Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
NASA Astrophysics Data System (ADS)
Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico
2017-12-01
Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.
Numerical simulation of hull curved plate forming by electromagnetic force assisted line heating
NASA Astrophysics Data System (ADS)
Wang, Ji; Wang, Shun; Liu, Yujun; Li, Rui; Liu, xiao
2017-11-01
Line heating is a common method in shipyards for forming of hull curved plate. The aluminum alloy plate is widely used in shipbuilding. To solve the problem of thick aluminum alloy plate forming with complex curved surface, a new technology named electromagnetic force assisted line heating(EFALH) was proposed in this paper. The FEM model of EFALH was established and the effect of electromagnetic force assisted forming was verified by self development equipment. Firstly, the solving idea of numerical simulation for EFALH was illustrated. Then, the coupled numerical simulation model of multi physical fields were established. Lastly, the reliability of the numerical simulation model was verified by comparing the experimental data. This paper lays a foundation for solving the forming problems of thick aluminum alloy curved plate in shipbuilding.
Numerical Modeling of Saturated Boiling in a Heated Tube
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Hartwig, Jason
2017-01-01
This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.
Integrating Numerical Computation into the Modeling Instruction Curriculum
ERIC Educational Resources Information Center
Caballero, Marcos D.; Burk, John B.; Aiken, John M.; Thoms, Brian D.; Douglas, Scott S.; Scanlon, Erin M.; Schatz, Michael F.
2014-01-01
Numerical computation (the use of a computer to solve, simulate, or visualize a physical problem) has fundamentally changed the way scientific research is done. Systems that are too difficult to solve in closed form are probed using computation. Experiments that are impossible to perform in the laboratory are studied numerically. Consequently, in…
Steady flow model user's guide
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.
1984-07-01
Sophisticated numerical models that solve the coupled mass and energy transport equations for nonisothermal fluid flow in a porous medium were used to match analytical results and field data for aquifer thermal energy storage (ATES) systems. As an alternative to the ATES problem the Steady Flow Model (SFM), a simplified but fast numerical model was developed. A steady purely radial flow field is prescribed in the aquifer, and incorporated into the heat transport equation which is then solved numerically. While the radial flow assumption limits the range of ATES systems that can be studied using the SFM, it greatly simplifies use of this code. The preparation of input is quite simple compared to that for a sophisticated coupled mass and energy model, and the cost of running the SFM is far cheaper. The simple flow field allows use of a special calculational mesh that eliminates the numerical dispersion usually associated with the numerical solution of convection problems. The problem is defined, the algorithm used to solve it are outllined, and the input and output for the SFM is described.
A new Newton-like method for solving nonlinear equations.
Saheya, B; Chen, Guo-Qing; Sui, Yun-Kang; Wu, Cai-Ying
2016-01-01
This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteration and obtains the quadratic convergence property. The numerical performance and comparison show that the proposed method is efficient.
Using the Multilayer Free-Surface Flow Model to Solve Wave Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokof’ev, V. A., E-mail: ProkofyevVA@vniig.ru
2017-01-15
A method is presented for changing over from a single-layer shallow-water model to a multilayer model with hydrostatic pressure profile and, then, to a multilayer model with nonhydrostatic pressure profile. The method does not require complex procedures for solving the discrete Poisson’s equation and features high computation efficiency. The results of validating the algorithm against experimental data critical for the numerical dissipation of the numerical scheme are presented. Examples are considered.
NASA Astrophysics Data System (ADS)
Jain, Sonal
2018-01-01
In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.
NASA Astrophysics Data System (ADS)
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
USDA-ARS?s Scientific Manuscript database
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J
2017-01-01
A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Numerical study of signal propagation in corrugated coaxial cables
Li, Jichun; Machorro, Eric A.; Shields, Sidney
2017-01-01
Our article focuses on high-fidelity modeling of signal propagation in corrugated coaxial cables. Taking advantage of the axisymmetry, the authors reduce the 3-D problem to a 2-D problem by solving time-dependent Maxwell's equations in cylindrical coordinates.They then develop a nodal discontinuous Galerkin method for solving their model equations. We prove stability and error analysis for the semi-discrete scheme. We we present our numerical results, we demonstrate that our algorithm not only converges as our theoretical analysis predicts, but it is also very effective in solving a variety of signal propagation problems in practical corrugated coaxial cables.
Parallelization of elliptic solver for solving 1D Boussinesq model
NASA Astrophysics Data System (ADS)
Tarwidi, D.; Adytia, D.
2018-03-01
In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.
Pak, S I; Chang, K S
2006-12-01
A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.
COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION
A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...
Applications of numerical methods to simulate the movement of contaminants in groundwater.
Sun, N Z
1989-01-01
This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327
A numerical model for simulation of bioremediation of hydrocarbons in aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz, J.F.; Irarrazaval, M.J.
1998-03-01
A numerical model was developed to describe the bioremediation of hydrocarbons in ground water aquifers considering aerobic degradation. The model solves the independent transport of three solutes (oxygen, hydrocarbons, and microorganisms) in ground water flow using the method of characteristics. Interactions between the three solutes, in which oxygen and hydrocarbons are consumed by microorganisms, are represented by Monod kinetics, solved using a Runge-Kutta method. Model simulations showed good correlation as compared with results of soil column experiments. The model was used to estimate the time needed to remediate the columns, which varied from one to two years.
Buckling analysis of SMA bonded sandwich structure – using FEM
NASA Astrophysics Data System (ADS)
Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.
2018-03-01
Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
SToRM: A numerical model for environmental surface flows
Simoes, Francisco J.
2009-01-01
SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.
Numerical solution for weight reduction model due to health campaigns in Spain
NASA Astrophysics Data System (ADS)
Mohammed, Maha A.; Noor, Noor Fadiya Mohd; Siri, Zailan; Ibrahim, Adriana Irawati Nur
2015-10-01
Transition model between three subpopulations based on Body Mass Index of Valencia community in Spain is considered. No changes in population nutritional habits and public health strategies on weight reduction until 2030 are assumed. The system of ordinary differential equations is solved using Runge-Kutta method of higher order. The numerical results obtained are compared with the predicted values of subpopulation proportion based on statistical estimation in 2013, 2015 and 2030. Relative approximate error is calculated. The consistency of the Runge-Kutta method in solving the model is discussed.
NASA Astrophysics Data System (ADS)
Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.
2005-02-01
In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.
Application of differential transformation method for solving dengue transmission mathematical model
NASA Astrophysics Data System (ADS)
Ndii, Meksianis Z.; Anggriani, Nursanti; Supriatna, Asep K.
2018-03-01
The differential transformation method (DTM) is a semi-analytical numerical technique which depends on Taylor series and has application in many areas including Biomathematics. The aim of this paper is to employ the differential transformation method (DTM) to solve system of non-linear differential equations for dengue transmission mathematical model. Analytical and numerical solutions are determined and the results are compared to that of Runge-Kutta method. We found a good agreement between DTM and Runge-Kutta method.
NASA Astrophysics Data System (ADS)
Han, Xue-Feng; Liu, Xin; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji; Kakimoto, Koichi
2018-02-01
In FZ growth processes, the stability of the free surface is important in the production of single crystal silicon with high quality. To investigate the shape of the free surface in the FZ silicon crystal growth, a 3D numerical model that included gas and liquid phases was developed. In this present study, 3D Young-Laplacian equations have been solved using the Volume of Fluid (VOF) Model. Using this new model, we predicted the 3D shape of the free surface in FZ silicon crystal growth. The effect of magnetic pressure on shape of free surface has been considered. In particular, the free surface of the eccentric growth model, which could not be previously solved using the 2D Young-Laplacian equations, was solved using the VOF model. The calculation results are validated by the experimental results.
Sandia National Laboratories analysis code data base
NASA Astrophysics Data System (ADS)
Peterson, C. W.
1994-11-01
Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.
Fluid-structure interaction with pipe-wall viscoelasticity during water hammer
NASA Astrophysics Data System (ADS)
Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.
2012-01-01
Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.
Numerical Solution of the Extended Nernst-Planck Model.
Samson; Marchand
1999-07-01
The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
NASA Astrophysics Data System (ADS)
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
NASA Astrophysics Data System (ADS)
Wu, Zedong; Alkhalifah, Tariq
2018-07-01
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.
NASA Astrophysics Data System (ADS)
Andrei, Armas; Robert, Beilicci; Erika, Beilicci
2017-10-01
MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric limitations, numerical simplification, or the use of empirical correlations. Some are obvious: one-dimensional models must average properties over the two remaining directions. It is the less obvious and poorly advertised approximations that pose the greatest threat to the novice user. Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical flow can cause significant inaccuracy in the model predictions.
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
ERIC Educational Resources Information Center
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
NASA Astrophysics Data System (ADS)
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
NASA Astrophysics Data System (ADS)
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio
2015-06-01
Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.
NASA Astrophysics Data System (ADS)
Santos, Léonard; Thirel, Guillaume; Perrin, Charles
2018-04-01
In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting
. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade
and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.
1985-03-01
solved by the use of finite - .- core vortex filament models (Chorin and Bernard, 1973). A recent paper by Stremel (1984) briefly reviewed this...history of vortex sheet numerical modeling and presented a ’state of the art’ numerical technique. Stremel compared his numerical results with experimental
An efficient numerical method for solving the Boltzmann equation in multidimensions
NASA Astrophysics Data System (ADS)
Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas
2018-01-01
In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.
Numerical simulation of flow through the Langley parametric scramjet engine
NASA Technical Reports Server (NTRS)
Srinivasan, Shivakumar; Kamath, Pradeep S.; Mcclinton, Charles R.
1989-01-01
The numerical simulation of a three-dimensional turbulent, reacting flow through the entire Langley parametric scramjet engine has been obtained using a piecewise elliptic approach. The last section in the combustor has been analyzed using a parabolized Navier-Stokes code. The facility nozzle flow was analyzed as a first step. The outflow conditions from the nozzle were chosen as the inflow conditions of the scramjet inlet. The nozzle and the inlet simulation were accomplished by solving the three-dimensional Navier-Stokes equations with a perfect gas assumption. The inlet solution downstream of the scramjet throat was used to provide inflow conditions for the combustor region. The first two regions of the combustor were analyzed using the MacCormack's explicit scheme. However, the source terms in the species equations were solved implicitly. The finite rate chemistry was modeled using the two-step reaction model of Rogers and Chinitz. A complete reaction model was used in the PNS code to solve the last combustor region. The numerical solutions provide an insight of the flow details in a complete hydrogen-fueled scramjet engine module.
Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management
NASA Astrophysics Data System (ADS)
Koleva, M. N.
2011-11-01
In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.
A Simple and Accurate Rate-Driven Infiltration Model
NASA Astrophysics Data System (ADS)
Cui, G.; Zhu, J.
2017-12-01
In this study, we develop a novel Rate-Driven Infiltration Model (RDIMOD) for simulating infiltration into soils. Unlike traditional methods, RDIMOD avoids numerically solving the highly non-linear Richards equation or simply modeling with empirical parameters. RDIMOD employs infiltration rate as model input to simulate one-dimensional infiltration process by solving an ordinary differential equation. The model can simulate the evolutions of wetting front, infiltration rate, and cumulative infiltration on any surface slope including vertical and horizontal directions. Comparing to the results from the Richards equation for both vertical infiltration and horizontal infiltration, RDIMOD simply and accurately predicts infiltration processes for any type of soils and soil hydraulic models without numerical difficulty. Taking into account the accuracy, capability, and computational effectiveness and stability, RDIMOD can be used in large-scale hydrologic and land-atmosphere modeling.
An efficient numerical model for multicomponent compressible flow in fractured porous media
NASA Astrophysics Data System (ADS)
Zidane, Ali; Firoozabadi, Abbas
2014-12-01
An efficient and accurate numerical model for multicomponent compressible single-phase flow in fractured media is presented. The discrete-fracture approach is used to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross flow equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the species mass balance equation in the fractures. This step avoids the use of Courant-Freidricks-Levy (CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical examples are presented to demonstrate the robustness and efficiency of the proposed model. We show that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in the fractures increase the computational speed 20-130 times in 2D. In 3D, one may expect even a higher computational efficiency.
NASA Astrophysics Data System (ADS)
Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.
2017-07-01
In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.
A numerical projection technique for large-scale eigenvalue problems
NASA Astrophysics Data System (ADS)
Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang
2011-10-01
We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.
A comparative study of four major approaches to predicting ATES performance
NASA Astrophysics Data System (ADS)
Doughty, C.; Buscheck, T. A.; Bodvarsson, G. S.; Tsang, C. F.
1982-09-01
The International Energy Agency test problem involving Aquifer Thermal Energy Storage was solved using four approaches: the numerical model PF (formerly CCC), the simpler numerical model SFM, and two graphical characterization schemes. Each of the four techniques, with the advantages and disadvantages of each, are discussed.
ERIC Educational Resources Information Center
Shores, Jay H.; Underhill, Robert G.
A study was undertaken of the effects of formal education and conservation of numerousness on addition and subtraction problem types. Thirty-six kindergarten and 36 first-grade subjects randomly selected from one area of a school district were administered measures of conservation, problem-solving success, and modeling ability. Following factor…
Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach
NASA Astrophysics Data System (ADS)
Jamil, N. M.; Wang, Q.
2016-06-01
Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-01-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967
Abrams , Robert H.; Loague, Keith; Kent, Douglas B.
1998-01-01
The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.
NASA Technical Reports Server (NTRS)
Deavours, Daniel D.; Qureshi, M. Akber; Sanders, William H.
1997-01-01
Modeling tools and technologies are important for aerospace development. At the University of Illinois, we have worked on advancing the state of the art in modeling by Markov reward models in two important areas: reducing the memory necessary to numerically solve systems represented as stochastic activity networks and other stochastic Petri net extensions while still obtaining solutions in a reasonable amount of time, and finding numerically stable and memory-efficient methods to solve for the reward accumulated during a finite mission time. A long standing problem when modeling with high level formalisms such as stochastic activity networks is the so-called state space explosion, where the number of states increases exponentially with size of the high level model. Thus, the corresponding Markov model becomes prohibitively large and solution is constrained by the the size of primary memory. To reduce the memory necessary to numerically solve complex systems, we propose new methods that can tolerate such large state spaces that do not require any special structure in the model (as many other techniques do). First, we develop methods that generate row and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new iterative solution method, called modified adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-matrix, permitting us to cache portions of the matrix and hence reduce the solution time. Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel based solvers that avoids the need for generating rows of A in order to solve Ax = b. This is a significant performance improvement for on-the-fly methods as well as other recent solution techniques based on Kronecker operators. Taken together, these new results show that one can solve very large models without any special structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.
This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less
An adaptive time-stepping strategy for solving the phase field crystal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk
2013-09-15
In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less
Numerical wind-tunnel simulation for Spar platform
NASA Astrophysics Data System (ADS)
Shen, Wenjun
2017-05-01
ANSYS Fluent software is used in the simulation analysis of numerical wind tunnel model for the upper Spar platform module. Design Modeler (DM), Meshing, FLUENT and CFD-POST are chosen in the numerical calculation. And DM is used to deal with and repair the geometric model, and Meshing is used to mesh the model, Fluent is used to set up and solve the calculation condition, finally CFD-POST is used for post-processing of the results. The wind loads are obtained under different direction and incidence angles. Finally, comparison is made between numerical results and empirical formula.
Numerical Simulation of the Perrin-Like Experiments
ERIC Educational Resources Information Center
Mazur, Zygmunt; Grech, Dariusz
2008-01-01
A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…
Heat transfer process during the crystallization of benzil grown by the Bridgman-Stockbarger method
NASA Astrophysics Data System (ADS)
Barvinschi, F.; Stanculescu, A.; Stanculescu, F.
2011-02-01
The temperature distribution and solid-liquid interface shape during benzil growth have been studied both experimentally and numerically. The heat transfer equation with appropriate boundary conditions has been solved by modelling a vertical Bridgman-Stockbarger growth configuration. Two models have been developed, namely a global numerical model and a pseudo-transient approximation in an ideal configuration.
Mixing Regimes in a Spatially Confined, Two-Dimensional, Supersonic Shear Layer
1992-07-31
MODEL ................................... 3 THE MODEL PROBLEMS .............................................. 6 THE ONE-DIMENSIONAL PROBLEM...the effects of the numerical diffusion on the spectrum. Guirguis et al.ś and Farouk et al."’ have studied spatially evolving mixing layers for equal...approximations. Physical and Numerical Model General Formulation We solve the time-dependent, two-dimensional, compressible, Navier-Stokes equations for a
The Bean model in suprconductivity: Variational formulation and numerical solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prigozhin, L.
The Bean critical-state model describes the penetration of magnetic field into type-II superconductors. Mathematically, this is a free boundary problem and its solution is of interest in applied superconductivity. We derive a variational formulation for the Bean model and use it to solve two-dimensional and axially symmetric critical-state problems numerically. 25 refs., 9 figs., 1 tab.
ERIC Educational Resources Information Center
Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima
2009-01-01
A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...
2015-06-08
Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris
Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
Variational data assimilation system "INM RAS - Black Sea"
NASA Astrophysics Data System (ADS)
Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir
2013-04-01
Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 95-111 [4] V.I. Agoshkov, S.V. Giniatulin, G.V. Kuimov. OpenMP technology and linear algebra packages in the variation data assimilation systems. - Abstracts of the 1-st China-Russia Conference on Numerical Algebra with Applications in Radiactive Hydrodynamics, Beijing, China, October 16-18, 2012. [5] Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.
NASA Technical Reports Server (NTRS)
Jiang, Ching-Biau; T'ien, James S.
1994-01-01
Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.
Modeling flow at the nozzle of a solid rocket motor
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Jin, Kang-Ren
1991-01-01
The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which can be solved numerically. The accuracy and the convergence of the solution of the system of equations depends largely on how precisely the sharp gradients can be resolved. An adaptive grid generation scheme is incorporated into the computer algorithm to enhance the capability of numerical modeling. With this scheme, the grid is refined as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzle by putting the refinement part of grid generation into the computer algorithm.
Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven H.
This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinitemore » programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.« less
Efficient numerical method for solving Cauchy problem for the Gamma equation
NASA Astrophysics Data System (ADS)
Koleva, Miglena N.
2011-12-01
In this work we consider Cauchy problem for the so called Gamma equation, derived by transforming the fully nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative (Greek) Γ = VSS of the option price V. We develop an efficient numerical method for solving the model problem concerning different volatility terms. Using suitable change of variables the problem is transformed on finite interval, keeping original behavior of the solution at the infinity. Then we construct Picard-Newton algorithm with adaptive mesh step in time, which can be applied also in the case of non-differentiable functions. Results of numerical simulations are given.
NASA Astrophysics Data System (ADS)
Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina
2017-09-01
A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.
Modelling of non-equilibrium flow in the branched pipeline systems
NASA Astrophysics Data System (ADS)
Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.
2016-09-01
This article presents a mathematical model and a numerical method for solving the task of water hammer in the branched pipeline system. The task is considered in the onedimensional non-stationary formulation taking into account the realities such as the change in the diameter of the pipeline and its branches. By comparison with the existing analytic solution it has been shown that the proposed method possesses good accuracy. With the help of the developed model and numerical method the task has been solved concerning the transmission of the compression waves complex in the branching pipeline system when several shut down valves operate. It should be noted that the offered model and method may be easily introduced to a number of other tasks, for example, to describe the flow of blood in the vessels.
Numerical Problems and Agent-Based Models for a Mass Transfer Course
ERIC Educational Resources Information Center
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.
2009-01-01
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
NASA Astrophysics Data System (ADS)
Roul, Pradip; Warbhe, Ujwal
2017-08-01
The classical homotopy perturbation method proposed by J. H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999) is useful for obtaining the approximate solutions for a wide class of nonlinear problems in terms of series with easily calculable components. However, in some cases, it has been found that this method results in slowly convergent series. To overcome the shortcoming, we present a new reliable algorithm called the domain decomposition homotopy perturbation method (DDHPM) to solve a class of singular two-point boundary value problems with Neumann and Robin-type boundary conditions arising in various physical models. Five numerical examples are presented to demonstrate the accuracy and applicability of our method, including thermal explosion, oxygen-diffusion in a spherical cell and heat conduction through a solid with heat generation. A comparison is made between the proposed technique and other existing seminumerical or numerical techniques. Numerical results reveal that only two or three iterations lead to high accuracy of the solution and this newly improved technique introduces a powerful improvement for solving nonlinear singular boundary value problems (SBVPs).
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)
2002-01-01
Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.
NASA Astrophysics Data System (ADS)
Oskouie, M. Faraji; Ansari, R.; Rouhi, H.
2018-04-01
Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
Numerical Modeling of Flow Distribution in Micro-Fluidics Systems
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Cole, Helen; Chen, C. P.
2005-01-01
This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.
NASA Astrophysics Data System (ADS)
Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.
2008-02-01
This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
NASA Astrophysics Data System (ADS)
Zhu, Luoding
2017-11-01
Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.
Modeling of nonequilibrium space plasma flows
NASA Technical Reports Server (NTRS)
Gombosi, Tamas
1995-01-01
Godunov-type numerical solution of the 20 moment plasma transport equations. One of the centerpieces of our proposal was the development of a higher order Godunov-type numerical scheme to solve the gyration dominated 20 moment transport equations. In the first step we explored some fundamental analytic properties of the 20 moment transport equations for a low b plasma, including the eigenvectors and eigenvalues of propagating disturbances. The eigenvalues correspond to wave speeds, while the eigenvectors characterize the transported physical quantities. In this paper we also explored the physically meaningful parameter range of the normalized heat flow components. In the second step a new Godunov scheme type numerical method was developed to solve the coupled set of 20 moment transport equations for a quasineutral single-ion plasma. The numerical method and the first results were presented at several national and international meetings and a paper describing the method has been published in the Journal of Computational Physics. To our knowledge this is the first numerical method which is capable of producing stable time-dependent solutions to the full 20 (or 16) moment set of transport equations, including the full heat flow equation. Previous attempts resulted in unstable (oscillating) solutions of the heat flow equations. Our group invested over two man-years into the development and implementation of the new method. The present model solves the 20 moment transport equations for an ion species and thermal electrons in 8 domain extending from a collision dominated to a collisionless region (200 km to 12,000 km). This model has been applied to study O+ acceleration due to Joule heating in the lower ionosphere.
NASA Astrophysics Data System (ADS)
Katsaounis, T. D.
2005-02-01
The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. The first chapter is an introduction to parallel processing. It covers fundamentals of parallel processing in a simple and concrete way and no prior knowledge of the subject is required. Examples of parallel implementation of basic linear algebra operations are presented using the Message Passing Interface (MPI) programming environment. Here, some knowledge of MPI routines is required by the reader. Examples solving in parallel simple PDEs using Diffpack and MPI are also presented. Chapter 2 presents the overlapping domain decomposition method for solving PDEs. It is well known that these methods are suitable for parallel processing. The first part of the chapter covers the mathematical formulation of the method as well as algorithmic and implementational issues. The second part presents a serial and a parallel implementational framework within the programming environment of Diffpack. The chapter closes by showing how to solve two application examples with the overlapping domain decomposition method using Diffpack. Chapter 3 is a tutorial about how to incorporate the multigrid solver in Diffpack. The method is illustrated by examples such as a Poisson solver, a general elliptic problem with various types of boundary conditions and a nonlinear Poisson type problem. In chapter 4 the mixed finite element is introduced. Technical issues concerning the practical implementation of the method are also presented. The main difficulties of the efficient implementation of the method, especially in two and three space dimensions on unstructured grids, are presented and addressed in the framework of Diffpack. The implementational process is illustrated by two examples, namely the system formulation of the Poisson problem and the Stokes problem. Chapter 5 is closely related to chapter 4 and addresses the problem of how to solve efficiently the linear systems arising by the application of the mixed finite element method. The proposed method is block preconditioning. Efficient techniques for implementing the method within Diffpack are presented. Optimal block preconditioners are used to solve the system formulation of the Poisson problem, the Stokes problem and the bidomain model for the electrical activity in the heart. The subject of chapter 6 is systems of PDEs. Linear and nonlinear systems are discussed. Fully implicit and operator splitting methods are presented. Special attention is paid to how existing solvers for scalar equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical models used in finance, based on the Black--Scholes equation. Chapter 12 considers several numerical methods like Monte Carlo, lattice methods, finite difference and finite element methods. Implementation of these methods within Diffpack is presented in the last part of the chapter. Chapter 13 presents how the finite element method is used for the modelling and analysis of elastic structures. The authors describe the structural elements of Diffpack which include popular elements such as beams and plates and examples are presented on how to use them to simulate elastic structures. Chapter 14 describes an application problem, namely the extrusion of aluminum. This is a rather\\endcolumn complicated process which involves non-Newtonian flow, heat transfer and elasticity. The authors describe the systems of PDEs modelling the underlying process and use a finite element method to obtain a numerical solution. The implementation of the numerical method in Diffpack is presented along with some applications. The last chapter, chapter 15, focuses on mathematical and numerical models of systems of PDEs governing geological processes in sedimentary basins. The underlying mathematical model is solved using the finite element method within a fully implicit scheme. The authors discuss the implementational issues involved within Diffpack and they present results from several examples. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall the book is well written, the subject of each chapter is well presented and can serve as a reference for graduate students, researchers and engineers who are interested in the numerical solution of partial differential equations modelling various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng, E-mail: xfyang@math.sc.edu; Han, Daozhi, E-mail: djhan@iu.edu
2017-02-01
In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank–Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposedmore » schemes.« less
NASA Astrophysics Data System (ADS)
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Numerical simulations for tumor and cellular immune system interactions in lung cancer treatment
NASA Astrophysics Data System (ADS)
Kolev, M.; Nawrocki, S.; Zubik-Kowal, B.
2013-06-01
We investigate a new mathematical model that describes lung cancer regression in patients treated by chemotherapy and radiotherapy. The model is composed of nonlinear integro-differential equations derived from the so-called kinetic theory for active particles and a new sink function is investigated according to clinical data from carcinoma planoepitheliale. The model equations are solved numerically and the data are utilized in order to find their unknown parameters. The results of the numerical experiments show a good correlation between the predicted and clinical data and illustrate that the mathematical model has potential to describe lung cancer regression.
Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting
Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart
2015-02-14
Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
Theoretical and computational analyses of LNG evaporator
NASA Astrophysics Data System (ADS)
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
NASA Technical Reports Server (NTRS)
Harris, J. E.
1975-01-01
An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.
Modelling of current loads on aquaculture net cages
NASA Astrophysics Data System (ADS)
Kristiansen, Trygve; Faltinsen, Odd M.
2012-10-01
In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.
Cosmological perturbations in the DGP braneworld: Numeric solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.
2008-04-15
We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.
NASA Astrophysics Data System (ADS)
Markou, A. A.; Manolis, G. D.
2018-03-01
Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.
Numerical simulation of transient, incongruent vaporization induced by high power laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.H.
1981-01-01
A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems ismore » studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.« less
Numerical modeling of NO formation in laminar Bunsen flames -- A flamelet approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, C.P.; Chen, J.Y.; Yam, C.G.
1998-08-01
Based on the flamelet concept, a numerical model has been developed for fast predictions of NO{sub x} and CO emissions from laminar flames. The model is applied to studying NO formation in the secondary nonpremixed flame zone of fuel-rich methane Bunsen flames. By solving the steady-state flamelet equations with the detailed GR12.1 methane-air mechanism, a flamelet library is generated containing thermochemical information for a range of scalar dissipation rates at the ambient pressure condition. Modeling of NO formation is made by solving its conservation equation with chemical source term evaluated based on flamelet library using the extended Zeldovich mechanism andmore » NO reburning reactions. The optically-thin radiation heat transfer model is used to explore the potential effect of heat loss on thermal NO formation. The numerical scheme solves the two-dimensional Navier-Stokes equations as well as three additional equations: the mixture fraction, the NO mass fraction, and the enthalpy deficit due to radiative heat loss. With an established flamelet library, typical computing times are about 5 hours per calculation on a DEC-3000 300LX workstation. The predicted mixing field, radial temperature profiles, and NO distributions compare favorably with recent experimental data obtained by Nguyen et al. The dependence of NO{sub x} emission on equivalence ratio is studied numerically and the predictions are found to agree reasonably well with the measurements by Muss. The computed results show a decreasing trend of NO{sub x} emission with the equivalence ratio but an increasing trend in the CO emission index. By examining this trade-off between NO{sub x} and CO, an optimal equivalence ratio of 1.4 is found to yield the lowest combined emission.« less
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
Modeling and numerical simulations of the influenced Sznajd model
NASA Astrophysics Data System (ADS)
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Modeling and numerical simulations of the influenced Sznajd model.
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Quantifying errors in trace species transport modeling.
Prather, Michael J; Zhu, Xin; Strahan, Susan E; Steenrod, Stephen D; Rodriguez, Jose M
2008-12-16
One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.
Improved numerical solutions for chaotic-cancer-model
NASA Astrophysics Data System (ADS)
Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair
2017-01-01
In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Numerical study of a Vlasov equation for systems with interacting particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Dianela; Curilef, Sergio
2015-03-10
We solve numerically the Vlasov equation for the self-gravitating sheet model. We used the method introduced by Cheng and Knorr [Comput Phys 22, 330-351 (1976)]. We discuss the quasi-stationary state for some thermodynamical observables, specifically the kinetic energy, whose trend is depicted for early evolution.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems
NASA Astrophysics Data System (ADS)
Ben Dhia, Hachmi; Du, Shuimiao
2018-05-01
The surface micro-interaction model of Lennard-Jones (LJ) is used for adhesive contact problems (ACP). To address theoretical and numerical pitfalls of this model, a sequence of partitions of contact models is adaptively constructed to both extend and approximate the LJ model. It is formed by a combination of the LJ model with a sequence of shifted-Signorini (or, alternatively, -Linearized-LJ) models, indexed by a shift parameter field. For each model of this sequence, a weak formulation of the associated local ACP is developed. To track critical localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic frictionless (as first approach) linear-elastic contact problem is solved once to detect contact separation zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is re-formulated and solved within the multiscale Arlequin framework, with significant reduction of computational costs. Comparison of our results with available analytical and numerical solutions shows the effectiveness of our global strategy.
NASA Astrophysics Data System (ADS)
Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.
2012-04-01
We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to create technology «no frost», realizing a steady stream of direct and inverse problems: solving the direct problem, the visualization and comparison with observed data, to solve the inverse problem (correction of the model parameters). The main objective of further work is the creation of a workstation operating emergency tool that could be used by an emergency duty person in real time.
Convex Relaxation of OPF in Multiphase Radial Networks with Wye and Delta Connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven
2017-08-01
This panel presentation focuses on multiphase radial distribution networks with wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power flow models are developed to facilitate the integration of delta-connected loads or generation resources in the OPF problem. The first model is referred to as the extended branch flow model (EBFM). The second model leverages a linear relationship between phase-to-ground power injections and delta connections that holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studiesmore » on IEEE test feeders show that the proposed SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidence also indicates that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is further shown that the SDP solution under BVA has a small optimality gap, and the BVA model is accurate in the sense that it reproduces actual system voltages.« less
A Novel Numerical Method for Fuzzy Boundary Value Problems
NASA Astrophysics Data System (ADS)
Can, E.; Bayrak, M. A.; Hicdurmaz
2016-05-01
In the present paper, a new numerical method is proposed for solving fuzzy differential equations which are utilized for the modeling problems in science and engineering. Fuzzy approach is selected due to its important applications on processing uncertainty or subjective information for mathematical models of physical problems. A second-order fuzzy linear boundary value problem is considered in particular due to its important applications in physics. Moreover, numerical experiments are presented to show the effectiveness of the proposed numerical method on specific physical problems such as heat conduction in an infinite plate and a fin.
Numerical and experimental study of a hydrodynamic cavitation tube
NASA Astrophysics Data System (ADS)
Hu, H.; Finch, J. A.; Zhou, Z.; Xu, Z.
1998-08-01
A numerical analysis of hydrodynamics in a cavitation tube used for activating fine particle flotation is described. Using numerical procedures developed for solving the turbulent k-ɛ model with boundary fitted coordinates, the stream function, vorticity, velocity, and pressure distributions in a cavitation tube were calculated. The calculated pressure distribution was found to be in excellent agreement with experimental results. The requirement of a pressure drop below approximately 10 m water for cavitation to occur was observed experimentally and confirmed by the model. The use of the numerical procedures for cavitation tube design is discussed briefly.
Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M
2011-09-24
Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
Flowfield computation of entry vehicles
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.
1990-01-01
The equations governing the multidimensional flow of a reacting mixture of thermally perfect gasses were derived. The modeling procedures for the various terms of the conservation laws are discussed. A numerical algorithm, based on the finite-volume approach, to solve these conservation equations was developed. The advantages and disadvantages of the present numerical scheme are discussed from the point of view of accuracy, computer time, and memory requirements. A simple one-dimensional model problem was solved to prove the feasibility and accuracy of the algorithm. A computer code implementing the above algorithm was developed and is presently being applied to simple geometries and conditions. Once the code is completely debugged and validated, it will be used to compute the complete unsteady flow field around the Aeroassist Flight Experiment (AFE) body.
Adapting HYDRUS-1D to simulate overland flow and reactive transport during sheet flow deviations
USDA-ARS?s Scientific Manuscript database
The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil sur...
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
Rigidice Model of Secondary Frost Heave
DOT National Transportation Integrated Search
1995-05-01
A revised version of an earlier attempt to numerically solve Miller's equations for the RIGIDICE model of frost heave is presented that corrects earlier mistakes and incorporates recent improvements in the scaling factors of ground freezing. The new ...
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.
1988-01-01
An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.
NASA Astrophysics Data System (ADS)
Gilchrist, S. A.; Braun, D. C.; Barnes, G.
2016-12-01
Magnetohydrostatic models of the solar atmosphere are often based on idealized analytic solutions because the underlying equations are too difficult to solve in full generality. Numerical approaches, too, are often limited in scope and have tended to focus on the two-dimensional problem. In this article we develop a numerical method for solving the nonlinear magnetohydrostatic equations in three dimensions. Our method is a fixed-point iteration scheme that extends the method of Grad and Rubin ( Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy 31, 190, 1958) to include a finite gravity force. We apply the method to a test case to demonstrate the method in general and our implementation in code in particular.
The liquid fuel jet in subsonic crossflow
NASA Technical Reports Server (NTRS)
Nguyen, T. T.; Karagozian, A. R.
1990-01-01
An analytical/numerical model is described which predicts the behavior of nonreacting and reacting liquid jets injected transversely into subsonic cross flow. The compressible flowfield about the elliptical jet cross section is solved at various locations along the jet trajectory by analytical means for free-stream local Mach number perpendicular to jet cross section smaller than 0.3 and by numerical means for free-stream local Mach number perpendicular to jet cross section in the range 0.3-1.0. External and internal boundary layers along the jet cross section are solved by integral and numerical methods, and the mass losses due to boundary layer shedding, evaporation, and combustion are calculated and incorporated into the trajectory calculation. Comparison of predicted trajectories is made with limited experimental observations.
Xu, Zhenli; Ma, Manman; Liu, Pei
2014-07-01
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations
NASA Astrophysics Data System (ADS)
Antoine, Xavier; Duboscq, Romain
2015-08-01
GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.
An approach to solving large reliability models
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Veeraraghavan, Malathi; Dugan, Joanne Bechta; Trivedi, Kishor S.
1988-01-01
This paper describes a unified approach to the problem of solving large realistic reliability models. The methodology integrates behavioral decomposition, state trunction, and efficient sparse matrix-based numerical methods. The use of fault trees, together with ancillary information regarding dependencies to automatically generate the underlying Markov model state space is proposed. The effectiveness of this approach is illustrated by modeling a state-of-the-art flight control system and a multiprocessor system. Nonexponential distributions for times to failure of components are assumed in the latter example. The modeling tool used for most of this analysis is HARP (the Hybrid Automated Reliability Predictor).
Numerical Modelling of Ground Penetrating Radar Antennas
NASA Astrophysics Data System (ADS)
Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara
2014-05-01
Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD model. Accurate models based on general characteristics of the commercial antennas GSSI 1.5 GHz and MALA 1.2 GHz have been already incorporated in GprMax, a free software which solves Maxwell's equation using a second order in space and time FDTD algorithm. This work presents the implementation of horn antennas with different parameters as well as ridged horn antennas into this FDTD model and their effectiveness is tested in realistic modelled situations. Accurate models of soils and concrete are used to test and compare different antenna units. Stochastic methods are used in order to realistically simulate the geometrical characteristics of the medium. Regarding the dielectric properties, Debye approximations are incorporated in order to simulate realistically the dielectric properties of the medium on the frequency range of interest.
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.
2018-03-01
In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.
A model and numerical method for compressible flows with capillary effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr
2017-04-01
A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less
A parallel direct-forcing fictitious domain method for simulating microswimmers
NASA Astrophysics Data System (ADS)
Gao, Tong; Lin, Zhaowu
2017-11-01
We present a 3D parallel direct-forcing fictitious domain method for simulating swimming micro-organisms at small Reynolds numbers. We treat the motile micro-swimmers as spherical rigid particles using the ``Squirmer'' model. The particle dynamics are solved on the moving Larangian meshes that overlay upon a fixed Eulerian mesh for solving the fluid motion, and the momentum exchange between the two phases is resolved by distributing pseudo body-forces over the particle interior regions which constrain the background fictitious fluids to follow the particle movement. While the solid and fluid subproblems are solved separately, no inner-iterations are required to enforce numerical convergence. We demonstrate the accuracy and robustness of the method by comparing our results with the existing analytical and numerical studies for various cases of single particle dynamics and particle-particle interactions. We also perform a series of numerical explorations to obtain statistical and rheological measurements to characterize the dynamics and structures of Squirmer suspensions. NSF DMS 1619960.
Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B
2007-06-16
This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.
SPIR: The potential spreaders involved SIR model for information diffusion in social networks
NASA Astrophysics Data System (ADS)
Rui, Xiaobin; Meng, Fanrong; Wang, Zhixiao; Yuan, Guan; Du, Changjiang
2018-09-01
The Susceptible-Infective-Removed (SIR) model is one of the most widely used models for the information diffusion research in social networks. Many researchers have devoted themselves to improving the classic SIR model in different aspects. However, on the one hand, the equations of these improved models are regarded as continuous functions, while the corresponding simulation experiments use discrete time, leading to the mismatch between numerical solutions got from mathematical method and experimental results obtained by simulating the spreading behaviour of each node. On the other hand, if the equations of these improved models are solved discretely, susceptible nodes will be calculated repeatedly, resulting in a big deviation from the actual value. In order to solve the above problem, this paper proposes a Susceptible-Potential-Infective-Removed (SPIR) model that analyses the diffusion process based on the discrete time according to simulation. Besides, this model also introduces a potential spreader set which solve the problem of repeated calculation effectively. To test the SPIR model, various experiments have been carried out from different angles on both artificial networks and real world networks. The Pearson correlation coefficient between numerical solutions of our SPIR equations and corresponding simulation results is mostly bigger than 0.95, which reveals that the proposed SPIR model is able to depict the information diffusion process with high accuracy.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
NASA Astrophysics Data System (ADS)
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-05-01
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Chung, Eric T.
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less
A high-order multiscale finite-element method for time-domain acoustic-wave modeling
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-02-04
Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less
NASA Astrophysics Data System (ADS)
Yang, Jia Sheng
2018-06-01
In this paper, we investigate a H∞ memory controller with input limitation minimization (HMCIM) for offshore jacket platforms stabilization. The main objective of this study is to reduce the control consumption as well as protect the actuator when satisfying the requirement of the system performance. First, we introduce a dynamic model of offshore platform with low order main modes based on mode reduction method in numerical analysis. Then, based on H∞ control theory and matrix inequality techniques, we develop a novel H∞ memory controller with input limitation. Furthermore, a non-convex optimization model to minimize input energy consumption is proposed. Since it is difficult to solve this non-convex optimization model by optimization algorithm, we use a relaxation method with matrix operations to transform this non-convex optimization model to be a convex optimization model. Thus, it could be solved by a standard convex optimization solver in MATLAB or CPLEX. Finally, several numerical examples are given to validate the proposed models and methods.
Charging of nanoparticles in stationary plasma in a gas aggregation cluster source
NASA Astrophysics Data System (ADS)
Blažek, J.; Kousal, J.; Biederman, H.; Kylián, O.; Hanuš, J.; Slavínská, D.
2015-10-01
Clusters that grow into nanoparticles near the magnetron target of the gas aggregation cluster source (GAS) may acquire electric charge by collecting electrons and ions or through other mechanisms like secondary- or photo-electron emissions. The region of the GAS close to magnetron may be considered as stationary plasma. The steady state charge distribution on nanoparticles can be determined by means of three possible models—fluid model, kinetic model and model employing Monte Carlo simulations—of cluster charging. In the paper the mathematical and numerical aspects of these models are analyzed in detail and close links between them are clarified. Among others it is shown that Monte Carlo simulation may be considered as a particular numerical technique of solving kinetic equations. Similarly the equations of the fluid model result, after some approximation, from averaged kinetic equations. A new algorithm solving an in principle unlimited set of kinetic equations is suggested. Its efficiency is verified on physical models based on experimental input data.
Differential geometry based solvation model I: Eulerian formulation
NASA Astrophysics Data System (ADS)
Chen, Zhan; Baker, Nathan A.; Wei, G. W.
2010-11-01
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the solvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By optimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second-order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature.
Differential geometry based solvation model I: Eulerian formulation
Chen, Zhan; Baker, Nathan A.; Wei, G. W.
2010-01-01
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the salvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By minimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature. PMID:20938489
Extension of lattice Boltzmann flux solver for simulation of compressible multi-component flows
NASA Astrophysics Data System (ADS)
Yang, Li-Ming; Shu, Chang; Yang, Wen-Ming; Wang, Yan
2018-05-01
The lattice Boltzmann flux solver (LBFS), which was presented by Shu and his coworkers for solving compressible fluid flow problems, is extended to simulate compressible multi-component flows in this work. To solve the two-phase gas-liquid problems, the model equations with stiffened gas equation of state are adopted. In this model, two additional non-conservative equations are introduced to represent the material interfaces, apart from the classical Euler equations. We first convert the interface equations into the full conservative form by applying the mass equation. After that, we calculate the numerical fluxes of the classical Euler equations by the existing LBFS and the numerical fluxes of the interface equations by the passive scalar approach. Once all the numerical fluxes at the cell interface are obtained, the conservative variables at cell centers can be updated by marching the equations in time and the material interfaces can be identified via the distributions of the additional variables. The numerical accuracy and stability of present scheme are validated by its application to several compressible multi-component fluid flow problems.
Design of Linear Quadratic Regulators and Kalman Filters
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L.
1986-01-01
AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.
Approximating a retarded-advanced differential equation that models human phonation
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2017-11-01
In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.
Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow
NASA Astrophysics Data System (ADS)
Gao, Zheng
A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the proposed framework can be used to solve a physics problem that involves turbulence field and point-mass system, and therefore has a broad application.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
Analytical and numerical solution for wave reflection from a porous wave absorber
NASA Astrophysics Data System (ADS)
Magdalena, Ikha; Roque, Marian P.
2018-03-01
In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less
Data access and decision tools for coastal water resources management
US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal ...
A dynamic model of functioning of a bank
NASA Astrophysics Data System (ADS)
Malafeyev, Oleg; Awasthi, Achal; Zaitseva, Irina; Rezenkov, Denis; Bogdanova, Svetlana
2018-04-01
In this paper, we analyze dynamic programming as a novel approach to solve the problem of maximizing the profits of a bank. The mathematical model of the problem and the description of bank's work is described in this paper. The problem is then approached using the method of dynamic programming. Dynamic programming makes sure that the solutions obtained are globally optimal and numerically stable. The optimization process is set up as a discrete multi-stage decision process and solved with the help of dynamic programming.
NASA Astrophysics Data System (ADS)
Hirwani, C. K.; Biswash, S.; Mehar, K.; Panda, S. K.
2018-03-01
In this article, we investigate the thermomechanical deflection characteristics of the debonded composite plate structure using an isoparametric type of higher-order finite element model. The current formulation is derived using higher-order kinematic theory and the displacement variables described as constant along the thickness direction whereas varying nonlinearly for the in-plane directions. The present mid-plane kinematic model mainly obsoletes the use of shear correction factor as in the other lower-order theories. The separation between the adjacent layers is modeled via the sub-laminate technique and the intermittent continuity conditions imposed to avoid the mathematical ill conditions. The governing equation of equilibrium of the damaged plate structure under the combined state of loading are obtained using the variational principle and solved numerically to compute the deflection values. Further, the convergence test has been performed by refining the numbers of elements and validated through comparing the present results with available published values. The usefulness of the proposed formulation has been discussed by solving the different kind of numerical examples including the size, location and position of delamination.
Numerical solution of a conspicuous consumption model with constant control delay☆
Huschto, Tony; Feichtinger, Gustav; Hartl, Richard F.; Kort, Peter M.; Sager, Sebastian; Seidl, Andrea
2011-01-01
We derive optimal pricing strategies for conspicuous consumption products in periods of recession. To that end, we formulate and investigate a two-stage economic optimal control problem that takes uncertainty of the recession period length and delay effects of the pricing strategy into account. This non-standard optimal control problem is difficult to solve analytically, and solutions depend on the variable model parameters. Therefore, we use a numerical result-driven approach. We propose a structure-exploiting direct method for optimal control to solve this challenging optimization problem. In particular, we discretize the uncertainties in the model formulation by using scenario trees and target the control delays by introduction of slack control functions. Numerical results illustrate the validity of our approach and show the impact of uncertainties and delay effects on optimal economic strategies. During the recession, delayed optimal prices are higher than the non-delayed ones. In the normal economic period, however, this effect is reversed and optimal prices with a delayed impact are smaller compared to the non-delayed case. PMID:22267871
Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid
Chaari, Anis; Giraud-Moreau, Laurence
2014-01-01
An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced. PMID:24795538
A new numerical approximation of the fractal ordinary differential equation
NASA Astrophysics Data System (ADS)
Atangana, Abdon; Jain, Sonal
2018-02-01
The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.
Mean Field Type Control with Congestion (II): An Augmented Lagrangian Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu
This work deals with a numerical method for solving a mean-field type control problem with congestion. It is the continuation of an article by the same authors, in which suitably defined weak solutions of the system of partial differential equations arising from the model were discussed and existence and uniqueness were proved. Here, the focus is put on numerical methods: a monotone finite difference scheme is proposed and shown to have a variational interpretation. Then an Alternating Direction Method of Multipliers for solving the variational problem is addressed. It is based on an augmented Lagrangian. Two kinds of boundary conditionsmore » are considered: periodic conditions and more realistic boundary conditions associated to state constrained problems. Various test cases and numerical results are presented.« less
Traffic Flow Density Distribution Based on FEM
NASA Astrophysics Data System (ADS)
Ma, Jing; Cui, Jianming
In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.
Simulink Model of the Ares I Upper Stage Main Propulsion System
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2008-01-01
A numerical model of the Ares I upper stage main propulsion system is formulated based on first principles. Equation's are written as non-linear ordinary differential equations. The GASP fortran code is used to compute thermophysical properties of the working fluids. Complicated algebraic constraints are numerically solved. The model is implemented in Simulink and provides a rudimentary simulation of the time history of important pressures and temperatures during re-pressurization, boost and upper stage firing. The model is validated against an existing reliable code, and typical results are shown.
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Seifert, Axel; Ackerman, Andrew; Jensen, Eric
2004-01-01
Numerical models that resolve cloud particles into discrete mass size distributions on an Eulerian grid provide a uniquely powerful means of studying the closely coupled interaction of aerosols, cloud microphysics, and transport that determine cloud properties and evolution. However, such models require many experimentally derived paramaterizations in order to properly represent the complex interactions of droplets within turbulent flow. Many of these parameterizations remain poorly quantified, and the numerical methods of solving the equations for temporal evolution of the mass size distribution can also vary considerably in terms of efficiency and accuracy. In this work, we compare results from two size-resolved microphysics models that employ various widely-used parameterizations and numerical solution methods for several aspects of stochastic collection.
Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows
NASA Astrophysics Data System (ADS)
Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang
2018-03-01
In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.
Numerical developments for short-pulsed Near Infra-Red laser spectroscopy. Part I: direct treatment
NASA Astrophysics Data System (ADS)
Boulanger, Joan; Charette, André
2005-03-01
This two part study is devoted to the numerical treatment of short-pulsed laser near infra-red spectroscopy. The overall goal is to address the possibility of numerical inverse treatment based on a recently developed direct model to solve the transient radiative transfer equation. This model has been constructed in order to incorporate the last improvements in short-pulsed laser interaction with semi-transparent media and combine a discrete ordinates computing of the implicit source term appearing in the radiative transfer equation with an explicit treatment of the transport of the light intensity using advection schemes, a method encountered in reactive flow dynamics. The incident collimated beam is analytically solved through Bouger Beer Lambert extinction law. In this first part, the direct model is extended to fully non-homogeneous materials and tested with two different spatial schemes in order to be adapted to the inversion methods presented in the following second part. As a first point, fundamental methods and schemes used in the direct model are presented. Then, tests are conducted by comparison with numerical simulations given as references. In a third and last part, multi-dimensional extensions of the code are provided. This allows presentation of numerical results of short pulses propagation in 1, 2 and 3D homogeneous and non-homogeneous materials given some parametrical studies on medium properties and pulse shape. For comparison, an integral method adapted to non-homogeneous media irradiated by a pulsed laser beam is also developed for the 3D case.
Implicit level set algorithms for modelling hydraulic fracture propagation.
Peirce, A
2016-10-13
Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture 'tip screen-out'; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research. This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).
Implicit level set algorithms for modelling hydraulic fracture propagation
2016-01-01
Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture ‘tip screen-out’; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597787
Numerical analysis of heat transfer in the exhaust gas flow in a diesel power generator
NASA Astrophysics Data System (ADS)
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2016-09-01
This work presents a numerical study of heat transfer in the exhaust duct of a diesel power generator. The analysis was performed using two different approaches: the Finite Difference Method (FDM) and the Finite Volume Method (FVM), this last one by means of a commercial computer software, ANSYS CFX®. In FDM, the energy conservation equation was solved taking into account the estimated velocity profile for fully developed turbulent flow inside a tube and literature correlations for heat transfer. In FVM, the mass conservation, momentum, energy and transport equations were solved for turbulent quantities by the K-ω SST model. In both methods, variable properties were considered for the exhaust gas composed by six species: CO2, H2O, H2, O2, CO and N2. The entry conditions for the numerical simulations were given by experimental data available. The results were evaluated for the engine operating under loads of 0, 10, 20, and 37.5 kW. Test mesh and convergence were performed to determine the numerical error and uncertainty of the simulations. The results showed a trend of increasing temperature gradient with load increase. The general behaviour of the velocity and temperature profiles obtained by the numerical models were similar, with some divergence arising due to the assumptions made for the resolution of the models.
2011-01-01
Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1988-01-01
A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.
SAMI3: The Evolution of an Ionosphere/Plasmasphere Model
NASA Astrophysics Data System (ADS)
Huba, J.
2017-12-01
The development of the Naval Research Laboratory ionosphere/plasmasphere model SAMI3 is described. The emphasis is on the challenges of building such a model and the decision making process in choosing the appropriate numerical algorithms to solve the underlying first-principles physics equations. Some of the numerical issues discussed are the numerical grid, semi-implicit and finite volume transport schemes, and flux corrected transport. These will be juxtaposed with the attendant scientific inquiries and results. Some of the physics issues highlighted are the prediction of an electron density `hole' in the topside (1500 km) equatorial ionosphere, the regional and global modeling of equatorial spread F, metal ions in the E region, and plasmaspheric plumes.
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Srivastava, Akanksha
2013-01-01
This paper presents a survey of innovative approaches of the most effective computational techniques for solving singular perturbed partial differential equations, which are useful because of their numerical and computer realizations. Many applied problems appearing in semiconductors theory, biochemistry, kinetics, theory of electrical chains, economics, solid mechanics, fluid dynamics, quantum mechanics, and many others can be modelled as singularly perturbed systems. Here, we summarize a wide range of research articles published by numerous researchers during the last ten years to get a better view of the present scenario in this area of research.
Solution of the Wang Chang-Uhlenbeck equation for molecular hydrogen
NASA Astrophysics Data System (ADS)
Anikin, Yu. A.
2017-06-01
Molecular hydrogen is modeled by numerically solving the Wang Chang-Uhlenbeck equation. The differential scattering cross sections of molecules are calculated using the quantum mechanical scattering theory of rigid rotors. The collision integral is computed by applying a fully conservative projection method. Numerical results for relaxation, heat conduction, and a one-dimensional shock wave are presented.
Active Problem Solving and Applied Research Methods in a Graduate Course on Numerical Methods
ERIC Educational Resources Information Center
Maase, Eric L.; High, Karen A.
2008-01-01
"Chemical Engineering Modeling" is a first-semester graduate course traditionally taught in a lecture format at Oklahoma State University. The course as taught by the author for the past seven years focuses on numerical and mathematical methods as necessary skills for incoming graduate students. Recent changes to the course have included Visual…
NASA Astrophysics Data System (ADS)
Liu, Ding; Huang, Weichao; Zhang, Ni
2017-07-01
A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.
NASA Astrophysics Data System (ADS)
Zakharova, Natalia; Piskovatsky, Nicolay; Gusev, Anatoly
2014-05-01
Development of Informational-Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The above problems are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for personal computers. In this work the results on the Special data base development for ICS "INM RAS - Black Sea" are presented. In the presentation the input information for ICS is discussed, some special data processing procedures are described. In this work the results of forecast using ICS "INM RAS - Black Sea" with operational observation data assimilation are presented. This study was supported by the Russian Foundation for Basic Research (project No 13-01-00753) and by Presidium Program of Russian Academy of Sciences (project P-23 "Black sea as an imitational ocean model"). References 1. V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 5-31. 2. E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 69-94. 3. V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 95-111. 4. Agoshkov V.I.,Assovsky M.B., Giniatulin S. V., Zakharova N.B., Kuimov G.V., Parmuzin E.I., Fomin V.V. Informational Computational system of variational assimilation of observation data "INM RAS - Black sea"// Ecological safety of coastal and shelf zones and complex use of shelf resources: Collection of scientific works. Issue 26, Volume 2. - National Academy of Sciences of Ukraine, Marine Hydrophysical Institute, Sebastopol, 2012. Pages 352-360. (In russian)
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
Numerical and experimental investigation on static electric charge model at stable cone-jet region
NASA Astrophysics Data System (ADS)
Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.
2018-03-01
In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the onset of the bending instability. The focus of this work is the modeling and simulation of the initial stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid interface. Perturbation equations were discretized by the second-order finite difference method, and the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, electric charges were modeled as static. Comparison of numerical and experimental results shows that at low flow rates and high electric field, good agreement was achieved because of the superior importance of the charge transport by conduction rather than convection and charge concentration. In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally studied through plate-plate geometry as well as point-plate geometry.
Numerical Simulation of Two Phase Flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2001-01-01
Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.
Review on solving the forward problem in EEG source analysis
Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace
2007-01-01
Background The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem. PMID:18053144
Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine
NASA Astrophysics Data System (ADS)
Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.
2017-09-01
At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.
Two-dimensional numerical model for the high electron mobility transistor
NASA Astrophysics Data System (ADS)
Loret, Dany
1987-11-01
A two-dimensional numerical drift-diffusion model for the High Electron Mobility Transistor (HEMT) is presented. Special attention is paid to the modeling of the current flow over the heterojunction. A finite difference scheme is used to solve the equations, and a variable mesh spacing was implemented to cope with the strong variations of functions near the heterojunction. Simulation results are compared to experimental data for a 0.7 μm gate length device. Small-signal transconductances and cut-off frequency obtained from the 2-D model agree well with the experimental values from S-parameter measurements. It is shown that the numerical models give good insight into device behaviour, including important parasitic effects such as electron injection into the bulk GaAs.
Wind laws for shockless initialization. [numerical forecasting model
NASA Technical Reports Server (NTRS)
Ghil, M.; Shkoller, B.
1976-01-01
A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.
Interleaved numerical renormalization group as an efficient multiband impurity solver
NASA Astrophysics Data System (ADS)
Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.
2016-06-01
Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1978-01-01
A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.
Zhang, Peng; Liu, Ru-Xun; Wong, S C
2005-05-01
This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow velocities, that involve spatially varying flux functions. To address this complex physical property, we develop a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway section are given to illustrate the efficiency of these schemes.
True Numerical Cognition in the Wild.
Piantadosi, Steven T; Cantlon, Jessica F
2017-04-01
Cognitive and neural research over the past few decades has produced sophisticated models of the representations and algorithms underlying numerical reasoning in humans and other animals. These models make precise predictions for how humans and other animals should behave when faced with quantitative decisions, yet primarily have been tested only in laboratory tasks. We used data from wild baboons' troop movements recently reported by Strandburg-Peshkin, Farine, Couzin, and Crofoot (2015) to compare a variety of models of quantitative decision making. We found that the decisions made by these naturally behaving wild animals rely specifically on numerical representations that have key homologies with the psychophysics of human number representations. These findings provide important new data on the types of problems human numerical cognition was designed to solve and constitute the first robust evidence of true numerical reasoning in wild animals.
Numerical Simulation of a Solar Domestic Hot Water System
NASA Astrophysics Data System (ADS)
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.
Hadinia, M; Jafari, R; Soleimani, M
2016-06-01
This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-08-24
This study presents a numerical investigation on using the Jacobian-free Newton–Krylov (JFNK) method to solve the two-phase flow four-equation drift flux model with realistic constitutive correlations (‘closure models’). The drift flux model is based on Isshi and his collaborators’ work. Additional constitutive correlations for vertical channel flow, such as two-phase flow pressure drop, flow regime map, wall boiling and interfacial heat transfer models, were taken from the RELAP5-3D Code Manual and included to complete the model. The staggered grid finite volume method and fully implicit backward Euler method was used for the spatial discretization and time integration schemes, respectively. Themore » Jacobian-free Newton–Krylov method shows no difficulty in solving the two-phase flow drift flux model with a discrete flow regime map. In addition to the Jacobian-free approach, the preconditioning matrix is obtained by using the default finite differencing method provided in the PETSc package, and consequently the labor-intensive implementation of complex analytical Jacobian matrix is avoided. Extensive and successful numerical verification and validation have been performed to prove the correct implementation of the models and methods. Code-to-code comparison with RELAP5-3D has further demonstrated the successful implementation of the drift flux model.« less
A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing
NASA Astrophysics Data System (ADS)
De La Chevrotière, Michèle; Khouider, Boualem
2017-02-01
Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while the other advective part is a nilpotent matrix, which is solved via the method of lines. Validation tests using a synthetic exact solution are presented, and formal second-order convergence under grid refinement is demonstrated. Moreover, the model is tested under realistic monsoon conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in two distinct parameter regimes.
Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition
NASA Astrophysics Data System (ADS)
Siregar, R. I.
2018-02-01
This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.
NASA Astrophysics Data System (ADS)
Kudryavtsev, O.; Rodochenko, V.
2018-03-01
We propose a new general numerical method aimed to solve integro-differential equations with variable coefficients. The problem under consideration arises in finance where in the context of pricing barrier options in a wide class of stochastic volatility models with jumps. To handle the effect of the correlation between the price and the variance, we use a suitable substitution for processes. Then we construct a Markov-chain approximation for the variation process on small time intervals and apply a maturity randomization technique. The result is a system of boundary problems for integro-differential equations with constant coefficients on the line in each vertex of the chain. We solve the arising problems using a numerical Wiener-Hopf factorization method. The approximate formulae for the factors are efficiently implemented by means of the Fast Fourier Transform. Finally, we use a recurrent procedure that moves backwards in time on the variance tree. We demonstrate the convergence of the method using Monte-Carlo simulations and compare our results with the results obtained by the Wiener-Hopf method with closed-form expressions of the factors.
A hybrid hydrostatic and non-hydrostatic numerical model for shallow flow simulations
NASA Astrophysics Data System (ADS)
Zhang, Jingxin; Liang, Dongfang; Liu, Hua
2018-05-01
Hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers, are often studied by solving shallow water model equations. Although hydrostatic models are accurate and cost efficient for many natural flows, there are situations where the hydrostatic assumption is invalid, whereby a fully hydrodynamic model is necessary to increase simulation accuracy. There is a growing concern about the decrease of the computational cost of non-hydrostatic pressure models to improve the range of their applications in large-scale flows with complex geometries. This study describes a hybrid hydrostatic and non-hydrostatic model to increase the efficiency of simulating shallow water flows. The basic numerical model is a three-dimensional hydrostatic model solved by the finite volume method (FVM) applied to unstructured grids. Herein, a second-order total variation diminishing (TVD) scheme is adopted. Using a predictor-corrector method to calculate the non-hydrostatic pressure, we extended the hydrostatic model to a fully hydrodynamic model. By localising the computational domain in the corrector step for non-hydrostatic pressure calculations, a hybrid model was developed. There was no prior special treatment on mode switching, and the developed numerical codes were highly efficient and robust. The hybrid model is applicable to the simulation of shallow flows when non-hydrostatic pressure is predominant only in the local domain. Beyond the non-hydrostatic domain, the hydrostatic model is still accurate. The applicability of the hybrid method was validated using several study cases.
Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montecinos, Gino I.; Müller, Lucas O.; Toro, Eleuterio F.
2014-06-01
The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff source terms in the context of well-balanced and non-conservative schemes is extended to solve a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic system, via a relaxation time. A criterion for selecting relaxation times is found and an empirical convergence rate assessment is carried out to support this result. The proposed methodology is validated by applying it to a network of viscoelastic vessels for which experimental and numerical results are available. The agreement between the results obtained in the present paper and thosemore » available in the literature is satisfactory. Key features of the present formulation and numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the paper.« less
A posteriori error estimates in voice source recovery
NASA Astrophysics Data System (ADS)
Leonov, A. S.; Sorokin, V. N.
2017-12-01
The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.
Numerical Optimization Using Computer Experiments
NASA Technical Reports Server (NTRS)
Trosset, Michael W.; Torczon, Virginia
1997-01-01
Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.
Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning
NASA Astrophysics Data System (ADS)
Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.
2018-01-01
This study focuses on a numerical investigation of an initial stable jet through the air-sealed electro-centrifugal spinning process, which is known as a viable method for the mass production of nanofibers. A liquid jet undergoing electric and centrifugal forces, as well as other forces, first travels in a stable trajectory and then goes through an unstable curled path to the collector. In numerical modeling, hydrodynamic equations have been solved using the perturbation method—and the boundary integral method has been implemented to efficiently solve the electric potential equation. Hydrodynamic equations have been coupled with the electric field using stress boundary conditions at the fluid-fluid interface. Perturbation equations were discretized by a second order finite difference method, and the Newton method was implemented to solve the discretized non-linear system. Also, the boundary element method was utilized to solve electrostatic equations. In the theoretical study, the fluid was described as a leaky dielectric with charges only on the surface of the jet traveling in dielectric air. The effect of the electric field induced around the nozzle tip on the jet instability and trajectory deviation was also experimentally studied through plate-plate geometry as well as point-plate geometry. It was numerically found that the centrifugal force prevails on electric force by increasing the rotational speed. Therefore, the alteration of the applied voltage does not significantly affect the jet thinning profile or the jet trajectory.
An Approach to Estimate the Flow Through an Irregular Fracture
NASA Astrophysics Data System (ADS)
Liu, Q. Q.; Fan, H. G.
2011-09-01
A new model to estimate the flow in a fracture has been developed in this paper. This model used two sinusoidal-varying walls with different phases to replace the flat planes in the cubic law model. The steady laminar flow between non-symmetric sinusoidal surfaces was numerically solved. The relationships between the effective hydraulic apertures and the phase retardation for different amplitudes and wavelengths are investigated respectively. Finally, a formula of the effective hydraulic aperture of the fracture was carried out based on the numerical results.
Numerical modeling of the transmission dynamics of drug-sensitive and drug-resistant HSV-2
NASA Astrophysics Data System (ADS)
Gumel, A. B.
2001-03-01
A competitive finite-difference method will be constructed and used to solve a modified deterministic model for the spread of herpes simplex virus type-2 (HSV-2) within a given population. The model monitors the transmission dynamics and control of drug-sensitive and drug-resistant HSV-2. Unlike the fourth-order Runge-Kutta method (RK4), which fails when the discretization parameters exceed certain values, the novel numerical method to be developed in this paper gives convergent results for all parameter values.
Numerical Modeling in Problems of Near-Earth Object Dynamics
NASA Astrophysics Data System (ADS)
Aleksandrova, A. G.; Bordovitsyna, T. V.; Chuvashov, I. N.
2017-05-01
A method of numerical modeling is used to solve three most interesting problems of artificial Earth satellite (AES) dynamics. Orbital evolution of an ensemble of near-Earth objects at altitudes in the range from 1 500 to 60 000 km is considered, chaoticity of motion of objects in the geosynchronous zone is studied by the MEGNOanalysis, the parameters of AES motion are determined, and the models of forces are considered from measurements for GLONASS satellites. The recent versions of algorithms and programs used to perform investigations are briefly described.
Simulations of free shear layers using a compressible k-epsilon model
NASA Technical Reports Server (NTRS)
Yu, S. T.; Chang, C. T.; Marek, C. J.
1991-01-01
A two-dimensional, compressible Navier-Stokes equations with a k-epsilon turbulence model are solved numerically to simulate the flows of compressible free shear layers. The appropriate form of k and epsilon equations for compressible flows are discussed. Sarkar's modeling is adopted to simulate the compressibility effects in the k and epsilon equations. The numerical results show that the spreading rate of the shear layers decreases with increasing convective Mach number. In addition, favorable comparison was found between the calculated results and Goebel and Dutton's experimental data.
Simulations of free shear layers using a compressible kappa-epsilon model
NASA Technical Reports Server (NTRS)
Yu, S. T.; Chang, C. T.; Marek, C. J.
1991-01-01
A two-dimensional, compressible Navier-Stokes equation with a k-epsilon turbulence model is solved numerically to simulate the flow of a compressible free shear layer. The appropriate form of k and epsilon equations for compressible flow is discussed. Sarkar's modeling is adopted to simulate the compressibility effects in the k and epsilon equations. The numerical results show that the spreading rate of the shear layers decreases with increasing convective Mach number. In addition, favorable comparison was found between the calculated results and experimental data.
A mathematical model for simulating noise suppression of lined ejectors
NASA Technical Reports Server (NTRS)
Watson, Willie R.
1994-01-01
A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.
NASA Astrophysics Data System (ADS)
Xing, F.; Masson, R.; Lopez, S.
2017-09-01
This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-08-01
In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.
Computation of rotor-stator interaction using the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Chen, Jen-Ping
1995-01-01
The numerical scheme presented belongs to a family of codes known as UNCLE (UNsteady Computation of fieLd Equations) as reported by Whitfield (1995), that is being used to solve problems in a variety of areas including compressible and incompressible flows. This derivation is specifically developed for general unsteady multi-blade-row turbomachinery problems. The scheme solves the Reynolds-averaged N-S equations with the Baldwin-Lomax turbulence model.
Dynamics and Stability of Acoustic Wavefronts in the Ocean
2011-09-01
developed to solve the eikonal equation and calculate wavefront and ray trajectory displacements, which are required to be small over a correlation length...with a direct modeling of acoustic wavefronts in the ocean through numerical solution of the eikonal equation lies in the eikonal (and acoustic...travel time) being a multi-valued function of position. A number of computational approaches to solve the eikonal equation without ray tracing have been
Nonlinear Schrödinger approach to European option pricing
NASA Astrophysics Data System (ADS)
Wróblewski, Marcin
2017-05-01
This paper deals with numerical option pricing methods based on a Schrödinger model rather than the Black-Scholes model. Nonlinear Schrödinger boundary value problems seem to be alternatives to linear models which better reflect the complexity and behavior of real markets. Therefore, based on the nonlinear Schrödinger option pricing model proposed in the literature, in this paper a model augmented by external atomic potentials is proposed and numerically tested. In terms of statistical physics the developed model describes the option in analogy to a pair of two identical quantum particles occupying the same state. The proposed model is used to price European call options on a stock index. the model is calibrated using the Levenberg-Marquardt algorithm based on market data. A Runge-Kutta method is used to solve the discretized boundary value problem numerically. Numerical results are provided and discussed. It seems that our proposal more accurately models phenomena observed in the real market than do linear models.
New Galerkin operational matrices for solving Lane-Emden type equations
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.
2016-04-01
Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.
Neural network error correction for solving coupled ordinary differential equations
NASA Technical Reports Server (NTRS)
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
A Computer Model of the Cardiovascular System for Effective Learning.
ERIC Educational Resources Information Center
Rothe, Carl F.
1979-01-01
Described is a physiological model which solves a set of interacting, possibly nonlinear, differential equations through numerical integration on a digital computer. Sample printouts are supplied and explained for effects on the components of a cardiovascular system when exercise, hemorrhage, and cardiac failure occur. (CS)
A developed nearly analytic discrete method for forward modeling in the frequency domain
NASA Astrophysics Data System (ADS)
Liu, Shaolin; Lang, Chao; Yang, Hui; Wang, Wenshuai
2018-02-01
High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain forward modeling processes. We first derive the discretization of frequency-domain wave equations via numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time. Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution inverse results are obtained.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
NASA Astrophysics Data System (ADS)
Kara, I. V.
This paper describes a simplified numerical model of passive artificial Earth satellite (AES) motion. The model accuracy is determined using the International Laser Ranging Service (ILRS) highprecision coordinates. Those data are freely available on http://ilrs.gsfc.nasa.gov. The differential equations of the AES motion are solved by the Everhart numerical method of 17th and 19th orders with the integration step automatic correction. The comparison between the AES coordinates computed with the motion model and the ILRS coordinates enabled to determine the accuracy of the ephemerides obtained. As a result, the discrepancy of the computed Etalon-1 ephemerides from the ILRS data is about 10'' for a one-year ephemeris.
Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.
2013-10-01
In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.
Numerical Analysis of a Class of THM Coupled Model for Porous Materials
NASA Astrophysics Data System (ADS)
Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi
2018-01-01
We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.
The N-BOD2 user's and programmer's manual
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1978-01-01
A general purpose digital computer program was developed and designed to aid in the analysis of spacecraft attitude dynamics. The program provides the analyst with the capability of automatically deriving and numerically solving the equations of motion of any system that can be modeled as a topological tree of coupled rigid bodies, flexible bodies, point masses, and symmetrical momentum wheels. Two modes of output are available. The composite system equations of motion may be outputted on a line printer in a symbolic form that may be easily translated into common vector-dyadic notation, or the composite system equations of motion may be solved numerically and any desirable set of system state variables outputted as a function of time.
Computation of Pressurized Gas Bearings Using CE/SE Method
NASA Technical Reports Server (NTRS)
Cioc, Sorin; Dimofte, Florin; Keith, Theo G., Jr.; Fleming, David P.
2003-01-01
The space-time conservation element and solution element (CE/SE) method is extended to compute compressible viscous flows in pressurized thin fluid films. This numerical scheme has previously been used successfully to solve a wide variety of compressible flow problems, including flows with large and small discontinuities. In this paper, the method is applied to calculate the pressure distribution in a hybrid gas journal bearing. The formulation of the problem is presented, including the modeling of the feeding system. the numerical results obtained are compared with experimental data. Good agreement between the computed results and the test data were obtained, and thus validate the CE/SE method to solve such problems.
Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices
NASA Astrophysics Data System (ADS)
Polstyanko, Sergey V.; Lee, Jin-Fa
1998-03-01
In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.
Electroneutral models for dynamic Poisson-Nernst-Planck systems
NASA Astrophysics Data System (ADS)
Song, Zilong; Cao, Xiulei; Huang, Huaxiong
2018-01-01
The Poisson-Nernst-Planck (PNP) system is a standard model for describing ion transport. In many applications, e.g., ions in biological tissues, the presence of thin boundary layers poses both modeling and computational challenges. In this paper, we derive simplified electroneutral (EN) models where the thin boundary layers are replaced by effective boundary conditions. There are two major advantages of EN models. First, it is much cheaper to solve them numerically. Second, EN models are easier to deal with compared to the original PNP system; therefore, it would also be easier to derive macroscopic models for cellular structures using EN models. Even though the approach used here is applicable to higher-dimensional cases, this paper mainly focuses on the one-dimensional system, including the general multi-ion case. Using systematic asymptotic analysis, we derive a variety of effective boundary conditions directly applicable to the EN system for the bulk region. This EN system can be solved directly and efficiently without computing the solution in the boundary layer. The derivation is based on matched asymptotics, and the key idea is to bring back higher-order contributions into the effective boundary conditions. For Dirichlet boundary conditions, the higher-order terms can be neglected and the classical results (continuity of electrochemical potential) are recovered. For flux boundary conditions, higher-order terms account for the accumulation of ions in boundary layer and neglecting them leads to physically incorrect solutions. To validate the EN model, numerical computations are carried out for several examples. Our results show that solving the EN model is much more efficient than the original PNP system. Implemented with the Hodgkin-Huxley model, the computational time for solving the EN model is significantly reduced without sacrificing the accuracy of the solution due to the fact that it allows for relatively large mesh and time-step sizes.
Chemical Transport in a Fissured Rock: Verification of a Numerical Model
NASA Astrophysics Data System (ADS)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.
Optimization of a new mathematical model for bacterial growth
USDA-ARS?s Scientific Manuscript database
The objective of this research is to optimize a new mathematical equation as a primary model to describe the growth of bacteria under constant temperature conditions. An optimization algorithm was used in combination with a numerical (Runge-Kutta) method to solve the differential form of the new gr...
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
NASA Astrophysics Data System (ADS)
Valášek, J.; Sváček, P.; Horáček, J.
2016-03-01
The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.
A numerical solution for thermoacoustic convection of fluids in low gravity
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.
1973-01-01
A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.
NASA Astrophysics Data System (ADS)
Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.
2017-11-01
When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.
Simulation of moving flat plate with unsteady translational motion using vortex method
NASA Astrophysics Data System (ADS)
Widodo, A. F.; Zuhal, L. R.
2013-10-01
This paper presents simulation of moving flate plate with unsteady translational motion using Lagrangianmeshless numerical simulation named vortex method. The method solves Navier-Stokes equations in term of vorticity. The solving strategy is splitting the equation into diffusion and convection term to be solved separately. The diffusion term is modeled by particles strength exchange(PSE) which is the most accurate of diffusion modeling in vortex method. The convection term that represents transport of particles is calculated by time step integration of velocity. Velocity of particles is natively calculated using Biot-Savart relation but for acceleration, fastmultiple method(FMM) is employed. The simulation is validated experimentally using digital particle image velocimetry(DPIV) and the results give good agreement.
Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less
Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2017-08-07
This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less
NASA Technical Reports Server (NTRS)
Harris, J. E.; Blanchard, D. K.
1982-01-01
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.
The Effects of Insulator Wall Material on Hall Thruster Discharges: A Numerical Study
2001-01-03
An investigation was undertaken to determine how the choice of insulator wall material inside a Hall thruster discharge channel might affect thruster operation. In order to study this, an evolved hybrid particle-in-cell (PIC) numerical Hall thruster model, HPHall, was used. HPHall solves a set of quasi-one-dimensional fluid equations for electrons and tracks heavy particles using a PIC method.
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
NASA Astrophysics Data System (ADS)
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.
NASA Astrophysics Data System (ADS)
Vijayashree, M.; Uthayakumar, R.
2017-09-01
Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.
NASA Astrophysics Data System (ADS)
Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola; Aprea, Paolo
2016-12-01
In this paper, a selective laser post-deposition on pure grade II titanium coatings, cold-sprayed on AA2024-T3 sheets, was experimentally and numerically investigated. Morphological features, microstructure, and chemical composition of the treated zone were assessed by means of optical microscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Microhardness measurements were also carried out to evaluate the mechanical properties of the coating. A numerical model of the laser treatment was implemented and solved to simulate the process and discuss the experimental outcomes. Obtained results highlighted the key role played by heat input and dimensional features on the effectiveness of the treatment.
Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine
NASA Astrophysics Data System (ADS)
Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah
2015-12-01
In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.
NASA Astrophysics Data System (ADS)
Wenzel, H.; Wünsche, H. J.
1988-11-01
A description is given of a numerical model of a semiconductor laser with a quasioptic waveguide (index guide). This model can be used on a personal computer. The model can be used to find the radiation field distributions in the vertical and lateral directions, the pump currents at the threshold, and also to solve dynamic rate equations.
NASA Astrophysics Data System (ADS)
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan
2017-02-01
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.
NASA Astrophysics Data System (ADS)
Ballestra, Luca Vincenzo; Pacelli, Graziella; Radi, Davide
2016-12-01
We propose a numerical method to compute the first-passage probability density function in a time-changed Brownian model. In particular, we derive an integral representation of such a density function in which the integrand functions must be obtained solving a system of Volterra equations of the first kind. In addition, we develop an ad-hoc numerical procedure to regularize and solve this system of integral equations. The proposed method is tested on three application problems of interest in mathematical finance, namely the calculation of the survival probability of an indebted firm, the pricing of a single-knock-out put option and the pricing of a double-knock-out put option. The results obtained reveal that the novel approach is extremely accurate and fast, and performs significantly better than the finite difference method.
NASA Astrophysics Data System (ADS)
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
DNS and LES/FMDF of turbulent jet ignition and combustion
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Jaberi, Farhad
2014-11-01
The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Models of the Solar Atmospheric Response to Flare Heating
NASA Technical Reports Server (NTRS)
Allred, Joel
2011-01-01
I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.
NASA Astrophysics Data System (ADS)
Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul
2005-04-01
The scope of this Note is to show the results obtained for simulating the two-dimensional head-on collision of two solitary waves by solving the Navier-Stokes equations in air and water. The work is dedicated to the numerical investigation of the hydrodynamics associated to this highly nonlinear flow configuration, the first numerical results being analyzed. The original numerical model is proved to be efficient and accurate in predicting the main features described in experiments found in the literature. This Note also outlines the interest of this configuration to be considered as a test-case for numerical models dedicated to computational fluid mechanics. To cite this article: P. Lubin et al., C. R. Mecanique 333 (2005).
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zegeling, Paul Andries
2017-09-01
Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.
A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.
Xu, Zhengfu; Bao, Gang
2010-11-01
A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.
Mathematical modeling of flow in the working part of an acousto-convective drying system
NASA Astrophysics Data System (ADS)
Kravchenko, A. S.; Zhilin, A. A.; Fedorova, N. N.
2018-03-01
The objective of this study was to numerically simulate the nonstationary processes occurring in the acoustic-convective dryer (ACD) channel. In the present work, the problem was solved numerically in a three-dimensional formulation taking into account all features of the ACD duct in real geometry. The processes occurring in the ACD duct were simulated using the ANSYS Fluent 18.0 software. The numerical experiments provided an aggregate picture of the working gas flow in the ACD duct with the features near the subsonic nozzle and the cavity. The results of the numerical calculations were compared with experimental data. The best agreement with the experimental data was obtained for the viscosity model neglecting turbulent effects.
Guiding brine shrimp through mazes by solving reaction diffusion equations
NASA Astrophysics Data System (ADS)
Singal, Krishma; Fenton, Flavio
Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.
Parallel Algorithm Solves Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Hayashi, A.
1987-01-01
Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.
A three-dimensional method-of-characteristics solute-transport model (MOC3D)
Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.
1996-01-01
This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.
Numerical simulation of coupled electrochemical and transport processes in battery systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, B.Y.; Gu, W.B.; Wang, C.Y.
1997-12-31
Advanced numerical modeling to simulate dynamic battery performance characteristics for several types of advanced batteries is being conducted using computational fluid dynamics (CFD) techniques. The CFD techniques provide efficient algorithms to solve a large set of highly nonlinear partial differential equations that represent the complex battery behavior governed by coupled electrochemical reactions and transport processes. The authors have recently successfully applied such techniques to model advanced lead-acid, Ni-Cd and Ni-MH cells. In this paper, the authors briefly discuss how the governing equations were numerically implemented, show some preliminary modeling results, and compare them with other modeling or experimental data reportedmore » in the literature. The authors describe the advantages and implications of using the CFD techniques and their capabilities in future battery applications.« less
Stripe order in the underdoped region of the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Zheng, Bo-Xiao; Chung, Chia-Min; Corboz, Philippe; Ehlers, Georg; Qin, Ming-Pu; Noack, Reinhard M.; Shi, Hao; White, Steven R.; Zhang, Shiwei; Chan, Garnet Kin-Lic
2017-12-01
Competing inhomogeneous orders are a central feature of correlated electron materials, including the high-temperature superconductors. The two-dimensional Hubbard model serves as the canonical microscopic physical model for such systems. Multiple orders have been proposed in the underdoped part of the phase diagram, which corresponds to a regime of maximum numerical difficulty. By combining the latest numerical methods in exhaustive simulations, we uncover the ordering in the underdoped ground state. We find a stripe order that has a highly compressible wavelength on an energy scale of a few kelvin, with wavelength fluctuations coupled to pairing order. The favored filled stripe order is different from that seen in real materials. Our results demonstrate the power of modern numerical methods to solve microscopic models, even in challenging settings.
Variational data assimilation for the initial-value dynamo problem.
Li, Kuan; Jackson, Andrew; Livermore, Philip W
2011-11-01
The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries.
Numerical Simulation of Hysteretic Live Load Effect in a Soil-Steel Bridge
NASA Astrophysics Data System (ADS)
Sobótka, Maciej
2014-03-01
The paper presents numerical simulation of hysteretic live load effect in a soil-steel bridge. The effect was originally identified experimentally by Machelski [1], [2]. The truck was crossing the bridge one way and the other in the full-scale test performed. At the same time, displacements and stress in the shell were measured. The major conclusion from the research was that the measured quantities formed hysteretic loops. A numerical simulation of that effect is addressed in the present work. The analysis was performed using Flac finite difference code. The methodology of solving the mechanical problems implemented in Flac enables us to solve the problem concerning a sequence of load and non-linear mechanical behaviour of the structure. The numerical model incorporates linear elastic constitutive relations for the soil backfill, for the steel shell and the sheet piles, being a flexible substructure for the shell. Contact zone between the shell and the soil backfill is assumed to reflect elastic-plastic constitutive model. Maximum shear stress in contact zone is limited by the Coulomb condition. The plastic flow rule is described by dilation angle ψ = 0. The obtained results of numerical analysis are in fair agreement with the experimental evidence. The primary finding from the performed simulation is that the slip in the interface can be considered an explanation of the hysteresis occurrence in the charts of displacement and stress in the shell.
Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.
2017-10-01
The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
NASA Astrophysics Data System (ADS)
Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao
2018-03-01
Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.
Improve Problem Solving Skills through Adapting Programming Tools
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.
NASA Technical Reports Server (NTRS)
Wright, William B.
1988-01-01
Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Development of numerical techniques for simulation of magnetogasdynamics and hypersonic chemistry
NASA Astrophysics Data System (ADS)
Damevin, Henri-Marie
Magnetogasdynamics, the science concerned with the mutual interaction between electromagnetic field and flow of electrically conducting gas, offers promising advances in flow control and propulsion of future hypersonic vehicles. Numerical simulations are essential for understanding phenomena, and for research and development. The current dissertation is devoted to the development and validation of numerical algorithms for the solution of multidimensional magnetogasdynamic equations and the simulation of hypersonic high-temperature effects. Governing equations are derived, based on classical magnetogasdynamic assumptions. Two sets of equations are considered, namely the full equations and equations in the low magnetic Reynolds number approximation. Equations are expressed in a suitable formulation for discretization by finite differences in a computational space. For the full equations, Gauss law for magnetism is enforced using Powell's methodology. The time integration method is a four-stage modified Runge-Kutta scheme, amended with a Total Variation Diminishing model in a postprocessing stage. The eigensystem, required for the Total Variation Diminishing scheme, is derived in generalized three-dimensional coordinate system. For the simulation of hypersonic high-temperature effects, two chemical models are utilized, namely a nonequilibrium model and an equilibrium model. A loosely coupled approach is implemented to communicate between the magnetogasdynamic equations and the chemical models. The nonequilibrium model is a one-temperature, five-species, seventeen-reaction model solved by an implicit flux-vector splitting scheme. The chemical equilibrium model computes thermodynamics properties using curve fit procedures. Selected results are provided, which explore the different features of the numerical algorithms. The shock-capturing properties are validated for shock-tube simulations using numerical solutions reported in the literature. The computations of superfast flows over corners and in convergent channels demonstrate the performances of the algorithm in multiple dimensions. The implementation of diffusion terms is validated by solving the magnetic Rayleigh problem and Hartmann problem, for which analytical solutions are available. Prediction of blunt-body type flow are investigated and compared with numerical solutions reported in the literature. The effectiveness of the chemical models for hypersonic flow over blunt body is examined in various flow conditions. It is shown that the proposed schemes perform well in a variety of test cases, though some limitations have been identified.
NASA Astrophysics Data System (ADS)
Conrad, Jon M.
1999-10-01
Resource Economics is a text for students with a background in calculus, intermediate microeconomics, and a familiarity with the spreadsheet software Excel. The book covers basic concepts, shows how to set up spreadsheets to solve dynamic allocation problems, and presents economic models for fisheries, forestry, nonrenewable resources, stock pollutants, option value, and sustainable development. Within the text, numerical examples are posed and solved using Excel's Solver. Through these examples and additional exercises at the end of each chapter, students can make dynamic models operational, develop their economic intuition, and learn how to set up spreadsheets for the simulation of optimization of resource and environmental systems.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.
Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija
2014-02-07
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.
Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor
Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė
2014-01-01
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882
Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case
NASA Astrophysics Data System (ADS)
Hojbotǎ, C. I.; Toşa, V.; Mercea, P. V.
2013-08-01
We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food.
Numerical computation of viscous flow about unconventional airfoil shapes
NASA Technical Reports Server (NTRS)
Ahmed, S.; Tannehill, J. C.
1990-01-01
A new two-dimensional computer code was developed to analyze the viscous flow around unconventional airfoils at various Mach numbers and angles of attack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium turbulence closure model was developed for computing turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present code was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the present code in conjunction with the new nonequilibrium turbulence model gives excellent results.
Numerical proof for chemostat chaos of Shilnikov's type.
Deng, Bo; Han, Maoan; Hsu, Sze-Bi
2017-03-01
A classical chemostat model is considered that models the cycling of one essential abiotic element or nutrient through a food chain of three trophic levels. The long-time behavior of the model was known to exhibit complex dynamics more than 20 years ago. It is still an open problem to prove the existence of chaos analytically. In this paper, we aim to solve the problem numerically. In our approach, we introduce an artificial singular parameter to the model and construct singular homoclinic orbits of the saddle-focus type which is known for chaos generation. From the configuration of the nullclines of the equations that generates the singular homoclinic orbits, a shooting algorithm is devised to find such Shilnikov saddle-focus homoclinic orbits numerically which in turn imply the existence of chaotic dynamics for the original chemostat model.
NASA Astrophysics Data System (ADS)
Wang, Jinting; Lu, Liqiao; Zhu, Fei
2018-01-01
Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
The NASTRAN theoretical manual
NASA Technical Reports Server (NTRS)
1981-01-01
Designed to accommodate additions and modifications, this commentary on NASTRAN describes the problem solving capabilities of the program in a narrative fashion and presents developments of the analytical and numerical procedures that underlie the program. Seventeen major sections and numerous subsections cover; the organizational aspects of the program, utility matrix routines, static structural analysis, heat transfer, dynamic structural analysis, computer graphics, special structural modeling techniques, error analysis, interaction between structures and fluids, and aeroelastic analysis.
NASA Astrophysics Data System (ADS)
Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.
2017-10-01
The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.
Using adaptive grid in modeling rocket nozzle flow
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Jin, Kang-Ren
1992-01-01
The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which cannot be solved analytically. However, this system of equations called the Navier-Stokes equations can be solved numerically. The accuracy and the convergence of the solution of the system of equations will depend largely on how precisely the sharp gradients in the domain of interest can be resolved. With the advances in computer technology, more sophisticated algorithms are available to improve the accuracy and convergence of the solutions. An adaptive grid generation is one of the schemes which can be incorporated into the algorithm to enhance the capability of numerical modeling. It is equivalent to putting intelligence into the algorithm to optimize the use of computer memory. With this scheme, the finite difference domain of the flow field called the grid does neither have to be very fine nor strategically placed at the location of sharp gradients. The grid is self adapting as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzles by taking the refinement part of grid generation out of the hands of computational fluid dynamics (CFD) specialists and place it into the computer algorithm itself.
Computation of Nonlinear Backscattering Using a High-Order Numerical Method
NASA Technical Reports Server (NTRS)
Fibich, G.; Ilan, B.; Tsynkov, S.
2001-01-01
The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.
A Model-Free No-arbitrage Price Bound for Variance Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnans, J. Frederic, E-mail: frederic.bonnans@inria.fr; Tan Xiaolu, E-mail: xiaolu.tan@polytechnique.edu
2013-08-01
We suggest a numerical approximation for an optimization problem, motivated by its applications in finance to find the model-free no-arbitrage bound of variance options given the marginal distributions of the underlying asset. A first approximation restricts the computation to a bounded domain. Then we propose a gradient projection algorithm together with the finite difference scheme to solve the optimization problem. We prove the general convergence, and derive some convergence rate estimates. Finally, we give some numerical examples to test the efficiency of the algorithm.
Li, Shuai; Li, Yangming; Wang, Zheng
2013-03-01
This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.
Model-free simulations of turbulent reactive flows
NASA Technical Reports Server (NTRS)
Givi, Peyman
1989-01-01
The current computational methods for solving transport equations of turbulent reacting single-phase flows are critically reviewed, with primary attention given to those methods that lead to model-free simulations. In particular, consideration is given to direct numerical simulations using spectral (Galerkin) and pseudospectral (collocation) methods, spectral element methods, and Lagrangian methods. The discussion also covers large eddy simulations and turbulence modeling.
Nonlinear modeling of truss-plate joints
Leslie H. Groom; Anton Polensek
1992-01-01
A theoretical model is developed for predicting mechanisms of load transfer between a wood member and a metal die-punched truss plate. The model, which treats a truss-plate tooth as a beam on an inelastic foundation of wood and applies Runae-Kutta numerical analysis to solve the governing differentia1 equations, predicts the load-disp1acement trace and ultimate load of...
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.
2015-12-01
The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.
Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.
2016-01-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230
Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C
2015-03-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.
A numerical study of granular dam-break flow
NASA Astrophysics Data System (ADS)
Pophet, N.; Rébillout, L.; Ozeren, Y.; Altinakar, M.
2017-12-01
Accurate prediction of granular flow behavior is essential to optimize mitigation measures for hazardous natural granular flows such as landslides, debris flows and tailings-dam break flows. So far, most successful models for these types of flows focus on either pure granular flows or flows of saturated grain-fluid mixtures by employing a constant friction model or more complex rheological models. These saturated models often produce non-physical result when they are applied to simulate flows of partially saturated mixtures. Therefore, more advanced models are needed. A numerical model was developed for granular flow employing a constant friction and μ(I) rheology (Jop et al., J. Fluid Mech. 2005) coupled with a groundwater flow model for seepage flow. The granular flow is simulated by solving a mixture model using Finite Volume Method (FVM). The Volume-of-Fluid (VOF) technique is used to capture the free surface motion. The constant friction and μ(I) rheological models are incorporated in the mixture model. The seepage flow is modeled by solving Richards equation. A framework is developed to couple these two solvers in OpenFOAM. The model was validated and tested by reproducing laboratory experiments of partially and fully channelized dam-break flows of dry and initially saturated granular material. To obtain appropriate parameters for rheological models, a series of simulations with different sets of rheological parameters is performed. The simulation results obtained from constant friction and μ(I) rheological models are compared with laboratory experiments for granular free surface interface, front position and velocity field during the flows. The numerical predictions indicate that the proposed model is promising in predicting dynamics of the flow and deposition process. The proposed model may provide more reliable insight than the previous assumed saturated mixture model, when saturated and partially saturated portions of granular mixture co-exist.
Hill, Mary C.
1990-01-01
This report documents PCG2 : a numerical code to be used with the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model . PCG2 uses the preconditioned conjugate-gradient method to solve the equations produced by the model for hydraulic head. Linear or nonlinear flow conditions may be simulated. PCG2 includes two reconditioning options : modified incomplete Cholesky preconditioning, which is efficient on scalar computers; and polynomial preconditioning, which requires less computer storage and, with modifications that depend on the computer used, is most efficient on vector computers . Convergence of the solver is determined using both head-change and residual criteria. Nonlinear problems are solved using Picard iterations. This documentation provides a description of the preconditioned conjugate gradient method and the two preconditioners, detailed instructions for linking PCG2 to the modular model, sample data inputs, a brief description of PCG2, and a FORTRAN listing.
Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.
2000-01-01
MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.
Consistent three-equation model for thin films
NASA Astrophysics Data System (ADS)
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
A stochastic delay model for pricing debt and equity: Numerical techniques and applications
NASA Astrophysics Data System (ADS)
Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah
2015-01-01
Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.
Assessment of chemistry models for compressible reacting flows
NASA Astrophysics Data System (ADS)
Lapointe, Simon; Blanquart, Guillaume
2014-11-01
Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.
NASA Astrophysics Data System (ADS)
Cherevko, A. A.; Gologush, T. S.; Ostapenko, V. V.; Petrenko, I. A.; Chupakhin, A. P.
2016-06-01
Arteriovenous malformation is a chaotic disordered interlacement of very small diameter vessels, performing reset of blood from the artery into the vein. In this regard it can be adequately modeled using porous medium. In this model process of embolization described as penetration of non-adhesive substance ONYX into the porous medium, filled with blood, both of these fluids are not mixed with each other. In one-dimensional approximation such processes are well described by Buckley-Leverett equation. In this paper Buckley-Leverett equation is solved numerically by using a new modification of Cabaret scheme. The results of numerical modeling process of embolization of AVM are shown.
Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading
NASA Astrophysics Data System (ADS)
Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.
2017-05-01
The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed
Cai, Junmeng; Liu, Ronghou
2008-05-01
In the present paper, a new distributed activation energy model has been developed, considering the reaction order and the dependence of frequency factor on temperature. The proposed DAEM cannot be solved directly in a closed from, thus a method was used to obtain the numerical solution of the new DAEM equation. Two numerical examples to illustrate the proposed method were presented. The traditional DAEM and new DAEM have been used to simulate the pyrolytic process of some types of biomass. The new DAEM fitted the experimental data much better than the traditional DAEM as the dependence of the frequency factor on temperature was taken into account.
Some issues in the simulation of two-phase flows: The relative velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gräbel, J.; Hensel, S.; Ueberholz, P.
In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less
Direct numerical simulation of a combusting droplet with convection
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan
1992-01-01
The evaporation and combustion of a single droplet under forced and natural convection was studied numerically from first principles using a numerical scheme that solves the time-dependent multiphase and multispecies Navier-Stokes equations and tracks the sharp gas-liquid interface cutting across an arbitrary Eulerian grid. The flow fields both inside and outside of the droplet are resolved in a unified fashion. Additional governing equations model the interphase mass, energy, and momentum exchange. Test cases involving iso-octane, n-hexane, and n-propanol droplets show reasonable comparison rate, and flame stand-off distance. The partially validated code is, thus, readied to be applied to more demanding droplet combustion situations where substantial drop deformation render classical models inadequate.
NASA Astrophysics Data System (ADS)
Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin
2018-01-01
We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.
Discontinuous finite element method for vector radiative transfer
NASA Astrophysics Data System (ADS)
Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping
2017-03-01
The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.
Study of motion of optimal bodies in the soil of grid method
NASA Astrophysics Data System (ADS)
Kotov, V. L.; Linnik, E. Yu
2016-11-01
The paper presents a method of calculating the optimum forms in axisymmetric numerical method based on the Godunov and models elastoplastic soil vedium Grigoryan. Solved two problems in a certain definition of generetrix rotation of the body of a given length and radius of the base, having a minimum impedance and maximum penetration depth. Numerical calculations are carried out by a modified method of local variations, which allows to significantly reduce the number of operations at different representations of generetrix. Significantly simplify the process of searching for optimal body allows the use of a quadratic model of local interaction for preliminary assessments. It is noted the qualitative similarity of the process of convergence of numerical calculations for solving the optimization problem based on local interaction model and within the of continuum mechanics. A comparison of the optimal bodies with absolutely optimal bodies possessing the minimum resistance of penetration below which is impossible to achieve under given constraints on the geometry. It is shown that the conical striker with a variable vertex angle, which equal to the angle of the solution is absolutely optimal body of minimum resistance of penetration for each value of the velocity of implementation will have a final depth of penetration is only 12% more than the traditional body absolutely optimal maximum depth penetration.
NASA Astrophysics Data System (ADS)
Li, Xiaomin; Guo, Xueli; Guo, Haiyan
2018-06-01
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
Akan, Ozgur B.
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics. PMID:29415019
Kuscu, Murat; Akan, Ozgur B
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.
NASA Astrophysics Data System (ADS)
Bakholdin, Igor
2018-02-01
Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.
NOTE: Solving the ECG forward problem by means of a meshless finite element method
NASA Astrophysics Data System (ADS)
Li, Z. S.; Zhu, S. A.; He, Bin
2007-07-01
The conventional numerical computational techniques such as the finite element method (FEM) and the boundary element method (BEM) require laborious and time-consuming model meshing. The new meshless FEM only uses the boundary description and the node distribution and no meshing of the model is required. This paper presents the fundamentals and implementation of meshless FEM and the meshless FEM method is adapted to solve the electrocardiography (ECG) forward problem. The method is evaluated on a single-layer torso model, in which the analytical solution exists, and tested in a realistic geometry homogeneous torso model, with satisfactory results being obtained. The present results suggest that the meshless FEM may provide an alternative for ECG forward solutions.
Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.
Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M
2010-01-01
Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.
Structure-preserving spectral element method in attenuating seismic wave modeling
NASA Astrophysics Data System (ADS)
Cai, Wenjun; Zhang, Huai
2016-04-01
This work describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems which has superior behaviors in long-time stability and dissipation preservation. To construct the conformal symplectic method, we first reformulate the damped acoustic wave equation and the elastic wave equations in their equivalent conformal multi-symplectic structures, which naturally reveal the intrinsic properties of the original systems, especially, the dissipation laws. We thereafter separate each structures into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed numerical scheme, which is conformal symplectic and can therefore guarantee the numerical stability and dissipation preservation after a large time modeling. Additionally, a relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh-wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic method in both the attenuating homogeneous and heterogeneous mediums.
NASA Astrophysics Data System (ADS)
de Smet, Jeroen H.; van den Berg, Arie P.; Vlaar, Nico J.; Yuen, David A.
2000-03-01
Purely advective transport of composition is of major importance in the Geosciences, and efficient and accurate solution methods are needed. A characteristics-based method is used to solve the transport equation. We employ a new hybrid interpolation scheme, which allows for the tuning of stability and accuracy through a threshold parameter ɛth. Stability is established by bilinear interpolations, and bicubic splines are used to maintain accuracy. With this scheme, numerical instabilities can be suppressed by allowing numerical diffusion to work in time and locally in space. The scheme can be applied efficiently for preliminary modelling purposes. This can be followed by detailed high-resolution experiments. First, the principal effects of this hybrid interpolation method are illustrated and some tests are presented for numerical solutions of the transport equation. Second, we illustrate that this approach works successfully for a previously developed continental evolution model for the convecting upper mantle. In this model the transport equation contains a source term, which describes the melt production in pressure-released partial melting. In this model, a characteristic phenomenon of small-scale melting diapirs is observed (De Smet et al.1998; De Smet et al. 1999). High-resolution experiments with grid cells down to 700m horizontally and 515m vertically result in highly detailed observations of the diapiric melting phenomenon.
Numerical modeling and optimization of the Iguassu gas centrifuge
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.
2017-07-01
The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
NASA Astrophysics Data System (ADS)
Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis
2008-11-01
Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.
Solution of a Plane Hydrofracture Problem with Stress Contrast
NASA Astrophysics Data System (ADS)
Gladkov, I. O.; Linkov, A. M.
2018-03-01
A plane hydrofracture problem for the Khristianovich-Geertsma-de Klerk model is extended and solved in the case where a confining stress closing a fracture is not constant in the direction of its propagation. A method is developed for solving the problem with an arbitrary stress contrast. It is stated that the transition through a contact with positive (negative) contrast occurs with fracture arresting (acceleration), whose intensity is controlled by a dimensionless parameter derived from theoretical considerations and numerical results.
TTLEM - an implicit-explicit (IMEX) scheme for modelling landscape evolution in MATLAB
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Schwanghart, Wolfgang
2016-04-01
Landscape evolution models (LEM) are essential to unravel interdependent earth surface processes. They are proven very useful to bridge several temporal and spatial timescales and have been successfully used to integrate existing empirical datasets. There is a growing consensus that landscapes evolve at least as much in the horizontal as in the vertical direction urging for an efficient implementation of dynamic drainage networks. Here we present a spatially explicit LEM, which is based on the object-oriented function library TopoToolbox 2 (Schwanghart and Scherler, 2014). Similar to other LEMs, rivers are considered to be the main drivers for simulated landscape evolution as they transmit pulses of tectonic perturbations and set the base level of surrounding hillslopes. Highly performant graph algorithms facilitate efficient updates of the flow directions to account for planform changes in the river network and the calculation of flow-related terrain attributes. We implement the model using an implicit-explicit (IMEX) scheme, i.e. different integrators are used for different terms in the diffusion-incision equation. While linear diffusion is solved using an implicit scheme, we calculate incision explicitly. Contrary to previously published LEMS, however, river incision is solved using a total volume method which is total variation diminishing in order to prevent numerical diffusion when solving the stream power law (Campforts and Govers, 2015). We show that the use of this updated numerical scheme alters both landscape topography and catchment wide erosion rates at a geological time scale. Finally, the availability of a graphical user interface facilitates user interaction, making the tool very useful both for research and didactical purposes. References Campforts, B., Govers, G., 2015. Keeping the edge: A numerical method that avoids knickpoint smearing when solving the stream power law. J. Geophys. Res. Earth Surf. 120, 1189-1205. doi:10.1002/2014JF003376 Schwanghart, W., Scherler, D., 2014. TopoToolbox 2 - MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1-7. doi:10.5194/esurf-2-1-2014
Energy loss in spark gap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru; Lavrinovich, I. V.; National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk
2014-04-15
The paper reports on numerical study of the energy loss in spark gap switches. The operation of the switches is analyzed using the Braginsky model which allows calculation of the time dependence of the spark channel resistance. The Braginsky equation is solved simultaneously with generator circuit equations for different load types. Based on the numerical solutions, expressions which determine both the energy released in a spark gap switch and the switching time are derived.
Open-Source Software for Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Oyafuso, Fabiano; Hua, Hook; Tisdale, Edwin; Hart, Don
2004-01-01
The Nanoelectronic Modeling 3-D (NEMO 3-D) computer program has been upgraded to open-source status through elimination of license-restricted components. The present version functions equivalently to the version reported in "Software for Numerical Modeling of Nanoelectronic Devices" (NPO-30520), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 37. To recapitulate: NEMO 3-D performs numerical modeling of the electronic transport and structural properties of a semiconductor device that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantum-mechanical behavior of the device resolved to the atomistic level of granularity. NEMO 3-D solves the applicable quantum matrix equation on a Beowulf-class cluster computer by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. A prior upgrade of NEMO 3-D incorporated a capability for a strain treatment, parameterized for bulk material properties of GaAs and InAs, for two tight-binding submodels. NEMO 3-D has been demonstrated in atomistic analyses of effects of disorder in alloys and, in particular, in bulk In(x)Ga(1-x)As and in In(0.6)Ga(0.4)As quantum dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhihui; Ma, Qiang; Wu, Junlin
2014-12-09
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinatemore » points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.« less
Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor
Isvoranu, Dragos D.; Cizmas, Paul G. A.
2003-01-01
This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less
Northrop, Paul W. C.; Pathak, Manan; Rife, Derek; ...
2015-03-09
Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behaviormore » of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.« less
A New Attempt of 2-D Numerical Ice Flow Model to Reconstruct Paleoclimate from Mountain Glaciers
NASA Astrophysics Data System (ADS)
Candaş, Adem; Akif Sarıkaya, Mehmet
2017-04-01
A new two dimensional (2D) numerical ice flow model is generated to simulate the steady-state glacier extent for a wide range of climate conditions. The simulation includes the flow of ice enforced by the annual mass balance gradient of a valley glacier. The annual mass balance is calculated by the difference of the net accumulation and ablation of snow and (or) ice. The generated model lets users to compare the simulated and field observed ice extent of paleoglaciers. As a result, model results provide the conditions about the past climates since simulated ice extent is a function of predefined climatic conditions. To predict the glacier shape and distribution in two dimension, time dependent partial differential equation (PDE) is solved. Thus, a 2D glacier flow model code is constructed in MATLAB and a finite difference method is used to solve this equation. On the other hand, Parallel Ice Sheet Model (PISM) is used to regenerate paleoglaciers in the same area where the MATLAB code is applied. We chose the Mount Dedegöl, an extensively glaciated mountain in SW Turkey, to apply both models. Model results will be presented and discussed in this presentation. This study was supported by TÜBİTAK 114Y548 project.
Chemical transport in a fissured rock: Verification of a numerical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decaymore » and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. work in this direction is in progress.« less
Analytical modeling of flash-back phenomena. [premixed/prevaporized combustion system
NASA Technical Reports Server (NTRS)
Feng, C. C.
1979-01-01
To understand the flame flash-back phenomena more extensively, an analytical model was formed and a numerical program was written and tested to solve the set of differential equations describing the model. Results show that under a given set of conditions flame propagates in the boundary layer on a flat plate when the free stream is at or below 1.8 m/s.
A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine
NASA Astrophysics Data System (ADS)
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2015-09-01
This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.
NASA Astrophysics Data System (ADS)
Nardi, Albert; Idiart, Andrés; Trinchero, Paolo; de Vries, Luis Manuel; Molinero, Jorge
2014-08-01
This paper presents the development, verification and application of an efficient interface, denoted as iCP, which couples two standalone simulation programs: the general purpose Finite Element framework COMSOL Multiphysics® and the geochemical simulator PHREEQC. The main goal of the interface is to maximize the synergies between the aforementioned codes, providing a numerical platform that can efficiently simulate a wide number of multiphysics problems coupled with geochemistry. iCP is written in Java and uses the IPhreeqc C++ dynamic library and the COMSOL Java-API. Given the large computational requirements of the aforementioned coupled models, special emphasis has been placed on numerical robustness and efficiency. To this end, the geochemical reactions are solved in parallel by balancing the computational load over multiple threads. First, a benchmark exercise is used to test the reliability of iCP regarding flow and reactive transport. Then, a large scale thermo-hydro-chemical (THC) problem is solved to show the code capabilities. The results of the verification exercise are successfully compared with those obtained using PHREEQC and the application case demonstrates the scalability of a large scale model, at least up to 32 threads.
Numerical Analysis of Ginzburg-Landau Models for Superconductivity.
NASA Astrophysics Data System (ADS)
Coskun, Erhan
Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.
NASA Astrophysics Data System (ADS)
Kotlan, Václav; Hamar, Roman; Pánek, David; Doležel, Ivo
2017-12-01
A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.
A numerical analysis of high-temperature heat pipe startup from the frozen state
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
Continuum and rarefied vapor flows co-exist along the heat pipe length for most of the startup period. A two-region model is proposed in which the vapor flow in the continuum region is modeled by the compressible Navier-Stokes equations, and the vapor flow in the rarefied region is simulated by a self-diffusion model. The two vapor regions are linked with appropriate boundary conditions, and heat pipe wail, wick, and vapor flow are solved as a conjugate problem. The numerical solutions for the entire heat pipe startup process from the frozen state are compared with the corresponding experimental data with good agreement.
Investigation of supersonic jet plumes using an improved two-equation turbulence model
NASA Technical Reports Server (NTRS)
Lakshmanan, B.; Abdol-Hamid, Khaled S.
1994-01-01
Supersonic jet plumes were studied using a two-equation turbulence model employing corrections for compressible dissipation and pressure-dilatation. A space-marching procedure based on an upwind numerical scheme was used to solve the governing equations and turbulence transport equations. The computed results indicate that two-equation models employing corrections for compressible dissipation and pressure-dilatation yield improved agreement with the experimental data. In addition, the numerical study demonstrates that the computed results are sensitive to the effect of grid refinement and insensitive to the type of velocity profiles used at the inflow boundary for the cases considered in the present study.
Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime
NASA Astrophysics Data System (ADS)
Yanallah, K.; Pontiga, F.; Castellanos, A.
2011-02-01
Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants may depend on the electric field and temperature. The experimental values of the current-voltage characteristic are used as input data into the numerical calculations. The role played by different reactions and chemical species is analysed, and the effect of electrical and geometrical parameters on ozone generation is investigated. The reliability of the numerical model is verified by the reasonable agreement between the numerical predictions of ozone concentration and the experimental measurements.
NASA Astrophysics Data System (ADS)
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
1984-04-01
numerical solution, of sstem ot stiff Wh-f Cr ODs. Fro- qontl. a substantial portia of the total computationskwok and cooap required! to solve stiff...exep, possl- bly, foreciadalms of problem. That is% a syste of linewat o nonlinear algebrac equa- tion mumt be solved at auk step of the numerical ...onjugate gradient method [431 is a mall-know ezuze, have prove to be particularly -2- efecti for solving the linear stwem that &ise in the numerical
Explicit filtering in large eddy simulation using a discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Brazell, Matthew J.
The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu
In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy formore » the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.« less
NASA Astrophysics Data System (ADS)
Martin, Bradley; Fornberg, Bengt
2017-04-01
In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.
Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang
2015-05-01
Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.
Computations of Complex Three-Dimensional Turbulent Free Jets
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.
1997-01-01
Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.
Evolution of the concentration PDF in random environments modeled by global random walk
NASA Astrophysics Data System (ADS)
Suciu, Nicolae; Vamos, Calin; Attinger, Sabine; Knabner, Peter
2013-04-01
The evolution of the probability density function (PDF) of concentrations of chemical species transported in random environments is often modeled by ensembles of notional particles. The particles move in physical space along stochastic-Lagrangian trajectories governed by Ito equations, with drift coefficients given by the local values of the resolved velocity field and diffusion coefficients obtained by stochastic or space-filtering upscaling procedures. A general model for the sub-grid mixing also can be formulated as a system of Ito equations solving for trajectories in the composition space. The PDF is finally estimated by the number of particles in space-concentration control volumes. In spite of their efficiency, Lagrangian approaches suffer from two severe limitations. Since the particle trajectories are constructed sequentially, the demanded computing resources increase linearly with the number of particles. Moreover, the need to gather particles at the center of computational cells to perform the mixing step and to estimate statistical parameters, as well as the interpolation of various terms to particle positions, inevitably produce numerical diffusion in either particle-mesh or grid-free particle methods. To overcome these limitations, we introduce a global random walk method to solve the system of Ito equations in physical and composition spaces, which models the evolution of the random concentration's PDF. The algorithm consists of a superposition on a regular lattice of many weak Euler schemes for the set of Ito equations. Since all particles starting from a site of the space-concentration lattice are spread in a single numerical procedure, one obtains PDF estimates at the lattice sites at computational costs comparable with those for solving the system of Ito equations associated to a single particle. The new method avoids the limitations concerning the number of particles in Lagrangian approaches, completely removes the numerical diffusion, and speeds up the computation by orders of magnitude. The approach is illustrated for the transport of passive scalars in heterogeneous aquifers, with hydraulic conductivity modeled as a random field.
The Predicting Model of E-commerce Site Based on the Ideas of Curve Fitting
NASA Astrophysics Data System (ADS)
Tao, Zhang; Li, Zhang; Dingjun, Chen
On the basis of the idea of the second multiplication curve fitting, the number and scale of Chinese E-commerce site is analyzed. A preventing increase model is introduced in this paper, and the model parameters are solved by the software of Matlab. The validity of the preventing increase model is confirmed though the numerical experiment. The experimental results show that the precision of preventing increase model is ideal.
Numerical simulation of an electrothermal deicer pad. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Marano, J. J.
1983-01-01
A numerical simulation is developed to investigate the removal of ice from composite aircraft blades by means of electrothermal deicing. The model considers one dimensional, unsteady state heat transfer in the composite blade-ice body. The heat conduction equations are approximated by using the Crank-Nicolson finite difference scheme, and the phase change in the ice layer is handled using the Enthalpy method. To solve the system of equations which result, Gauss-Seidel iteration is used. The simulation computes the temperature profile in the composite blade-ice body, as well as the movement of the ice-water interface, as a function of time. This information can be used to evaluate deicer performance. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
NASA Astrophysics Data System (ADS)
Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.
1995-01-01
Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.
A Comparison of Simplified Two-dimensional Flow Models Exemplified by Water Flow in a Cavern
NASA Astrophysics Data System (ADS)
Prybytak, Dzmitry; Zima, Piotr
2017-12-01
The paper shows the results of a comparison of simplified models describing a two-dimensional water flow in the example of a water flow through a straight channel sector with a cavern. The following models were tested: the two-dimensional potential flow model, the Stokes model and the Navier-Stokes model. In order to solve the first two, the boundary element method was employed, whereas to solve the Navier-Stokes equations, the open-source code library OpenFOAM was applied. The results of numerical solutions were compared with the results of measurements carried out on a test stand in a hydraulic laboratory. The measurements were taken with an ADV probe (Acoustic Doppler Velocimeter). Finally, differences between the results obtained from the mathematical models and the results of laboratory measurements were analysed.
NASA Astrophysics Data System (ADS)
Salha, A. A.; Stevens, D. K.
2013-12-01
This study presents numerical application and statistical development of Stream Water Quality Modeling (SWQM) as a tool to investigate, manage, and research the transport and fate of water pollutants in Lower Bear River, Box elder County, Utah. The concerned segment under study is the Bear River starting from Cutler Dam to its confluence with the Malad River (Subbasin HUC 16010204). Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by five permitted point source discharges and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses) from Bear River and then back to it. Utah Department of Environmental Quality (DEQ) has designated the entire reach of the Bear River between Cutler Reservoir and Great Salt Lake as impaired. Stream water quality modeling (SWQM) requires specification of an appropriate model structure and process formulation according to nature of study area and purpose of investigation. The current model is i) one dimensional (1D), ii) numerical, iii) unsteady, iv) mechanistic, v) dynamic, and vi) spatial (distributed). The basic principle during the study is using mass balance equations and numerical methods (Fickian advection-dispersion approach) for solving the related partial differential equations. Model error decreases and sensitivity increases as a model becomes more complex, as such: i) uncertainty (in parameters, data input and model structure), and ii) model complexity, will be under investigation. Watershed data (water quality parameters together with stream flow, seasonal variations, surrounding landscape, stream temperature, and points/nonpoint sources) were obtained majorly using the HydroDesktop which is a free and open source GIS enabled desktop application to find, download, visualize, and analyze time series of water and climate data registered with the CUAHSI Hydrologic Information System. Processing, assessment of validity, and distribution of time-series data was explored using the GNU R language (statistical computing and graphics environment). Physical, chemical, and biological processes equations were written in FORTRAN codes (High Performance Fortran) in order to compute and solve their hyperbolic and parabolic complexities. Post analysis of results conducted using GNU R language. High performance computing (HPC) will be introduced to expedite solving complex computational processes using parallel programming. It is expected that the model will assess nonpoint sources and specific point sources data to understand pollutants' causes, transfer, dispersion, and concentration in different locations of Bear River. Investigation the impact of reduction/removal in non-point nutrient loading to Bear River water quality management could be addressed. Keywords: computer modeling; numerical solutions; sensitivity analysis; uncertainty analysis; ecosystem processes; high Performance computing; water quality.
Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry
NASA Astrophysics Data System (ADS)
Yue, L.; Hsu, T. J.
2017-12-01
Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.
An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-02-13
The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less
An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Chung, Eric T.
The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less
Toxin effect on protein biosynthesis in eukaryotic cells: a simple kinetic model.
Skakauskas, Vladas; Katauskis, Pranas; Skvortsov, Alex; Gray, Peter
2015-03-01
A model for toxin inhibition of protein synthesis inside eukaryotic cells is presented. Mitigation of this effect by introduction of an antibody is also studied. Antibody and toxin (ricin) initially are delivered outside the cell. The model describes toxin internalization from the extracellular into the intracellular domain, its transport to the endoplasmic reticulum (ER) and the cleavage inside the ER into the RTA and RTB chains, the release of RTA into the cytosol, inactivation (depurination) of ribosomes, and the effect on translation. The model consists of a set of ODEs which are solved numerically. Numerical results are illustrated by figures and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems.
Harnisch, Falk; Warmbier, Robert; Schneider, Ralf; Schröder, Uwe
2009-06-01
An explicit numerical model for the charge balancing ion transfer across monopolar ion exchange membranes under conditions of bioelectrochemical systems is presented. Diffusion and migration equations have been solved according to the Nernst-Planck Equation and the resulting ion concentrations, pH values and the resistance values of the membrane for different conditions were computed. The modeling results underline the principle limitations of the application of ion exchange membranes in biological fuel cells and electrolyzers, caused by the inherent occurrence of a pH-gradient between anode and cathode compartment, and an increased ohmic membrane resistance at decreasing electrolyte concentrations. Finally, the physical and numerical limitations of the model are discussed.
Numerical Modeling of Inclusion Behavior in Liquid Metal Processing
NASA Astrophysics Data System (ADS)
Bellot, Jean-Pierre; Descotes, Vincent; Jardy, Alain
2013-09-01
Thermomechanical performance of metallic alloys is directly related to the metal cleanliness that has always been a challenge for metallurgists. During liquid metal processing, particles can grow or decrease in size either by mass transfer with the liquid phase or by agglomeration/fragmentation mechanisms. As a function of numerical density of inclusions and of the hydrodynamics of the reactor, different numerical modeling approaches are proposed; in the case of an isolated particle, the Lagrangian technique coupled with a dissolution model is applied, whereas in the opposite case of large inclusion phase concentration, the population balance equation must be solved. Three examples of numerical modeling studies achieved at Institut Jean Lamour are discussed. They illustrate the application of the Lagrangian technique (for isolated exogenous inclusion in titanium bath) and the Eulerian technique without or with the aggregation process: for precipitation and growing of inclusions at the solidification front of a Maraging steel, and for endogenous inclusions in the molten steel bath of a gas-stirred ladle, respectively.
NASA Astrophysics Data System (ADS)
Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir
2015-10-01
A numerical method for calculating the wavenumbers of axisymmetric plane waves in rigid-walled low-Mach-number turbulent flows is proposed, which is based on solving the linearized Navier-Stokes equations with an eddy-viscosity model. In addition, theoretical models for the wavenumbers are reviewed, and the main effects (the viscothermal effects, the mean flow convection and refraction effects, the turbulent absorption, and the moderate compressibility effects) which may influence the sound propagation are discussed. Compared to the theoretical models, the proposed numerical method has the advantage of potentially including more effects in the computed wavenumbers. The numerical results of the wavenumbers are compared with the reviewed theoretical models, as well as experimental data from the literature. It shows that the proposed numerical method can give satisfactory prediction of both the real part (phase shift) and the imaginary part (attenuation) of the measured wavenumbers, especially when the refraction effects or the turbulent absorption effects become important.
Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump
NASA Astrophysics Data System (ADS)
Kowalska, Kinga; Ambrożek, Bogdan
2017-12-01
The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling
Hasegawa, Chihiro; Duffull, Stephen B
2018-02-01
Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.
Berteletti, Ilaria; Prado, Jérôme; Booth, James R
2014-08-01
Greater skill in solving single-digit multiplication problems requires a progressive shift from a reliance on numerical to verbal mechanisms over development. Children with mathematical learning disability (MD), however, are thought to suffer from a specific impairment in numerical mechanisms. Here we tested the hypothesis that this impairment might prevent MD children from transitioning toward verbal mechanisms when solving single-digit multiplication problems. Brain activations during multiplication problems were compared in MD and typically developing (TD) children (3rd to 7th graders) in numerical and verbal regions which were individuated by independent localizer tasks. We used small (e.g., 2 × 3) and large (e.g., 7 × 9) problems as these problems likely differ in their reliance on verbal versus numerical mechanisms. Results indicate that MD children have reduced activations in both the verbal (i.e., left inferior frontal gyrus and left middle temporal to superior temporal gyri) and the numerical (i.e., right superior parietal lobule including intra-parietal sulcus) regions suggesting that both mechanisms are impaired. Moreover, the only reliable activation observed for MD children was in the numerical region when solving small problems. This suggests that MD children could effectively engage numerical mechanisms only for the easier problems. Conversely, TD children showed a modulation of activation with problem size in the verbal regions. This suggests that TD children were effectively engaging verbal mechanisms for the easier problems. Moreover, TD children with better language skills were more effective at engaging verbal mechanisms. In conclusion, results suggest that the numerical- and language-related processes involved in solving multiplication problems are impaired in MD children. Published by Elsevier Ltd.
Topology optimization of finite strain viscoplastic systems under transient loads
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
2018-02-08
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-03-01
As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.
The Complex-Step-Finite-Difference method
NASA Astrophysics Data System (ADS)
Abreu, Rafael; Stich, Daniel; Morales, Jose
2015-07-01
We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.
Numerical simulations of turbulent jet ignition and combustion
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad
2013-11-01
The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.
Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations
NASA Astrophysics Data System (ADS)
Guo, W.; Ma, J.; Yu, Z.
2017-03-01
A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.
Evaluation of Proteus as a Tool for the Rapid Development of Models of Hydrologic Systems
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Farthing, M. W.; Kees, C. E.; Miller, C. T.
2013-12-01
Models of modern hydrologic systems can be complex and involve a variety of operators with varying character. The goal is to implement approximations of such models that are both efficient for the developer and computationally efficient, which is a set of naturally competing objectives. Proteus is a Python-based toolbox that supports prototyping of model formulations as well as a wide variety of modern numerical methods and parallel computing. We used Proteus to develop numerical approximations for three models: Richards' equation, a brine flow model derived using the Thermodynamically Constrained Averaging Theory (TCAT), and a multiphase TCAT-based tumor growth model. For Richards' equation, we investigated discontinuous Galerkin solutions with higher order time integration based on the backward difference formulas. The TCAT brine flow model was implemented using Proteus and a variety of numerical methods were compared to hand coded solutions. Finally, an existing tumor growth model was implemented in Proteus to introduce more advanced numerics and allow the code to be run in parallel. From these three example models, Proteus was found to be an attractive open-source option for rapidly developing high quality code for solving existing and evolving computational science models.
NASA Astrophysics Data System (ADS)
Sunarsih; Sasongko, Dwi P.; Sutrisno
2018-02-01
This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.
Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Shoemaker, Deirdre; Jani, Karan; London, Lionel; Pekowsky, Larne
Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Einstein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.
Numerical simulation of evolutionary erodible bedforms using the particle finite element method
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Becker, Pablo; Ortiz, Pablo
2017-07-01
This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.
Numerical modeling of interaction of the aircraft engine with concrete protective structures
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2018-01-01
The paper presents numerical modeling results considering interaction of Boeing 747 aircraft engine with nuclear power station protective shell. Protective shell has been given as a reinforced concrete structure with complex scheme of reinforcement. The engine has been simulated by cylinder projectile made from titanium alloy. The interaction velocity has comprised 180 m/s. The simulation is three-dimensional solved by finite element method using the author’s own software package EFES. Fracture and fragmentation of materials have been considered in calculations. Program software has been assessed to be used in calculation of multiple-contact objectives.
NASA Astrophysics Data System (ADS)
Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl
2018-06-01
The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.
Finite difference and Runge-Kutta methods for solving vibration problems
NASA Astrophysics Data System (ADS)
Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi
2017-11-01
The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.
Energy and technology review: Engineering modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.
1986-10-01
This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-03-09
This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less
NASA Astrophysics Data System (ADS)
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
NASA Astrophysics Data System (ADS)
Khataybeh, S. N.; Hashim, I.
2018-04-01
In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.
Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F
2015-01-01
The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Thompson, R. L.
1984-01-01
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen
1998-01-01
A new high resolution and genuinely multidimensional numerical method for solving conservation laws is being, developed. It was designed to avoid the limitations of the traditional methods. and was built from round zero with extensive physics considerations. Nevertheless, its foundation is mathmatically simple enough that one can build from it a coherent, robust. efficient and accurate numerical framework. Two basic beliefs that set the new method apart from the established methods are at the core of its development. The first belief is that, in order to capture physics more efficiently and realistically, the modeling, focus should be placed on the original integral form of the physical conservation laws, rather than the differential form. The latter form follows from the integral form under the additional assumption that the physical solution is smooth, an assumption that is difficult to realize numerically in a region of rapid chance. such as a boundary layer or a shock. The second belief is that, with proper modeling of the integral and differential forms themselves, the resulting, numerical solution should automatically be consistent with the properties derived front the integral and differential forms, e.g., the jump conditions across a shock and the properties of characteristics. Therefore a much simpler and more robust method can be developed by not using the above derived properties explicitly.
NASA Astrophysics Data System (ADS)
Yang, Xiong; Cheng, Mousen; Guo, Dawei; Wang, Moge; Li, Xiaokang
2017-10-01
On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL MultiphysicsTM with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones.
Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarnykh, Dmitrii, E-mail: d.azarnykh@tum.de; Litvinov, Sergey; Adams, Nikolaus A.
2016-06-01
A well established approach for the computation of turbulent flow without resolving all turbulent flow scales is to solve a filtered or averaged set of equations, and to model non-resolved scales by closures derived from transported probability density functions (PDF) for velocity fluctuations. Effective numerical methods for PDF transport employ the equivalence between the Fokker–Planck equation for the PDF and a Generalized Langevin Model (GLM), and compute the PDF by transporting a set of sampling particles by GLM (Pope (1985) [1]). The natural representation of GLM is a system of stochastic differential equations in a Lagrangian reference frame, typically solvedmore » by particle methods. A representation in a Eulerian reference frame, however, has the potential to significantly reduce computational effort and to allow for the seamless integration into a Eulerian-frame numerical flow solver. GLM in a Eulerian frame (GLMEF) formally corresponds to the nonlinear fluctuating hydrodynamic equations derived by Nakamura and Yoshimori (2009) [12]. Unlike the more common Landau–Lifshitz Navier–Stokes (LLNS) equations these equations are derived from the underdamped Langevin equation and are not based on a local equilibrium assumption. Similarly to LLNS equations the numerical solution of GLMEF requires special considerations. In this paper we investigate different numerical approaches to solving GLMEF with respect to the correct representation of stochastic properties of the solution. We find that a discretely conservative staggered finite-difference scheme, adapted from a scheme originally proposed for turbulent incompressible flow, in conjunction with a strongly stable (for non-stochastic PDE) Runge–Kutta method performs better for GLMEF than schemes adopted from those proposed previously for the LLNS. We show that equilibrium stochastic fluctuations are correctly reproduced.« less
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
Manual of phosphoric acid fuel cell stack three-dimensional model and computer program
NASA Technical Reports Server (NTRS)
Lu, C. Y.; Alkasab, K. A.
1984-01-01
A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Kavetski, Dmitri
2010-10-01
A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.
NASA Astrophysics Data System (ADS)
Heister, Timo; Dannberg, Juliane; Gassmöller, Rene; Bangerth, Wolfgang
2017-08-01
Computations have helped elucidate the dynamics of Earth's mantle for several decades already. The numerical methods that underlie these simulations have greatly evolved within this time span, and today include dynamically changing and adaptively refined meshes, sophisticated and efficient solvers, and parallelization to large clusters of computers. At the same time, many of the methods - discussed in detail in a previous paper in this series - were developed and tested primarily using model problems that lack many of the complexities that are common to the realistic models our community wants to solve today. With several years of experience solving complex and realistic models, we here revisit some of the algorithm designs of the earlier paper and discuss the incorporation of more complex physics. In particular, we re-consider time stepping and mesh refinement algorithms, evaluate approaches to incorporate compressibility, and discuss dealing with strongly varying material coefficients, latent heat, and how to track chemical compositions and heterogeneities. Taken together and implemented in a high-performance, massively parallel code, the techniques discussed in this paper then allow for high resolution, 3-D, compressible, global mantle convection simulations with phase transitions, strongly temperature dependent viscosity and realistic material properties based on mineral physics data.
Numerical Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
Numerical modeling process of embolization arteriovenous malformation
NASA Astrophysics Data System (ADS)
Cherevko, A. A.; Gologush, T. S.; Petrenko, I. A.; Ostapenko, V. V.
2017-10-01
Cerebral arteriovenous malformation is a difficult, dangerous, and most frequently encountered vascular failure of development. It consists of vessels of very small diameter, which perform a discharge of blood from the artery to the vein. In this regard it can be adequately modeled using porous medium. Endovascular embolization of arteriovenous malformation is effective treatment of such pathologies. However, the danger of intraoperative rupture during embolization still exists. The purpose is to model this process and build an optimization algorithm for arteriovenous malformation embolization. To study the different embolization variants, the initial-boundary value problems, describing the process of embolization, were solved numerically by using a new modification of CABARET scheme. The essential moments of embolization process were modeled in our numerical experiments. This approach well reproduces the essential features of discontinuous two-phase flows, arising in the embolization problems. It can be used for further study on the process of embolization.
Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
NASA Astrophysics Data System (ADS)
Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.
2017-06-01
A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.
Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q
2013-03-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION
Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.
2013-01-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian. PMID:23772179
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.
2015-09-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-02-01
Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimal Repair And Replacement Policy For A System With Multiple Components
2016-06-17
Numerical Demonstration To implement the linear program, we use the Python Programming Language (PSF 2016) with the Pyomo optimization modeling language...opre.1040.0133. Hart, W.E., C. Laird, J. Watson, D.L. Woodruff. 2012. Pyomo–optimization modeling in python , vol. 67. Springer Science & Business...Media. Hart, W.E., J. Watson, D.L. Woodruff. 2011. Pyomo: modeling and solving mathematical programs in python . Mathematical Programming Computation 3(3
Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities
NASA Astrophysics Data System (ADS)
Chuprakov, D.; Melchaeva, O.; Prioul, R.
2014-09-01
We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw-Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.
DRBEM solution of the acid-mediated tumour invasion model with time-dependent carrying capacities
NASA Astrophysics Data System (ADS)
Meral, Gülnihal
2017-07-01
It is known that the pH level of the extracellular tumour environment directly effects the progression of the tumour. In this study, the mathematical model for the acid-mediated tumour cell invasion consisting of a system of nonlinear reaction diffusion equations describing the interaction between the density of the tumour cells, normal cells and the concentration of ? protons produced by the tumour cells is solved numerically using the combined application of dual reciprocity boundary element method (DRBEM) and finite difference method. The space derivatives in the model are discretised by DRBEM using the fundamental solution of Laplace equation considering the time derivative and the nonlinearities as the nonhomogenity. The resulting systems of ordinary differential equations after the application of DRBEM are then discretised using forward difference. Because of the highly nonlinear character of the model, there arises difficulties in solving the model especially for two-dimensions and the boundary-only nature of DRBEM discretisation gives the advantage of having solutions with a lower computational cost. The proposed method is tested with different kinds of carrying capacities which also depend on time. The results of the numerical simulations are compared among each case and seen to confirm the expected behaviour of the model.
Indicators of Arctic Sea Ice Bistability in Climate Model Simulations and Observations
2014-09-30
ultimately developed a novel mathematical method to solve the system of equations involving the addition of a numerical “ ghost ” layer, as described in the...balance models ( EBMs ) and (ii) seasonally-varying single-column models (SCMs). As described in Approach item #1, we developed an idealized model that...includes both latitudinal and seasonal variations (Fig. 1). The model reduces to a standard EBM or SCM as limiting cases in the parameter space, thus
Development of a 3D Soil-Plant-Atmosphere Continuum (SPAC) coupled to a Land Surface Model
NASA Astrophysics Data System (ADS)
Bisht, G.; Riley, W. J.; Lorenzetti, D.; Tang, J.
2015-12-01
Exchange of water between the atmosphere and biosphere via evapotranspiration (ET) influences global hydrological, energy, and biogeochemical cycles. Isotopic analysis has shown that evapotranspiration over the continents is largely dominated by transpiration. Water is taken up from soil by plant roots, transported through the plant's vascular system, and evaporated from the leaves. Yet current Land Surface Models (LSMs) integrated into Earth System Models (ESMs) treat plant roots as passive components. These models distribute the ET sink vertically over the soil column, neglect the vertical pressure distribution along the plant vascular system, and assume that leaves can directly access water from any soil layer within the root zone. Numerous studies have suggested that increased warming due to climate change will lead drought and heat-induced tree mortality. A more mechanistic treatment of water dynamics in the soil-plant-atmosphere continuum (SPAC) is essential for investigating the fate of ecosystems under a warmer climate. In this work, we describe a 3D SPAC model that can be coupled to a LSM. The SPAC model uses the variably saturated Richards equations to simulate water transport. The model uses individual governing equations and constitutive relationships for the various SPAC components (i.e., soil, root, and xylem). Finite volume spatial discretization and backward Euler temporal discretization is used to solve the SPAC model. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is used to numerically integrate the discretized system of equations. Furthermore, PETSc's multi-physics coupling capability (DMComposite) is used to solve the tightly coupled system of equations of the SPAC model. Numerical results are presented for multiple test problems.
Comparison of Numerical Approaches to a Steady-State Landscape Equation
NASA Astrophysics Data System (ADS)
Bachman, S.; Peckham, S.
2008-12-01
A mathematical model of an idealized fluvial landscape has been developed, in which a land surface will evolve to preserve dendritic channel networks as the surface is lowered. The physical basis for this model stems from the equations for conservation of mass for water and sediment. These equations relate the divergence of the 2D vector fields showing the unit-width discharge of water and sediment to the excess rainrate and tectonic uplift on the land surface. The 2D flow direction is taken to be opposite to the water- surface gradient vector. These notions are combined with a generalized Manning-type flow resistance formula and a generalized sediment transport law to give a closed mathematical system that can, in principle, be solved for all variables of interest: discharge of water and sediment, land surface height, vertically- averaged flow velocity, water depth, and shear stress. The hydraulic geometry equations (Leopold et. al, 1964, 1995) are used to incorporate width, depth, velocity, and slope of river channels as powers of the mean-annual river discharge. Combined, they give the unit- width discharge of the stream as a power, γ, of the water surface slope. The simplified steady-state model takes into account three components among those listed above: conservation of mass for water, flow opposite the gradient, and a slope-discharge exponent γ = -1 to reflect mature drainage networks. The mathematical representation of this model appears as a second-order hyperbolic partial differential equation (PDE) where the diffusivity is inversely proportional to the square of the local surface slope. The highly nonlinear nature of this PDE has made it very difficult to solve both analytically and numerically. We present simplistic analytic solutions to this equation which are used to test the validity of the numerical algorithms. We also present three such numerical approaches which have been used in solving the differential equation. The first is based on a nonlinear diffusion filtering technique (Welk et. al, 2007) that has been applied successfully in the context of image processing. The second uses a Ritz finite element approach to the Euler-Lagrange formulation of the PDE in which an eighth degree polynomial is solved whose coefficients are locally dependent on slope and elevation. Lastly, we show a variant to the diffusion filtering approach in which a single-stage Runge-Kutta method is used to iterate a time-derivative to steady- state. The relative merits and drawbacks of these approaches are discussed, as well as stability and consistency requirements.
Numerical modeling for the retrofit of the hydraulic cooling subsystems in operating power plant
NASA Astrophysics Data System (ADS)
AlSaqoor, S.; Alahmer, A.; Al Quran, F.; Andruszkiewicz, A.; Kubas, K.; Regucki, P.; Wędrychowicz, W.
2017-08-01
This paper presents the possibility of using the numerical methods to analyze the work of hydraulic systems on the example of a cooling system of a power boiler auxiliary devices. The variety of conditions at which hydraulic system that operated in specific engineering subsystems requires an individualized approach to the model solutions that have been developed for these systems modernizing. A mathematical model of a series-parallel propagation for the cooling water was derived and iterative methods were used to solve the system of nonlinear equations. The results of numerical calculations made it possible to analyze different variants of a modernization of the studied system and to indicate its critical elements. An economic analysis of different options allows an investor to choose an optimal variant of a reconstruction of the installation.
NASA Technical Reports Server (NTRS)
Engquist, B. E. (Editor); Osher, S. (Editor); Somerville, R. C. J. (Editor)
1985-01-01
Papers are presented on such topics as the use of semi-Lagrangian advective schemes in meteorological modeling; computation with high-resolution upwind schemes for hyperbolic equations; dynamics of flame propagation in a turbulent field; a modified finite element method for solving the incompressible Navier-Stokes equations; computational fusion magnetohydrodynamics; and a nonoscillatory shock capturing scheme using flux-limited dissipation. Consideration is also given to the use of spectral techniques in numerical weather prediction; numerical methods for the incorporation of mountains in atmospheric models; techniques for the numerical simulation of large-scale eddies in geophysical fluid dynamics; high-resolution TVD schemes using flux limiters; upwind-difference methods for aerodynamic problems governed by the Euler equations; and an MHD model of the earth's magnetosphere.
Machine learning of atmospheric chemistry. Applications to a global chemistry transport model.
NASA Astrophysics Data System (ADS)
Evans, M. J.; Keller, C. A.
2017-12-01
Atmospheric chemistry is central to many environmental issues such as air pollution, climate change, and stratospheric ozone loss. Chemistry Transport Models (CTM) are a central tool for understanding these issues, whether for research or for forecasting. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (mili-seconds for O(1D) to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a CTM.We have investigated a machine learning approach to solving the differential equations instead of solving them numerically. From an annual simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (random regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry.This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, centennial scale climate simulations etc. We discuss our approches' speed and accuracy, and highlight some potential future directions for improving this approach.
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
NASA Astrophysics Data System (ADS)
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity
NASA Astrophysics Data System (ADS)
Voronych, Oksana; Buraczewski, Adam; Matuszewski, Michał; Stobińska, Magdalena
2017-06-01
A novel, optimized numerical method of modeling of an exciton-polariton superfluid in a semiconductor microcavity was proposed. Exciton-polaritons are spin-carrying quasiparticles formed from photons strongly coupled to excitons. They possess unique properties, interesting from the point of view of fundamental research as well as numerous potential applications. However, their numerical modeling is challenging due to the structure of nonlinear differential equations describing their evolution. In this paper, we propose to solve the equations with a modified Runge-Kutta method of 4th order, further optimized for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel environments and utilizing vector instructions. The programs form the EPCGP suite which has been used for theoretical investigation of exciton-polaritons. Catalogue identifier: AFBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD-3 No. of lines in distributed program, including test data, etc.: 2157 No. of bytes in distributed program, including test data, etc.: 498994 Distribution format: tar.gz Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux and Windows. Has the code been vectorized or parallelized?: Yes (OpenMP) RAM: 200 MB for single run Classification: 7, 7.7. Nature of problem: An exciton-polariton superfluid is a novel, interesting physical system allowing investigation of high temperature Bose-Einstein condensation of exciton-polaritons-quasiparticles carrying spin. They have brought a lot of attention due to their unique properties and potential applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum system confined within a semiconductor microcavity. It is described by a set of nonlinear differential equations similar in spirit to the Gross-Pitaevskii (GP) equation, but their unique properties do not allow standard GP solving frameworks to be utilized. Finding an accurate and efficient numerical algorithm as well as development of optimized numerical software is necessary for effective theoretical investigation of exciton-polaritons. Solution method: A Runge-Kutta method of 4th order was employed to solve the set of differential equations describing exciton-polariton superfluids. The method was fitted for the exciton-polariton equations and further optimized. The C++ programs utilize OpenMP extensions and vector operations in order to fully utilize the computer hardware. Running time: 6h for 100 ps evolution, depending on the values of parameters
Derivative free Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations
NASA Astrophysics Data System (ADS)
Mamat, M.; Dauda, M. K.; Mohamed, M. A. bin; Waziri, M. Y.; Mohamad, F. S.; Abdullah, H.
2018-03-01
Research from the work of engineers, economist, modelling, industry, computing, and scientist are mostly nonlinear equations in nature. Numerical solution to such systems is widely applied in those areas of mathematics. Over the years, there has been significant theoretical study to develop methods for solving such systems, despite these efforts, unfortunately the methods developed do have deficiency. In a contribution to solve systems of the form F(x) = 0, x ∈ Rn , a derivative free method via the classical Davidon-Fletcher-Powell (DFP) update is presented. This is achieved by simply approximating the inverse Hessian matrix with {Q}k+1-1 to θkI. The modified method satisfied the descent condition and possess local superlinear convergence properties. Interestingly, without computing any derivative, the proposed method never fail to converge throughout the numerical experiments. The output is based on number of iterations and CPU time, different initial starting points were used on a solve 40 benchmark test problems. With the aid of the squared norm merit function and derivative-free line search technique, the approach yield a method of solving symmetric systems of nonlinear equations that is capable of significantly reducing the CPU time and number of iteration, as compared to its counterparts. A comparison between the proposed method and classical DFP update were made and found that the proposed methodis the top performer and outperformed the existing method in almost all the cases. In terms of number of iterations, out of the 40 problems solved, the proposed method solved 38 successfully, (95%) while classical DFP solved 2 problems (i.e. 05%). In terms of CPU time, the proposed method solved 29 out of the 40 problems given, (i.e.72.5%) successfully whereas classical DFP solves 11 (27.5%). The method is valid in terms of derivation, reliable in terms of number of iterations and accurate in terms of CPU time. Thus, suitable and achived the objective.
Cilfone, Nicholas A.; Kirschner, Denise E.; Linderman, Jennifer J.
2015-01-01
Biologically related processes operate across multiple spatiotemporal scales. For computational modeling methodologies to mimic this biological complexity, individual scale models must be linked in ways that allow for dynamic exchange of information across scales. A powerful methodology is to combine a discrete modeling approach, agent-based models (ABMs), with continuum models to form hybrid models. Hybrid multi-scale ABMs have been used to simulate emergent responses of biological systems. Here, we review two aspects of hybrid multi-scale ABMs: linking individual scale models and efficiently solving the resulting model. We discuss the computational choices associated with aspects of linking individual scale models while simultaneously maintaining model tractability. We demonstrate implementations of existing numerical methods in the context of hybrid multi-scale ABMs. Using an example model describing Mycobacterium tuberculosis infection, we show relative computational speeds of various combinations of numerical methods. Efficient linking and solution of hybrid multi-scale ABMs is key to model portability, modularity, and their use in understanding biological phenomena at a systems level. PMID:26366228
Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries
Lu, Zhiming
2018-01-30
Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less
Numerical Analysis of the Heat Transfer Characteristics within an Evaporating Meniscus
NASA Astrophysics Data System (ADS)
Ball, Gregory
A numerical analysis was performed as to investigate the heat transfer characteristics of an evaporating thin-film meniscus. A mathematical model was used in the formulation of a third order ordinary differential equation. This equation governs the evaporating thin-film through use of continuity, momentum, energy equations and the Kelvin-Clapeyron model. This governing equation was treated as an initial value problem and was solved numerically using a Runge-Kutta technique. The numerical model uses varying thermophysical properties and boundary conditions such as channel width, applied superheat, accommodation coefficient and working fluid which can be tailored by the user. This work focused mainly on the effects of altering accommodation coefficient and applied superheat. A unified solution is also presented which models the meniscus to half channel width. The model was validated through comparison to literature values. In varying input values the following was determined; increasing superheat was found to shorten the film thickness and greatly increase the interfacial curvature overshoot values. The effect of decreasing accommodation coefficient lengthened the thin-film and retarded the evaporative effects.
Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhiming
Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less
A Gompertzian model with random effects to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni; Rosli, Norhayati
2015-05-15
In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.
Gompertzian stochastic model with delay effect to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
2018-01-01
Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model. PMID:29518121
Numerical treatment of a geometrically nonlinear planar Cosserat shell model
NASA Astrophysics Data System (ADS)
Sander, Oliver; Neff, Patrizio; Bîrsan, Mircea
2016-05-01
We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton's method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.
Sánchez-Pérez, J F; Marín, F; Morales, J L; Cánovas, M; Alhama, F
2018-01-01
Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model.
NASA Technical Reports Server (NTRS)
Reese, O. W.
1972-01-01
The numerical calculation is described of the steady-state flow of electrons in an axisymmetric, spherical, electrostatic collector for a range of boundary conditions. The trajectory equations of motion are solved alternately with Poisson's equation for the potential field until convergence is achieved. A direct (noniterative) numerical technique is used to obtain the solution to Poisson's equation. Space charge effects are included for initial current densities as large as 100 A/sq cm. Ways of dealing successfully with the difficulties associated with these high densities are discussed. A description of the mathematical model, a discussion of numerical techniques, results from two typical runs, and the FORTRAN computer program are included.
Numeracy and Communication with Patients: They Are Counting on Us
Paasche-Orlow, Michael K.; Remillard, Janine T.; Bennett, Ian M.; Ben-Joseph, Elana Pearl; Batista, Rosanna M.; Hyde, James; Rudd, Rima E.
2008-01-01
Patient-centered interactive communication between physicians and patients is recommended to improve the quality of medical care. Numerical concepts are important components of such exchanges and include arithmetic and use of percentages, as well as higher level tasks like estimation, probability, problem-solving, and risk assessment - the basis of preventive medicine. Difficulty with numerical concepts may impede communication. The current evidence on prevalence, measurement, and outcomes related to numeracy is presented, along with a summary of best practices for communication of numerical information. This information is integrated into a hierarchical model of mathematical concepts and skills, which can guide clinicians toward numerical communication that is easier to use with patients. PMID:18830764
NASA Astrophysics Data System (ADS)
Toufik, Mekkaoui; Atangana, Abdon
2017-10-01
Recently a new concept of fractional differentiation with non-local and non-singular kernel was introduced in order to extend the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. A new numerical scheme has been developed, in this paper, for the newly established fractional differentiation. We present in general the error analysis. The new numerical scheme was applied to solve linear and non-linear fractional differential equations. We do not need a predictor-corrector to have an efficient algorithm, in this method. The comparison of approximate and exact solutions leaves no doubt believing that, the new numerical scheme is very efficient and converges toward exact solution very rapidly.
Numerical Simulations of Free Surface Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema
2003-11-01
We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.
Boundary element modelling of dynamic behavior of piecewise homogeneous anisotropic elastic solids
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Markov, I. P.; Litvinchuk, S. Yu
2018-04-01
A traditional direct boundary integral equations method is applied to solve three-dimensional dynamic problems of piecewise homogeneous linear elastic solids. The materials of homogeneous parts are considered to be generally anisotropic. The technique used to solve the boundary integral equations is based on the boundary element method applied together with the Radau IIA convolution quadrature method. A numerical example of suddenly loaded 3D prismatic rod consisting of two subdomains with different anisotropic elastic properties is presented to verify the accuracy of the proposed formulation.
On a comparison of two schemes in sequential data assimilation
NASA Astrophysics Data System (ADS)
Grishina, Anastasiia A.; Penenko, Alexey V.
2017-11-01
This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.
Biochemical transport modeling, estimation, and detection in realistic environments
NASA Astrophysics Data System (ADS)
Ortner, Mathias; Nehorai, Arye
2006-05-01
Early detection and estimation of the spread of a biochemical contaminant are major issues for homeland security applications. We present an integrated approach combining the measurements given by an array of biochemical sensors with a physical model of the dispersion and statistical analysis to solve these problems and provide system performance measures. We approximate the dispersion model of the contaminant in a realistic environment through numerical simulations of reflected stochastic diffusions describing the microscopic transport phenomena due to wind and chemical diffusion using the Feynman-Kac formula. We consider arbitrary complex geometries and account for wind turbulence. Localizing the dispersive sources is useful for decontamination purposes and estimation of the cloud evolution. To solve the associated inverse problem, we propose a Bayesian framework based on a random field that is particularly powerful for localizing multiple sources with small amounts of measurements. We also develop a sequential detector using the numerical transport model we propose. Sequential detection allows on-line analysis and detecting wether a change has occurred. We first focus on the formulation of a suitable sequential detector that overcomes the presence of unknown parameters (e.g. release time, intensity and location). We compute a bound on the expected delay before false detection in order to decide the threshold of the test. For a fixed false-alarm rate, we obtain the detection probability of a substance release as a function of its location and initial concentration. Numerical examples are presented for two real-world scenarios: an urban area and an indoor ventilation duct.
Mathematical and computational model for the analysis of micro hybrid rocket motor
NASA Astrophysics Data System (ADS)
Stoia-Djeska, Marius; Mingireanu, Florin
2012-11-01
The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.
NASA Astrophysics Data System (ADS)
Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F.
2017-12-01
The analysis of the behaviors of physical phenomena is important to discover significant features of the character and the structure of mathematical models. Frequently the unknown parameters involve in the models are assumed to be unvarying over time. In reality, some of them are uncertain and implicitly depend on several factors. In this study, to consider such uncertainty in variables of the models, they are characterized based on the fuzzy notion. We propose here a new model based on fractional calculus to deal with the Kelvin-Voigt (KV) equation and non-Newtonian fluid behavior model with fuzzy parameters. A new and accurate numerical algorithm using a spectral tau technique based on the generalized fractional Legendre polynomials (GFLPs) is developed to solve those problems under uncertainty. Numerical simulations are carried out and the analysis of the results highlights the significant features of the new technique in comparison with the previous findings. A detailed error analysis is also carried out and discussed.
Wake Numerical Simulation Based on the Park-Gauss Model and Considering Atmospheric Stability
NASA Astrophysics Data System (ADS)
Yang, Xiangsheng; Zhao, Ning; Tian, Linlin; Zhu, Jun
2016-06-01
In this paper, a new Park-Gauss model based on the assumption of the Park model and the Eddy-viscosity model is investigated to conduct the wake numerical simulation for solving a single wind turbine problem. The initial wake radius has been modified to improve the model’s numerical accuracy. Then the impact of the atmospheric stability based on the Park-Gauss model has been studied in the wake region. By the comparisons and the analyses of the test results, it turns out that the new Park-Gauss model could achieve better effects of the wind velocity simulation in the wake region. The wind velocity in the wake region recovers quickly under the unstable atmospheric condition provided the wind velocity is closest to the test result, and recovers slowly under stable atmospheric condition in case of the wind velocity is lower than the test result. Meanwhile, the wind velocity recovery falls in between the unstable and stable neutral atmospheric conditions.
Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle
Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.
2013-01-01
We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853
Numerical Simulations of Plasma Based Flow Control Applications
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.
2005-01-01
A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.
NASA Astrophysics Data System (ADS)
Han, B.; Li, Y.
2016-12-01
We present a three-dimensional (3D) forward and inverse modeling code for marine controlled-source electromagnetic (CSEM) surveys in anisotropic media. The forward solution is based on a primary/secondary field approach, in which secondary fields are solved using a staggered finite-volume (FV) method and primary fields are solved for 1D isotropic background models analytically. It is shown that it is rather straightforward to extend the isotopic 3D FV algorithm to a triaxial anisotropic one, while additional coefficients are required to account for full tensor conductivity. To solve the linear system resulting from FV discretization of Maxwell' s equations, both iterative Krylov solvers (e.g. BiCGSTAB) and direct solvers (e.g. MUMPS) have been implemented, makes the code flexible for different computing platforms and different problems. For iterative soloutions, the linear system in terms of electromagnetic potentials (A-Phi) is used to precondition the original linear system, transforming the discretized Curl-Curl equations to discretized Laplace-like equations, thus much more favorable numerical properties can be obtained. Numerical experiments suggest that this A-Phi preconditioner can dramatically improve the convergence rate of an iterative solver and high accuracy can be achieved without divergence correction even for low frequencies. To efficiently calculate the sensitivities, i.e. the derivatives of CSEM data with respect to tensor conductivity, the adjoint method is employed. For inverse modeling, triaxial anisotropy is taken into account. Since the number of model parameters to be resolved of triaxial anisotropic medias is twice or thrice that of isotropic medias, the data-space version of the Gauss-Newton (GN) minimization method is preferred due to its lower computational cost compared with the traditional model-space GN method. We demonstrate the effectiveness of the code with synthetic examples.
Essentially Entropic Lattice Boltzmann Model
NASA Astrophysics Data System (ADS)
Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh
2017-12-01
The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.
Traumatic eye injuries as a result of blunt impact: computational issues
NASA Astrophysics Data System (ADS)
Clemente, C.; Esposito, L.; Bonora, N.; Limido, J.; Lacome, J. L.; Rossi, T.
2014-05-01
The detachment or tearing of the retina in the human eye as a result of a collision is a phenomenon that occurs very often. Reliable numerical simulations of eye impact can be very useful tools to understand the physical mechanisms responsible for traumatic eye injuries accompanying blunt impact. The complexity and variability of the physical and mechanical properties of the biological materials, the lack of agreement on their related experimental data as well as the unsuitability of specific numerical codes and models are only some of the difficulties when dealing with this matter. All these challenging issues must be solved to obtain accurate numerical analyses involving dynamic behavior of biological soft tissues. To this purpose, a numerical and experimental investigation of the dynamic response of the eye during an impact event was performed. Numerical simulations were performed with IMPETUS-AFEA, a new general non-linear finite element (FE) software which offers non uniform rational B-splines (NURBS) FE technology for the simulation of large deformation and fracture in materials. IMPETUS code was selected in order to solve hourglass and locking problems typical of nearly incompressible materials like eye tissues. Computational results were compared with the experimental results on fresh enucleated porcine eyes impacted with airsoft pellets.
Scilab software as an alternative low-cost computing in solving the linear equations problem
NASA Astrophysics Data System (ADS)
Agus, Fahrul; Haviluddin
2017-02-01
Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.
NASA Astrophysics Data System (ADS)
Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur
2018-03-01
Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.
Numerically pricing American options under the generalized mixed fractional Brownian motion model
NASA Astrophysics Data System (ADS)
Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying
2016-06-01
In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
Atmospheric model development in support of SEASAT. Volume 1: Summary of findings
NASA Technical Reports Server (NTRS)
Kesel, P. G.
1977-01-01
Atmospheric analysis and prediction models of varying (grid) resolution were developed. The models were tested using real observational data for the purpose of assessing the impact of grid resolution on short range numerical weather prediction. The discretionary model procedures were examined so that the computational viability of SEASAT data might be enhanced during the conduct of (future) sensitivity tests. The analysis effort covers: (1) examining the procedures for allowing data to influence the analysis; (2) examining the effects of varying the weights in the analysis procedure; (3) testing and implementing procedures for solving the minimization equation in an optimal way; (4) describing the impact of grid resolution on analysis; and (5) devising and implementing numerous practical solutions to analysis problems, generally.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.
1988-01-01
Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
2018-02-08
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Artificial neural network in cosmic landscape
NASA Astrophysics Data System (ADS)
Liu, Junyu
2017-12-01
In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.
Modelling crystal growth: Convection in an asymmetrically heated ampoule
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Rosenberger, Franz; Pulicani, J. P.; Krukowski, S.; Ouazzani, Jalil
1990-01-01
The objective was to develop and implement a numerical method capable of solving the nonlinear partial differential equations governing heat, mass, and momentum transfer in a 3-D cylindrical geometry in order to examine the character of convection in an asymmetrically heated cylindrical ampoule. The details of the numerical method, including verification tests involving comparison with results obtained from other methods, are presented. The results of the study of 3-D convection in an asymmetrically heated cylinder are described.
Three-dimensional implicit lambda methods
NASA Technical Reports Server (NTRS)
Napolitano, M.; Dadone, A.
1983-01-01
This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.
Activities: Activities to Introduce Maxima-Minima Problems.
ERIC Educational Resources Information Center
Pleacher, David
1991-01-01
Presented are student activities that involve two standard problems from geometry and calculus--the volume of a box and the bank shot on a pool table. Problem solving is emphasized as a method of inquiry and application with descriptions of the results using graphical, numerical, and physical models. (JJK)
Perceptual-Motor and Cognitive Performance Task-Battery for Pilot Selection
1981-01-01
processing. Basic researchers in cognitive phychology have become discouraged with the inability of numerous models to consider and account for individual...attention in the use of cues in verbal problem-solving. Journal of Personality, 197?, 40, 226-241. Mensh, I. N. Pilot selection by phychological methods
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Sunarsih; Kartono
2018-01-01
In this paper, a mathematical model in quadratic programming with fuzzy parameter is proposed to determine the optimal strategy for integrated inventory control and supplier selection problem with fuzzy demand. To solve the corresponding optimization problem, we use the expected value based fuzzy programming. Numerical examples are performed to evaluate the model. From the results, the optimal amount of each product that have to be purchased from each supplier for each time period and the optimal amount of each product that have to be stored in the inventory for each time period were determined with minimum total cost and the inventory level was sufficiently closed to the reference level.
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Exact solution for an optimal impermeable parachute problem
NASA Astrophysics Data System (ADS)
Lupu, Mircea; Scheiber, Ernest
2002-10-01
In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.
Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem
NASA Astrophysics Data System (ADS)
Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.
2017-05-01
In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.
Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers
Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas
2016-01-01
A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Da; Zheng, Bin; Lin, Guang
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is themore » number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.« less
A Numerical Model for Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
High order parallel numerical schemes for solving incompressible flows
NASA Technical Reports Server (NTRS)
Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.
1992-01-01
The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.
A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng
2009-11-01
Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.
Uncertain programming models for portfolio selection with uncertain returns
NASA Astrophysics Data System (ADS)
Zhang, Bo; Peng, Jin; Li, Shengguo
2015-10-01
In an indeterminacy economic environment, experts' knowledge about the returns of securities consists of much uncertainty instead of randomness. This paper discusses portfolio selection problem in uncertain environment in which security returns cannot be well reflected by historical data, but can be evaluated by the experts. In the paper, returns of securities are assumed to be given by uncertain variables. According to various decision criteria, the portfolio selection problem in uncertain environment is formulated as expected-variance-chance model and chance-expected-variance model by using the uncertainty programming. Within the framework of uncertainty theory, for the convenience of solving the models, some crisp equivalents are discussed under different conditions. In addition, a hybrid intelligent algorithm is designed in the paper to provide a general method for solving the new models in general cases. At last, two numerical examples are provided to show the performance and applications of the models and algorithm.
Mansour, M M; Spink, A E F
2013-01-01
Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.
Approximating a nonlinear advanced-delayed equation from acoustics
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-10-01
We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.
Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients
NASA Astrophysics Data System (ADS)
Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea; Di Bernardo, Giuseppe; Di Mauro, Mattia; Ligorini, Arianna; Ullio, Piero; Grasso, Dario
2017-02-01
We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.
Contribution of the Recent AUSM Schemes to the Overflow Code: Implementation and Validation
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Buning, Pieter G.
2000-01-01
We shall present results of a recent collaborative effort between the authors attempting to implement the numerical flux scheme, AUSM+ and its new developments, into a widely used NASA code, OVERFLOW. This paper is intended to give a thorough and systematic documentation about the solutions of default test cases using the AUSNI+ scheme. Hence we will address various aspects of numerical solutions, such as accuracy, convergence rate, and effects of turbulence models, over a variety of geometries, speed regimes. We will briefly describe the numerical schemes employed in the calculations, including the capability of solving for low-speed flows and multiphase flows by employing the concept of numerical speed of sound. As a bonus, this low Mach number formulations also enhances convergence to steady solutions for flows even at transonic speed. Calculations for complex 3D turbulent flows were performed with several turbulence models and the results display excellent agreements with measured data.
Automatic Black-Box Model Order Reduction using Radial Basis Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephanson, M B; Lee, J F; White, D A
Finite elements methods have long made use of model order reduction (MOR), particularly in the context of fast freqeucny sweeps. In this paper, we discuss a black-box MOR technique, applicable to a many solution methods and not restricted only to spectral responses. We also discuss automated methods for generating a reduced order model that meets a given error tolerance. Numerical examples demonstrate the effectiveness and wide applicability of the method. With the advent of improved computing hardware and numerous fast solution techniques, the field of computational electromagnetics are progressed rapidly in terms of the size and complexity of problems thatmore » can be solved. Numerous applications, however, require the solution of a problem for many different configurations, including optimization, parameter exploration, and uncertainly quantification, where the parameters that may be changed include frequency, material properties, geometric dimensions, etc. In such cases, thousands of solutions may be needed, so solve times of even a few minutes can be burdensome. Model order reduction (MOR) may alleviate this difficulty by creating a small model that can be evaluated quickly. Many MOR techniques have been applied to electromagnetic problems over the past few decades, particularly in the context of fast frequency sweeps. Recent works have extended these methods to allow more than one parameter and to allow the parameters to represent material and geometric properties. There are still limitations with these methods, however. First, they almost always assume that the finite element method is used to solve the problem, so that the system matrix is a known function of the parameters. Second, although some authors have presented adaptive methods (e.g., [2]), the order of the model is often determined before the MOR process begins, with little insight about what order is actually needed to reach the desired accuracy. Finally, it not clear how to efficiently extend most methods to the multiparameter case. This paper address the above shortcomings be developing a method that uses a block-box approach to the solution method, is adaptive, and is easily extensible to many parameters.« less
Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels
NASA Astrophysics Data System (ADS)
Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.
2016-10-01
Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.
NASA Astrophysics Data System (ADS)
Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai
2017-07-01
Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.
NASA Astrophysics Data System (ADS)
Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai
2018-07-01
Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.
Numerical Simulation of Austempering Heat Treatment of a Ductile Cast Iron
NASA Astrophysics Data System (ADS)
Boccardo, Adrián D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.; Górny, Marcin; Tyrała, Edward
2016-02-01
This paper presents a coupled thermo-mechanical-metallurgical formulation to predict the dimensional changes and microstructure of a ductile cast iron part as a consequence of an austempering heat process. To take into account the different complex phenomena which are present in the process, the stress-strain law and plastic evolution equations are defined within the context of the associate rate-independent thermo-plasticity theory. The metallurgical model considers the reverse eutectoid, ausferritic, and martensitic transformations using macro- and micro-models. The resulting model is solved using the finite element method. The performance of this model is evaluated by comparison with experimental results of a dilatometric test. The results indicate that both the experimental evolution of deformation and temperature are well represented by the numerical model.
Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Bukauskas, Feliksas F.
2015-01-01
The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times. PMID:25705700
Ren, Qiang; Nagar, Jogender; Kang, Lei; Bian, Yusheng; Werner, Ping; Werner, Douglas H
2017-05-18
A highly efficient numerical approach for simulating the wideband optical response of nano-architectures comprised of Drude-Critical Points (DCP) media (e.g., gold and silver) is proposed and validated through comparing with commercial computational software. The kernel of this algorithm is the subdomain level discontinuous Galerkin time domain (DGTD) method, which can be viewed as a hybrid of the spectral-element time-domain method (SETD) and the finite-element time-domain (FETD) method. An hp-refinement technique is applied to decrease the Degrees-of-Freedom (DoFs) and computational requirements. The collocated E-J scheme facilitates solving the auxiliary equations by converting the inversions of matrices to simpler vector manipulations. A new hybrid time stepping approach, which couples the Runge-Kutta and Newmark methods, is proposed to solve the temporal auxiliary differential equations (ADEs) with a high degree of efficiency. The advantages of this new approach, in terms of computational resource overhead and accuracy, are validated through comparison with well-known commercial software for three diverse cases, which cover both near-field and far-field properties with plane wave and lumped port sources. The presented work provides the missing link between DCP dispersive models and FETD and/or SETD based algorithms. It is a competitive candidate for numerically studying the wideband plasmonic properties of DCP media.
Multimaterial topology optimization of contact problems using phase field regularization
NASA Astrophysics Data System (ADS)
Myśliński, Andrzej
2018-01-01
The numerical method to solve multimaterial topology optimization problems for elastic bodies in unilateral contact with Tresca friction is developed in the paper. The displacement of the elastic body in contact is governed by elliptic equation with inequality boundary conditions. The body is assumed to consists from more than two distinct isotropic elastic materials. The materials distribution function is chosen as the design variable. Since high contact stress appears during the contact phenomenon the aim of the structural optimization problem is to find such topology of the domain occupied by the body that the normal contact stress along the boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrained Ginzburg-Landau energy functional rather than the perimeter functional. The first order necessary optimality condition is recalled and used to formulate the generalized gradient flow equations of Allen-Cahn type. The optimal topology is obtained as the steady state of the phase transition governed by the generalized Allen-Cahn equation. As the interface width parameter tends to zero the transition of the phase field model to the level set model is studied. The optimization problem is solved numerically using the operator splitting approach combined with the projection gradient method. Numerical examples confirming the applicability of the proposed method are provided and discussed.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Moorthy, Jayashree
1995-01-01
A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.
2015-07-01
In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.
Targeted numerical simulations of binary black holes for GW170104
NASA Astrophysics Data System (ADS)
Healy, J.; Lange, J.; O'Shaughnessy, R.; Lousto, C. O.; Campanelli, M.; Williamson, A. R.; Zlochower, Y.; Calderón Bustillo, J.; Clark, J. A.; Evans, C.; Ferguson, D.; Ghonge, S.; Jani, K.; Khamesra, B.; Laguna, P.; Shoemaker, D. M.; Boyle, M.; García, A.; Hemberger, D. A.; Kidder, L. E.; Kumar, P.; Lovelace, G.; Pfeiffer, H. P.; Scheel, M. A.; Teukolsky, S. A.
2018-03-01
In response to LIGO's observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple resolutions and with two independent techniques to solve Einstein's equations. For the nonprecessing and precessing simulations, we demonstrate the two techniques agree mode by mode, at a precision substantially in excess of statistical uncertainties in current LIGO's observations. Conversely, we demonstrate our full numerical solutions contain information which is not accurately captured with the approximate phenomenological models commonly used to infer compact binary parameters. To quantify the impact of these differences on parameter inference for GW170104 specifically, we compare the predictions of our simulations and these approximate models to LIGO's observations of GW170104.
Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2
NASA Astrophysics Data System (ADS)
Kwang-Hua, Chu Rainer
2018-05-01
The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.
Two tandem queues with general renewal input. 2: Asymptotic expansions for the diffusion model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knessl, C.; Tier, C.
1999-10-01
In Part 1 the authors formulated and solved a diffusion model for two tandem queues with exponential servers and general renewal arrivals. They thus obtained the easy traffic diffusion approximation to the steady state joint queue length distribution for this network. Here they study asymptotic and numerical properties of the diffusion approximation. In particular, analytical expressions are obtained for the tail probabilities. Both the joint distribution of the two queues and the marginal distribution of the second queue are considered. They also give numerical illustrations of how this marginal is affected by changes in the arrival and service processes.
Development of full wave code for modeling RF fields in hot non-uniform plasmas
NASA Astrophysics Data System (ADS)
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.
Cell transmission model of dynamic assignment for urban rail transit networks.
Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian
2017-01-01
For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.
Central Upwind Scheme for a Compressible Two-Phase Flow Model
Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242
Central upwind scheme for a compressible two-phase flow model.
Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
A numerical and experimental study on the nonlinear evolution of long-crested irregular waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701
2011-01-15
The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr; CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex; Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity ofmore » the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.« less
On Diffusive Climatological Models.
NASA Astrophysics Data System (ADS)
Griffel, D. H.; Drazin, P. G.
1981-11-01
A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method
NASA Astrophysics Data System (ADS)
Lv, Xin; Zou, Qingping; Reeve, Dominic
2011-10-01
This paper presents the applications of a newly developed free surface flow model to the practical, while challenging overflow problems for weirs. Since the model takes advantage of the strengths of both the level set and volume of fluid methods and solves the Navier-Stokes equations on an unstructured mesh, it is capable of resolving the time evolution of very complex vortical motions, air entrainment and pressure variations due to violent deformations following overflow of the weir crest. In the present study, two different types of vertical weir, namely broad-crested and sharp-crested, are considered for validation purposes. The calculated overflow parameters such as pressure head distributions, velocity distributions, and water surface profiles are compared against experimental data as well as numerical results available in literature. A very good quantitative agreement has been obtained. The numerical model, thus, offers a good alternative to traditional experimental methods in the study of weir problems.
Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles
NASA Astrophysics Data System (ADS)
Persova, Marina G.; Soloveichik, Yury G.; Belov, Vasiliy K.; Kiselev, Dmitry S.; Vagin, Denis V.; Domnikov, Petr A.; Patrushev, Ilya I.; Kurskiy, Denis N.
2017-07-01
In this paper, the problem of numerical modeling of thermoelastic behavior of nose caps of hypersonic vehicles at different angles of attack is considered. 3D finite element modeling is performed by solving the coupled heat and elastic problems taking into account thermal and mechanical properties variations with temperature. A special method for calculating the aerodynamic heat flux entering the nose cap from its surface is proposed. This method is characterized by very low computational costs and allows calculating the aerodynamic heat flux at different values of the Mach number and angles of attack which may vary during the aerodynamic heating. The numerical results obtained by the proposed approach are compared with the numerical results and experimental data obtained by other authors. The developed approach has been used for studying the impact of the angle of attack on the thermoelastic behavior of nose caps main components.
The SIR model of Zika virus disease outbreak in Brazil at year 2015
NASA Astrophysics Data System (ADS)
Aik, Lim Eng; Kiang, Lam Chee; Hong, Tan Wei; Abu, Mohd Syafarudy
2017-05-01
This research study demonstrates a numerical model intended for comprehension the spread of the year 2015 Zika virus disease utilizing the standard SIR framework. In modeling virulent disease dynamics, it is important to explore whether the illness spread could accomplish a pandemic level or it could be eradicated. Information from the year 2015 Zika virus disease event is utilized and Brazil where the event began is considered in this research study. A three dimensional nonlinear differential equation is formulated and solved numerically utilizing the Euler's method in MS excel. It is appeared from the research study that, with health intercessions of public, the viable regenerative number can be decreased making it feasible for the event to cease to exist. It is additionally indicated numerically that the pandemic can just cease to exist when there are no new infected people in the populace.
Numerical solution of special ultra-relativistic Euler equations using central upwind scheme
NASA Astrophysics Data System (ADS)
Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul
2018-06-01
This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.
NASA Astrophysics Data System (ADS)
Bulovich, S. V.; Smirnov, E. M.
2018-05-01
The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.
NASA Astrophysics Data System (ADS)
Figueroa, Aldo; Meunier, Patrice; Cuevas, Sergio; Villermaux, Emmanuel; Ramos, Eduardo
2014-01-01
We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, "The diffusive strip method for scalar mixing in two-dimensions," J. Fluid Mech. 662, 134-172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.
Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet
NASA Astrophysics Data System (ADS)
Musa, Omer; Xiong, Chen; Changsheng, Zhou
2017-10-01
This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.; Jacobsen, S. E.
1986-01-01
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.
Development of a numerical model for vehicle-bridge interaction analysis of railway bridges
NASA Astrophysics Data System (ADS)
Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon
2016-04-01
In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).
Time-domain simulation of damped impacted plates. II. Numerical model and results.
Lambourg, C; Chaigne, A; Matignon, D
2001-04-01
A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity.
NASA Astrophysics Data System (ADS)
Schaa, R.; Gross, L.; du Plessis, J.
2016-04-01
We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.
Machining Chatter Analysis for High Speed Milling Operations
NASA Astrophysics Data System (ADS)
Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale
2017-10-01
Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.
He, Feng; Zhang, Wei; Zhang, Guoqiang
2016-01-01
A differential evolution algorithm for solving Nash equilibrium in nonlinear continuous games is presented in this paper, called NIDE (Nikaido-Isoda differential evolution). At each generation, parent and child strategy profiles are compared one by one pairwisely, adapting Nikaido-Isoda function as fitness function. In practice, the NE of nonlinear game model with cubic cost function and quadratic demand function is solved, and this method could also be applied to non-concave payoff functions. Moreover, the NIDE is compared with the existing Nash Domination Evolutionary Multiplayer Optimization (NDEMO), the result showed that NIDE was significantly better than NDEMO with less iterations and shorter running time. These numerical examples suggested that the NIDE method is potentially useful. PMID:27589229
Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions
ERIC Educational Resources Information Center
Nijdam, Justin J.
2013-01-01
A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…
Noniterative, unconditionally stable numerical techniques for solving condensational and
dissolutional growth equations are given. Growth solutions are compared to Gear-code solutions for
three cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...
pyGIMLi: An open-source library for modelling and inversion in geophysics
NASA Astrophysics Data System (ADS)
Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
2017-12-01
Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
Comet Gas and Dust Dynamics Modeling
NASA Technical Reports Server (NTRS)
Von Allmen, Paul A.; Lee, Seungwon
2010-01-01
This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.
A multivariate quadrature based moment method for LES based modeling of supersonic combustion
NASA Astrophysics Data System (ADS)
Donde, Pratik; Koo, Heeseok; Raman, Venkat
2012-07-01
The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.
Hydrodynamic water impact. [Apollo spacecraft waterlanding
NASA Technical Reports Server (NTRS)
Kettleborough, C. F.
1972-01-01
The hydrodynamic impact of a falling body upon a viscous incompressible fluid was investigated by numerically solving the equations of motion. Initially the mathematical model simulated the axisymmetric impact of a rigid right circular cylinder upon the initially quiescent free surface of a fluid. A compressible air layer exists between the falling cylinder and the liquid free surface. The mathematical model was developed by applying the Navier-Stokes equations to the incompressible air layer and the incompressible fluid. Assuming the flow to be one dimensional within the air layer, the average velocity, pressure and density distributions were calculated. The liquid free surface was allowed to deform as the air pressure acting on it increases. For the liquid the normalized equations were expressed in two-dimensional cylindrical coordinates. The governing equations for the air layer and the liquid were expressed in finite difference form and solved numerically. For the liquid a modified version of the Marker-and-Cell method was used. The mathematical model has been reexamined and a new approach has recently been initiated. Essentially this consists of examining the impact of an inclined plate onto a quiesent water surface with the equations now formulated in cartesian coordinates.
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; Wen, Zhang
2015-05-01
This article presents a numerical study to investigate the combined role of partial well penetration (PWP) and non-Darcy effects concerning the performance of groundwater production wells. A finite difference model is developed in MATLAB to solve the two-dimensional mixed-type boundary value problem associated with flow to a partially penetrating well within a cylindrical confined aquifer. Non-Darcy effects are incorporated using the Forchheimer equation. The model is verified by comparison to results from existing semi-analytical solutions concerning the same problem but assuming Darcy's law. A sensitivity analysis is presented to explore the problem of concern. For constant pressure production, Non-Darcy effects lead to a reduction in production rate, as compared to an equivalent problem solved using Darcy's law. For fully penetrating wells, this reduction in production rate becomes less significant with time. However, for partially penetrating wells, the reduction in production rate persists for much larger times. For constant production rate scenarios, the combined effect of PWP and non-Darcy flow takes the form of a constant additional drawdown term. An approximate solution for this loss term is obtained by performing linear regression on the modeling results.
A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system
NASA Astrophysics Data System (ADS)
Lee, Hyun Geun; Choi, Jeong-Whan; Kim, Junseok
2012-02-01
We present a practically unconditionally gradient stable conservative nonlinear numerical scheme for the N-component Cahn-Hilliard system modeling the phase separation of an N-component mixture. The scheme is based on a nonlinear splitting method and is solved by an efficient and accurate nonlinear multigrid method. The scheme allows us to convert the N-component Cahn-Hilliard system into a system of N-1 binary Cahn-Hilliard equations and significantly reduces the required computer memory and CPU time. We observe that our numerical solutions are consistent with the linear stability analysis results. We also demonstrate the efficiency of the proposed scheme with various numerical experiments.
NASA Astrophysics Data System (ADS)
Gallinato, Olivier; Poignard, Clair
2017-06-01
In this paper, we present a superconvergent second order Cartesian method to solve a free boundary problem with two harmonic phases coupled through the moving interface. The model recently proposed by the authors and colleagues describes the formation of cell protrusions. The moving interface is described by a level set function and is advected at the velocity given by the gradient of the inner phase. The finite differences method proposed in this paper consists of a new stabilized ghost fluid method and second order discretizations for the Laplace operator with the boundary conditions (Dirichlet, Neumann or Robin conditions). Interestingly, the method to solve the harmonic subproblems is superconvergent on two levels, in the sense that the first and second order derivatives of the numerical solutions are obtained with the second order of accuracy, similarly to the solution itself. We exhibit numerical criteria on the data accuracy to get such properties and numerical simulations corroborate these criteria. In addition to these properties, we propose an appropriate extension of the velocity of the level-set to avoid any loss of consistency, and to obtain the second order of accuracy of the complete free boundary problem. Interestingly, we highlight the transmission of the superconvergent properties for the static subproblems and their preservation by the dynamical scheme. Our method is also well suited for quasistatic Hele-Shaw-like or Muskat-like problems.
NASA Astrophysics Data System (ADS)
Wang, Zhen-yu; Yu, Jian-cheng; Zhang, Ai-qun; Wang, Ya-xing; Zhao, Wen-tao
2017-12-01
Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.
Stability of the quantum Sherrington-Kirkpatrick spin glass model
NASA Astrophysics Data System (ADS)
Young, A. P.
2017-09-01
I study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e., the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodynamic limit. I find that the replica symmetric solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at T =0 . If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e., magnetic field).
NASA Astrophysics Data System (ADS)
Hvizdoš, Dávid; Váňa, Martin; Houfek, Karel; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William; Čurík, Roman
2018-02-01
We present a simple two-dimensional model of the indirect dissociative recombination process. The model has one electronic and one nuclear degree of freedom and it can be solved to high precision, without making any physically motivated approximations, by employing the exterior complex scaling method together with the finite-elements method and discrete variable representation. The approach is applied to solve a model for dissociative recombination of H2 + in the singlet ungerade channels, and the results serve as a benchmark to test validity of several physical approximations commonly used in the computational modeling of dissociative recombination for real molecular targets. The second, approximate, set of calculations employs a combination of multichannel quantum defect theory and frame transformation into a basis of Siegert pseudostates. The cross sections computed with the two methods are compared in detail for collision energies from 0 to 2 eV.
NASA Astrophysics Data System (ADS)
Saffari, H.; Moosavi, R.
2014-11-01
In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.
NASA Astrophysics Data System (ADS)
minatti, L.
2013-12-01
A finite volume model solving the shallow water equations coupled with the sediments continuity equation in composite channels with irregular geometry is presented. The model is essentially 1D but can handle composite cross-sections in which bedload transport is considered to occur inside the main channel only. This assumption is coherent with the observed behavior of rivers on short time scales where main channel areas exhibit more relevant morphological variations than overbanks. Furthermore, such a model allows a more precise prediction of thalweg elevation and cross section shape variations than fully 1D models where bedload transport is considered to occur uniformly over the entire cross section. The coupling of the equations describing water and sediments dynamics results in a hyperbolic non-conservative system that cannot be solved numerically with the use of a conservative scheme. Therefore, a path-conservative scheme, based on the approach proposed by Pares and Castro (2004) has been devised in order to account for the coupling with the sediments continuity equation and for the concurrent presence of bottom elevation and breadth variations of the cross section. In order to correctly compute numerical fluxes related to bedload transport in main channel areas, a special treatment of the equations is employed in the model. The resulting scheme is well balanced and fully coupled and can accurately model abrupt time variations of flow and bedload transport conditions in wide rivers, characterized by the presence of overbank areas that are less active than the main channel. The accuracy of the model has been first tested in fixed bed conditions by solving problems with a known analytical solution: in these tests the model proved to be able to handle shocks and supercritical flow conditions properly(see Fig. 01). A practical application of the model to the Ombrone river, southern Tuscany (Italy) is shown. The river has shown relevant morphological changes during the last fifteen years, most of them related to the occurrence of high flow rates. The employment of the model allowed to perform a detailed flood hazard assessment where potential risks associated to bedload transport,such as sediments filling of manufacts, excessive erosion or aggradation rates have been evaluated, together with the more 'classical' evaluation of water levels. The whole process also led to the identification of sensitive reaches of the river that require monitoring thus allowing better management practices of the public money allocated for river maintenance. Solution of the Riemann problem for a 10 m wide rectangular XS. The dotted lines represent the numerical solution, while the continuous ones represent the analytical solution
NASA Astrophysics Data System (ADS)
Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.
2015-12-01
One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.
Ion Dynamics Model for Collisionless Radio Frequency Sheaths
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T.R.; Meyyappan, M.
2000-01-01
Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.
2017-09-01
In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; To, Wai-Ming
1991-01-01
A new numerical framework for solving conservation laws is being developed. It employs: (1) a nontraditional formulation of the conservation laws in which space and time are treated on the same footing, and (2) a nontraditional use of discrete variables such as numerical marching can be carried out by using a set of relations that represents both local and global flux conservation.
Self-similar solutions to isothermal shock problems
NASA Astrophysics Data System (ADS)
Deschner, Stephan C.; Illenseer, Tobias F.; Duschl, Wolfgang J.
We investigate exact solutions for isothermal shock problems in different one-dimensional geometries. These solutions are given as analytical expressions if possible, or are computed using standard numerical methods for solving ordinary differential equations. We test the numerical solutions against the analytical expressions to verify the correctness of all numerical algorithms. We use similarity methods to derive a system of ordinary differential equations (ODE) yielding exact solutions for power law density distributions as initial conditions. Further, the system of ODEs accounts for implosion problems (IP) as well as explosion problems (EP) by changing the initial or boundary conditions, respectively. Taking genuinely isothermal approximations into account leads to additional insights of EPs in contrast to earlier models. We neglect a constant initial energy contribution but introduce a parameter to adjust the initial mass distribution of the system. Moreover, we show that due to this parameter a constant initial density is not allowed for isothermal EPs. Reasonable restrictions for this parameter are given. Both, the (genuinely) isothermal implosion as well as the explosion problem are solved for the first time.
NASA Astrophysics Data System (ADS)
Lin, Zhi; Zhang, Qinghai
2017-09-01
We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.
On importance assessment of aging multi-state system
NASA Astrophysics Data System (ADS)
Frenkel, Ilia; Khvatskin, Lev; Lisnianski, Anatoly
2017-01-01
Modern high-tech equipment requires precise temperature control and effective cooling below the ambient temperature. Greater cooling efficiencies will allow equipment to be operated for longer periods without overheating, providing a greater return on investment and increased in availability of the equipment. This paper presents application of the Lz-transform method to importance assessment of aging multi-state water-cooling system used in one of Israeli hospitals. The water cooling system consists of 3 principal sub-systems: chillers, heat exchanger and pumps. The performance of the system and the sub-systems is measured by their produced cooling capacity. Heat exchanger is an aging component. Straightforward Markov method applied to solve this problem will require building of a system model with numerous numbers of states and solving a corresponding system of multiple differential equations. Lz-transform method, which is used for calculation of the system elements importance, drastically simplified the solution. Numerical example is presented to illustrate the described approach.
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
NASA Astrophysics Data System (ADS)
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
Computer simulations of phase field drops on super-hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Fedeli, Livio
2017-09-01
We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.
Enhancing Extension and Research Activities through the Use of Web GIS
ERIC Educational Resources Information Center
Estwick, Noel M.; Griffin, Richard W.; James, Annette A.; Roberson, Samuel G.
2016-01-01
There have been numerous efforts aimed at improving geographic literacy in order to address societal challenges. Extension educators can use geographic information system (GIS) technology to help their clients cultivate spatial thinking skills and solve problems. Researchers can use it to model relationships and better answer questions. A program…
ERIC Educational Resources Information Center
Abramovich, Sergei; Pieper, Anne
1996-01-01
Describes the use of manipulatives for solving simple combinatorial problems which can lead to the discovery of recurrence relations for permutations and combinations. Numerical evidence and visual imagery generated by a computer spreadsheet through modeling these relations can enable students to experience the ease and power of combinatorial…
Measuring the complex permittivity of thin grain samples by the free-space transmission technique
USDA-ARS?s Scientific Manuscript database
In this paper, a numerical method for solving a higherorder model that relates the measured transmission coefficient to the permittivity of a material is used to determine the permittivity of thin grain samples. A method for resolving the phase ambiguity of the transmission coefficient is presented....
NASA Technical Reports Server (NTRS)
Sharma, Naveen
1992-01-01
In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
NASA Astrophysics Data System (ADS)
Chuvashov, I. N.
2011-07-01
In this paper complex of algorithms and programs for solving inverse problems of artificial earth satellite dynamics is described. Complex has been intended for satellite orbit improvement, calculation of motion model parameters and etc. Programs complex has been worked up for cluster "Skiff Cyberia". Results of numerical experiments obtained by using new complex in common the program "Numerical model of the system artificial satellites motion" is presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil
2016-04-29
We develop a new approach for solving the nonlinear Richards’ equation arising in variably saturated flow modeling. The growing complexity of geometric models for simulation of subsurface flows leads to the necessity of using unstructured meshes and advanced discretization methods. Typically, a numerical solution is obtained by first discretizing PDEs and then solving the resulting system of nonlinear discrete equations with a Newton-Raphson-type method. Efficiency and robustness of the existing solvers rely on many factors, including an empiric quality control of intermediate iterates, complexity of the employed discretization method and a customized preconditioner. We propose and analyze a new preconditioningmore » strategy that is based on a stable discretization of the continuum Jacobian. We will show with numerical experiments for challenging problems in subsurface hydrology that this new preconditioner improves convergence of the existing Jacobian-free solvers 3-20 times. Furthermore, we show that the Picard method with this preconditioner becomes a more efficient nonlinear solver than a few widely used Jacobian-free solvers.« less
NASA Technical Reports Server (NTRS)
Bayliss, A.; Goldstein, C. I.; Turkel, E.
1984-01-01
The Helmholtz Equation (-delta-K(2)n(2))u=0 with a variable index of refraction, n, and a suitable radiation condition at infinity serves as a model for a wide variety of wave propagation problems. A numerical algorithm was developed and a computer code implemented that can effectively solve this equation in the intermediate frequency range. The equation is discretized using the finite element method, thus allowing for the modeling of complicated geometrices (including interfaces) and complicated boundary conditions. A global radiation boundary condition is imposed at the far field boundary that is exact for an arbitrary number of propagating modes. The resulting large, non-selfadjoint system of linear equations with indefinite symmetric part is solved using the preconditioned conjugate gradient method applied to the normal equations. A new preconditioner is developed based on the multigrid method. This preconditioner is vectorizable and is extremely effective over a wide range of frequencies provided the number of grid levels is reduced for large frequencies. A heuristic argument is given that indicates the superior convergence properties of this preconditioner.
Maneuver simulations of flexible spacecraft by solving TPBVP
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Li, Feiyue
1991-01-01
The optimal control of large angle rapid maneuvers and vibrations of a Shuttle mast reflector system is considered. The nonlinear equations of motion are formulated by using Lagrange's formula, with the mast modeled as a continuous beam. The nonlinear terms in the equations come from the coupling between the angular velocities, the modal coordinates, and the modal rates. Pontryagin's Maximum Principle is applied to the slewing problem, to derive the necessary conditions for the optimal controls, which are bounded by given saturation levels. The resulting two point boundary value problem (TPBVP) is then solved by using the quasilinearization algorithm and the method of particular solutions. In the numerical simulations, the structural parameters and the control limits from the Spacecraft Control Lab Experiment (SCOLE) are used. In the 2-D case, only the motion in the plane of an Earth orbit or the single axis slewing motion is discussed. In the 3-D slewing, the mast is modeled as a continuous beam subjected to 3-D deformations. The numerical results for both the linearized system and the nonlinear system are presented to compare the differences in their time response.
Light propagation in Swiss-cheese cosmologies
NASA Astrophysics Data System (ADS)
Szybka, Sebastian J.
2011-08-01
We study the effect of inhomogeneities on light propagation. The Sachs equations are solved numerically in the Swiss-cheese models with inhomogeneities modeled by the Lemaître-Tolman solutions. Our results imply that, within the models we study, inhomogeneities may partially mimic the accelerated expansion of the Universe provided the light propagates through regions with lower than the average density. The effect of inhomogeneities is small and full randomization of the photons’ trajectories reduces it to an insignificant level.
NASA Astrophysics Data System (ADS)
Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F.; Blackstock, David T.
2002-01-01
Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.
Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T
2002-01-01
Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.
Efficient Computation of Info-Gap Robustness for Finite Element Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, Christopher J.; Hemez, Francois M.; Williams, Brian J.
2012-07-05
A recent research effort at LANL proposed info-gap decision theory as a framework by which to measure the predictive maturity of numerical models. Info-gap theory explores the trade-offs between accuracy, that is, the extent to which predictions reproduce the physical measurements, and robustness, that is, the extent to which predictions are insensitive to modeling assumptions. Both accuracy and robustness are necessary to demonstrate predictive maturity. However, conducting an info-gap analysis can present a formidable challenge, from the standpoint of the required computational resources. This is because a robustness function requires the resolution of multiple optimization problems. This report offers anmore » alternative, adjoint methodology to assess the info-gap robustness of Ax = b-like numerical models solved for a solution x. Two situations that can arise in structural analysis and design are briefly described and contextualized within the info-gap decision theory framework. The treatments of the info-gap problems, using the adjoint methodology are outlined in detail, and the latter problem is solved for four separate finite element models. As compared to statistical sampling, the proposed methodology offers highly accurate approximations of info-gap robustness functions for the finite element models considered in the report, at a small fraction of the computational cost. It is noted that this report considers only linear systems; a natural follow-on study would extend the methodologies described herein to include nonlinear systems.« less
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Ezz-Eldien, S. S.; Van Gorder, Robert A.
2014-12-01
The Jacobi spectral collocation method (JSCM) is constructed and used in combination with the operational matrix of fractional derivatives (described in the Caputo sense) for the numerical solution of the time-fractional Schrödinger equation (T-FSE) and the space-fractional Schrödinger equation (S-FSE). The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, the presented approach is also applied to solve the time-fractional coupled Schrödinger system (T-FCSS). In order to demonstrate the validity and accuracy of the numerical scheme proposed, several numerical examples with their approximate solutions are presented with comparisons between our numerical results and those obtained by other methods.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hnat, B.
2011-09-22
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
The effect of wing flexibility on sound generation of flapping wings.
Geng, Biao; Xue, Qian; Zheng, Xudong; Liu, Geng; Ren, Yan; Dong, Haibo
2017-12-13
In this study, the unsteady flow and acoustic characteristics of a three-dimensional (3D) flapping wing model of a Tibicen linnei cicada in forward-flight are numerically investigated. A single cicada wing is modelled as a membrane with a prescribed motion reconstructed from high-speed videos of a live insect. The numerical solution takes a hydrodynamic/acoustic splitting approach: the flow field is solved with an incompressible Navier-Stokes flow solver based on an immersed boundary method, and the acoustic field is solved with linearized perturbed compressible equations. The 3D simulation allows for the examination of both the directivity and frequency compositions of the flapping wing sound in a full space. Along with the flexible wing model, a rigid wing model that is extracted from real motion is also simulated to investigate the effects of wing flexibility. The simulation results show that the flapping sound is directional; the dominant frequency varies around the wing. The first and second frequency harmonics show different radiation patterns in the rigid and flexible wing cases, which are demonstrated to be highly associated with wing kinematics and loadings. Furthermore, the rotation and deformation in the flexible wing is found to help lower the sound strength in all directions.
Mousavi, Seyed Mohsen; Niaki, S. T. A.; Bahreininejad, Ardeshir; Musa, Siti Nurmaya
2014-01-01
A multi-item multiperiod inventory control model is developed for known-deterministic variable demands under limited available budget. Assuming the order quantity is more than the shortage quantity in each period, the shortage in combination of backorder and lost sale is considered. The orders are placed in batch sizes and the decision variables are assumed integer. Moreover, all unit discounts for a number of products and incremental quantity discount for some other items are considered. While the objectives are to minimize both the total inventory cost and the required storage space, the model is formulated into a fuzzy multicriteria decision making (FMCDM) framework and is shown to be a mixed integer nonlinear programming type. In order to solve the model, a multiobjective particle swarm optimization (MOPSO) approach is applied. A set of compromise solution including optimum and near optimum ones via MOPSO has been derived for some numerical illustration, where the results are compared with those obtained using a weighting approach. To assess the efficiency of the proposed MOPSO, the model is solved using multi-objective genetic algorithm (MOGA) as well. A large number of numerical examples are generated at the end, where graphical and statistical approaches show more efficiency of MOPSO compared with MOGA. PMID:25093195
Numerical predictions of hemodynamics following surgeries in cerebral aneurysms
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Lawton, Michael; Boussel, Loic; Leach, Joseph; Acevedo, Gabriel; Halbach, Van; Saloner, David
2014-11-01
Large cerebral aneurysms present a danger of rupture or brain compression. In some cases, clinicians may attempt to change the pathological hemodynamics in order to inhibit disease progression. This can be achieved by changing the vascular geometry with an open surgery or by deploying a stent-like flow diverter device. Patient-specific CFD models can help evaluate treatment options by predicting flow regions that are likely to become occupied by thrombus (clot) following the procedure. In this study, alternative flow scenarios were modeled for several patients who underwent surgical treatment. Patient-specific geometries and flow boundary conditions were obtained from magnetic resonance angiography and velocimetry data. The Navier-Stokes equations were solved with a finite volume solver Fluent. A porous media approach was used to model flow-diverter devices. The advection-diffusion equation was solved in order to simulate contrast agent transport and the results were used to evaluate flow residence time changes. Thrombus layering was predicted in regions characterized by reduced velocities and shear stresses as well as increased flow residence time. The simulations indicated surgical options that could result in occlusion of vital arteries with thrombus. Numerical results were compared to experimental and clinical MRI data. The results demonstrate that image-based CFD models may help improve the outcome of surgeries in cerebral aneurysms. acknowledge R01HL115267.