (ADS)
Sudhakar, Y.; Moitinho de Almeida, J. P.; Wall, Wolfgang A.
2014-09-01
We present an accurate method for the numerical integration of polynomials over arbitrary polyhedra. Using the divergence theorem, the method transforms the domain integral into integrals evaluated over the facets of the polyhedra. The necessity of performing symbolic computation during such transformation is eliminated by using one dimensional Gauss quadrature rule. The facet integrals are computed with the help of quadratures available for triangles and quadrilaterals. Numerical examples, in which the proposed method is used to integrate the weak form of the Navier-Stokes equations in an embedded interface method (EIM), are presented. The results show that our method is as accurate and generalized as the most widely used volume decomposition based methods. Moreover, since the method involves neither volume decomposition nor symbolic computations, it is much easier for computer implementation. Also, the present method is more efficient than other available integration methods based on the divergence theorem. Efficiency of the method is also compared with the volume decomposition based methods and moment fitting methods. To our knowledge, this is the first article that compares both accuracy and computational efficiency of methods relying on volume decomposition and those based on the divergence theorem.
A numerical method for computing unsteady 2-D boundary layer flows
NASA Technical Reports Server (NTRS)
Krainer, Andreas
1988-01-01
A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.
An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area
NASA Astrophysics Data System (ADS)
Alias, N. A.; Mohd Sidek, L.
2016-03-01
The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.
NASA Astrophysics Data System (ADS)
Peng, Xindong; Che, Yuzhang; Chang, Jun
2013-08-01
Using the concept of anomaly integration and historical climate data, we have developed a novel operational framework to implement deterministic numerical weather prediction within 15 days. Real-case validation shows pronounced improvements in the forecasts of global geopotential heights in 20 out of 30 cases with the Community Atmosphere Model version 3.0. Seven other cases are marginally improved, and only three are deteriorated, in which all are ameliorated within the first-week period. The average of the 30 cases shows an obvious increase of anomaly correlation coefficient (ACC) and a decrease of root mean square error (RMSE) of the geopotential height over global, hemispherical, and tropical zones. Significant amelioration on tropical circulation is displayed within the first-week prediction. The forecasting skill is extended by 0.6 day in terms of days of the ACC greater than 0.6 for 500 hPa 30 case averaged geopotential height on global scale. The 30 case mean ACC and RMSE of 500 hPa temperature show the increment of 0.2 and -1.6 K, respectively, in the first-week prediction. In the case of January 2008, much more reasonable horizontal distribution and vertical structure are achieved in bias-corrected model geopotential height, temperature, relative humidity, and horizontal wind components in comparison to reanalysis data. In spite of a need for additional storage of historical modeling data, the new method does not increase computational costs and therefore is suitable for routine application.
NASA Astrophysics Data System (ADS)
Sjöberg, L. E.
2012-11-01
We derive computational formulas for determining the Clairaut constant, i.e. the cosine of the maximum latitude of the geodesic arc, from two given points on the oblate ellipsoid of revolution. In all cases the Clairaut constant is unique. The inverse geodetic problem on the ellipsoid is to determine the geodesic arc between and the azimuths of the arc at the given points. We present the solution for the fixed Clairaut constant. If the given points are not(nearly) antipodal, each azimuth and location of the geodesic is unique, while for the fixed points in the ”antipodal region”, roughly within 36”.2 from the antipode, there are two geodesics mirrored in the equator and with complementary azimuths at each point. In the special case with the given points located at the poles of the ellipsoid, all meridians are geodesics. The special role played by the Clairaut constant and the numerical integration make this method different from others available in the literature.
Numerical Analysis on the Vortex Pattern and Flux Particle Dispersion in KR Method Using MPS Method
NASA Astrophysics Data System (ADS)
Hirata, N.; Xu, Y.; Anzai, K.
2015-06-01
The mechanically-stirring vessel is widely used in many fields, such as chemical reactor, bioreactor, and metallurgy, etc. The type of vortex mode that formed during impeller stirring has great effect on stirring efficiency, chemical reacting rate and air entrapment. Many efforts have been made to numerically simulate the fluid flow in the stirring vessel with classical Eulerian method. However, it is difficult to directly investigate the vortex mode and flux particle dispersion. Therefore, moving particle semi-implicit (MPS) method, which is based on Lagrangian method, is applied to simulate the fluid flow in a KR method in this practice. Top height and bottom heights of vortex surface in a steady state under several rotation speed was taken as key parameters to compare the results of numerical and published results. Flux particle dispersion behaviour under a rotation speed range from 80 to 480 rpm was also compared with the past study. The result shows that the numerical calculation has high consistency with experimental results. It is confirmed that the calculation using MPS method well reflected the vortex mode and flux particle dispersion in a mechanically-stirring vessel.
A low numerical dissipation immersed interface method for the compressible Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Karagiozis, K.; Kamakoti, R.; Pantano, C.
2010-02-01
A numerical method to solve the compressible Navier-Stokes equations around objects of arbitrary shape using Cartesian grids is described. The approach considered here uses an embedded geometry representation of the objects and approximate the governing equations with a low numerical dissipation centered finite-difference discretization. The method is suitable for compressible flows without shocks and can be classified as an immersed interface method. The objects are sharply captured by the Cartesian mesh by appropriately adapting the discretization stencils around the irregular grid nodes, located around the boundary. In contrast with available methods, no jump conditions are used or explicitly derived from the boundary conditions, although a number of elements are adopted from previous immersed interface approaches. A new element in the present approach is the use of the summation-by-parts formalism to develop stable non-stiff first-order derivative approximations at the irregular grid points. Second-order derivative approximations, as those appearing in the transport terms, can be stiff when irregular grid points are located too close to the boundary. This is addressed using a semi-implicit time integration method. Moreover, it is shown that the resulting implicit equations can be solved explicitly in the case of constant transport properties. Convergence studies are performed for a rotating cylinder and vortex shedding behind objects of varying shapes at different Mach and Reynolds numbers.
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1979-01-01
The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.