Consistent three-equation model for thin films
NASA Astrophysics Data System (ADS)
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2016-06-01
space propulsion . This effort consists of numerical model development, physical model development, and systematic studies of the non-linear plasma...studies of the physical characteristics of Field Reversed Configuration (FRC) plasma for advanced space propulsion . This effort consists of numerical...FRCs for propulsion application. Two of the most advanced designs are based on the theta-pinch formation and the RMF formation mechanism, which
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.
1979-01-01
The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi
In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.
Physical and numerical studies of a fracture system model
NASA Astrophysics Data System (ADS)
Piggott, Andrew R.; Elsworth, Derek
1989-03-01
Physical and numerical studies of transient flow in a model of discretely fractured rock are presented. The physical model is a thermal analogue to fractured media flow consisting of idealized disc-shaped fractures. The numerical model is used to predict the behavior of the physical model. The use of different insulating materials to encase the physical model allows the effects of differing leakage magnitudes to be examined. A procedure for determining appropriate leakage parameters is documented. These parameters are used in forward analysis to predict the thermal response of the physical model. Knowledge of the leakage parameters and of the temporal variation of boundary conditions are shown to be essential to an accurate prediction. Favorable agreement is illustrated between numerical and physical results. The physical model provides a data source for the benchmarking of alternative numerical algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelanti, Marica, E-mail: marica.pelanti@ensta-paristech.fr; Shyue, Keh-Ming, E-mail: shyue@ntu.edu.tw
2014-02-15
We model liquid–gas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of Saurel–Petitpas–Berry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxationmore » terms to model heat and mass transfer and hence liquid–vapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquid–vapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.« less
Consistent Chemical Mechanism from Collaborative Data Processing
Slavinskaya, Nadezda; Starcke, Jan-Hendrik; Abbasi, Mehdi; ...
2016-04-01
Numerical tool of Process Informatics Model (PrIMe) is mathematically rigorous and numerically efficient approach for analysis and optimization of chemical systems. It handles heterogeneous data and is scalable to a large number of parameters. The Boundto-Bound Data Collaboration module of the automated data-centric infrastructure of PrIMe was used for the systematic uncertainty and data consistency analyses of the H 2/CO reaction model (73/17) and 94 experimental targets (ignition delay times). The empirical rule for evaluation of the shock tube experimental data is proposed. The initial results demonstrate clear benefits of the PrIMe methods for an evaluation of the kinetic datamore » quality and data consistency and for developing predictive kinetic models.« less
Development and modelisation of a hydro-power conversion system based on vortex induced vibration
NASA Astrophysics Data System (ADS)
Lefebure, David; Dellinger, Nicolas; François, Pierre; Mosé, Robert
2016-11-01
The Vortex Induced Vibration (VIV) phenomenon leads to mechanical issues concerning bluff bodies immerged in fluid flows and have therefore been studied by numerous authors. Moreover, an increasing demand for energy implies the development of alternative, complementary and renewable energy solutions. The main idea of EauVIV project consists in the use of VIV rather than its deletion. When rounded objects are immerged in a fluid flow, vortices are formed and shed on their downstream side, creating a pressure imbalance resulting in an oscillatory lift. A convertor modulus consists of an elastically mounted, rigid cylinder on end-springs, undergoing flow- induced motion when exposed to transverse fluid-flow. These vortices induce cyclic lift forces in opposite directions on the circular bar and cause the cylinder to vibrate up and down. An experimental prototype was developed and tested in a free-surface water channel and is already able to recover energy from free-stream velocity between 0.5 and 1 m.s -1. However, the large number of parameters (stiffness, damping coefficient, velocity of fluid flow, etc.) associated with its performances requires optimization and we choose to develop a complete tridimensionnal numerical model solution. A 3D numerical model has been developed in order to represent the real system behavior and improve it through, for example, the addition of parallel cylinders. The numerical model build up was carried out in three phases. The first phase consists in establishing a 2D model to choose the turbulence model and quantify the dependence of the oscillations amplitudes on the mesh size. The second corresponds to a 3D simulation with cylinder at rest in first time and with vertical oscillation in a second time. The third and final phase consists in a comparison between the experimental system dynamic behavior and its numerical model.
A Study of Fundamental Shock Noise Mechanisms
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.
1997-01-01
This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.
Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach
NASA Astrophysics Data System (ADS)
Jamil, N. M.; Wang, Q.
2016-06-01
Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.
Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C
2018-01-01
This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
A consistent modelling methodology for secondary settling tanks: a reliable numerical method.
Bürger, Raimund; Diehl, Stefan; Farås, Sebastian; Nopens, Ingmar; Torfs, Elena
2013-01-01
The consistent modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE) of nonlinear convection-diffusion type as a one-dimensional model for the solids concentration as a function of depth and time. This PDE includes a flux that depends discontinuously on spatial position modelling hindered settling and bulk flows, a singular source term describing the feed mechanism, a degenerating term accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solution itself is discontinuous. A consistent, reliable and robust numerical method that properly handles these difficulties is presented. Many constitutive relations for hindered settling, compression and dispersion can be used within the model, allowing the user to switch on and off effects of interest depending on the modelling goal as well as investigate the suitability of certain constitutive expressions. Simulations show the effect of the dispersion term on effluent suspended solids and total sludge mass in the SST. The focus is on correct implementation whereas calibration and validation are not pursued.
Saad, Akram; Cho, Yonghyun; Ahmed, Farid; Jun, Martin Byung-Guk
2016-01-01
A 3D finite element model constructed to predict the intensity-dependent refractive index profile induced by femtosecond laser radiation is presented. A fiber core irradiated by a pulsed laser is modeled as a cylinder subject to predefined boundary conditions using COMSOL5.2 Multiphysics commercial package. The numerically obtained refractive index change is used to numerically design and experimentally fabricate long-period fiber grating (LPFG) in pure silica core single-mode fiber employing identical laser conditions. To reduce the high computational requirements, the beam envelope method approach is utilized in the aforementioned numerical models. The number of periods, grating length, and grating period considered in this work are numerically quantified. The numerically obtained spectral growth of the modeled LPFG seems to be consistent with the transmission of the experimentally fabricated LPFG single mode fiber. The sensing capabilities of the modeled LPFG are tested by varying the refractive index of the surrounding medium. The numerically obtained spectrum corresponding to the varied refractive index shows good agreement with the experimental findings. PMID:28774060
Saad, Akram; Cho, Yonghyun; Ahmed, Farid; Jun, Martin Byung-Guk
2016-11-21
A 3D finite element model constructed to predict the intensity-dependent refractive index profile induced by femtosecond laser radiation is presented. A fiber core irradiated by a pulsed laser is modeled as a cylinder subject to predefined boundary conditions using COMSOL5.2 Multiphysics commercial package. The numerically obtained refractive index change is used to numerically design and experimentally fabricate long-period fiber grating (LPFG) in pure silica core single-mode fiber employing identical laser conditions. To reduce the high computational requirements, the beam envelope method approach is utilized in the aforementioned numerical models. The number of periods, grating length, and grating period considered in this work are numerically quantified. The numerically obtained spectral growth of the modeled LPFG seems to be consistent with the transmission of the experimentally fabricated LPFG single mode fiber. The sensing capabilities of the modeled LPFG are tested by varying the refractive index of the surrounding medium. The numerically obtained spectrum corresponding to the varied refractive index shows good agreement with the experimental findings.
NASA Astrophysics Data System (ADS)
Parumasur, N.; Willie, R.
2008-09-01
We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
NASA Technical Reports Server (NTRS)
Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.
2013-01-01
Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.
Numerical modelling and experimental study of liquid evaporation during gel formation
NASA Astrophysics Data System (ADS)
Pokusaev, B. G.; Khramtsov, D. P.
2017-11-01
Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.
Symplectic multiparticle tracking model for self-consistent space-charge simulation
Qiang, Ji
2017-01-23
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Symplectic multiparticle tracking model for self-consistent space-charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, Ji
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Challenges to Applying a Metamodel for Groundwater Flow Beyond Underlying Numerical Model Boundaries
NASA Astrophysics Data System (ADS)
Reeves, H. W.; Fienen, M. N.; Feinstein, D.
2015-12-01
Metamodels of environmental behavior offer opportunities for decision support, adaptive management, and increased stakeholder engagement through participatory modeling and model exploration. Metamodels are derived from calibrated, computationally demanding, numerical models. They may potentially be applied to non-modeled areas to provide screening or preliminary analysis tools for areas that do not yet have the benefit of more comprehensive study. In this decision-support mode, they may be fulfilling a role often accomplished by application of analytical solutions. The major challenge to transferring a metamodel to a non-modeled area is how to quantify the spatial data in the new area of interest in such a way that it is consistent with the data used to derive the metamodel. Tests based on transferring a metamodel derived from a numerical groundwater-flow model of the Lake Michigan Basin to other glacial settings across the northern U.S. show that the spatial scale of the numerical model must be appropriately scaled to adequately represent different settings. Careful GIS analysis of the numerical model, metamodel, and new area of interest is required for successful transfer of results.
Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model
Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.; ...
2015-10-30
We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less
Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.
We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less
Numerical modelling in biosciences using delay differential equations
NASA Astrophysics Data System (ADS)
Bocharov, Gennadii A.; Rihan, Fathalla A.
2000-12-01
Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko
2007-10-01
The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.
Numerical Modeling of Saturated Boiling in a Heated Tube
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Hartwig, Jason
2017-01-01
This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.
NASA Astrophysics Data System (ADS)
Asad, Amjad; Bauer, Katrin; Chattopadhyay, Kinnor; Schwarze, Rüdiger
2018-06-01
In the paper, a new water model of the turbulent recirculating flow in an induction furnace is introduced. The water model was based on the principle of the stirred vessel used in process engineering. The flow field in the water model was measured by means of particle image velocimetry in order to verify the model's performance. Here, it is indicated that the flow consists of two toroidal vortices similar to the flow in the induction crucible furnace. Furthermore, the turbulent flow in the water model is investigated numerically by adopting eddy-resolving turbulence modeling. The two toroidal vortices occur in the simulations as well. The numerical approaches provide identical time-averaged flow patterns. Moreover, a good qualitative agreement is observed on comparing the experimental and numerical results. In addition, a numerical simulation of the melt flow in a real induction crucible furnace was performed. The turbulent kinetic energy spectrum of the flow in the water model was compared to that of the melt flow in the induction crucible furnace to show the similarity in the nature of turbulence.
Modelling chemo-hydro-mechanical behaviour of unsaturated clays: a feasibility study
NASA Astrophysics Data System (ADS)
Liu, Z.; Boukpeti, N.; Li, X.; Collin, F.; Radu, J.-P.; Hueckel, T.; Charlier, R.
2005-08-01
Effective capabilities of combined chemo-elasto-plastic and unsaturated soil models to simulate chemo-hydro-mechanical (CHM) behaviour of clays are examined in numerical simulations through selected boundary value problems. The objective is to investigate the feasibility of approaching such complex material behaviour numerically by combining two existing models. The chemo-mechanical effects are described using the concept of chemical softening consisting of reduction of the pre-consolidation pressure proposed originally by Hueckel (Can. Geotech. J. 1992; 29:1071-1086; Int. J. Numer. Anal. Methods Geomech. 1997; 21:43-72). An additional chemical softening mechanism is considered, consisting in a decrease of cohesion with an increase in contaminant concentration. The influence of partial saturation on the constitutive behaviour is modelled following Barcelona basic model (BBM) formulation (Géotech. 1990; 40(3):405-430; Can. Geotech. J. 1992; 29:1013-1032).The equilibrium equations combined with the CHM constitutive relations, and the governing equations for flow of fluids and contaminant transport, are solved numerically using finite element. The emphasis is laid on understanding the role that the individual chemical effects such as chemo-elastic swelling, or chemo-plastic consolidation, or finally, chemical loss of cohesion have in the overall response of the soil mass. The numerical problems analysed concern the chemical effects in response to wetting of a clay specimen with an organic liquid in rigid wall consolidometer, during biaxial loading up to failure, and in response to fresh water influx during tunnel excavation in swelling clay.
Long-range temporal correlations in the Kardar-Parisi-Zhang growth: numerical simulations
NASA Astrophysics Data System (ADS)
Song, Tianshu; Xia, Hui
2016-11-01
To analyze long-range temporal correlations in surface growth, we study numerically the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) equation driven by temporally correlated noise, and obtain the scaling exponents based on two different numerical methods. Our simulations show that the numerical results are in good agreement with the dynamic renormalization group (DRG) predictions, and are also consistent with the simulation results of the ballistic deposition (BD) model.
Deng, Jian-Liao; Wei, Qing; Wang, Yu-Zhu; Li, Yong-Qing
2005-05-16
We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous-wave(cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result.
A 3D Hydrodynamic Model for Heterogeneous Biofilms with Antimicrobial Persistence
2014-01-01
antimicrobial agents, providing a useful tool for analyzing the mechanism of biofilm persistence to antimicrobial agents in an aqueous environment. The numerical...mecha- nism of biofilm persistence to antimicrobial agents in an aqueous environment. The numerical result also confirms that the periodic dosing...We model the biofilm together with its surrounding aqueous environment as a mixture of complex fluids. The biofilm is consisted of the biomass
A unified radiative magnetohydrodynamics code for lightning-like discharge simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run
2014-03-15
A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less
NASA Astrophysics Data System (ADS)
Motte, Fabrice; Bugler-Lamb, Samuel L.; Falcoz, Quentin
2015-07-01
The attraction of solar energy is greatly enhanced by the possibility of it being used during times of reduced or non-existent solar flux, such as weather induced intermittences or the darkness of the night. Therefore optimizing thermal storage for use in solar energy plants is crucial for the success of this sustainable energy source. Here we present a study of a structured bed filler dedicated to Thermocline type thermal storage, believed to outweigh the financial and thermal benefits of other systems currently in use such as packed bed Thermocline tanks. Several criterions such as Thermocline thickness and Thermocline centering are defined with the purpose of facilitating the assessment of the efficiency of the tank to complement the standard concepts of power output. A numerical model is developed that reduces to two dimensions the modeling of such a tank. The structure within the tank is designed to be built using simple bricks harboring rectangular channels through which the solar heat transfer and storage fluid will flow. The model is scrutinized and tested for physical robustness, and the results are presented in this paper. The consistency of the model is achieved within particular ranges for each physical variable.
Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.
Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong
2017-06-01
Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.
Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds
Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M.; Tan, Zhihong
2017-01-01
Abstract Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS‐II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS‐II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid‐scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS‐II observations are identified. The results show that using weighted essentially non‐oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest‐fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high‐quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest‐fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model. PMID:28943997
A nonlinear interface model applied to masonry structures
NASA Astrophysics Data System (ADS)
Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella
2015-12-01
In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.
Modeling the tides of Massachusetts and Cape Cod Bays
Jenter, H.L.; Signell, R.P.; Blumberg, A.F.; ,
1993-01-01
A time-dependent, three-dimensional numerical modeling study of the tides of Massachusetts and Cape Code Bays, motivated by construction of a new sewage treatment plant and ocean outfall for the city of Boston, has been undertaken by the authors. The numerical model being used is a hybrid version of the Blumberg and Mellor ECOM3D model, modified to include a semi-implicit time-stepping scheme and transport of a non-reactive dissolved constituent. Tides in the bays are dominated by the semi-diurnal frequencies, in particular by the M2 tide, due to the resonance of these frequencies in the Gulf of Maine. The numerical model reproduces, well, measured tidal ellipses in unstratified wintertime conditions. Stratified conditions present more of a problem because tidal-frequency internal wave generation and propagation significantly complicates the structure of the resulting tidal field. Nonetheless, the numerical model reproduces qualitative aspects of the stratified tidal flow that are consistent with observations in the bays.
NASA Astrophysics Data System (ADS)
Konkol, Jakub; Bałachowski, Lech
2017-03-01
In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.
Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.
Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija
2014-02-07
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.
Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor
Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė
2014-01-01
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882
Numerical solution for weight reduction model due to health campaigns in Spain
NASA Astrophysics Data System (ADS)
Mohammed, Maha A.; Noor, Noor Fadiya Mohd; Siri, Zailan; Ibrahim, Adriana Irawati Nur
2015-10-01
Transition model between three subpopulations based on Body Mass Index of Valencia community in Spain is considered. No changes in population nutritional habits and public health strategies on weight reduction until 2030 are assumed. The system of ordinary differential equations is solved using Runge-Kutta method of higher order. The numerical results obtained are compared with the predicted values of subpopulation proportion based on statistical estimation in 2013, 2015 and 2030. Relative approximate error is calculated. The consistency of the Runge-Kutta method in solving the model is discussed.
Modeling the effects of inflammation in bone fracture healing
NASA Astrophysics Data System (ADS)
Kojouharov, H. V.; Trejo, I.; Chen-Charpentier, B. M.
2017-10-01
A new mathematical model is presented to study the early inflammatory effects in bone healing. It consists of a system of nonlinear ordinary differential equations that represents the interactions among macrophages, mesenchymal stem cells, and osteoblasts. A qualitative analysis of the model is performed to determine the equilibria and their corresponding stability properties. A set of numerical simulations is performed to support the theoretical results. The model is also used to numerically monitor the evolution of a broken bone for different types of fractures and to explore possible treatments to accelerate bone healing by administrating anti-inflammatory drugs.
NASA Astrophysics Data System (ADS)
Lee, Bo Mi; Loh, Kenneth J.
2017-04-01
Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.
NASA Astrophysics Data System (ADS)
Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne
2010-05-01
Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are imposed. The Plexiglas box is filled with glass beads of which hydraulics and thermal parameters are known. All parameters required for our numerical model are controlled and continuous monitoring of soil temperatures and pore water pressure are reported. Our results of experimental model allow us to test the relevance of processes described by our numerical simulation and to quantify the impact of permafrost on pore water pressure of subpermafrost groundwater during a cycle of freezing and thawing. Michel, Frederick A. and Van Everdingen, Robert O. 1994. Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafrost and Periglacial Processes, 5: 191-195. Wang, Chi-yuen and Manga, Michael and Hanna, Jeffrey C. 2006. Can freezing cause floods on Mars? Geophysical Research Letters, 33
Splitting algorithm for numerical simulation of Li-ion battery electrochemical processes
NASA Astrophysics Data System (ADS)
Iliev, Oleg; Nikiforova, Marina A.; Semenov, Yuri V.; Zakharov, Petr E.
2017-11-01
In this paper we present a splitting algorithm for a numerical simulation of Li-ion battery electrochemical processes. Liion battery consists of three domains: anode, cathode and electrolyte. Mathematical model of electrochemical processes is described on a microscopic scale, and contains nonlinear equations for concentration and potential in each domain. On the interface of electrodes and electrolyte there are the Lithium ions intercalation and deintercalation processes, which are described by Butler-Volmer nonlinear equation. To approximate in spatial coordinates we use finite element methods with discontinues Galerkin elements. To simplify numerical simulations we develop the splitting algorithm, which split the original problem into three independent subproblems. We investigate the numerical convergence of the algorithm on 2D model problem.
Modelling and Optimizing Mathematics Learning in Children
ERIC Educational Resources Information Center
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
NASA Astrophysics Data System (ADS)
Jiang, Ying; Chen, Jeff Z. Y.
2013-10-01
This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.
The effect of aspect ratio on adhesion and stiffness for soft elastic fibres
Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin
2011-01-01
The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962
Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.
2017-10-01
The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.
DEM modeling of flexible structures against granular material avalanches
NASA Astrophysics Data System (ADS)
Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno
2016-04-01
This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.
NASA Technical Reports Server (NTRS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2008-01-01
An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
Consistent lattice Boltzmann methods for incompressible axisymmetric flows
NASA Astrophysics Data System (ADS)
Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Yin, Linmao; Zhao, Ya; Chew, Jia Wei
2016-08-01
In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed based on two efficient axisymmetric LB models available in the literature. In accord with their respective original models, the proposed axisymmetric models evolve within the framework of the standard LB method and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability of the proposed incompressible axisymmetric LB models are verified.
Sondak, D.; Shadid, J. N.; Oberai, A. A.; ...
2015-04-29
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and highmore » Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.« less
An explicit mixed numerical method for mesoscale model
NASA Technical Reports Server (NTRS)
Hsu, H.-M.
1981-01-01
A mixed numerical method has been developed for mesoscale models. The technique consists of a forward difference scheme for time tendency terms, an upstream scheme for advective terms, and a central scheme for the other terms in a physical system. It is shown that the mixed method is conditionally stable and highly accurate for approximating the system of either shallow-water equations in one dimension or primitive equations in three dimensions. Since the technique is explicit and two time level, it conserves computer and programming resources.
Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling
NASA Astrophysics Data System (ADS)
Grobbe, N.; Slob, E. C.; Thorbecke, J. W.
2016-07-01
We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.
Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force
NASA Astrophysics Data System (ADS)
Tort, Marine; Dubos, Thomas; Bouchut, François; Zeitlin, Vladimir
2014-05-01
Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force Marine Tort1, Thomas Dubos1, François Bouchut2 & Vladimir Zeitlin1,3 1 Laboratoire of Dynamical Meteorology, Univ. P. and M. Curie, Ecole Normale Supérieure, and Ecole Polytechnique, FRANCE 2 Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, FRANCE 3 Institut Universitaire de France Atmospheric and oceanic motion are usually modeled within the shallow-fluid approximation, which simplifies the 3D spherical geometry. For dynamical consistency, i.e. to ensure conservation laws for potential vorticity, energy and angular momentum, the horizontal component of the Coriolis force is neglected. Here new equation sets combining consistently a simplified shallow-fluid geometry with a complete Coriolis force is presented. The derivation invokes Hamilton's principle of least action with an approximate Lagrangian capturing the small increase with height of the solid-body entrainment velocity due to planetary rotation. A three-dimensional compressible model and a one-layer shallow-water model are obtained. The latter extends previous work done on the f-plane and β-plane. Preliminary numerical results confirm the accuracy of the 3D model within the range of parameters for which the equations are relevant. These new models could be useful to incorporate a full Coriolis force into existing numerical models and to disentangle the effects of the shallow-atmosphere approximation from those of the traditional approximation. Related papers: Tort M., Dubos T., Bouchut F. and Zeitlin V. Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography. J. Fluid Mech. (under revisions) Tort M. and Dubos T. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Q.J.R. Meteorol. Soc. (DOI: 10.1002/qj.2274)
Numerical Simulation and Experimental Validation of Failure Caused by Vibration of a Fan
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Han, Wu; Feng, Jianmei; Jia, Xiaohan; Peng, Xueyuan
2017-08-01
This paper presents the root cause analysis of an unexpected fracture occurred on the blades of a motor fan used in a natural gas reciprocating compressor unit. A finite element model was established to investigate the natural frequencies and modal shapes of the fan, and a modal test was performed to verify the numerical results. It was indicated that the numerical results agreed well with experimental data. The third order natural frequency was close to the six times excitation frequency, and the corresponding modal shape was the combination of bending and torsional vibration, which consequently contributed to low-order resonance and fracture failure of the fan. The torsional moment obtained by a torsional vibration analysis of the compressor shaft system was exerted on the numerical model of the fan to evaluate the dynamic stress response of the fan. The results showed that the stress concentration regions on the numerical model were consistent with the location of fractures on the fan. Based on the numerical simulation and experimental validation, some recommendations were given to improve the reliability of the motor fan.
Self-consistency in the phonon space of the particle-phonon coupling model
NASA Astrophysics Data System (ADS)
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.
2018-04-01
In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.
Numerical model for an epoxy beam reinforced with superelastic shape memory alloy wires
NASA Astrophysics Data System (ADS)
Viet, N. V.; Zaki, W.; Umer, R.
2018-03-01
We present a numerical solution for a smart composite beam consisting of an epoxy matrix reinforced with unidirectional superelastic shape memory alloy (SMA) fibers with uniform circular cross section. The beam is loaded by a tip load, which is then removed resulting in shape recovery due to superelasticity of the SMA wires. The analysis is carried out considering a representative volume element (RVE) of the beam consisting of one SMA wire embedded in epoxy. The analytical model is developed for a superelastic SMA/epoxy composite beam subjected to a complete loading cycle in bending. Using the proposed model, the moment-curvature profile, martensite volume fraction variation, and axial stress are determined. The results are validated against three-dimensional finite element analysis (3D FEA) for the same conditions. The proposed work is a contribution toward better understanding of the bending behavior of superelastic SMA-reinforced composites.
Efficient modeling of phase jitter in dispersion-managed soliton systems.
McKinstrie, C J; Xie, C; Lakoba, T I
2002-11-01
The variational method is used to derive correlation equations that model phase jitter in dispersion-managed soliton systems. The predictions of these correlation equations are consistent with numerical solutions of the nonlinear Schrödinger equation on which they are based.
NASA Technical Reports Server (NTRS)
Cohen, Charles
1998-01-01
A method is developed which uses numerical tracers to make accurate diagnoses of entraimnent and detrainment rates and of the properties of the entrained and detrained air in numerically simulated clouds. The numerical advection scheme is modified to make it nondispersive, as required by the use of the tracers. Tests of the new method are made, and an appropriate definition of clouds is selected. Distributions of mixing fractions in the model consistently show maximums at the end points, for nearly undilute environmental air or nearly undilute cloud air, with a uniform distribution between. The cumulonimbus clouds simulated here entrain air that had been substantially changed by the clouds, and detrained air that is not necessarily representative of the cloud air at the same level.
Study of stability of the difference scheme for the model problem of the gaslift process
NASA Astrophysics Data System (ADS)
Temirbekov, Nurlan; Turarov, Amankeldy
2017-09-01
The paper studies a model of the gaslift process where the motion in a gas-lift well is described by partial differential equations. The system describing the studied process consists of equations of motion, continuity, equations of thermodynamic state, and hydraulic resistance. A two-layer finite-difference Lax-Vendroff scheme is constructed for the numerical solution of the problem. The stability of the difference scheme for the model problem is investigated using the method of a priori estimates, the order of approximation is investigated, the algorithm for numerical implementation of the gaslift process model is given, and the graphs are presented. The development and investigation of difference schemes for the numerical solution of systems of equations of gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.
Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang
2015-12-01
Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.
Fluid dynamic modeling of nano-thermite reactions
NASA Astrophysics Data System (ADS)
Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki
2014-03-01
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.
Fluid dynamic modeling of nano-thermite reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.
2014-03-14
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less
Eden, Karen B; Dolan, James G; Perrin, Nancy A; Kocaoglu, Dundar; Anderson, Nicholas; Case, James; Guise, Jeanne-Marie
2009-04-01
We developed an evidence-based decision aid to help women with a prior cesarean to prioritize their childbirth preferences related to a future birth. Because there was uncertainty about which scale format would assist the patients in being most consistent in prioritizing preferences in a multiattribute decision model, we compared a graphic-numeric scale with a text-anchored scale. Ninety-six postnatal women with a prior cesarean were randomized to use 1 of 2 preference scale formats in a computerized childbirth decision aid. We measured the level of inconsistency (intransitivity) when patients prioritized their childbirth preferences and clarity of values before and after using the decision aid. When the trade-offs involved risk, women were more consistent when using graphic-numeric than text-anchored formats (P=0.015). They prioritized safety to their baby as 4 times more important than any other decision factor including safety to self. Both groups reduced unclear childbirth values over time (P<0.001). Women who over-used the extreme ends of the scale when evaluating risk were more likely to be inconsistent (P<0.001). Patients were more consistent in making trade-offs involving risk using graphic-numeric formats than text-anchored formats to measure patient preferences.
Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model
NASA Astrophysics Data System (ADS)
Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki
2017-11-01
We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.
Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.
Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P
2015-10-01
Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.
Numerical Simulation of Thawing Process of Biological Tissue
NASA Astrophysics Data System (ADS)
Momose, Noboru; Tada, Yukio; Hayashi, Yujiro
Heat transfer and simplified physicochemical model for thawing of the frozen biological cell element consisting of cell and extracellular region was proposed. The melting of intra-and extra-cellular ice, the water transport through cell membrane and other microscale behavior during thawing process were discussed as a function of temperature. Recovery of the cell volume and change of osmotic pressure difference during thawing were clarified theortically in connection with heating velocity, initial cell volume and membrane permeability. Extending this model, the thawing of cellular tissue consisted of numerous cell elements was also simulated. There was a position where osmotic pressure difference became maximum during thawing. Summarizing these results, the thawing damage due to osmotic stress was discussed in relation with the heating operation and the size effect of tissue.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...
2017-01-03
In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I 2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I 2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr; CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex; Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity ofmore » the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.« less
Comparison of techniques for estimating annual lake evaporation using climatological data
Andersen, M.E.; Jobson, H.E.
1982-01-01
Mean annual evaporation estimates were determined for 30 lakes by use of a numerical model (Morton, 1979) and by use of an evaporation map prepared by the U.S. Weather Service (Kohler et al., 1959). These estimates were compared to the reported value of evaporation determined from measurements on each lake. Various lengths of observation and methods of measurement were used among the 30 lakes. The evaporation map provides annual evaporation estimates which are more consistent with observations than those determined by use of the numerical model. The map cannot provide monthly estimates, however, and is only available for the contiguous United States. The numerical model can provide monthly estimates for shallow lakes and is based on monthly observations of temperature, humidity, and sunshine duration.
Vectorized Jiles-Atherton hysteresis model
NASA Astrophysics Data System (ADS)
Szymański, Grzegorz; Waszak, Michał
2004-01-01
This paper deals with vector hysteresis modeling. A vector model consisting of individual Jiles-Atherton components placed along principal axes is proposed. The cross-axis coupling ensures general vector model properties. Minor loops are obtained using scaling method. The model is intended for efficient finite element method computations defined in terms of magnetic vector potential. Numerical efficiency is ensured by differential susceptibility approach.
A sectionwise defined model for the material description of 100Cr6 in the thixotropic state
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Chugreev, A.; Hootak, M.
2018-05-01
A sectionwise defined material model has been developed for the numerical description of thixoforming processes. It consists of two sections. The first one describes the material behaviour below the solidus temperature and comprises an approach from structure mechanics, whereas the second section model describes the thixotropic behaviour above the solidus temperature based on the Ostwald-de Waele power law. The material model has been implemented in a commercial FE software Simufact Forming by means of user-defined subroutines. Numerical and experimental investigations of special upsetting tests have been designed and carried out with Armco iron-coated specimens. Finally, the model parameters were fitted by reverse engineering.
The Gist of Juries: Testing a Model of Damage Award Decision Making
Reyna, Valerie F.; Hans, Valerie P.; Corbin, Jonathan C.; Yeh, Ryan; Lin, Kelvin; Royer, Caisa
2017-01-01
Despite the importance of damage awards, juries are often at sea about the amounts that should be awarded, with widely differing awards for cases that seem comparable. We tested a new model of damage award decision making by systematically varying the size, context, and meaningfulness of numerical comparisons or anchors. As a result, we were able to elicit large differences in award amounts that replicated for 2 different cases. Although even arbitrary dollar amounts (unrelated to the cases) influenced the size of award judgments, the most consistent effects of numerical anchors were achieved when the amounts were meaningful in the sense that they conveyed the gist of numbers as small or large. Consistent with the model, the ordinal gist of the severity of plaintiff’s damages and defendant’s liability predicted damage awards, controlling for other factors such as motivation for the award-judgment task and perceived economic damages. Contrary to traditional dual-process approaches, numeracy and cognitive style (e.g., need for cognition and cognitive reflection) were not significant predictors of these numerical judgments, but they were associated with lower levels of variability once the gist of the judgments was taken into account. Implications for theory and policy are discussed. PMID:29075092
Evaluation of Sulfur Flow Emplacement on Io from Galileo Data and Numerical Modeling
NASA Technical Reports Server (NTRS)
Williams, David A.; Greeley, Ronald; Lopes, Rosaly M. C.; Davies, Ashley G.
2001-01-01
Galileo images of bright lava flows surrounding Emakong Patera have bee0 analyzed and numerical modeling has been performed to assess whether these flows could have resulted from the emplacement of sulfur lavas on Io. Images from the solid-state imaging (SSI) camera show that these bright, white to yellow Emakong flows are up to 370 km long and contain dark, sinuous features that are interpreted to be lava conduits, -300-500 m wide and >lo0 km lorig. Neiu-Infrared Mapping S estimate of 344 K f 60 G131'C) within the Bmakong caldera. We suggest that these bright flows likely resulted from either sulfur lavas or silicate lavas that have undergone extensive cooling, pyroclastic mantling, and/or alteration with bright sulfurous materials. The Emakoag bright flows have estimated volume of -250-350 km', similar to some of the smaller Columbia River Basalt flows, If the Emakong flows did result from effusive sulfur eruptions, then they are orders of magnitude reater in volume than any terrestrial sulfur flows. Our numerical modeling capable of traveling tens to hundreds of kilometers, consistent with the predictions of Sagan. Our modeled flow distances are also consistent with the measured lengths of the Emakong channels and bright flows.
How a Small Quantum Bath Can Thermalize Long Localized Chains
NASA Astrophysics Data System (ADS)
Luitz, David J.; Huveneers, François; De Roeck, Wojciech
2017-10-01
We investigate the stability of the many-body localized phase for a system in contact with a single ergodic grain modeling a Griffiths region with low disorder. Our numerical analysis provides evidence that even a small ergodic grain consisting of only three qubits can delocalize a localized chain as soon as the localization length exceeds a critical value separating localized and extended regimes of the whole system. We present a simple theory, consistent with De Roeck and Huveneers's arguments in [Phys. Rev. B 95, 155129 (2017), 10.1103/PhysRevB.95.155129] that assumes a system to be locally ergodic unless the local relaxation time determined by Fermi's golden rule is larger than the inverse level spacing. This theory predicts a critical value for the localization length that is perfectly consistent with our numerical calculations. We analyze in detail the behavior of local operators inside and outside the ergodic grain and find excellent agreement of numerics and theory.
Numerical modeling anti-personnel blast mines coupled to a deformable leg structure
NASA Astrophysics Data System (ADS)
Cronin, Duane; Worswick, Mike; Williams, Kevin; Bourget, Daniel; Pageau, Gilles
2001-06-01
The development of improved landmine protective footwear requires an understanding of the physics and damage mechanisms associated with a close proximity blast event. Numerical models have been developed to model surrogate mines buried in soil using the Arbitrary Lagrangian Eulerian (ALE) technique to model the explosive and surrounding air, while the soil is modeled as a deformable Lagrangian solid. The advantage of the ALE model is the ability to model large deformations, such as the expanding gases of a high explosive. This model has been validated using the available experimental data [1]. The effect of varying depth of burial and soil conditions has been investigated with these numerical models and compares favorably to data in the literature. The surrogate landmine model has been coupled to a numerical model of a Simplified Lower Leg (SLL), which is designed to mimic the response and failure mechanisms of a human leg. The SLL consists of a bone and tissue simulant arranged as concentric cylinders. A new strain-rate dependant hyperelastic material model for the tissue simulant, ballistic gelatin, has been developed to model the tissue simulant response. The polymeric bone simulant material has been characterized and implemented as a strain-rate dependent material in the numerical model. The numerical model results agree with the measured response of the SLL during experimental blast tests [2]. The numerical model results are used to explain the experimental data. These models predict that, for a surface or sub-surface buried anti-personnel mine, the coupling between the mine and SLL is an important effect. In addition, the soil properties have a significant effect on the load transmitted to the leg. [1] Bergeron, D., Walker, R. and Coffey, C., 1998, “Detonation of 100-Gram Anti-Personnel Mine Surrogate Charges in Sand”, Report number SR 668, Defence Research Establishment Suffield, Canada. [2] Bourget, D., Williams, K., Pageau, G., and Cronin, D., “AP Mine Blast Effects on Surrogate Lower Leg”, Military Aspects of Ballistics and Shock, MABS 16, 2000.
NASA Astrophysics Data System (ADS)
Eubank, Philip T.; Patel, Mukund R.; Barrufet, Maria A.; Bozkurt, Bedri
1993-06-01
A variable mass, cylindrical plasma model (VMCPM) is developed for sparks created by electrical discharge in a liquid media. The model consist of three differential equations—one each from fluid dynamics, an energy balance, and the radiation equation—combined with a plasma equation of state. A thermophysical property subroutine allows realistic estimation of plasma enthalpy, mass density, and particle fractions by inclusion of the heats of dissociation and ionization for a plasma created from deionized water. Problems with the zero-time boundary conditions are overcome by an electron balance procedure. Numerical solution of the model provides plasma radius, temperature, pressure, and mass as a function of pulse time for fixed current, electrode gap, and power fraction remaining in the plasma. Moderately high temperatures (≳5000 K) and pressures (≳4 bar) persist in the sparks even after long pulse times (to ˜500 μs). Quantitative proof that superheating is the dominant mechanism for electrical discharge machining (EDM) erosion is thus provided for the first time. Some quantitative inconsistencies developed between our (1) cathode, (2) anode, and (3) plasma models (this series) are discussed with indication as to how they will be rectified in a fourth article to follow shortly in this journal. While containing oversimplifications, these three models are believed to contain the respective dominant physics of the EDM process but need be brought into numerical consistency for each time increment of the numerical solution.
Numerical simulation of pseudoelastic shape memory alloys using the large time increment method
NASA Astrophysics Data System (ADS)
Gu, Xiaojun; Zhang, Weihong; Zaki, Wael; Moumni, Ziad
2017-04-01
The paper presents a numerical implementation of the large time increment (LATIN) method for the simulation of shape memory alloys (SMAs) in the pseudoelastic range. The method was initially proposed as an alternative to the conventional incremental approach for the integration of nonlinear constitutive models. It is adapted here for the simulation of pseudoelastic SMA behavior using the Zaki-Moumni model and is shown to be especially useful in situations where the phase transformation process presents little or lack of hardening. In these situations, a slight stress variation in a load increment can result in large variations of strain and local state variables, which may lead to difficulties in numerical convergence. In contrast to the conventional incremental method, the LATIN method solve the global equilibrium and local consistency conditions sequentially for the entire loading path. The achieved solution must satisfy the conditions of static and kinematic admissibility and consistency simultaneously after several iterations. 3D numerical implementation is accomplished using an implicit algorithm and is then used for finite element simulation using the software Abaqus. Computational tests demonstrate the ability of this approach to simulate SMAs presenting flat phase transformation plateaus and subjected to complex loading cases, such as the quasi-static behavior of a stent structure. Some numerical results are contrasted to those obtained using step-by-step incremental integration.
Numerical modeling process of embolization arteriovenous malformation
NASA Astrophysics Data System (ADS)
Cherevko, A. A.; Gologush, T. S.; Petrenko, I. A.; Ostapenko, V. V.
2017-10-01
Cerebral arteriovenous malformation is a difficult, dangerous, and most frequently encountered vascular failure of development. It consists of vessels of very small diameter, which perform a discharge of blood from the artery to the vein. In this regard it can be adequately modeled using porous medium. Endovascular embolization of arteriovenous malformation is effective treatment of such pathologies. However, the danger of intraoperative rupture during embolization still exists. The purpose is to model this process and build an optimization algorithm for arteriovenous malformation embolization. To study the different embolization variants, the initial-boundary value problems, describing the process of embolization, were solved numerically by using a new modification of CABARET scheme. The essential moments of embolization process were modeled in our numerical experiments. This approach well reproduces the essential features of discontinuous two-phase flows, arising in the embolization problems. It can be used for further study on the process of embolization.
Cloud-Based Orchestration of a Model-Based Power and Data Analysis Toolchain
NASA Technical Reports Server (NTRS)
Post, Ethan; Cole, Bjorn; Dinkel, Kevin; Kim, Hongman; Lee, Erich; Nairouz, Bassem
2016-01-01
The proposed Europa Mission concept contains many engineering and scientific instruments that consume varying amounts of power and produce varying amounts of data throughout the mission. System-level power and data usage must be well understood and analyzed to verify design requirements. Numerous cross-disciplinary tools and analysis models are used to simulate the system-level spacecraft power and data behavior. This paper addresses the problem of orchestrating a consistent set of models, tools, and data in a unified analysis toolchain when ownership is distributed among numerous domain experts. An analysis and simulation environment was developed as a way to manage the complexity of the power and data analysis toolchain and to reduce the simulation turnaround time. A system model data repository is used as the trusted store of high-level inputs and results while other remote servers are used for archival of larger data sets and for analysis tool execution. Simulation data passes through numerous domain-specific analysis tools and end-to-end simulation execution is enabled through a web-based tool. The use of a cloud-based service facilitates coordination among distributed developers and enables scalable computation and storage needs, and ensures a consistent execution environment. Configuration management is emphasized to maintain traceability between current and historical simulation runs and their corresponding versions of models, tools and data.
Numerical investigation on effect of blade shape for stream water wheel performance.
NASA Astrophysics Data System (ADS)
Yah, N. F.; Oumer, A. N.; Aziz, A. A.; Sahat, I. M.
2018-04-01
Stream water wheels are one of the oldest and commonly used types of wheels for the production of energy. Moreover, they are economical, efficient and sustainable. However, few amounts of research works are available in the open literature. This paper aims to develop numerical model for investigation of the effect of blade shape on the performance of stream water wheel. The numerical model was simulated using Computational Fluid Dynamics (CFD) method and the developed model was validated by comparing the simulation results with experimental data obtained from literature. The performance of straight, curved type 1 and curved type 2 was observed and the power generated by each blade design was identified. The inlet velocity was set to 0.3 m/s static pressure outlet. The obtained results indicate that the highest power was generated by the Curved type 2 compared to straight blade and curved type 1. From the CFD result, Curved type 1 was able to generate 0.073 Watt while Curved type 2 generate 0.064 Watt. The result obtained were consistent with the experiment result hence can be used the numerical model as a guide to numerically predict the water wheel performance
NOAA Atmospheric Sciences Modeling Division support to the US Environmental Protection Agency
NASA Astrophysics Data System (ADS)
Poole-Kober, Evelyn M.; Viebrock, Herbert J.
1991-07-01
During FY-1990, the Atmospheric Sciences Modeling Division provided meteorological research and operational support to the U.S. Environmental Protection Agency. Basic meteorological operational support consisted of applying dispersion models and conducting dispersion studies and model evaluations. The primary research effort was the development and evaluation of air quality simulation models using numerical and physical techniques supported by field studies. Modeling emphasis was on the dispersion of photochemical oxidants and particulate matter on urban and regional scales, dispersion in complex terrain, and the transport, transformation, and deposition of acidic materials. Highlights included expansion of the Regional Acid Deposition Model/Engineering Model family to consist of the Tagged Species Engineering Model, the Non-Depleting Model, and the Sulfate Tracking Model; completion of the Acid-MODES field study; completion of the RADM2.1 evaluation; completion of the atmospheric processes section of the National Acid Precipitation Assessment Program 1990 Integrated Assessment; conduct of the first field study to examine the transport and entrainment processes of convective clouds; development of a Regional Oxidant Model-Urban Airshed Model interface program; conduct of an international sodar intercomparison experiment; incorporation of building wake dispersion in numerical models; conduct of wind-tunnel simulations of stack-tip downwash; and initiation of the publication of SCRAM NEWS.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
NASA Astrophysics Data System (ADS)
Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.
2018-02-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.
Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E
2018-01-01
We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.
Toxin effect on protein biosynthesis in eukaryotic cells: a simple kinetic model.
Skakauskas, Vladas; Katauskis, Pranas; Skvortsov, Alex; Gray, Peter
2015-03-01
A model for toxin inhibition of protein synthesis inside eukaryotic cells is presented. Mitigation of this effect by introduction of an antibody is also studied. Antibody and toxin (ricin) initially are delivered outside the cell. The model describes toxin internalization from the extracellular into the intracellular domain, its transport to the endoplasmic reticulum (ER) and the cleavage inside the ER into the RTA and RTB chains, the release of RTA into the cytosol, inactivation (depurination) of ribosomes, and the effect on translation. The model consists of a set of ODEs which are solved numerically. Numerical results are illustrated by figures and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process
NASA Astrophysics Data System (ADS)
Jin, Kai; Guo, Qun; Tao, Jie; Guo, Xun-zhong
2017-11-01
Numerical simulations of tube hydroforming process of hollow crankshafts were conducted by using finite element analysis method. Moreover, the modified model involving the integration of isotropic-kinematic hardening model with ductile criteria model was used to more accurately optimize the process parameters such as internal pressure, feed distance and friction coefficient. Subsequently, hydroforming experiments were performed based on the simulation results. The comparison between experimental and simulation results indicated that the prediction of tube deformation, crack and wrinkle was quite accurate for the tube hydroforming process. Finally, hollow crankshafts with high thickness uniformity were obtained and the thickness distribution between numerical and experimental results was well consistent.
Nonequilibrium thermodynamics of the shear-transformation-zone model
NASA Astrophysics Data System (ADS)
Luo, Alan M.; Ã-ttinger, Hans Christian
2014-02-01
The shear-transformation-zone (STZ) model has been applied numerous times to describe the plastic deformation of different types of amorphous systems. We formulate this model within the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) framework, thereby clarifying the thermodynamic structure of the constitutive equations and guaranteeing thermodynamic consistency. We propose natural, physically motivated forms for the building blocks of the GENERIC, which combine to produce a closed set of time evolution equations for the state variables, valid for any choice of free energy. We demonstrate an application of the new GENERIC-based model by choosing a simple form of the free energy. In addition, we present some numerical results and contrast those with the original STZ equations.
Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.
Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki
2016-10-07
In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.
Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches
NASA Astrophysics Data System (ADS)
Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki
2016-10-01
In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.
The pressure coefficient of the Curie temperature of ferromagnetic superconductors
NASA Astrophysics Data System (ADS)
Konno, R.; Hatayama, N.
2012-12-01
The pressure coefficient of the Curie temperature of ferromagnetic superconductors is studied numerically. In our previous study the pressure coefficient of the Curie temperature and that of the superconducting transition temperature were shown based on the Hamiltonian derived by Linder et al. within the mean field approximation about the electron-electron interaction analytically. There have been no numerical results of the pressure coefficient of the Curie temperature derived from the microscopic model. In this study the numerical results are reported. These results are qualitatively consistent with the experimental data in UGe2.
USDA-ARS?s Scientific Manuscript database
Numerical modeling is the dominant method for quantifying water flow and the transport of dissolved constituents in surface soils as well as the deeper vadose zone. While the fundamental laws that govern the mechanics of the flow processes in terms of Richards' and convection-dispersion equations a...
Prize of the best thesis 2015: Study of debris discs through state-of-the-art numerical modelling
NASA Astrophysics Data System (ADS)
Kral, Q.; Thébault, P.
2015-12-01
This proceeding summarises the thesis entitled ``Study of debris discs with a new generation numerical model'' by Quentin Kral, for which he obtained the prize of the best thesis in 2015. The thesis brought major contributions to the field of debris disc modelling. The main achievement is to have created, almost ex-nihilo, the first truly self-consistent numerical model able to simultaneously follow the coupled collisional and dynamical evolutions of debris discs. Such a code has been thought as being the ``Holy Grail'' of disc modellers for the past decade, and while several codes with partial dynamics/collisions coupling have been presented, the code developed in this thesis, called ``LIDT-DD'' is the first to achieve a full coupling. The LIDT-DD model, which is the first of a new-generation of fully self-consistent debris disc models is able to handle both planetesimals and dust and create new fragments after each collision. The main idea of LIDT-DD development was to merge into one code two approaches that were so far used separately in disc modelling, that is, an N-body algorithm to investigate the dynamics, and a statistical scheme to explore the collisional evolution. This complex scheme is not straightforward to develop as there are major difficulties to overcome: 1) collisions in debris discs are highly destructive and produce clouds of small fragments after each single impact, 2) the smallest (and most numerous) of these fragments have a strongly size-dependent dynamics because of the radiation pressure, and 3) the dust usually observed in discs is precisely these smallest grains. These extreme constraints had so far prevented all previous attempts at developing self-consistent disc models to succeed. The thesis contains many examples of the use of LIDT-DD that are not yet published but the case of the collision between two asteroid-like bodies is studied in detail. In particular, LIDT-DD is able to predict the different stages that should be observed after such massive collisions that happen mainly in the latest stages of planetary formation. Some giant impact signatures and observability predictions for VLT/SPHERE and JWST/MIRI are given. JWST should be able to detect many of such impacts and would enable to see on-going planetary formation in dozens of planetary systems.
Identification of the numerical model of FEM in reference to measurements in situ
NASA Astrophysics Data System (ADS)
Jukowski, Michał; Bec, Jarosław; Błazik-Borowa, Ewa
2018-01-01
The paper deals with the verification of various numerical models in relation to the pilot-phase measurements of a rail bridge subjected to dynamic loading. Three types of FEM models were elaborated for this purpose. Static, modal and dynamic analyses were performed. The study consisted of measuring the acceleration values of the structural components of the object at the moment of the train passing. Based on this, FFT analysis was performed, the main natural frequencies of the bridge were determined, the structural damping ratio and the dynamic amplification factor (DAF) were calculated and compared with the standard values. Calculations were made using Autodesk Simulation Multiphysics (Algor).
Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach
NASA Astrophysics Data System (ADS)
Réthoré, Julien; Dang, Thi Bach Tuyet; Kaltenbrunner, Christine
2017-02-01
This paper proposes a fracture mechanics model for the analysis of crack propagation in periodic honeycomb materials. The model is based on gradient-elasticity which enables us to account for the effect of the material structure at the macroscopic scale. For simulating the propagation of cracks along an arbitrary path, the numerical implementation is elaborated based on an extended finite element method with the required level of continuity. The two main features captured by the model are directionality and size effect. The numerical predictions are consistent with experimental results on honeycomb materials but also with results reported in the literature for microstructurally short cracks in metals.
NASA Technical Reports Server (NTRS)
Wang, C. R.; Papell, S. S.
1983-01-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
NASA Astrophysics Data System (ADS)
Wang, C. R.; Papell, S. S.
1983-09-01
Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.
NASA Astrophysics Data System (ADS)
Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.
2017-07-01
In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.
NASA Astrophysics Data System (ADS)
Assous, Franck; Chaskalovic, Joël
2011-06-01
We propose a new approach that consists in using data mining techniques for scientific computing. Indeed, data mining has proved to be efficient in other contexts which deal with huge data like in biology, medicine, marketing, advertising and communications. Our aim, here, is to deal with the important problem of the exploitation of the results produced by any numerical method. Indeed, more and more data are created today by numerical simulations. Thus, it seems necessary to look at efficient tools to analyze them. In this work, we focus our presentation to a test case dedicated to an asymptotic paraxial approximation to model ultrarelativistic particles. Our method directly deals with numerical results of simulations and try to understand what each order of the asymptotic expansion brings to the simulation results over what could be obtained by other lower-order or less accurate means. This new heuristic approach offers new potential applications to treat numerical solutions to mathematical models.
Outer boundary as arrested history in general relativity
NASA Astrophysics Data System (ADS)
Lau, Stephen R.
2002-06-01
We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement ⊥Tp(B) of the tangent space Tp(B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hyperbolic system as the evolution equations for our numerical simulation of the model.
Numerical modeling and model updating for smart laminated structures with viscoelastic damping
NASA Astrophysics Data System (ADS)
Lu, Jun; Zhan, Zhenfei; Liu, Xu; Wang, Pan
2018-07-01
This paper presents a numerical modeling method combined with model updating techniques for the analysis of smart laminated structures with viscoelastic damping. Starting with finite element formulation, the dynamics model with piezoelectric actuators is derived based on the constitutive law of the multilayer plate structure. The frequency-dependent characteristics of the viscoelastic core are represented utilizing the anelastic displacement fields (ADF) parametric model in the time domain. The analytical model is validated experimentally and used to analyze the influencing factors of kinetic parameters under parametric variations. Emphasis is placed upon model updating for smart laminated structures to improve the accuracy of the numerical model. Key design variables are selected through the smoothing spline ANOVA statistical technique to mitigate the computational cost. This updating strategy not only corrects the natural frequencies but also improves the accuracy of damping prediction. The effectiveness of the approach is examined through an application problem of a smart laminated plate. It is shown that a good consistency can be achieved between updated results and measurements. The proposed method is computationally efficient.
Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement
NASA Astrophysics Data System (ADS)
Pramuanjaroenkij, A.; Tongkratoke, A.; Kakaç, S.
2018-01-01
Researchers have paid attention to nanofluid applications, since nanofluids have revealed their potentials as working fluids in many thermal systems. Numerical studies of convective heat transfer in nanofluids can be based on considering them as single- and two-phase fluids. This work is focused on improving the single-phase nanofluid model performance, since the employment of this model requires less calculation time and it is less complicated due to utilizing the mixing thermal conductivity model, which combines static and dynamic parts used in the simulation domain alternately. The in-house numerical program has been developed to analyze the effects of the grid nodes, effective viscosity model, boundary-layer thickness, and of the mixing thermal conductivity model on the nanofluid heat transfer enhancement. CuO-water, Al2O3-water, and Cu-water nanofluids are chosen, and their laminar fully developed flows through a rectangular channel are considered. The influence of the effective viscosity model on the nanofluid heat transfer enhancement is estimated through the average differences between the numerical and experimental results for the nanofluids mentioned. The nanofluid heat transfer enhancement results show that the mixing thermal conductivity model consisting of the Maxwell model as the static part and the Yu and Choi model as the dynamic part, being applied to all three nanofluids, brings the numerical results closer to the experimental ones. The average differences between those results for CuO-water, Al2O3-water, and CuO-water nanofluid flows are 3.25, 2.74, and 3.02%, respectively. The mixing thermal conductivity model has been proved to increase the accuracy of the single-phase nanofluid simulation and to reveal its potentials in the single-phase nanofluid numerical studies.
NASA Astrophysics Data System (ADS)
Lin, Xiangyue; Peng, Minli; Lei, Fengming; Tan, Jiangxian; Shi, Huacheng
2017-12-01
Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1998-10-01
The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.
Material and shape optimization for multi-layered vocal fold models using transient loadings.
Schmidt, Bastian; Leugering, Günter; Stingl, Michael; Hüttner, Björn; Agaimy, Abbas; Döllinger, Michael
2013-08-01
Commonly applied models to study vocal fold vibrations in combination with air flow distributions are self-sustained physical models of the larynx consisting of artificial silicone vocal folds. Choosing appropriate mechanical parameters and layer geometries for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In earlier work by Schmidt et al. [J. Acoust. Soc. Am. 129, 2168-2180 (2011)], the authors presented an approach in which material parameters of a static numerical vocal fold model were optimized to achieve an agreement of the displacement field with data retrieved from hemilarynx experiments. This method is now generalized to a fully transient setting. Moreover in addition to the material parameters, the extended approach is capable of finding optimized layer geometries. Depending on chosen material restriction, significant modifications of the reference geometry are predicted. The additional flexibility in the design space leads to a significantly more realistic deformation behavior. At the same time, the predicted biomechanical and geometrical results are still feasible for manufacturing physical vocal fold models consisting of several silicone layers. As a consequence, the proposed combined experimental and numerical method is suited to guide the construction of physical vocal fold models.
Modeling shockwaves and impact phenomena with Eulerian peridynamics
Silling, Stewart A.; Parks, Michael L.; Kamm, James R.; ...
2017-05-09
Most previous development of the peridynamic theory has assumed a Lagrangian formulation, in which the material model refers to an undeformed reference configuration. Here, an Eulerian form of material modeling is developed, in which bond forces depend only on the positions of material points in the deformed configuration. The formulation is consistent with the thermodynamic form of the peridynamic model and is derivable from a suitable expression for the free energy of a material. We show that the resulting formulation of peridynamic material models can be used to simulate strong shock waves and fluid response in which very large deformationsmore » make the Lagrangian form unsuitable. The Eulerian capability is demonstrated in numerical simulations of ejecta from a wavy free surface on a metal subjected to strong shock wave loading. The Eulerian and Lagrangian contributions to bond force can be combined in a single material model, allowing strength and fracture under tensile or shear loading to be modeled consistently with high compressive stresses. Furthermore, we demonstrate this capability in numerical simulation of bird strike against an aircraft, in which both tensile fracture and high pressure response are important.« less
Modeling shockwaves and impact phenomena with Eulerian peridynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silling, Stewart A.; Parks, Michael L.; Kamm, James R.
Most previous development of the peridynamic theory has assumed a Lagrangian formulation, in which the material model refers to an undeformed reference configuration. Here, an Eulerian form of material modeling is developed, in which bond forces depend only on the positions of material points in the deformed configuration. The formulation is consistent with the thermodynamic form of the peridynamic model and is derivable from a suitable expression for the free energy of a material. We show that the resulting formulation of peridynamic material models can be used to simulate strong shock waves and fluid response in which very large deformationsmore » make the Lagrangian form unsuitable. The Eulerian capability is demonstrated in numerical simulations of ejecta from a wavy free surface on a metal subjected to strong shock wave loading. The Eulerian and Lagrangian contributions to bond force can be combined in a single material model, allowing strength and fracture under tensile or shear loading to be modeled consistently with high compressive stresses. Furthermore, we demonstrate this capability in numerical simulation of bird strike against an aircraft, in which both tensile fracture and high pressure response are important.« less
Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation
Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui
2014-01-01
Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904
Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Tosti, G; Darowski, M
2005-07-01
Merging numerical and physical models of the circulation makes it possible to develop a new class of circulatory models defined as hybrid. This solution reduces the costs, enhances the flexibility and opens the way to many applications ranging from research to education and heart assist devices testing. In the prototype described in this paper, a hydraulic model of systemic arterial tree is connected to a lumped parameters numerical model including pulmonary circulation and the remaining parts of systemic circulation. The hydraulic model consists of a characteristic resistance, of a silicon rubber tube to allow the insertion of an Intra-Aortic Balloon Pump (IABP) and of a lumped parameters compliance. Two electro-hydraulic interfaces, realized by means of gear pumps driven by DC motors, connect the numerical section with both terminals of the hydraulic section. The lumped parameters numerical model and the control system (including analog to digital and digital to analog converters)are developed in LabVIEW environment. The behavior of the model is analyzed by means of the ventricular pressure-volume loops and the time courses of arterial and ventricular pressures and flows in different circulatory conditions. A simulated pathological condition was set to test the IABP and verify the response of the system to this type of mechanical circulatory assistance. The results show that the model can represent hemodynamic relationships in different ventricular and circulatory conditions and is able to react to the IABP assistance.
Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation
NASA Astrophysics Data System (ADS)
Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred
2005-08-01
In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.
NASA Astrophysics Data System (ADS)
Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip
2016-04-01
The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.
A Numerical/Experimental Study on the Impact and CAI Behaviour of Glass Reinforced Compsite Plates
NASA Astrophysics Data System (ADS)
Perillo, Giovanni; Jørgensen, Jens K.; Cristiano, Roberta; Riccio, Aniello
2018-04-01
This paper focuses on the development of an advance numerical model specifically for simulating low velocity impact events and related stiffness reduction on composite structures. The model is suitable for low cost thick composite structures like wind turbine blade and maritime vessels. The model consist of a combination of inter and intra laminar models. The intra-laminar model present a combination of Puck and Hashin failure theories for the evaluation of the fibre and matrix failure. The inter-laminar damage is instead simulated by Cohesive Zone Method based on energy approach. Basic material properties, easily measurable according to standardized tests, are required. The model has been used to simulate impact and compression after impact tests. Experimental tests have been carried out on thick E-Glass/Epoxy composite commonly used in the wind turbine industry. The clustering effect as well as the consequence of the impact energy have been experimentally tested. The accuracy of numerical model has been verified against experimental data showing a very good accuracy of the model.
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.
2016-02-01
Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.
Numerical Modelling of Three-Fluid Flow Using The Level-set Method
NASA Astrophysics Data System (ADS)
Li, Hongying; Lou, Jing; Shang, Zhi
2014-11-01
This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).
Central Upwind Scheme for a Compressible Two-Phase Flow Model
Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242
Central upwind scheme for a compressible two-phase flow model.
Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
NASA Astrophysics Data System (ADS)
Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas
2013-11-01
The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.
Analytical and numerical analysis of frictional damage in quasi brittle materials
NASA Astrophysics Data System (ADS)
Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.
2016-07-01
Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.
Numerical detection of the Gardner transition in a mean-field glass former.
Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco
2015-07-01
Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.
Dual-Mode Combustion of Hydrogen in a Mach 5, Continuous-Flow Facility
NASA Technical Reports Server (NTRS)
Goyne, C. P.; McDaniel, J. C.; Quagliaroli, T. M.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.
2001-01-01
Results of an experimental and numerical study of a dual-mode scramjet combustor are reported. The experiment consisted of a direct-connect test of a Mach 2 hydrogen-air combustor with a single unswept-ramp fuel injector. The flow stagnation enthalpy simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and a particle-imaging laser diagnostic technique. The particle imaging was enabled through the development of a new apparatus for seeding fine silicon dioxide particles into the combustor fuel stream. Numerical simulations of the combustor were performed using the GASP code. The modeling, and much of the experimental work, focused on the supersonic combustion mode. Reasonable agreement was observed between experimental and numerical wall pressure distributions. However, the numerical model was unable to predict accurately the effects of combustion on the fuel plume size, penetration, shape, and axial growth.
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansteen, V.; Pontieu, B. De; Carlsson, M.
2015-10-01
Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, andmore » moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.« less
Review on the Modeling of Electrostatic MEMS
Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung
2010-01-01
Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707
ERIC Educational Resources Information Center
Burroughs, J. A.; And Others
This paper extends previous numerical results of the Flexible Equal Employment Opportunity (FEEO) model, a goal programing model (developed by A. Charnes, W. W. Cooper, K. A. Lewis, and R. J. Niehaus) consisting of Markoff transition elements imbedded in a goal programing framework with priorities that allow for element alteration to provide the…
Rathnayaka, C M; Karunasena, H C P; Senadeera, W; Gu, Y T
2018-03-14
Numerical modelling has gained popularity in many science and engineering streams due to the economic feasibility and advanced analytical features compared to conventional experimental and theoretical models. Food drying is one of the areas where numerical modelling is increasingly applied to improve drying process performance and product quality. This investigation applies a three dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) numerical approach to predict the morphological changes of different categories of food-plant cells such as apple, grape, potato and carrot during drying. To validate the model predictions, experimental findings from in-house experimental procedures (for apple) and sources of literature (for grape, potato and carrot) have been utilised. The subsequent comaprison indicate that the model predictions demonstrate a reasonable agreement with the experimental findings, both qualitatively and quantitatively. In this numerical model, a higher computational accuracy has been maintained by limiting the consistency error below 1% for all four cell types. The proposed meshfree-based approach is well-equipped to predict the morphological changes of plant cellular structure over a wide range of moisture contents (10% to 100% dry basis). Compared to the previous 2-D meshfree-based models developed for plant cell drying, the proposed model can draw more useful insights on the morphological behaviour due to the 3-D nature of the model. In addition, the proposed computational modelling approach has a high potential to be used as a comprehensive tool in many other tissue morphology related investigations.
Modeling and Analysis of Wrinkled Membranes: An Overview
NASA Technical Reports Server (NTRS)
Yang, B.; Ding, H.; Lou, M.; Fang, H.; Broduer, Steve (Technical Monitor)
2001-01-01
Thin-film membranes are basic elements of a variety of space inflatable/deployable structures. Wrinkling degrades the performance and reliability of these membrane structures, and hence has been a topic of continued interest. Wrinkling analysis of membranes for general geometry and arbitrary boundary conditions is quite challenging. The objective of this presentation is two-fold. Firstly, the existing models of wrinkled membranes and related numerical solution methods are reviewed. The important issues to be discussed are the capability of a membrane model to characterize taut, wrinkled and slack states of membranes in a consistent and physically reasonable manner; the ability of a wrinkling analysis method to predict the formation and growth of wrinkled regions, and to determine out-of-plane deformation and wrinkled waves; the convergence of a numerical solution method for wrinkling analysis; and the compatibility of a wrinkling analysis with general-purpose finite element codes. According to this review, several opening issues in modeling and analysis of wrinkled membranes that are to be addressed in future research are summarized, The second objective of this presentation is to discuss a newly developed membrane model of two viable parameters (2-VP model) and associated parametric finite element method (PFEM) for wrinkling analysis are introduced. The innovations and advantages of the proposed membrane model and PFEM-based wrinkling analysis are: (1) Via a unified stress-strain relation; the 2-VP model treat the taut, wrinkled, and slack states of membranes consistently; (2) The PFEM-based wrinkling analysis has guaranteed convergence; (3) The 2-VP model along with PFEM is capable of predicting membrane out-of-plane deformations; and (4) The PFEM can be integrated into any existing finite element code. Preliminary numerical examples are also included in this presentation to demonstrate the 2-VP model and PFEM-based wrinkling analysis approach.
NASA Technical Reports Server (NTRS)
Lin, Ray-Quing; Kuang, Weijia
2011-01-01
In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.
NASA Technical Reports Server (NTRS)
Weckmann, Stephanie
1997-01-01
The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-11-25
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.
Modelling and simulation of “Free Cooling” process applied to building construction
NASA Astrophysics Data System (ADS)
Ousegui, A.; Asbik, M.
2018-05-01
Thermal energy storage systems (TES), using phase change material (PCM) in building walls, consists a hot topic within the research community currently. In the present work, a numerical model is developed to simulate free cooling of air-PCM heat exchanger in both charging and discharging steps. The studied case is taken from experimental work. The domain consists in two parallel plates made of Paraffin as PCM, separate by a gap where air circulates. The flow and temperature can be adjusted. The goal is to calculate the temperature of the air at the outlet, in order to analyse the performance of the device. A good agreement was founded between experimental and numerical results. The analysis of the influence of the flow rate on the efficiency of the process confirms a previous works, that the heating flow rate should be higher than cooling one.
Numerical evaluation of gas core length in free surface vortices
NASA Astrophysics Data System (ADS)
Cristofano, L.; Nobili, M.; Caruso, G.
2014-11-01
The formation and evolution of free surface vortices represent an important topic in many hydraulic intakes, since strong whirlpools introduce swirl flow at the intake, and could cause entrainment of floating matters and gas. In particular, gas entrainment phenomena are an important safety issue for Sodium cooled Fast Reactors, because the introduction of gas bubbles within the core causes dangerous reactivity fluctuation. In this paper, a numerical evaluation of the gas core length in free surface vortices is presented, according to two different approaches. In the first one, a prediction method, developed by the Japanese researcher Sakai and his team, has been applied. This method is based on the Burgers vortex model, and it is able to estimate the gas core length of a free surface vortex starting from two parameters calculated with single-phase CFD simulations. The two parameters are the circulation and the downward velocity gradient. The other approach consists in performing a two-phase CFD simulation of a free surface vortex, in order to numerically reproduce the gas- liquid interface deformation. Mapped convergent mesh is used to reduce numerical error and a VOF (Volume Of Fluid) method was selected to track the gas-liquid interface. Two different turbulence models have been tested and analyzed. Experimental measurements of free surface vortices gas core length have been executed, using optical methods, and numerical results have been compared with experimental measurements. The computational domain and the boundary conditions of the CFD simulations were set consistently with the experimental test conditions.
NASA Astrophysics Data System (ADS)
Silva, Goncalo; Semiao, Viriato
2017-07-01
The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.
Silva, Goncalo; Semiao, Viriato
2017-07-01
The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.
Numerical Estimation of the Curvature of Biological Surfaces
NASA Technical Reports Server (NTRS)
Todd, P. H.
1985-01-01
Many biological systems may profitably be studied as surface phenomena. A model consisting of isotropic growth of a curved surface from a flat sheet is assumed. With such a model, the Gaussian curvature of the final surface determines whether growth rate of the surface is subharmonic or superharmonic. These properties correspond to notions of convexity and concavity, and thus to local excess growth and local deficiency of growth. In biological models where the major factors controlling surface growth are intrinsic to the surface, researchers thus gained from geometrical study information on the differential growth undergone by the surface. These ideas were applied to an analysis of the folding of the cerebral cortex, a geometrically rather complex surface growth. A numerical surface curvature technique based on an approximation to the Dupin indicatrix of the surface was developed. A metric for comparing curvature estimates is introduced, and considerable numerical testing indicated the reliability of this technique.
Numerical analysis of a microwave torch with axial gas injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru
2013-07-15
The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.
A mathematical model for CTL effect on a latently infected cell inclusive HIV dynamics and treatment
NASA Astrophysics Data System (ADS)
Tarfulea, N. E.
2017-10-01
This paper investigates theoretically and numerically the effect of immune effectors, such as the cytotoxic lymphocyte (CTL), in modeling HIV pathogenesis (via a newly developed mathematical model); our results suggest the significant impact of the immune response on the control of the virus during primary infection. Qualitative aspects (including positivity, boundedness, stability, uncertainty, and sensitivity analysis) are addressed. Additionally, by introducing drug therapy, we analyze numerically the model to assess the effect of treatment consisting of a combination of several antiretroviral drugs. Our results show that the inclusion of the CTL compartment produces a higher rebound for an individual's healthy helper T-cell compartment than drug therapy alone. Furthermore, we quantitatively characterize successful drugs or drug combination scenarios.
Self-consistent core-pedestal transport simulations with neural network accelerated models
Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...
2017-07-12
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less
Self-consistent core-pedestal transport simulations with neural network accelerated models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less
Self-consistent core-pedestal transport simulations with neural network accelerated models
NASA Astrophysics Data System (ADS)
Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.
2017-08-01
Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.
Experimental and numerical investigation of a scalable modular geothermal heat storage system
NASA Astrophysics Data System (ADS)
Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof
2017-04-01
Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days of heat extraction. The experiment was performed for the determination of heat losses during a complete thermal loading and extraction cycle. The storage could be charged with 54 kWh of heat energy during thermal loading. 36 kWh could be regained during the extraction period, which translates to a heat loss of 33% during the 10 days of operation. Heat exchanger fluid flow rates and supply temperature were measured during the experiment and used as input for the 3D finite element model. Numerically simulated temperature distribution in the storage, return temperature and heat balances were compared to the measured data and showed that the 3D model accurately reflects the storage behavior. Also the third experiment, consisting of six days of cyclic operation after five days of continuous thermal loading, a good agreement between observed and modelled heat storage behavior is found. In addition to determining the storage performance during cyclic operation, the experiment will also be used to further validate the numerical model. This abstract will present the laboratory setup as well as the experimental data obtained from the experiment. It will also present the modelling approach chosen for the numerical representation of the experiment and give a comparison between measured and modelled temperatures and heat balances for the modular heat storage system.
Gas-dynamic model and experimental study of the plasma properties in the Earth's magnetosheath
NASA Astrophysics Data System (ADS)
Dobreva, Polya; Zastenker, Georgy; Kartalev, Monio; Borodkova, Natalia
2016-07-01
This paper uses numerical self-consistent model to investigate the boundaries and structures in the Earth's magnetosheath. The model is developed to represent the interaction between the regions of the magnetosheath and magnetosphere. In the magnetosheath, the gas-dynamic approach is used for the description of the solar wind flow. The magnetosphere module is based on the modified Tsyganenko magnetic field model, where the magnetopause currents are calculated self-consistently. The magnetosheath boundaries are determined from the boundary conditions. WIND and ACE data are used as a solar wind monitor. The model calculations are compared with real satellite measurements of the boundary positions. The plasma parameters behavior in the magnetosheath is also discussed.
Computation of the bluff-body sound generation by a self-consistent mean flow formulation
NASA Astrophysics Data System (ADS)
Fani, A.; Citro, V.; Giannetti, F.; Auteri, F.
2018-03-01
The sound generated by the flow around a circular cylinder is numerically investigated by using a finite-element method. In particular, we study the acoustic emissions generated by the flow past the bluff body at low Mach and Reynolds numbers. We perform a global stability analysis by using the compressible linearized Navier-Stokes equations. The resulting direct global mode provides detailed information related to the underlying hydrodynamic instability and data on the acoustic field generated. In order to recover the intensity of the produced sound, we apply the self-consistent model for non-linear saturation proposed by Mantič-Lugo, Arratia, and Gallaire ["Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake," Phys. Rev. Lett. 113, 084501 (2014)]. The application of this model allows us to compute the amplitude of the resulting linear mode and the effects of saturation on the mode structure and acoustic field. Our results show excellent agreement with those obtained by a full compressible simulation direct numerical simulation and those derived by the application of classical acoustic analogy formulations.
Integration of RAM-SCB into the Space Weather Modeling Framework
Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva; ...
2018-02-07
We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less
Integration of RAM-SCB into the Space Weather Modeling Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva
We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less
Center for Extended Magnetohydrodynamics Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Jesus
This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification ofmore » the numerical codes. This activity was funded for twelve years.« less
Hot forming of composite prepreg: Numerical analyses
NASA Astrophysics Data System (ADS)
Guzman-Maldonado, Eduardo; Hamila, Nahiène; Boisse, Philippe; El Azzouzi, Khalid; Tardif, Xavier; Moro, Tanguy; Chatel, Sylvain; Fideu, Paulin
2017-10-01
The work presented here is part of the "FORBANS" project about the Hot Drape Forming (HDF) process consisting of unidirectional prepregs laminates. To ensure a fine comprehension of this process a combination strategy between experiment and numerical analysis is adopted. This paper is focused on the numerical analysis using the finite element method (FEM) with a hyperelastic constitutive law. Each prepreg layer is modelled by shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers.
NASA Astrophysics Data System (ADS)
Zhmud, V. A.; Reva, I. L.; Dimitrov, L. V.
2017-01-01
The design of robust feedback systems by means of the numerical optimization method is mostly accomplished with modeling of the several systems simultaneously. In each such system, regulators are similar. But the object models are different. It includes all edge values from the possible variants of the object model parameters. With all this, not all possible sets of model parameters are taken into account. Hence, the regulator can be not robust, i. e. it can not provide system stability in some cases, which were not tested during the optimization procedure. The paper proposes an alternative method. It consists in sequent changing of all parameters according to harmonic low. The frequencies of changing of each parameter are aliquant. It provides full covering of the parameters space.
A multi-scalar PDF approach for LES of turbulent spray combustion
NASA Astrophysics Data System (ADS)
Raman, Venkat; Heye, Colin
2011-11-01
A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.
Quantum theory of multiscale coarse-graining.
Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A
2018-03-14
Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.
Hydrogeophysical investigations at Hidden Dam, Raymond, California
Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.
2011-01-01
Self-potential and direct current resistivity surveys are carried out at the Hidden Dam site in Raymond, California to assess present-day seepage patterns and better understand the hydrogeologic mechanisms that likely influence seepage. Numerical modeling is utilized in conjunction with the geophysical measurements to predict variably-saturated flow through typical two-dimensional dam cross-sections as a function of reservoir elevation. Several different flow scenarios are investigated based on the known hydrogeology, as well as information about typical subsurface structures gained from the resistivity survey. The flow models are also used to simulate the bulk electrical resistivity in the subsurface under varying saturation conditions, as well as the self-potential response using petrophysical relationships and electrokinetic coupling equations.The self-potential survey consists of 512 measurements on the downstream area of the dam, and corroborates known seepage areas on the northwest side of the dam. Two direct-current resistivity profiles, each approximately 2,500 ft (762 m) long, indicate a broad sediment channel under the northwest side of the dam, which may be a significant seepage pathway through the foundation. A focusing of seepage in low-topography areas downstream of the dam is confirmed from the numerical flow simulations, which is also consistent with past observations. Little evidence of seepage is identified from the self-potential data on the southeast side of the dam, also consistent with historical records, though one possible area of focused seepage is identified near the outlet works. Integration of the geophysical surveys, numerical modeling, and observation well data provides a framework for better understanding seepage at the site through a combined hydrogeophysical approach.
Numerical simulation of artificial hip joint motion based on human age factor
NASA Astrophysics Data System (ADS)
Ramdhani, Safarudin; Saputra, Eko; Jamari, J.
2018-05-01
Artificial hip joint is a prosthesis (synthetic body part) which usually consists of two or more components. Replacement of the hip joint due to the occurrence of arthritis, ordinarily patients aged or older. Numerical simulation models are used to observe the range of motion in the artificial hip joint, the range of motion of joints used as the basis of human age. Finite- element analysis (FEA) is used to calculate stress von mises in motion and observes a probability of prosthetic impingement. FEA uses a three-dimensional nonlinear model and considers the position variation of acetabular liner cups. The result of numerical simulation shows that FEA method can be used to analyze the performance calculation of the artificial hip joint at this time more accurate than conventional method.
The optimal design of UAV wing structure
NASA Astrophysics Data System (ADS)
Długosz, Adam; Klimek, Wiktor
2018-01-01
The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.
Climate Prediction for Brazil's Nordeste: Performance of Empirical and Numerical Modeling Methods.
NASA Astrophysics Data System (ADS)
Moura, Antonio Divino; Hastenrath, Stefan
2004-07-01
Comparisons of performance of climate forecast methods require consistency in the predictand and a long common reference period. For Brazil's Nordeste, empirical methods developed at the University of Wisconsin use preseason (October January) rainfall and January indices of the fields of meridional wind component and sea surface temperature (SST) in the tropical Atlantic and the equatorial Pacific as input to stepwise multiple regression and neural networking. These are used to predict the March June rainfall at a network of 27 stations. An experiment at the International Research Institute for Climate Prediction, Columbia University, with a numerical model (ECHAM4.5) used global SST information through February to predict the March June rainfall at three grid points in the Nordeste. The predictands for the empirical and numerical model forecasts are correlated at +0.96, and the period common to the independent portion of record of the empirical prediction and the numerical modeling is 1968 99. Over this period, predicted versus observed rainfall are evaluated in terms of correlation, root-mean-square error, absolute error, and bias. Performance is high for both approaches. Numerical modeling produces a correlation of +0.68, moderate errors, and strong negative bias. For the empirical methods, errors and bias are small, and correlations of +0.73 and +0.82 are reached between predicted and observed rainfall.
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.
1983-01-01
Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.
Firstenberg, M S; Greenberg, N L; Smedira, N G; McCarthy, P M; Garcia, M J; Thomas, J D
2001-01-01
Inertial forces (Mdv/dt) are a significant component of transmitral flow, but cannot be measured with Doppler echo. We validated a method of estimating Mdv/dt. Ten patients had a dual sensor transmitral (TM) catheter placed during cardiac surgery. Doppler and 2D echo was performed while acquiring LA and LV pressures. Mdv/dt was determined from the Bernoulli equation using Doppler velocities and TM gradients. Results were compared with numerical modeling. TM gradients (range: 1.04-14.24 mmHg) consisted of 74.0 +/- 11.0% inertial forcers (range: 0.6-12.9 mmHg). Multivariate analysis predicted Mdv/dt = -4.171(S/D (RATIO)) + 0.063(LAvolume-max) + 5. Using this equation, a strong relationship was obtained for the clinical dataset (y=0.98x - 0.045, r=0.90) and the results of numerical modeling (y=0.96x - 0.16, r=0.84). TM gradients are mainly inertial and, as validated by modeling, can be estimated with echocardiography.
Noninvasive assessment of mitral inertness: clinical results with numerical model validation
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.
2001-01-01
Inertial forces (Mdv/dt) are a significant component of transmitral flow, but cannot be measured with Doppler echo. We validated a method of estimating Mdv/dt. Ten patients had a dual sensor transmitral (TM) catheter placed during cardiac surgery. Doppler and 2D echo was performed while acquiring LA and LV pressures. Mdv/dt was determined from the Bernoulli equation using Doppler velocities and TM gradients. Results were compared with numerical modeling. TM gradients (range: 1.04-14.24 mmHg) consisted of 74.0 +/- 11.0% inertial forcers (range: 0.6-12.9 mmHg). Multivariate analysis predicted Mdv/dt = -4.171(S/D (RATIO)) + 0.063(LAvolume-max) + 5. Using this equation, a strong relationship was obtained for the clinical dataset (y=0.98x - 0.045, r=0.90) and the results of numerical modeling (y=0.96x - 0.16, r=0.84). TM gradients are mainly inertial and, as validated by modeling, can be estimated with echocardiography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braumann, Andreas; Kraft, Markus, E-mail: mk306@cam.ac.u; Wagner, Wolfgang
2010-10-01
This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determinesmore » the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.« less
Rigid aggregates: theory and applications
NASA Astrophysics Data System (ADS)
Richardson, D. C.
2005-08-01
Numerical models employing ``perfect'' self-gravitating rubble piles that consist of monodisperse rigid spheres with configurable contact dissipation have been used to explore collisional and rotational disruption of gravitational aggregates. Applications of these simple models include numerical simulations of planetesimal evolution, asteroid family formation, tidal disruption, and binary asteroid formation. These studies may be limited by the idealized nature of the rubble pile model, since perfect identical spheres stack and shear in a very specific, possibly over-idealized way. To investigate how constituent properties affect the overall characteristics of a gravitational aggregate, particularly its failure modes, we have generalized our numerical code to model colliding, self-gravitating, rigid aggregates made up of variable-size spheres. Euler's equation of rigid-body motion in the presence of external torques are implemented, along with a self-consistent prescription for handling non-central impacts. Simple rules for sticking and breaking are also included. Preliminary results will be presented showing the failure modes of gravitational aggregates made up of smaller, rigid, non-idealized components. Applications of this new capability include more realistic aggregate models, convenient modeling of arbitrary rigid shapes for studies of the stability of orbiting companions (replacing one or both bodies with rigid aggregates eliminates expensive interparticle collisions while preserving the shape, spin, and gravity field of the bodies), and sticky particle aggregation in dense planetary rings. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. NAG511722 issued through the Office of Space Science and by the National Science Foundation under Grant No. AST0307549.
LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction
NASA Astrophysics Data System (ADS)
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2012-10-01
The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.
Correlation effects in superconducting quantum dot systems
NASA Astrophysics Data System (ADS)
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
Consistency between 2D-3D Sediment Transport models
NASA Astrophysics Data System (ADS)
Villaret, Catherine; Jodeau, Magali
2017-04-01
Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.
NASA Astrophysics Data System (ADS)
Chang, Jiang-Hao; Yu, Jing-Cun; Liu, Zhi-Xin
2016-09-01
The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the fullspace 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.
Numerical models as interactive art
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; van de Pas, B.; Joling, A.
2017-12-01
We capture our understanding of the environment in advanced computer models. We use these numerical models to simulate the growth of deltas, meandering rivers, dune erosion, river floodings, effects of interventions. If presented with care, models can help understand the complexity of our environment and show the beautiful patterns of nature. While the topics are relevant and appealing to the general public the use of numerical models has been limited to technical users. Not many people have appreciations for the pluriform of options, esoteric user interfaces, manual editing of configuration files and extensive jargon. The models are static, you can start them, but then you have to wait, usually hours or more, for the results to become available, not something that you could imagine resulting in an immersive, interactive experience for the general public. How can we go beyond just using results? How can we adapt existing numerical models so they can be used in an interactive environment? How can we touch them and feel them? Here we show how we adapted existing models (Delft3D, Lisflood, XBeach) and reused them in as the basis for interactive exhibitions in museums with an educative goal. We present our structured approach which consists of combining a story, inspiration, a canvas, colors, shapes and interactive elements. We show how the progression from simple presentation forms to interactive art installations.
Alcohol Abuse Prevention: A Comprehensive Guide for Youth Organizations.
ERIC Educational Resources Information Center
Boys' Clubs of America, New York, NY.
This guide, the culmination of a three year Project TEAM effort by the Boys' Clubs of America, describes numerous strategies for developing an alcohol abuse prevention program. The core of this guide consists of program models developed by the Boys' Club project at seven pilot sites. The models presented cover the following areas: peer leadership,…
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
NASA Technical Reports Server (NTRS)
Gouldin, F. C.
1982-01-01
Fluid mechanical effects on combustion processes in steady flow combustors, especially gas turbine combustors were investigated. Flow features of most interest were vorticity, especially swirl, and turbulence. Theoretical analyses, numerical calculations, and experiments were performed. The theoretical and numerical work focused on noncombusting flows, while the experimental work consisted of both reacting and nonreacting flow studies. An experimental data set, e.g., velocity, temperature and composition, was developed for a swirl flow combustor for use by combustion modelers for development and validation work.
Numerical investigation of porous materials composites reinforced with natural fibers
NASA Astrophysics Data System (ADS)
Chikhi, M.; Metidji, N.; Mokhtari, F.; Merzouk, N. k.
2018-05-01
The present article tends to predict the effective thermal properties of porous biocomposites materials. The composites matrix consists on porous materials namely gypsum and the reinforcement is a natural fiber as date palm fibers. The numerical study is done using Comsol software resolving the heat transfer equation. The results are fitted with theoretical model and experimental results. The results of this study indicate that the porosity has an effect on the Effective thermal conductivity biocompoites.
Turbulence Modeling Validation, Testing, and Development
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Huang, P. G.; Coakley, T. J.
1997-01-01
The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.
NASA Astrophysics Data System (ADS)
Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin
2018-07-01
The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).
Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow
NASA Astrophysics Data System (ADS)
Gao, Zheng
A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the proposed framework can be used to solve a physics problem that involves turbulence field and point-mass system, and therefore has a broad application.
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2015-04-01
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
Calculation of a coaxial microwave torch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsinin, S. I.; Kossyi, I. A.; Kulumbaev, E. B.
2006-10-15
Parameters of an equilibrium microwave discharge in an atmospheric-pressure argon flow in a coaxial waveguide with a truncated inner electrode are calculated numerically by using a self-consistent two-dimensional MHD model. The results obtained agree satisfactorily with the experimental data.
Toward self-consistent tectono-magmatic numerical model of rift-to-ridge transition
NASA Astrophysics Data System (ADS)
Gerya, Taras; Bercovici, David; Liao, Jie
2017-04-01
Natural data from modern and ancient lithospheric extension systems suggest three-dimensional (3D) character of deformation and complex relationship between magmatism and tectonics during the entire rift-to-ridge transition. Therefore, self-consistent high-resolution 3D magmatic-thermomechanical numerical approaches stand as a minimum complexity requirement for modeling and understanding of this transition. Here we present results from our new high-resolution 3D finite-difference marker-in-cell rift-to-ridge models, which account for magmatic accretion of the crust and use non-linear strain-weakened visco-plastic rheology of rocks that couples brittle/plastic failure and ductile damage caused by grain size reduction. Numerical experiments suggest that nucleation of rifting and ridge-transform patterns are decoupled in both space and time. At intermediate stages, two patterns can coexist and interact, which triggers development of detachment faults, failed rift arms, hyper-extended margins and oblique proto-transforms. En echelon rift patterns typically develop in the brittle upper-middle crust whereas proto-ridge and proto-transform structures nucleate in the lithospheric mantle. These deep proto-structures propagate upward, inter-connect and rotate toward a mature orthogonal ridge-transform patterns on the timescale of millions years during incipient thermal-magmatic accretion of the new oceanic-like lithosphere. Ductile damage of the extending lithospheric mantle caused by grain size reduction assisted by Zenner pinning plays critical role in rift-to-ridge transition by stabilizing detachment faults and transform structures. Numerical results compare well with observations from incipient spreading regions and passive continental margins.
NASA Astrophysics Data System (ADS)
Denis, C.; Ibrahim, A.
Self-consistent parametric earth models are discussed in terms of a flexible numerical code. The density profile of each layer is represented as a polynomial, and figures of gravity, mass, mean density, hydrostatic pressure, and moment of inertia are derived. The polynomial representation also allows computation of the first order flattening of the internal strata of some models, using a Gauss-Legendre quadrature with a rapidly converging iteration technique. Agreement with measured geophysical data is obtained, and algorithm for estimation of the geometric flattening for any equidense surface identified by its fractional radius is developed. The program can also be applied in studies of planetary and stellar models.
NASA Astrophysics Data System (ADS)
Carvalho, David Joao da Silva
The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
A simple mathematical model of society collapse applied to Easter Island
NASA Astrophysics Data System (ADS)
Bologna, M.; Flores, J. C.
2008-02-01
In this paper we consider a mathematical model for the evolution and collapse of the Easter Island society. Based on historical reports, the available primary resources consisted almost exclusively in the trees, then we describe the inhabitants and the resources as an isolated dynamical system. A mathematical, and numerical, analysis about the Easter Island community collapse is performed. In particular, we analyze the critical values of the fundamental parameters and a demographic curve is presented. The technological parameter, quantifying the exploitation of the resources, is calculated and applied to the case of another extinguished civilization (Copán Maya) confirming the consistency of the adopted model.
Aerosol penetration through a model transport system: Comparison of theory and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, A.R.; Wong, F.S.; Anand, N.K.
1991-09-01
Numerical predictions were made of aerosol penetration through a model transport system. A physical model of the system was constructed and tested in an aerosol wind tunnel to obtain comparative data. The system was 26.6 mm in diameter and consisted of an inlet and three straight sections (oriented horizontally, vertically, and at 45{degree}). Particle sizes covered a range in which losses were primarily caused by inertial and gravitational effects (3-25 {mu}m aerodynamic equivalent diameter (AED)). Tests were conducted at two flow rates (70 and 130 l/min) and two inlet orientations (parallel and perpendicular to the free stream). Wind speed wasmore » 3 m/s for all test cases. The cut points for aerosol penetration through the experimental model vis-a-vis the numerical results are as follows: At a flow rate of 70 l/min with the inlet at 0{degree}, the experimentally observed cut point was 16.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED. At 130 l/min and 0{degree}, the experimental cut point was 12.8 {mu}m AED as compared with a numerically value of 13.7 {mu}m AED. At 70l/min and a 90{degree}, the experimental cut point was 12.0 {mu}m AED while the numerically calculated value was 11.1 {mu}m AED. Slopes of the experimental penetration curves are somewhat steeper than the numerically predicted counterparts.« less
Geissbühler, Lukas; Zavattoni, Simone; Barbato, Maurizio; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo
2015-01-01
Combined sensible/latent heat storage allows the heat-transfer fluid outflow temperature during discharging to be stabilized. A lab-scale combined storage consisting of a packed bed of rocks and steel-encapsulated AlSi(12) was investigated experimentally and numerically. Due to the small tank-to-particle diameter ratio of the lab-scale storage, void-fraction variations were not negligible, leading to channeling effects that cannot be resolved in 1D heat-transfer models. The void-fraction variations and channeling effects can be resolved in 2D models of the flow and heat transfer in the storage. The resulting so-called bypass fraction extracted from the 2D model was used in the 1D model and led to good agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Dubrov, Alexander V.; Zavalov, Yuri N.; Mirzade, Fikret K.; Dubrov, Vladimir D.
2017-06-01
3D mathematical model of non-stationary processes of heat and mass transfer was developed for additive manufacturing of materials by direct laser metal deposition. The model takes into account self-consistent dynamics of free surface, temperature fields, and melt flow speeds. Evolution of free surface is modelled using combined Volume of Fluid and Level-Set method. Article presents experimental results of the measurement of temperature distribution in the area of bead formation by direct laser metal deposition, using multi-channel pyrometer, that is based on two-color sensors line. A comparison of experimental data with the results of numerical modeling was carried out. Features of thermal dynamics on the surface of melt pool have been detected, which were caused by thermo-capillary convection.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-01-01
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761
Numerical procedure to determine geometric view factors for surfaces occluded by cylinders
NASA Technical Reports Server (NTRS)
Sawyer, P. L.
1978-01-01
A numerical procedure was developed to determine geometric view factors between connected infinite strips occluded by any number of infinite circular cylinders. The procedure requires a two-dimensional cross-sectional model of the configuration of interest. The two-dimensional model consists of a convex polygon enclosing any number of circles. Each side of the polygon represents one strip, and each circle represents a circular cylinder. A description and listing of a computer program based on this procedure are included in this report. The program calculates geometric view factors between individual strips and between individual strips and the collection of occluding cylinders.
Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA)
NASA Astrophysics Data System (ADS)
Silfiana; Widowati; Putro, S. P.; Udjiani, T.
2018-03-01
The dynamic model of nitrogen transformation in IMTA (Integrated Multi-Trophic Aquaculture) is purposed. IMTA is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in IMTA consisting of ammonia (NH3), Nitrite (NO2) and Nitrate (NO3). Nitrogen transformation of several processes, nitrification, assimilation, and volatilization. Numerical simulations are performed by providing initial parameters and values based on a review of previous research. The numerical results show that the rate of change in nitrogen concentration in IMTA decrease and reaches stable at different times.
Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, Diego
We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.
A four-field model for collisionless reconnection: Hamiltonian structure and numerical simulations
NASA Astrophysics Data System (ADS)
Tassi, Emanuele; Grasso, Daniela; Pegoraro, Francesco
2008-11-01
A 4-field model for magnetic reconnection in collisionless plasmas is investigated both analytically and numerically. The model equations are shown to admit a non-canonical Hamiltonian formulation with four infinite families of Casimir invariants [1]. Numerical simulations show that, consistently with previously investigated models [2,3], in the absence of significant fluctuations along the toroidal direction, reconnection can lead to a macroscopic saturated state exhibiting filamentation on microsocopic scales, or to a secondary Kelvin-Helmholtz-like instability, depending on the value of a parameter measuring the compressibility of the electron fluid. The novel feature exhibited by the four-field model is the coexistence of significant filamentation with a secondary instability when magnetic and velocity perturbations along the toroidal direction are no longer negligible. An interpretation of this phenomenon in terms of Casimir invariants is given.[0pt] [1] E. Tassi et al., Plasma Phys. Contr. Fus., 50, 085014 (2008)[0pt] [2] D. Grasso et al., Phys. Rev. Lett. 86, 5051 (2001)[0pt] [3] D. Del Sarto, F. Califano and F. Pegoraro, Phys. Plasmas 12, 012317 (2005)
CONSISTENT SCALING LAWS IN ANELASTIC SPHERICAL SHELL DYNAMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Gastine, Thomas; Christensen, Ulrich R.
2013-09-01
Numerical dynamo models always employ parameter values that differ by orders of magnitude from the values expected in natural objects. However, such models have been successful in qualitatively reproducing properties of planetary and stellar dynamos. This qualitative agreement fuels the idea that both numerical models and astrophysical objects may operate in the same asymptotic regime of dynamics. This can be tested by exploring the scaling behavior of the models. For convection-driven incompressible spherical shell dynamos with constant material properties, scaling laws had been established previously that relate flow velocity and magnetic field strength to the available power. Here we analyzemore » 273 direct numerical simulations using the anelastic approximation, involving also cases with radius-dependent magnetic, thermal, and viscous diffusivities. These better represent conditions in gas giant planets and low-mass stars compared to Boussinesq models. Our study provides strong support for the hypothesis that both mean velocity and mean magnetic field strength scale as a function of the power generated by buoyancy forces in the same way for a wide range of conditions.« less
Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebensohn, Ricardo A.; Needleman, Alan
Here, we present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influencemore » of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.« less
Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms
Lebensohn, Ricardo A.; Needleman, Alan
2016-03-28
Here, we present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influencemore » of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.« less
User's manual for LINEAR, a FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.
1987-01-01
This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading
NASA Technical Reports Server (NTRS)
Turon, A.; Camanho, P. P.; Costa, J.; Davila, C. G.
2006-01-01
A thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio. The model is formulated in the context of Damage Mechanics. A novel constitutive equation is developed to model the initiation and propagation of delamination. A delamination initiation criterion is proposed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation accounts for crack closure effects to avoid interfacial penetration of two adjacent layers after complete decohesion. The model is implemented in a finite element formulation, and the numerical predictions are compared with experimental results obtained in both composite test specimens and structural components.
Simulations of Fluvial Landscapes
NASA Astrophysics Data System (ADS)
Cattan, D.; Birnir, B.
2013-12-01
The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.
Dynamo Enhancement and Mode Selection Triggered by High Magnetic Permeability.
Kreuzahler, S; Ponty, Y; Plihon, N; Homann, H; Grauer, R
2017-12-08
We present results from consistent dynamo simulations, where the electrically conducting and incompressible flow inside a cylinder vessel is forced by moving impellers numerically implemented by a penalization method. The numerical scheme models jumps of magnetic permeability for the solid impellers, resembling various configurations tested experimentally in the von Kármán sodium experiment. The most striking experimental observations are reproduced in our set of simulations. In particular, we report on the existence of a time-averaged axisymmetric dynamo mode, self-consistently generated when the magnetic permeability of the impellers exceeds a threshold. We describe a possible scenario involving both the turbulent flow in the vicinity of the impellers and the high magnetic permeability of the impellers.
Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.
Luca, Adrian; Marchiano, Regis; Chassaing, Jean-Camille
2016-06-01
This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert
Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less
Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert; ...
2017-07-10
Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations for low values of permeabilities and certain features of the field-scale data. ROM-2 is a model with more analytical functions consisting of polynomials up to order eight, exponential functions and smooth approximations of Heaviside functions, and accurately describes the field-data. At higher permeabilities, ROM-2 reproduces numerical results better than ROM-1, however, there is a considerable deviation from numerical results at low fracture zone permeabilities. ROM-3 consists of polynomials up to order ten, and is developed by taking the best aspects of ROM-1 and ROM-2. ROM-1 is relatively parsimonious than ROM-2 and ROM-3, while ROM-2 overfits the data. ROM-3 on the other hand, provides a middle ground for model parsimony. Based on R 2-values for training, validation, and prediction data sets we found that ROM-3 is better model than ROM-2 and ROM-1. For predicting thermal drawdown in EGS applications, where high fracture zone permeabilities (typically greater than 10 –15 m 2) are desired, ROM-2 and ROM-3 outperform ROM-1. As per computational time, all the ROMs are 10 4 times faster when compared to running a high-fidelity numerical simulation. In conclusion, this makes the proposed regression-based ROMs attractive for real-time EGS applications because they are fast and provide reasonably good predictions for thermal power output.« less
NASA Astrophysics Data System (ADS)
Hinder, Ian; Buonanno, Alessandra; Boyle, Michael; Etienne, Zachariah B.; Healy, James; Johnson-McDaniel, Nathan K.; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P.; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A.; Schnetter, Erik; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoğlu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T.; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D.; Hannam, Mark; Haas, Roland; Hemberger, Daniel A.; Husa, Sascha; Kidder, Lawrence E.; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O.; Marronetti, Pedro; Matzner, Richard A.; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C.; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L.; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W.; Teukolsky, Saul A.; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef
2013-01-01
The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ˜100-200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ⩽4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.
NASA Astrophysics Data System (ADS)
Knox, Ryan Gary
A numerical model of the terrestrial biosphere (Ecosystem Demography Model) is compbined with an atmospheric model (Brazilian Regional Atmospheric Modeling System) to investigate how land conversion in the Amazon and Northern South America have changed the hydrology of the region, and to see if those changes are significant enough to produce an ecological response. Two numerical realizations of the structure and composition of terrestrial vegetation are used as boundary conditions in a simulation of the regional land surface and atmosphere. One realization seeks to capture the present day vegetation condition that includes human deforestation and land-conversion, the other is an estimate of the potential structure and composition of the region without human influence. Model output is assessed for consistent and significant differences in hydrometeorology. Locations that show compelling differences are taken as case studies. The seasonal biases in precipitation at these locations are then used to create perturbations to long-term climate datasets. These perturbations then drive long-term simulations of dynamic vegetation to see if the climate consistent with a potential regional vegetation could elicit a change in the vegetation equilibrium at the site. Results show that South American land conversion has had consistent impacts on the regional patterning of precipitation. At some locations, changes in precipitation are persistent and constitute a significant fraction of total precipitation. Land-conversion has decreased mean continental evaporation and increased mean moisture convergence. Case study simulations of long term vegetation dynamic indicate that a hydrologic climate consistent with regional potential vegetation can indeed have significant influence on ecosystem structure and composition, particularly in water limited growth conditions. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
NASA Technical Reports Server (NTRS)
Metz, Roger N.
1991-01-01
This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.
Application of a flux-split algorithm to chemically relaxing, hypervelocity blunt-body flows
NASA Technical Reports Server (NTRS)
Balakrishnan, A.
1987-01-01
Viscous, nonequilibrium, hypervelocity flow fields over two axisymmetric configurations are numerically simulated using a factored, implicit, flux-split algorithm. The governing gas-dynamic and species-continuity equations for laminar flow are presented. The gas-dynamics/nonequilibrium-chemistry coupling procedure is developed as part of the solution procedure and is described in detail. Numerical solutions are presented for hypervelocity flows over a hemisphere and over an axisymmetric aeroassisted orbital transfer vehicle using three different chemistry models. The gas models considered are those for an ideal gas, for a frozen gas, and for chemically relaxing air consisting of five species. The calculated results are compared with existing numerical solutions in the literature along the stagnation line of the hemisphere. The effects of free-stream Reynolds number on the nonequilibrium flow field are discussed.
Cifuentes, L.A.; Schemel, L.E.; Sharp, J.H.
1990-01-01
The effects of river inflow variations on alkalinity/salinity distributions in San Francisco Bay and nitrate/salinity distributions in Delaware Bay are described. One-dimensional, advective-dispersion equations for salinity and the dissolved constituents are solved numerically and are used to simulate mixing in the estuaries. These simulations account for time-varying river inflow, variations in estuarine cross-sectional area, and longitudinally varying dispersion coefficients. The model simulates field observations better than models that use constant hydrodynamic coefficients and uniform estuarine geometry. Furthermore, field observations and model simulations are consistent with theoretical 'predictions' that the curvature of propery-salinity distributions depends on the relation between the estuarine residence time and the period of river concentration variation. ?? 1990.
Soliton and kink jams in traffic flow with open boundaries.
Muramatsu, M; Nagatani, T
1999-07-01
Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.
Wojcik, J; Litniewski, J; Nowicki, A
2011-10-01
The integral equations that describe scattering in the media with step-rise changing parameters have been numerically solved for the trabecular bone model. The model consists of several hundred discrete randomly distributed elements. The spectral distribution of scattering coefficients in subsequent orders of scattering has been presented. Calculations were carried on for the ultrasonic frequency ranging from 0.5 to 3 MHz. Evaluation of the contribution of the first, second, and higher scattering orders to total scattering of the ultrasounds in trabecular bone was done. Contrary to the approaches that use the μCT images of trabecular structure to modeling of the ultrasonic wave propagation condition, the 3D numerical model consisting of cylindrical elements mimicking the spatial matrix of trabeculae, was applied. The scattering, due to interconnections between thick trabeculae, usually neglected in trabecular bone models, has been included in calculations when the structure backscatter was evaluated. Influence of the absorption in subsequent orders of scattering is also addressed. Results show that up to 1.5 MHz, the influence of higher scattering orders on the total scattered field characteristic can be neglected while for the higher frequencies, the relatively high amplitude interference peaks in higher scattering orders clearly occur. © 2011 Acoustical Society of America
A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system
NASA Astrophysics Data System (ADS)
Lee, Hyun Geun; Choi, Jeong-Whan; Kim, Junseok
2012-02-01
We present a practically unconditionally gradient stable conservative nonlinear numerical scheme for the N-component Cahn-Hilliard system modeling the phase separation of an N-component mixture. The scheme is based on a nonlinear splitting method and is solved by an efficient and accurate nonlinear multigrid method. The scheme allows us to convert the N-component Cahn-Hilliard system into a system of N-1 binary Cahn-Hilliard equations and significantly reduces the required computer memory and CPU time. We observe that our numerical solutions are consistent with the linear stability analysis results. We also demonstrate the efficiency of the proposed scheme with various numerical experiments.
Multicritical points for spin-glass models on hierarchical lattices.
Ohzeki, Masayuki; Nishimori, Hidetoshi; Berker, A Nihat
2008-06-01
The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry, and the replica method. We find that the conjecture does not give the exact answer but leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give more precise predictions of the multicritical points than the conventional one. This improvement is inspired by a different point of view coming from the renormalization group and succeeds in deriving very consistent answers with many numerical data.
Tidally induced residual current over the Malin Sea continental slope
NASA Astrophysics Data System (ADS)
Stashchuk, Nataliya; Vlasenko, Vasiliy; Hosegood, Phil; Nimmo-Smith, W. Alex M.
2017-05-01
Tidally induced residual currents generated over shelf-slope topography are investigated analytically and numerically using the Massachusetts Institute of Technology general circulation model. Observational support for the presence of such a slope current was recorded over the Malin Sea continental slope during the 88-th cruise of the RRS ;James Cook; in July 2013. A simple analytical formula developed here in the framework of time-averaged shallow water equations has been validated against a fully nonlinear nonhydrostatic numerical solution. A good agreement between analytical and numerical solutions is found for a wide range of input parameters of the tidal flow and bottom topography. In application to the Malin Shelf area both the numerical model and analytical solution predicted a northward moving current confined to the slope with its core located above the 400 m isobath and with vertically averaged maximum velocities up to 8 cm s-1, which is consistent with the in-situ data recorded at three moorings and along cross-slope transects.
Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A
2017-06-28
A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results.
Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A.
2017-01-01
A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results. PMID:28773081
NASA Astrophysics Data System (ADS)
Hess, Julian; Wang, Yongqi
2016-11-01
A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.
Numerical simulation of an elastic structure behavior under transient fluid flow excitation
NASA Astrophysics Data System (ADS)
Afanasyeva, Irina N.; Lantsova, Irina Yu.
2017-01-01
This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.
Numerical modelling of the formation process of planets from protoplanetary cloud
NASA Technical Reports Server (NTRS)
Kozlov, N. N.; Eneyev, T. M.
1979-01-01
Evolution of the plane protoplanetary cloud, consisting of a great number of gravitationally interacting and uniting under collision bodies (protoplanets) moving in the central field of a large mass (the Sun or a planet), is considered. It is shown that in the course of protoplanetary cloud evolution the ring zones of matter expansion and compression occur with the subsequent development leading to formation of planets, rotating about their axes mainly directly. The principal numerical results were obtained through digital simulation of planetary accumulation.
Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, C., E-mail: catherine.krafft@u-psud.fr; Universite´ Paris Sud, 91405 Orsay Cedex; Volokitin, A., E-mail: a.volokitin@mail.ru
2016-03-25
The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.
Nature of Continuous Phase Transitions in Interacting Topological Insulators
Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin; ...
2017-11-08
Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.
Nature of Continuous Phase Transitions in Interacting Topological Insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Tian-sheng; Zhu, Wei; Zhu, Jianxin
Here, we revisit the effects of the Hubbard repulsion on quantum spin Hall effects (QSHE) in two-dimensional quantum lattice models. We present both unbiased exact diagonalization and density-matrix renormalization group simulations with numerical evidence for a continuous quantum phase transition (CQPT) separating QSHE from the topologically trivial antiferromagnetic phase. Our numerical results suggest that the nature of CQPT exhibits distinct finite-size scaling behaviors, which may be consistent with either Ising or XY universality classes for different time-reversal symmetric QSHE systems.
Computational method for analysis of polyethylene biodegradation
NASA Astrophysics Data System (ADS)
Watanabe, Masaji; Kawai, Fusako; Shibata, Masaru; Yokoyama, Shigeo; Sudate, Yasuhiro
2003-12-01
In a previous study concerning the biodegradation of polyethylene, we proposed a mathematical model based on two primary factors: the direct consumption or absorption of small molecules and the successive weight loss of large molecules due to β-oxidation. Our model is an initial value problem consisting of a differential equation whose independent variable is time. Its unknown variable represents the total weight of all the polyethylene molecules that belong to a molecular-weight class specified by a parameter. In this paper, we describe a numerical technique to introduce experimental results into analysis of our model. We first establish its mathematical foundation in order to guarantee its validity, by showing that the initial value problem associated with the differential equation has a unique solution. Our computational technique is based on a linear system of differential equations derived from the original problem. We introduce some numerical results to illustrate our technique as a practical application of the linear approximation. In particular, we show how to solve the inverse problem to determine the consumption rate and the β-oxidation rate numerically, and illustrate our numerical technique by analyzing the GPC patterns of polyethylene wax obtained before and after 5 weeks cultivation of a fungus, Aspergillus sp. AK-3. A numerical simulation based on these degradation rates confirms that the primary factors of the polyethylene biodegradation posed in modeling are indeed appropriate.
Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Ardani, S.; Kaihatu, J. M.
2012-12-01
Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC
Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Sondak, David
The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.
Modeling the source of GW150914 with targeted numerical-relativity simulations
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Lousto, Carlos O.; Healy, James; Scheel, Mark A.; Garcia, Alyssa; O'Shaughnessy, Richard; Boyle, Michael; Campanelli, Manuela; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Szilágyi, Béla; Teukolsky, Saul A.; Zlochower, Yosef
2016-12-01
In fall of 2015, the two LIGO detectors measured the gravitational wave signal GW150914, which originated from a pair of merging black holes (Abbott et al Virgo, LIGO Scientific 2016 Phys. Rev. Lett. 116 061102). In the final 0.2 s (about 8 gravitational-wave cycles) before the amplitude reached its maximum, the observed signal swept up in amplitude and frequency, from 35 Hz to 150 Hz. The theoretical gravitational-wave signal for merging black holes, as predicted by general relativity, can be computed only by full numerical relativity, because analytic approximations fail near the time of merger. Moreover, the nearly-equal masses, moderate spins, and small number of orbits of GW150914 are especially straightforward and efficient to simulate with modern numerical-relativity codes. In this paper, we report the modeling of GW150914 with numerical-relativity simulations, using black-hole masses and spins consistent with those inferred from LIGO’s measurement (Abbott et al LIGO Scientific Collaboration, Virgo Collaboration 2016 Phys. Rev. Lett. 116 241102). In particular, we employ two independent numerical-relativity codes that use completely different analytical and numerical methods to model the same merging black holes and to compute the emitted gravitational waveform; we find excellent agreement between the waveforms produced by the two independent codes. These results demonstrate the validity, impact, and potential of current and future studies using rapid-response, targeted numerical-relativity simulations for better understanding gravitational-wave observations.
Resonant quantum kicked rotor with two internal levels
NASA Astrophysics Data System (ADS)
Hernández, Guzmán; Romanelli, Alejandro
2013-04-01
We study a system consisting of a quantum kicked rotor with an additional degree of freedom. We show analytically and numerically that this model is characterized by its quantum resonances with ballistic spreading and by the entanglement between the internal and momentum degrees of freedom. We conclude that the model shows certain interesting similarities with the standard quantum walk on the line.
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2017-04-22
signatures which can be used for direct, non -invasive, comparison with experimental diagnostics can be produced. This research will be directly... experimental campaign is critical to developing general design philosophies for low-power plasmoid formation, the complexity of non -linear plasma processes...advanced space propulsion. The work consists of numerical method development, physical model development, and systematic studies of the non -linear
A New Model for the Heliosphere’s “IBEX Ribbon”
NASA Astrophysics Data System (ADS)
Giacalone, J.; Jokipii, J. R.
2015-10-01
We present a model for the narrow, ribbon-like enhancement in the emission of ∼keV energetic neutral atoms (ENA) coming from the outer heliosphere, coinciding roughly with the plane of the very local interstellar magnetic field (LISMF). We show that the pre-existing turbulent LISMF has sufficient amplitude in magnitude fluctuations to efficiently trap ions with initial pitch-angles near 90°, primarily by magnetic mirroring, leading to a narrow region of enhanced pickup-proton intensity. The pickup protons interact with cold interstellar hydrogen to produce ENAs seen at 1 AU. The computed width of the resulting ribbon of emission is consistent with observations. We also present results from a numerical model that are also generally consistent with the observations. Our interpretation relies only on the pre-existing turbulent interstellar magnetic field to trap the pickup protons. This leads to a broader local pitch-angle distribution compared to that of a ring. Our numerical model also predicts that the ribbon is double-peaked with a central depression. This is a further consequence of the (primarily) magnetic mirroring of pickup ions with pitch-angles close to 90° in the pre-existing, turbulent interstellar magnetic field.
A NEW MODEL FOR THE HELIOSPHERE’S “IBEX RIBBON”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacalone, J.; Jokipii, J. R.
We present a model for the narrow, ribbon-like enhancement in the emission of ∼keV energetic neutral atoms (ENA) coming from the outer heliosphere, coinciding roughly with the plane of the very local interstellar magnetic field (LISMF). We show that the pre-existing turbulent LISMF has sufficient amplitude in magnitude fluctuations to efficiently trap ions with initial pitch-angles near 90°, primarily by magnetic mirroring, leading to a narrow region of enhanced pickup-proton intensity. The pickup protons interact with cold interstellar hydrogen to produce ENAs seen at 1 AU. The computed width of the resulting ribbon of emission is consistent with observations. Wemore » also present results from a numerical model that are also generally consistent with the observations. Our interpretation relies only on the pre-existing turbulent interstellar magnetic field to trap the pickup protons. This leads to a broader local pitch-angle distribution compared to that of a ring. Our numerical model also predicts that the ribbon is double-peaked with a central depression. This is a further consequence of the (primarily) magnetic mirroring of pickup ions with pitch-angles close to 90° in the pre-existing, turbulent interstellar magnetic field.« less
Analysis and computation of a least-squares method for consistent mesh tying
Day, David; Bochev, Pavel
2007-07-10
We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less
Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Six, N. Frank (Technical Monitor)
2002-01-01
Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.
Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I
2016-12-01
Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.
Self-Consistent Field Lattice Model for Polymer Networks.
Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G
2017-12-26
A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.
Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.
2005-01-01
Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In contrast, FEMA Flood Insurance Rate Maps (FIRMs) based on the FAN model predict uniformly high flood risk across the study areas without regard for small-scale topography and surficial geology. ?? 2005 Geological Society of America.
NASA Astrophysics Data System (ADS)
Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.
2017-05-01
We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.
Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach
NASA Astrophysics Data System (ADS)
Menati, Mohamad; Konopka, Uwe; Thomas, Edward
2017-10-01
In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.
Theoretical and computational analyses of LNG evaporator
NASA Astrophysics Data System (ADS)
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Fluidic Vectoring of a Planar Incompressible Jet Flow
NASA Astrophysics Data System (ADS)
Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie
2018-06-01
This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.
Network-level reproduction number and extinction threshold for vector-borne diseases.
Xue, Ling; Scoglio, Caterina
2015-06-01
The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.
DOT National Transportation Integrated Search
2010-03-01
Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road : maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel ti...
DOT National Transportation Integrated Search
2010-03-01
Urban transportation networks, consisting of numerous links and nodes, experience traffic incidents such as accidents and road maintenance work. A typical consequence of incidents is congestion which results in long queues and causes high travel time...
Steady state magnetic field configurations for the earth's magnetotail
NASA Technical Reports Server (NTRS)
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics
NASA Astrophysics Data System (ADS)
Halpern, Federico
2017-10-01
The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.
Steady-State Groundwater Flow Model for Great Neck, Long Island, New York
NASA Astrophysics Data System (ADS)
Chowdhury, S. H.; Klinger, D.; Sallemi, B. M.
2001-12-01
This paper describes a comprehensive groundwater flow model for the Great Neck section of Long Island, New York. The hydrogeology of this section of Long Island is dominated by a buried erosional valley consisting of sediments comparable to the North Shore Confining Unit. This formation cross-cuts, thus is in direct hydraulic connection with the Upper Glacial, North Shore Confining Unit, Raritan Clay, and Lloyd aquifers. The Magothy aquifer is present only in remote southern sections of the model area. In addition, various lenses of coarser material from the overlying Upper Glacial aquifer are dispersed throughout the area. Data collection consisted of gathering various parameter values from existing USGS reports. Hydraulic conductivity, porosity, estimated recharge values, evapotranspiration, well locations, and water level data have all been gathered from the USGS Office located in Coram, New York. Appropriate modeling protocol was followed throughout the modeling process. The computer code utilized for solving this numerical model is Visual MODFLOW as manufactured by Waterloo Hydrogeologic. Calibration and a complete sensitivity analysis were conducted. Modeled results indicate that the groundwater flow direction is consistent with what is viewed onsite. In addition, the model is consistent in returning favorable parameter results to historical data.
NASA Astrophysics Data System (ADS)
Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul
2016-08-01
Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.
Rácz, A; Bajusz, D; Héberger, K
2015-01-01
Recent implementations of QSAR modelling software provide the user with numerous models and a wealth of information. In this work, we provide some guidance on how one should interpret the results of QSAR modelling, compare and assess the resulting models, and select the best and most consistent ones. Two QSAR datasets are applied as case studies for the comparison of model performance parameters and model selection methods. We demonstrate the capabilities of sum of ranking differences (SRD) in model selection and ranking, and identify the best performance indicators and models. While the exchange of the original training and (external) test sets does not affect the ranking of performance parameters, it provides improved models in certain cases (despite the lower number of molecules in the training set). Performance parameters for external validation are substantially separated from the other merits in SRD analyses, highlighting their value in data fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.
1996-08-01
Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less
NASA Astrophysics Data System (ADS)
Feng, Bin; Shi, Zelin; Zhang, Chengshuo; Xu, Baoshu; Zhang, Xiaodong
2016-05-01
The point spread function (PSF) inconsistency caused by temperature variation leads to artifacts in decoded images of a wavefront coding infrared imaging system. Therefore, this paper proposes an analytical model for the effect of temperature variation on the PSF consistency. In the proposed model, a formula for the thermal deformation of an optical phase mask is derived. This formula indicates that a cubic optical phase mask (CPM) is still cubic after thermal deformation. A proposed equivalent cubic phase mask (E-CPM) is a virtual and room-temperature lens which characterizes the optical effect of temperature variation on the CPM. Additionally, a calculating method for PSF consistency after temperature variation is presented. Numerical simulation illustrates the validity of the proposed model and some significant conclusions are drawn. Given the form parameter, the PSF consistency achieved by a Ge-material CPM is better than the PSF consistency by a ZnSe-material CPM. The effect of the optical phase mask on PSF inconsistency is much slighter than that of the auxiliary lens group. A large form parameter of the CPM will introduce large defocus-insensitive aberrations, which improves the PSF consistency but degrades the room-temperature MTF.
A modified dynamical model of drying process of polymer blend solution coated on a flat substrate
NASA Astrophysics Data System (ADS)
Kagami, Hiroyuki
2008-05-01
We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.
Haeufle, D F B; Günther, M; Blickhan, R; Schmitt, S
2011-01-01
Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, the contraction dynamics of this CE concept were analyzed in a numerical simulation of quick release experiments against different loads. A hyperbolic force-velocity relation was found. The results correspond to measurements of the contraction dynamics of a technical prototype. Deviations from the theoretical prediction could partly be explained by the low stiffness of the SE, which was modeled analog to the metal spring in the hardware prototype. The numerical model and hardware prototype together, are a proof of this CE concept and can be seen as a well-founded starting point for the development of Hill-type artificial muscles. This opens up new vistas for the technical realization of natural movements with rehabilitation devices. © 2011 IEEE
Flyer Target Acceleration and Energy Transfer at its Collision with Massive Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.
2006-01-15
Numerical modelling was aimed at simulation of successive events resulting from interaction of laser beam-single and double targets. It was performed by means of the 2D Lagrangian hydrodynamics code ATLANT-HE. This code is based on one-fluid and two-temperature model of plasma with electron and ion heat conductivity considerations. The code has an advanced treatment of laser light propagation and absorption. This numerical modelling corresponds to the experiment, which was carried out with the use of the PALS facility. Two types of planar solid targets, i.e. single massive Al slabs and double targets consisting of 6 {mu}m thick Al foil andmore » Al slab were applied. The targets were irradiated by the iodine laser pulses of two wavelengths: 1.315 and 0.438 {mu}m. A pulse duration of 0.4 ns and a focal spot diameter of 250 {mu}m at a laser energy of 130 J were used. The numerical modelling allowed us to obtain a more detailed description of shock wave propagation and crater formation.« less
NASA Astrophysics Data System (ADS)
Nasri, Mohamed Aziz; Robert, Camille; Ammar, Amine; El Arem, Saber; Morel, Franck
2018-02-01
The numerical modelling of the behaviour of materials at the microstructural scale has been greatly developed over the last two decades. Unfortunately, conventional resolution methods cannot simulate polycrystalline aggregates beyond tens of loading cycles, and they do not remain quantitative due to the plasticity behaviour. This work presents the development of a numerical solver for the resolution of the Finite Element modelling of polycrystalline aggregates subjected to cyclic mechanical loading. The method is based on two concepts. The first one consists in maintaining a constant stiffness matrix. The second uses a time/space model reduction method. In order to analyse the applicability and the performance of the use of a space-time separated representation, the simulations are carried out on a three-dimensional polycrystalline aggregate under cyclic loading. Different numbers of elements per grain and two time increments per cycle are investigated. The results show a significant CPU time saving while maintaining good precision. Moreover, increasing the number of elements and the number of time increments per cycle, the model reduction method is faster than the standard solver.
Two dimensional model for coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.
2013-01-01
Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.
Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation
NASA Technical Reports Server (NTRS)
Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R
2006-01-01
The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.
A Thermodynamically Consistent Damage Model for Advanced Composites
NASA Technical Reports Server (NTRS)
Maimi, Pere; Camanho, Pedro P.; Mayugo, Joan-Andreu; Davila, Carlos G.
2006-01-01
A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant's Crack Band Model. To verify the accuracy of the approach, analyses of coupon specimens were performed, and the numerical predictions were compared with experimental data.
NASA Astrophysics Data System (ADS)
Stamps, S.; Bangerth, W.; Hager, B. H.
2014-12-01
The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.
WEC3: Wave Energy Converter Code Comparison Project: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien
This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to modelmore » hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.« less
A multilayer shallow water system for polydisperse sedimentation
NASA Astrophysics Data System (ADS)
Fernández-Nieto, E. D.; Koné, E. H.; Morales de Luna, T.; Bürger, R.
2013-04-01
This work considers the flow of a fluid containing one disperse substance consisting of small particles that belong to different species differing in size and density. The flow is modelled by combining a multilayer shallow water approach with a polydisperse sedimentation process. This technique allows one to keep information on the vertical distribution of the solid particles in the mixture, and thereby to model the segregation of the particle species from each other, and from the fluid, taking place in the vertical direction of the gravity body force only. This polydisperse sedimentation process is described by the well-known Masliyah-Lockett-Bassoon (MLB) velocity functions. The resulting multilayer sedimentation-flow model can be written as a hyperbolic system with nonconservative products. The definitions of the nonconservative products are related to the hydrostatic pressure and to the mass and momentum hydrodynamic transfer terms between the layers. For the numerical discretization a strategy of two steps is proposed, where the first one is also divided into two parts. In the first step, instead of approximating the complete model, we approximate a reduced model with a smaller number of unknowns. Then, taking advantage of the fact that the concentrations are passive scalars in the system, we approximate the concentrations of the different species by an upwind scheme related to the numerical flux of the total concentration. In the second step, the effect of the transference terms defined in terms of the MLB model is introduced. These transfer terms are approximated by using a numerical flux function used to discretize the 1D vertical polydisperse model, see Bürger et al. [ R. Bürger, A. García, K.H. Karlsen, J.D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math. 60 (2008) 387-425]. Finally, some numerical examples are presented. Numerical results suggest that the multilayer shallow water model could be adequate in situations where the settling takes place from a suspension that undergoes horizontal movement.
NASA Astrophysics Data System (ADS)
Ciz, Radim; Saenger, Erik H.; Gurevich, Boris; Shapiro, Serge A.
2009-03-01
We develop a new model for elastic properties of rocks saturated with heavy oil. The heavy oil is represented by a viscoelastic material, which at low frequencies and/or high temperatures behaves as a Newtonian fluid, and at high frequencies and/or low temperatures as a nearly elastic solid. The bulk and shear moduli of a porous rock saturated with such viscoelastic material are then computed using approximate extended Gassmann equations of Ciz and Shapiro by replacing the elastic moduli of the pore filling material with complex and frequency-dependent moduli of the viscoelastic pore fill. We test the proposed model by comparing its predictions with numerical simulations based on a direct finite-difference solution of equations of dynamic viscoelasticity. The simulations are performed for the reflection coefficient from an interface between a homogeneous fluid and a porous medium. The numerical tests are performed both for an idealized porous medium consisting of alternating solid and viscoelastic layers, and for a more realistic 3-D geometry of the pore space. Both sets of numerical tests show a good agreement between the predictions of the proposed viscoelastic workflow and numerical simulations for relatively high viscosities where viscoelastic effects are important. The results confirm that application of extended Gassmann equations in conjunction with the complex and frequency-dependent moduli of viscoelastic pore filling material, such as heavy oil, provides a good approximation for the elastic moduli of rocks saturated with such material. By construction, this approximation is exactly consistent with the classical Gassmann's equation for sufficiently low frequencies or high temperature when heavy oil behaves like a fluid. For higher frequencies and/or lower temperatures, the predictions are in good agreement with the direct numerical solution of equations of dynamic viscoelasticity on the microscale. This demonstrates that the proposed methodology provides realistic estimates of elastic properties of heavy oil rocks.
Numerical study of low-frequency discharge oscillations in a 5 kW Hall thruster
NASA Astrophysics Data System (ADS)
Le, YANG; Tianping, ZHANG; Juanjuan, CHEN; Yanhui, JIA
2018-07-01
A two-dimensional particle-in-cell plasma model is built in the R–Z plane to investigate the low-frequency plasma oscillations in the discharge channel of a 5 kW LHT-140 Hall thruster. In addition to the elastic, excitation, and ionization collisions between neutral atoms and electrons, the Coulomb collisions between electrons and electrons and between electrons and ions are analyzed. The sheath characteristic distortion is also corrected. Simulation results indicate the capability of the built model to reproduce the low-frequency oscillation with high accuracy. The oscillations of the discharge current and ion density produced by the model are consistent with the existing conclusions. The model predicts a frequency that is consistent with that calculated by the zero-dimensional theoretical model.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.
Numerical Analysis of Small Deformation of Flexible Helical Flagellum of Swimming Bacteria
NASA Astrophysics Data System (ADS)
Takano, Yasunari; Goto, Tomonobu
Formulations are conducted to numerically analyze the effect of flexible flagellum of swimming bacteria. In the present model, a single-flagellate bacterium is assumed to consist of a rigid cell body of the prolate spheroidal shape and a flexible flagellum of the helical form. The resistive force theory is applied to estimate the force exerted on the flagellum. The torsional as well as the bending moments determine the curvature and the torsion of the deformed flagellum according to the Kirchhoff model for an elastic rod. The unit tangential vector along the deformed flagellum is calculated by applying evolution equations for space curves, and also a deformed shape of the flagellum is obtained.
A level-set method for two-phase flows with moving contact line and insoluble surfactant
NASA Astrophysics Data System (ADS)
Xu, Jian-Jun; Ren, Weiqing
2014-04-01
A level-set method for two-phase flows with moving contact line and insoluble surfactant is presented. The mathematical model consists of the Navier-Stokes equation for the flow field, a convection-diffusion equation for the surfactant concentration, together with the Navier boundary condition and a condition for the dynamic contact angle derived by Ren et al. (2010) [37]. The numerical method is based on the level-set continuum surface force method for two-phase flows with surfactant developed by Xu et al. (2012) [54] with some cautious treatment for the boundary conditions. The numerical method consists of three components: a flow solver for the velocity field, a solver for the surfactant concentration, and a solver for the level-set function. In the flow solver, the surface force is dealt with using the continuum surface force model. The unbalanced Young stress at the moving contact line is incorporated into the Navier boundary condition. A convergence study of the numerical method and a parametric study are presented. The influence of surfactant on the dynamics of the moving contact line is illustrated using examples. The capability of the level-set method to handle complex geometries is demonstrated by simulating a pendant drop detaching from a wall under gravity.
Evaluation of Sulfur Flow Emplacement on Io from Galileo Data and Numerical Modeling
NASA Technical Reports Server (NTRS)
Williams, David A.; Greeley, Ronald; Lopes, Rosaly M. C.; Davies, Ashley G.
2001-01-01
Galileo images of bright lava flows surrounding Emakong Patera have been analyzed and numerical modeling has been performed to assess whether these flows could have resulted from the emplacement of sulfur lavas on Io. Images from the solid-state imaging.(SSI) camera show that these bright, white to yellow Emakong flows are up to 370 km long and contain dark, sinuous features that are interpreted to be lava conduits, approx. 300-500 m wide and > 100 km long. Near-Infrared Mapping Spectrometer (NIMS) thermal emission data yield a color temperature estimate of 344 K +/- 60 K (less than or equal to 131 C) within the Emakong caldera. We suggest that these bright flows likely resulted from either sulfur lavas or silicate lavas that have undergone extensive cooling, pyroclastic mantling, and/or alteration with bright sulfurous materials. The Emakong bright flows have estimated volumes of approx. 250-350 cu km, similar to some of the smaller Columbia River Basalt flows. If the Emakong flows did result from effusive sulfur eruptions, then they are orders of magnitude greater in volume than any terrestrial sulfur flows. Our numerical modeling results show that sulfur lavas on Io could have been emplaced as turbulent flows, which were capable of traveling tens to hundreds of kilometers, consistent with the predictions of Sagan [ 19793 and Fink et al. [ 19831. Our modeled flow distances are also consistent with the measured lengths of the Emakong channels and bright flows. Modeled thermal erosion rates are approx. 1-4 m/d for flows erupted at approx. 140-180 C, which are consistent with the melting rates of Kieffer et al. [2000]. The Emakong channels could be thermal erosional in nature; however, the morphologic signatures of thermal erosion channels cannot be discerned from available images. There are planned Galileo flybys of Io in 2001 which provide excellent opportunities to obtain high-resolution morphologic and color data of Emakong Patera. Such observations could, along with further modeling, provide additional information to better constrain whether sulfur lavas produced the Emakong flows.
Expert judgement and uncertainty quantification for climate change
NASA Astrophysics Data System (ADS)
Oppenheimer, Michael; Little, Christopher M.; Cooke, Roger M.
2016-05-01
Expert judgement is an unavoidable element of the process-based numerical models used for climate change projections, and the statistical approaches used to characterize uncertainty across model ensembles. Here, we highlight the need for formalized approaches to unifying numerical modelling with expert judgement in order to facilitate characterization of uncertainty in a reproducible, consistent and transparent fashion. As an example, we use probabilistic inversion, a well-established technique used in many other applications outside of climate change, to fuse two recent analyses of twenty-first century Antarctic ice loss. Probabilistic inversion is but one of many possible approaches to formalizing the role of expert judgement, and the Antarctic ice sheet is only one possible climate-related application. We recommend indicators or signposts that characterize successful science-based uncertainty quantification.
Pattern formation for NO+N H3 on Pt(100): Two-dimensional numerical results
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2005-01-01
The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pt(100) surface consists of seven coupled ordinary differential equations (ODE) and shows stable relaxation oscillations with sharp transitions in the relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing waves. In models of related surface reactions such clustered solutions are known to exist only under a global coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results and discuss some shortcomings of the model.
NASA Astrophysics Data System (ADS)
Gurin, A. M.; Kovalev, O. B.
2013-06-01
The work is devoted to the mathematical modelling and numerical solution of the problems of conjugate micro-convection, which arises under the laser radiation action in the metal melt with surface-active refractory disperse components added for the modification, hardening, and doping of the treated surface. A multi-vortex structure of the melt flow has been obtained, the number of vortices in which depends on the surface tension variation, on the temperature and power of laser radiation. Special attention is paid to the numerical modelling of the behavior in the melt of the substrate of disperse admixture consisting of the tungsten carbide particles. The role of microconvection in the distribution of powder particles in the surface layer of the substrate after its cooling is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@harbor.kobe-u.ac.jp, E-mail: sano@ile.osaka-u.ac.jp
2014-10-10
The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, canmore » be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.« less
[Numerical finite element modeling of custom car seat using computer aided design].
Huang, Xuqi; Singare, Sekou
2014-02-01
A good cushion can not only provide the sitter with a high comfort, but also control the distribution of the hip pressure to reduce the incidence of diseases. The purpose of this study is to introduce a computer-aided design (CAD) modeling method of the buttocks-cushion using numerical finite element (FE) simulation to predict the pressure distribution on the buttocks-cushion interface. The buttock and the cushion model geometrics were acquired from a laser scanner, and the CAD software was used to create the solid model. The FE model of a true seated individual was developed using ANSYS software (ANSYS Inc, Canonsburg, PA). The model is divided into two parts, i.e. the cushion model made of foam and the buttock model represented by the pelvis covered with a soft tissue layer. Loading simulations consisted of imposing a vertical force of 520N on the pelvis, corresponding to the weight of the user upper extremity, and then solving iteratively the system.
Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shih-Po; Chen, Yijung; Zeng, Danielle
2017-04-06
In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for themore » crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.« less
Comparative analysis of numerical and experimental data of orthodontic mini-implants.
Chatzigianni, Athina; Keilig, Ludger; Duschner, Heinz; Götz, Hermann; Eliades, Theodore; Bourauel, Christoph
2011-10-01
The purpose of this study was to compare numerical simulation data derived from finite element analysis (FEA) to experimental data on mini-implant loading. Nine finite element (FE) models of mini-implants and surrounding bone were derived from corresponding experimental specimens. The animal bone in the experiment consisted of bovine rib. The experimental groups were based on implant type, length, diameter, and angle of insertion. One experimental specimen was randomly selected from each group and was digitized in a microCT scanner. The FE models consisted of bone pieces containing Aarhus mini-implants with dimensions 1.5 × 7 mm and 1.5 × 9 mm or LOMAS mini-implants (dimensions 1.5 × 7 mm, 1.5 × 9 mm, and 2 × 7 mm). Mini-implants were inserted in two different ways, perpendicular to the bone surface or at 45 degrees to the direction of the applied load. Loading and boundary conditions in the FE models were adjusted to match the experimental situation, with the force applied on the neck of the mini-implants, along the mesio-distal direction up to a maximum of 0.5 N. Displacement and rotation of mini-implants after force application calculated by FEA were compared to previously recorded experimental deflections of the same mini-implants. Analysis of data with the Altman-Bland test and the Youden plot demonstrated good agreement between numerical and experimental findings (P = not significant) for the models selected. This study provides further evidence of the appropriateness of the FEA as an investigational tool in relevant research.
Analysis Model and Numerical Simulation of Thermoelectric Response of CFRP Composites
NASA Astrophysics Data System (ADS)
Lin, Yueguo
2018-05-01
An electric current generates Joule heating, and under steady state conditions, a sample exhibits a balance between the strength dissipated by the Joule effect and the heat exchange with the environment by radiation and convection. In the present paper, theoretical model, numerical FEM and experimental methods have been used to analyze the radiation and free convection properties in CFRP composite samples heated by an electric current. The materials employed in these samples have applications in many aeronautic devices. This study addresses two types of composite materials, UD [0]8 and QI [45/90/-45/0]S, which were prepared for thermoelectric experiments. A DC electric current (ranging from 1A to 8A) was injected through the specimen ends to find the coupling effect between the electric current and temperature. An FE model and simplified thermoelectric analysis model are presented in detail to represent the thermoelectric data. These are compared with the experimental results. All of the test equipments used to obtain the experimental data and the numerical simulations are characterized, and we find that the numerical simulations correspond well with the experiments. The temperature of the surface of the specimen is almost proportional to the electric current. The simplified analysis model was used to calculate the balance time of the temperature, which is consistent throughout all of the experimental investigations.
An algebraic method for constructing stable and consistent autoregressive filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, University Park, PA 16802; Hong, Hoon, E-mail: hong@ncsu.edu
2015-02-15
In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides amore » discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern.« less
NASA Technical Reports Server (NTRS)
Turon, Albert; Camanho, Pedro P.; Costa, Josep; Davila, Carlos G.
2004-01-01
A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics (DM). The constitutive equations that result from the variation of the free energy with damage are used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. Interfacial penetration of two adjacent layers after complete decohesion is prevented by the formulation of the free energy. The model is implemented into the commercial finite element code ABAQUS by means of a user-written decohesion element. Finally, the numerical predictions given by the model are compared with experimental results.
Model Package Report: Central Plateau Vadose Zone Geoframework Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, Sarah D.
The purpose of the Central Plateau Vadose Zone (CPVZ) Geoframework model (GFM) is to provide a reasonable, consistent, and defensible three-dimensional (3D) representation of the vadose zone beneath the Central Plateau at the Hanford Site to support the Composite Analysis (CA) vadose zone contaminant fate and transport models. The GFM is a 3D representation of the subsurface geologic structure. From this 3D geologic model, exported results in the form of point, surface, and/or volumes are used as inputs to populate and assemble the various numerical model architectures, providing a 3D-layered grid that is consistent with the GFM. The objective ofmore » this report is to define the process used to produce a hydrostratigraphic model for the vadose zone beneath the Hanford Site Central Plateau and the corresponding CA domain.« less
NASA Astrophysics Data System (ADS)
Pilz, Tobias; Francke, Till; Bronstert, Axel
2016-04-01
Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.
NASA Astrophysics Data System (ADS)
Castiglioni, Giacomo
Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general cases. Additionally, a two-dimensional sweep of angles of attack from 0° to 5° is performed showing a qualitative prediction of the jump in lift and drag coefficients due to the appearance of the laminar separation bubble. The numerical dissipation inhibits the predictive capabilities of large eddy simulations whenever it is of the same order of magnitude or larger than the sub-grid scale dissipation. The need to estimate the numerical dissipation is most pressing for low-order methods employed by commercial computational fluid dynamics codes. Following the recent work of Schranner et al., the equations and procedure for estimating the numerical dissipation rate and the numerical viscosity in a commercial code are presented. The method allows for the computation of the numerical dissipation rate and numerical viscosity in the physical space for arbitrary sub-domains in a self-consistent way, using only information provided by the code in question. The method is first tested for a three-dimensional Taylor-Green vortex flow in a simple cubic domain and compared with benchmark results obtained using an accurate, incompressible spectral solver. Afterwards the same procedure is applied for the first time to a realistic flow configuration, specifically to the above discussed laminar separation bubble flow over a NACA 0012 airfoil. The method appears to be quite robust and its application reveals that for the code and the flow in question the numerical dissipation can be significantly larger than the viscous dissipation or the dissipation of the classical Smagorinsky sub-grid scale model, confirming the previously qualitative finding.
Numerical Characterization of Piezoceramics Using Resonance Curves
Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar
2016-01-01
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875
Numerical Characterization of Piezoceramics Using Resonance Curves.
Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar
2016-01-27
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.
Dynamical phase separation using a microfluidic device: experiments and modeling
NASA Astrophysics Data System (ADS)
Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team
2017-11-01
We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.
On-line Bayesian model updating for structural health monitoring
NASA Astrophysics Data System (ADS)
Rocchetta, Roberto; Broggi, Matteo; Huchet, Quentin; Patelli, Edoardo
2018-03-01
Fatigue induced cracks is a dangerous failure mechanism which affects mechanical components subject to alternating load cycles. System health monitoring should be adopted to identify cracks which can jeopardise the structure. Real-time damage detection may fail in the identification of the cracks due to different sources of uncertainty which have been poorly assessed or even fully neglected. In this paper, a novel efficient and robust procedure is used for the detection of cracks locations and lengths in mechanical components. A Bayesian model updating framework is employed, which allows accounting for relevant sources of uncertainty. The idea underpinning the approach is to identify the most probable crack consistent with the experimental measurements. To tackle the computational cost of the Bayesian approach an emulator is adopted for replacing the computationally costly Finite Element model. To improve the overall robustness of the procedure, different numerical likelihoods, measurement noises and imprecision in the value of model parameters are analysed and their effects quantified. The accuracy of the stochastic updating and the efficiency of the numerical procedure are discussed. An experimental aluminium frame and on a numerical model of a typical car suspension arm are used to demonstrate the applicability of the approach.
Evaluation of Tsunami Run-Up on Coastal Areas at Regional Scale
NASA Astrophysics Data System (ADS)
González, M.; Aniel-Quiroga, Í.; Gutiérrez, O.
2017-12-01
Tsunami hazard assessment is tackled by means of numerical simulations, giving as a result, the areas flooded by tsunami wave inland. To get this, some input data is required, i.e., the high resolution topobathymetry of the study area, the earthquake focal mechanism parameters, etc. The computational cost of these kinds of simulations are still excessive. An important restriction for the elaboration of large scale maps at National or regional scale is the reconstruction of high resolution topobathymetry on the coastal zone. An alternative and traditional method consists of the application of empirical-analytical formulations to calculate run-up at several coastal profiles (i.e. Synolakis, 1987), combined with numerical simulations offshore without including coastal inundation. In this case, the numerical simulations are faster but some limitations are added as the coastal bathymetric profiles are very simply idealized. In this work, we present a complementary methodology based on a hybrid numerical model, formed by 2 models that were coupled ad hoc for this work: a non-linear shallow water equations model (NLSWE) for the offshore part of the propagation and a Volume of Fluid model (VOF) for the areas near the coast and inland, applying each numerical scheme where they better reproduce the tsunami wave. The run-up of a tsunami scenario is obtained by applying the coupled model to an ad-hoc numerical flume. To design this methodology, hundreds of worldwide topobathymetric profiles have been parameterized, using 5 parameters (2 depths and 3 slopes). In addition, tsunami waves have been also parameterized by their height and period. As an application of the numerical flume methodology, the coastal parameterized profiles and tsunami waves have been combined to build a populated database of run-up calculations. The combination was tackled by means of numerical simulations in the numerical flume The result is a tsunami run-up database that considers real profiles shape, realistic tsunami waves, and optimized numerical simulations. This database allows the calculation of the run-up of any new tsunami wave by interpolation on the database, in a short period of time, based on the tsunami wave characteristics provided as an output of the NLSWE model along the coast at a large scale domain (regional or National scale).
Validated numerical simulation model of a dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.
2013-04-01
Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.
NASA Technical Reports Server (NTRS)
Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette
2005-01-01
Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Integration of Local Observations into the One Dimensional Fog Model PAFOG
NASA Astrophysics Data System (ADS)
Thoma, Christina; Schneider, Werner; Masbou, Matthieu; Bott, Andreas
2012-05-01
The numerical prediction of fog requires a very high vertical resolution of the atmosphere. Owing to a prohibitive computational effort of high resolution three dimensional models, operational fog forecast is usually done by means of one dimensional fog models. An important condition for a successful fog forecast with one dimensional models consists of the proper integration of observational data into the numerical simulations. The goal of the present study is to introduce new methods for the consideration of these data in the one dimensional radiation fog model PAFOG. First, it will be shown how PAFOG may be initialized with observed visibilities. Second, a nudging scheme will be presented for the inclusion of measured temperature and humidity profiles in the PAFOG simulations. The new features of PAFOG have been tested by comparing the model results with observations of the German Meteorological Service. A case study will be presented that reveals the importance of including local observations in the model calculations. Numerical results obtained with the modified PAFOG model show a distinct improvement of fog forecasts regarding the times of fog formation, dissipation as well as the vertical extent of the investigated fog events. However, model results also reveal that a further improvement of PAFOG might be possible if several empirical model parameters are optimized. This tuning can only be realized by comprehensive comparisons of model simulations with corresponding fog observations.
Allometric scaling theory applied to FIA biomass estimation
David C. Chojnacky
2002-01-01
Tree biomass estimates in the Forest Inventory and Analysis (FIA) database are derived from numerous methodologies whose abundance and complexity raise questions about consistent results throughout the U.S. A new model based on allometric scaling theory ("WBE") offers simplified methodology and a theoretically sound basis for improving the reliability and...
The structure of shock wave in a gas consisting of ideally elastic, rigid spherical molecules
NASA Technical Reports Server (NTRS)
Cheremisin, F. G.
1972-01-01
Principal approaches are examined to the theoretical study of the shock layer structure. The choice of a molecular model is discussed and three procedures are formulated. These include a numerical calculation method, solution of the kinetic relaxation equation, and solution of the Boltzmann equation.
An Idealized Direct-Contact Biomass Pyrolysis Reactor Model
NASA Technical Reports Server (NTRS)
Miller, R. S.; Bellan, J.
1996-01-01
A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.
Extending semi-numeric reionization models to the first stars and galaxies
NASA Astrophysics Data System (ADS)
Koh, Daegene; Wise, John H.
2018-03-01
Semi-numeric methods have made it possible to efficiently model the epoch of reionization (EoR). While most implementations involve a reduction to a simple three-parameter model, we introduce a new mass-dependent ionizing efficiency parameter that folds in physical parameters that are constrained by the latest numerical simulations. This new parametrization enables the effective modelling of a broad range of host halo masses containing ionizing sources, extending from the smallest Population III host haloes with M ˜ 106 M⊙, which are often ignored, to the rarest cosmic peaks with M ˜ 1012 M⊙ during EoR. We compare the resulting ionizing histories with a typical three-parameter model and also compare with the latest constraints from the Planck mission. Our model results in an optical depth due to Thomson scattering, τe = 0.057, that is consistent with Planck. The largest difference in our model is shown in the resulting bubble size distributions that peak at lower characteristic sizes and are broadened. We also consider the uncertainties of the various physical parameters, and comparing the resulting ionizing histories broadly disfavours a small contribution from galaxies. The smallest haloes cease a meaningful contribution to the ionizing photon budget after z = 10, implying that they play a role in determining the start of EoR and little else.
Investigation of the short argon arc with hot anode. II. Analytical model
NASA Astrophysics Data System (ADS)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.
2018-01-01
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes to the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. Good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.
Investigation of the short argon arc with hot anode. II. Analytical model
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...
2018-01-22
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
Investigation of the short argon arc with hot anode. II. Analytical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
Simplified and refined structural modeling for economical flutter analysis and design
NASA Technical Reports Server (NTRS)
Ricketts, R. H.; Sobieszczanski, J.
1977-01-01
A coordinated use of two finite-element models of different levels of refinement is presented to reduce the computer cost of the repetitive flutter analysis commonly encountered in structural resizing to meet flutter requirements. One model, termed a refined model (RM), represents a high degree of detail needed for strength-sizing and flutter analysis of an airframe. The other model, called a simplified model (SM), has a relatively much smaller number of elements and degrees-of-freedom. A systematic method of deriving an SM from a given RM is described. The method consists of judgmental and numerical operations to make the stiffness and mass of the SM elements equivalent to the corresponding substructures of RM. The structural data are automatically transferred between the two models. The bulk of analysis is performed on the SM with periodical verifications carried out by analysis of the RM. In a numerical example of a supersonic cruise aircraft with an arrow wing, this approach permitted substantial savings in computer costs and acceleration of the job turn-around.
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
Li, Yan
2017-05-25
The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.
Towards three-dimensional continuum models of self-consistent along-strike megathrust segmentation
NASA Astrophysics Data System (ADS)
Pranger, Casper; van Dinther, Ylona; May, Dave; Le Pourhiet, Laetitia; Gerya, Taras
2016-04-01
At subduction megathrusts, propagation of large ruptures may be confined between the up-dip and down-dip limits of the seismogenic zone. This opens a primary role for lateral rupture dimensions to control the magnitude and severity of megathrust earthquakes. The goal of this study is to improve our understanding of the ways in which the inherent variability of the subduction interface may influence the degree of interseismic locking, and the propensity of a rupture to propagate over regions of variable slip potential. The global absence of a historic record sufficiently long to base risk assessment on, makes us rely on numerical modelling as a way to extend our understanding of the spatio-temporal occurrence of earthquakes. However, the complex interaction of the subduction stress environment, the variability of the subduction interface, and the structure and deformation of the crustal wedge has made it very difficult to construct comprehensive numerical models of megathrust segmentation. We develop and exploit the power of a plastic 3D continuum representation of the subduction megathrust, as well as off-megathrust faulting to model the long-term tectonic build-up of stresses, and their sudden seismic release. The sheer size of the 3D problem, and the time scales covering those of tectonics as well as seismology, force us to explore efficient and accurate physical and numerical techniques. We thus focused our efforts on developing a staggered grid finite difference code that makes use of the PETSc library for massively parallel computing. The code incorporates a newly developed automatic discretization algorithm, which enables it to handle a wide variety of equations with relative ease. The different physical and numerical ingredients - like attenuating visco-elasto-plastic materials, frictional weakening and inertially driven seismic release, and adaptive time marching schemes - most of which have been implemented and benchmarked individually - are now combined into one algorithm. We are working towards presenting the first benchmarked 3D dynamic rupture models as an important step towards seismic cycle modelling of megathrust segmentation in a three-dimensional subduction setting with slow tectonic loading, self consistent fault development, and spontaneous seismicity.
Gao, Hao; Wang, Huiming; Berry, Colin; Luo, Xiaoyu; Griffith, Boyce E
2014-01-01
Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model yields results that are in good agreement with those of the conventional FE model under diastolic loading conditions, and the predictions of the LV model using either numerical method are shown to be consistent with previous computational and experimental data. These results are among the first to analyze the stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE simulation framework and to validate the IB/FE model. Moreover, this work represents an important step toward using such models for fully dynamic fluid–structure interaction simulations of the heart. © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:24799090
The phonon-coupling model for Skyrme forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyutorovich, N.; Tselyaev, V.; Speth, J., E-mail: J.Speth@fz-juelich.de
2016-11-15
A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.
Persistent superconductor currents in holographic lattices.
Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo
2014-07-04
We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.
Numerical simulation on behaviour of timber-concrete composite beams in fire
NASA Astrophysics Data System (ADS)
Du, Hao; Hu, Xiamin; Zhang, Bing; Minli, Yao
2017-08-01
This paper established sequentially coupled thermal-mechanical models of timber--concrete composite (TCC) beams by finite element software ANSYS to investigate the fire resistance of TCC beam. Existing experimental results were used to verify the coupled thermal-mechanical model. The influencing parameters consisted of the width of timber beam, the thickness of the concrete slab and the timber board. Based on the numerical results, the effects of these parameters on fire resistance of TCC beams were investigated in detail. The results showed that modeling results agreed well with test results, and verified the reliability of the finite element model. The width of the timber beam had a significant influence on the fire resistance of TCC beams. The fire resistance of TCC beams would be enhanced by increasing the width of timber beam, the thickness of concrete slab and the timber board.
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2016-03-01
A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.
A consistent transported PDF model for treating differential molecular diffusion
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Zhang, Pei
2016-11-01
Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.
Wu, Liviawati; Mould, Diane R; Perez Ruixo, Juan Jose; Doshi, Sameer
2015-10-01
A population pharmacokinetic pharmacodynamic (PK/PD) model describing the effect of epoetin alfa on hemoglobin (Hb) response in hemodialysis patients was developed. Epoetin alfa pharmacokinetics was described using a linear 2-compartment model. PK parameter estimates were similar to previously reported values. A maturation-structured cytokinetic model consisting of 5 compartments linked in a catenary fashion by first-order cell transfer rates following a zero-order input process described the Hb time course. The PD model described 2 subpopulations, one whose Hb response reflected epoetin alfa dosing and a second whose response was unrelated to epoetin alfa dosing. Parameter estimates from the PK/PD model were physiologically reasonable and consistent with published reports. Numerical and visual predictive checks using data from 2 studies were performed. The PK and PD of epoetin alfa were well described by the model. © 2015, The American College of Clinical Pharmacology.
NASA Astrophysics Data System (ADS)
Ren, Junjie; Guo, Ping
2017-11-01
The real fluid flow in porous media is consistent with the mass conservation which can be described by the nonlinear governing equation including the quadratic gradient term (QGT). However, most of the flow models have been established by ignoring the QGT and little work has been conducted to incorporate the QGT into the flow model of the multiple fractured horizontal (MFH) well with stimulated reservoir volume (SRV). This paper first establishes a semi-analytical model of an MFH well with SRV including the QGT. Introducing the transformed pressure and flow-rate function, the nonlinear model of a point source in a composite system including the QGT is linearized. Then the Laplace transform, principle of superposition, numerical discrete method, Gaussian elimination method and Stehfest numerical inversion are employed to establish and solve the seepage model of the MFH well with SRV. Type curves are plotted and the effects of relevant parameters are analyzed. It is found that the nonlinear effect caused by the QGT can increase the flow capacity of fluid flow and influence the transient pressure positively. The relevant parameters not only have an effect on the type curve but also affect the error in the pressure calculated by the conventional linear model. The proposed model, which is consistent with the mass conservation, reflects the nonlinear process of the real fluid flow, and thus it can be used to obtain more accurate transient pressure of an MFH well with SRV.
A nonlinear dynamic finite element approach for simulating muscular hydrostats.
Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A
2014-01-01
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching.
Response to perturbations for granular flow in a hopper
NASA Astrophysics Data System (ADS)
Wambaugh, John F.; Behringer, Robert P.; Matthews, John V.; Gremaud, Pierre A.
2007-11-01
We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of the hopper. We are able to test commonly used constitutive relations and observe granular flow phenomena that we can model numerically. Unperturbed conical hopper flow has been described as a radial velocity field with no azimuthal component. Guided by numerical models based upon continuum descriptions, we find experimental evidence for secondary, azimuthal circulation in response to perturbation of the symmetry with respect to gravity by tilting. For small perturbations we can discriminate between constitutive relations, based upon the agreement between the numerical predictions they produce and our experimental results. We find that the secondary circulation can be suppressed as wall friction is varied, also in agreement with numerical predictions. For large tilt angles we observe the abrupt onset of circulation for parameters where circulation was previously suppressed. Finally, we observe that for large tilt angles the fluctuations in velocity grow, independent of the onset of circulation.
NASA Astrophysics Data System (ADS)
Dobe, Z.; Shapiro, V. D.; Quest, K.; Szego, K.; Huba, J.
1998-11-01
Previously[1], we proposed a model of the planetary ions pick-up by the shocked solar wind flow developing in the mantle-turbulent boundary region surrounding the ionospheres of non-magnetic planets-Mars and Venus. In the present paper we are modifying this model taking into account the flow of the planetary elections immediately pick-up by E x B forces of the shocked solar wind. It is shown that flow of the cold planetary electrons drives a strong hydrodynamical instability of the electrostatic whistlers efficiently coupling planetary ions with the flow of the solar wind. The linear stage of the instability is investigated both analytically and numerically, and results are found to be in a good agreement. Nonlunear stage of the instability is investigated with the modified numerical hybrid code[2], and demonstrates both effects of acceleration and heating of the planetary ions by the solar wind. Field aligned electron acceleration is also investigated in a test particle approximation using wave power spectrum obtained in a self-consistent numerical simulation.
Meshless analysis of shear deformable shells: the linear model
NASA Astrophysics Data System (ADS)
Costa, Jorge C.; Tiago, Carlos M.; Pimenta, Paulo M.
2013-10-01
This work develops a kinematically linear shell model departing from a consistent nonlinear theory. The initial geometry is mapped from a flat reference configuration by a stress-free finite deformation, after which, the actual shell motion takes place. The model maintains the features of a complete stress-resultant theory with Reissner-Mindlin kinematics based on an inextensible director. A hybrid displacement variational formulation is presented, where the domain displacements and kinematic boundary reactions are independently approximated. The resort to a flat reference configuration allows the discretization using 2-D Multiple Fixed Least-Squares (MFLS) on the domain. The consistent definition of stress resultants and consequent plane stress assumption led to a neat formulation for the analysis of shells. The consistent linear approximation, combined with MFLS, made possible efficient computations with a desired continuity degree, leading to smooth results for the displacement, strain and stress fields, as shown by several numerical examples.
Development of a hydraulic model of the human systemic circulation
NASA Technical Reports Server (NTRS)
Sharp, M. K.; Dharmalingham, R. K.
1999-01-01
Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.
Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.
2015-08-06
This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less
Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak
Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...
2015-04-07
A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less
Double seismic zone for deep earthquakes in the izu-bonin subduction zone.
Iidaka, T; Furukawa, Y
1994-02-25
A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.
Reduced detonation kinetics and detonation structure in one- and multi-fuel gaseous mixtures
NASA Astrophysics Data System (ADS)
Fomin, P. A.; Trotsyuk, A. V.; Vasil'ev, A. A.
2017-10-01
Two-step approximate models of chemical kinetics of detonation combustion of (i) one-fuel (CH4/air) and (ii) multi-fuel gaseous mixtures (CH4/H2/air and CH4/CO/air) are developed for the first time. The models for multi-fuel mixtures are proposed for the first time. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier’s principle. Constants of the models have a clear physical meaning. Advantages of the kinetic model for detonation combustion of methane has been demonstrated via numerical calculations of a two-dimensional structure of the detonation wave in a stoichiometric and fuel-rich methane-air mixtures and stoichiometric methane-oxygen mixture. The dominant size of the detonation cell, determines in calculations, is in good agreement with all known experimental data.
Numerical approaches to model perturbation fire in turing pattern formations
NASA Astrophysics Data System (ADS)
Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.
2017-11-01
Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.
Efficient implicit LES method for the simulation of turbulent cavitating flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan
2016-07-01
We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
Conductivity map from scanning tunneling potentiometry.
Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X-G
2016-08-01
We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.
NASA Astrophysics Data System (ADS)
Le Picard, Romain; Song, Sang-Heon; Porter, David; Kushner, Mark; Girshick, Steven
2014-10-01
Silicon nanocrystals (SiNCs) are of interest for applications in the photonics, electronics, and biomedical areas. Nonthermal plasmas offer several potential advantages for synthesizing SiNCs. In this work, we have developed a numerical model of a capacitively coupled RF plasma used for the synthesis of SiNCs. The plasma, consisting of silane diluted in argon at a total pressure of about 2 Torr, flows through a narrow quartz tube with two ring electrodes. The numerical model is 2D, assuming axisymmetry. An aerosol sectional model is added to the Hybrid Plasma Equipment Model developed by Kushner and coworkers. The aerosol module solves for aerosol size distributions and size-dependent charge distributions. A detailed chemical kinetic mechanism considering silicon hydride species containing up to 5 Si atoms is used to model particle nucleation and surface growth. The sectional model calculates coagulation, particle transport by electric force, neutral drag and ion drag, and particle charging using orbital motion limited theory. Simulation results are presented for selected operating conditions, and are compared to experimental results. This work was partially supported by the US Dept. of Energy Office of Fusion Energy Science (DE-SC0001939), the US National Science Foundation (CHE-124752), and the Minnesota Supercomputing Institute.
An economical method of analyzing transient motion of gas-lubricated rotor-bearing systems.
NASA Technical Reports Server (NTRS)
Falkenhagen, G. L.; Ayers, A. L.; Barsalou, L. C.
1973-01-01
A method of economically evaluating the hydrodynamic forces generated in a gas-lubricated tilting-pad bearing is presented. The numerical method consists of solving the case of the infinite width bearing and then converting this solution to the case of the finite bearing by accounting for end leakage. The approximate method is compared to the finite-difference solution of Reynolds equation and yields acceptable accuracy while running about one-hundred times faster. A mathematical model of a gas-lubricated tilting-pad vertical rotor systems is developed. The model is capable of analyzing a two-bearing-rotor system in which the rotor center of mass is not at midspan by accounting for gyroscopic moments. The numerical results from the model are compared to actual test data as well as analytical results of other investigators.
Newtonian nudging for a Richards equation-based distributed hydrological model
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark
The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.
Ignition and structure of a laminar diffusion flame in the field of a vortex
NASA Technical Reports Server (NTRS)
Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.
1991-01-01
The distortion of flames in flows with vortical motion is examined via asymptotic analysis and numerical simulation. The model consists of a constant density, one step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a vortex. The evolution in time of the temperature and mass fraction fields is followed. Emphasis is placed on the ignition time and location as a function of vortex Reynolds number and initial temperature differences of the reacting species. The study brings out the influence of the vortex on the chemical reaction. In all phases, good agreement is observed between asymptotic analysis and the full numerical solution of the model equations.
K-TIF: a two-fluid computer program for downcomer flow dynamics. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsden, A.A.; Harlow, F.H.
1977-10-01
The K-TIF computer program has been developed for numerical solution of the time-varying dynamics of steam and water in a pressurized water reactor downcomer. The current status of physical and mathematical modeling is presented in detail. The report also contains a complete description of the numerical solution technique, a full description and listing of the computer program, instructions for its use, with a sample printout for a specific test problem. A series of calculations, performed with no change in the modeling parameters, shows consistent agreement with the experimental trends over a wide range of conditions, which gives confidence to themore » calculations as a basis for investigating the complicated physics of steam-water flows in the downcomer.« less
Numerical simulation of large-scale ocean-atmosphere coupling and the ocean's role in climate
NASA Technical Reports Server (NTRS)
Gates, W. L.
1983-01-01
The problem of reducing model generated sigma coordinate data to pressure levels is considered. A mass consistent scheme for performing budget analyses is proposed, wherein variables interpolated to a given pressure level are weighted according to the mass between a nominal pressure level above and either a nominal pressure level below or the Earth's surface, whichever is closer. The method is applied to the atmospheric energy cycle as simulated by the OSU two level atmospheric general circulation model. The results are more realistic than sigma coordinate analyses with respect to eddy decomposition, and are in agreement with the sigma coordinate evaluation of the numerical energy sink. Comparison with less sophisticated budget schemes indicates superiority locally, but not globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Hai P.; Cambier, Jean -Luc
Here, we present a numerical model and a set of conservative algorithms for Non-Maxwellian plasma kinetics with inelastic collisions. These algorithms self-consistently solve for the time evolution of an isotropic electron energy distribution function interacting with an atomic state distribution function of an arbitrary number of levels through collisional excitation, deexcitation, as well as ionization and recombination. Electron-electron collisions, responsible for thermalization of the electron distribution, are also included in the model. The proposed algorithms guarantee mass/charge and energy conservation in a single step, and is applied to the case of non-uniform gridding of the energy axis in the phasemore » space of the electron distribution function. Numerical test cases are shown to demonstrate the accuracy of the method and its conservation properties.« less
Speculations on the origin and evolution of the Utopia-Elysium lowlands of Mars
NASA Technical Reports Server (NTRS)
Frey, Herbert V.; Schultz, Richard A.
1990-01-01
This paper proposes a qualitative model for the origin of the Utopia-Elysium northern lowlands on eastern Mars in terms of the long-term evolution of two large overlapping impact basins. The model, which is consistent with both the observed geologic constraints and more quantitative results obtained by numerical modeling of smaller (Orientale-size) impact basins, is shown to qualitatively account for the major topographic variation seen in the Utopia-Elysium region, including the overall 'lowness' of the area and localized depressions.
Rainfall thresholds for the initiation of debris flows at La Honda, California
Wilson, R.C.; Wieczorek, G.F.
1995-01-01
A simple numerical model, based on the physical analogy of a leaky barrel, can simulate significant features of the interaction between rainfall and shallow-hillslope pore pressures. The leaky-barrel-model threshold is consistent with, but slightly higher than, an earlier, purely empirical, threshold. The number of debris flows triggered by a storm can be related to the time and amount by which the leaky-barrel-model response exceeded the threshold during the storm. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuo, Rui; Wu, C. F. Jeff
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, D.; Firpo, Marie-Christine
2002-11-01
We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.
Validating a hydrodynamic framework for long-term modelling of the German Bight
NASA Astrophysics Data System (ADS)
Koesters, Frank; Pluess, Andreas; Heyer, Harro; Kastens, Marko; Sehili, Aissa
2010-05-01
The intention of the "AufMod" project is to set up a modelling framework for questions concerning the large-scale, long-term morphodynamic evolution of the German Bight. First a hydrodynamic model has been set up which includes the entire North Sea and a sophisticated representation of the German Bight. In a second step, simulations of sediment transport and morphodynamic changes will be processed. This paper deals with the calibration and validation process for the hydrodynamic model in detail. The starting point for "AufMod" was the aim to better understand the morphodynamic processes in the German Bight. Changes in bottom topography need to be predicted to ensure a safe and easy transport through the German waterways leading to ports at the German coast such as Hamburg and Bremerhaven. Within "AufMod" this question is addressed through a combined effort of gaining a comprehensive sedimentological and bathymetric data set as well as running different numerical models. The model is based on the numerical method UnTRIM (Casulli and Zanolli, 2002). The model uses an unstructured grid in the horizontal to provide a good representation of the complex topography. The spatial resolution increases from about 20 km in the North Sea to 20 m within the estuaries. The model forcing represents conditions for the year 2006 and consists of wind stress at the surface, water level elevation and salinity at the open boundaries as well as freshwater inflows. Temperature is not taken into account. For the model validation, there exists a large number of over 40 hydrodynamic monitoring stations which are used to compare modelled and measured data. The calibration process consists of adapting the tidal components at the open boundaries following the approach of Pluess (2003). The validation process includes the analysis of tidal components of water level elevation and current values as well as an analysis of tidal characteristic values, e.g. tidal low and high water. Based on these numerical measures, the representation of the underlying physics is quantified by using a skill score. The overall hydrodynamic structure is represented well by the model and will be starting point for the following morphodynamic experiments. Literature Casulli and Zanolli (2002) V. Casulli and P. Zanolli. Semi-Implicit Numerical Modelling of Non-Hydrostatic Free-surface Flows for Environmental Problems. Mathematical and Computer Modelling, 36:1131-1149, 2002. Pluess (2003) A. Pluess. Das Nordseemodell der BAW zur Simulation der Tide in der Deutschen Bucht. Die Kueste, Heft 67, 2003, ISBN 3-8042-1058-9, pp 83-128
NASA Astrophysics Data System (ADS)
Vijayashree, M.; Uthayakumar, R.
2017-09-01
Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.
Belcher, Wayne R.; Sweetkind, Donald S.; Faunt, Claudia C.; Pavelko, Michael T.; Hill, Mary C.
2017-01-19
Since the original publication of the Death Valley regional groundwater flow system (DVRFS) numerical model in 2004, more information on the regional groundwater flow system in the form of new data and interpretations has been compiled. Cooperators such as the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, the Department of Energy, and Nye County, Nevada, recognized a need to update the existing regional numerical model to maintain its viability as a groundwater management tool for regional stakeholders. The existing DVRFS numerical flow model was converted to MODFLOW-2005, updated with the latest available data, and recalibrated. Five main data sets were revised: (1) recharge from precipitation varying in time and space, (2) pumping data, (3) water-level observations, (4) an updated regional potentiometric map, and (5) a revision to the digital hydrogeologic framework model.The resulting DVRFS version 2.0 (v. 2.0) numerical flow model simulates groundwater flow conditions for the Death Valley region from 1913 to 2003 to correspond to the time frame for the most recently published (2008) water-use data. The DVRFS v 2.0 model was calibrated by using the Tikhonov regularization functionality in the parameter estimation and predictive uncertainty software PEST. In order to assess the accuracy of the numerical flow model in simulating regional flow, the fit of simulated to target values (consisting of hydraulic heads and flows, including evapotranspiration and spring discharge, flow across the model boundary, and interbasin flow; the regional water budget; values of parameter estimates; and sensitivities) was evaluated. This evaluation showed that DVRFS v. 2.0 simulates conditions similar to DVRFS v. 1.0. Comparisons of the target values with simulated values also indicate that they match reasonably well and in some cases (boundary flows and discharge) significantly better than in DVRFS v. 1.0.
NASA Astrophysics Data System (ADS)
Marzec, K.; Kucaba-Pietal, A.
2016-09-01
A series of numerical analysis have been performed to investigate heat transfer characteristics of an impingement cooling array of ten jets directed to the flat surface with different heat flux qw(x). A three-dimensional finite element model was used to solve equations of heat and mass transfer. The study focused on thermal stresses reduction on a cooled surface and aims at answering the question how the Nusselt number distribution on the cooled surface is affected by various inlet flow parameters for different heat flux distributions. The setup consists of a cylindrical plenum with an inline array of ten impingement jets. Simulation has been performed using the Computational Fluid Dynamics (CFD) code Ansys CFX. The k - ω shear stress transport (SST) turbulence model is used in calculations. The numerical analysis of the different mesh density results in good convergence of the GCI index, what excluded mesh size dependency. The physical model is simplified by using the steady state analysis and the incompressible and viscous flow of the fluid.
Heat Transfer In High-Temperature Multilayer Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Miller, Stephen D.; Cunnington, George R.
2006-01-01
The combined radiation/conduction heat transfer in high-temperature multilayer insulations for typical reentry of reusable launch vehicles from low Earth orbit was investigated experimentally and numerically. The high-temperature multilayer insulation investigated consisted of gold-coated reflective foils separated by alumina fibrous insulation spacers. The steady-state heat transfer through four multilayer insulation configurations was investigated experimentally over the temperature range of 300-1300 K and environmental pressure range of 1.33 10(exp -5)-101.32 kPa. It was shown that including the reflective foils reduced the effective thermal conductivity compared to fibrous insulation sample at 1.5 times the density of the multilayer sample. A finite volume numerical model was developed to solve the governing combined radiation/conduction heat transfer equations. The radiation heat transfer in the fibrous insulation spacers was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. The numerical model was validated by comparison with steady-state experimental data. The root mean square deviation between the predicted and measured effective thermal conductivity of the samples was 9.5%.
Normal modes of the shallow water system on the cubed sphere
NASA Astrophysics Data System (ADS)
Kang, H. G.; Cheong, H. B.; Lee, C. H.
2017-12-01
Spherical harmonics expressed as the Rossby-Haurwitz waves are the normal modes of non-divergent barotropic model. Among the normal modes in the numerical models, the most unstable mode will contaminate the numerical results, and therefore the investigation of normal mode for a given grid system and a discretiztaion method is important. The cubed-sphere grid which consists of six identical faces has been widely adopted in many atmospheric models. This grid system is non-orthogonal grid so that calculation of the normal mode is quiet challenge problem. In the present study, the normal modes of the shallow water system on the cubed sphere discretized by the spectral element method employing the Gauss-Lobatto Lagrange interpolating polynomials as orthogonal basis functions is investigated. The algebraic equations for the shallow water equation on the cubed sphere are derived, and the huge global matrix is constructed. The linear system representing the eigenvalue-eigenvector relations is solved by numerical libraries. The normal mode calculated for the several horizontal resolution and lamb parameters will be discussed and compared to the normal mode from the spherical harmonics spectral method.
Mid-infrared rogue wave generation in chalcogenide fibers
NASA Astrophysics Data System (ADS)
Liu, Lai; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake
2017-02-01
The supercontinuum generation and rogue wave generation in a step-index chalcogenide fiber are numerically investigated by solving the generalized nonlinear Schrödinger equation. Two noise models have been used to model the noise of the pump laser pulses to investigate the consistency of the noise modeling in rogue wave generation. First noise model is 0.1% amplitude noise which has been used in the report of rogue wave generation. Second noise model is the widely used one-photon-per-mode-noise and phase diffusion-noise. The results show that these two commonly used noise models have a good consistency in the simulations of rogue wave generation. The results also show that if the pump laser pulses carry more noise, the chance of a rogue wave with a high peak power becomes higher. This is harmful to the SC generation by using picosecond lasers in the chalcogenide fibers.
NASA Astrophysics Data System (ADS)
Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie
2016-06-01
In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.
Numerical-experimental investigation of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.
47 CFR 2.926 - FCC identifier.
Code of Federal Regulations, 2012 CFR
2012-10-01
... applicant/grantee in the code assignment(s). (c) A grantee code may consist of Arabic numerals, capital... product code assigned by the grantee shall consist of a series of Arabic numerals, capital letters or a combination thereof, and may include the dash or hyphen (-). The total of Arabic numerals, capital letters and...
47 CFR 2.926 - FCC identifier.
Code of Federal Regulations, 2014 CFR
2014-10-01
... applicant/grantee in the code assignment(s). (c) A grantee code may consist of Arabic numerals, capital... product code assigned by the grantee shall consist of a series of Arabic numerals, capital letters or a combination thereof, and may include the dash or hyphen (-). The total of Arabic numerals, capital letters and...
47 CFR 2.926 - FCC identifier.
Code of Federal Regulations, 2013 CFR
2013-10-01
... applicant/grantee in the code assignment(s). (c) A grantee code may consist of Arabic numerals, capital... product code assigned by the grantee shall consist of a series of Arabic numerals, capital letters or a combination thereof, and may include the dash or hyphen (-). The total of Arabic numerals, capital letters and...
Nivala, Michael; de Lange, Enno; Rovetti, Robert; Qu, Zhilin
2012-01-01
Intracellular calcium (Ca) cycling dynamics in cardiac myocytes is regulated by a complex network of spatially distributed organelles, such as sarcoplasmic reticulum (SR), mitochondria, and myofibrils. In this study, we present a mathematical model of intracellular Ca cycling and numerical and computational methods for computer simulations. The model consists of a coupled Ca release unit (CRU) network, which includes a SR domain and a myoplasm domain. Each CRU contains 10 L-type Ca channels and 100 ryanodine receptor channels, with individual channels simulated stochastically using a variant of Gillespie’s method, modified here to handle time-dependent transition rates. Both the SR domain and the myoplasm domain in each CRU are modeled by 5 × 5 × 5 voxels to maintain proper Ca diffusion. Advanced numerical algorithms implemented on graphical processing units were used for fast computational simulations. For a myocyte containing 100 × 20 × 10 CRUs, a 1-s heart time simulation takes about 10 min of machine time on a single NVIDIA Tesla C2050. Examples of simulated Ca cycling dynamics, such as Ca sparks, Ca waves, and Ca alternans, are shown. PMID:22586402
Simulations of Low Power DIII-D Helicon Antenna Coupling
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Thomas
2017-10-01
We present an overview and initial progress for a new project to model coupling of the DIII-D Helicon Antenna. We lay the necessary computational groundwork for the modeling of both low-power and high power helicon antenna operation, by constructing numerical representations for both the antenna hardware and the DIII-D plasma. CAD files containing the detailed geometry of the low power antenna hardware are imported into the VSim software's FDTD plasma model. The plasma can be represented numerically by importing EQDSK or EFIT files. In addition, approximate analytic forms for the ensuing profiles and fields are constructed to facilitate parameter scans in the various regimes of anticipated antenna operation. To verify the accuracy of the numerical plasma and antenna representations, we will then run baseline simulations of low-power antenna operation, and verify that the predictions for loading, linear coupling, and mode partitioning (i.e. into helicon and slow modes) are consistent with the measurements from the low power helicon antenna experimental campaign, as well as with other independent models. Progress on these baseline simulations will be presented, and any inconsistencies and issues that arise during this process will be identified. Support provided by DOE Grant DE-SC0017843.
Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.
Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke
2015-01-07
Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Hagermoser Sanetti, Lisa M.; Williamson, Kathleen M.; Long, Anna C. J.; Kratochwill, Thomas R.
2018-01-01
Numerous evidence-based classroom management strategies to prevent and respond to problem behavior have been identified, but research consistently indicates teachers rarely implement them with sufficient implementation fidelity. The purpose of this study was to evaluate the effectiveness of implementation planning, a strategy involving logistical…
NASA Astrophysics Data System (ADS)
Parsons, R. A.; Nimmo, F.
2010-03-01
SHARAD observations constrain the thickness and dust content of lobate debris aprons (LDAs). Simulations of dust-free ice-sheet flow over a flat surface at 205 K for 10-100 m.y. give LDA lengths and thicknesses that are consistent with observations.
Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect
NASA Astrophysics Data System (ADS)
Novitski, Roman; Scheuer, Jacob; Steinberg, Ben Z.
2013-02-01
We present two unconditionally stable finite-difference time-domain (FDTD) methods for modeling the Sagnac effect in rotating optical microsensors. The methods are based on the implicit Crank-Nicolson scheme, adapted to hold in the rotating system reference frame—the rotating Crank-Nicolson (RCN) methods. The first method (RCN-2) is second order accurate in space whereas the second method (RCN-4) is fourth order accurate. Both methods are second order accurate in time. We show that the RCN-4 scheme is more accurate and has better dispersion isotropy. The numerical results show good correspondence with the expression for the classical Sagnac resonant frequency splitting when using group refractive indices of the resonant modes of a microresonator. Also we show that the numerical results are consistent with the perturbation theory for the rotating degenerate microcavities. We apply our method to simulate the effect of rotation on an entire Coupled Resonator Optical Waveguide (CROW) consisting of a set of coupled microresonators. Preliminary results validate the formation of a rotation-induced gap at the center of a transfer function of a CROW.
Multi-domain boundary element method for axi-symmetric layered linear acoustic systems
NASA Astrophysics Data System (ADS)
Reiter, Paul; Ziegelwanger, Harald
2017-12-01
Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.
NASA Astrophysics Data System (ADS)
Khurshudyan, M.; Mazhari, N. S.; Momeni, D.; Myrzakulov, R.; Raza, M.
2015-02-01
The subject of this paper is to investigate the weak regime covariant scalar-tensor-vector gravity (STVG) theory, known as the MOdified gravity (MOG) theory of gravity. First, we show that the MOG in the absence of scalar fields is converted into Λ( t), G( t) models. Time evolution of the cosmological parameters for a family of viable models have been investigated. Numerical results with the cosmological data have been adjusted. We've introduced a model for dark energy (DE) density and cosmological constant which involves first order derivatives of Hubble parameter. To extend this model, correction terms including the gravitational constant are added. In our scenario, the cosmological constant is a function of time. To complete the model, interaction terms between dark energy and dark matter (DM) manually entered in phenomenological form. Instead of using the dust model for DM, we have proposed DM equivalent to a barotropic fluid. Time evolution of DM is a function of other cosmological parameters. Using sophisticated algorithms, the behavior of various quantities including the densities, Hubble parameter, etc. have been investigated graphically. The statefinder parameters have been used for the classification of DE models. Consistency of the numerical results with experimental data of S n e I a + B A O + C M B are studied by numerical analysis with high accuracy.
A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis
NASA Astrophysics Data System (ADS)
Li, Xikui; Li, Rongtao; Schrefler, B. A.
2006-06-01
A hierarchical mathematical model for analyses of coupled chemo-thermo-hygro-mechanical behaviour in concretes at high temperature is presented. The concretes are modelled as unsaturated deforming reactive porous media filled with two immiscible pore fluids, i.e. the gas mixture and the liquid mixture, in immiscible-miscible levels. The thermo-induced desalination process is particularly integrated into the model. The chemical effects of both the desalination and the dehydration processes on the material damage and the degradation of the material strength are taken into account. The mathematical model consists of a set of coupled, partial differential equations governing the mass balance of the dry air, the mass balance of the water species, the mass balance of the matrix components dissolved in the liquid phases, the enthalpy (energy) balance and momentum balance of the whole medium mixture. The governing equations, the state equations for the model and the constitutive laws used in the model are given. A mixed weak form for the finite element solution procedure is formulated for the numerical simulation of chemo-thermo-hygro-mechanical behaviours. Special considerations are given to spatial discretization of hyperbolic equation with non-self-adjoint operator nature. Numerical results demonstrate the performance and the effectiveness of the proposed model and its numerical procedure in reproducing coupled chemo-thermo-hygro-mechanical behaviour in concretes subjected to fire and thermal radiation.
Physically based modeling in catchment hydrology at 50: Survey and outlook
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Putti, Mario
2015-09-01
Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.
Efficient calibration for imperfect computer models
Tuo, Rui; Wu, C. F. Jeff
2015-12-01
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Walking model with no energy cost.
Gomes, Mario; Ruina, Andy
2011-03-01
We have numerically found periodic collisionless motions of a walking model consisting of linked rigid objects. Unlike previous designs, this model can walk on level ground at noninfinitesimal speed with zero energy input. The model avoids collisional losses by using an internal mode of oscillation: swaying of the upper body coupled to the legs by springs. Appropriate synchronized internal oscillations set the foot-strike collision to zero velocity. The concept might be of use for energy-efficient robots and may also help to explain aspects of human and animal locomotion efficiency.
Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun
2015-06-21
We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.
Liu, Qing; He, Ya-Ling; Li, Qing
2017-08-01
In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.
NASA Astrophysics Data System (ADS)
Liu, Qing; He, Ya-Ling; Li, Qing
2017-08-01
In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.
Simulation of Liquid Droplet in Air and on a Solid Surface
NASA Astrophysics Data System (ADS)
Launglucknavalai, Kevin
Although multiphase gas and liquid phenomena occurs widely in engineering problems, many aspects of multiphase interaction like within droplet dynamics are still not quantified. This study aims to qualify the Lattice Boltzmann (LBM) Interparticle Potential multiphase computational method in order to build a foundation for future multiphase research. This study consists of two overall sections. The first section in Chapter 2 focuses on understanding the LBM method and Interparticle Potential model. It outlines the LBM method and how it relates to macroscopic fluid dynamics. The standard form of LBM is obtained. The perturbation solution obtaining the Navier-Stokes equations from the LBM equation is presented. Finally, the Interparticle Potential model is incorporated into the numerical LBM method. The second section in Chapter 3 presents the verification and validation cases to confirm the behavior of the single-phase and multiphase LBM models. Experimental and analytical results are used briefly to compare with numerical results when possible using Poiseuille channel flow and flow over a cylinder. While presenting the numerical results, practical considerations like converting LBM scale variables to physical scale variables are considered. Multiphase results are verified using Laplaces law and artificial behaviors of the model are explored. In this study, a better understanding of the LBM method and Interparticle Potential model is gained. This allows the numerical method to be used for comparison with experimental results in the future and provides a better understanding of multiphase physics overall.
Influence of the piezoelectric parameters on the dynamics of an active rotor
NASA Astrophysics Data System (ADS)
Gawryluk, Jarosław; Mitura, Andrzej; Teter, Andrzej
2018-01-01
The main aim of this paper is an experimental and numerical analysis of the dynamic behavior of an active rotor with three composite blades. The study focuses on developing an effective FE modeling technique of a macro fiber composite element (denoted as MFC or active element) for the dynamic tests of active structures. The active rotor under consideration consists of a hub with a drive shaft, three grips and three glass-epoxy laminate blades with embedded active elements. A simplified FE model of the macro fiber composite element exhibiting the d33 piezoelectric effect is developed using the Abaqus software package. The discussed transducer is modeled as quasi-homogeneous piezoelectric material, and voltage is applied to the opposite faces of the element. In this case, the effective (equivalent) piezoelectric constant d33* is specified. Both static and dynamic tests are performed to verify the proposed model. First, static deflections of the active blade caused by the voltage signal are determined by numerical and experimental analyses. Next, a numerical modal analysis of the active rotor is performed. The eigenmodes and corresponding eigenfrequencies are determined by the Lanczos method. The influence of the model parameters (i.e., the effective piezoelectric constant d33 *, voltage signal, angular velocity) on the dynamics of the active rotor is examined. Finally, selected numerical results are validated in experimental tests. The experimental findings demonstrate that the structural stiffening effect caused by the active element strongly depends on the value of the effective piezoelectric constant.
Fu, Zhen-Guo; Wang, Zhigang; Li, Meng-Lei; Li, Da-Fang; Kang, Wei; Zhang, Ping
2016-12-01
The energy loss of multi-MeV charged particles moving in two-component warm dense plasmas (WDPs) is studied theoretically beyond the random-phase approximation. The short-range correlations between particles are taken into account via dynamic local field corrections (DLFC) in a Mermin dielectric function for two-component plasmas. The mean ionization states are obtained by employing the detailed configuration accounting model. The Yukawa-type effective potential is used to derive the DLFC. Numerically, the DLFC are obtained via self-consistent iterative operations. We find that the DLFC are significant around the maximum of the stopping power. Furthermore, by using the two-component extended Mermin dielectric function model including the DLFC, the energy loss of a proton with an initial energy of ∼15 MeV passing through a WDP of beryllium with an electronic density around the solid value n_{e}≈3×10^{23}cm^{-3} and with temperature around ∼40 eV is estimated numerically. The numerical result is reasonably consistent with the experimental observations [A. B. Zylsta et al., Phys. Rev. Lett. 111, 215002 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.215002]. Our results show that the partial ionization and the dynamic properties should be of importance for the stopping of charged particles moving in the WDP.
Simpson-Southward, Chloe; Waller, Glenn; Hardy, Gillian E
2017-11-01
Clinical supervision for psychotherapies is widely used in clinical and research contexts. Supervision is often assumed to ensure therapy adherence and positive client outcomes, but there is little empirical research to support this contention. Regardless, there are numerous supervision models, but it is not known how consistent their recommendations are. This review aimed to identify which aspects of supervision are consistent across models, and which are not. A content analysis of 52 models revealed 71 supervisory elements. Models focus more on supervisee learning and/or development (88.46%), but less on emotional aspects of work (61.54%) or managerial or ethical responsibilities (57.69%). Most models focused on the supervisee (94.23%) and supervisor (80.77%), rather than the client (48.08%) or monitoring client outcomes (13.46%). Finally, none of the models were clearly or adequately empirically based. Although we might expect clinical supervision to contribute to positive client outcomes, the existing models have limited client focus and are inconsistent. Therefore, it is not currently recommended that one should assume that the use of such models will ensure consistent clinician practice or positive therapeutic outcomes. There is little evidence for the effectiveness of supervision. There is a lack of consistency in supervision models. Services need to assess whether supervision is effective for practitioners and patients. Copyright © 2017 John Wiley & Sons, Ltd.
Bang-bang control of a qubit coupled to a quantum critical spin bath
NASA Astrophysics Data System (ADS)
Rossini, D.; Facchi, P.; Fazio, R.; Florio, G.; Lidar, D. A.; Pascazio, S.; Plastina, F.; Zanardi, P.
2008-05-01
We analytically and numerically study the effects of pulsed control on the decoherence of a qubit coupled to a quantum spin bath. When the environment is critical, decoherence is faster and we show that the control is relatively more effective. Two coupling models are investigated, namely, a qubit coupled to a bath via a single link and a spin-star model, yielding results that are similar and consistent.
Two-fluid Numerical Simulations of Solar Spicules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep
2017-11-10
We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagatesmore » upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.« less
NASA Astrophysics Data System (ADS)
Santos, Léonard; Thirel, Guillaume; Perrin, Charles
2018-04-01
In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting
. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade
and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.
A Long-Term Mathematical Model for Mining Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Giraud, Pierre-Noel; Lasry, Jean-Michel
A parcimonious long term model is proposed for a mining industry. Knowing the dynamics of the global reserve, the strategy of each production unit consists of an optimal control problem with two controls, first the flux invested into prospection and the building of new extraction facilities, second the production rate. In turn, the dynamics of the global reserve depends on the individual strategies of the producers, so the models leads to an equilibrium, which is described by low dimensional systems of partial differential equations. The dimensionality depends on the number of technologies that a mining producer can choose. In somemore » cases, the systems may be reduced to a Hamilton–Jacobi equation which is degenerate at the boundary and whose right hand side may blow up at the boundary. A mathematical analysis is supplied. Then numerical simulations for models with one or two technologies are described. In particular, a numerical calibration of the model in order to fit the historical data is carried out.« less
NASA Astrophysics Data System (ADS)
Lyu, Pin; Chen, Wenli; Li, Hui; Shen, Lian
2017-11-01
In recent studies, Yang, Meneveau & Shen (Physics of Fluids, 2014; Renewable Energy, 2014) developed a hybrid numerical framework for simulation of offshore wind farm. The framework consists of simulation of nonlinear surface waves using a high-order spectral method, large-eddy simulation of wind turbulence on a wave-surface-fitted curvilinear grid, and an actuator disk model for wind turbines. In the present study, several more precise wind turbine models, including the actuator line model, actuator disk model with rotation, and nacelle model, are introduced into the computation. Besides offshore wind turbines on fixed piles, the new computational framework has the capability to investigate the interaction among wind, waves, and floating wind turbines. In this study, onshore, offshore fixed pile, and offshore floating wind farms are compared in terms of flow field statistics and wind turbine power extraction rate. The authors gratefully acknowledge financial support from China Scholarship Council (No. 201606120186) and the Institute on the Environment of University of Minnesota.
Confirmation and calibration of computer modeling of tsunamis produced by Augustine volcano, Alaska
Beget, James E.; Kowalik, Zygmunt
2006-01-01
Numerical modeling has been used to calculate the characteristics of a tsunami generated by a landslide into Cook Inlet from Augustine Volcano. The modeling predicts travel times of ca. 50-75 minutes to the nearest populated areas, and indicates that significant wave amplification occurs near Mt. Iliamna on the western side of Cook Inlet, and near the Nanwelak and the Homer-Anchor Point areas on the east side of Cook Inlet. Augustine volcano last produced a tsunami during an eruption in 1883, and field evidence of the extent and height of the 1883 tsunamis can be used to test and constrain the results of the computer modeling. Tsunami deposits on Augustine Island indicate waves near the landslide source were more than 19 m high, while 1883 tsunami deposits in distal sites record waves 6-8 m high. Paleotsunami deposits were found at sites along the coast near Mt. Iliamna, Nanwelak, and Homer, consistent with numerical modeling indicating significant tsunami wave amplification occurs in these areas.
A solution to neural field equations by a recurrent neural network method
NASA Astrophysics Data System (ADS)
Alharbi, Abir
2012-09-01
Neural field equations (NFE) are used to model the activity of neurons in the brain, it is introduced from a single neuron 'integrate-and-fire model' starting point. The neural continuum is spatially discretized for numerical studies, and the governing equations are modeled as a system of ordinary differential equations. In this article the recurrent neural network approach is used to solve this system of ODEs. This consists of a technique developed by combining the standard numerical method of finite-differences with the Hopfield neural network. The architecture of the net, energy function, updating equations, and algorithms are developed for the NFE model. A Hopfield Neural Network is then designed to minimize the energy function modeling the NFE. Results obtained from the Hopfield-finite-differences net show excellent performance in terms of accuracy and speed. The parallelism nature of the Hopfield approaches may make them easier to implement on fast parallel computers and give them the speed advantage over the traditional methods.
NASA Astrophysics Data System (ADS)
Delandmeter, Philippe; Lambrechts, Jonathan; Vallaeys, Valentin; Naithani, Jaya; Remacle, Jean-François; Legat, Vincent; Deleersnijder, Eric
2017-04-01
Vertical discretisation is crucial in the modelling of lake thermocline oscillations. For finite element methods, a simple way to increase the resolution close to the oscillating thermocline is to use vertical adaptive coordinates. With an Arbitrary Lagrangian-Eulerian (ALE) formulation, the mesh can be adapted to increase the resolution in regions with strong shear or stratification. In such an application, consistency and conservativity must be strictly enforced. SLIM 3D, a discontinuous-Galerkin finite element model for shallow-water flows (www.climate.be/slim, e.g. Kärnä et al., 2013, Delandmeter et al., 2015), was designed to be strictly consistent and conservative in its discrete formulation. In this context, special care must be paid to the coupling of the external and internal modes of the model and the moving mesh algorithm. In this framework, the mesh can be adapted arbitrarily in the vertical direction. Two moving mesh algorithms were implemented: the first one computes an a-priori optimal mesh; the second one diffuses vertically the mesh (Burchard et al., 2004, Hofmeister et al., 2010). The criteria used to define the optimal mesh and the diffusion function are related to a suitable measure of shear and stratification. We will present in detail the design of the model and how the consistency and conservativity is obtained. Then we will apply it to both idealised benchmarks and the wind-forced thermocline oscillations in Lake Tanganyika (Naithani et al. 2002). References Tuomas Kärnä, Vincent Legat and Eric Deleersnijder. A baroclinic discontinuous Galerkin finite element model for coastal flows, Ocean Modelling, 61:1-20, 2013. Philippe Delandmeter, Stephen E Lewis, Jonathan Lambrechts, Eric Deleersnijder, Vincent Legat and Eric Wolanski. The transport and fate of riverine fine sediment exported to a semi-open system. Estuarine, Coastal and Shelf Science, 167:336-346, 2015. Hans Burchard and Jean-Marie Beckers. Non-uniform adaptive vertical grids in one-dimensional numerical ocean models. Ocean Modelling, 6:51-81, 2004. Richard Hofmeister, Hans Burchard and Jean-Marie Beckers. Non-uniform adaptive vertical grids for 3d numerical ocean models. Ocean Modelling, 33:70-86, 2010. Jaya Naithani, Eric Deleersnijder and Pierre-Denis Plisnier. Origin of intraseasonal variability in Lake Tanganyika. Geophysical Research Letters, 29(23), doi:10.1029/2002GL015843, 2002.
The demography of words: The global decline in non-numeric fertility preferences, 1993-2011.
Frye, Margaret; Bachan, Lauren
2017-07-01
This paper examines the decline in non-numeric responses to questions about fertility preferences among women in the developing world. These types of response-such as 'don't know' or 'it's up to God'-have often been interpreted through the lens of fertility transition theory as an indication that reproduction has not yet entered women's 'calculus of conscious choice'. However, this has yet to be investigated cross-nationally and over time. Using 19 years of data from 32 countries, we find that non-numeric fertility preferences decline most substantially in the early stages of a country's fertility transition. Using country-specific and multilevel models, we explore the individual- and contextual-level characteristics associated with women's likelihood of providing a non-numeric response to questions about their fertility preferences. Non-numeric fertility preferences are influenced by a host of social factors, with educational attainment and knowledge of contraception being the most robust and consistent predictors.
Analytical solutions for coagulation and condensation kinetics of composite particles
NASA Astrophysics Data System (ADS)
Piskunov, Vladimir N.
2013-04-01
The processes of composite particles formation consisting of a mixture of different materials are essential for many practical problems: for analysis of the consequences of accidental releases in atmosphere; for simulation of precipitation formation in clouds; for description of multi-phase processes in chemical reactors and industrial facilities. Computer codes developed for numerical simulation of these processes require optimization of computational methods and verification of numerical programs. Kinetic equations of composite particle formation are given in this work in a concise form (impurity integrated). Coagulation, condensation and external sources associated with nucleation are taken into account. Analytical solutions were obtained in a number of model cases. The general laws for fraction redistribution of impurities were defined. The results can be applied to develop numerical algorithms considerably reducing the simulation effort, as well as to verify the numerical programs for calculation of the formation kinetics of composite particles in the problems of practical importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less
NASA Astrophysics Data System (ADS)
Pantano, Carlos
2005-11-01
We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)
On a problem of reconstruction of a discontinuous function by its Radon transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derevtsov, Evgeny Yu.; Maltseva, Svetlana V.; Svetov, Ivan E.
A problem of reconstruction of a discontinuous function by its Radon transform is considered. One of the approaches to the numerical solution for the problem consists in the next sequential steps: a visualization of a set of breaking points; an identification of this set; a determination of jump values; an elimination of discontinuities. We consider three of listed problems except the problem of jump values. The problems are investigated by mathematical modeling using numerical experiments. The results of simulation are satisfactory and allow to hope for the further development of the approach.
NASA Astrophysics Data System (ADS)
Divakov, D.; Sevastianov, L.; Nikolaev, N.
2017-01-01
The paper deals with a numerical solution of the problem of waveguide propagation of polarized light in smoothly-irregular transition between closed regular waveguides using the incomplete Galerkin method. This method consists in replacement of variables in the problem of reduction of the Helmholtz equation to the system of differential equations by the Kantorovich method and in formulation of the boundary conditions for the resulting system. The formulation of the boundary problem for the ODE system is realized in computer algebra system Maple. The stated boundary problem is solved using Maples libraries of numerical methods.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
NASA Astrophysics Data System (ADS)
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less
Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems
NASA Astrophysics Data System (ADS)
Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration
2015-04-01
The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.
An experimental and numerical study of wave motion and upstream influence in a stratified fluid
NASA Technical Reports Server (NTRS)
Hurdis, D. A.
1974-01-01
A system consisting of two superimposed layers of liquid of different densities, with a thin transition layer at the interface, provides a good laboratory model of an ocean thermocline or of an atmospheric inversion layer. This research was to gain knowledge about the propagation of disturbances within these two geophysical systems. The technique used was to observe the propagation of internal waves and of upstream influence within the density-gradient region between the two layers of liquid. The disturbances created by the motion of a vertical flat plate, which was moved longitudinally through this region, were examined both experimentally and numerically. An upstream influence, which resulted from a balance of inertial and gravitational forces, was observed, and it was possible to predict the behavior of this influence with the numerical model. The prediction included a description of the propagation of the upstream influence to steadily increasing distances from the flat plate and the shapes and magnitudes of the velocity profiles.
Asymptotic-preserving Lagrangian approach for modeling anisotropic transport in magnetized plasmas
NASA Astrophysics Data System (ADS)
Chacon, Luis; Del-Castillo-Negrete, Diego
2012-03-01
Modeling electron transport in magnetized plasmas is extremely challenging due to the extreme anisotropy between parallel (to the magnetic field) and perpendicular directions (the transport-coefficient ratio χ/χ˜10^10 in fusion plasmas). Recently, a novel Lagrangian Green's function method has been proposedfootnotetextD. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011); D. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, submitted (2011) to solve the local and non-local purely parallel transport equation in general 3D magnetic fields. The approach avoids numerical pollution, is inherently positivity-preserving, and is scalable algorithmically (i.e., work per degree-of-freedom is grid-independent). In this poster, we discuss the extension of the Lagrangian Green's function approach to include perpendicular transport terms and sources. We present an asymptotic-preserving numerical formulation, which ensures a consistent numerical discretization temporally and spatially for arbitrary χ/χ ratios. We will demonstrate the potential of the approach with various challenging configurations, including the case of transport across a magnetic island in cylindrical geometry.
NASA Astrophysics Data System (ADS)
Sun, W.; Na, S.
2017-12-01
A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Astrophysics Data System (ADS)
Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.
2015-03-01
Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.
The Finite Strain Johnson Cook Plasticity and Damage Constitutive Model in ALEGRA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Jason James
A finite strain formulation of the Johnson Cook plasticity and damage model and it's numerical implementation into the ALEGRA code is presented. The goal of this work is to improve the predictive material failure capability of the Johnson Cook model. The new implementation consists of a coupling of damage and the stored elastic energy as well as the minimum failure strain criteria for spall included in the original model development. This effort establishes the necessary foundation for a thermodynamically consistent and complete continuum solid material model, for which all intensive properties derive from a common energy. The motivation for developingmore » such a model is to improve upon ALEGRA's present combined model framework. Several applications of the new Johnson Cook implementation are presented. Deformation driven loading paths demonstrate the basic features of the new model formulation. Use of the model produces good comparisons with experimental Taylor impact data. Localized deformation leading to fragmentation is produced for expanding ring and exploding cylinder applications.« less
Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2008-01-01
At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.
PDF turbulence modeling and DNS
NASA Technical Reports Server (NTRS)
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
NASA Astrophysics Data System (ADS)
Sondak, David; Oberai, Assad
2012-10-01
Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation (VMS) of LES to the equations of incompressible MHD, a new residual-based eddy viscosity model (RBEVM,) and a mixed LES model that combines the strengths of both of these models. The new models result in a consistent numerical method that is relatively simple to implement. A dynamic procedure for determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical and state-of-the art LES turbulence models as well as direct numerical simulations (DNS). These new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by A. Pouquet et al., for which the ratio of DNS modes to LES modes is 262,144. Additionally, we extend these models to a finite element setting in which boundary conditions play a role. A classic problem on which we test these models is turbulent channel flow, which in the case of MHD, is called Hartmann flow.
A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.
Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang
2011-07-01
A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.
A short-term ensemble wind speed forecasting system for wind power applications
NASA Astrophysics Data System (ADS)
Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.
2011-12-01
This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.
ICE CONTROL - Towards optimizing wind energy production during icing events
NASA Astrophysics Data System (ADS)
Dorninger, Manfred; Strauss, Lukas; Serafin, Stefano; Beck, Alexander; Wittmann, Christoph; Weidle, Florian; Meier, Florian; Bourgeois, Saskia; Cattin, René; Burchhart, Thomas; Fink, Martin
2017-04-01
Forecasts of wind power production loss caused by icing weather conditions are produced by a chain of physical models. The model chain consists of a numerical weather prediction model, an icing model and a production loss model. Each element of the model chain is affected by significant uncertainty, which can be quantified using targeted observations and a probabilistic forecasting approach. In this contribution, we present preliminary results from the recently launched project ICE CONTROL, an Austrian research initiative on measurements, probabilistic forecasting, and verification of icing on wind turbine blades. ICE CONTROL includes an experimental field phase, consisting of measurement campaigns in a wind park in Rhineland-Palatinate, Germany, in the winters 2016/17 and 2017/18. Instruments deployed during the campaigns consist of a conventional icing detector on the turbine hub and newly devised ice sensors (eologix Sensor System) on the turbine blades, as well as meteorological sensors for wind, temperature, humidity, visibility, and precipitation type and spectra. Liquid water content and spectral characteristics of super-cooled water droplets are measured using a Fog Monitor FM-120. Three cameras document the icing conditions on the instruments and on the blades. Different modelling approaches are used to quantify the components of the model-chain uncertainties. The uncertainty related to the initial conditions of the weather prediction is evaluated using the existing global ensemble prediction system (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore, observation system experiments are conducted with the AROME model and its 3D-Var data assimilation to investigate the impact of additional observations (such as Mode-S aircraft data, SCADA data and MSG cloud mask initialization) on the numerical icing forecast. The uncertainty related to model formulation is estimated from multi-physics ensembles based on the Weather Research and Forecasting model (WRF) by perturbing parameters in the physical parameterization schemes. In addition, uncertainties of the icing model and of its adaptations to the rotating turbine blade are addressed. The model forecasts combined with the suite of instruments and their measurements make it possible to conduct a step-wise verification of all the components of the model chain - a novel aspect compared to similar ongoing and completed forecasting projects.
Numerical modelling of instantaneous plate tectonics
NASA Technical Reports Server (NTRS)
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
Computation of confined coflow jets with three turbulence models
NASA Technical Reports Server (NTRS)
Zhu, J.; Shih, T. H.
1993-01-01
A numerical study of confined jets in a cylindrical duct is carried out to examine the performance of two recently proposed turbulence models: an RNG-based K-epsilon model and a realizable Reynolds stress algebraic equation model. The former is of the same form as the standard K-epsilon model but has different model coefficients. The latter uses an explicit quadratic stress-strain relationship to model the turbulent stresses and is capable of ensuring the positivity of each turbulent normal stress. The flow considered involves recirculation with unfixed separation and reattachment points and severe adverse pressure gradients, thereby providing a valuable test of the predictive capability of the models for complex flows. Calculations are performed with a finite-volume procedure. Numerical credibility of the solutions is ensured by using second-order accurate differencing schemes and sufficiently fine grids. Calculations with the standard K-epsilon model are also made for comparison. Detailed comparisons with experiments show that the realizable Reynolds stress algebraic equation model consistently works better than does the standard K-epsilon model in capturing the essential flow features, while the RNG-based K-epsilon model does not seem to give improvements over the standard K-epsilon model under the flow conditions considered.
NASA Astrophysics Data System (ADS)
You, Shuangrong; Chi, Changxin; Guo, Yanqun; Bai, Chuanyi; Liu, Zhiyong; Lu, Yuming; Cai, Chuanbing
2018-07-01
This paper presents the numerical simulation of a high-temperature superconductor electromagnet consisting of REBCO (RE-Ba2Cu3O7‑x, RE: rare earth) superconducting tapes and a ferromagnetic iron yoke. The REBCO coils with multi-width design are operating at 77 K, with the iron yoke at room temperature, providing a magnetic space with a 32 mm gap between two poles. The finite element method is applied to compute the 3D model of the studied magnet. Simulated results show that the magnet generates a 1.5 T magnetic field at an operating current of 38.7 A, and the spatial inhomogeneity of the field is 0.8% in a Φ–20 mm diameter sphere volume. Compared with the conventional iron electromagnet, the present compact design is more suitable for practical application.
Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds
NASA Astrophysics Data System (ADS)
Putri, Gitta Agnes; Sunarsih
2018-02-01
This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.
Information sharing and sorting in a community
NASA Astrophysics Data System (ADS)
Bhattacherjee, Biplab; Manna, S. S.; Mukherjee, Animesh
2013-06-01
We present the results of a detailed numerical study of a model for the sharing and sorting of information in a community consisting of a large number of agents. The information gathering takes place in a sequence of mutual bipartite interactions where randomly selected pairs of agents communicate with each other to enhance their knowledge and sort out the common information. Although our model is less restricted compared to the well-established naming game, the numerical results strongly indicate that the whole set of exponents characterizing this model are different from those of the naming game and they assume nontrivial values. Finally, it appears that in analogy to the emergence of clusters in the phenomenon of percolation, one can define clusters of agents here having the same information. We have studied in detail the growth of the largest cluster in this article and performed its finite-size scaling analysis.
NASA Astrophysics Data System (ADS)
Monnier, Angélique; Loevenbruck, Anne; Gailler, Audrey; Hébert, Hélène
2016-04-01
The 11 March 2011 Tohoku-Oki event, whether earthquake or tsunami, is exceptionally well documented. A wide range of onshore and offshore data has been recorded from seismic, geodetic, ocean-bottom pressure and sea level sensors. Along with these numerous observations, advance in inversion technique and computing facilities have led to many source studies. Rupture parameters inversion such as slip distribution and rupture history permit to estimate the complex coseismic seafloor deformation. From the numerous published seismic source studies, the most relevant coseismic source models are tested. The comparison of the predicted signals generated using both static and cinematic ruptures to the offshore and coastal measurements help determine which source model should be used to obtain the more consistent coastal tsunami simulations. This work is funded by the TANDEM project, reference ANR-11-RSNR-0023-01 of the French Programme Investissements d'Avenir (PIA 2014-2018).
NASA Astrophysics Data System (ADS)
Lim, Daniel J.; Ki, Hyungson; Mazumder, Jyoti
2006-06-01
A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 108-109 W cm-2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases.
Two-echelon competitive integrated supply chain model with price and credit period dependent demand
NASA Astrophysics Data System (ADS)
Pal, Brojeswar; Sankar Sana, Shib; Chaudhuri, Kripasindhu
2016-04-01
This study considers a two-echelon competitive supply chain consisting of two rivaling retailers and one common supplier with trade credit policy. The retailers hope that they can enhance their market demand by offering a credit period to the customers and the supplier also offers a credit period to the retailers. We assume that the market demand of the products of one retailer depends not only on their own market price and offering a credit period to the customers, but also on the market price and offering a credit period of the other retailer. The supplier supplies the product with a common wholesale price and offers the same credit period to the retailers. We study the model under a centralised (integrated) case and a decentralised (Vertical Nash) case and compare them numerically. Finally, we investigate the model by the collected numerical data.
Development and validation of a general purpose linearization program for rigid aircraft models
NASA Technical Reports Server (NTRS)
Duke, E. L.; Antoniewicz, R. F.
1985-01-01
A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.
Transferable tight binding model for strained group IV and III-V heterostructures
NASA Astrophysics Data System (ADS)
Tan, Yaohua; Povolotskyi, Micheal; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard
Modern semiconductor devices have reached critical device dimensions in the range of several nanometers. For reliable prediction of device performance, it is critical to have a numerical efficient model that are transferable to material interfaces. In this work, we present an empirical tight binding (ETB) model with transferable parameters for strained IV and III-V group semiconductors. The ETB model is numerically highly efficient as it make use of an orthogonal sp3d5s* basis set with nearest neighbor inter-atomic interactions. The ETB parameters are generated from HSE06 hybrid functional calculations. Band structures of strained group IV and III-V materials by ETB model are in good agreement with corresponding HSE06 calculations. Furthermore, the ETB model is applied to strained superlattices which consist of group IV and III-V elements. The ETB model turns out to be transferable to nano-scale hetero-structure. The ETB band structures agree with the corresponding HSE06 results in the whole Brillouin zone. The ETB band gaps of superlattices with common cations or common anions have discrepancies within 0.05eV.
NASA Astrophysics Data System (ADS)
Hannat, Ridha
The aim of this thesis is to apply a new methodology of optimization based on the dual kriging method to a hot air anti-icing system for airplanes wings. The anti-icing system consists of a piccolo tube placed along the span of the wing, in the leading edge area. The hot air is injected through small nozzles and impact on the inner wall of the wing. The objective function targeted by the optimization is the effectiveness of the heat transfer of the anti-icing system. This heat transfer effectiveness is regarded as being the ratio of the wing inner wall heat flux and the sum of all the nozzles heat flows of the anti-icing system. The methodology adopted to optimize an anti-icing system consists of three steps. The first step is to build a database according to the Box-Behnken design of experiment. The objective function is then modeled by the dual kriging method and finally the SQP optimization method is applied. One of the advantages of the dual kriging is that the model passes exactly through all measurement points, but it can also take into account the numerical errors and deviates from these points. Moreover, the kriged model can be updated at each new numerical simulation. These features of the dual kriging seem to give a good tool to build the response surfaces necessary for the anti-icing system optimization. The first chapter presents a literature review and the optimization problem related to the antiicing system. Chapters two, three and four present the three articles submitted. Chapter two is devoted to the validation of CFD codes used to perform the numerical simulations of an anti-icing system and to compute the conjugate heat transfer (CHT). The CHT is calculated by taking into account the external flow around the airfoil, the internal flow in the anti-icing system, and the conduction in the wing. The heat transfer coefficient at the external skin of the airfoil is almost the same if the external flow is taken into account or no. Therefore, only the internal flow is considered in the following articles. Chapter three concerns the design of experiment (DoE) matrix and the construction of a second order parametric model. The objective function model is based on the Box-Behnken DoE. The parametric model that results from numerical simulations serve for comparison with the kriged model of the third article. Chapter four applies the dual kriging method to model the heat transfer effectiveness of the anti-icing system and use the model for optimization. The possibility of including the numerical error in the results is explored. For the test cases studied, introduction of the numerical error in the optimization process does not improve the results. Dual kriging method is also used to model the distribution of the local heat flux and to interpolate the local heat flux corresponding to the optimal design of the anti-icing system.
Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid
Chaari, Anis; Giraud-Moreau, Laurence
2014-01-01
An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced. PMID:24795538
Numerical simulation of electron scattering by nanotube junctions
NASA Astrophysics Data System (ADS)
Brüning, J.; Grikurov, V. E.
2008-03-01
We demonstrate the possibility of computing the intensity of electronic transport through various junctions of three-dimensional metallic nanotubes. In particular, we observe that the magnetic field can be used to control the switch of electron in Y-type junctions. Keeping in mind the asymptotic modeling of reliable nanostructures by quantum graphs, we conjecture that the scattering matrix of the graph should be the same as the scattering matrix of its nanosize-prototype. The numerical computation of the latter gives a method for determining the "gluing" conditions at a graph. Exploring this conjecture, we show that the Kirchhoff conditions (which are commonly used on graphs) cannot be applied to model reliable junctions. This work is a natural extension of the paper [1], but it is written in a self-consistent manner.
Conservative algorithms for non-Maxwellian plasma kinetics
Le, Hai P.; Cambier, Jean -Luc
2017-12-08
Here, we present a numerical model and a set of conservative algorithms for Non-Maxwellian plasma kinetics with inelastic collisions. These algorithms self-consistently solve for the time evolution of an isotropic electron energy distribution function interacting with an atomic state distribution function of an arbitrary number of levels through collisional excitation, deexcitation, as well as ionization and recombination. Electron-electron collisions, responsible for thermalization of the electron distribution, are also included in the model. The proposed algorithms guarantee mass/charge and energy conservation in a single step, and is applied to the case of non-uniform gridding of the energy axis in the phasemore » space of the electron distribution function. Numerical test cases are shown to demonstrate the accuracy of the method and its conservation properties.« less
NASA Astrophysics Data System (ADS)
Kaliuzhnyi, M. P.; Bushuev, F. I.; Sibiriakova, Ye. S.; Shulga, O. V.; Shakun, L. S.; Bezrukovs, V.; Kulishenko, V. F.; Moskalenko, S. S.; Malynovsky, Ye. V.; Balagura, O. A.
2017-02-01
The results of the determination of the geostationary satellite "Eutelsat-13B" orbital position obtained during 2015-2016 years using European stations' network for reception of DVB-S signals from the satellite are presented. The network consists of five stations located in Ukraine and Latvia. The stations are equipped with a radio engineering complex developed by the RI "MAO". The measured parameter is a time difference of arrival (TDOA) of the DVB-S signals to the stations of the network. The errors of TDOA determination and satellite coordinates, obtained using a numerical model of satellite motion, are equal ±2.6 m and ±35 m respectively. Software implementation of the numerical model is taken from the free space dynamics library OREKIT.
Polyhedral meshing in numerical analysis of conjugate heat transfer
NASA Astrophysics Data System (ADS)
Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata
2018-06-01
Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.
ERIC Educational Resources Information Center
Pollio, Marty; Hochbein, Craig
2015-01-01
Background/Context: From two decades of research on the grading practices of teachers in secondary schools, researchers discovered that teachers evaluated students on numerous factors that do not validly assess a student's achievement level in a specific content area. These consistent findings suggested that traditional grading practices evolved…
Residual acceleration data on IML-1: Development of a data reduction and dissemination plan
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. Iwan D.
1993-01-01
The research performed consisted of three stages: (1) identification of sensitive IML-1 experiments and sensitivity ranges by order of magnitude estimates, numerical modeling, and investigator input; (2) research and development towards reduction, supplementation, and dissemination of residual acceleration data; and (3) implementation of the plan on existing acceleration databases.
Application of LANDSAT TM images to assess circulation and dispersion in coastal lagoons
NASA Technical Reports Server (NTRS)
Kjerfve, B.; Jensen, J. R.; Magill, K. E.
1986-01-01
The main objectives are formulated around a four pronged work approach, consisting of tasks related to: image processing and analysis of LANDSAT thematic mapping; numerical modeling of circulation and dispersion; hydrographic and spectral radiation field sampling/ground truth data collection; and special efforts to focus the investigation on turbid coastal/estuarine fronts.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff
2015-01-01
This paper presents a numerical model of a system-level test bed - the multipurpose hydrogen test bed (MHTB) using Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a fully integrated space transportation vehicle liquid hydrogen (LH2) propellant tank and was tested at Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume based network flow analysis software developed at MSFC and used for thermo-fluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger, and a mixing pump and spray to extract thermal energy from the tank without significant loss of liquid propellant. Two GFSSP models (Self-Pressurization & TVS) were separately developed and tested and then integrated to simulate the entire system. Self-Pressurization model consists of multiple ullage nodes, propellant node and solid nodes; it computes the heat transfer through Multi-Layer Insulation blankets and calculates heat and mass transfer between ullage and liquid propellant and ullage and tank wall. TVS model calculates the flow through J-T valve, heat exchanger and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. The integrated models results have been compared with MHTB test data of 50% fill level. Satisfactory comparison was observed between test and numerical predictions.
Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change
NASA Astrophysics Data System (ADS)
Li, Qing; Zhou, P.; Yan, H. J.
2017-12-01
In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.
2010-05-01
circulation from December 2003 to June 2008 . The model is driven by tidal harmonics, realistic atmospheric forcing, and dynamically consistent initial and open...important element of the regional circulation (He and Wilkin 2006). We applied the method of Mellor and Yamada (1982) to compute vertical turbulent...shelfbreak ROMS hindcast ran continuously from December 2003 through January 2008 . Initial conditions were taken from the MABGOM ROMS simulation on 1
A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids
NASA Astrophysics Data System (ADS)
Anders, Denis; Weinberg, Kerstin
2018-04-01
The de-mixing properties of heterogeneous viscous fluids are determined by an interplay of diffusion, surface tension and a superposed velocity field. In this contribution a variational model of the decomposition, based on the Navier-Stokes equations for incompressible laminar flow and the extended Korteweg-Cahn-Hilliard equations, is formulated. An exemplary numerical simulation using C1-continuous finite elements demonstrates the capability of this model to compute phase decomposition and coarsening of the moving fluid.
Sustained currents in coupled diffusive systems
NASA Astrophysics Data System (ADS)
Larralde, Hernán; Sanders, David P.
2014-08-01
Coupling two diffusive systems may give rise to a nonequilibrium stationary state (NESS) with a non-trivial persistent, circulating current. We study a simple example that is exactly soluble, consisting of random walkers with different biases towards a reflecting boundary, modelling, for example, Brownian particles with different charge states in an electric field. We obtain analytical expressions for the concentrations and currents in the NESS for this model, and exhibit the main features of the system by numerical simulation.
Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auf der Maur, M., E-mail: auf.der.maur@ing.uniroma2.it; Di Carlo, A.; Galler, B.
Based on numerical simulation and comparison with measured current characteristics, we show that the current in InGaN/GaN single-quantum-well light-emitting diodes at low forward bias can be accurately described by a standard trap-assisted tunneling model. The qualitative and quantitative differences in the current characteristics of devices with different emission wavelengths are demonstrated to be correlated in a physically consistent way with the tunneling model parameters.
Site investigation and modelling at "La Maina" landslide (Carnian Alps, Italy)
NASA Astrophysics Data System (ADS)
Marcato, G.; Mantovani, M.; Pasuto, A.; Silvano, S.; Tagliavini, F.; Zabuski, L.; Zannoni, A.
2006-01-01
The Sauris reservoir is a hydroelectric basin closed downstream by a 136 m high, double arc concrete dam. The dam is firmly anchored to a consistent rock (Dolomia dello Schlern), but the Lower Triassic clayey formations, cropping out especially in the lower part of the slopes, have made the whole catchment basin increasingly prone to landslides. In recent years, the "La Maina landslide" has opened up several joints over a surface of about 100 000 m2, displacing about 1 500 000 m3 of material. Particular attention is now being given to the evolution of the instability area, as the reservoir is located at the foot of the landslide. Under the commission of the Regional Authority for Civil Protection a numerical modelling simulation in a pseudo-time condition of the slope was developed, in order to understand the risk for transport infrastructures, for some houses and for the reservoir and to take urgent mesaures to stabilize the slope. A monitoring system consisting of four inclinometers, three wire extensometers and ten GPS bench-mark pillars was immediately set up to check on surface and deep displacements. The data collected and the geological and geomorphological evidences was used to carry out a numerical simulation. The reliability of the results was checked by comparing the model with the morphological evidence of the movement. The mitigation measures were designed and realised following the indications provided by the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Liwei; Soong, Yee; Dilmore, Robert M.
In this paper, a numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO 2-saturated brine under CO 2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of themore » lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO 2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Finally, initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO 2 sequestration conditions.« less
Zhang, Liwei; Soong, Yee; Dilmore, Robert M.
2016-01-14
In this paper, a numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO 2-saturated brine under CO 2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of themore » lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO 2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Finally, initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO 2 sequestration conditions.« less
Magnetic field evolution and reversals in spiral galaxies
NASA Astrophysics Data System (ADS)
Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.
2016-10-01
We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.
Elosua, Paula; Mujika, Josu
2015-10-13
The Reasoning Test Battery (BPR) is an instrument built on theories of the hierarchical organization of cognitive abilities and therefore consists of different tasks related with abstract, numerical, verbal, practical, spatial and mechanical reasoning. It was originally created in Belgium and later adapted to Portuguese. There are three forms of the battery consisting of different items and scales which cover an age range from 9 to 22. This paper focuses on the adaptation of the BPR to Spanish, and analyzes different aspects of its internal structure: (a) exploratory item factor analysis was applied to assess the presence of a dominant factor for each partial scale; (b) the general underlined model was evaluated through confirmatory factor analysis, and (c) factorial invariance across gender was studied. The sample consisted of 2624 Spanish students. The results concluded the presence of a general factor beyond the scales, with equivalent values for men and women, and gender differences in the factorial structure which affect the numerical reasoning, abstract reasoning and mechanical reasoning scales.
Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony
2016-09-01
This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sorensen, Ira Joseph
A primary objective of the effort reported here is to develop a radiometric instrument modeling environment to provide complete end-to-end numerical models of radiometric instruments, integrating the optical, electro-thermal, and electronic systems. The modeling environment consists of a Monte Carlo ray-trace (MCRT) model of the optical system coupled to a transient, three-dimensional finite-difference electrothermal model of the detector assembly with an analytic model of the signal-conditioning circuitry. The environment provides a complete simulation of the dynamic optical and electrothermal behavior of the instrument. The modeling environment is used to create an end-to-end model of the CERES scanning radiometer, and its performance is compared to the performance of an operational CERES total channel as a benchmark. A further objective of this effort is to formulate an efficient design environment for radiometric instruments. To this end, the modeling environment is then combined with evolutionary search algorithms known as genetic algorithms (GA's) to develop a methodology for optimal instrument design using high-level radiometric instrument models. GA's are applied to the design of the optical system and detector system separately and to both as an aggregate function with positive results.
Direct computational approach to lattice supersymmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Kadoh, Daisuke; Nakayama, Katsumasa
2018-07-01
We study the lattice supersymmetric models numerically using the transfer matrix approach. This method consists only of deterministic processes and has no statistical uncertainties. We improve it by performing a scale transformation of variables such that the Witten index is correctly reproduced from the lattice model, and the other prescriptions are shown in detail. Compared to the precious Monte-Carlo results, we can estimate the effective masses, SUSY Ward identity and the cut-off dependence of the results in high precision. Those kinds of information are useful in improving lattice formulation of supersymmetric models.
NASA Astrophysics Data System (ADS)
Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki
2018-04-01
The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time series data of input and output signals for the media; in the second phase, the model derived in the first phase is used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that this scheme performs better than a conventional control scheme.
Diffusion model to describe osteogenesis within a porous titanium scaffold.
Schmitt, M; Allena, R; Schouman, T; Frasca, S; Collombet, J M; Holy, X; Rouch, P
2016-01-01
In this study, we develop a two-dimensional finite element model, which is derived from an animal experiment and allows simulating osteogenesis within a porous titanium scaffold implanted in ewe's hemi-mandible during 12 weeks. The cell activity is described through diffusion equations and regulated by the stress state of the structure. We compare our model to (i) histological observations and (ii) experimental data obtained from a mechanical test done on sacrificed animal. We show that our mechano-biological approach provides consistent numerical results and constitutes a useful tool to predict osteogenesis pattern.
NASA Technical Reports Server (NTRS)
Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.
1984-01-01
A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.
Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model.
Hud, N V
1995-01-01
Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent will all available data. Recently we proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here we propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8534805
Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T
2017-01-01
We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.
Berman, Gennady P.; Nesterov, Alexander I.; Gurvitz, Shmuel; ...
2016-04-30
Here, we analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the “damaging” and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In this model, both damaging and “dissipative” charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimicmore » the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. Moreover, these equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Finally, our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.« less
Numerical analysis of fume formation mechanism in arc welding
NASA Astrophysics Data System (ADS)
Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi
2010-11-01
In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.
Numerical simulation of a mistral wind event occuring
NASA Astrophysics Data System (ADS)
Guenard, V.; Caccia, J. L.; Tedeschi, G.
2003-04-01
The experimental network of the ESCOMPTE field experiment (june-july 2001) is turned into account to investigate the Mistral wind affecting the Marseille area (South of France). Mistral wind is a northerly flow blowing across the Rhône valley and toward the Mediterranean sea resulting from the dynamical low pressure generated in the wake of the Alps ridge. It brings cold, dry air masses and clear sky conditions over the south-eastern part of France. Up to now, few scientific studies have been carried out on the Mistral wind especially the evolution of its 3-D structure so that its mesoscale numerical simulation is still relevant. Non-hydrostatic RAMS model is performed to better investigate this mesoscale phenomena. Simulations at a 12 km horizontal resolution are compared to boundary layer wind profilers and ground measurements. Preliminary results suit quite well with the Mistral statistical studies carried out by the operational service of Météo-France and observed wind profiles are correctly reproduced by the numerical model RAMS which appears to be an efficient tool for its understanding of Mistral. Owing to the absence of diabatic effect in Mistral events which complicates numerical simulations, the present work is the first step for the validation of RAMS model in that area. Further works will consist on the study of the interaction of Mistral wind with land-sea breeze. Also, RAMS simulations will be combined with aerosol production and ocean circulation models to supply chemists and oceanographers with some answers for their studies.
Gaussian solitary waves and compactons in Fermi–Pasta–Ulam lattices with Hertzian potentials
James, Guillaume; Pelinovsky, Dmitry
2014-01-01
We consider a class of fully nonlinear Fermi–Pasta–Ulam (FPU) lattices, consisting of a chain of particles coupled by fractional power nonlinearities of order α>1. This class of systems incorporates a classical Hertzian model describing acoustic wave propagation in chains of touching beads in the absence of precompression. We analyse the propagation of localized waves when α is close to unity. Solutions varying slowly in space and time are searched with an appropriate scaling, and two asymptotic models of the chain of particles are derived consistently. The first one is a logarithmic Korteweg–de Vries (KdV) equation and possesses linearly orbitally stable Gaussian solitary wave solutions. The second model consists of a generalized KdV equation with Hölder-continuous fractional power nonlinearity and admits compacton solutions, i.e. solitary waves with compact support. When , we numerically establish the asymptotically Gaussian shape of exact FPU solitary waves with near-sonic speed and analytically check the pointwise convergence of compactons towards the limiting Gaussian profile. PMID:24808748
Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Smagley, Vladimir Anatolievich
Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.
NASA Astrophysics Data System (ADS)
Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zajíčková, Lenka
2015-04-01
A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.
NASA Astrophysics Data System (ADS)
Poplavskaya, T. V.; Kirilovskiy, S. V.; Mironov, S. G.
2017-10-01
Numerical simulation of supersonic flow past a cylinder with a frontal gas-permeable insert is performed using the skeleton model of a highly porous cellular material. Numerical simulation was carried out within the framework of two-dimensional RANS equations written in an axisymmetric form. The skeleton model is a system of coaxial rings of different diameters, arranged in staggered order. The calculations were carried out in a wide range of determining parameters: Mach numbers M∞ = 3, 4.85 and 7, unit Reynolds numbers Re1∞ = 13.8×105 ÷ 13.8×106 m-1, the cylinder diameter 6÷40mm, the length of the porous insert 3÷45mm, the cell diameter of 1 and 3 mm. The results of the calculations are consistent with the available experimental data. The applicability of the skeleton model for the description of supersonic flow around axisymmetric bodies with front inserts from cellular-porous materials is shown.
A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows
NASA Astrophysics Data System (ADS)
Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.
2015-11-01
In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme
Analytical and numerical solutions for mass diffusion in a composite cylindrical body
NASA Astrophysics Data System (ADS)
Kumar, A.
1980-12-01
The analytical and numerical solution techniques were investigated to study moisture diffusion problems in cylindrical bodies that are assumed to be composed of a finite number of layers of different materials. A generalized diffusion model for an n-layer cylindrical body with discontinuous moisture content at the interfaces was developed and the formal solutions were obtained. The model is to be used for describing mass transfer rates of any composite body, such as an ear of corn which could be assumed of consisting two different layers: the inner core represents the woody cob and the outer cylinder represents the kernel layer. Data describing the fully exposed drying characteristics of ear corn at high air velocity were obtained under different drying conditions. Ear corns were modeled as homogeneous bodies since composite model did not improve the fit substantially. A computer program using multidimensional optimization technique showed that diffusivity was an exponential function of moisture content and an arrhenius function of temperature of drying air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhen, E-mail: matzz@nus.edu.sg; Xu, Shixin, E-mail: matxs@nus.edu.sg; Ren, Weiqing, E-mail: matrw@nus.edu.sg
2014-06-15
A continuous model is derived for the dynamics of two immiscible fluids with moving contact lines and insoluble surfactants based on thermodynamic principles. The continuum model consists of the Navier-Stokes equations for the dynamics of the two fluids and a convection-diffusion equation for the evolution of the surfactant on the fluid interface. The interface condition, the boundary condition for the slip velocity, and the condition for the dynamic contact angle are derived from the consideration of energy dissipations. Different types of energy dissipations, including the viscous dissipation, the dissipations on the solid wall and at the contact line, as wellmore » as the dissipation due to the diffusion of surfactant, are identified from the analysis. A finite element method is developed for the continuum model. Numerical experiments are performed to demonstrate the influence of surfactant on the contact line dynamics. The different types of energy dissipations are compared numerically.« less
Modeled ground water age distributions
Woolfenden, Linda R.; Ginn, Timothy R.
2009-01-01
The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.
An online-coupled NWP/ACT model with conserved Lagrangian levels
NASA Astrophysics Data System (ADS)
Sørensen, B.; Kaas, E.; Lauritzen, P. H.
2012-04-01
Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.
NASA Astrophysics Data System (ADS)
Wang, Yunong; Cheng, Rongjun; Ge, Hongxia
2017-08-01
In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.
Planetary spacecraft cost modeling utilizing labor estimating relationships
NASA Technical Reports Server (NTRS)
Williams, Raymond
1990-01-01
A basic computerized technology is presented for estimating labor hours and cost of unmanned planetary and lunar programs. The user friendly methodology designated Labor Estimating Relationship/Cost Estimating Relationship (LERCER) organizes the forecasting process according to vehicle subsystem levels. The level of input variables required by the model in predicting cost is consistent with pre-Phase A type mission analysis. Twenty one program categories were used in the modeling. To develop the model, numerous LER and CER studies were surveyed and modified when required. The result of the research along with components of the LERCER program are reported.
Hydroacoustic forcing function modeling using DNS database
NASA Technical Reports Server (NTRS)
Zawadzki, I.; Gershfield, J. L.; Na, Y.; Wang, M.
1996-01-01
A wall pressure frequency spectrum model (Blake 1971 ) has been evaluated using databases from Direct Numerical Simulations (DNS) of a turbulent boundary layer (Na & Moin 1996). Good agreement is found for moderate to strong adverse pressure gradient flows in the absence of separation. In the separated flow region, the model underpredicts the directly calculated spectra by an order of magnitude. The discrepancy is attributed to the violation of the model assumptions in that part of the flow domain. DNS computed coherence length scales and the normalized wall pressure cross-spectra are compared with experimental data. The DNS results are consistent with experimental observations.
Multiclassifier fusion in human brain MR segmentation: modelling convergence.
Heckemann, Rolf A; Hajnal, Joseph V; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander
2006-01-01
Segmentations of MR images of the human brain can be generated by propagating an existing atlas label volume to the target image. By fusing multiple propagated label volumes, the segmentation can be improved. We developed a model that predicts the improvement of labelling accuracy and precision based on the number of segmentations used as input. Using a cross-validation study on brain image data as well as numerical simulations, we verified the model. Fit parameters of this model are potential indicators of the quality of a given label propagation method or the consistency of the input segmentations used.
NASA Astrophysics Data System (ADS)
Green, Daniel; Pattison, Ian; Yu, Dapeng
2016-04-01
Surface water (pluvial) flooding occurs when rainwater from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flooding poses a serious hazard to urban areas across the world, with the UK's perceived risk appearing to have increased in recent years due to surface water flood events seeming more severe and frequent. Surface water flood risk currently accounts for 1/3 of all UK flood risk, with approximately two million people living in urban areas at risk of a 1 in 200-year flood event. Research often focuses upon using numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer a novel, alternative and innovative environment to collect data within, creating a controlled, closed system where independent variables can be altered independently to investigate cause and effect relationships. A physical modelling environment provides a suitable platform to investigate rainfall-runoff processes occurring within an urban catchment. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered 1:100 physical model consisting of: (i) a low-cost rainfall simulator component able to simulate consistent, uniformly distributed (>75% CUC) rainfall events of varying intensity, and; (ii) a fully interchangeable, modular plot surface have been conducted to investigate and quantify the influence of a number of terrestrial and meteorological factors on overland flow and rainfall-runoff patterns within a modelled urban setting. Terrestrial factors investigated include altering the physical model's catchment slope (0°- 20°), as well as simulating a number of spatially-varied impermeability and building density/configuration scenarios. Additionally, the influence of different storm dynamics and intensities were investigated. Preliminary results demonstrate that rainfall-runoff responses in the physical modelling environment are highly sensitive to slight increases in catchment gradient and rainfall intensity and that more densely distributed building layouts significantly increase peak flows recorded at the physical model outflow when compared to sparsely distributed building layouts under comparable simulated rainfall conditions.
Parameter uncertainty in simulations of extreme precipitation and attribution studies.
NASA Astrophysics Data System (ADS)
Timmermans, B.; Collins, W. D.; O'Brien, T. A.; Risser, M. D.
2017-12-01
The attribution of extreme weather events, such as heavy rainfall, to anthropogenic influence involves the analysis of their probability in simulations of climate. The climate models used however, such as the Community Atmosphere Model (CAM), employ approximate physics that gives rise to "parameter uncertainty"—uncertainty about the most accurate or optimal values of numerical parameters within the model. In particular, approximate parameterisations for convective processes are well known to be influential in the simulation of precipitation extremes. Towards examining the impact of this source of uncertainty on attribution studies, we investigate the importance of components—through their associated tuning parameters—of parameterisations relating to deep and shallow convection, and cloud and aerosol microphysics in CAM. We hypothesise that as numerical resolution is increased the change in proportion of variance induced by perturbed parameters associated with the respective components is consistent with the decreasing applicability of the underlying hydrostatic assumptions. For example, that the relative influence of deep convection should diminish as resolution approaches that where convection can be resolved numerically ( 10 km). We quantify the relationship between the relative proportion of variance induced and numerical resolution by conducting computer experiments that examine precipitation extremes over the contiguous U.S. In order to mitigate the enormous computational burden of running ensembles of long climate simulations, we use variable-resolution CAM and employ both extreme value theory and surrogate modelling techniques ("emulators"). We discuss the implications of the relationship between parameterised convective processes and resolution both in the context of attribution studies and progression towards models that fully resolve convection.
NASA Astrophysics Data System (ADS)
Oz, Imri; Shalev, Eyal; Yechieli, Yoseph; Gavrieli, Ittai; Gvirtzman, Haim
2014-04-01
This paper examines the transient development and the steady-state configuration of groundwater within a coastal aquifer adjacent to a stratified saltwater body. Such systems consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. The dynamics, location and the geometry of the interfaces and the density-driven circulation flows that develop in the aquifer are examined using laboratory experiments and numerical modeling at the same scale. The results show that the transient intrusion of the different water bodies into the aquifer takes place at different rates, and that the locations of the interfaces between them change with time, before reaching steady-state. Under steady-state conditions both the model and the experiments show the existence of three interfaces between the three water types. The numerical model, which is calibrated against the salinity distribution and groundwater discharge rate in the laboratory experiments, allows the quantification of the flow rates and flow patterns within the aquifer. These flow patterns, which cannot be derived from laboratory experiments, show the transient development of three circulation cells which are confined between the three interfaces. These results confirm the hypothesis that has been previously suggested based solely on a steady-state numerical modeling defined by a conceptual understanding. Parametric analysis shows that the creation of three circulation cells and three interfaces is limited to certain conditions and defines the ranges for the creation of this unique system.
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.
2013-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for the production and use of new tsunami hazard analysis products. 4) Identify multistate collaborations and funding partners interested in these new products. Application of these new products will improve the overall safety and resilience of coastal communities exposed to tsunami hazards.
NASA Astrophysics Data System (ADS)
Hartland, Tucker; Schilling, Oleg
2017-11-01
Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Nadobny, Jacek; Fähling, Horst; Hagmann, Mark J; Turner, Paul F; Wlodarczyk, Waldemar; Gellermann, Johanna M; Deuflhard, Peter; Wust, Peter
2002-11-01
Experimental and numerical methods were used to determine the coupling of energy in a multichannel three-dimensional hyperthermia applicator (SIGMA-Eye), consisting of 12 short dipole antenna pairs with stubs for impedance matching. The relationship between the amplitudes and phases of the forward waves from the amplifiers, to the resulting amplitudes and phases at the antenna feed-points was determined in terms of interaction matrices. Three measuring methods were used: 1) a differential probe soldered directly at the antenna feed-points; 2) an E-field sensor placed near the feed-points; and 3) measurements were made at the outputs of the amplifier. The measured data were compared with finite-difference time-domain (FDTD) calculations made with three different models. The first model assumes that single antennas are fed independently. The second model simulates antenna pairs connected to the transmission lines. The measured data correlate best with the latter FDTD model, resulting in an improvement of more than 20% and 20 degrees (average difference in amplitudes and phases) when compared with the two simpler FDTD models.
Inter-comparison of three-dimensional models of volcanic plumes
Suzuki, Yujiro; Costa, Antonio; Cerminara, Matteo; Esposti Ongaro, Tomaso; Herzog, Michael; Van Eaton, Alexa; Denby, Leif
2016-01-01
We performed an inter-comparison study of three-dimensional models of volcanic plumes. A set of common volcanological input parameters and meteorological conditions were provided for two kinds of eruptions, representing a weak and a strong eruption column. From the different models, we compared the maximum plume height, neutral buoyancy level (where plume density equals that of the atmosphere), and level of maximum radial spreading of the umbrella cloud. We also compared the vertical profiles of eruption column properties, integrated across cross-sections of the plume (integral variables). Although the models use different numerical procedures and treatments of subgrid turbulence and particle dynamics, the inter-comparison shows qualitatively consistent results. In the weak plume case (mass eruption rate 1.5 × 106 kg s− 1), the vertical profiles of plume properties (e.g., vertical velocity, temperature) are similar among models, especially in the buoyant plume region. Variability among the simulated maximum heights is ~ 20%, whereas neutral buoyancy level and level of maximum radial spreading vary by ~ 10%. Time-averaging of the three-dimensional (3D) flow fields indicates an effective entrainment coefficient around 0.1 in the buoyant plume region, with much lower values in the jet region, which is consistent with findings of small-scale laboratory experiments. On the other hand, the strong plume case (mass eruption rate 1.5 × 109 kg s− 1) shows greater variability in the vertical plume profiles predicted by the different models. Our analysis suggests that the unstable flow dynamics in the strong plume enhances differences in the formulation and numerical solution of the models. This is especially evident in the overshooting top of the plume, which extends a significant portion (~ 1/8) of the maximum plume height. Nonetheless, overall variability in the spreading level and neutral buoyancy level is ~ 20%, whereas that of maximum height is ~ 10%. This inter-comparison study has highlighted the different capabilities of 3D volcanic plume models, and identified key features of weak and strong plumes, including the roles of jet stability, entrainment efficiency, and particle non-equilibrium, which deserve future investigation in field, laboratory, and numerical studies.
NASA Astrophysics Data System (ADS)
Conti, Roberto; Meli, Enrico; Pugi, Luca; Malvezzi, Monica; Bartolini, Fabio; Allotta, Benedetto; Rindi, Andrea; Toni, Paolo
2012-05-01
Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel-roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel-rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel-roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.
The accuracy of semi-numerical reionization models in comparison with radiative transfer simulations
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-03-01
We have developed a modular semi-numerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I) and singly ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I fraction in ionized regions. We compare different semi-numerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the semi-numerical approaches produce similar H II and He II morphologies and power spectra of the H I 21cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our semi-numerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20% ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggests that constraining ionizing emissivity sensitive parameters from semi-numerical galaxy formation-reionization models are subject to photon nonconservation.
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Waas, Anthony M.
2013-01-01
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.
Moore, William B; Webb, A Alexander G
2013-09-26
The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.
NASA Astrophysics Data System (ADS)
Engwirda, Darren; Kelley, Maxwell; Marshall, John
2017-08-01
Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1985-01-01
A numerical study of the steady, axisymmetric flow in a heated, rotating spherical shell is conducted to model the Atmospheric General Circulation Experiment (AGCE) proposed to run aboard a later Shuttle mission. The AGCE will consist of concentric rotating spheres confining a dielectric fluid. By imposing a dielectric field across the fluid a radial body force will be created. The numerical solution technique is based on the incompressible Navier-Stokes equations. In the method a pseudospectral technique is used in the latitudinal direction, and a second-order accurate finite difference scheme discretizes time and radial derivatives. This paper discusses the development and performance of this numerical scheme for the AGCE which has been modeled in the past only by pure FD formulations. In addition, previous models have not investigated the effect of using a dielectric force to simulate terrestrial gravity. The effect of this dielectric force on the flow field is investigated as well as a parameter study of varying rotation rates and boundary temperatures. Among the effects noted are the production of larger velocities and enhanced reversals of radial temperature gradients for a body force generated by the electric field.
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Zheng, Kang; Shin, Yung C.; Wu, Benxin
2018-07-01
The laser transmission welding of polyethylene terephthalate (PET) and titanium alloy Ti6Al4V involving the evaluating of the resultant geometry and quality of welds is investigated using a fiber laser in this paper. A 3D transient numerical model considering the melting and fluid flow is developed to predict the weld geometry and porosity formation. The temperature field, molten pool and liquid flow are simulated with varying laser power and welding speed based on the model. It is observed that the weld geometry predictions from the numerical simulation are in good agreement with the experimental data. The results show that the porosity consistently appears in the high temperature region due to the decomposition of PET. In addition, it has also been found that the molten pool with a vortex flow pattern is formed only in the PET layer and the welding processing parameters have significant effects on the fluid flow, which eventually affects the heat transfer, molten pool geometry and weld formation. Consequently, it is shown adopting appropriate welding processing parameters based on the proposed model is essential for the sound weld without defects.
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.
2017-12-01
In this manuscript, we consider an initial-boundary-value problem governed by a (1 + 1)-dimensional hyperbolic partial differential equation with constant damping that generalizes many nonlinear wave equations from mathematical physics. The model considers the presence of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives, as well as the inclusion of a generic continuously differentiable potential. It is known that the undamped regime has an associated positive energy functional, and we show here that it is preserved throughout time under suitable boundary conditions. To approximate the solutions of this model, we propose a finite-difference discretization based on fractional centered differences. Some discrete quantities are proposed in this work to estimate the energy functional, and we show that the numerical method is capable of conserving the discrete energy under the same boundary conditions for which the continuous model is conservative. Moreover, we establish suitable computational constraints under which the discrete energy of the system is positive. The method is consistent of second order, and is both stable and convergent. The numerical simulations shown here illustrate the most important features of our numerical methodology.
A coupled airflow and source/sink model for simulating indoor VOC exposures.
Yang, X; Chen, Q
2001-12-01
In this paper, a numerical model is presented to study the indoor air quality (IAQ) in a room with different emission sources, sinks, and ventilation methods. A computer program, ACCESS-IAQ, is developed to simulate the airflow pattern, the time history of the contaminant concentrations in the occupied zone, and the inhalation exposures. The program developed may be useful for IAQ professional to design healthy and comfortable indoor environments. A numerical study has been carried out to predict the effectiveness of a displacement ventilation and a mixing ventilation on volatile organic compound (VOC) removal in a model office. Results from the numerical predictions show that when a "wet" emission source (a freshly painted wood stain) is distributed uniformly across the floor area with sinks (gypsum board) from the four vertical walls, displacement ventilation has consistently lower exposure at the breathing level of the occupant in the room. Such an effect is mainly due to the higher ventilation efficiency of displacement ventilation compared to the mixing ventilation. The simulation results also show that the walls adsorb significant amounts of VOCs during the first hour and act as secondary sources thereafter.
NASA Astrophysics Data System (ADS)
Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi
2017-01-01
We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.
Recent bright gully deposits on Mars: Wet or dry flow?
Pelletier, J.D.; Kolb, K.J.; McEwen, A.S.; Kirk, R.L.
2008-01-01
Bright gully sediments attributed to liquid water flow have been deposited on Mars within the past several years. To test the liquid water flow hypothesis, we constructed a high-resolution (1 m/pixel) photogrammetric digital elevation model of a crater in the Centauri Montes region, where a bright gully deposit formed between 2001 and 2005. We conducted one-dimensional (1-D) and 2-D numerical flow modeling to test whether the deposit morphology is most consistent with liquid water or dry granular How. Liquid water flow models that incorporate freezing can match the runout distance of the flow for certain freezing rates but fail to reconstruct the distributary lobe morphology of the distal end of the deposit. Dry granular flow models can match both the observed runout distance and the distal morphology. Wet debris flows with high sediment concentrations are also consistent with the observed morphology because their rheologies are often similar to that of dry granular flows. As such, the presence of liquid water in this flow event cannot be ruled out, but the available evidence is consistent with dry landsliding. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.
2002-07-01
A realistic modeling of ICRH antennas requires the knowledge of the antenna currents. The code ICANT determines self-consistently these currents and, as a byproduct, the electrical characteristics of the antenna (radiated power, propagation constants on straps, frequency response, … ). The formalism allows for the description of three-dimensional antenna elements (for instance, finite size thick screen blades). The results obtained for various cases where analytical results are available are discussed. The resonances appearing in the spectrum and the occurrence of unphysical resonant modes are discussed. The capability of this self-consistent method is illustrated by a number of examples, e.g., fully conducting thin or thick screen bars leading to magnetic shielding effects, frequency response and resonances of an end-tuned antenna, field distributions in front of a Tore-Supra type antenna with tilted screen blades.
On the effect of model parameters on forecast objects
NASA Astrophysics Data System (ADS)
Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott
2018-04-01
Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map
. The field for some quantities generally consists of spatially coherent and disconnected objects
. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output
of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.
Cranking Calculation in the sdg Interacting Boson Model
NASA Astrophysics Data System (ADS)
Wang, Baolin
1998-10-01
A self-consistent cranking calculation of the intrinsic states of the sdg interacting boson model is performed. The formulae of the moment of inertia are given in a general sdg IBM multipole Hamiltonian with one- and two-body terms. In the quadrupole interaction, the intrinsic states, the quadrupole and hexadecapole deformation and the moment of inertia are investigated in the large N limit. Using a simple Hamiltonian, the results of numerical calculations for 152, 154Sm and 154-160 Gd satisfactorily reproduce the experimental data.
An inverse method using toroidal mode data
Willis, C.
1986-01-01
The author presents a numerical method for calculating the density and S-wave velocity in the upper mantle of a spherically symmetric, non-rotating Earth which consists of a perfect elastic, isotropic material. The data comes from the periods of the toroidal oscillations. She tests the method on a smoothed version of model A. The error in the reconstruction is less than 1%. The effects of perturbations in the eigenvalues are studied and she finds that the final model is sensitive to errors in the data.
Blood circulation in the lower limbs
NASA Astrophysics Data System (ADS)
Pen'kovskiy, V. I.; Korsakova, N. K.
2018-03-01
Blood circulation process in inferior limbs is considered in the terms of the previously proposed mathematical model of sanguimotion in living organism tissues. The model includes the equations of homogeneous fluid flower in heterogeneous medium that consists of two or more interpenetrating continua. The continua (distributing net of arteries and collecting net of veins) interact through ramified capillary net. A volume of blood flowering from arterial net to venous one is proportional to pressure (head) difference in the nets. Some analytical solutions and numerical results are given.
Numerical study of shock-induced combustion in methane-air mixtures
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Rabinowitz, Martin J.
1993-01-01
The shock-induced combustion of methane-air mixtures in hypersonic flows is investigated using a new reaction mechanism consisting of 19 reacting species and 52 elementary reactions. This reduced model is derived from a full kinetic mechanism via the Detailed Reduction technique. Zero-dimensional computations of several shock-tube experiments are presented first. The reaction mechanism is then combined with a fully implicit Navier-Stokes computational fluid dynamics (CFD) code to conduct numerical simulations of two-dimensional and axisymmetric shock-induced combustion experiments of stoichiometric methane-air mixtures at a Mach number of M = 6.61. Applications to the ram accelerator concept are also presented.
Kelvin-wave cascade in the vortex filament model
NASA Astrophysics Data System (ADS)
Baggaley, Andrew W.; Laurie, Jason
2014-01-01
The small-scale energy-transfer mechanism in zero-temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves (KWs) transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting KWs to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with the nonlocal six-wave KW interactions as proposed by L'vov and Nazarenko.
Stroop-Like Effects for Monkeys and Humans: Processing Speed or Strength of Association?
NASA Technical Reports Server (NTRS)
Washburn, David A.
1994-01-01
Stroop-like effects have been found using a variety of paradigms and subject groups. In the present investigation, 6 rhesus monkeys (Macaca mulatta) and 28 humans exhibited Stroop-like interference and facilitation in a relative-numerousness task. Monkeys, like humans, processed the meanings of the numerical symbols automatically, despite the fact that these meanings were irrelevant to task performance. These data also afforded direct comparison of interpretations of the Stroop effect in terms of processing speed versus association strength. These findings were consistent with parallel-processing models of Stroop-like interference proposed elsewhere, but not with processing-speed accounts posited frequently to explain the effect.
Non-convex Statistical Optimization for Sparse Tensor Graphical Model
Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang
2016-01-01
We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459
The zero inflation of standing dead tree carbon stocks
Christopher W. Woodall; David W. MacFarlane
2012-01-01
Given the importance of standing dead trees in numerous forest ecosystem attributes/processes such as carbon (C) stocks, the USDA Forest Serviceâs Forest Inventory and Analysis (FIA) program began consistent nationwide sampling of standing dead trees in 1999. Modeled estimates of standing dead tree C stocks are currently used as the official C stock estimates for the...
Markov Chains For Testing Redundant Software
NASA Technical Reports Server (NTRS)
White, Allan L.; Sjogren, Jon A.
1990-01-01
Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.
Shu, Shi; Zhu, Wei; Wang, Shengwei; Ng, Charles Wang Wai; Chen, Yunmin; Chiu, Abraham Chung Fai
2018-01-15
Groundwater pollution by leachate leakage is one of the most common environmental hazards associated with municipal solid waste (MSW) landfill sites. However, landfill leachate contains a large variety of pollutants with widely different concentrations and biotoxicity. Thus, selecting leachate pollutant indicators and levels for identifying breakthrough of barrier systems are key factors in assessing their breakthrough times. This study investigated the transport behavior of leachate pollutants through landfill barrier systems using centrifuge tests and numerical modeling. The overall objective of this study is to investigate breakthrough mechanism to facilitate the establishment of a consistent pollutant threshold concentration for use as a groundwater pollution alert. The specific objective of the study is to identify which pollutant and breakthrough threshold concentration should be used as an indicator in the transport of multiple pollutants through a landfill barrier system. The threshold concentration from the Chinese groundwater quality standards was used in the analysis of the properties of leachates from many landfill sites in China. The time for the chemical oxygen demand (COD) to reach the breakthrough threshold concentration at the bottom of a 2m compacted clay liner was 1.51years according to centrifuge tests, and 1.81years according to numerical modeling. The COD breakthrough times for single and double composite liners were within the range of 16 and 36.58years. Of all the pollutants, COD was found to consistently reach the breakthrough threshold first. Therefore, COD can be selected as the key indicator for pollution alerts and used to assess the environmental risk posed by MSW landfill sites. Copyright © 2017. Published by Elsevier B.V.
Model identification of stomatognathic muscle system activity during mastication
Kijak, Edward; Margielewicz, Jerzy; Lietz-Kijak, Danuta; Wilemska-Kucharzewska, Katarzyna; Kucharzewski, Marek; Śliwiński, Zbigniew
2017-01-01
The present study aimed to determine the numeric projection of the function of the mandible and muscle system during mastication. An experimental study was conducted on a healthy 47 year-old subject. On clinical examination no functional disorders were observed. To evaluate the activity of mastication during muscle functioning, bread cubes and hazelnuts were selected (2 cm2 and 1.2/1.3 cm in diameter, respectively) for condyloid processing. An assessment of the activity of mastication during muscle functioning was determined on the basis of numeric calculations conducted with a novel software programme, Kinematics 3D, designed specifically for this study. The efficacy of the model was verified by ensuring the experimentally recorded trajectories were concordant with those calculated numerically. Experimental measurements of the characteristic points of the mandible trajectory were recorded six times. Using the configuration coordinates that were calculated, the dominant componential harmonics of the amplitude-frequency spectrum were identified. The average value of the dominant frequency during mastication of the bread cubes was ~1.16±0.06 Hz, whereas in the case of the hazelnut, this value was nearly two-fold higher at 1.84±0.07 Hz. The most asymmetrical action during mastication was demonstrated to be carried out by the lateral pterygoid muscles, provided that their functioning was not influenced by food consistency. The consistency of the food products had a decisive impact on the frequency of mastication and the number of cycles necessary to grind the food. Model tests on the function of the masticatory organ serve as effective tools since they provide qualitative and quantitative novel information on the functioning of the human masticatory organ. PMID:28123482
Numerical Modeling of Nonlinear Thermodynamics in SMA Wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, D R; Kloucek, P
We present a mathematical model describing the thermodynamic behavior of shape memory alloy wires, as well as a computational technique to solve the resulting system of partial differential equations. The model consists of conservation equations based on a new Helmholtz free energy potential. The computational technique introduces a viscosity-based continuation method, which allows the model to handle dynamic applications where the temporally local behavior of solutions is desired. Computational experiments document that this combination of modeling and solution techniques appropriately predicts the thermally- and stress-induced martensitic phase transitions, as well as the hysteretic behavior and production of latent heat associatedmore » with such materials.« less
Numerical Mantle Convection Models With a Flexible Thermodynamic Interface
NASA Astrophysics Data System (ADS)
van den Berg, A. P.; Jacobs, M. H.; de Jong, B. H.
2001-12-01
Accurate material properties are needed for deep mantle (P,T) conditions in order to predict the longterm behavior of convection planetary mantles. Also the interpretation of seismological observations concerning the deep mantle in terms of mantle flow models calls for a consistent thermodynamical description of the basic physical parameters. We have interfaced a compressible convection code using the anelastic liquid approach based on finite element methods, to a database containing a full thermodynamic description of mantle silicates (Ita and King, J. Geophys. Res., 99, 15,939-15,940, 1994). The model is based on high resolution (P,T) tables of the relevant thermodynamic properties containing typically 50 million (P,T) table gridpoints to obtain resolution in (P,T) space of 1 K and an equivalent of 1 km. The resulting model is completely flexible such that numerical mantle convection experiments can be performed for any mantle composition for which the thermodynamic database is available. We present results of experiments for 2D cartesian models using a data base for magnesium-iron silicate in a pyrolitic composition (Stixrude and Bukowinski, Geoph.Monogr.Ser., 74, 131-142, 1993) and a recent thermodynamical model for magnesium silicate for the complete mantle (P,T) range, (Jacobs and Oonk, Phys. Chem. Mineral, 269, inpress 2001). Preliminary results of bulksound velocity distribution derived in a consistent way from the convection results and the thermodynamic database show a `realistic' mantle profile with bulkvelocity variations decreasing from several percent in the upper mantle to less than a percent in the deep lower mantle.
Multiplicative point process as a model of trading activity
NASA Astrophysics Data System (ADS)
Gontis, V.; Kaulakys, B.
2004-11-01
Signals consisting of a sequence of pulses show that inherent origin of the 1/ f noise is a Brownian fluctuation of the average interevent time between subsequent pulses of the pulse sequence. In this paper, we generalize the model of interevent time to reproduce a variety of self-affine time series exhibiting power spectral density S( f) scaling as a power of the frequency f. Furthermore, we analyze the relation between the power-law correlations and the origin of the power-law probability distribution of the signal intensity. We introduce a stochastic multiplicative model for the time intervals between point events and analyze the statistical properties of the signal analytically and numerically. Such model system exhibits power-law spectral density S( f)∼1/ fβ for various values of β, including β= {1}/{2}, 1 and {3}/{2}. Explicit expressions for the power spectra in the low-frequency limit and for the distribution density of the interevent time are obtained. The counting statistics of the events is analyzed analytically and numerically, as well. The specific interest of our analysis is related with the financial markets, where long-range correlations of price fluctuations largely depend on the number of transactions. We analyze the spectral density and counting statistics of the number of transactions. The model reproduces spectral properties of the real markets and explains the mechanism of power-law distribution of trading activity. The study provides evidence that the statistical properties of the financial markets are enclosed in the statistics of the time interval between trades. A multiplicative point process serves as a consistent model generating this statistics.
Geomorphology and landscape organization of a northern peatland complex
NASA Astrophysics Data System (ADS)
Richardson, M. C.
2012-12-01
The geomorphic evolution of northern peatlands is governed by complex ecohydrological feedback mechanisms and associated hydro-climatic drivers. For example, prevailing models of bog development (i.e. Ingram's groundwater mounding hypothesis and variants) attempt to explicitly link bog dome characteristics to the regional climate based on analytical and numerical models of lateral groundwater flow and the first-order control of water table position on rates of peat accumulation. In this talk I will present new results from quantitative geomorphic analyses of a northern peatland complex at the De Beers Victor diamond mine site in the Hudson Bay Lowlands of northern Ontario. This work capitalizes on spatially-extensive, high-resolution topographic (LiDAR) data to rigorously test analytical and numerical models of bog dome development in this landscape. The analysis and discussion are then expanded beyond individual bog formations to more broadly consider ecohydrological drivers of landscape organization, with implications for understanding and modeling catchment-scale runoff response. Results show that in this landscape, drainage patterns exhibit relatively well-organized characteristics consistent with observed runoff responses in six gauged research catchments. Interpreted together, the results of these geomorphic and hydrologic analyses help refine our understanding of water balance partitioning among different landcover types within northern peatland complexes. These findings can be used to help guide the development of appropriate numerical model structures for hydrologic prediction in ungauged peatland basins of northern Canada.
Development of numerical model for predicting heat generation and temperatures in MSW landfills.
Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A
2013-10-01
A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Basile, A. F.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics.
A mathematical model of the passage of an asteroid-comet body through the Earth’s atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaydurov, V., E-mail: shaidurov04@mail.ru; Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk; Shchepanovskaya, G.
In the paper, a mathematical model and a numerical algorithm are proposed for modeling the complex of phenomena which accompany the passage of a friable asteroid-comet body through the Earth’s atmosphere: the material ablation, the dissociation of molecules, and the radiation. The proposed model is constructed on the basis of the Navier-Stokes equations for viscous heat-conducting gas with an additional equation for the motion and propagation of a friable lumpy-dust material in air. The energy equation is modified for the relation between two its kinds: the usual energy of the translation of molecules (which defines the temperature and pressure) andmore » the combined energy of their rotation, oscillation, electronic excitation, dissociation, and radiation. For the mathematical model of atmosphere, the distribution of density, pressure, and temperature in height is taken as for the standard atmosphere. An asteroid-comet body is taken initially as a round body consisting of a friable lumpy-dust material with corresponding density and significant viscosity which far exceed those for the atmosphere gas. A numerical algorithm is proposed for solving the initial-boundary problem for the extended system of Navier-Stokes equations. The algorithm is the combination of the semi-Lagrangian approximation for Lagrange transport derivatives and the conforming finite element method for other terms. The implementation of these approaches is illustrated by a numerical example.« less
NASA Astrophysics Data System (ADS)
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
NASA Astrophysics Data System (ADS)
Hilburn, Guy Louis
Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.
Thermomechanical simulations and experimental validation for high speed incremental forming
NASA Astrophysics Data System (ADS)
Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia
2016-10-01
Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.
Modeling of fracture of protective concrete structures under impact loads
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2015-10-01
This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.
NASA Astrophysics Data System (ADS)
Lu, D.; Reddy, S.
2005-05-01
During the summer 2003 and winter 2003-2004, three mesoscale numerical models, the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5), Navy's Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS) and the Weather Research and Forecasting model (WRF), were operationally run at a horizontal resolution of 27 km twice daily in Jackson State University (JSU). Three models were run by the initial and lateral boundary conditions from AVN data. The purpose of this paper is to evaluate the performances of three models during these two seasons. It was found that the temporal variation of distribution and strength of mean error (ME) biases at 12, 24 and 36h was rather weak for surface temperature, sea level pressure and surface wind speed. During two seasons, the MM5 underpredicted the seasonal precipitation while the COAMPS and WRF overpredicted. This is consistent with the statistical score analyses of rainfall. The Bias scores revealed that the MM5 yielded an underprediction of precipitation, especially for heavier rainfall events. Due to the under estimate of rainfall areas and strength, the MM5 presented the lower TS, POD and KSS scores at lighter rainfall events compared to the COAMPS and WRF. At moderate to heavier thresholds, three models produced rather low KSS and POD scores that are consistent with the high FAR values. The WRF skills in predicting precipitation heavily depend on the performance of cumulus parameterization scheme. Instead of Kain-Fritsch scheme, using other two schemes, Grell-Devenyi and Bette-Miller-Janjic, in the WRF for warm season 2003 demonstrated that the precipitation overprediction had been efficiently suppressed. Overall, the performances of three models revealed that the best skill is at 12h and the worst at 36h.
NASA Astrophysics Data System (ADS)
Rutqvist, Jonny; Börgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son
2009-05-01
This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of a test tunnel associated with the tunnel sealing experiment (TSX) at the Underground Research Laboratory (URL) in Canada. Four different numerical models were applied using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters, the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increase alongside the tunnel is a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis’ coefficient, α ≈ 0.2, a porosity of n ≈ 0.007, and a relatively low permeability of k ≈ 2 × 10-22 m2, which is consistent with the very tight, unfractured granite at the site.
NASA Astrophysics Data System (ADS)
Adhikari, Surendra; Ivins, Erik R.; Larour, Eric
2016-03-01
A classical Green's function approach for computing gravitationally consistent sea-level variations associated with mass redistribution on the earth's surface employed in contemporary sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on a mesh system also requires repetitive forward and inverse transforms. In order to overcome these limitations, we present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The goal of the current version of this model is to provide high-resolution solid-earth, gravitational, sea-level and rotational responses for earth system models operating in the domain of the earth's outer fluid envelope on timescales less than about 1 century when viscous effects can largely be ignored over most of the globe. The model has numerous important geophysical applications. For example, we compute time-varying computations of global geodetic and sea-level signatures associated with recent ice-sheet changes that are derived from space gravimetry observations. We also demonstrate the capability of our model to simultaneously resolve kilometer-scale sources of the earth's time-varying surface mass transport, derived from high-resolution modeling of polar ice sheets, and predict the corresponding local and global geodetic signatures.
High-Order Shock-Capturing Methods for Modeling Dynamics of the Solar Atmosphere
NASA Technical Reports Server (NTRS)
Bryson, Steve; Kosovichev, Alexander; Levy, Doron
2004-01-01
We use one-dimensional high-order central shock capturing numerical methods to study the response of various model solar atmospheres to forcing at the solar surface. The dynamics of the atmosphere is modeled with the Euler equations in a variable-sized flux tube in the presence of gravity. We study dynamics of the atmosphere suggestive of spicule formation and coronal oscillations. These studies are performed on observationally-derived model atmospheres above the quiet sun and above sunspots. To perform these simulations, we provide a new extension of existing second- and third- order shock-capturing methods to irregular grids. We also solve the problem of numerically maintaining initial hydrostatic balance via the introduction of new variables in the model equations and a careful initialization mechanism. We find several striking results: all model atmospheres respond to a single impulsive perturbation with several strong shock waves consistent with the rebound-shock model. These shock waves lift material and the transition region well into the initial corona, and the sensitivity of this lift to the initial impulse depends non-linearly on the details of the atmosphere model. We also reproduce an observed 3-minute coronal oscillation above sunspots compared to 5-minute oscillations above the quiet sun.
Numerical modeling of the solar wind flow with observational boundary conditions
Pogorelov, N. V.; Borovikov, S. N.; Burlaga, L. F.; ...
2012-11-20
In this paper we describe our group efforts to develop a self-consistent, data-driven model of the solar wind (SW) interaction with the local interstellar medium. The motion of plasma in this model is described with the MHD approach, while the transport of neutral atoms is addressed by either kinetic or multi-fluid equations. The model and its implementation in the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) are continuously tested and validated by comparing our results with other models and spacecraft measurements. In particular, it was successfully applied to explain an unusual SW behavior discovered by the Voyager 1 spacecraft, i.e., the developmentmore » of a substantial negative radial velocity component, flow turning in the transverse direction, while the latitudinal velocity component goes to very small values. We explain recent SW velocity measurements at Voyager 1 in the context of our 3-D, MHD modeling. We also present a comparison of different turbulence models in their ability to reproduce the SW temperature profile from Voyager 2 measurements. Lastly, the boundary conditions obtained at 50 solar radii from data-driven numerical simulations are used to model a CME event throughout the heliosphere.« less
COSP: Satellite simulation software for model assessment
Bodas-Salcedo, A.; Webb, M. J.; Bony, S.; ...
2011-08-01
Errors in the simulation of clouds in general circulation models (GCMs) remain a long-standing issue in climate projections, as discussed in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. This highlights the need for developing new analysis techniques to improve our knowledge of the physical processes at the root of these errors. The Cloud Feedback Model Intercomparison Project (CFMIP) pursues this objective, and under that framework the CFMIP Observation Simulator Package (COSP) has been developed. COSP is a flexible software tool that enables the simulation of several satellite-borne active and passive sensor observations from model variables. The flexibilitymore » of COSP and a common interface for all sensors facilitates its use in any type of numerical model, from high-resolution cloud-resolving models to the coarser-resolution GCMs assessed by the IPCC, and the scales in between used in weather forecast and regional models. The diversity of model parameterization techniques makes the comparison between model and observations difficult, as some parameterized variables (e.g., cloud fraction) do not have the same meaning in all models. The approach followed in COSP permits models to be evaluated against observations and compared against each other in a more consistent manner. This thus permits a more detailed diagnosis of the physical processes that govern the behavior of clouds and precipitation in numerical models. The World Climate Research Programme (WCRP) Working Group on Coupled Modelling has recommended the use of COSP in a subset of climate experiments that will be assessed by the next IPCC report. Here we describe COSP, present some results from its application to numerical models, and discuss future work that will expand its capabilities.« less
A Numerical Study of the Effects of Curvature and Convergence on Dilution Jet Mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Reynolds, R.; White, C.
1987-01-01
An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.
A numerical study of the effects of curvature and convergence on dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Reynolds, R.; White, C.
1987-01-01
An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.
Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model
NASA Astrophysics Data System (ADS)
Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi
2017-10-01
We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al.,
The Flow Dimension and Aquifer Heterogeneity: Field evidence and Numerical Analyses
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Valocchi, A. J.; Roberts, R. M.; Loftis, B.
2008-12-01
The Generalized Radial Flow approach to hydraulic test interpretation infers the flow dimension to describe the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling. The comparison shows that discrete linear features with lengths distributed as a power-law appear to be the most consistent with observations of the flow dimension in fractured dolomite aquifers.
Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min
2017-05-01
This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.
2008-09-01
Element Method. Wellesley- Cambridge Press, Wellesly, MA, 1988. [97] E. F. Toro . Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical...introducing additional state variables, are generally asymptotically dual consistent. Numerical results are presented to confirm the results of the analysis...dependence on the state gradient is handled by introducing additional state variables, are generally asymptotically dual consistent. Numerical results are
Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators
NASA Astrophysics Data System (ADS)
Hoff, Anderson; dos Santos, Juliana V.; Manchein, Cesar; Albuquerque, Holokx A.
2014-07-01
The behavior of neurons can be modeled by the FitzHugh-Nagumo oscillator model, consisting of two nonlinear differential equations, which simulates the behavior of nerve impulse conduction through the neuronal membrane. In this work, we numerically study the dynamical behavior of two coupled FitzHugh-Nagumo oscillators. We consider unidirectional and bidirectional couplings, for which Lyapunov and isoperiodic diagrams were constructed calculating the Lyapunov exponents and the number of the local maxima of a variable in one period interval of the time-series, respectively. By numerical continuation method the bifurcation curves are also obtained for both couplings. The dynamics of the networks here investigated are presented in terms of the variation between the coupling strength of the oscillators and other parameters of the system. For the network of two oscillators unidirectionally coupled, the results show the existence of Arnold tongues, self-organized sequentially in a branch of a Stern-Brocot tree and by the bifurcation curves it became evident the connection between these Arnold tongues with other periodic structures in Lyapunov diagrams. That system also presents multistability shown in the planes of the basin of attractions.
Numerical reconstruction and injury biomechanism in a car-pedestrian crash accident.
Zou, Dong-Hua; Li, Zheng-Dong; Shao, Yu; Feng, Hao; Chen, Jian-Guo; Liu, Ning-Guo; Huang, Ping; Chen, Yi-Jiu
2012-12-01
To reconstruct a car-pedestrian crash accident using numerical simulation technology and explore the injury biomechanism as forensic evidence for injury identification. An integration of multi-body dynamic, finite element (FE), and classical method was applied to a car-pedestrian crash accident. The location of the collision and the details of the traffic accident were determined by vehicle trace verification and autopsy. The accident reconstruction was performed by coupling the three-dimensional car behavior from PC-CRASH with a MADYMO dummy model. The collision FE models of head and leg, developed from CT scans of human remains, were loaded with calculated dummy collision parameters. The data of the impact biomechanical responses were extracted in terms of von Mises stress, relative displacement, strain and stress fringes. The accident reconstruction results were identical with the examined ones and the biomechanism of head and leg injuries, illustrated through the FE methods, were consistent with the classical injury theories. The numerical simulation technology is proved to be effective in identifying traffic accidents and exploring of injury biomechanism.
Numerical simulation of pounding damage to caisson under storm surge
NASA Astrophysics Data System (ADS)
Yu, Chen
2018-06-01
In this paper, a new method for the numerical simulation of structural model is proposed, which is employed to analyze the pounding response of caissons subjected to storm surge loads. According to the new method, the simulation process is divided into two steps. Firstly, the wave propagation caused by storm surge is simulated by the wave-generating tool of Flow-3D, and recording the wave force time history on the caisson. Secondly, a refined 3D finite element model of caisson is established, and the wave force load is applied on the caisson according to the measured data in the first step for further analysis of structural pounding response using the explicit solver of LSDYNA. The whole simulation of pounding response of a caisson caused by "Sha Lijia" typhoon is carried out. The results show that the different wave direction results in the different angle caisson collisions, which will lead to different failure mode of caisson, and when the angle of 60 between wave direction and front/back wall is simulated, the numerical pounding failure mode is consistent with the situation.
Numerical simulation of a helical shape electric arc in the external axial magnetic field
NASA Astrophysics Data System (ADS)
Urusov, R. M.; Urusova, I. R.
2016-10-01
Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.
Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo
2016-05-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.
Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo
2015-01-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866