Sample records for numerical models constructed

  1. A probabilistic method for constructing wave time-series at inshore locations using model scenarios

    USGS Publications Warehouse

    Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.

    2014-01-01

    Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.

  2. Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Patera, Anthony

    1993-01-01

    Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.

  3. Determination of brace forces caused by construction loads and wind loads during bridge construction.

    DOT National Transportation Integrated Search

    2014-04-01

    The first objective of this study was to develop procedures for determining bracing forces during bridge construction. : Numerical finite element models and analysis techniques were developed for evaluating brace forces induced by construction loads ...

  4. Lattice Boltzmann Equation On a 2D Rectangular Grid

    NASA Technical Reports Server (NTRS)

    Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.

  5. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  6. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements

    NASA Astrophysics Data System (ADS)

    Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona

    2018-01-01

    Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.

  7. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  8. Heading in football. Part 3: Effect of ball properties on head response

    PubMed Central

    Shewchenko, N; Withnall, C; Keown, M; Gittens, R; Dvorak, J

    2005-01-01

    Objectives: Head impacts from footballs are an essential part of the game but have been implicated in mild and acute neuropsychological impairment. Ball characteristics have been noted in literature to affect the impact response of the head; however, the biomechanics are not well understood. The present study determined whether ball mass, pressure, and construction characteristics help reduce head and neck can impact response. Methods: Head responses under ball impact (6–7 m/s) were measured with a biofidelic numerical human model and controlled human subject trials (n = 3). Three ball masses and four ball pressures were investigated for frontal heading. Further, the effect of ball construction in wet/dry conditions was studied with the numerical model. The dynamic ball characteristics were determined experimentally. Head linear and angular accelerations were measured and compared with injury assessment functions comprising peak values and head impact power. Neck responses were assessed with the numerical model. Results: Ball mass reductions up to 35% resulted in decreased head responses up to 23–35% for the numerical and subject trials. Similar decreases in neck axial and shear responses were observed. Ball pressure reductions of 50% resulted in head and neck response reductions up to 10–31% for the subject trials and numerical model. Head response reductions up to 15% were observed between different ball constructions. The wet condition generally resulted in greater head and neck responses of up to 20%. Conclusion: Ball mass, pressure, and construction can reduce the impact severity to the head and neck. It is foreseeable that the benefits can be extended to players of all ages and skill levels. PMID:16046354

  9. Entropy and Galilean Invariance of Lattice Boltzmann Theories

    NASA Astrophysics Data System (ADS)

    Chikatamarla, Shyam S.; Karlin, Iliya V.

    2006-11-01

    A theory of lattice Boltzmann (LB) models for hydrodynamic simulation is developed upon a novel relation between entropy construction and roots of Hermite polynomials. A systematic procedure is described for constructing numerically stable and complete Galilean invariant LB models. The stability of the new LB models is illustrated with a shock tube simulation.

  10. Multi-scale modeling of tsunami flows and tsunami-induced forces

    NASA Astrophysics Data System (ADS)

    Qin, X.; Motley, M. R.; LeVeque, R. J.; Gonzalez, F. I.

    2016-12-01

    The modeling of tsunami flows and tsunami-induced forces in coastal communities with the incorporation of the constructed environment is challenging for many numerical modelers because of the scale and complexity of the physical problem. A two-dimensional (2D) depth-averaged model can be efficient for modeling of waves offshore but may not be accurate enough to predict the complex flow with transient variance in vertical direction around constructed environments on land. On the other hand, using a more complex three-dimensional model is much more computational expensive and can become impractical due to the size of the problem and the meshing requirements near the built environment. In this study, a 2D depth-integrated model and a 3D Reynolds Averaged Navier-Stokes (RANS) model are built to model a 1:50 model-scale, idealized community, representative of Seaside, OR, USA, for which existing experimental data is available for comparison. Numerical results from the two numerical models are compared with each other as well as experimental measurement. Both models predict the flow parameters (water level, velocity, and momentum flux in the vicinity of the buildings) accurately, in general, except for time period near the initial impact, where the depth-averaged models can fail to capture the complexities in the flow. Forces predicted using direct integration of predicted pressure on structural surfaces from the 3D model and using momentum flux from the 2D model with constructed environment are compared, which indicates that force prediction from the 2D model is not always reliable in such a complicated case. Force predictions from integration of the pressure are also compared with forces predicted from bare earth momentum flux calculations to reveal the importance of incorporating the constructed environment in force prediction models.

  11. Comparing the GPR responses of real experiment and simulation of cavity

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nam, M. J.; Kim, C.; Lee, D. K.

    2017-12-01

    Seoul, capital city of South Korea, has been suffering from ground subsidence mainly caused by cavities beneath the road. Urban subsidence usually brings serious social problems such as damages of human life, properties and so on. To prevent ground subsidence, Korea government embark much money in developing techniques to detect cavities in advance. Ground penetrating radar (GPR) is known as the most effective method among geophysical surveys in exploring underground cavitied but shallow ones only. For the study of GPR responses for underground cavities, real scale physical models have been made and GPR surveys are conducted. In simulating cavities with various sizes at various depths, spheres of polystyrene have been used since the electric permittivity of polystyrene has a similar value to that of the air. However, the real scale experiments only used simple shapes of cavities due to its expensive construction cost and further changing in shapes of cavities is limited once they are built. For not only comparison between field responses for the physical model and numerical responses but also for analyzing GPR responses for more various cavity shapes in numerous environments, we conducted numerical simulation of GPR responses using three-dimensional (3D) finite difference time domain (FDTD) GPR modeling algorithm employing staggered grid. We first construct numerical modeling for models similar to the physical models to confirm considering radiation pattern in numerical modeling of GPR responses which is critical to generate similar responses to field GPR data. Further, GPR responses computed for various shapes of cavities in several different environments determine not only additional construction of the physical cavities but also analyze the characteristics of GPR responses.

  12. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    PubMed

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  13. Numerical Model of Transitory Flood Flow in 2005 on River Timis

    NASA Astrophysics Data System (ADS)

    Ghitescu, Marie-Alice; Lazar, Gheorghe; Titus Constantin, Albert; Nicoara, Serban-Vlad

    2017-10-01

    The paper presents numerical modelling of fluid flow transiting on the Timis River, downstream Lugoj section - N.H. COSTEIU, the occurrence of accidental flood waves from 4 April to 11 April 2005. Numerical simulation aims to estimate water levels on the route pattern on some areas and areas associated respectively floodplain adjacent construction site on the right bank of Timis river, on existing conditions in 2005. The model simulation from 2005 flood event shows that the model can be used for future inundation studies in this locality.

  14. Invariance of the Measurement Model Underlying the Wechsler Adult Intelligence Scale-IV in the United States and Canada

    ERIC Educational Resources Information Center

    Bowden, Stephen C.; Saklofske, Donald H.; Weiss, Lawrence G.

    2011-01-01

    A measurement model describes both the numerical and theoretical relationship between observed scores and the corresponding latent variables or constructs. Testing a measurement model across groups is required to determine if the tests scores are tapping the same constructs so that the same meaning can be ascribed to the scores. Contemporary tests…

  15. Construction of a Model Solar Building. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 318. [Project COAST].

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Coll. of Education.

    This activity is designed for secondary school students. The process of constructing a model solar building includes consideration of many fundamental scientific principles, such as the nature of heat, light, electricity, and energy conversion technology. When the model solar building is completed, there are numerous possibilities for the use of…

  16. Neutron Star Models in Alternative Theories of Gravity

    NASA Astrophysics Data System (ADS)

    Manolidis, Dimitrios

    We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded.

  17. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism

    NASA Astrophysics Data System (ADS)

    Cao, Zhoujian; Han, Wen-Biao

    2017-08-01

    Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.

  18. Comprehensive study of numerical anisotropy and dispersion in 3-D TLM meshes

    NASA Astrophysics Data System (ADS)

    Berini, Pierre; Wu, Ke

    1995-05-01

    This paper presents a comprehensive analysis of the numerical anisotropy and dispersion of 3-D TLM meshes constructed using several generalized symmetrical condensed TLM nodes. The dispersion analysis is performed in isotropic lossless, isotropic lossy and anisotropic lossless media and yields a comparison of the simulation accuracy for the different TLM nodes. The effect of mesh grading on the numerical dispersion is also determined. The results compare meshes constructed with Johns' symmetrical condensed node (SCN), two hybrid symmetrical condensed nodes (HSCN) and two frequency domain symmetrical condensed nodes (FDSCN). It has been found that under certain circumstances, the time domain nodes may introduce numerical anisotropy when modelling isotropic media.

  19. Developing a reversible rapid coordinate transformation model for the cylindrical projection

    NASA Astrophysics Data System (ADS)

    Ye, Si-jing; Yan, Tai-lai; Yue, Yan-li; Lin, Wei-yan; Li, Lin; Yao, Xiao-chuang; Mu, Qin-yun; Li, Yong-qin; Zhu, De-hai

    2016-04-01

    Numerical models are widely used for coordinate transformations. However, in most numerical models, polynomials are generated to approximate "true" geographic coordinates or plane coordinates, and one polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As there is a transformation rule between geographic coordinates and plane coordinates, how accurate and efficient is the calculation of the coordinate transformation if we construct polynomials to approximate the transformation rule instead of "true" coordinates? In addition, is it preferable to compare models using such polynomials with traditional numerical models with even higher exponents? Focusing on cylindrical projection, this paper reports on a grid-based rapid numerical transformation model - a linear rule approximation model (LRA-model) that constructs linear polynomials to approximate the transformation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical projection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both forward and inverse transformations; and can be applied to the transformation of a large amount of data with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the widely used hyperbolic transformation model.

  20. Study on the tumor-induced angiogenesis using mathematical models.

    PubMed

    Suzuki, Takashi; Minerva, Dhisa; Nishiyama, Koichi; Koshikawa, Naohiko; Chaplain, Mark Andrew Joseph

    2018-01-01

    We studied angiogenesis using mathematical models describing the dynamics of tip cells. We reviewed the basic ideas of angiogenesis models and its numerical simulation technique to produce realistic computer graphics images of sprouting angiogenesis. We examined the classical model of Anderson-Chaplain using fundamental concepts of mass transport and chemical reaction with ECM degradation included. We then constructed two types of numerical schemes, model-faithful and model-driven ones, where new techniques of numerical simulation are introduced, such as transient probability, particle velocity, and Boolean variables. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Biomechanics of compensatory mechanisms in spinal-pelvic complex

    NASA Astrophysics Data System (ADS)

    Ivanov, D. V.; Hominets, V. V.; Kirillova, I. V.; Kossovich, L. Yu; Kudyashev, A. L.; Teremshonok, A. V.

    2018-04-01

    3D geometric solid computer model of spinal-pelvic complex was constructed on the basis of computed tomography and full body X-ray in standing position data. The constructed model was used for biomechanical analysis of compensatory mechanisms arising in the spine with anteversion and retroversion of the pelvis. The results of numerical biomechanical 3D modeling are in good agreement with the clinical data.

  2. On the numerical treatment of nonlinear source terms in reaction-convection equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    The objectives of this paper are to investigate how various numerical treatments of the nonlinear source term in a model reaction-convection equation can affect the stability of steady-state numerical solutions and to show under what conditions the conventional linearized analysis breaks down. The underlying goal is to provide part of the basic building blocks toward the ultimate goal of constructing suitable numerical schemes for hypersonic reacting flows, combustions and certain turbulence models in compressible Navier-Stokes computations. It can be shown that nonlinear analysis uncovers much of the nonlinear phenomena which linearized analysis is not capable of predicting in a model reaction-convection equation.

  3. Computational mechanics of viral capsids.

    PubMed

    Gibbons, Melissa M; Perotti, Luigi E; Klug, William S

    2015-01-01

    Viral capsids undergo significant mechanical deformations during their assembly, maturation, and infective life-span. In order to characterize the mechanics of viral capsids, their response to applied external forces is analyzed in several experimental studies using, for instance, Atomic Force Microscope (AFM) indentation experiments. In recent years, a broader approach to study the mechanics of viral capsids has leveraged the theoretical tools proper of continuum mechanics. Even though the theory of continuum elasticity is most commonly used to study deformable bodies at larger macroscopic length scales, it has been shown that this very rich theoretical field can still offer useful insights into the mechanics of viral structures at the nanometer scale. Here we show the construction of viral capsid continuum mechanics models starting from different forms of experimental data. We will discuss the kinematics assumptions, the issue of the reference configuration, the material constitutive laws, and the numerical discretization necessary to construct a complete Finite Element capsid mechanical model. Some examples in the second part of the chapter will show the predictive capabilities of the constructed models and underline useful practical aspects related to efficiency and accuracy. We conclude each example by collecting several key findings discovered by simulating AFM indentation experiments using the constructed numerical models.

  4. Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction

    NASA Astrophysics Data System (ADS)

    Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.

    2014-12-01

    This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.

  5. Numerical Approach to Modeling and Characterization of Refractive Index Changes for a Long-Period Fiber Grating Fabricated by Femtosecond Laser

    PubMed Central

    Saad, Akram; Cho, Yonghyun; Ahmed, Farid; Jun, Martin Byung-Guk

    2016-01-01

    A 3D finite element model constructed to predict the intensity-dependent refractive index profile induced by femtosecond laser radiation is presented. A fiber core irradiated by a pulsed laser is modeled as a cylinder subject to predefined boundary conditions using COMSOL5.2 Multiphysics commercial package. The numerically obtained refractive index change is used to numerically design and experimentally fabricate long-period fiber grating (LPFG) in pure silica core single-mode fiber employing identical laser conditions. To reduce the high computational requirements, the beam envelope method approach is utilized in the aforementioned numerical models. The number of periods, grating length, and grating period considered in this work are numerically quantified. The numerically obtained spectral growth of the modeled LPFG seems to be consistent with the transmission of the experimentally fabricated LPFG single mode fiber. The sensing capabilities of the modeled LPFG are tested by varying the refractive index of the surrounding medium. The numerically obtained spectrum corresponding to the varied refractive index shows good agreement with the experimental findings. PMID:28774060

  6. Numerical Approach to Modeling and Characterization of Refractive Index Changes for a Long-Period Fiber Grating Fabricated by Femtosecond Laser.

    PubMed

    Saad, Akram; Cho, Yonghyun; Ahmed, Farid; Jun, Martin Byung-Guk

    2016-11-21

    A 3D finite element model constructed to predict the intensity-dependent refractive index profile induced by femtosecond laser radiation is presented. A fiber core irradiated by a pulsed laser is modeled as a cylinder subject to predefined boundary conditions using COMSOL5.2 Multiphysics commercial package. The numerically obtained refractive index change is used to numerically design and experimentally fabricate long-period fiber grating (LPFG) in pure silica core single-mode fiber employing identical laser conditions. To reduce the high computational requirements, the beam envelope method approach is utilized in the aforementioned numerical models. The number of periods, grating length, and grating period considered in this work are numerically quantified. The numerically obtained spectral growth of the modeled LPFG seems to be consistent with the transmission of the experimentally fabricated LPFG single mode fiber. The sensing capabilities of the modeled LPFG are tested by varying the refractive index of the surrounding medium. The numerically obtained spectrum corresponding to the varied refractive index shows good agreement with the experimental findings.

  7. Programmable logic construction kits for hyper-real-time neuronal modeling.

    PubMed

    Guerrero-Rivera, Ruben; Morrison, Abigail; Diesmann, Markus; Pearce, Tim C

    2006-11-01

    Programmable logic designs are presented that achieve exact integration of leaky integrate-and-fire soma and dynamical synapse neuronal models and incorporate spike-time dependent plasticity and axonal delays. Highly accurate numerical performance has been achieved by modifying simpler forward-Euler-based circuitry requiring minimal circuit allocation, which, as we show, behaves equivalently to exact integration. These designs have been implemented and simulated at the behavioral and physical device levels, demonstrating close agreement with both numerical and analytical results. By exploiting finely grained parallelism and single clock cycle numerical iteration, these designs achieve simulation speeds at least five orders of magnitude faster than the nervous system, termed here hyper-real-time operation, when deployed on commercially available field-programmable gate array (FPGA) devices. Taken together, our designs form a programmable logic construction kit of commonly used neuronal model elements that supports the building of large and complex architectures of spiking neuron networks for real-time neuromorphic implementation, neurophysiological interfacing, or efficient parameter space investigations.

  8. Development of the vertical Bridgman technique for 6-inch diameter c-axis sapphire growth supported by numerical simulation

    NASA Astrophysics Data System (ADS)

    Miyagawa, Chihiro; Kobayashi, Takumi; Taishi, Toshinori; Hoshikawa, Keigo

    2014-09-01

    Based on the growth of 3-inch diameter c-axis sapphire using the vertical Bridgman (VB) technique, numerical simulations were made and used to guide the growth of a 6-inch diameter sapphire. A 2D model of the VB hot-zone was constructed, the seeding interface shape of the 3-inch diameter sapphire as revealed by green laser scattering was estimated numerically, and the temperature distributions of two VB hot-zone models designed for 6-inch diameter sapphire growth were numerically simulated to achieve the optimal growth of large crystals. The hot-zone model with one heater was selected and prepared, and 6-inch diameter c-axis sapphire boules were actually grown, as predicted by the numerical results.

  9. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.

    High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less

  10. Numerical Study of the Plasticity-Induced Stabilization Effect on Martensitic Transformations in Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Junker, Philipp; Hempel, Philipp

    2017-12-01

    It is well known that plastic deformations in shape memory alloys stabilize the martensitic phase. Furthermore, the knowledge concerning the plastic state is crucial for a reliable sustainability analysis of construction parts. Numerical simulations serve as a tool for the realistic investigation of the complex interactions between phase transformations and plastic deformations. To account also for irreversible deformations, we expand an energy-based material model by including a non-linear isotropic hardening plasticity model. An implementation of this material model into commercial finite element programs, e.g., Abaqus, offers the opportunity to analyze entire structural components at low costs and fast computation times. Along with the theoretical derivation and expansion of the model, several simulation results for various boundary value problems are presented and interpreted for improved construction designing.

  11. Three-dimensional hydrogeologic framework model of the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico

    USGS Publications Warehouse

    Sweetkind, Donald S.

    2017-09-08

    As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.

  12. Construction of 3-D Earth Models for Station Specific Path Corrections by Dynamic Ray Tracing

    DTIC Science & Technology

    2001-10-01

    the numerical eikonal solution method of Vidale (1988) being used by the MIT led consortium. The model construction described in this report relies...assembled. REFERENCES Barazangi, M., Fielding, E., Isacks, B. & Seber, D., (1996), Geophysical And Geological Databases And Ctbt...preprint download6). Fielding, E., Isacks, B.L., and Baragangi. M. (1992), A Network Accessible Geological and Geophysical Database for

  13. The Construction of 3-d Neutral Density for Arbitrary Data Sets

    NASA Astrophysics Data System (ADS)

    Riha, S.; McDougall, T. J.; Barker, P. M.

    2014-12-01

    The Neutral Density variable allows inference of water pathways from thermodynamic properties in the global ocean, and is therefore an essential component of global ocean circulation analysis. The widely used algorithm for the computation of Neutral Density yields accurate results for data sets which are close to the observed climatological ocean. Long-term numerical climate simulations, however, often generate a significant drift from present-day climate, which renders the existing algorithm inaccurate. To remedy this problem, new algorithms which operate on arbitrary data have been developed, which may potentially be used to compute Neutral Density during runtime of a numerical model.We review existing approaches for the construction of Neutral Density in arbitrary data sets, detail their algorithmic structure, and present an analysis of the computational cost for implementations on a single-CPU computer. We discuss possible strategies for the implementation in state-of-the-art numerical models, with a focus on distributed computing environments.

  14. Eigenmodes of Multilayer Slit Structures

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. N.

    2017-12-01

    We generalize the high-efficiency numerical-analytical method of calculating the eigenmodes of a microstrip line, which was proposed in [1], to multilayer slit structures. The obtained relationships make it possible to allow for the multilayer nature of the medium on the basis of solving the electrodynamic problem for a two-layer structure. The algebraic models of a single line and coupled slit lines in a multilayer dielectric medium are constructed. The matrix elements of the system of linear algebraic equations, which is used to determine the expansion coefficients of the electric field inside the slits in a Chebyshev basis, are converted to rapidly convergent series. The constructed models allow one to use computer simulation to obtain numerical results with high speed and accuracy, regardless of the number of dielectric layers. The presented results of a numerical study of the method convergence confirm high efficiency of the method.

  15. Four-level conservative finite-difference schemes for Boussinesq paradigm equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.

    2013-10-01

    In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.

  16. Experimental, Numerical and Analytical Characterization of Slosh Dynamics Applied to In-Space Propellant Storage, Management and Transfer

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.

    2015-01-01

    Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.

  17. Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games.

    PubMed

    Liu, Jiacai; Zhao, Wenjian

    2016-11-08

    There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method.

  18. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  19. Applications of numerical methods to simulate the movement of contaminants in groundwater.

    PubMed Central

    Sun, N Z

    1989-01-01

    This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327

  20. Experimental validation of a 0-D numerical model for phase change thermal management systems in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Schweitzer, Ben; Wilke, Stephen; Khateeb, Siddique; Al-Hallaj, Said

    2015-08-01

    A lumped (0-D) numerical model has been developed for simulating the thermal response of a lithium-ion battery pack with a phase-change composite (PCC™) thermal management system. A small 10s4p battery pack utilizing PCC material was constructed and subjected to discharge at various C-rates in order to validate the lumped model. The 18650 size Li-ion cells used in the pack were electrically characterized to determine their heat generation, and various PCC materials were thermally characterized to determine their apparent specific heat as a function of temperature. Additionally, a 2-D FEA thermal model was constructed to help understand the magnitude of spatial temperature variation in the pack, and to understand the limitations of the lumped model. Overall, good agreement is seen between experimentally measured pack temperatures and the 0-D model, and the 2-D FEA model predicts minimal spatial temperature variation for PCC-based packs at C-rates of 1C and below.

  1. Numerical and Permeability Constraints on Simulation of Sill-Driven Hydrothermal Convection

    NASA Astrophysics Data System (ADS)

    Carr, P. M.; Cathles, L. M.; Barrie, C. T.; Manhardt, P.

    2004-05-01

    Volcanic-associated massive sulfide deposits are formed where seawater, heated to ~350oC by subsurface magma intrusions, is quenched by cold water at or near the seafloor. Many VMS districts, like the one at Matagami, Quebec, contain their zinc, lead, and copper in about a dozen discrete ore bodies, with one or two deposits containing more than half of the district's resources. We construct numerical models to investigate the causes of variations in deposit size. These models show that a process which stabilizes the location of hydrothermal venting plumes is required to numerically generate discrete VMS ore bodies by sill-driven hydrothermal convection. This is achieved in our models by increasing rock permeability in a fashion that makes vent plumes more permeable than their surroundings. Maintaining the Courant number ≤1 (so that a thermal anomaly traverses only one grid cell in one timestep of the simulation) is shown to be crucial to numerical convergence. If this rule is violated, visually compelling but incorrect hydrothermal vents result. Small hydrothermal convection cells over the interior of an areally-extensive sill with a tabular edge are smaller than those formed at the sill edge. However, for a sill with the geometry of that at Matagami, numerical simulations indicate that large ore deposits should form near the thickest part of the sill where metals extracted from the underside of the still-hot portions of the sill can optimally contribute. Thus it is essential to construct a model of the entire domain rather than slicing a portion local to the deposition. The numerical models replicate the ten-fold range in deposit size variation, and predict the largest deposits at Matagami will be discovered at 5 to 8 km depth between currently known deposits in the South Flank and Phelps Dodge areas.

  2. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing

    USGS Publications Warehouse

    Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.

    2005-01-01

    Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In contrast, FEMA Flood Insurance Rate Maps (FIRMs) based on the FAN model predict uniformly high flood risk across the study areas without regard for small-scale topography and surficial geology. ?? 2005 Geological Society of America.

  3. Theoretical Foundation for Weld Modeling

    NASA Technical Reports Server (NTRS)

    Traugott, S.

    1986-01-01

    Differential equations describe physics of tungsten/inert-gas and plasma-arc welding in aluminum. Report collects and describes necessary theoretical foundation upon which numerical welding model is constructed for tungsten/inert gas or plasma-arc welding in aluminum without keyhole. Governing partial differential equations for flow of heat, metal, and current given, together with boundary conditions relevant to welding process. Numerical estimates for relative importance of various phenomena and required properties of 2219 aluminum included

  4. Dredging Equipment Modifications for Detection and Removal of Ordnance

    DTIC Science & Technology

    2006-12-01

    and numerically modeled to describe an underwa- ter munitions detonation within an enclosed hydraulic circuit similar to that found in a dredge...by a numerical modeling effort describing the poten- tial blast effects that can be associated with munitions passing into and through a modern...screen was subsequently removed and bars were welded on the cutterhead (as previously described in Umm Qsar ) to construct a “screen” with 7- cm (2.75

  5. Development of a hydraulic model of the human systemic circulation

    NASA Technical Reports Server (NTRS)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  6. Differential geometry based solvation model I: Eulerian formulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-11-01

    This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the solvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By optimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second-order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature.

  7. Differential geometry based solvation model I: Eulerian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the salvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By minimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature. PMID:20938489

  8. A groundwater-flow model for the Treasure Valley and surrounding area, southwestern Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Vincent, Sean

    2017-04-17

    The U.S. Geological Survey (USGS), in partnership with the Idaho Department of Water Resources (IDWR) and Idaho Water Resource Board (IWRB), will construct a numerical groundwater-flow model of the Treasure Valley and surrounding area. Resource managers will use the model to simulate potential anthropogenic and climatic effects on groundwater for water-supply planning and management. As part of model construction, the hydrogeologic understanding of the aquifer system will be updated with information collected during the last two decades, as well as new data collected for the study.

  9. Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.

    2018-06-01

    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .

  10. An efficient numerical method for solving the Boltzmann equation in multidimensions

    NASA Astrophysics Data System (ADS)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  11. Direct modeling for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of discrete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydrodynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.

  12. [Numerical simulation of the effect of virtual stent release pose on the expansion results].

    PubMed

    Li, Jing; Peng, Kun; Cui, Xinyang; Fu, Wenyu; Qiao, Aike

    2018-04-01

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

  13. A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions

    NASA Astrophysics Data System (ADS)

    Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk

    2017-10-01

    A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.

  14. Simulations of Low Power DIII-D Helicon Antenna Coupling

    NASA Astrophysics Data System (ADS)

    Smithe, David; Jenkins, Thomas

    2017-10-01

    We present an overview and initial progress for a new project to model coupling of the DIII-D Helicon Antenna. We lay the necessary computational groundwork for the modeling of both low-power and high power helicon antenna operation, by constructing numerical representations for both the antenna hardware and the DIII-D plasma. CAD files containing the detailed geometry of the low power antenna hardware are imported into the VSim software's FDTD plasma model. The plasma can be represented numerically by importing EQDSK or EFIT files. In addition, approximate analytic forms for the ensuing profiles and fields are constructed to facilitate parameter scans in the various regimes of anticipated antenna operation. To verify the accuracy of the numerical plasma and antenna representations, we will then run baseline simulations of low-power antenna operation, and verify that the predictions for loading, linear coupling, and mode partitioning (i.e. into helicon and slow modes) are consistent with the measurements from the low power helicon antenna experimental campaign, as well as with other independent models. Progress on these baseline simulations will be presented, and any inconsistencies and issues that arise during this process will be identified. Support provided by DOE Grant DE-SC0017843.

  15. Numerical simulation of intelligent compaction technology for construction quality control.

    DOT National Transportation Integrated Search

    2015-02-01

    For eciently updating models of large-scale structures, the response surface (RS) method based on radial basis : functions (RBFs) is proposed to model the input-output relationship of structures. The key issues for applying : the proposed method a...

  16. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  17. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  18. Pulsatile blood flow in elastic artery with model aneurysm

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Radev, St.; Tabakova, S.

    2017-11-01

    The mathematical modeling and numerical simulations are expected to play an important role to predict the genesis of different cardiovascular diseases, such as the formation and rupture of aneurysms. In the present work, the numerical solutions of the oscillatory blood flow are constructed for an elastic artery with a model aneurysm by use of the software ANSYS. It is observed that the artery elastic strain behaves in a different way: stably or unstably depending on the different combinations between the flow parameter (outlet pressure) and the elastic modulus of the artery wall.

  19. Numerical modeling of the transmission dynamics of drug-sensitive and drug-resistant HSV-2

    NASA Astrophysics Data System (ADS)

    Gumel, A. B.

    2001-03-01

    A competitive finite-difference method will be constructed and used to solve a modified deterministic model for the spread of herpes simplex virus type-2 (HSV-2) within a given population. The model monitors the transmission dynamics and control of drug-sensitive and drug-resistant HSV-2. Unlike the fourth-order Runge-Kutta method (RK4), which fails when the discretization parameters exceed certain values, the novel numerical method to be developed in this paper gives convergent results for all parameter values.

  20. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  1. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.

  2. Numerical Analysis of a Class of THM Coupled Model for Porous Materials

    NASA Astrophysics Data System (ADS)

    Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi

    2018-01-01

    We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.

  3. Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games

    PubMed Central

    Liu, Jiacai; Zhao, Wenjian

    2016-01-01

    There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method. PMID:27834830

  4. Mechanical evaluation of a tissue-engineered zone of calcification in a bone–hydrogel osteochondral construct

    PubMed Central

    Hollenstein, Jérôme; Terrier, Alexandre; Cory, Esther; Chen, Albert C.; Sah, Robert L.; Pioletti, Dominique P.

    2016-01-01

    The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification (teZCC) at the bone–hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a teZCC. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. Experimental results showed that the shear strength at the bone–hydrogel interface increased by 100% with the teZCC. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone–hydrogel interface was reduced with the teZCC. We conclude that a teZCC in osteochondral constructs can provide two improvements. First, it increases the strength of the bone–hydrogel interface and second, it reduces the stress at this interface. PMID:23706035

  5. Development of an inflatable radiator system. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1976-01-01

    Conceptual designs of an inflatable radiator system developed for supplying short duration supplementary cooling of space vehicles are described along with parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests are included. Application of these data to refining the designs of the flight articles and to constructing a full scale prototype radiator is discussed.

  6. Numerical Optimization Using Computer Experiments

    NASA Technical Reports Server (NTRS)

    Trosset, Michael W.; Torczon, Virginia

    1997-01-01

    Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.

  7. 3D engineered models for highway construction : the Iowa experience.

    DOT National Transportation Integrated Search

    2015-06-01

    3D engineered modeling is a relatively new and developing technology that can provide numerous bene ts to owners, engineers, : contractors, and the general public. This manual is for highway agencies that are considering or are in the process of s...

  8. Modeling the tides of Massachusetts and Cape Cod Bays

    USGS Publications Warehouse

    Jenter, H.L.; Signell, R.P.; Blumberg, A.F.; ,

    1993-01-01

    A time-dependent, three-dimensional numerical modeling study of the tides of Massachusetts and Cape Code Bays, motivated by construction of a new sewage treatment plant and ocean outfall for the city of Boston, has been undertaken by the authors. The numerical model being used is a hybrid version of the Blumberg and Mellor ECOM3D model, modified to include a semi-implicit time-stepping scheme and transport of a non-reactive dissolved constituent. Tides in the bays are dominated by the semi-diurnal frequencies, in particular by the M2 tide, due to the resonance of these frequencies in the Gulf of Maine. The numerical model reproduces, well, measured tidal ellipses in unstratified wintertime conditions. Stratified conditions present more of a problem because tidal-frequency internal wave generation and propagation significantly complicates the structure of the resulting tidal field. Nonetheless, the numerical model reproduces qualitative aspects of the stratified tidal flow that are consistent with observations in the bays.

  9. Machine learning to construct reduced-order models and scaling laws for reactive-transport applications

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Karra, S.; Vesselinov, V. V.

    2017-12-01

    The efficiency of many hydrogeological applications such as reactive-transport and contaminant remediation vastly depends on the macroscopic mixing occurring in the aquifer. In the case of remediation activities, it is fundamental to enhancement and control of the mixing through impact of the structure of flow field which is impacted by groundwater pumping/extraction, heterogeneity, and anisotropy of the flow medium. However, the relative importance of these hydrogeological parameters to understand mixing process is not well studied. This is partially because to understand and quantify mixing, one needs to perform multiple runs of high-fidelity numerical simulations for various subsurface model inputs. Typically, high-fidelity simulations of existing subsurface models take hours to complete on several thousands of processors. As a result, they may not be feasible to study the importance and impact of model inputs on mixing. Hence, there is a pressing need to develop computationally efficient models to accurately predict the desired QoIs for remediation and reactive-transport applications. An attractive way to construct computationally efficient models is through reduced-order modeling using machine learning. These approaches can substantially improve our capabilities to model and predict remediation process. Reduced-Order Models (ROMs) are similar to analytical solutions or lookup tables. However, the method in which ROMs are constructed is different. Here, we present a physics-informed ML framework to construct ROMs based on high-fidelity numerical simulations. First, random forests, F-test, and mutual information are used to evaluate the importance of model inputs. Second, SVMs are used to construct ROMs based on these inputs. These ROMs are then used to understand mixing under perturbed vortex flows. Finally, we construct scaling laws for certain important QoIs such as degree of mixing and product yield. Scaling law parameters dependence on model inputs are evaluated using cluster analysis. We demonstrate application of the developed method for model analyses of reactive-transport and contaminant remediation at the Los Alamos National Laboratory (LANL) chromium contamination sites. The developed method is directly applicable for analyses of alternative site remediation scenarios.

  10. Numerical Model for Predicting and Managing Heat Dissipation from a Neural Probe

    DTIC Science & Technology

    2013-05-10

    Distance from Probe Centerline [m] x ‐  3D  Model y ‐  3D  Model r ‐ 2D Model 12 difficult, especially on a micro-scale level. For this reason...of the screws and nuts 180 m across. 20 were of plastic construction. An aluminum sample holder was constructed by the USNA Fabrication Lab...voltage drop across the reference resistor. C. Biosimulant Gel At first, a hydroxyethyl cellulose gel was considered for use as the biosimulant gel, but

  11. Quantitative Diagnosis of Continuous-Valued, Stead-State Systems

    NASA Technical Reports Server (NTRS)

    Rouquette, N.

    1995-01-01

    Quantitative diagnosis involves numerically estimating the values of unobservable parameters that best explain the observed parameter values. We consider quantitative diagnosis for continuous, lumped- parameter, steady-state physical systems because such models are easy to construct and the diagnosis problem is considerably simpler than that for corresponding dynamic models. To further tackle the difficulties of numerically inverting a simulation model to compute a diagnosis, we propose to decompose a physical system model in terms of feedback loops. This decomposition reduces the dimension of the problem and consequently decreases the diagnosis search space. We illustrate this approach on a model of thermal control system studied in earlier research.

  12. Designing Networks that are Capable of Self-Healing and Adapting

    DTIC Science & Technology

    2017-04-01

    from statistical mechanics, combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we... principles for self-healing networks, and applications, and construct an all-possible-paths model for network adaptation. 2015-11-16 UNIT CONVERSION...combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we will undertake the fol

  13. An efficient fully-implicit multislope MUSCL method for multiphase flow with gravity in discrete fractured media

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-06-01

    The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.

  14. Advanced Techniques for Seismic Protection of Historical Buildings: Experimental and Numerical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzolani, Federico M.

    2008-07-08

    The seismic protection of historical and monumental buildings, namely dating back from the ancient age up to the 20th Century, is being looked at with greater and greater interest, above all in the Euro-Mediterranean area, its cultural heritage being strongly susceptible to undergo severe damage or even collapse due to earthquake. The cultural importance of historical and monumental constructions limits, in many cases, the possibility to upgrade them from the seismic point of view, due to the fear of using intervention techniques which could have detrimental effects on their cultural value. Consequently, a great interest is growing in the developmentmore » of sustainable methodologies for the use of Reversible Mixed Technologies (RMTs) in the seismic protection of the existing constructions. RMTs, in fact, are conceived for exploiting the peculiarities of innovative materials and special devices, and they allow ease of removal when necessary. This paper deals with the experimental and numerical studies, framed within the EC PROHITECH research project, on the application of RMTs to the historical and monumental constructions mainly belonging to the cultural heritage of the Euro-Mediterranean area. The experimental tests and the numerical analyses are carried out at five different levels, namely full scale models, large scale models, sub-systems, devices, materials and elements.« less

  15. Numerical proof for chemostat chaos of Shilnikov's type.

    PubMed

    Deng, Bo; Han, Maoan; Hsu, Sze-Bi

    2017-03-01

    A classical chemostat model is considered that models the cycling of one essential abiotic element or nutrient through a food chain of three trophic levels. The long-time behavior of the model was known to exhibit complex dynamics more than 20 years ago. It is still an open problem to prove the existence of chaos analytically. In this paper, we aim to solve the problem numerically. In our approach, we introduce an artificial singular parameter to the model and construct singular homoclinic orbits of the saddle-focus type which is known for chaos generation. From the configuration of the nullclines of the equations that generates the singular homoclinic orbits, a shooting algorithm is devised to find such Shilnikov saddle-focus homoclinic orbits numerically which in turn imply the existence of chaotic dynamics for the original chemostat model.

  16. Choosing appropriate subpopulations for modeling tree canopy cover nationwide

    Treesearch

    Gretchen G. Moisen; John W. Coulston; Barry T. Wilson; Warren B. Cohen; Mark V. Finco

    2012-01-01

    In prior national mapping efforts, the country has been divided into numerous ecologically similar mapping zones, and individual models have been constructed for each zone. Additionally, a hierarchical approach has been taken within zones to first mask out areas of nonforest, then target models of tree attributes within forested areas only. This results in many models...

  17. Lattice Boltzmann model for numerical relativity.

    PubMed

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  18. DEVELOPMENT OF MULTI-PHASE AND MULTI-COMPONENT FLOW MODEL WITH REACTION IN POROUS MEDIA FOR RISK ASSESSMENT ON SOIL CONTAMINATION DUE TO MINERAL OIL

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi

    In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.

  19. Shooting Free Throws, Probability, and the Golden Ratio

    ERIC Educational Resources Information Center

    Goodman, Terry

    2010-01-01

    Part of the power of algebra is that it provides students with tools that they can use to model a variety of problems and applications. Such modeling requires them to understand patterns and choose from a variety of representations--numeric, graphical, symbolic--to construct a model that accurately reflects the relationships found in the original…

  20. Proportional Reasoning of Preservice Elementary Education Majors: An Epistemic Model of the Proportional Reasoning Construct.

    ERIC Educational Resources Information Center

    Fleener, M. Jayne

    Current research and learning theory suggest that a hierarchy of proportional reasoning exists that can be tested. Using G. Vergnaud's four complexity variables (structure, content, numerical characteristics, and presentation) and T. E. Kieren's model of rational number knowledge building, an epistemic model of proportional reasoning was…

  1. Consequences of Symmetries on the Analysis and Construction of Turbulence Models

    NASA Astrophysics Data System (ADS)

    Razafindralandy, Dina; Hamdouni, Aziz

    2006-05-01

    Since they represent fundamental physical properties in turbulence (conservation laws, wall laws, Kolmogorov energy spectrum, ...), symmetries are used to analyse common turbulence models. A class of symmetry preserving turbulence models is proposed. This class is refined such that the models respect the second law of thermodynamics. Finally, an example of model belonging to the class is numerically tested.

  2. Anticipatory systems using a probabilistic-possibilistic formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoukalas, L.H.

    1989-01-01

    A methodology for the realization of the Anticipatory Paradigm in the diagnosis and control of complex systems, such as power plants, is developed. The objective is to synthesize engineering systems as analogs of certain biological systems which are capable of modifying their present states on the basis of anticipated future states. These future states are construed to be the output of predictive, numerical, stochastic or symbolic models. The mathematical basis of the implementation is developed on the basis of a formulation coupling probabilistic (random) and possibilistic(fuzzy) data in the form of an Information Granule. Random data are generated from observationsmore » and sensors input from the environment. Fuzzy data consists of eqistemic information, such as criteria or constraints qualifying the environmental inputs. The approach generates mathematical performance measures upon which diagnostic inferences and control functions are based. Anticipated performance is generated using a fuzzified Bayes formula. Triplex arithmetic is used in the numerical estimation of the performance measures. Representation of the system is based upon a goal-tree within the rule-based paradigm from the field of Applied Artificial Intelligence. The ensuing construction incorporates a coupling of Symbolic and Procedural programming methods. As a demonstration of the possibility of constructing such systems, a model-based system of a nuclear reactor is constructed. A numerical model of the reactor as a damped simple harmonic oscillator is used. The neutronic behavior is described by a point kinetics model with temperature feedback. The resulting system is programmed in OPS5 for the symbolic component and in FORTRAN for the procedural part.« less

  3. Numerical modeling of a subsidence induced by underground coal gasification, including thermal effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, D.E.; Dass, S.T.; Shaw, D.E.

    During normal coal extraction roof collapse is controlled, thermal effects are absent and existing data is useless for the formation of numerical models of underground coal gasification(PGU). Thermal deformation occurs during PGU to the extent that rock is deformed, the roof collapses, rock settles, and changes occur in the water-bearing layers, and so forth. As PGU progresses, changes occur in the geometry, size, and other characteristics of the volume of the reaction. Data derived from plastic coal in New Mexico (USA) is used to construct a numerical model. This coal was bedded at a depth of 259 meters where itmore » was stratified throughout a mixture of rock. Core drilling was conducted and a geological column was constructed to induce a PGY combustion front with temperatures of 900 degrees. Temperatures of 600 and 300 degrees were encountered 6.1 and 12.2 meters from the front, respectively. A short distance from the front, in a direction away from the placticized material, the temperature of the rock matched the 27 degree temperature in the surrounding rock. Correlational relationships were obtained for stress in rock under different conditions and these correlations were used to appraise the effect of heat on the rock. It was suggested that the heating of rock did, at times, serve to support the roof rock. Similarly, during periods of cooling, this effect lessened. Comparative and optimal test results are appraised with the aid of the numerical model.« less

  4. Constructing topological models by symmetrization: A projected entangled pair states study

    NASA Astrophysics Data System (ADS)

    Fernández-González, Carlos; Mong, Roger S. K.; Landon-Cardinal, Olivier; Pérez-García, David; Schuch, Norbert

    2016-10-01

    Symmetrization of topologically ordered wave functions is a powerful method for constructing new topological models. Here we study wave functions obtained by symmetrizing quantum double models of a group G in the projected entangled pair states (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G ˜ which is always non-Abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wave functions in the same phase as the double model of G ˜. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G ˜.

  5. Building fast well-balanced two-stage numerical schemes for a model of two-phase flows

    NASA Astrophysics Data System (ADS)

    Thanh, Mai Duc

    2014-06-01

    We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax-Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL, and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL), and CFL in this family define the Lax-Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.

  6. Design of numerical model for thermoacoustic devices using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Tisovsky, Tomas; Vit, Tomas

    2017-09-01

    Thermoacoustic devices are increasingly popular especially because of their construction simplicity and the ability to easily convert waste heat into the form of usable energy. Aim of this paper is to introduce some of the effective procedures for creating a complex mathematical model of thermoacoustic devices in OpenFOAM.

  7. Study of stability of the difference scheme for the model problem of the gaslift process

    NASA Astrophysics Data System (ADS)

    Temirbekov, Nurlan; Turarov, Amankeldy

    2017-09-01

    The paper studies a model of the gaslift process where the motion in a gas-lift well is described by partial differential equations. The system describing the studied process consists of equations of motion, continuity, equations of thermodynamic state, and hydraulic resistance. A two-layer finite-difference Lax-Vendroff scheme is constructed for the numerical solution of the problem. The stability of the difference scheme for the model problem is investigated using the method of a priori estimates, the order of approximation is investigated, the algorithm for numerical implementation of the gaslift process model is given, and the graphs are presented. The development and investigation of difference schemes for the numerical solution of systems of equations of gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.

  8. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  9. Variational Algorithms for Test Particle Trajectories

    NASA Astrophysics Data System (ADS)

    Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.

    2015-11-01

    The theory of variational integration provides a novel framework for constructing conservative numerical methods for magnetized test particle dynamics. The retention of conservation laws in the numerical time advance captures the correct qualitative behavior of the long time dynamics. For modeling the Lorentz force system, new variational integrators have been developed that are both symplectic and electromagnetically gauge invariant. For guiding center test particle dynamics, discretization of the phase-space action principle yields multistep variational algorithms, in general. Obtaining the desired long-term numerical fidelity requires mitigation of the multistep method's parasitic modes or applying a discretization scheme that possesses a discrete degeneracy to yield a one-step method. Dissipative effects may be modeled using Lagrange-D'Alembert variational principles. Numerical results will be presented using a new numerical platform that interfaces with popular equilibrium codes and utilizes parallel hardware to achieve reduced times to solution. This work was supported by DOE Contract DE-AC02-09CH11466.

  10. Environment Impact Analysis of Shield Passing Alongside Bridge Pile Platform Using Three Dimensional Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Shang, Yanliang; Shi, Wenjun; Han, Tongyin; Qin, Zhichao; Du, Shouji

    2017-10-01

    The shield method has many advantages in the construction of urban subway, and has become the preferred method for the construction of urban subway tunnel. Taking Shijiazhuang metro line 3 (administrative center station - garden park station interval) Passing alongside bridge as the engineering background, double shield crossing the bridge pile foundation model was set up. The deformation and internal force of the pile foundation during the construction of the shield were analyzed. Pile stress caused by shield construction increases, but the maximum stress is less than the design strength; the maximum surface settlement caused by the construction of 10.2 mm, the results meet the requirements of construction.

  11. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    NASA Astrophysics Data System (ADS)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  12. Deployment, Foam Rigidization, and Structural Characterization of Inflatable Thin-Film Booms

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Leigh, Larry M., Jr.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Detailed investigation of the construction, packaging/deployment, foam rigidization, and structural characterization of polyimide film inflatable booms is described. These structures have considerable potential for use in space with solar concentrators, solar sails, space power systems including solar arrays, and other future missions. Numerous thin-film booms or struts were successfully constructed, inflated, injected with foam, and rigidized. Both solid-section and annular test articles were fabricated, using Kapton polyimide film, various adhesives, Styrofoam end plugs, and polyurethane pressurized foam. Numerous inflation/deployment experiments were conducted and compared to computer simulations using the MSC/DYTRAN code. Finite element models were developed for several foam-rigidized struts and compared to model test results. Several problems encountered in the construction, deployment, and foam injection/rigidization process are described. Areas of difficulty included inadequate adhesive strength, cracking of the film arid leakage, excessive bending of the structure during deployment, problems with foam distribution and curing properties, and control of foam leakage following injection into the structure. Many of these problems were overcome in the course of the research.

  13. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in Xinjiang, China, as well as analyze and interpret results from lab experiments.

  14. High altitude chemically reacting gas particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.

  15. A Bayesian Hierarchical Model for Glacial Dynamics Based on the Shallow Ice Approximation and its Evaluation Using Analytical Solutions

    NASA Astrophysics Data System (ADS)

    Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur

    2018-03-01

    Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.

  16. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott E.; Galley, Chad R.; Szilágyi, Béla; Scheel, Mark A.; Tiglio, Manuel; Hemberger, Daniel A.

    2015-09-01

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic -2Yℓm waveform modes resolved by the NR code up to ℓ=8 . We compare our surrogate model to effective one body waveforms from 50 M⊙ to 300 M⊙ for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  17. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    PubMed

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  18. Wave Energy Prize - General Information

    DOE Data Explorer

    Scharmen, Wesley

    2016-12-01

    All the informational files, templates, rules and guidelines for Wave Energy Prize (WEP), including the Wave Energy Prize Rules, Participant Terms and Conditions Template, WEC Prize Name, Logo, Branding, WEC Publicity, Technical Submission Template , Numerical Modeling Template, SSTF Submission Template, 1/20th Scale Model Design and Construction Plan Template, Final Report template, and Webinars.

  19. Using Indigenous Materials for Construction

    DTIC Science & Technology

    2015-07-01

    Theoretical models were devised for prediction of the structural attributes of indigenous ferrocement sheets and sandwich composite panels comprising the...indigenous ferrocement skins and aerated concrete core. Structural designs were developed for these indigenous sandwich composite panels in typical...indigenous materials and building systems developed in the project were evaluated. Numerical modeling capabilities were developed for structural

  20. A Three-Fold Approach to the Heat Equation: Data, Modeling, Numerics

    ERIC Educational Resources Information Center

    Spayd, Kimberly; Puckett, James

    2016-01-01

    This article describes our modeling approach to teaching the one-dimensional heat (diffusion) equation in a one-semester undergraduate partial differential equations course. We constructed the apparatus for a demonstration of heat diffusion through a long, thin metal rod with prescribed temperatures at each end. The students observed the physical…

  1. Direct dynamic kinetic analysis and computer simulation of growth of Clostridium perfringens in cooked turkey during cooling

    USDA-ARS?s Scientific Manuscript database

    This research applied a new one-step methodology to directly construct a tertiary model for describing the growth of C. perfringens in cooked turkey meat under dynamically cooling conditions. The kinetic parameters of the growth models were determined by numerical analysis and optimization using mu...

  2. Optimizing romanian maritime coastline using mathematical model Litpack

    NASA Astrophysics Data System (ADS)

    Anton, I. A.; Panaitescu, M.; Panaitescu, F. V.

    2017-08-01

    There are many methods and tools to study shoreline change in coastal engineering. LITPACK is a numerical model included in MIKE software developed by DHI (Danish Hydraulic Institute). With this matehematical model we can simulate coastline evolution and profile along beach. Research and methodology: the paper contents location of the study area, the current status of Midia-Mangalia shoreline, protection objectives, the changes of shoreline after having protected constructions. In this paper are presented numerical and graphycal results obtained with this model for studying the romanian maritime coastline in area MIDIA-MANGALIA: non-cohesive sediment transport, long-shore current and littoral drift, coastline evolution, crossshore profile evolution, the development of the coastline position in time.

  3. Features in simulation of crystal growth using the hyperbolic PFC equation and the dependence of the numerical solution on the parameters of the computational grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starodumov, Ilya; Kropotin, Nikolai

    2016-08-10

    We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less

  4. Numerical Modeling of Medium Term Morphological Changes at Manavgat River Mouth Due to Combined Action of Waves and River Discharges

    NASA Astrophysics Data System (ADS)

    Demirci, E.; Baykal, C.; Guler, I.

    2016-12-01

    In this study, hydrodynamic conditions due to river discharge, wave action and sea level fluctuations within a seven month period and the morphological response of the Manavgat river mouth are modeled with XBeach, a two-dimensional depth-averaged (2DH) numerical model developed to compute the natural coastal response during time-varying storm and hurricane conditions (Roelvink et al., 2010). The study area shows an active behavior on its nearshore morphology, thus, two jetties were constructed at the river mouth between years 1996-2000. Recently, Demirci et al. (2016) has studied the impacts of an excess river discharge and concurrent wave action and tidal fluctuations on the Manavgat river mouth morphology for the duration of 12 days (December 4th and 15th, 1998) while the construction of jetties were carried on. It is concluded that XBeach has presumed the final morphology fairly well with the calibrated set of input parameters. Here, the river mouth modeled at a further past date before the construction of jetties with the similar set of input parameters (between August 1st, 1995-March 8th, 1996) to reveal the drastic morphologic change near the mouth due to high river discharge and severe storms happened in a longer period of time. Wave climate effect is determined with the wave hindcasting model, W61, developed by Middle East Technical University-OERC with the NCEP-CFSR wind data as well as the sea level data. River discharge, wave and sea level data are introduced as input parameters in the XBeach numerical model and the final output morphological change is compared with the final bed level measurements. References:Demirci, E., Baykal, C., Guler, I., Ergin, A., & Sogut, E. (postponed). Numerical Modelling on Hydrodynamic Flow Conditions and Morphological Changes Using XBeach Near Manavgat River Mouth. Accepted as Oral presentation at the 35thInt. Conf. on Coastal Eng., Istanbul, Turkey. Guler, I., Ergin, A., Yalçıner, A. C., (2003). Monitoring Sediment Transport Processes at Manavgat River Mouth, Antalya Turkey. COPEDEC VI, 2003, Colombo, Sri Lanka Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., Lescinski, J. and McCall, R., (2010). XBeach Model Description and Manual. Unesco-IHE Institute for Water Education, Deltares and Delft Univ. of Technology. Report June, 21, 2010 version 6.

  5. A Simple Model to Demonstrate the Balance of Forces at Functional Residual Capacity

    ERIC Educational Resources Information Center

    Kanthakumar, Praghalathan; Oommen, Vinay

    2012-01-01

    Numerous models have been constructed to aid teaching respiratory mechanics. A simple model using a syringe and a water-filled bottle has been described by Thomas Sherman to explain inspiration and expiration. The elastic recoil of the chest wall and lungs has been described using a coat hanger or by using rods and rubber bands. A more complex…

  6. New Ebb-Tidal Delta at an Old Inlet, Shark River Inlet, New Jersey

    DTIC Science & Technology

    2011-01-01

    examine interacting beach and inlet processes and to test numerical simulation models for predicting morphology change at inlets. This study was...intertidal, oyster-encrusted Figure 4. A) Shark River Inlet, February-March 1920, post early construction (1915), but during rehabilitation of...the original State-built, curved jetties; B) Shark River Inlet, 23 January 1933, post construction of curved jetties and land reclamation of the flood

  7. Parametric Workflow (BIM) for the Repair Construction of Traditional Historic Architecture in Taiwan

    NASA Astrophysics Data System (ADS)

    Ma, Y.-P.; Hsu, C. C.; Lin, M.-C.; Tsai, Z.-W.; Chen, J.-Y.

    2015-08-01

    In Taiwan, numerous existing traditional buildings are constructed with wooden structures, brick structures, and stone structures. This paper will focus on the Taiwan traditional historic architecture and target the traditional wooden structure buildings as the design proposition and process the BIM workflow for modeling complex wooden combination geometry, integrating with more traditional 2D documents and for visualizing repair construction assumptions within the 3D model representation. The goal of this article is to explore the current problems to overcome in wooden historic building conservation, and introduce the BIM technology in the case of conserving, documenting, managing, and creating full engineering drawings and information for effectively support historic conservation. Although BIM is mostly oriented to current construction praxis, there have been some attempts to investigate its applicability in historic conservation projects. This article also illustrates the importance and advantages of using BIM workflow in repair construction process, when comparing with generic workflow.

  8. Numerical approach to constructing the lunar physical libration: results of the initial stage

    NASA Astrophysics Data System (ADS)

    Zagidullin, A.; Petrova, N.; Nefediev, Yu.; Usanin, V.; Glushkov, M.

    2015-10-01

    So called "main problem" it is taken as a model to develop the numerical approach in the theory of lunar physical libration. For the chosen model, there are both a good methodological basis and results obtained at the Kazan University as an outcome of the analytic theory construction. Results of the first stage in numerical approach are presented in this report. Three main limitation are taken to describe the main problem: -independent consideration of orbital and rotational motion of the Moon; - a rigid body model for the lunar body is taken and its dynamical figure is described by inertia ellipsoid, which gives us the mass distribution inside the Moon. - only gravitational interaction with the Earth and the Sun is considered. Development of selenopotential is limited on this stage by the second harmonic only. Inclusion of the 3-rd and 4-th order harmonics is the nearest task for the next stage.The full solution of libration problem consists of removing the below specified limitations: consideration of the fine effects, caused by planet perturbations, by visco-elastic properties of the lunar body, by the presence of a two-layer lunar core, by the Earth obliquity, by ecliptic rotation, if it is taken as a reference plane.

  9. Multiple environmental contexts and preterm birth risks

    EPA Science Inventory

    Human health is affected by simultaneous exposure to numerous stressors and amenities, but research often focuses on single exposure models. To address this, a United States county-level Multiple Environmental Domain Index (MEDI) was constructed with data representing five envir...

  10. Computer-Aided Construction of Chemical Kinetic Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, William H.

    2014-12-31

    The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriatemore » refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.« less

  11. Mathematical and computational model for the analysis of micro hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Stoia-Djeska, Marius; Mingireanu, Florin

    2012-11-01

    The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.

  12. A numerical projection technique for large-scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang

    2011-10-01

    We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.

  13. Grid refinement in Cartesian coordinates for groundwater flow models using the divergence theorem and Taylor's series.

    PubMed

    Mansour, M M; Spink, A E F

    2013-01-01

    Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.

  14. 75 FR 68215 - Direct Final Rule Staying Numeric Limitation for the Construction and Development Point Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... required to obtain NPDES permit coverage and performing the following activities: Construction of buildings, including building, developing and general contracting. Heavy and civil 237 engineering construction... Rule Staying Numeric Limitation for the Construction and Development Point Source Category AGENCY...

  15. 75 FR 68305 - Proposed Rule Staying Numeric Limitation for the Construction and Development Point Source Category

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... coverage and performing the following activities: Construction of buildings, including building, developing... Staying Numeric Limitation for the Construction and Development Point Source Category AGENCY... effluent limitation of 280 NTU and associated monitoring requirements for the Construction and Development...

  16. System equivalent model mixing

    NASA Astrophysics Data System (ADS)

    Klaassen, Steven W. B.; van der Seijs, Maarten V.; de Klerk, Dennis

    2018-05-01

    This paper introduces SEMM: a method based on Frequency Based Substructuring (FBS) techniques that enables the construction of hybrid dynamic models. With System Equivalent Model Mixing (SEMM) frequency based models, either of numerical or experimental nature, can be mixed to form a hybrid model. This model follows the dynamic behaviour of a predefined weighted master model. A large variety of applications can be thought of, such as the DoF-space expansion of relatively small experimental models using numerical models, or the blending of different models in the frequency spectrum. SEMM is outlined, both mathematically and conceptually, based on a notation commonly used in FBS. A critical physical interpretation of the theory is provided next, along with a comparison to similar techniques; namely DoF expansion techniques. SEMM's concept is further illustrated by means of a numerical example. It will become apparent that the basic method of SEMM has some shortcomings which warrant a few extensions to the method. One of the main applications is tested in a practical case, performed on a validated benchmark structure; it will emphasize the practicality of the method.

  17. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    NASA Astrophysics Data System (ADS)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  18. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    PubMed

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-07

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  19. A study of the dynamics of the Intertropical Convergence Zone (ITCZ) in a symmetric atmosphere-ocean model

    NASA Technical Reports Server (NTRS)

    Charney, J. G.; Kalnay, E.; Schneider, E.; Shukla, J.

    1988-01-01

    A numerical model of the circulation of a coupled axisymmetric atmosphere-ocean system was constructed to investigate the physical factors governing the location and intensity of the Intertropical Convergence Zone (ITCZ) over oceans and over land. The results of several numerical integrations are presented to illustrate the interaction of the individual atmospheric and oceanic circulations. It is shown that the ITCA cannot be located at the equator because the atmosphere-ocean system is unstable for lateral displacements of the ITCA from an equilibrium position at the equator.

  20. An optimal generic model for multi-parameters and big data optimizing: a laboratory experimental study

    NASA Astrophysics Data System (ADS)

    Utama, D. N.; Ani, N.; Iqbal, M. M.

    2018-03-01

    Optimization is a process for finding parameter (parameters) that is (are) able to deliver an optimal value for an objective function. Seeking an optimal generic model for optimizing is a computer science study that has been being practically conducted by numerous researchers. Generic model is a model that can be technically operated to solve any varieties of optimization problem. By using an object-oriented method, the generic model for optimizing was constructed. Moreover, two types of optimization method, simulated-annealing and hill-climbing, were functioned in constructing the model and compared to find the most optimal one then. The result said that both methods gave the same result for a value of objective function and the hill-climbing based model consumed the shortest running time.

  1. Radon transport model into a porous ground layer of finite capacity

    NASA Astrophysics Data System (ADS)

    Parovik, Roman

    2017-10-01

    The model of radon transfer is considered in a porous ground layer of finite power. With the help of the Laplace integral transformation, a numerical solution of this model is obtained which is based on the construction of a generalized quadrature formula of the highest degree of accuracy for the transition to the original - the function of solving this problem. The calculated curves are constructed and investigated depending on the diffusion and advection coefficients.The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  2. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald; El-Azab, Anter; Pernice, Michael

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis formore » computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.« less

  3. Numerical treatment of a geometrically nonlinear planar Cosserat shell model

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Neff, Patrizio; Bîrsan, Mircea

    2016-05-01

    We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton's method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.

  4. Numerical Model of the Hoosic River Flood-Control Channel, Adams, MA

    DTIC Science & Technology

    2010-02-01

    The model was then used to evaluate the flow conditions associated with the as-built channel configuration. The existing channel conditions were then...end as part of a channel restoration project. The model was to determine if restoration alterations would change water- surface elevations associated ...water-surface elevations associated with the initial design and construction. After as-built flow conditions were established, flow conditions

  5. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  6. Algebraic Construction of Exact Difference Equations from Symmetry of Equations

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2009-09-01

    Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.

  7. Numerical solution of the time fractional reaction-diffusion equation with a moving boundary

    NASA Astrophysics Data System (ADS)

    Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.

    2017-06-01

    A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.

  8. Numerical methods for stiff systems of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  9. Development and Validation of a Principal Implementation Practices Measure: The Principal Implementation Questionnaire

    PubMed Central

    Nettles, Stephen M.; Petscher, Yaacov

    2015-01-01

    Measurement of principal implementation behaviors has proved difficult to researchers in educational leadership due to a lack of consensus on the operational definitions of leadership constructs. The Principal Implementation Questionnaire (PIQ) was developed and validated with the intention of providing clarity in the assessment of principal leadership behaviors in the implementation of effective reading programs. Constructs were operationally defined within the context of the population of interest, with subsequent item writing centered around the constructs. A resulting calibration sample of principals from Florida Reading First schools was used to test the hypothesized measurement model to determine how well the items were described by the proposed factors. Results from LISREL analyses revealed a well-fitted model, based on numerous fit indices. PMID:26366043

  10. A hybrid model for traffic flow and crowd dynamics with random individual properties.

    PubMed

    Schleper, Veronika

    2015-04-01

    Based on an established mathematical model for the behavior of large crowds, a new model is derived that is able to take into account the statistical variation of individual maximum walking speeds. The same model is shown to be valid also in traffic flow situations, where for instance the statistical variation of preferred maximum speeds can be considered. The model involves explicit bounds on the state variables, such that a special Riemann solver is derived that is proved to respect the state constraints. Some care is devoted to a valid construction of random initial data, necessary for the use of the new model. The article also includes a numerical method that is shown to respect the bounds on the state variables and illustrative numerical examples, explaining the properties of the new model in comparison with established models.

  11. In Vivo Validation of Numerical Prediction for Turbulence Intensity in an Aortic Coarctation

    PubMed Central

    Arzani, Amirhossein; Dyverfeldt, Petter; Ebbers, Tino; Shadden, Shawn C.

    2013-01-01

    This paper compares numerical predictions of turbulence intensity with in vivo measurement. Magnetic resonance imaging (MRI) was carried out on a 60-year-old female with a restenosed aortic coarctation. Time-resolved three-directional phase-contrast (PC) MRI data was acquired to enable turbulence intensity estimation. A contrast-enhanced MR angiography (MRA) and a time-resolved 2D PCMRI measurement were also performed to acquire data needed to perform subsequent image-based computational fluid dynamics (CFD) modeling. A 3D model of the aortic coarctation and surrounding vasculature was constructed from the MRA data, and physiologic boundary conditions were modeled to match 2D PCMRI and pressure pulse measurements. Blood flow velocity data was subsequently obtained by numerical simulation. Turbulent kinetic energy (TKE) was computed from the resulting CFD data. Results indicate relative agreement (error ≈10%) between the in vivo measurements and the CFD predictions of TKE. The discrepancies in modeled vs. measured TKE values were within expectations due to modeling and measurement errors. PMID:22016327

  12. An improved network model for railway traffic

    NASA Astrophysics Data System (ADS)

    Li, Keping; Ma, Xin; Shao, Fubo

    In railway traffic, safety analysis is a key issue for controlling train operation. Here, the identification and order of key factors are very important. In this paper, a new network model is constructed for analyzing the railway safety, in which nodes are regarded as causation factors and links represent possible relationships among those factors. Our aim is to give all these nodes an importance order, and to find the in-depth relationship among these nodes including how failures spread among them. Based on the constructed network model, we propose a control method to ensure the safe state by setting each node a threshold. As the results, by protecting the Hub node of the constructed network, the spreading of railway accident can be controlled well. The efficiency of such a method is further tested with the help of numerical example.

  13. Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models

    NASA Astrophysics Data System (ADS)

    Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter

    2013-10-01

    Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.

  14. On recent advances and future research directions for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Soliman, M. O.; Manhardt, P. D.

    1986-01-01

    This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.

  15. Physical and numerical modeling of hydrophysical proceses on the site of underwater pipelines

    NASA Astrophysics Data System (ADS)

    Garmakova, M. E.; Degtyarev, V. V.; Fedorova, N. N.; Shlychkov, V. A.

    2018-03-01

    The paper outlines issues related to ensuring the exploitation safety of underwater pipelines that are at risk of accidents. The performed research is based on physical and mathematical modeling of local bottom erosion in the area of pipeline location. The experimental studies were performed on the basis of the Hydraulics Laboratory of the Department of Hydraulic Engineering Construction, Safety and Ecology of NSUACE (Sibstrin). In the course of physical experiments it was revealed that the intensity of the bottom soil reforming depends on the deepening of the pipeline. The ANSYS software has been used for numerical modeling. The process of erosion of the sandy bottom was modeled under the pipeline. Comparison of computational results at various mass flow rates was made.

  16. Implementation of a numerical holding furnace model in foundry and construction of a reduced model

    NASA Astrophysics Data System (ADS)

    Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane

    2016-09-01

    Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts in according to geometrical and structural expectations. The definition of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. In a further stage this model will be used to characterize heat exchanges using internal sensors through inverse techniques to optimize the furnace command and the optimization of its design. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. A detailed model allows the calculation of the internal induction heat source as well as transient radiative transfer inside the furnace. A reduced lumped body model has been defined to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm with Matlab, using two synthetic temperature signals with a further validation test.

  17. Galaxy halo expansions: a new biorthogonal family of potential-density pairs

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn; Erkal, Denis

    2018-05-01

    Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically constructed (or real) cosmological haloes, incorporating the effects of triaxiality, lopsidedness or other distortion. Secondly, they provide the basis functions for self-consistent field expansion algorithms used in the evolution of N-body systems. We present a new family of biorthogonal potential-density pairs constructed using the Hankel transform of the Laguerre polynomials. The lowest order density basis functions are double-power-law profiles cusped like ρ ˜ r-2+1/α at small radii with asymptotic density fall-off like ρ ˜ r-3-1/(2α). Here, α is a parameter satisfying α ≥ 1/2. The family therefore spans the range of inner density cusps found in numerical simulations, but has much shallower - and hence more realistic - outer slopes than the corresponding members of the only previously known family deduced by Zhao and exemplified by Hernquist & Ostriker. When α = 1, the lowest order density profile has an inner density cusp of ρ ˜ r-1 and an outer density slope of ρ ˜ r-3.5, similar to the famous Navarro, Frenk & White (NFW) model. For this reason, we demonstrate that our new expansion provides a more accurate representation of flattened NFW haloes than the competing Hernquist-Ostriker expansion. We utilize our new expansion by analysing a suite of numerically constructed haloes and providing the distributions of the expansion coefficients.

  18. Construction of high-rise buildings in the Far East of Russia

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Sergey; Bugunov, Semen; Pogulyaeva, Evgeniya; Peters, Anastasiya; Kotenko, Zhanna; Grigor'yev, Danil

    2018-03-01

    The construction of high-rise buildings on plate foundation in geotechnical conditions of the Russian Far East is a complicated problem. In this respect foundation engineering becomes rather essential. In order to set a firm foundation it is necessary to take into account the pressure distribution at the structure base, in homogeneity of building deformation, which is due to collaborative geotechnical calculations complicated by a number of factors: actual over-placement of soils, the complex geometry of the building under construction, spatial work of the foundation ground with consideration for physical nonlinearity, the influence of the stiffness of the superstructure (reinforced concrete framing) upon the development of foundation deformations, foundation performance (the performance of the bed plate under the building and stairwells), the origination of internal forces in the superstructure with differential settlement. The solution of spatial problems regarding the mutual interaction between buildings and foundations with account of the factors mentioned above is fully achievable via the application of numerical modeling methodology. The work makes a review of the results of high-rise plate building numerical modeling in geotechnical conditions of the Russian Far East by way of the example of Khabarovsk city.

  19. LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.

  20. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D groundwater flow model, which was based on the scarce geologic information and the electromagnetic geophysical results, could answer the subsurface hydraulic connection between GDEs. Moreover, the gravity-driven regional groundwater flow concept could help to interpret the hydraulically nested flow systems (local and intermediate). Validation of numerical simulation by natural surface conditions and phenomena was performed. Consequently, the position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. Anthropogenic activities and climate change have great impact on groundwater. Since the GDEs are fed by local flow systems, the impact of climate change and anthropogenic activities could be notable, therefore the highly vulnerable wetlands have to be in focus of water management and natural conservation policy.

  1. Constructive methods of invariant manifolds for kinetic problems

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.; Zinovyev, Andrei Yu.

    2004-06-01

    The concept of the slow invariant manifold is recognized as the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space ( the invariance equation). The equation of motion for immersed manifolds is obtained ( the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. Among them, iteration methods based on incomplete linearization, relaxation method and the method of invariant grids are developed. The systematic use of thermodynamics structures and of the quasi-chemical representation allow to construct approximations which are in concordance with physical restrictions. The following examples of applications are presented: nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn∼1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; model reduction in chemical kinetics; derivation and numerical implementation of constitutive equations for polymeric fluids; the limits of macroscopic description for polymer molecules, etc.

  2. Direct variational data assimilation algorithm for atmospheric chemistry data with transport and transformation model

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir; Nuterman, Roman; Baklanov, Alexander; Mahura, Alexander

    2015-11-01

    Atmospheric chemistry dynamics is studied with convection-diffusion-reaction model. The numerical Data Assimilation algorithm presented is based on the additive-averaged splitting schemes. It carries out ''fine-grained'' variational data assimilation on the separate splitting stages with respect to spatial dimensions and processes i.e. the same measurement data is assimilated to different parts of the split model. This design has efficient implementation due to the direct data assimilation algorithms of the transport process along coordinate lines. Results of numerical experiments with chemical data assimilation algorithm of in situ concentration measurements on real data scenario have been presented. In order to construct the scenario, meteorological data has been taken from EnviroHIRLAM model output, initial conditions from MOZART model output and measurements from Airbase database.

  3. Upscaling: Effective Medium Theory, Numerical Methods and the Fractal Dream

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Ravalec, M. Le; Ricard, L.

    2006-06-01

    Upscaling is a major issue regarding mechanical and transport properties of rocks. This paper examines three issues relative to upscaling. The first one is a brief overview of Effective Medium Theory (EMT), which is a key tool to predict average rock properties at a macroscopic scale in the case of a statistically homogeneous medium. EMT is of particular interest in the calculation of elastic properties. As discussed in this paper, EMT can thus provide a possible way to perform upscaling, although it is by no means the only one, and in particular it is irrelevant if the medium does not adhere to statistical homogeneity. This last circumstance is examined in part two of the paper. We focus on the example of constructing a hydrocarbon reservoir model. Such a construction is a required step in the process of making reasonable predictions for oil production. Taking into account rock permeability, lithological units and various structural discontinuities at different scales is part of this construction. The result is that stochastic reservoir models are built that rely on various numerical upscaling methods. These methods are reviewed. They provide techniques which make it possible to deal with upscaling on a general basis. Finally, a last case in which upscaling is trivial is considered in the third part of the paper. This is the fractal case. Fractal models have become popular precisely because they are free of the assumption of statistical homogeneity and yet do not involve numerical methods. It is suggested that using a physical criterion as a means to discriminate whether fractality is a dream or reality would be more satisfactory than relying on a limited data set alone.

  4. Making it Easy to Construct Accurate Hydrological Models that Exploit High Performance Computers (Invited)

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.

    2013-12-01

    This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.

  5. Review: Modelling chemical kinetics and convective heating in giant planet entries

    NASA Astrophysics Data System (ADS)

    Reynier, Philippe; D'Ammando, Giuliano; Bruno, Domenico

    2018-01-01

    A review of the existing chemical kinetics models for H2 / He mixtures and related transport and thermodynamic properties is presented as a pre-requisite towards the development of innovative models based on the state-to-state approach. A survey of the available results obtained during the mission preparation and post-flight analyses of the Galileo mission has been undertaken and a computational matrix has been derived. Different chemical kinetics schemes for hydrogen/helium mixtures have been applied to numerical simulations of the selected points along the entry trajectory. First, a reacting scheme, based on literature data, has been set up for computing the flow-field around the probe at high altitude and comparisons with existing numerical predictions are performed. Then, a macroscopic model derived from a state-to-state model has been constructed and incorporated into a CFD code. Comparisons with existing numerical results from the literature have been performed as well as cross-check comparisons between the predictions provided by the different models in order to evaluate the potential of innovative chemical kinetics models based on the state-to-state approach.

  6. On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries.

    PubMed

    Atangana, Abdon; Goufo, Emile Franc Doungmo

    2014-01-01

    For a given West African country, we constructed a model describing the spread of the deathly disease called Ebola hemorrhagic fever. The model was first constructed using the classical derivative and then converted to the generalized version using the beta-derivative. We studied in detail the endemic equilibrium points and provided the Eigen values associated using the Jacobian method. We furthered our investigation by solving the model numerically using an iteration method. The simulations were done in terms of time and beta. The study showed that, for small portion of infected individuals, the whole country could die out in a very short period of time in case there is not good prevention.

  7. Constructing a consumption model of fine dining from the perspective of behavioral economics

    PubMed Central

    Tsai, Sang-Bing

    2018-01-01

    Numerous factors affect how people choose a fine dining restaurant, including food quality, service quality, food safety, and hedonic value. A conceptual framework for evaluating restaurant selection behavior has not yet been developed. This study surveyed 150 individuals with fine dining experience and proposed the use of mental accounting and axiomatic design to construct a consumer economic behavior model. Linear and logistic regressions were employed to determine model correlations and the probability of each factor affecting behavior. The most crucial factor was food quality, followed by service and dining motivation, particularly regarding family dining. Safe ingredients, high cooking standards, and menu innovation all increased the likelihood of consumers choosing fine dining restaurants. PMID:29641554

  8. Constructing a consumption model of fine dining from the perspective of behavioral economics.

    PubMed

    Hsu, Sheng-Hsun; Hsiao, Cheng-Fu; Tsai, Sang-Bing

    2018-01-01

    Numerous factors affect how people choose a fine dining restaurant, including food quality, service quality, food safety, and hedonic value. A conceptual framework for evaluating restaurant selection behavior has not yet been developed. This study surveyed 150 individuals with fine dining experience and proposed the use of mental accounting and axiomatic design to construct a consumer economic behavior model. Linear and logistic regressions were employed to determine model correlations and the probability of each factor affecting behavior. The most crucial factor was food quality, followed by service and dining motivation, particularly regarding family dining. Safe ingredients, high cooking standards, and menu innovation all increased the likelihood of consumers choosing fine dining restaurants.

  9. Surface Material Characterization from Non-resolved Multi-band Optical Observations

    DTIC Science & Technology

    2012-09-01

    functions ( BRDFs ) — then a forward model of the spectral signature of the entire body could be constructed by summing contributions from all reflecting...buffering). 3.3.2 Material Bi-directional Reflectance Distribution Functions ( BRDFs ) Notably, the satellite wire-frame and attitude models together...environments and/or created numerical BRDF models . For instance, BRDFs for several spacecraft materials — such as solar array panels, milled aluminum

  10. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. The highly vulnerable wetlands and groundwater-dependent ecosystems have to be in the focus of water management and natural conservation policy.

  11. A multiphase model for tissue construct growth in a perfusion bioreactor.

    PubMed

    O'Dea, R D; Waters, S L; Byrne, H M

    2010-06-01

    The growth of a cell population within a rigid porous scaffold in a perfusion bioreactor is studied, using a three-phase continuum model of the type presented by Lemon et al. (2006, Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol., 52, 571-594) to represent the cell population (and attendant extracellular matrix), culture medium and porous scaffold. The bioreactor system is modelled as a 2D channel containing the cell-seeded rigid porous scaffold (tissue construct) which is perfused with culture medium. The study concentrates on (i) the cell-cell and cell-scaffold interactions and (ii) the impact of mechanotransduction mechanisms on construct composition. A numerical and analytical analysis of the model equations is presented and, depending upon the relative importance of cell aggregation and repulsion, markedly different cell movement is revealed. Additionally, mechanotransduction effects due to cell density, pressure and shear stress-mediated tissue growth are shown to generate qualitative differences in the composition of the resulting construct. The results of our simulations indicate that this model formulation (in conjunction with appropriate experimental data) has the potential to provide a means of identifying the dominant regulatory stimuli in a cell population.

  12. Extension and applications of switching model: Range theory, multiple scattering model of Goudsmit-Saunderson, and lateral spread treatment of Marwick-Sigmund

    NASA Astrophysics Data System (ADS)

    Ikegami, Seiji

    2017-09-01

    The switching model (PSM) developed in the previous paper is extended to obtain an ;extended switching model (ESM). In the ESM, the mixt electronic-and-nuclear energy-loss region, in addition to the electronic and nuclear energy-loss regions in PSM, is taken into account analytically and appropriately. This model is combined with a small-angle multiple scattering range theory considering both nuclear and electronic stopping effects developed by Marwick-Sigmund and Valdes-Arista to formulate a improved range theory. The ESM is also combined with the multiple scattering theory with non-small angle approximation by Goudsmit-Saunderson. Furthermore, we applied ESM to lateral spread model of Marwick-Sigmund. Numerical calculations of the entire distribution functions including one of the mixt region are roughly and approximately possible. However, exact numerical calculation may be impossible. Consequently, several preliminary numerical calculations of the electronic, mixt, and nuclear regions are performed to examine their underlying behavior with respect to the incident energy, the scattering angle, the outgoing projectile intensity, and the target thickness. We show the numerical results not only of PSM and but also of ESM. Both numerical results are shown in the present paper for the first time. Since the theoretical relations are constructed using reduced variables, the calculations are made only on the case of C colliding on C.

  13. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Oishik, E-mail: oishik-sen@uiowa.edu; Gaul, Nicholas J., E-mail: nicholas-gaul@ramdosolutions.com; Choi, K.K., E-mail: kyung-choi@uiowa.edu

    Macro-scale computations of shocked particulate flows require closure laws that model the exchange of momentum/energy between the fluid and particle phases. Closure laws are constructed in this work in the form of surrogate models derived from highly resolved mesoscale computations of shock-particle interactions. The mesoscale computations are performed to calculate the drag force on a cluster of particles for different values of Mach Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability to construct surrogate models with sparse data; i.e. using the leastmore » number of mesoscale simulations. It is shown that if the input data is noise-free, the DKG method converges monotonically; convergence is less robust in the presence of noise. The MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments. This work is the first step towards a full multiscale modeling of interaction of shocked particle laden flows.« less

  15. Numerical studies on the electromagnetic properties of the nonlinear Lorentz Computational model for the dielectric media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Okuda, H.

    We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media.

  16. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  17. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  18. IoGET: Internet of Geophysical and Environmental Things

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudunuru, Maruti Kumar

    The objective of this project is to provide novel and fast reduced-order models for onboard computation at sensor nodes for real-time analysis. The approach will require that LANL perform high-fidelity numerical simulations, construct simple reduced-order models (ROMs) using machine learning and signal processing algorithms, and use real-time data analysis for ROMs and compressive sensing at sensor nodes.

  19. Dynamics of an advertising competition model with sales promotion

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Feng, Zhaosheng; Jiang, Guirong

    2017-01-01

    In this paper, an advertising competition model with sales promotion is constructed and investigated. Conditions of the existence and stability of period-T solutions are obtained by means of the discrete map. Flip bifurcation is analyzed by using the center manifold theory and three sales promotion strategies are discussed. Example and numerical simulations are illustrated which agree well with our theoretical analysis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrida, B.; Nadal, J.P.

    It is possible to construct diluted asymmetric models of neural networks for which the dynamics can be calculated exactly. The authors test several learning schemes, in particular, models for which the values of the synapses remain bounded and depend on the history. Our analytical results on the relative efficiencies of the various learning schemes are qualitatively similar to the corresponding ones obtained numerically on fully connected symmetric networks.

  1. Measurement of the performance of a spiral wound polyimide regenerator in a pulse tube refrigerator

    NASA Technical Reports Server (NTRS)

    Rawlins, Wayne; Timmerhaus, Klaus D.; Radebaugh, Ray; Daney, D. E.

    1991-01-01

    A regenerator for use in a pulse tube refrigerator has been constructed from a polyimide (polypyromellitimide or PPMI) whose small ratio of thermal conductivity to heat capacity make it a good candidate for a regenerator material in cryocoolers. The regenerator was fabricated using 25 micron thick photoresist strips bonded to a 50 micron thick sheet of PPMI. This composite sheet was wound in jelly-roll fashion around a mandrel and inserted into the regenerator housing. The photoresist strips, formed using a photolithographic technique, provided a 25 micron spacing for the axial flow of gas between each layer of PPMI. Ineffectiveness results are presented for this material under actual operating conditions in a pulse tube refrigerator and compared with a numerical model. The numerical model indicated that a polyimide regenerator would perform much better than one constructed of stainless steel screen, but the experimental results showed the opposite behavior. Measured values for the ineffectiveness were 0.003 for the stainless steel screen and 0.017 for the polyimide.

  2. Numerical simulation of deformation and failure processes of a complex technical object under impact loading

    NASA Astrophysics Data System (ADS)

    Kraus, E. I.; Shabalin, I. I.; Shabalin, T. I.

    2018-04-01

    The main points of development of numerical tools for simulation of deformation and failure of complex technical objects under nonstationary conditions of extreme loading are presented. The possibility of extending the dynamic method for construction of difference grids to the 3D case is shown. A 3D realization of discrete-continuum approach to the deformation and failure of complex technical objects is carried out. The efficiency of the existing software package for 3D modelling is shown.

  3. [Correlation of substrate structure and hydraulic characteristics in subsurface flow constructed wetlands].

    PubMed

    Bai, Shao-Yuan; Song, Zhi-Xin; Ding, Yan-Li; You, Shao-Hong; He, Shan

    2014-02-01

    The correlation of substrate structure and hydraulic characteristics was studied by numerical simulation combined with experimental method. The numerical simulation results showed that the permeability coefficient of matrix had a great influence on hydraulic efficiency in subsurface flow constructed wetlands. The filler with a high permeability coefficient had a worse flow field distribution in the constructed wetland with single layer structure. The layered substrate structure with the filler permeability coefficient increased from surface to bottom could avoid the short-circuited flow and dead-zones, and thus, increased the hydraulic efficiency. Two parallel pilot-scale constructed wetlands were built according to the numerical simulation results, and tracer experiments were conducted to validate the simulation results. The tracer experiment result showed that hydraulic characteristics in the layered constructed wetland were obviously better than that in the single layer system, and the substrate effective utilization rates were 0.87 and 0.49, respectively. It was appeared that numerical simulation would be favorable for substrate structure optimization in subsurface flow constructed wetlands.

  4. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  5. Traveling-Wave Solutions of the Kolmogorov-Petrovskii-Piskunov Equation

    NASA Astrophysics Data System (ADS)

    Pikulin, S. V.

    2018-02-01

    We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov-Petrovskii-Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction-diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.

  6. Artificial Neural Network-Based Three-dimensional Continuous Response Relationship Construction of 3Cr20Ni10W2 Heat-Resisting Alloy and Its Application in Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Li, Le; Wang, Li-yong

    2018-04-01

    The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.

  7. Gravity and large black holes in Randall-Sundrum II braneworlds.

    PubMed

    Figueras, Pau; Wiseman, Toby

    2011-08-19

    We show how to construct low energy solutions to the Randall-Sundrum II (RSII) model by using an associated five-dimensional anti-de Sitter space (AdS(5)) and/or four-dimensional conformal field theory (CFT(4)) problem. The RSII solution is given as a perturbation of the AdS(5)-CFT(4) solution, with the perturbation parameter being the radius of curvature of the brane metric compared to the AdS length ℓ. The brane metric is then a specific perturbation of the AdS(5)-CFT(4) boundary metric. For low curvatures the RSII solution reproduces 4D general relativity on the brane. Recently, AdS(5)-CFT(4) solutions with a 4D Schwarzschild boundary metric were numerically constructed. We modify the boundary conditions to numerically construct large RSII static black holes with radius up to ~20ℓ. For a large radius, the RSII solutions are indeed close to the associated AdS(5)-CFT(4) solution. © 2011 American Physical Society

  8. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations

    NASA Astrophysics Data System (ADS)

    Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher

    2015-07-01

    Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.

  9. Evolutionary fuzzy modeling human diagnostic decisions.

    PubMed

    Peña-Reyes, Carlos Andrés

    2004-05-01

    Fuzzy CoCo is a methodology, combining fuzzy logic and evolutionary computation, for constructing systems able to accurately predict the outcome of a human decision-making process, while providing an understandable explanation of the underlying reasoning. Fuzzy logic provides a formal framework for constructing systems exhibiting both good numeric performance (accuracy) and linguistic representation (interpretability). However, fuzzy modeling--meaning the construction of fuzzy systems--is an arduous task, demanding the identification of many parameters. To solve it, we use evolutionary computation techniques (specifically cooperative coevolution), which are widely used to search for adequate solutions in complex spaces. We have successfully applied the algorithm to model the decision processes involved in two breast cancer diagnostic problems, the WBCD problem and the Catalonia mammography interpretation problem, obtaining systems both of high performance and high interpretability. For the Catalonia problem, an evolved system was embedded within a Web-based tool-called COBRA-for aiding radiologists in mammography interpretation.

  10. Integration of remote sensing technique and hydrologic model for monitoring tidal flat dynamics of Juiduansha in Shanghai

    NASA Astrophysics Data System (ADS)

    Zheng, Zongsheng; Zhou, Yunxuan; Jiang, Xuezhong

    2007-06-01

    Ground survey is restricted by the difficulty of access to wide-range and dynamic salt marsh. Waterline method and hydrodynamic model were investigated to construct Digital Elevation Model (DEM) at Jiudunasha Shoals. A series of waterlines were extracted from multi-temporal remotely sensing images collected over the period of 2000-2004. The assignment of an elevation to each waterline at the satellite overpass was performed according to hydrodynamic model. The corrected waterlines labeled elevations were used to construct Triangulated Irregular Networks (TINs). Then an interpolation for each grid elevation was performed in accordance with the associated triangle. This initial DEM, produced using the corrected waterline set, was then used to refine the topography in the intertidal zone, and the model was re-run to produce improved water levels and a new DEM. This procedure was iterated by comparing modeled and actual waterlines until no further improvement occurred. Three DEMs of different intervals were built by this approach and were compared to evaluate the effect of Deep Water Channel Project (DWCP) at the north of Jiuduansha Island. Waterline method combined with numerical model, is an effective tool for constructing digital elevation model of mudflats. The result can provide invaluable information for coastal land use and engineer construction.

  11. Automating FEA programming

    NASA Technical Reports Server (NTRS)

    Sharma, Naveen

    1992-01-01

    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.

  12. Efficient numerical method for solving Cauchy problem for the Gamma equation

    NASA Astrophysics Data System (ADS)

    Koleva, Miglena N.

    2011-12-01

    In this work we consider Cauchy problem for the so called Gamma equation, derived by transforming the fully nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative (Greek) Γ = VSS of the option price V. We develop an efficient numerical method for solving the model problem concerning different volatility terms. Using suitable change of variables the problem is transformed on finite interval, keeping original behavior of the solution at the infinity. Then we construct Picard-Newton algorithm with adaptive mesh step in time, which can be applied also in the case of non-differentiable functions. Results of numerical simulations are given.

  13. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  14. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1992-01-01

    Numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series are presented. This approach makes it possible to extract dynamical invariants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), given a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  15. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  16. Modelling of creep hysteresis in ferroelectrics

    NASA Astrophysics Data System (ADS)

    He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.

  17. Numerical Modelling of Foundation Slabs with use of Schur Complement Method

    NASA Astrophysics Data System (ADS)

    Koktan, Jiří; Brožovský, Jiří

    2017-10-01

    The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.

  18. Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.

    PubMed

    Twycross, Jamie; Band, Leah R; Bennett, Malcolm J; King, John R; Krasnogor, Natalio

    2010-03-26

    Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.

  19. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    PubMed

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  20. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  1. A Criterion-Related Validation Study of the Army Core Leader Competency Model

    DTIC Science & Technology

    2007-04-01

    2004). Transformational and transactional leadership: A meta-analytic test of their relative validity. Journal of Applied Psychology , 89, 755- 768...performance criteria in an attempt to adjust ratings for this influence. Leader survey materials were developed and pilot tested at Ft. Drum and Ft... psychological constructs in the behavioral science realm. Numerous theories, popular literature, websites, assessments, and competency models are

  2. An Explicit Algorithm for the Simulation of Fluid Flow through Porous Media

    NASA Astrophysics Data System (ADS)

    Trapeznikova, Marina; Churbanova, Natalia; Lyupa, Anastasiya

    2018-02-01

    The work deals with the development of an original mathematical model of porous medium flow constructed by analogy with the quasigasdynamic system of equations and allowing implementation via explicit numerical methods. The model is generalized to the case of multiphase multicomponent fluid and takes into account possible heat sources. The proposed approach is verified by a number of test predictions.

  3. An S 4 model inspired from self-complementary neutrino mixing

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyi

    2018-03-01

    We build an S 4 model for neutrino masses and mixings based on the self-complementary (SC) neutrino mixing pattern. The SC mixing is constructed from the self-complementarity relation plus {δ }CP}=-\\tfrac{π }{2}. We elaborately construct the model at a percent level of accuracy to reproduce the structure given by the SC mixing. After performing a numerical study on the model’s parameter space, we find that in the case of normal ordering, the model can give predictions on the observables that are compatible with their 3σ ranges, and give predictions for the not-yet observed quantities like the lightest neutrino mass m 1 ∈ [0.003, 0.010] eV and the Dirac CP violating phase {δ }CP}\\in [256.72^\\circ ,283.33^\\circ ].

  4. Dynamics of a Class of HIV Infection Models with Cure of Infected Cells in Eclipse Stage.

    PubMed

    Maziane, Mehdi; Lotfi, El Mehdi; Hattaf, Khalid; Yousfi, Noura

    2015-12-01

    In this paper, we propose two HIV infection models with specific nonlinear incidence rate by including a class of infected cells in the eclipse phase. The first model is described by ordinary differential equations (ODEs) and generalizes a set of previously existing models and their results. The second model extends our ODE model by taking into account the diffusion of virus. Furthermore, the global stability of both models is investigated by constructing suitable Lyapunov functionals. Finally, we check our theoretical results with numerical simulations.

  5. Racial Variation in Vocational Rehabilitation Outcomes: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Martin, Frank H.

    2010-01-01

    Numerous studies have indicated racial and ethnic disparities in the vocational rehabilitation (VR) system, including differences in acceptance, services provided, closure types, and employment outcomes. Few of these studies, however, have used advanced multivariate techniques or latent constructs to measure quality of employment outcomes (QEO) or…

  6. Tetravalent Chromium (Cr(4+)) as Laser-Active Ion for Tunable Solid-State Lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1992-01-01

    During 10/31/91 - 3/31/92, the following summarizes are major accomplishments: (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed; and (2) the simulation revealed several design parameters to be used for the construction of a femtosecond forsterite laser.

  7. BIM in the Facility Manager's Toolkit

    ERIC Educational Resources Information Center

    Peglow, Timothy M.

    2010-01-01

    There has been a tremendous increase in use of Building Information Modeling (BIM) in the design and construction industry. There have been numerous case studies that have documented the improvements. The majority of these improvements have focused on better coordination of design resulting in fewer Requests for Information and/or change orders.…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Xu, Jun; Cao, Lei

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less

  9. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  10. Atomistic models of Cu diffusion in CuInSe2 under variations in composition

    NASA Astrophysics Data System (ADS)

    Sommer, David E.; Dunham, Scott T.

    2018-03-01

    We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.

  11. Materials and techniques for model construction

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    The problems confronting the designer of models for cryogenic wind tunnel models are discussed with particular reference to the difficulties in obtaining appropriate data on the mechanical and physical properties of candidate materials and their fabrication technologies. The relationship between strength and toughness of alloys is discussed in the context of maximizing both and avoiding the problem of dimensional and microstructural instability. All major classes of materials used in model construction are considered in some detail and in the Appendix selected numerical data is given for the most relevant materials. The stepped-specimen program to investigate stress-induced dimensional changes in alloys is discussed in detail together with interpretation of the initial results. The methods used to bond model components are considered with particular reference to the selection of filler alloys and temperature cycles to avoid microstructural degradation and loss of mechanical properties.

  12. Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current

    NASA Astrophysics Data System (ADS)

    Li, Lin-juan; Zheng, Jin-hai; Peng, Yu-xuan; Zhang, Ji-sheng; Wu, Xiu-guang

    2015-04-01

    Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k- ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.

  13. Second-order Poisson Nernst-Planck solver for ion channel transport

    PubMed Central

    Zheng, Qiong; Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are compared with experimental measurements. PMID:21552336

  14. New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1994-01-01

    A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.

  15. Modelling the effect of immigration on drinking behaviour.

    PubMed

    Xiang, Hong; Zhu, Cheng-Cheng; Huo, Hai-Feng

    2017-12-01

    A drinking model with immigration is constructed. For the model with problem drinking immigration, the model admits only one problem drinking equilibrium. For the model without problem drinking immigration, the model has two equilibria, one is problem drinking-free equilibrium and the other is problem drinking equilibrium. By employing the method of Lyapunov function, stability of all kinds of equilibria is obtained. Numerical simulations are also provided to illustrate our analytical results. Our results show that alcohol immigrants increase the difficulty of the temperance work of the region.

  16. Annual Research Briefs, 1998

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1998-01-01

    The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.

  17. Correct numerical simulation of a two-phase coolant

    NASA Astrophysics Data System (ADS)

    Kroshilin, A. E.; Kroshilin, V. E.

    2016-02-01

    Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.

  18. Numerical modeling of a spherical buoy moored by a cable in three dimensions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangqian; Yoo, Wan-Suk

    2016-05-01

    Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code ProteusDS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.

  19. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers.

    PubMed

    Lyu, Sainan; Hon, Carol K H; Chan, Albert P C; Wong, Francis K W; Javed, Arshad Ali

    2018-03-09

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  20. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    NASA Technical Reports Server (NTRS)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  1. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  2. A computational study for investigating acoustic streaming and tissue heating during high intensity focused ultrasound through blood vessel with an obstacle

    NASA Astrophysics Data System (ADS)

    Parvin, Salma; Sultana, Aysha

    2017-06-01

    The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.

  3. Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit

    2016-03-01

    In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.

  4. A Global Model for Bankruptcy Prediction

    PubMed Central

    Alaminos, David; del Castillo, Agustín; Fernández, Manuel Ángel

    2016-01-01

    The recent world financial crisis has increased the number of bankruptcies in numerous countries and has resulted in a new area of research which responds to the need to predict this phenomenon, not only at the level of individual countries, but also at a global level, offering explanations of the common characteristics shared by the affected companies. Nevertheless, few studies focus on the prediction of bankruptcies globally. In order to compensate for this lack of empirical literature, this study has used a methodological framework of logistic regression to construct predictive bankruptcy models for Asia, Europe and America, and other global models for the whole world. The objective is to construct a global model with a high capacity for predicting bankruptcy in any region of the world. The results obtained have allowed us to confirm the superiority of the global model in comparison to regional models over periods of up to three years prior to bankruptcy. PMID:27880810

  5. Weighted Iterative Bayesian Compressive Sensing (WIBCS) for High Dimensional Polynomial Surrogate Construction

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.

    2016-12-01

    Surrogate construction has become a routine procedure when facing computationally intensive studies requiring multiple evaluations of complex models. In particular, surrogate models, otherwise called emulators or response surfaces, replace complex models in uncertainty quantification (UQ) studies, including uncertainty propagation (forward UQ) and parameter estimation (inverse UQ). Further, surrogates based on Polynomial Chaos (PC) expansions are especially convenient for forward UQ and global sensitivity analysis, also known as variance-based decomposition. However, the PC surrogate construction strongly suffers from the curse of dimensionality. With a large number of input parameters, the number of model simulations required for accurate surrogate construction is prohibitively large. Relatedly, non-adaptive PC expansions typically include infeasibly large number of basis terms far exceeding the number of available model evaluations. We develop Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth and PC surrogate construction leading to a sparse, high-dimensional PC surrogate with a very few model evaluations. The surrogate is then readily employed for global sensitivity analysis leading to further dimensionality reduction. Besides numerical tests, we demonstrate the construction on the example of Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Kondo effect in the seven-orbital Anderson model hybridized with Γ8 conduction electrons

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi

    2018-05-01

    We clarify the two-channel Kondo effect in the seven-orbital Anderson model hybridized with Γ8 conduction electrons by employing a numerical renormalization group method. From the numerical analysis for the case with two local f electrons, corresponding to Pr3+ or U4+ ion, we confirm that a residual entropy of 0.5 log 2 , a characteristic of two-channel Kondo phenomena, appears for the local Γ3 non-Kramers doublet state. For further understanding on the Γ3 state, the effective model is constructed on the basis of a j-j coupling scheme. Then, we rediscover the two-channel s-d model concerning quadrupole degrees of freedom. Finally, we briefly introduce our recent result on the two-channel Kondo effect for the case with three local f electrons.

  7. Damping in Space Constructions

    NASA Astrophysics Data System (ADS)

    de Vreugd, Jan; de Lange, Dorus; Winters, Jasper; Human, Jet; Kamphues, Fred; Tabak, Erik

    2014-06-01

    Monolithic structures are often used in optomechanical designs for space applications to achieve high dimensional stability and to prevent possible backlash and friction phenomena. The capacity of monolithic structures to dissipate mechanical energy is however limited due to the high Q-factor, which might result in high stresses during dynamic launch loads like random vibration, sine sweeps and shock. To reduce the Q-factor in space applications, the effect of constrained layer damping (CLD) is investigated in this work. To predict the damping increase, the CLD effect is implemented locally at the supporting struts in an existing FE model of an optical instrument. Numerical simulations show that the effect of local damping treatment in this instrument could reduce the vibrational stresses with 30-50%. Validation experiments on a simple structure showed good agreement between measured and predicted damping properties. This paper presents material characterization, material modeling, numerical implementation of damping models in finite element code, numerical results on space hardware and the results of validation experiments.

  8. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  9. Aerosol penetration through a model transport system: Comparison of theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, A.R.; Wong, F.S.; Anand, N.K.

    1991-09-01

    Numerical predictions were made of aerosol penetration through a model transport system. A physical model of the system was constructed and tested in an aerosol wind tunnel to obtain comparative data. The system was 26.6 mm in diameter and consisted of an inlet and three straight sections (oriented horizontally, vertically, and at 45{degree}). Particle sizes covered a range in which losses were primarily caused by inertial and gravitational effects (3-25 {mu}m aerodynamic equivalent diameter (AED)). Tests were conducted at two flow rates (70 and 130 l/min) and two inlet orientations (parallel and perpendicular to the free stream). Wind speed wasmore » 3 m/s for all test cases. The cut points for aerosol penetration through the experimental model vis-a-vis the numerical results are as follows: At a flow rate of 70 l/min with the inlet at 0{degree}, the experimentally observed cut point was 16.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED. At 130 l/min and 0{degree}, the experimental cut point was 12.8 {mu}m AED as compared with a numerically value of 13.7 {mu}m AED. At 70l/min and a 90{degree}, the experimental cut point was 12.0 {mu}m AED while the numerically calculated value was 11.1 {mu}m AED. Slopes of the experimental penetration curves are somewhat steeper than the numerically predicted counterparts.« less

  10. Scripting MODFLOW model development using Python and FloPy

    USGS Publications Warehouse

    Bakker, Mark; Post, Vincent E. A.; Langevin, Christian D.; Hughes, Joseph D.; White, Jeremy; Starn, Jeffrey; Fienen, Michael N.

    2016-01-01

    Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.

  11. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    PubMed

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  12. Physical Model Study of Cross Vanes and Ice

    DTIC Science & Technology

    2009-08-01

    spacing since, in the pre-scour state, experiments and the HEC - RAS hydraulic model (USACE 2002b) found that water surface ele- vation merged with the...docs/eng-manuals/em1110- 2-1612/toc.htm. USACE (2002b) HEC - RAS , Hydraulic Reference Manual. US Army Corps of Engineers Hydrologic Engineering Center...Currently little design guidance is available for constructing these structures on ice-affected rivers . This study used physical and numerical

  13. Two Novel Methods and Multi-Mode Periodic Solutions for the Fermi-Pasta-Ulam Model

    NASA Astrophysics Data System (ADS)

    Arioli, Gianni; Koch, Hans; Terracini, Susanna

    2005-04-01

    We introduce two novel methods for studying periodic solutions of the FPU β-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.

  14. Probabilistic numerical methods for PDE-constrained Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark

    2017-06-01

    This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.

  15. Supercomputer modeling of flow past hypersonic flight vehicles

    NASA Astrophysics Data System (ADS)

    Ermakov, M. K.; Kryukov, I. A.

    2017-02-01

    A software platform for MPI-based parallel solution of the Navier-Stokes (Euler) equations for viscous heat-conductive compressible perfect gas on 3-D unstructured meshes is developed. The discretization and solution of the Navier-Stokes equations are constructed on generalized S.K. Godunov’s method and the second order approximation in space and time. Developed software platform allows to carry out effectively flow past hypersonic flight vehicles simulations for the Mach numbers 6 and higher, and numerical meshes with up to 1 billion numerical cells and with up to 128 processors.

  16. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    NASA Technical Reports Server (NTRS)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  17. Investigation of the effect of the ejector on the performance of the pulse detonation engine nozzle extension

    NASA Astrophysics Data System (ADS)

    Korobov, A. E.; Golovastov, S. V.

    2015-11-01

    Influence of an ejector nozzle extension on gas flow at a pulse detonation engine was investigated numerically and experimentally. Detonation formation was organized in stoichiometric hydrogen-oxygen mixture in cylindrical detonation tube. Cylindrical ejector was constructed and mounted at the open end of the tube. Thrust, air consumption and parameters of the detonation were measured in single and multiple regimes of operation. Axisymmetric model was used in numerical investigation. Equations of Navies-Stokes were solved using a finite-difference scheme Roe of second order of accuracy. Initial conditions were estimated on a base of experimental data. Numerical results were validated with experiments data.

  18. Numerical simulation of the transition to chaos in a dissipative Duffing oscillator with two-frequency excitation

    NASA Astrophysics Data System (ADS)

    Zavrazhina, T. V.

    2007-10-01

    A mathematical modeling technique is proposed for oscillation chaotization in an essentially nonlinear dissipative Duffing oscillator with two-frequency excitation on an invariant torus in ℝ2. The technique is based on the joint application of the parameter continuation method, Floquet stability criteria, bifurcation theory, and the Everhart high-accuracy numerical integration method. This approach is used for the numerical construction of subharmonic solutions in the case when the oscillator passes to chaos through a sequence of period-multiplying bifurcations. The value of a universal constant obtained earlier by the author while investigating oscillation chaotization in dissipative oscillators with single-frequency periodic excitation is confirmed.

  19. Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts

    NASA Astrophysics Data System (ADS)

    Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying

    2017-10-01

    The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.

  20. Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices.

    PubMed

    Beckmann, Agnes; Heider, Yousef; Stoffel, Marcus; Markert, Bernd

    2018-06-01

    The underlying research work introduces a study of the mechanical properties of polycarbonate urethane (PCU), used in the construction of various medical devices. This comprises the discussion of a suitable material model, the application of elemental experiments to identify the related parameters and the numerical simulation of the applied experiments in order to calibrate and validate the mathematical model. In particular, the model of choice for the simulation of PCU response is the non-linear viscoelastic Bergström-Boyce material model, applied in the finite-element (FE) package Abaqus®. For the parameter identification, uniaxial tension and unconfined compression tests under in-laboratory physiological conditions were carried out. The geometry of the samples together with the applied loadings were simulated in Abaqus®, to insure the suitability of the modelling approach. The obtained parameters show a very good agreement between the numerical and the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. MEAN-FIELD MODELING OF AN α{sup 2} DYNAMO COUPLED WITH DIRECT NUMERICAL SIMULATIONS OF RIGIDLY ROTATING CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@harbor.kobe-u.ac.jp, E-mail: sano@ile.osaka-u.ac.jp

    2014-10-10

    The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, canmore » be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.« less

  2. Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field.

    PubMed

    Heyner, Daniel; Wicht, Johannes; Gómez-Pérez, Natalia; Schmitt, Dieter; Auster, Hans-Ulrich; Glassmeier, Karl-Heinz

    2011-12-23

    The observed weakness of Mercury's magnetic field poses a long-standing puzzle to dynamo theory. Using numerical dynamo simulations, we show that it could be explained by a negative feedback between the magnetospheric and the internal magnetic fields. Without feedback, a small internal field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength saturated at a much lower level, compatible with the observations at Mercury. The classical saturation mechanism via the Lorentz force was replaced by the external field impact. The resulting surface field was dominated by uneven harmonic components. This will allow the feedback model to be distinguished from other models once a more accurate field model is constructed from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.

  3. Numerical analysis of the performance of rock weirs: Effects of structure configuration on local hydraulics

    USGS Publications Warehouse

    Holmquist-Johnson, C. L.

    2009-01-01

    River spanning rock structures are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Current design methods are based upon anecdotal information applicable to a narrow range of channel conditions. The complex flow patterns and performance of rock weirs is not well understood. Without accurate understanding of their hydraulics, designers cannot address the failure mechanisms of these structures. Flow characteristics such as jets, near bed velocities, recirculation, eddies, and plunging flow govern scour pool development. These detailed flow patterns can be replicated using a 3D numerical model. Numerical studies inexpensively simulate a large number of cases resulting in an increased range of applicability in order to develop design tools and predictive capability for analysis and design. The analysis and results of the numerical modeling, laboratory modeling, and field data provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize results of the analysis to determine the appropriate geometry for generating desirable flow parameters. The end product of this research will develop tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria. ?? 2009 ASCE.

  4. Thermoviscoelastic characterization and prediction of Kevlar/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1990-01-01

    The thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material were studied. The four orthotropic material properties, S sub 11, S sub 12, S sub 22, and S sub 66, were characterized by 20 minute static creep tests on unidirectional (0) sub 8, (10) sub 8, and (90) sub 16 lamina specimens. The Time-Temperature Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use. The final phase involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperatures and load level for 4 to 5 weeks. These results were compared with the VCAP program predictions to verify the testing procedure and to check the numerical procedure used in the program. The actual tests and predictions agreed for all test cases which included 1, 2, 3, and 4 fiber direction laminates.

  5. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  6. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  7. A conservative fully implicit algorithm for predicting slug flows

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Boris I.; Lukyanov, Alexander A.

    2018-02-01

    An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.

  8. Modelling of bio-morphodynamics in braided rivers: applications to the Waitaki river (New Zealand)

    NASA Astrophysics Data System (ADS)

    Stecca, G.; Zolezzi, G.; Hicks, M.; Measures, R.; Bertoldi, W.

    2016-12-01

    The planform shape of rivers results from the complex interaction between flow, sediment transport and vegetation processes, and can evolve in time following a change in these controls. The braided planform of the lower Waitaki (New Zealand), for instance, is endangered by the action of artificially-introduced alien vegetation, which spread after the reduction in magnitude of floods following hydropower dam construction. These processes, by favouring the flow concentration into the main channel, would likely promote a shift towards single thread morphology if vegetation was not artificially removed within a central fairway. The purpose of this work is to address the future evolution of these river systems under different management scenarios through two-dimensional numerical modelling. The construction of a suitable model represents a task in itself, since a modelling framework coupling all the relevant processes is not straightforwardly available at present. Our starting point is the GIAMT2D numerical model, solving two-dimensional flow and bedload transport in wet/dry domains, and recently modified by the inclusion of a rule-based bank erosion model. We further develop this model by adding a vegetation module, which accounts in a simplified manner for time-evolving biomass density, and tweaks the local flow roughness, critical shear stress for sediment transport and bank erodibility accordingly. We plan to apply the model to address the decadal-scale evolution of one reach in the Waitaki river, comparing different management scenarios for vegetation control.

  9. Analysis of Numerical Models for Dispersion of Chemical/Biological Agents in Complex Building Environments

    DTIC Science & Technology

    2004-11-01

    variation in ventilation rates over time and the distribution of ventilation air within a building, and to estimate the impact of envelope air ... tightening efforts on infiltration rates. • It may be used to determine the indoor air quality performance of a building before construction, and to

  10. Mathematical and Numerical Studies of Nonstandard Difference Equation Models of Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickens, Ronald E.

    2008-12-22

    This research examined the following items/issues: the NSFD methodology, technical achievements and applications, dissemination efforts and research related professional activities. Also a list of unresolved issues were identified that could form the basis for future research in the area of constructing and analyzing NSFD schemes for both ODE's and PDE's.

  11. Evapotranspiration versus oxygen intrusion: which is the main force in alleviating bioclogging of vertical-flow constructed wetlands during a resting operation?

    PubMed

    Hua, Guofen; Chen, Qiuwen; Kong, Jun; Li, Man

    2017-08-01

    Clogging is the most significant challenge limiting the application of constructed wetlands. Application of a forced resting period is a practical way to relieve clogging, particularly bioclogging. To reveal the alleviation mechanisms behind such a resting operation, evapotranspiration and oxygen flux were studied during a resting period in a laboratory vertical-flow constructed wetland model through physical simulation and numerical model analysis. In addition, the optimum theoretical resting duration was determined based on the time required for oxygen to completely fill the pores, i.e., formation of a sufficiently thick and completely dry layer. The results indicated that (1) evapotranspiration was not the key factor, but was a driving force in the alleviation of bioclogging; (2) the rate of oxygen diffusion into the pores was sufficient to oxidize and disperse the flocculant biofilm, which was essential to alleviate bioclogging. This study provides important insights into understanding how clogging/bioclogging can be alleviated in vertical-flow constructed wetlands. Graphical abstract Evapotranspiration versus oxygen intrusion in alleviating bioclogging in vertical flow constructed wetlands.

  12. Assessing the Role of Seafloor Weathering in Global Geochemical Cycling

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2015-12-01

    Low-temperature alteration of the basaltic upper oceanic crust, known as seafloor weathering, has been proposed as a mechanism for long-term climate regulation similar to the continental climate-weathering negative feedback. Despite this potentially far-reaching impact of seafloor weathering on habitable planet evolution, existing modeling frameworks do not include the full scope of alteration reactions or recent findings of convective flow dynamics. We present a coupled fluid dynamic and geochemical numerical model of low-temperature, off-axis hydrothermal activity. This model is designed to explore the the seafloor weathering flux of carbon to the oceanic crust and its responsiveness to climate fluctuations. The model's ability to reproduce the seafloor weathering environment is evaluated by constructing numerical simulations for comparison with two low-temperature hydrothermal systems: A transect east of the Juan de Fuca Ridge and the southern Costa Rica Rift flank. We explore the sensitivity of carbon uptake by seafloor weathering on climate and geology by varying deep ocean temperature, seawater dissolved inorganic carbon, continental weathering inputs, and basaltic host rock in a suite of numerical experiments.

  13. A phase screen model for simulating numerically the propagation of a laser beam in rain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukin, I P; Rychkov, D S; Falits, A V

    2009-09-30

    The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. Themore » 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)« less

  14. Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, B. J.; Baker, J. G.; Boggs, W. D.; Centrella, J. M.; vanMeter, J. R.; McWilliams, S. T.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  15. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  16. Calabi-Yau metrics for quotients and complete intersections

    DOE PAGES

    Braun, Volker; Brelidze, Tamaz; Douglas, Michael R.; ...

    2008-05-22

    We extend previous computations of Calabi-Yau metrics on projective hypersurfaces to free quotients, complete intersections, and free quotients of complete intersections. In particular, we construct these metrics on generic quintics, four-generation quotients of the quintic, Schoen Calabi-Yau complete intersections and the quotient of a Schoen manifold with Z₃ x Z₃ fundamental group that was previously used to construct a heterotic standard model. Various numerical investigations into the dependence of Donaldson's algorithm on the integration scheme, as well as on the Kähler and complex structure moduli, are also performed.

  17. Scaling Relations for Intercalation Induced Damage in Electrodes

    DOE PAGES

    Chen, Chien-Fan; Barai, Pallab; Smith, Kandler; ...

    2016-04-02

    Mechanical degradation, owing to intercalation induced stress and microcrack formation, is a key contributor to the electrode performance decay in lithium-ion batteries (LIBs). The stress generation and formation of microcracks are caused by the solid state diffusion of lithium in the active particles. Here in this work, scaling relations are constructed for diffusion induced damage in intercalation electrodes based on an extensive set of numerical experiments with a particle-level description of microcrack formation under disparate operating and cycling conditions, such as temperature, particle size, C-rate, and drive cycle. The microcrack formation and evolution in active particles is simulated based onmore » a stochastic methodology. A reduced order scaling law is constructed based on an extensive set of data from the numerical experiments. The scaling relations include combinatorial constructs of concentration gradient, cumulative strain energy, and microcrack formation. Lastly, the reduced order relations are further employed to study the influence of mechanical degradation on cell performance and validated against the high order model for the case of damage evolution during variable current vehicle drive cycle profiles.« less

  18. A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems

    NASA Astrophysics Data System (ADS)

    Ben Dhia, Hachmi; Du, Shuimiao

    2018-05-01

    The surface micro-interaction model of Lennard-Jones (LJ) is used for adhesive contact problems (ACP). To address theoretical and numerical pitfalls of this model, a sequence of partitions of contact models is adaptively constructed to both extend and approximate the LJ model. It is formed by a combination of the LJ model with a sequence of shifted-Signorini (or, alternatively, -Linearized-LJ) models, indexed by a shift parameter field. For each model of this sequence, a weak formulation of the associated local ACP is developed. To track critical localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic frictionless (as first approach) linear-elastic contact problem is solved once to detect contact separation zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is re-formulated and solved within the multiscale Arlequin framework, with significant reduction of computational costs. Comparison of our results with available analytical and numerical solutions shows the effectiveness of our global strategy.

  19. Hunting down the best model of inflation with Bayesian evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jerome; Ringeval, Christophe; Trotta, Roberto

    2011-03-15

    We present the first calculation of the Bayesian evidence for different prototypical single field inflationary scenarios, including representative classes of small field and large field models. This approach allows us to compare inflationary models in a well-defined statistical way and to determine the current 'best model of inflation'. The calculation is performed numerically by interfacing the inflationary code FieldInf with MultiNest. We find that small field models are currently preferred, while large field models having a self-interacting potential of power p>4 are strongly disfavored. The class of small field models as a whole has posterior odds of approximately 3 ratiomore » 1 when compared with the large field class. The methodology and results presented in this article are an additional step toward the construction of a full numerical pipeline to constrain the physics of the early Universe with astrophysical observations. More accurate data (such as the Planck data) and the techniques introduced here should allow us to identify conclusively the best inflationary model.« less

  20. Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-yu; Yu, Jian-cheng; Zhang, Ai-qun; Wang, Ya-xing; Zhao, Wen-tao

    2017-12-01

    Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.

  1. A Coupled model for ERT monitoring of contaminated sites

    NASA Astrophysics Data System (ADS)

    Wang, Yuling; Zhang, Bo; Gong, Shulan; Xu, Ya

    2018-02-01

    The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.

  2. Construction and identification of a D-Vine model applied to the probability distribution of modal parameters in structural dynamics

    NASA Astrophysics Data System (ADS)

    Dubreuil, S.; Salaün, M.; Rodriguez, E.; Petitjean, F.

    2018-01-01

    This study investigates the construction and identification of the probability distribution of random modal parameters (natural frequencies and effective parameters) in structural dynamics. As these parameters present various types of dependence structures, the retained approach is based on pair copula construction (PCC). A literature review leads us to choose a D-Vine model for the construction of modal parameters probability distributions. Identification of this model is based on likelihood maximization which makes it sensitive to the dimension of the distribution, namely the number of considered modes in our context. To this respect, a mode selection preprocessing step is proposed. It allows the selection of the relevant random modes for a given transfer function. The second point, addressed in this study, concerns the choice of the D-Vine model. Indeed, D-Vine model is not uniquely defined. Two strategies are proposed and compared. The first one is based on the context of the study whereas the second one is purely based on statistical considerations. Finally, the proposed approaches are numerically studied and compared with respect to their capabilities, first in the identification of the probability distribution of random modal parameters and second in the estimation of the 99 % quantiles of some transfer functions.

  3. Reduced order modeling of fluid/structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph

    2009-11-01

    This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preservesmore » numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.« less

  4. Photogrammetry and computer-aided piping design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keneflick, J.F.; Chirillo, R.D.

    1985-02-18

    Three-dimensional measurements taken from photographs of a plant model can be digitized and linked with computer-aided piping design. This can short-cut the design and construction of new plants and expedite repair and retrofitting projects. Some designers bridge the gap between model and computer by digitizing from orthographic prints obtained via orthography or the laser scanning of model sections. Such valve or fitting then processed is described in this paper. The marriage of photogrammetry and computer-aided piping design can economically produce such numerical drawings.

  5. Branching Patterns and Stepped Leaders in an Electric-Circuit Model for Creeping Discharge

    NASA Astrophysics Data System (ADS)

    Hidetsugu Sakaguchi,; Sahim M. Kourkouss,

    2010-06-01

    We construct a two-dimensional electric circuit model for creeping discharge. Two types of discharge, surface corona and surface leader, are modeled by a two-step function of conductance. Branched patterns of surface leaders surrounded by the surface corona appear in numerical simulation. The fractal dimension of branched discharge patterns is calculated by changing voltage and capacitance. We find that surface leaders often grow stepwise in time, as is observed in lightning leaders of thunder.

  6. Numerical simulation of injection process of warm carbon dioxide into layer saturated with methane and its hydrate

    NASA Astrophysics Data System (ADS)

    Khasanov, M. K.; Stolpovsky, M. V.; Gimaltdinov, I. K.

    2018-05-01

    In this article, in a flat-one-dimensional approximation, a mathematical model is presented for injecting warm carbon dioxide into a methane hydrate formation of finite length. It is established that the model of formation of hydrate of carbon dioxide in the absence of an area saturated with methane and water, under certain parameters, leads to thermodynamic contradiction. The mathematical model of carbon dioxide injection with formation of the region saturated with methane and water is constructed.

  7. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Esben F.; Henriksen, Niels E.

    2016-06-28

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes — from a time-domain as wellmore » as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.« less

  8. A domain-specific design architecture for composite material design and aircraft part redesign

    NASA Technical Reports Server (NTRS)

    Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.

    1992-01-01

    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in fact this difficulty that our research will address.

  9. Structural and robustness properties of smart-city transportation networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  10. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  11. Time-domain full waveform inversion using instantaneous phase information with damping

    NASA Astrophysics Data System (ADS)

    Luo, Jingrui; Wu, Ru-Shan; Gao, Fuchun

    2018-06-01

    In time domain, the instantaneous phase can be obtained from the complex seismic trace using Hilbert transform. The instantaneous phase information has great potential in overcoming the local minima problem and improving the result of full waveform inversion. However, the phase wrapping problem, which comes from numerical calculation, prevents its application. In order to avoid the phase wrapping problem, we choose to use the exponential phase combined with the damping method, which gives instantaneous phase-based multi-stage inversion. We construct the objective functions based on the exponential instantaneous phase, and also derive the corresponding gradient operators. Conventional full waveform inversion and the instantaneous phase-based inversion are compared with numerical examples, which indicates that in the case without low frequency information in seismic data, our method is an effective and efficient approach for initial model construction for full waveform inversion.

  12. Numerical Modelling of Rayleigh Wave Propagation in Course of Rapid Impulse Compaction

    NASA Astrophysics Data System (ADS)

    Herbut, Aneta; Rybak, Jarosław

    2017-10-01

    As the soil improvement technologies are the area of a rapid development, they require designing and implementing novel methods of control and calibration in order to ensure the safety of geotechnical works. At Wroclaw University of Science and Technology (Poland), these new methods are continually developed with the aim to provide the appropriate tools for the preliminary design of work process, as well as for the further ongoing on-site control of geotechnical works (steel sheet piling, pile driving or soil improvement technologies). The studies include preliminary numerical simulations and field tests concerning measurements and continuous histogram recording of shocks and vibrations and its ground-born dynamic impact on engineering structures. The impact of vibrations on reinforced concrete and masonry structures in the close proximity of the construction site may be destroying in both architectural and structural meaning. Those limits are juxtaposed in codes of practice, but always need an individual judgment. The results and observations make it possible to delineate specific modifications to the parameters of technology applied (e.g. hammer drop height). On the basis of numerous case studies of practical applications, already summarized and published, we were able to formulate the guidelines for work on the aforementioned sites. This work presents specific aspects of the active design (calibration of building site numerical model) by means of technology calibration, using the investigation of the impact of vibrations that occur during the Impulse Compaction on adjacent structures. A case study entails the impact of construction works on Rayleigh wave propagation in the zone of 100 m (radius) around the Compactor.

  13. Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang

    2015-12-15

    Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less

  14. Computational reacting gas dynamics

    NASA Technical Reports Server (NTRS)

    Lam, S. H.

    1993-01-01

    In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).

  15. Enhanced stability of car-following model upon incorporation of short-term driving memory

    NASA Astrophysics Data System (ADS)

    Liu, Da-Wei; Shi, Zhong-Ke; Ai, Wen-Huan

    2017-06-01

    Based on the full velocity difference model, a new car-following model is developed to investigate the effect of short-term driving memory on traffic flow in this paper. Short-term driving memory is introduced as the influence factor of driver's anticipation behavior. The stability condition of the newly developed model is derived and the modified Korteweg-de Vries (mKdV) equation is constructed to describe the traffic behavior near the critical point. Via numerical method, evolution of a small perturbation is investigated firstly. The results show that the improvement of this new car-following model over the previous ones lies in the fact that the new model can improve the traffic stability. Starting and breaking processes of vehicles in the signalized intersection are also investigated. The numerical simulations illustrate that the new model can successfully describe the driver's anticipation behavior, and that the efficiency and safety of the vehicles passing through the signalized intersection are improved by considering short-term driving memory.

  16. Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups

    NASA Astrophysics Data System (ADS)

    Topaz, Chad

    2004-03-01

    We construct a continuum model for the motion of biological organisms experiencing social interactions and study its pattern-forming behavior. The model takes the form of a conservation law in two spatial dimensions. Social interactions are modeled in the velocity term, which is nonlocal in the population density. The dynamics of the model may be uniquely decomposed into incompressible motion and potential motion. For the purely incompressible case, the model resembles that for fluid dynamical vortex patches. There exist solutions that have constant population density and compact support for all time. Numerical simulations produce rotating structures with circular cores and spiral arms, reminiscent of naturally observed swarms such as ant mills. For the purely potential case, the model resembles a nonlocal (forwards or backwards) porous media equation, describing aggregation or dispersion of the population. For the aggregative case, the population clumps into regions of high and low density with a predictable characteristic length scale that is confirmed by numerical simulations.

  17. Model reduction for experimental thermal characterization of a holding furnace

    NASA Astrophysics Data System (ADS)

    Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane

    2017-09-01

    Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts. The definition of the structure of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. Internal sensors outputs, together with this model, can be used for assessing the thermal state of the furnace through an inverse approach, for a better control. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. The internal induction heat source as well as the transient radiative transfer inside the furnace are calculated through this detailed model. A reduced lumped body model has been constructed to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm, using two synthetic temperature signals with a further validation test.

  18. On central-difference and upwind schemes

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1990-01-01

    A class of numerical dissipation models for central-difference schemes constructed with second- and fourth-difference terms is considered. The notion of matrix dissipation associated with upwind schemes is used to establish improved shock capturing capability for these models. In addition, conditions are given that guarantee that such dissipation models produce a Total Variation Diminishing (TVD) scheme. Appropriate switches for this type of model to ensure satisfaction of the TVD property are presented. Significant improvements in the accuracy of a central-difference scheme are demonstrated by computing both inviscid and viscous transonic airfoil flows.

  19. Dynamics of a stochastic cell-to-cell HIV-1 model with distributed delay

    NASA Astrophysics Data System (ADS)

    Ji, Chunyan; Liu, Qun; Jiang, Daqing

    2018-02-01

    In this paper, we consider a stochastic cell-to-cell HIV-1 model with distributed delay. Firstly, we show that there is a global positive solution of this model before exploring its long-time behavior. Then sufficient conditions for extinction of the disease are established. Moreover, we obtain sufficient conditions for the existence of an ergodic stationary distribution of the model by constructing a suitable stochastic Lyapunov function. The stationary distribution implies that the disease is persistent in the mean. Finally, we provide some numerical examples to illustrate theoretical results.

  20. Numerical simulation of aerodynamic characteristics of multi-element wing with variable flap

    NASA Astrophysics Data System (ADS)

    Lv, Hongyan; Zhang, Xinpeng; Kuang, Jianghong

    2017-10-01

    Based on the Reynolds averaged Navier-Stokes equation, the mesh generation technique and the geometric modeling method, the influence of the Spalart-Allmaras turbulence model on the aerodynamic characteristics is investigated. In order to study the typical configuration of aircraft, a similar DLR-F11 wing is selected. Firstly, the 3D model of wing is established, and the 3D model of plane flight, take-off and landing is established. The mesh structure of the flow field is constructed and the mesh is generated by mesh generation software. Secondly, by comparing the numerical simulation with the experimental data, the prediction of the aerodynamic characteristics of the multi section airfoil in takeoff and landing stage is validated. Finally, the two flap deflection angles of take-off and landing are calculated, which provide useful guidance for the aerodynamic characteristics of the wing and the flap angle design of the wing.

  1. Verification of Numerical Solutions for the Deployment of the Highly Nonlinear MARSIS Antenna Boom Lenticular Joints

    NASA Technical Reports Server (NTRS)

    Adams, Douglas S.; Wu, Shih-Chin

    2006-01-01

    The MARSIS antenna booms are constructed using lenticular hinges between straight boom segments in a novel design which allows the booms to be extremely lightweight while retaining a high stiffness and well defined structural properties once they are deployed. Lenticular hinges are elegant in form but are complicated to model as they deploy dynamically and require highly specialized nonlinear techniques founded on carefully measured mechanical properties. Results from component level testing were incorporated into a highly specialized ADAMS model which employed an automated damping algorithm to account for the discontinuous boom lengths formed during the deployment. Additional models with more limited capabilities were also developed in both DADS and ABAQUS to verify the ADAMS model computations and to help better define the numerical behavior of the models at the component and system levels. A careful comparison is made between the ADAMS and DADS models in a series of progressive steps in order to verify their numerical results. Different trade studies considered in the model development are outlined to demonstrate a suitable level of model fidelity. Some model sensitivities to various parameters are explored using subscale and full system models. Finally, some full system DADS models are exercised to illustrate the limitations of traditional modeling techniques for variable geometry systems which were overcome in the ADAMS model.

  2. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers

    PubMed Central

    Lyu, Sainan; Chan, Albert P. C.; Wong, Francis K. W.

    2018-01-01

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East. PMID:29522503

  3. Construction of a stochastic model of track geometry irregularities and validation through experimental measurements of dynamic loading

    NASA Astrophysics Data System (ADS)

    Panunzio, Alfonso M.; Puel, G.; Cottereau, R.; Simon, S.; Quost, X.

    2017-03-01

    This paper describes the construction of a stochastic model of urban railway track geometry irregularities, based on experimental data. The considered irregularities are track gauge, superelevation, horizontal and vertical curvatures. They are modelled as random fields whose statistical properties are extracted from a large set of on-track measurements of the geometry of an urban railway network. About 300-1000 terms are used in the Karhunen-Loève/Polynomial Chaos expansions to represent the random fields with appropriate accuracy. The construction of the random fields is then validated by comparing on-track measurements of the contact forces and numerical dynamics simulations for different operational conditions (train velocity and car load) and horizontal layouts (alignment, curve). The dynamics simulations are performed both with and without randomly generated geometrical irregularities for the track. The power spectrum densities obtained from the dynamics simulations with the model of geometrical irregularities compare extremely well with those obtained from the experimental contact forces. Without irregularities, the spectrum is 10-50 dB too low.

  4. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  5. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    DOE PAGES

    Zhang, Chao; Xu, Jun; Cao, Lei; ...

    2017-05-05

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less

  6. Electro-magneto interaction in fractional Green-Naghdi thermoelastic solid with a cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Ezzat, M. A.; El-Bary, A. A.

    2018-01-01

    A unified mathematical model of Green-Naghdi's thermoelasticty theories (GN), based on fractional time-derivative of heat transfer is constructed. The model is applied to solve a one-dimensional problem of a perfect conducting unbounded body with a cylindrical cavity subjected to sinusoidal pulse heating in the presence of an axial uniform magnetic field. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Comparisons are made with the results predicted by the two theories. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

  7. Shock Melting of Permafrost on Mars: Water Ice Multiphase Equation of State for Numerical Modeling and Its Testing

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    2005-01-01

    The presence of water/ice/brine in upper layers of Martian crust affects many processes of impact cratering. Modeling of these effects promises better understanding of Martian cratering records. We present here the new ANEOS-based multiphase equation of state for water/ice constructed for usage in hydrocodes and first numerical experiments on permafrost shock melting. Preliminary results show that due to multiple shock compression of ice inclusions in rocks the entropy jump in shocked ice is smaller than in pure ice for the same shock pressure. Hence previous estimates of ice melting during impact cratering on Mars should be re-evaluated. Additional information is included in the original extended abstract.

  8. Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system

    NASA Astrophysics Data System (ADS)

    Kim, Euiyoung; Cho, Maenghyo

    2017-11-01

    In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.

  9. Analysis of Indonesian educational system standard with KSIM cross-impact method

    NASA Astrophysics Data System (ADS)

    Arridjal, F.; Aldila, D.; Bustamam, A.

    2017-07-01

    The Result of The Programme of International Student Assessment (PISA) on 2012 shows that Indonesia is on 64'th position from 65 countries in Mathematics Mean Score. The 2013 Learning Curve Mapping, Indonesia is included in the 10th category of countries with the lowest performance on cognitive skills aspect, i.e. 37'th position from 40 countries. Competency is built by 3 aspects, one of them is cognitive aspect. The low result of mapping on cognitive aspect, describe the low of graduate competences as an output of Indonesia National Education System (INES). INES adopting a concept Eight Educational System Standards (EESS), one of them is graduate competency standard which connected directly with Indonesia's students. This research aims is to model INES by using KSIM cross-impact. Linear regression models of EESS constructed using the accreditation national data of Senior High Schools in Indonesia. The results then interpreted as impact value on the construction of KSIM cross-impact INES. The construction is used to analyze the interaction of EESS and doing numerical simulation for possible public policy in the education sector, i.e. stimulate the growth of education staff standard, content, process and infrastructure. All simulations of public policy has been done with 2 methods i.e with a multiplier impact method and with constant intervention method. From numerical simulation result, it is shown that stimulate the growth standard of content in the construction KSIM cross-impact EESS is the best option for public policy to maximize the growth of graduate competency standard.

  10. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.

    PubMed

    Schmitt, S; Haeufle, D F B; Blickhan, R; Günther, M

    2012-09-01

    The biological muscle is a powerful, flexible and versatile actuator. Its intrinsic characteristics determine the way how movements are generated and controlled. Robotic and prosthetic applications expect to profit from relying on bio-inspired actuators which exhibit natural (muscle-like) characteristics. As of today, when constructing a technical actuator, it is not possible to copy the exact molecular structure of a biological muscle. Alternatively, the question may be put how its characteristics can be realized with known mechanical components. Recently, a mechanical construct for an artificial muscle was proposed, which exhibits hyperbolic force-velocity characteristics. In this paper, we promote the constructing concept which is made by substantiating the mechanical design of biological muscle by a simple model, proving the feasibility of its real-world implementation, and checking their output both for mutual consistency and agreement with biological measurements. In particular, the relations of force, enthalpy rate and mechanical efficiency versus contraction velocity of both the construct's technical implementation and its numerical model were determined in quick-release experiments. All model predictions for these relations and the hardware results are now in good agreement with the biological literature. We conclude that the construct represents a mechanical concept of natural actuation, which is suitable for laying down some useful suggestions when designing bio-inspired actuators.

  11. Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions

    NASA Technical Reports Server (NTRS)

    Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.

    2014-01-01

    Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.

  12. Large Scale Survey Data in Career Development Research

    ERIC Educational Resources Information Center

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  13. Bianisotropic-critical-state model to study flux cutting in type-II superconductors at parallel geometry

    NASA Astrophysics Data System (ADS)

    Romero-Salazar, C.

    2016-04-01

    A critical-state model is postulated that incorporates, for the first time, the structural anisotropy and flux-line cutting effect in a type-II superconductor. The model is constructed starting from the theoretical scheme of Romero-Salazar and Pérez-Rodríguez to study the anisotropy induced by flux cutting. Here, numerical calculations of the magnetic induction and static magnetization are presented for samples under an alternating magnetic field, orthogonal to a static dc-bias one. The interplay of the two anisotropies is analysed by comparing the numerical results with available experimental data for an yttrium barium copper oxide (YBCO) plate, and a vanadium-titanium (VTi) strip, subjected to a slowly oscillating field {H}y({H}z) in the presence of a static field {H}z({H}y).

  14. A Fixed-point Scheme for the Numerical Construction of Magnetohydrostatic Atmospheres in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Gilchrist, S. A.; Braun, D. C.; Barnes, G.

    2016-12-01

    Magnetohydrostatic models of the solar atmosphere are often based on idealized analytic solutions because the underlying equations are too difficult to solve in full generality. Numerical approaches, too, are often limited in scope and have tended to focus on the two-dimensional problem. In this article we develop a numerical method for solving the nonlinear magnetohydrostatic equations in three dimensions. Our method is a fixed-point iteration scheme that extends the method of Grad and Rubin ( Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy 31, 190, 1958) to include a finite gravity force. We apply the method to a test case to demonstrate the method in general and our implementation in code in particular.

  15. Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1978-01-01

    Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design. A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented.

  16. Dynamic determination of kinetic parameters and computer simulation of growth of Clostridium perfringens in cooked beef

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop a new one-step methodology that uses a dynamic approach to directly construct a tertiary model for prediction of the growth of C. perfringens in cooked beef. This methodology was based on numerical analysis and optimization of both primary and secondary...

  17. Comparing the Effectiveness of SPSS and EduG Using Different Designs for Generalizability Theory

    ERIC Educational Resources Information Center

    Teker, Gulsen Tasdelen; Guler, Nese; Uyanik, Gulden Kaya

    2015-01-01

    Generalizability theory (G theory) provides a broad conceptual framework for social sciences such as psychology and education, and a comprehensive construct for numerous measurement events by using analysis of variance, a strong statistical method. G theory, as an extension of both classical test theory and analysis of variance, is a model which…

  18. Investigation of Rock Mass Stability Around the Tunnels in an Underground Mine in USA Using Three-Dimensional Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Kulatilake, P. H. S. W.; Sandbak, L. A.

    2018-02-01

    The stability of the rock mass around the tunnels in an underground mine was investigated using the distinct element method. A three-dimensional model was developed based on the available geological, geotechnical, and mine construction information. It incorporates a complex lithological system, persistent and non-persistent faults, and a complex tunnel system including backfilled tunnels. The strain-softening constitutive model was applied for the rock masses. The rock mass properties were estimated using the Hoek-Brown equations based on the intact rock properties and the RMR values. The fault material behavior was modeled using the continuously yielding joint model. Sequential construction and rock supporting procedures were simulated based on the way they progressed in the mine. Stress analyses were performed to study the effect of the horizontal in situ stresses and the variability of rock mass properties on tunnel stability, and to evaluate the effectiveness of rock supports. The rock mass behavior was assessed using the stresses, failure zones, deformations around the tunnels, and the fault shear displacement vectors. The safety of rock supports was quantified using the bond shear and bolt tensile failures. Results show that the major fault and weak interlayer have distinct influences on the displacements and stresses around the tunnels. Comparison between the numerical modeling results and the field measurements indicated the cases with the average rock mass properties, and the K 0 values between 0.5 and 1.25 provide satisfactory agreement with the field measurements.

  19. Flexible language constructs for large parallel programs

    NASA Technical Reports Server (NTRS)

    Rosing, Matthew; Schnabel, Robert

    1993-01-01

    The goal of the research described is to develop flexible language constructs for writing large data parallel numerical programs for distributed memory (MIMD) multiprocessors. Previously, several models have been developed to support synchronization and communication. Models for global synchronization include SIMD (Single Instruction Multiple Data), SPMD (Single Program Multiple Data), and sequential programs annotated with data distribution statements. The two primary models for communication include implicit communication based on shared memory and explicit communication based on messages. None of these models by themselves seem sufficient to permit the natural and efficient expression of the variety of algorithms that occur in large scientific computations. An overview of a new language that combines many of these programming models in a clean manner is given. This is done in a modular fashion such that different models can be combined to support large programs. Within a module, the selection of a model depends on the algorithm and its efficiency requirements. An overview of the language and discussion of some of the critical implementation details is given.

  20. Comparison of free-piston Stirling engine model predictions with RE1000 engine test data

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1984-01-01

    Predictions of a free-piston Stirling engine model are compared with RE1000 engine test data taken at NASA-Lewis Research Center. The model validation and the engine testing are being done under a joint interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA-Lewis. A kinematic code developed at Lewis was upgraded to permit simulation of free-piston engine performance; it was further upgraded and modified at Lewis and is currently being validated. The model predicts engine performance by numerical integration of equations for each control volume in the working space. Piston motions are determined by numerical integration of the force balance on each piston or can be specified as Fourier series. In addition, the model Fourier analyzes the various piston forces to permit the construction of phasor force diagrams. The paper compares predicted and experimental values of power and efficiency and shows phasor force diagrams for the RE1000 engine displacer and piston. Further development plans for the model are also discussed.

  1. Fast calculation of low altitude disturbing gravity for ballistics

    NASA Astrophysics Data System (ADS)

    Wang, Jianqiang; Wang, Fanghao; Tian, Shasha

    2018-03-01

    Fast calculation of disturbing gravity is a key technology in ballistics while spherical cap harmonic(SCH) theory can be used to solve this problem. By using adjusted spherical cap harmonic(ASCH) methods, the spherical cap coordinates are projected into a global coordinates, then the non-integer associated Legendre functions(ALF) of SCH are replaced by integer ALF of spherical harmonics(SH). This new method is called virtual spherical harmonics(VSH) and some numerical experiment were done to test the effect of VSH. The results of earth's gravity model were set as the theoretical observation, and the model of regional gravity field was constructed by the new method. Simulation results show that the approximated errors are less than 5mGal in the low altitude range of the central region. In addition, numerical experiments were conducted to compare the calculation speed of SH model, SCH model and VSH model, and the results show that the calculation speed of the VSH model is raised one order magnitude in a small scope.

  2. Investigation of stability in a two-delay model of the ultradian oscillations in glucose-insulin regulation

    NASA Astrophysics Data System (ADS)

    Huard, B.; Easton, J. F.; Angelova, M.

    2015-09-01

    In this paper, a two-delay model for the ultradian oscillatory behaviour of the glucose-insulin regulation system is studied. Hill functions are introduced to model nonlinear physiological interactions within this system and ranges on parameters reproducing biological oscillations are determined on the basis of analytical and numerical considerations. Local and global stability are investigated and delay-dependent conditions are obtained through the construction of Lyapunov-Krasovskii functionals. The effect of Hill parameters on these conditions, as well as the boundary of the stability region in the delay domain, are established for the first time. Numerical simulations demonstrate that the model with Hill functions represents well the oscillatory behaviour of the system with the advantage of incorporating new meaningful parameters. The influence of the time delays on the period of oscillations and the sensitivity of the latter to model parameters, in particular glucose infusion, are investigated. The model can contribute to the better understanding and treatment of diabetes.

  3. Development and Validation of an NPSS Model of a Small Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Vannoy, Stephen Michael

    Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (˜230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine's performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.

  4. Improved solar models constructed with a formulation of convection for stellar structure and evolution calculations without the mixing-length theory approximations

    NASA Technical Reports Server (NTRS)

    Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino

    1993-01-01

    We have updated a previous attempt to incorporate within a solar model a treatment of convection based upon numerical simulations of convection rather than mixing-length theory (MLT). We have modified our formulation of convection for a better treatment of the kinetic energy flux. Our solar model has been updated to include a complete range of OPAL opacities, the Debye-Hueckel correction to the equation of state, helium diffusion due to gravitational settling, and atmospheres by Kurucz. We construct a series of models using both MLT and our revised formulation of convection and the compared results to measurements of the solar radius, the solar luminosity, and the depth of the solar convection zone as inferred from helioseismology. We find X(solar) = 0.702 +/- 0.005, Y(solar) = 0.278 +/- 0.005, and Z(solar) = 0.0193 +/- 0.0005.

  5. Model of two infectious diseases in nettle caterpillar population

    NASA Astrophysics Data System (ADS)

    Firdausi, F. Z.; Nuraini, N.

    2016-04-01

    Palm oil is a vital commodity to the economy of Indonesia. The area of oil palm plantations in Indonesia has increased from year to year. However, the effectiveness of palm oil production is reduced by pest infestation. One of the pest which often infests oil palm plantations is nettle caterpillar. The pest control used in this study is biological control, viz. biological agents given to oil palm trees. This paper describes a mathematical model of two infectious diseases in nettle caterpillar population. The two infectious diseases arise due to two biological agents, namely Bacillus thuringiensis bacterium and parasite which usually attack nettle caterpillars. The derivation of the model constructed in this paper is obtained from ordinary differential equations without time delay. The equilibrium points are analyzed. Two of three equilibrium points are stable if the Routh-Hurwitz criteria are fulfilled. In addition, this paper also presents the numerical simulation of the model which has been constructed.

  6. Preventing Superinfection in Malaria Spreads with Repellent and Medical Treatment Policy

    NASA Astrophysics Data System (ADS)

    Fitri, Fanny; Aldila, Dipo

    2018-03-01

    Malaria is a kind of a vector-borne disease. That means this disease needs a vector (in this case, the anopheles mosquito) to spread. In this article, a mathematical model for malaria disease spread will be discussed. The model is constructed as a seven-dimensional of a non-linear ordinary differential equation. The interventions of treatment for infected humans and use of repellent are included in the model to see how these interventions could be considered as alternative ways to control the spread of malaria. Analysis will be made of the disease-free equilibrium point along with its local stability criteria, construction of the next generation matrix which followed with the sensitivity analysis of basic reproduction number. We found that both medical treatment and repellent intervention succeeded in reducing the basic reproduction number as the endemic indicator of the model. Finally, some numerical simulations are given to give a better interpretation of the analytical results.

  7. Meso-modeling of Carbon Fiber Composite for Crash Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shih-Po; Chen, Yijung; Zeng, Danielle

    2017-04-06

    In the conventional approach, the material properties for crash safety simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties used in crash simulations. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to correlate the material models in the intermediate stage. In this paper, a Mazda Tube under high-impact velocity is chosen as an example for themore » crash safety analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction. An LS-DYNA meso-model was constructed with orthotropic material models counting for the single-layer material behaviors. Between layers, a node-based tie-break contact was used for modeling the delamination of the composite material. Since fiber directions are not single-oriented, the lay-up effects could be an important effect. From the first numerical trial, premature material failure occurred due to the use of material parameters obtained directly from the coupon tests. Some parametric studies were conducted to identify the cause of the numerical instability. The finding is that the material failure strength used in the numerical model needs to be enlarged to stabilize the numerical model. Some hypothesis was made to provide the foundation for enlarging the failure strength and the corresponding experiments will be conducted to validate the hypothesis.« less

  8. Fluid Stochastic Petri Nets: Theory, Applications, and Solution

    NASA Technical Reports Server (NTRS)

    Horton, Graham; Kulkarni, Vidyadhar G.; Nicol, David M.; Trivedi, Kishor S.

    1996-01-01

    In this paper we introduce a new class of stochastic Petri nets in which one or more places can hold fluid rather than discrete tokens. We define a class of fluid stochastic Petri nets in such a way that the discrete and continuous portions may affect each other. Following this definition we provide equations for their transient and steady-state behavior. We present several examples showing the utility of the construct in communication network modeling and reliability analysis, and discuss important special cases. We then discuss numerical methods for computing the transient behavior of such nets. Finally, some numerical examples are presented.

  9. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids

    PubMed Central

    2016-01-01

    Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs. PMID:26650970

  10. Numerical developments for short-pulsed Near Infra-Red laser spectroscopy. Part I: direct treatment

    NASA Astrophysics Data System (ADS)

    Boulanger, Joan; Charette, André

    2005-03-01

    This two part study is devoted to the numerical treatment of short-pulsed laser near infra-red spectroscopy. The overall goal is to address the possibility of numerical inverse treatment based on a recently developed direct model to solve the transient radiative transfer equation. This model has been constructed in order to incorporate the last improvements in short-pulsed laser interaction with semi-transparent media and combine a discrete ordinates computing of the implicit source term appearing in the radiative transfer equation with an explicit treatment of the transport of the light intensity using advection schemes, a method encountered in reactive flow dynamics. The incident collimated beam is analytically solved through Bouger Beer Lambert extinction law. In this first part, the direct model is extended to fully non-homogeneous materials and tested with two different spatial schemes in order to be adapted to the inversion methods presented in the following second part. As a first point, fundamental methods and schemes used in the direct model are presented. Then, tests are conducted by comparison with numerical simulations given as references. In a third and last part, multi-dimensional extensions of the code are provided. This allows presentation of numerical results of short pulses propagation in 1, 2 and 3D homogeneous and non-homogeneous materials given some parametrical studies on medium properties and pulse shape. For comparison, an integral method adapted to non-homogeneous media irradiated by a pulsed laser beam is also developed for the 3D case.

  11. Local entanglement entropy of fermions as a marker of quantum phase transition in the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Cha, Min-Chul; Chung, Myung-Hoon

    2018-05-01

    We study quantum phase transition of interacting fermions by measuring the local entanglement entropy in the one-dimensional Hubbard model. The reduced density matrices for blocks of a few sites are constructed from the ground state wave function in infinite systems by adopting the matrix product state representation where time-evolving block decimations are performed to obtain the lowest energy states. The local entanglement entropy, constructed from the reduced density matrices, as a function of the chemical potential shows clear signatures of the Mott transition. The value of the central charge, numerically determined from the universal properties of the local entanglement entropy, confirms that the transition is caused by the suppression of the charge degrees of freedom.

  12. Building Interactive Simulations in Web Pages without Programming.

    PubMed

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  13. Viable tensor-to-scalar ratio in a symmetric matter bounce

    NASA Astrophysics Data System (ADS)

    Nath Raveendran, Rathul; Chowdhury, Debika; Sriramkumar, L.

    2018-01-01

    Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectra of primordial perturbations after the bounce, the challenge has been to construct completely symmetric bounces that lead to a tensor-to-scalar ratio which is small enough to be consistent with the recent cosmological data. In this work, we construct a model involving two scalar fields (a canonical field and a non-canonical ghost field) to drive the symmetric matter bounce and study the evolution of the scalar perturbations in the model. We find that the model can be completely described in terms of a single parameter, viz. the ratio of the scale associated with the bounce to the value of the scale factor at the bounce. We evolve the scalar perturbations numerically across the bounce and evaluate the scalar power spectra after the bounce. We show that, while the scalar and tensor perturbation spectra are scale invariant over scales of cosmological interest, the tensor-to-scalar ratio proves to be much smaller than the current upper bound from the observations of the cosmic microwave background anisotropies by the Planck mission. We also support our numerical analysis with analytical arguments.

  14. Optimal design of composite hip implants using NASA technology

    NASA Technical Reports Server (NTRS)

    Blake, T. A.; Saravanos, D. A.; Davy, D. T.; Waters, S. A.; Hopkins, D. A.

    1993-01-01

    Using an adaptation of NASA software, we have investigated the use of numerical optimization techniques for the shape and material optimization of fiber composite hip implants. The original NASA inhouse codes, were originally developed for the optimization of aerospace structures. The adapted code, which was called OPORIM, couples numerical optimization algorithms with finite element analysis and composite laminate theory to perform design optimization using both shape and material design variables. The external and internal geometry of the implant and the surrounding bone is described with quintic spline curves. This geometric representation is then used to create an equivalent 2-D finite element model of the structure. Using laminate theory and the 3-D geometric information, equivalent stiffnesses are generated for each element of the 2-D finite element model, so that the 3-D stiffness of the structure can be approximated. The geometric information to construct the model of the femur was obtained from a CT scan. A variety of test cases were examined, incorporating several implant constructions and design variable sets. Typically the code was able to produce optimized shape and/or material parameters which substantially reduced stress concentrations in the bone adjacent of the implant. The results indicate that this technology can provide meaningful insight into the design of fiber composite hip implants.

  15. A Fiber-Optic Coupled Telescope for Water Vapor DIAL Receivers

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Lonn, Frederick

    1998-01-01

    A fiber-optic coupled telescope of low complexity was constructed and tested. The major loss mechanisms of the optical system have been characterized. Light collected by the receiver mirror is focused onto an optical fiber, and the output of the fiber is filtered by an interference filter and then focused onto an APD detector. This system was used in lidar field measurements with a 532-nm Nd:YAG laser beam. The results were encouraging. A numerical model used for calculation of the expected return signal agreed with the lidar return signal obtained. The assembled system was easy to align and operate and weighed about 8 kg for a 30 cm (12") mirror system. This weight is low enough to allow mounting of the fiber-optic telescope receiver system in a UAV. Furthermore, the good agreement between the numerical lidar model and the performance of the actual receiver system, suggests that this model may be used for estimation of the performance of this and other lidar systems in the future. Such telescopes are relatively easy to construct and align. The fiber optic cable allows easy placement of the optical detector in any position. These telescope systems should find widespread use in aircraft and space home DIAL water vapor receiver systems.

  16. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most groundwater discharge recharged within the boundaries of the shipyard is to the dry docks; only at the western end of the shipyard does groundwater discharge directly to Puget Sound. Particle tracking for the existing long-term monitoring well network suggests that only a few wells intercept groundwater that originates as recharge within the shipyard boundary.

  17. Multi-Scale Experiments to Evaluate Mobility Control Methods for Enhancing the Sweep Efficiency of Injected Subsurface Remediation Amendments

    DTIC Science & Technology

    2010-08-01

    petroleum industry. Moreover, heterogeneity control strategies can be applied to improve the efficiency of a variety of in situ remediation technologies...conditions that differ significantly from those found in environmental systems . Therefore many of the design criteria used by the petroleum industry for...were helpful in constructing numerical models in up-scaled systems (2-D tanks). The UTCHEM model was able to successfully simulate 2-D experimental

  18. Numerical simulation model of hyperacute/acute stage white matter infarction.

    PubMed

    Sakai, Koji; Yamada, Kei; Oouchi, Hiroyuki; Nishimura, Tsunehiko

    2008-01-01

    Although previous studies have revealed the mechanisms of changes in diffusivity (apparent diffusion coefficient [ADC]) in acute brain infarction, changes in diffusion anisotropy (fractional anisotropy [FA]) in white matter have not been examined. We hypothesized that membrane permeability as well as axonal swelling play important roles, and we therefore constructed a simulation model using random walk simulation to replicate the diffusion of water molecules. We implemented a numerical diffusion simulation model of normal and infarcted human brains using C++ language. We constructed this 2-pool model using simple tubes aligned in a single direction. Random walk simulation diffused water. Axon diameters and membrane permeability were then altered in step-wise fashion. To estimate the effects of axonal swelling, axon diameters were changed from 6 to 10 microm. Membrane permeability was altered from 0% to 40%. Finally, both elements were combined to explain increasing FA in the hyperacute stage of white matter infarction. The simulation demonstrated that simple water shift into the intracellular space reduces ADC and increases FA, but not to the extent expected from actual human cases (ADC approximately 50%; FA approximately +20%). Similarly, membrane permeability alone was insufficient to explain this phenomenon. However, a combination of both factors successfully replicated changes in diffusivity indices. Both axonal swelling and reduced membrane permeability appear important in explaining changes in ADC and FA based on eigenvalues in hyperacute-stage white matter infarction.

  19. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  20. Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.; deGroh, H. C.

    2001-01-01

    As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.

  1. Scripting MODFLOW Model Development Using Python and FloPy.

    PubMed

    Bakker, M; Post, V; Langevin, C D; Hughes, J D; White, J T; Starn, J J; Fienen, M N

    2016-09-01

    Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. © 2016, National Ground Water Association.

  2. Numerical investigation of potential stratification caused by a cryogenic helium spill inside a tunnel

    NASA Astrophysics Data System (ADS)

    Sinclair, Cameron; Malecha, Ziemowit; Jedrusyna, Artur

    2018-04-01

    The sudden release of cryogenic fluid into an accelerator tunnel can pose a significant health and safety risk. For this reason, it is important to evaluate the consequences of such a spill. Previous publications concentrated on either Oxygen Deficiency Hazard or the evaluation of mathematical models using experimental data. No studies to date have focussed on the influence of cryogen inlet conditions on flow development. In this paper, the stratification behaviour of low-temperature helium released into an air-filled accelerator tunnel is investigated for varying helium inlet diameters. A numerical model was constructed using the OpenFOAM Toolbox of a generalised 3D geometry, with similar hydraulic characteristics to the CERN and SLAC tunnels. This model has been validated against published experimental and numerical data. A dimensionless parameter, based on Bakke number, was then determined for the onset of stratification, taking into account the helium inlet diameter; a dimensionless parameter for the degree of stratification was also employed. The simulated flow behaviour is described in terms of these dimensionless parameters, as well as the temperature and oxygen concentration at various heights throughout the tunnel.

  3. NASA National Combustion Code Simulations

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony; Davoudzadeh, Farhad

    2001-01-01

    A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.

  4. Normal modes of the shallow water system on the cubed sphere

    NASA Astrophysics Data System (ADS)

    Kang, H. G.; Cheong, H. B.; Lee, C. H.

    2017-12-01

    Spherical harmonics expressed as the Rossby-Haurwitz waves are the normal modes of non-divergent barotropic model. Among the normal modes in the numerical models, the most unstable mode will contaminate the numerical results, and therefore the investigation of normal mode for a given grid system and a discretiztaion method is important. The cubed-sphere grid which consists of six identical faces has been widely adopted in many atmospheric models. This grid system is non-orthogonal grid so that calculation of the normal mode is quiet challenge problem. In the present study, the normal modes of the shallow water system on the cubed sphere discretized by the spectral element method employing the Gauss-Lobatto Lagrange interpolating polynomials as orthogonal basis functions is investigated. The algebraic equations for the shallow water equation on the cubed sphere are derived, and the huge global matrix is constructed. The linear system representing the eigenvalue-eigenvector relations is solved by numerical libraries. The normal mode calculated for the several horizontal resolution and lamb parameters will be discussed and compared to the normal mode from the spherical harmonics spectral method.

  5. Nonstationary heat and mass transfer in the multilayer building construction with ventilation channels

    NASA Astrophysics Data System (ADS)

    Kharkov, N. S.

    2017-11-01

    Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).

  6. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  7. Electromagneto squeezing rotational flow of Carbon (C)-Water (H2O) kerosene oil nanofluid past a Riga plate: A numerical study.

    PubMed

    Hayat, Tasawar; Khan, Mumtaz; Khan, Muhammad Ijaz; Alsaedi, Ahmed; Ayub, Muhammad

    2017-01-01

    This article predicts the electromagneto squeezing rotational flow of carbon-water nanofluid between two stretchable Riga plates. Riga plate is known as electromagnetic actuator which is the combination of permanent magnets and a span wise aligned array of alternating electrodes mounted on a plane surface. Mathematical model is developed for the flow problem with the phenomena of melting heat transfer, viscous dissipation and heat generation/absorption. Water and kerosene oil are utilized as the base fluids whereas single and multi-wall carbon nanotubes as the nanomaterials. Numerical solutions of the dimensionless problems are constructed by using built in shooting method. The correlation expressions for Nusselt number and skin friction coefficient are developed and examined through numerical data. Characteristics of numerous relevant parameters on the dimensionless temperature and velocity are sketched and discussed. Horizontal velocity is found to enhance for higher modified Hartman number.

  8. Electromagneto squeezing rotational flow of Carbon (C)-Water (H2O) kerosene oil nanofluid past a Riga plate: A numerical study

    PubMed Central

    Hayat, Tasawar; Khan, Mumtaz; Alsaedi, Ahmed; Ayub, Muhammad

    2017-01-01

    This article predicts the electromagneto squeezing rotational flow of carbon-water nanofluid between two stretchable Riga plates. Riga plate is known as electromagnetic actuator which is the combination of permanent magnets and a span wise aligned array of alternating electrodes mounted on a plane surface. Mathematical model is developed for the flow problem with the phenomena of melting heat transfer, viscous dissipation and heat generation/absorption. Water and kerosene oil are utilized as the base fluids whereas single and multi-wall carbon nanotubes as the nanomaterials. Numerical solutions of the dimensionless problems are constructed by using built in shooting method. The correlation expressions for Nusselt number and skin friction coefficient are developed and examined through numerical data. Characteristics of numerous relevant parameters on the dimensionless temperature and velocity are sketched and discussed. Horizontal velocity is found to enhance for higher modified Hartman number. PMID:28813427

  9. On supervised graph Laplacian embedding CA model & kernel construction and its application

    NASA Astrophysics Data System (ADS)

    Zeng, Junwei; Qian, Yongsheng; Wang, Min; Yang, Yongzhong

    2017-01-01

    There are many methods to construct kernel with given data attribute information. Gaussian radial basis function (RBF) kernel is one of the most popular ways to construct a kernel. The key observation is that in real-world data, besides the data attribute information, data label information also exists, which indicates the data class. In order to make use of both data attribute information and data label information, in this work, we propose a supervised kernel construction method. Supervised information from training data is integrated into standard kernel construction process to improve the discriminative property of resulting kernel. A supervised Laplacian embedding cellular automaton model is another key application developed for two-lane heterogeneous traffic flow with the safe distance and large-scale truck. Based on the properties of traffic flow in China, we re-calibrate the cell length, velocity, random slowing mechanism and lane-change conditions and use simulation tests to study the relationships among the speed, density and flux. The numerical results show that the large-scale trucks will have great effects on the traffic flow, which are relevant to the proportion of the large-scale trucks, random slowing rate and the times of the lane space change.

  10. H∞ control of combustion in diesel engines using a discrete dynamics model

    NASA Astrophysics Data System (ADS)

    Hirata, Mitsuo; Ishizuki, Sota; Suzuki, Masayasu

    2016-09-01

    This paper proposes a control method for combustion in diesel engines using a discrete dynamics model. The proposed two-degree-of-freedom control scheme achieves not only good feedback properties such as disturbance suppression and robust stability but also a good transient response. The method includes a feedforward controller constructed from the inverse model of the plant, and a feedback controller designed by an Hcontrol method, which reduces the effect of the turbocharger lag. The effectiveness of the proposed method is evaluated via numerical simulations.

  11. Counter-intuitive quasi-periodic motion in the autonomous vibration of cracked Timoshenko beams

    NASA Astrophysics Data System (ADS)

    Brandon, J. A.; Abraham, O. N. L.

    1995-08-01

    The time domain behaviour of a cracked Timoshenko beam is constructed by alternation of two linear models corresponding to the open and closed condition of the crack. It might be expected that a response which is composed of the alternation of two systems with different properties would extinguish the periodicities of the constituent sub-models. The numerical studies presented illustrate the perpetuation of these features without showing any evidence for the creation of periodicities based on a common assumption of the mean period of a bilinear model.

  12. Mantle Flow Induced by Subduction Beneath Taurides Mountains

    NASA Astrophysics Data System (ADS)

    Hui, H.; Sandvol, E. A.; Rey, P. F.; Brocard, G. Y.

    2017-12-01

    GPS data of Anatolian Plateau shows westward plate motion with respect to the Eurasian plate at a rate of approximately 20 mm/yr, however, the fast direction of shear-wave splitting data in Anatolian Plateau is dominantly northeast-southwest, with significant variations around the central Taurides Mountains. To address the decoupling between the deformation in the crust and in the mantle, we explore the mantle strain pattern beneath Anatoian Plateau. Numerical models of the African plate subducting beneath the Taurides have been constructed with the open source code Underworld by Louis Moresi and the Lithospheric Modeling Recipe by EarthByte Group. We have constructed a 2-D model with dimension of 400km × 480km with 60km thick plate subducting into the mantle. In our numerical model, we observe a poloidal component of the mantle flow around the edge of the subducting plate, which could be explained by straight-forward corner flow. The horizontal component of mantle flow above the subducting plate may explain the shear-wave splitting pattern that is nearly perpendicular to the trench at Anatolia. We are also working on 3-D models with dimension of 400km×400km×480km with the subducting plate width 100km. The asthenospheric mantle below the subducting plate exhibits a flow parallel to the trench, then rotates around the edge of the plate and becomes perpendicular to the trench. This mantle flow pattern may explain the shear-wave splitting directions in central Anatolia.

  13. Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms

    NASA Technical Reports Server (NTRS)

    Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin

    2013-01-01

    Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.

  14. Assessment in the Use of Excel Competency for Problem Solving Using the Approach of Expert and Novice Theory

    ERIC Educational Resources Information Center

    Gallardo, Katherina Edith; González, Jaime Ricardo Valenzuela

    2014-01-01

    The assessment of Competency-­Based Learning (CBL) generally lacks a foundation to guide the construction of instruments that accords the nature and goals of this educational model. The measurement instruments normally used in CBL only provide a numerical score with limited information about the levels of competencies reached. This research aims…

  15. The Evolvement of Numeracy and Mathematical Literacy Curricula and the Construction of Hierarchies of Numerate or Mathematically Literate Subjects

    ERIC Educational Resources Information Center

    Jablonka, Eva

    2015-01-01

    This contribution briefly sketches the evolvement of numeracy or mathematical literacy as models for mathematics curricula, which will be described as driven by a weakening of the insulation between discourses, that is, as a process of "declassification". The question then arises as to whether and how coherence of new forms of initially…

  16. Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation

    Treesearch

    Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu

    2015-01-01

    In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...

  17. Growth and survival of Salmonella Paratyphi A in roasted marinated chicken during refrigerated storage: Effect of temperature abuse and computer simulation for cold chain management

    USDA-ARS?s Scientific Manuscript database

    This research was conducted to evaluate the feasibility of using a one-step dynamic numerical analysis and optimization method to directly construct a tertiary model to describe the growth and survival of Salmonella Paratyphi A (SPA) in a marinated roasted chicken product. Multiple dynamic growth a...

  18. Ferrofluids: Modeling, numerical analysis, and scientific computation

    NASA Astrophysics Data System (ADS)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.

  19. [Self-assembly tissue engineering fibrocartilage model of goat temporomandibular joint disc].

    PubMed

    Kang, Hong; Li, Zhen-Qiang; Bi, Yan-Da

    2011-06-01

    To construct self-assembly fibrocartilage model of goat temporomandibular joint disc and observe the biological characteristics of the self-assembled fibrocartilage constructs, further to provide a basis for tissue engineering of the temporomandibular joint disc and other fibrocartilage. Cells from temporomandibular joint discs of goats were harvested and cultured. 5.5 x 10(6) cells were seeded in each agarose well with diameter 5 mm x depth 10 mm, daily replace of medium, cultured for 2 weeks. One day after seeding, goat temporomandibular joint disc cells in agarose wells were gathered and began to self-assemble into a disc-shaped base, then gradually turned into a round shape. When cultured for 2 weeks, hematoxylin-eosin staining was conducted and observed that cells were round and wrapped around by the matrix. Positive Safranin-O/fast green staining for glycosaminoglycans was observed throughout the entire constructs, and picro-sirius red staining was examined and distribution of numerous type I collagen was found. Immunohistochemistry staining demonstrated brown yellow particles in cytoplasm and around extracellular matrix, which showed self-assembly construct can produce type I collagen as native temporomandibular joint disc tissue. Production of extracellular matrix in self-assembly construct as native temporomandibular joint disc tissue indicates that the use of agarose wells to construct engineered temporomandibular joint disc will be possible and practicable.

  20. Cenozoic sea level and the rise of modern rimmed atolls

    USGS Publications Warehouse

    Toomey, Michael; Ashton, Andrew; Raymo, Maureen E.; Perron, J. Taylor

    2016-01-01

    Sea-level records from atolls, potentially spanning the Cenozoic, have been largely overlooked, in part because the processes that control atoll form (reef accretion, carbonate dissolution, sediment transport, vertical motion) are complex and, for many islands, unconstrained on million-year timescales. Here we combine existing observations of atoll morphology and corelog stratigraphy from Enewetak Atoll with a numerical model to (1) constrain the relative rates of subsidence, dissolution and sedimentation that have shaped modern Pacific atolls and (2) construct a record of sea level over the past 8.5 million years. Both the stratigraphy from Enewetak Atoll (constrained by a subsidence rate of ~ 20 m/Myr) and our numerical modeling results suggest that low sea levels (50–125 m below present), and presumably bi-polar glaciations, occurred throughout much of the late Miocene, preceding the warmer climate of the Pliocene, when sea level was higher than present. Carbonate dissolution through the subsequent sea-level fall that accompanied the onset of large glacial cycles in the late Pliocene, along with rapid highstand constructional reef growth, likely drove development of the rimmed atoll morphology we see today.

  1. A Direct Numerical Simulation of a Temporally Evolving Liquid-Gas Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Vu, Lam Xuan; Chiodi, Robert; Desjardins, Olivier

    2017-11-01

    Air-blast atomization occurs when streams of co-flowing high speed gas and low speed liquid shear to form drops. Air-blast atomization has numerous industrial applications from combustion engines in jets to sprays used for medical coatings. The high Reynolds number and dynamic pressure ratio of a realistic air-blast atomization case requires large eddy simulation and the use of multiphase sub-grid scale (SGS) models. A direct numerical simulations (DNS) of a temporally evolving mixing layer is presented to be used as a base case from which future multiphase SGS models can be developed. To construct the liquid-gas mixing layer, half of a channel flow from Kim et al. (JFM, 1987) is placed on top of a static liquid layer that then evolves over time. The DNS is performed using a conservative finite volume incompressible multiphase flow solver where phase tracking is handled with a discretely conservative volume of fluid method. This study presents statistics on velocity and volume fraction at different Reynolds and Weber numbers.

  2. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  3. Structural Impact of Construction Loads : [Technical Summary

    DOT National Transportation Integrated Search

    2012-01-01

    Numerous bridge construction accidents have occurred : because of construction loadings, which are an underemphasized : topic in many specifications and design : manuals. Bridge girders are least stable during the : construction phase, so it is impor...

  4. Social power and opinion formation in complex networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2013-02-01

    In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.

  5. "Corkscrew" vs. "tank-treading" propulsion of spirochetes.

    NASA Astrophysics Data System (ADS)

    Leshansky, Alexander; Kenneth, Oded

    2010-11-01

    We consider the potential mechanism of spirochete propulsion driven by twirling of the outer cell surface coupled to counter-rotation of the helical body. We construct a proper slender body theory and use particle-based numerical approach allowing for modeling of locomotion in heterogeneous viscous environment. Depending on the helical pitch angle, two distinct propulsion gaits are identified: corkscrew-like locomotion, similar to propulsion powered by rotating helical flagellum, and surface tank-treading mode relying on hydrodynamic self-interaction of curved helical coils. The latter mechanism is closely related to the considered earlier propulsion of Purcell's toroidal swimmer (Kenneth and Leshansky, Phys. Fluids 20, 063104, 2008). Significant augmentation of corkscrew propulsion gait in heterogeneous viscous medium anticipated from the numerical model is in accord with experimental observations of enhanced spirochete propulsion in polymer gels.

  6. Formation of Sprays From Conical Liquid Sheets

    NASA Technical Reports Server (NTRS)

    Peck, Bill; Mansour, N. N.; Koga, Dennis (Technical Monitor)

    1999-01-01

    Our objective is to predict droplet size distributions created by fuel injector nozzles in Jet turbines. These results will be used to determine the initial conditions for numerical simulations of the combustion process in gas turbine combustors. To predict the droplet size distribution, we are currently constructing a numerical model to understand the instability and breakup of thin conical liquid sheets. This geometry serves as a simplified model of the liquid jet emerging from a real nozzle. The physics of this process is difficult to study experimentally as the time and length scales are very short. From existing photographic data, it does seem clear that three-dimensional effects such as the formation of streamwise ligaments and the pulling back of the sheet at its edges under the action of surface tension are important.

  7. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  8. Beamforming synthesis of binaural responses from computer simulations of acoustic spaces.

    PubMed

    Poletti, Mark A; Svensson, U Peter

    2008-07-01

    Auditorium designs can be evaluated prior to construction by numerical modeling of the design. High-accuracy numerical modeling produces the sound pressure on a rectangular grid, and subjective assessment of the design requires auralization of the sampled sound field at a desired listener position. This paper investigates the production of binaural outputs from the sound pressure at a selected number of grid points by using a least squares beam forming approach. Low-frequency axisymmetric emulations are derived by assuming a solid sphere model of the head, and a spherical array of 640 microphones is used to emulate ten measured head-related transfer function (HRTF) data sets from the CIPIC database for half the audio bandwidth. The spherical array can produce high-accuracy band-limited emulation of any human subject's measured HRTFs for a fixed listener position by using individual sets of beam forming impulse responses.

  9. Theoretical and experimental analysis of the contact between a solid-rubber tire and a chassis dynamometer

    NASA Astrophysics Data System (ADS)

    Belkin, A. E.; Semenov, V. K.

    2016-05-01

    We consider the problem of modeling the test where a solid-rubber tire runs on a chassis dynamometer for determining the tire rolling resistance characteristics.We state the problem of free steady-state rolling of the tire along the test drum with the energy scattering in the rubber in the course of cyclic deformation taken into account. The viscoelastic behavior of the rubber is described by the Bergströ m-Boyce model whose numerical parameters are experimentally determined from the results of compression tests with specimens. The finite element method is used to obtain the solution of the three-dimensional viscoelasticity problem. To estimate the adequacy of the constructed model, we compare the numerical results with the results obtained in the solid-rubber tire tests on the Hasbach stand from the values of the rolling resistance forces for various loads on the tire.

  10. Application of plurigaussian simulation to delineate the layout of alteration domains in Sungun copper deposit

    NASA Astrophysics Data System (ADS)

    Talebi, Hassan; Asghari, Omid; Emery, Xavier

    2013-12-01

    An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.

  11. Rayleigh-Benard Simulation using Gas-Kinetic BGK Scheme in the Incompressible Limit

    NASA Technical Reports Server (NTRS)

    Xu, Kun; Lui, Shiu-Hong

    1998-01-01

    In this paper, a gas-kinetic BGK model is constructed for the Rayleigh-Benard thermal convection in the incompressible flow limit, where the flow field and temperature field are described by two coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models can be different, the Prandtl number can be changed to any value instead of a fixed Pr=1 in the original BGK model. The 2D Rayleigh-Benard thermal convection is studied and numerical results are compared with theoretical ones as well as other simulation results.

  12. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    NASA Astrophysics Data System (ADS)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  13. Efficient numerical method for investigating diatomic molecules with single active electron subjected to intense and ultrashort laser fields

    NASA Astrophysics Data System (ADS)

    Kiss, Gellért Zsolt; Borbély, Sándor; Nagy, Ladislau

    2017-12-01

    We have presented here an efficient numerical approach for the ab initio numerical solution of the time-dependent Schrödinger Equation describing diatomic molecules, which interact with ultrafast laser pulses. During the construction of the model we have assumed a frozen nuclear configuration and a single active electron. In order to increase efficiency our system was described using prolate spheroidal coordinates, where the wave function was discretized using the finite-element discrete variable representation (FE-DVR) method. The discretized wave functions were efficiently propagated in time using the short-iterative Lanczos algorithm. As a first test we have studied here how the laser induced bound state dynamics in H2+ is influenced by the strength of the driving laser field.

  14. Visualization of a Numerical Simulation of GW 150914

    NASA Astrophysics Data System (ADS)

    Rosato, Nicole; Healy, James; Lousto, Carlos

    2017-01-01

    We present an analysis of a simulation displaying apparent horizon curvature and radiation emitted from a binary black hole system modeling GW-150914 during merger. The simulation follows the system from seven orbits prior to merger to the resultant Kerr black hole. Horizon curvature was calculated using a mean curvature flow algorithm. Radiation data was visualized via the Ψ4 component of the Weyl scalars, which were determined using a numerical quasi-Kinnersley method. We also present a comparative study of the differences in quasi-Kinnersley and PsiKadelia tetrads to construct Ψ4. The analysis is displayed on a movie generated from these numerical results, and was done using VisIt software from Lawrence Livermore National Laboratory. This simulation and analysis gives more insight into the merger of the system GW 150914.

  15. Tsunami probability in the Caribbean Region

    USGS Publications Warehouse

    Parsons, T.; Geist, E.L.

    2008-01-01

    We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ???500-year empirical record compiled by O'Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0 - 30% regionally. ?? irkhaueser 2008.

  16. Hetero-association for pattern translation

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Lu, Thomas T.; Yang, Xiangyang

    1991-09-01

    A hetero-association neural network using an interpattern association algorithm is presented. By using simple logical rules, hetero-association memory can be constructed based on the association between the input-output reference patterns. For optical implementation, a compact size liquid crystal television neural network is used. Translations between the English letters and the Chinese characters as well as Arabic and Chinese numerics are demonstrated. The authors have shown that the hetero-association model can perform more effectively in comparison to the Hopfield model in retrieving large numbers of similar patterns.

  17. The ground state of the Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Babushkin, A. Yu.; Abkaryan, A. K.; Dobronets, B. S.; Krasikov, V. S.; Filonov, A. N.

    2016-09-01

    The continual approximation of the ground state of the discrete Frenkel-Kontorova model is tested using a symmetric algorithm of numerical simulation. A "kaleidoscope effect" is found, which means that the curves representing the dependences of the relative extension of an N-atom chain vary periodically with increasing N. Stairs of structural transitions for N ≫ 1 are analyzed by the channel selection method with the approximation N = ∞. Images of commensurable and incommensurable structures are constructed. The commensurable-incommensurable phase transitions are stepwise.

  18. UQTk Version 3.0.3 User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargsyan, Khachik; Safta, Cosmin; Chowdhary, Kamaljit Singh

    2017-05-01

    The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.3 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sen- sitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

  19. Gradient-based model calibration with proxy-model assistance

    NASA Astrophysics Data System (ADS)

    Burrows, Wesley; Doherty, John

    2016-02-01

    Use of a proxy model in gradient-based calibration and uncertainty analysis of a complex groundwater model with large run times and problematic numerical behaviour is described. The methodology is general, and can be used with models of all types. The proxy model is based on a series of analytical functions that link all model outputs used in the calibration process to all parameters requiring estimation. In enforcing history-matching constraints during the calibration and post-calibration uncertainty analysis processes, the proxy model is run for the purposes of populating the Jacobian matrix, while the original model is run when testing parameter upgrades; the latter process is readily parallelized. Use of a proxy model in this fashion dramatically reduces the computational burden of complex model calibration and uncertainty analysis. At the same time, the effect of model numerical misbehaviour on calculation of local gradients is mitigated, this allowing access to the benefits of gradient-based analysis where lack of integrity in finite-difference derivatives calculation would otherwise have impeded such access. Construction of a proxy model, and its subsequent use in calibration of a complex model, and in analysing the uncertainties of predictions made by that model, is implemented in the PEST suite.

  20. Analytical and numerical construction of equivalent cables.

    PubMed

    Lindsay, K A; Rosenberg, J R; Tucker, G

    2003-08-01

    The mathematical complexity experienced when applying cable theory to arbitrarily branched dendrites has lead to the development of a simple representation of any branched dendrite called the equivalent cable. The equivalent cable is an unbranched model of a dendrite and a one-to-one mapping of potentials and currents on the branched model to those on the unbranched model, and vice versa. The piecewise uniform cable, with a symmetrised tri-diagonal system matrix, is shown to represent the canonical form for an equivalent cable. Through a novel application of the Laplace transform it is demonstrated that an arbitrary branched model of a dendrite can be transformed to the canonical form of an equivalent cable. The characteristic properties of the equivalent cable are extracted from the matrix for the transformed branched model. The one-to-one mapping follows automatically from the construction of the equivalent cable. The equivalent cable is used to provide a new procedure for characterising the location of synaptic contacts on spinal interneurons.

  1. Numerical Simulation of Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2001-01-01

    Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.

  2. Structural Impact of Construction Loads : [Technical Summary

    DOT National Transportation Integrated Search

    2012-01-01

    Numerous bridge construction accidents have occurred because of construction loadings, which are an underemphasized topic in many specifications and design manuals. Bridge girders are least stable during the construction phase, so it is important for...

  3. A Biologically Inspired Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  4. A Stigmergic Cooperative Multi-Robot Control Architecture

    NASA Technical Reports Server (NTRS)

    Howsman, Thomas G.; O'Neil, Daniel; Craft, Michael A.

    2004-01-01

    In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. A prototype cooperative multi-robot control architecture which may be suitable for the eventual construction of large space structures has been developed which emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically, i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  5. Field and numerical studies of flow structure in Lake Shira (Khakassia) in summer

    NASA Astrophysics Data System (ADS)

    Yakubaylik, Tatyana; Kompaniets, Lidia

    2014-05-01

    Investigations of Lake Shira are conducted within a multidisciplinary approach that includes the study of biodiversity, biochemistry, geology of lake sediments, as well as its hydrophysics. Our report focuses on field measurements in the lake during the 2009 - 2013 and numerical modeling of flow structure. The flow velocity, temperature and salinity distribution and fluctuations of the thermocline (density) were measured in summer. An analysis of spatial and temporal variability of the major hydrophysical characteristics leads us to conclusion that certain meteorological conditions may cause internal waves in this lake. Digital terrain model is constructed from measurements of Lake bathymetry allowing us to carry out numerical simulation. Three-dimensional primitive equation numerical model GETM is applied to simulate hydrophysical processes in Lake Shira. The model is hydrostatic and Boussinesq. An algorithm of high order approximation is opted for calculating the equations of heat and salt transfer. Temperature and salinity distributions resulting from field observations are taken as initial data for numerical simulations. Model calculations as well as calculations with appropriate real wind pattern being observed on Lake Shira have been carried out. In the model calculations we follow (1). Significant differences are observed between model calculations with constant wind and calculations with real wind pattern. Unsteady wind pattern leads to the appearance of horizontal vortexes and a significant increase of vertical fluctuations in temperature (density, impurities). It causes lifting of the sediments to the upper layers at the areas where the thermocline contacts the bottom. It is important for understanding the overall picture of the processes occurring in the lake in summer. Comparison of the results of numerical experiments with the field data shows the possibility of such a phenomena in Lake Shira. The work was supported by the Russian Foundation for Fundamental Studies under Grant 13-05-00853 and interdisciplinary integration project of SB RAS 56. REFERENCES 1. Beletsky D. Numerical Simulation of Internal Kelvin Waves and Coastal Upwelling Fronts. D. Beletsky, W. P. O'Connor J. of Physical Oceanography. - v.27. - July 1997. - P. 1197-1215.

  6. From Data-Sharing to Model-Sharing: SCEC and the Development of Earthquake System Science (Invited)

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2009-12-01

    Earthquake system science seeks to construct system-level models of earthquake phenomena and use them to predict emergent seismic behavior—an ambitious enterprise that requires high degree of interdisciplinary, multi-institutional collaboration. This presentation will explore model-sharing structures that have been successful in promoting earthquake system science within the Southern California Earthquake Center (SCEC). These include disciplinary working groups to aggregate data into community models; numerical-simulation working groups to investigate system-specific phenomena (process modeling) and further improve the data models (inverse modeling); and interdisciplinary working groups to synthesize predictive system-level models. SCEC has developed a cyberinfrastructure, called the Community Modeling Environment, that can distribute the community models; manage large suites of numerical simulations; vertically integrate the hardware, software, and wetware needed for system-level modeling; and promote the interactions among working groups needed for model validation and refinement. Various socio-scientific structures contribute to successful model-sharing. Two of the most important are “communities of trust” and collaborations between government and academic scientists on mission-oriented objectives. The latter include improvements of earthquake forecasts and seismic hazard models and the use of earthquake scenarios in promoting public awareness and disaster management.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiangjiang; Li, Weixuan; Lin, Guang

    In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters.more » To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen–Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.« less

  8. Numerical modelling of glacial lake outburst floods using physically based dam-breach models

    NASA Astrophysics Data System (ADS)

    Westoby, M. J.; Brasington, J.; Glasser, N. F.; Hambrey, M. J.; Reynolds, J. M.; Hassan, M. A. A. M.; Lowe, A.

    2015-03-01

    The instability of moraine-dammed proglacial lakes creates the potential for catastrophic glacial lake outburst floods (GLOFs) in high-mountain regions. In this research, we use a unique combination of numerical dam-breach and two-dimensional hydrodynamic modelling, employed within a generalised likelihood uncertainty estimation (GLUE) framework, to quantify predictive uncertainty in model outputs associated with a reconstruction of the Dig Tsho failure in Nepal. Monte Carlo analysis was used to sample the model parameter space, and morphological descriptors of the moraine breach were used to evaluate model performance. Multiple breach scenarios were produced by differing parameter ensembles associated with a range of breach initiation mechanisms, including overtopping waves and mechanical failure of the dam face. The material roughness coefficient was found to exert a dominant influence over model performance. The downstream routing of scenario-specific breach hydrographs revealed significant differences in the timing and extent of inundation. A GLUE-based methodology for constructing probabilistic maps of inundation extent, flow depth, and hazard is presented and provides a useful tool for communicating uncertainty in GLOF hazard assessment.

  9. A deterministic model of nettle caterpillar life cycle

    NASA Astrophysics Data System (ADS)

    Syukriyah, Y.; Nuraini, N.; Handayani, D.

    2018-03-01

    Palm oil is an excellent product in the plantation sector in Indonesia. The level of palm oil productivity is very potential to increase every year. However, the level of palm oil productivity is lower than its potential. Pests and diseases are the main factors that can reduce production levels by up to 40%. The existence of pests in plants can be caused by various factors, so the anticipation in controlling pest attacks should be prepared as early as possible. Caterpillars are the main pests in oil palm. The nettle caterpillars are leaf eaters that can significantly decrease palm productivity. We construct a deterministic model that describes the life cycle of the caterpillar and its mitigation by using a caterpillar predator. The equilibrium points of the model are analyzed. The numerical simulations are constructed to give a representation how the predator as the natural enemies affects the nettle caterpillar life cycle.

  10. Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker.

    PubMed

    Tao, Jiancheng; Jing, Ruixiang; Qiu, Xiaojun

    2014-01-01

    Deep back cavities are usually required for micro-perforated panel (MPP) constructions to achieve good low frequency absorption. To overcome the problem, a close-box loudspeaker with a shunted circuit is proposed to substitute the back wall of the cavity of the MPP constructions to constitute a composite absorber. Based on the equivalent circuit model, the acoustic impedance of the shunted loudspeaker is formulated first, then a prediction model of the sound absorption of the MPP backed by shunted loudspeaker is developed by employing the mode solution of a finite size MPP coupled by an air cavity with an impendence back wall. The MPP absorbs mid to high frequency sound, and with properly adjusted electrical parameters of its shunted circuit, the shunted loudspeaker absorbs low frequency sound, so the composite absorber provides a compact solution to broadband sound control. Numerical simulations and experiments are carried out to validate the model.

  11. A bi-objective model for robust yard allocation scheduling for outbound containers

    NASA Astrophysics Data System (ADS)

    Liu, Changchun; Zhang, Canrong; Zheng, Li

    2017-01-01

    This article examines the yard allocation problem for outbound containers, with consideration of uncertainty factors, mainly including the arrival and operation time of calling vessels. Based on the time buffer inserting method, a bi-objective model is constructed to minimize the total operational cost and to maximize the robustness of fighting against the uncertainty. Due to the NP-hardness of the constructed model, a two-stage heuristic is developed to solve the problem. In the first stage, initial solutions are obtained by a greedy algorithm that looks n-steps ahead with the uncertainty factors set as their respective expected values; in the second stage, based on the solutions obtained in the first stage and with consideration of uncertainty factors, a neighbourhood search heuristic is employed to generate robust solutions that can fight better against the fluctuation of uncertainty factors. Finally, extensive numerical experiments are conducted to test the performance of the proposed method.

  12. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    NASA Astrophysics Data System (ADS)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  13. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.

    PubMed

    Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M

    2017-09-21

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  14. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; Wang, Cong; Winterfeld, Philip

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less

  15. Estuarine Human Activities Modulate the Fate of Changjiang-derived Materials in Adjacent Seas

    NASA Astrophysics Data System (ADS)

    WU, H.

    2017-12-01

    Mega constructions have been built in many river estuaries, but their environmental consequences in the adjacent coastal oceans were often overlooked. This issue was addressed with an example of the Changjiang River Estuary, which was recently built with massive navigation and reclamation constructions in recent years. Based on the model validations against cruises data and the numerical scenario experiments, it is shown that the estuarine constructions profoundly affected the fates of riverine materials in an indeed large offshore area. This is because estuarine dynamics are highly sensitive to their bathymetries. Previously, the Three Gorges Dam (TGD) was thought to be responsible for some offshore environmental changes through modulating the river plume extension, but here we show that its influences are secondary. Since the TGD and the mega estuarine constructions were built during the similar period, their influences might be confused.

  16. Design and construction of an impulse turbine

    NASA Astrophysics Data System (ADS)

    Hernández, E.

    2013-11-01

    Impulse turbine has been constructed to be used in the program of Hydraulic Machines, Faculty of Mechanical Engineering at the Universidad Pontificia Bolivariana, sede Bucaramanga. For construction of the impulse turbine (Pelton) detailed plans were drawn up taking into account the design and implementation of the fundamental equations of hydraulic turbomachinery. From the experimental data found maximum mechanical efficiency of 0.6 ± 0.03 for a water flow of 2.1 l/s. The maximum overall efficiency was 0.23 ± 0.02 for a water flow of 0.83 l/s. The design parameter used was a power of 1 kW, as flow regulator built a needle type regulator, which performed well, the model of the bucket or vane is built on a machine type CNC (Computer Numerical Control). For the construction of the impeller and blades was used aluminium because of chemical and physical characteristics and the casing was manufactured in acrylic.

  17. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  18. Masonry structures built with fictile tubules: Experimental and numerical analyses

    NASA Astrophysics Data System (ADS)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  19. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows

    NASA Astrophysics Data System (ADS)

    Li, Qing; Luo, K. H.

    2014-05-01

    The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and constructed within the framework of the double-distribution-function LB method, were proposed to simulate thermal multiphase flows [G. Házi and A. Márkus, Phys. Rev. E 77, 026305 (2008), 10.1103/PhysRevE.77.026305; L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012), 10.1103/PhysRevLett.108.104502; S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037; M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013), 10.1103/PhysRevE.88.033302]. The objective of the present paper is to show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the pseudopotential LB modeling of thermal flows.

  20. Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin

    2018-07-01

    The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).

  1. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    DOE PAGES

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; ...

    2017-01-25

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to notmore » only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. Furthermore, the algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.« less

  2. Multimodal inspection in power engineering and building industries: new challenges and solutions

    NASA Astrophysics Data System (ADS)

    Kujawińska, Małgorzata; Malesa, Marcin; Malowany, Krzysztof

    2013-09-01

    Recently the demand and number of applications of full-field, optical measurement methods based on noncoherent light sources increased significantly. They include traditional image processing, thermovision, digital image correlation (DIC) and structured light methods. However, there are still numerous challenges connected with implementation of these methods to in-situ, long-term monitoring in industrial, civil engineering and cultural heritage applications, multimodal measurements of a variety of object features or simply adopting instruments to work in hard environmental conditions. In this paper we focus on 3D DIC method and present its enhancements concerning software modifications (new visualization methods and a method for automatic merging of data distributed in time) and hardware improvements. The modified 3D DIC system combined with infrared camera system is applied in many interesting cases: measurements of boiler drum during annealing and of pipelines in heat power stations and monitoring of different building steel struts at construction site and validation of numerical models of large building structures constructed of graded metal plate arches.

  3. Streamline integration as a method for two-dimensional elliptic grid generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.

    We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less

  4. Convergence dynamics and pseudo almost periodicity of a class of nonautonomous RFDEs with applications

    NASA Astrophysics Data System (ADS)

    Fan, Meng; Ye, Dan

    2005-09-01

    This paper studies the dynamics of a system of retarded functional differential equations (i.e., RF=Es), which generalize the Hopfield neural network models, the bidirectional associative memory neural networks, the hybrid network models of the cellular neural network type, and some population growth model. Sufficient criteria are established for the globally exponential stability and the existence and uniqueness of pseudo almost periodic solution. The approaches are based on constructing suitable Lyapunov functionals and the well-known Banach contraction mapping principle. The paper ends with some applications of the main results to some neural network models and population growth models and numerical simulations.

  5. Numerical analysis of single and multiple particles of Belchatow lignite dried in superheated steam

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Marcin; Sciazko, Anna; Komatsu, Yosuke; Akiyama, Taro; Hashimoto, Akira; Kaneko, Shozo; Kimijima, Shinji; Szmyd, Janusz S.; Kobayashi, Yoshinori

    2018-03-01

    Low production costs have contributed to the important role of lignite in the energy mixes of numerous countries worldwide. High moisture content, though, diminishes the applicability of lignite in power generation. Superheated steam drying is a prospective method of raising the calorific value of this fuel. This study describes the numerical model of superheated steam drying of lignite from the Belchatow mine in Poland in two aspects: single and multi-particle. The experimental investigation preceded the numerical analysis and provided the necessary data for the preparation and verification of the model. Spheres of 2.5 to 30 mm in diameter were exposed to the drying medium at the temperature range of 110 to 170 °C. The drying kinetics were described in the form of moisture content, drying rate and temperature profile curves against time. Basic coal properties, such as density or specific heat, as well as the mechanisms of heat and mass transfer in the particular stages of the process laid the foundations for the model construction. The model illustrated the drying behavior of a single particle in the entire range of steam temperature as well as the sample diameter. Furthermore, the numerical analyses of coal batches containing particles of various sizes were conducted to reflect the operating conditions of the dryer. They were followed by deliberation on the calorific value improvement achieved by drying, in terms of coal ingredients, power plant efficiency and dryer input composition. The initial period of drying was found crucial for upgrading the quality of coal. The accuracy of the model is capable of further improvement regarding the process parameters.

  6. Model and Simulation of an SMA Enhanced Lip Seal

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; Gao, Xiujie; Brinson, L. Catherine

    2011-07-01

    The feasibility of using SMA wires to improve the seal effectiveness has been studied experimentally and numerically. In this article, we present only the numerical study of simulating the thermo-mechanical behavior for an SMA enhanced lip seal, leaving the test setup and results in the experimental counterpart. A pseudo 3D SMA model, considering 1D SMA behavior in the major loading direction and elastic response in other directions, was used to capture the thermo-mechanical behavior of SMA wires. The model was then implemented into ABAQUS using the user-defined material subroutine to inherit most features of the commercial finite element package. Two-way shape memory effect was also considered since the SMA material exhibits strong two-way effects. An axisymmetric finite element model was constructed to simulate a seal mounting on a shaft and the sealing pressure was calculated for both the regular seal and the SMA enhanced seal. Finally, the result was qualitatively compared with the experimental observation.

  7. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Aubert, Julien; Thébault, Erwan

    2015-05-01

    In the context of the 12th release of the international geomagnetic reference field (IGRF), we present the methodology we followed to design a candidate secular variation model for years 2015-2020. An initial geomagnetic field model centered around 2014.3 is first constructed, based on Swarm magnetic measurements, for both the main field and its instantaneous secular variation. This initial model is next fed to an inverse geodynamo modelling framework in order to specify, for epoch 2014.3, the initial condition for the integration of a three-dimensional numerical dynamo model. The initialization phase combines the information contained in the initial model with that coming from the numerical dynamo model, in the form of three-dimensional multivariate statistics built from a numerical dynamo run unconstrained by data. We study the performance of this novel approach over two recent 5-year long intervals, 2005-2010 and 2009-2014. For a forecast horizon of 5 years, shorter than the large-scale secular acceleration time scale (˜10 years), we find that it is safer to neglect the flow acceleration and to assume that the flow determined by the initialization is steady. This steady flow is used to advance the three-dimensional induction equation forward in time, with the benefit of estimating the effects of magnetic diffusion. The result of this deterministic integration between 2015.0 and 2020.0 yields our candidate average secular variation model for that time frame, which is thus centered on 2017.5.

  8. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

    PubMed

    Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A

    2014-02-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.

  9. A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure

    PubMed Central

    Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.

    2014-01-01

    Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582

  10. Critical analysis of procurement techniques in construction management sectors

    NASA Astrophysics Data System (ADS)

    Tiwari, Suman Tiwari Suresh; Chan, Shiau Wei; Faraz Mubarak, Muhammad

    2018-04-01

    Over the last three decades, numerous procurement techniques have been one of the highlights of the Construction Management (CM) for ventures, administration contracting, venture management as well as design and construct. Due to the development and utilization of those techniques, various researchers have explored the criteria for their choice and their execution in terms of time, cost and quality. Nevertheless, there is a lack of giving an account on the relationship between the procurement techniques and the progressed related issues, for example, supply chain, sustainability, innovation and technology development, lean construction, constructability, value management, Building Information Modelling (BIM) as well as e-procurement. Through chosen papers from the reputable CM-related academic journals, the specified scopes of these issues are methodically assessed with the objective to explore the status and trend in procurement related research. The result of this paper contributes theoretically as well as practically to the researchers and industrialist in order to be aware and appreciate the development of procurement techniques.

  11. Construction of high-rise building with underground parking in Moscow

    NASA Astrophysics Data System (ADS)

    Ilyichev, Vyacheslav; Nikiforova, Nadezhda; Konnov, Artem

    2018-03-01

    Paper presents results of scientific support to construction of unique residential building 108 m high with one storey underground part under high-rise section and 3-storey underground parking connected by underground passage. On-site soils included anthropogenic soil, clayey soils soft-stiff, saturated sands of varied grain coarseness. Design of retaining structure and support system for high-rise part excavation was developed. It suggested installation of steel pipes and struts. Construction of adjacent 3-storey underground parking by "Moscow method" is described in the paper. This method involves implementation of retaining wall consisted of prefabricated panels, truss structures (used as struts) and reinforced concrete slabs. Also design and construction technology is provided for foundations consisted of bored piles 800 MM in diameter joined by slab with base widening diameter of 1500 MM. Experiment results of static and dynamic load testing (ELDY method) are considered. Geotechnical monitoring data of adjacent building and utility systems settlement caused by construction of presented high-rise building were compared to numerical modelling results, predicted and permissible values.

  12. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  13. Flowfield characterization and model development in detonation tubes

    NASA Astrophysics Data System (ADS)

    Owens, Zachary Clark

    A series of experiments and numerical simulations are performed to advance the understanding of flowfield phenomena and impulse generation in detonation tubes. Experiments employing laser-based velocimetry, high-speed schlieren imaging and pressure measurements are used to construct a dataset against which numerical models can be validated. The numerical modeling culminates in the development of a two-dimensional, multi-species, finite-rate-chemistry, parallel, Navier-Stokes solver. The resulting model is specifically designed to assess unsteady, compressible, reacting flowfields, and its utility for studying multidimensional detonation structure is demonstrated. A reduced, quasi-one-dimensional model with source terms accounting for wall losses is also developed for rapid parametric assessment. Using these experimental and numerical tools, two primary objectives are pursued. The first objective is to gain an understanding of how nozzles affect unsteady, detonation flowfields and how they can be designed to maximize impulse in a detonation based propulsion system called a pulse detonation engine. It is shown that unlike conventional, steady-flow propulsion systems where converging-diverging nozzles generate optimal performance, unsteady detonation tube performance during a single-cycle is maximized using purely diverging nozzles. The second objective is to identify the primary underlying mechanisms that cause velocity and pressure measurements to deviate from idealized theory. An investigation of the influence of non-ideal losses including wall heat transfer, friction and condensation leads to the development of improved models that reconcile long-standing discrepancies between predicted and measured detonation tube performance. It is demonstrated for the first time that wall condensation of water vapor in the combustion products can cause significant deviations from ideal theory.

  14. Differential invariants in nonclassical models of hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bublik, Vasily V.

    2017-10-01

    In this paper, differential invariants are used to construct solutions for equations of the dynamics of a viscous heat-conducting gas and the dynamics of a viscous incompressible fluid modified by nanopowder inoculators. To describe the dynamics of a viscous heat-conducting gas, we use the complete system of Navier—Stokes equations with allowance for heat fluxes. Mathematical description of the dynamics of liquid metals under high-energy external influences (laser radiation or plasma flow) includes, in addition to the Navier—Stokes system of an incompressible viscous fluid, also heat fluxes and processes of nonequilibrium crystallization of a deformable fluid. Differentially invariant solutions are a generalization of partially invariant solutions, and their active study for various models of continuous medium mechanics is just beginning. Differentially invariant solutions can also be considered as solutions with differential constraints; therefore, when developing them, the approaches and methods developed by the science schools of academicians N. N. Yanenko and A. F. Sidorov will be actively used. In the construction of partially invariant and differentially invariant solutions, there are overdetermined systems of differential equations that require a compatibility analysis. The algorithms for reducing such systems to involution in a finite number of steps are described by Cartan, Finikov, Kuranishi, and other authors. However, the difficultly foreseeable volume of intermediate calculations complicates their practical application. Therefore, the methods of computer algebra are actively used here, which largely helps in solving this difficult problem. It is proposed to use the constructed exact solutions as tests for formulas, algorithms and their software implementations when developing and creating numerical methods and computational program complexes. This combination of effective numerical methods, capable of solving a wide class of problems, with analytical methods makes it possible to make the results of mathematical modeling more accurate and reliable.

  15. Application of an Evolution Strategy in Planetary Ephemeris Optimization

    NASA Astrophysics Data System (ADS)

    Mai, E.

    2016-12-01

    Classical planetary ephemeris construction comprises three major steps, which are performed iteratively: simultaneous numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of thousands of observations (reduction step), and optimization of various selected model parameters (adjustment step). This traditional approach is challenged by ongoing refinements in force modeling, e.g. inclusion of much more significant minor bodies, an ever-growing number of planetary observations, e.g. vast amount of spacecraft tracking data, etc. To master the high computational burden and in order to circumvent the need for inversion of huge normal equation matrices, we propose an alternative ephemeris construction method. The main idea is to solve the overall optimization problem by a straightforward direct evaluation of the whole set of mathematical formulas involved, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and numerical difficulties. We replace the usual gradient search by a stochastic search, namely an evolution strategy, the latter of which is also perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach enables multi-criteria optimization and time-varying optima. This issue will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of the physical state (orbit, size, shape, rotation, gravity,…) of celestial bodies (planets, satellites, asteroids, or comets), and if one seeks near real-time solutions. Here we outline the general idea and discuss first results. As an example, we present a simultaneous optimization of high-correlated asteroidal ring model parameters (total mass and heliocentric radius), based on simulations.

  16. Probabilistic arithmetic automata and their applications.

    PubMed

    Marschall, Tobias; Herms, Inke; Kaltenbach, Hans-Michael; Rahmann, Sven

    2012-01-01

    We present a comprehensive review on probabilistic arithmetic automata (PAAs), a general model to describe chains of operations whose operands depend on chance, along with two algorithms to numerically compute the distribution of the results of such probabilistic calculations. PAAs provide a unifying framework to approach many problems arising in computational biology and elsewhere. We present five different applications, namely 1) pattern matching statistics on random texts, including the computation of the distribution of occurrence counts, waiting times, and clump sizes under hidden Markov background models; 2) exact analysis of window-based pattern matching algorithms; 3) sensitivity of filtration seeds used to detect candidate sequence alignments; 4) length and mass statistics of peptide fragments resulting from enzymatic cleavage reactions; and 5) read length statistics of 454 and IonTorrent sequencing reads. The diversity of these applications indicates the flexibility and unifying character of the presented framework. While the construction of a PAA depends on the particular application, we single out a frequently applicable construction method: We introduce deterministic arithmetic automata (DAAs) to model deterministic calculations on sequences, and demonstrate how to construct a PAA from a given DAA and a finite-memory random text model. This procedure is used for all five discussed applications and greatly simplifies the construction of PAAs. Implementations are available as part of the MoSDi package. Its application programming interface facilitates the rapid development of new applications based on the PAA framework.

  17. Flexible Language Constructs for Large Parallel Programs

    DOE PAGES

    Rosing, Matt; Schnabel, Robert

    1994-01-01

    The goal of the research described in this article is to develop flexible language constructs for writing large data parallel numerical programs for distributed memory (multiple instruction multiple data [MIMD]) multiprocessors. Previously, several models have been developed to support synchronization and communication. Models for global synchronization include single instruction multiple data (SIMD), single program multiple data (SPMD), and sequential programs annotated with data distribution statements. The two primary models for communication include implicit communication based on shared memory and explicit communication based on messages. None of these models by themselves seem sufficient to permit the natural and efficient expression ofmore » the variety of algorithms that occur in large scientific computations. In this article, we give an overview of a new language that combines many of these programming models in a clean manner. This is done in a modular fashion such that different models can be combined to support large programs. Within a module, the selection of a model depends on the algorithm and its efficiency requirements. In this article, we give an overview of the language and discuss some of the critical implementation details.« less

  18. A comparison of solute-transport solution techniques based on inverse modelling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2000-01-01

    Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.

  19. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  20. Low-rank separated representation surrogates of high-dimensional stochastic functions: Application in Bayesian inference

    NASA Astrophysics Data System (ADS)

    Validi, AbdoulAhad

    2014-03-01

    This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.

  1. Research on strategy marine noise map based on i4ocean platform: Constructing flow and key approach

    NASA Astrophysics Data System (ADS)

    Huang, Baoxiang; Chen, Ge; Han, Yong

    2016-02-01

    Noise level in a marine environment has raised extensive concern in the scientific community. The research is carried out on i4Ocean platform following the process of ocean noise model integrating, noise data extracting, processing, visualizing, and interpreting, ocean noise map constructing and publishing. For the convenience of numerical computation, based on the characteristics of ocean noise field, a hybrid model related to spatial locations is suggested in the propagation model. The normal mode method K/I model is used for far field and ray method CANARY model is used for near field. Visualizing marine ambient noise data is critical to understanding and predicting marine noise for relevant decision making. Marine noise map can be constructed on virtual ocean scene. The systematic marine noise visualization framework includes preprocessing, coordinate transformation interpolation, and rendering. The simulation of ocean noise depends on realistic surface. Then the dynamic water simulation gird was improved with GPU fusion to achieve seamless combination with the visualization result of ocean noise. At the same time, the profile and spherical visualization include space, and time dimensionality were also provided for the vertical field characteristics of ocean ambient noise. Finally, marine noise map can be published with grid pre-processing and multistage cache technology to better serve the public.

  2. RG flow from Φ 4 theory to the 2D Ising model

    DOE PAGES

    Anand, Nikhil; Genest, Vincent X.; Katz, Emanuel; ...

    2017-08-16

    We study 1+1 dimensional Φ 4 theory using the recently proposed method of conformal truncation. Starting in the UV CFT of free field theory, we construct a complete basis of states with definite conformal Casimir, C. We use these states to express the Hamiltonian of the full interacting theory in lightcone quantization. After truncating to states with C≤C max, we numerically diagonalize the Hamiltonian at strong coupling and study the resulting IR dynamics. We compute non-perturbative spectral densities of several local operators, which are equivalent to real-time, infinite-volume correlation functions. These spectral densities, which include the Zamolodchikov C-function along themore » full RG flow, are calculable at any value of the coupling. Near criticality, our numerical results reproduce correlation functions in the 2D Ising model.« less

  3. A two-dimensional composite grid numerical model based on the reduced system for oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y.F.; Browning, G.L.; Chesshire, G.

    The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less

  4. Study of a tri-trophic prey-dependent food chain model of interacting populations.

    PubMed

    Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata

    2013-11-01

    The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Numeric model to predict the location of market demand and economic order quantity for retailers of supply chain

    NASA Astrophysics Data System (ADS)

    Fradinata, Edy; Marli Kesuma, Zurnila

    2018-05-01

    Polynomials and Spline regression are the numeric model where they used to obtain the performance of methods, distance relationship models for cement retailers in Banda Aceh, predicts the market area for retailers and the economic order quantity (EOQ). These numeric models have their difference accuracy for measuring the mean square error (MSE). The distance relationships between retailers are to identify the density of retailers in the town. The dataset is collected from the sales of cement retailer with a global positioning system (GPS). The sales dataset is plotted of its characteristic to obtain the goodness of fitted quadratic, cubic, and fourth polynomial methods. On the real sales dataset, polynomials are used the behavior relationship x-abscissa and y-ordinate to obtain the models. This research obtains some advantages such as; the four models from the methods are useful for predicting the market area for the retailer in the competitiveness, the comparison of the performance of the methods, the distance of the relationship between retailers, and at last the inventory policy based on economic order quantity. The results, the high-density retail relationship areas indicate that the growing population with the construction project. The spline is better than quadratic, cubic, and four polynomials in predicting the points indicating of small MSE. The inventory policy usages the periodic review policy type.

  6. Replica Approach for Minimal Investment Risk with Cost

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-06-01

    In the present work, the optimal portfolio minimizing the investment risk with cost is discussed analytically, where an objective function is constructed in terms of two negative aspects of investment, the risk and cost. We note the mathematical similarity between the Hamiltonian in the mean-variance model and the Hamiltonians in the Hopfield model and the Sherrington-Kirkpatrick model, show that we can analyze this portfolio optimization problem by using replica analysis, and derive the minimal investment risk with cost and the investment concentration of the optimal portfolio. Furthermore, we validate our proposed method through numerical simulations.

  7. Evaluation of Dynamic Characteristics of the Footbridge with Integral Abutments

    NASA Astrophysics Data System (ADS)

    Pańtak, Marek; Jarek, Bogusław

    2017-09-01

    The paper presents the results of dynamic field tests and numerical analysis of the footbridge designed as a three-span composite structure with integral abutments. The adopted design solution which has allowed to achieve a high resistance of the structure to dynamic loads and to meet the requirements of the criteria of comfort of use with a large reserve has been characterized. For comparative purposes, numerical analyzes of three construction variants of the footbridge were presented: F-1 - construction with integral abutments (realized variant), F-2 - construction with girders anchored in the abutments by means of tension rocker bearings, F-3 - construction with concrete side spans.

  8. Advanced numerical methods for three dimensional two-phase flow calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less

  9. Modelling water table drawdown and recovery during tunnel excavation in fractured rock: estimating environmental impacts and characterizing uncertainties in a heterogeneous domain

    NASA Astrophysics Data System (ADS)

    Sege, J.; Li, Y.; Chang, C. F.; Chen, J.; Chen, Z.; Rubin, Y.; Li, X.; Hehua, Z.; Wang, C.; Osorio-Murillo, C. A.

    2015-12-01

    This study will develop a numerical model to characterize the perturbation of local groundwater systems by underground tunnel construction. Tunnels and other underground spaces act as conduits that remove water from the surrounding aquifer, and may lead to drawdown of the water table. Significant declines in water table elevation can cause environmental impacts by altering root zone soil moisture and changing inflows to surface waters. Currently, it is common to use analytical solutions to estimate groundwater fluxes through tunnel walls. However, these solutions often neglect spatial and temporal heterogeneity in aquifer parameters and system stresses. Some heterogeneous parameters, such as fracture densities, can significantly affect tunnel inflows. This study will focus on numerical approaches that incorporate heterogeneity across a range of scales. Time-dependent simulations will be undertaken to compute drawdown at various stages of excavation, and to model water table recovery after low-conductivity liners are applied to the tunnel walls. This approach will assist planners in anticipating environmental impacts to local surface waters and vegetation, and in computing the amount of tunnel inflow reduction required to meet environmental targets. The authors will also focus on managing uncertainty in model parameters. For greater planning applicability, extremes of a priori parameter ranges will be explored in order to anticipate best- and worst-case scenarios. For calibration and verification purposes, the model will be applied to a completed tunnel project in Mount Mingtang, China, where tunnel inflows were recorded throughout the construction process.

  10. Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul

    2013-10-01

    An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less

  11. Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainwright, Carroll L.; Aguirre, Anthony; Johnson, Matthew C.

    2014-10-01

    Observing the relics of collisions between bubble universes would provide direct evidence for the existence of an eternally inflating Multiverse; the non-observation of such events can also provide important constraints on inflationary physics. Realizing these prospects requires quantitative predictions for observables from the properties of the possible scalar field Lagrangians underlying eternal inflation. Building on previous work, we establish this connection in detail. We perform a fully relativistic numerical study of the phenomenology of bubble collisions in models with a single scalar field, computing the comoving curvature perturbation produced in a wide variety of models. We also construct a setmore » of analytic predictions, allowing us to identify the phenomenologically relevant properties of the scalar field Lagrangian. The agreement between the analytic predictions and numerics in the relevant regions is excellent, and allows us to generalize our results beyond the models we adopt for the numerical studies. Specifically, the signature is completely determined by the spatial profile of the colliding bubble just before the collision, and the de Sitter invariant distance between the bubble centers. The analytic and numerical results support a power-law fit with an index 1< κ ∼< 2. For collisions between identical bubbles, we establish a lower-bound on the observed amplitude of collisions that is set by the present energy density in curvature.« less

  12. Structural Impact of Construction Loads

    DOT National Transportation Integrated Search

    2012-08-01

    Numerous bridge construction accidents have occurred across the country because of construction loadings, which are an underemphasized : topic in many DOT specifications and design manuals. Bridge girders are least stable when they are subjected to c...

  13. Structural Impact of Construction Loads

    DOT National Transportation Integrated Search

    2012-08-01

    Numerous bridge construction accidents have occurred across the country because of construction loadings, which are an underemphasized topic in many DOT specifications and design manuals. Bridge girders are least stable when they are subjected to con...

  14. New Langevin and gradient thermostats for rigid body dynamics.

    PubMed

    Davidchack, R L; Ouldridge, T E; Tretyakov, M V

    2015-04-14

    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.

  15. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  16. A proposed origin of the Olympus Mons escarpment. [Martian volcanic feature

    NASA Technical Reports Server (NTRS)

    King, J. S.; Riehle, J. R.

    1974-01-01

    Olympus Mons (Nix Olympica) on Mars is delimited by a unique steep, nearly circular scarp. A pyroclastic model is proposed for the construct's origin. It is postulated that the Olympus Mons plateau is constructed predominantly of numerous ash-flow tuffs which were erupted from central sources over an extended period of time. Lava flows may be intercalated with the tuffs. A schematic radial profile incorporating the inferred compaction zones for an ash sheet is proposed. Following emplacement, eolian (and possibly fluvial) erosion and abrasion during dust storms would act on the ash sheets. Interior portions of the sheets would spall and slump following eolian erosion, generating steep, relatively smooth boundary scarps. The scarp would be circular due to symmetrical distribution of compaction zones. The model implies further that the Olympus Mons plateau rests on a more resistant rock substrate.

  17. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.

    PubMed

    Li, Moxiao; Yang, Qingzhen; Liu, Hao; Qiu, Mushu; Lu, Tian Jian; Xu, Feng

    2016-09-01

    Hydrogels have found broad applications in various engineering and biomedical fields, where the shape and size of hydrogels can profoundly influence their functions. Although numerous methods have been developed to tailor 3D hydrogel structures, it is still challenging to fabricate complex 3D hydrogel constructs. Inspired by the capillary origami phenomenon where surface tension of a droplet on an elastic membrane can induce spontaneous folding of the membrane into 3D structures along with droplet evaporation, a facile strategy is established for the fabrication of complex 3D hydrogel constructs with programmable shapes and sizes by crosslinking hydrogels during the folding process. A mathematical model is further proposed to predict the temporal structure evolution of the folded 3D hydrogel constructs. Using this model, precise control is achieved over the 3D shapes (e.g., pyramid, pentahedron, and cube) and sizes (ranging from hundreds of micrometers to millimeters) through tuning membrane shape, dimensionless parameter of the process (elastocapillary number Ce ), and evaporation time. This work would be favorable to multiple areas, such as flexible electronics, tissue regeneration, and drug delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Validation of a Numerical Program for Analyzing Kinetic Energy Potential in the Bangka Strait, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Rompas, P. T. D.; Taunaumang, H.; Sangari, F. J.

    2018-02-01

    The paper presents validation of the numerical program that computes the distribution of marine current velocities in the Bangka strait and the kinetic energy potential in the form the distributions of available power per area in the Bangka strait. The numerical program used the RANS model where the pressure distribution in the vertical assumed to be hydrostatic. The 2D and 3D numerical program results compared with the measurement results that are observation results to the moment conditions of low and high tide currents. It found no different significant between the numerical results and the measurement results. There are 0.97-2.2 kW/m2 the kinetic energy potential in the form the distributions of available power per area in the Bangka strait when low tide currents, whereas when high tide currents of 1.02-2.1 kW/m2. The results show that to be enabling the installation of marine current turbines for construction of power plant in the Bangka strait, North Sulawesi, Indonesia.

  19. Self-consistent construction of virialized wave dark matter halos

    NASA Astrophysics Data System (ADS)

    Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong

    2018-05-01

    Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.

  20. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles

    NASA Astrophysics Data System (ADS)

    Tzirtzilakis, E. E.

    2015-06-01

    In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.

  1. Numerical Modeling of Three-Dimensional Confined Flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1981-01-01

    A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.

  2. Effective distributions of quasiparticles for thermal photons

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko

    2015-07-01

    It has been found in recent heavy-ion experiments that the second and the third flow harmonics of direct photons are larger than most theoretical predictions. In this study, I construct effective parton phase-space distributions with in-medium interaction using quasiparticle models so that they are consistent with a lattice QCD equation of state. Then I investigate their effects on thermal photons using a hydrodynamic model. Numerical results indicate that elliptic flow and transverse momentum spectra are modified by the corrections to Fermi-Dirac and Bose-Einstein distributions.

  3. Distribution Free Approach for Coordination of a Supply Chain with Consumer Return

    NASA Astrophysics Data System (ADS)

    Hu, Jinsong; Xu, Yuanji

    Consumer return is considered in a coordination of a supply chain consisting of one manufacturer and one retailer. A distribution free approach is employed to deal with a centralized decision model and a decentralized model which are constructed under the situation with only knowing the demand function's mean and variance, respectively. A markdown money contract is designed to coordinate the supply chain, and it is also proved that the contract can make the supply chain perfectly coordinated. Several numerical examples are given at the end of this paper.

  4. Diagram reduction in problem of critical dynamics of ferromagnets: 4-loop approximation

    NASA Astrophysics Data System (ADS)

    Adzhemyan, L. Ts; Ivanova, E. V.; Kompaniets, M. V.; Vorobyeva, S. Ye

    2018-04-01

    Within the framework of the renormalization group approach to the models of critical dynamics, we propose a method for a considerable reduction of the number of integrals needed to calculate the critical exponents. With this method we perform a calculation of the critical exponent z of model A at 4-loop level, where our method allows one to reduce the number of integrals from 66 to 17. The way of constructing the integrand in a Feynman representation of such diagrams is discussed. Integrals were estimated numerically with a sector decomposition technique.

  5. Variable displacement alpha-type Stirling engine

    NASA Astrophysics Data System (ADS)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  6. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  7. Neutron Stars with Delta-Resonances in the Walecka and Zimanyi-Moszkowski Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, C. T.; Oliveira, J. C. T.; Rodrigues, H.

    2010-11-12

    In the present work we have obtained the equation of state of the highly asymmetric dense stellar matter focusing on the delta resonance formation. We extended the nonlinear Walecka (NLW) and Zimanyi-Moszkowski (ZM) models to accommodate in the context of the relativistic mean field approximation the Rarita-Schwinger field for the spin 3/2 resonances. With the constructed stellar matter equations of state we solve numerically the TOV equation (Tolman-Oppenheimer-Volkoff) in order to determine the internal structure of neutron stars, and discuss the obtained masses versus radii diagram.

  8. Geopolitical model of investment power station construction project implementation

    NASA Astrophysics Data System (ADS)

    Malafeyev, Oleg; Farvazov, Konstantin; Zenovich, Olga; Zaitseva, Irina; Kostyukov, Konstantin; Svechinskaya, Tatiana

    2018-04-01

    Two geopolitical actors implement a geopolitical project that involves transportaion and storage of some commodities. They interact with each other through a transport network. The network consists of several interconnected vertices. Some of the vetrices are trading hubs, storage spaces, production hubs and goods buyers. Actors wish to satify the demand of buyers and recieve the highest possible profit subject to compromise solution principle. A numerical example is given.

  9. Numerical modeling of sediment transport and its effect on algal biomass distribution in Lake Pontchartrain due to flood release from Bonnet Carré Spillway

    USDA-ARS?s Scientific Manuscript database

    In order to protect the city of New Orleans from the Mississippi River flooding, the Bonnet Carré Spillway (BCS) was constructed from 1929 to 1936 to divert flood water from the river into Lake Pontchartrain and then into the Gulf of Mexico. During the BCS opening for flood release, large amount of ...

  10. Short-Term Uplift Rates and the Mountain Building Process in Southern Alaska

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Herring, Thomas A.; Meigs, Andrew; Meigs, Andrew

    1998-01-01

    We have used GPS at 10 stations in southern Alaska with three epochs of measurements to estimate short-term uplift rates. A number of great earthquakes as well as recent large earthquakes characterize the seismicity of the region this century. To reliably estimate uplift rates from GPS data, numerical models that included both the slip distribution in recent large earthquakes and the general slab geometry were constructed.

  11. Dimensionality of the Knee Numeric-Entity Evaluation Score (KNEES-ACL): a condition-specific questionnaire.

    PubMed

    Comins, J D; Krogsgaard, M R; Kreiner, S; Brodersen, J

    2013-10-01

    The benefit of anterior cruciate ligament (ACL) reconstruction has been questioned based on patient-reported outcome measures (PROMs). Valid interpretation of such results requires confirmation of the psychometric properties of the PROM. Rasch analysis is the gold standard for validation of PROMs, yet PROMs used for ACL reconstruction have not been validated using Rasch analysis. We used Rasch analysis to investigate the psychometric properties of the Knee Numeric-Entity Evaluation Score (KNEES-ACL), a newly developed PROM for patients treated for ACL deficiency. Two-hundred forty-two patients pre- and post-ACL reconstruction completed the pilot PROM. Rasch models were used to assess the psychometric properties (e.g., unidimensionality, local response dependency, and differential item functioning). Forty-one items distributed across seven unidimensional constructs measuring impairment, functional limitations, and psychosocial consequences were confirmed to fit Rasch models. Fourteen items were removed because of statistical lack of fit and inadequate face validity. Local response dependency and differential item functioning were identified and adjusted. The KNEES-ACL is the first Rasch-validated condition-specific PROM constructed for patients with ACL deficiency and patients with ACL reconstruction. Thus, this instrument can be used for within- and between-group comparisons. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

    NASA Astrophysics Data System (ADS)

    Abdulwahhab, Muhammad Alim

    2016-10-01

    Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

  13. Constructing local integrals of motion in the many-body localized phase

    NASA Astrophysics Data System (ADS)

    Chandran, Anushya; Kim, Isaac H.; Vidal, Guifre; Abanin, Dmitry A.

    2015-02-01

    Many-body localization provides a generic mechanism of ergodicity breaking in quantum systems. In contrast to conventional ergodic systems, many-body-localized (MBL) systems are characterized by extensively many local integrals of motion (LIOM), which underlie the absence of transport and thermalization in these systems. Here we report a physically motivated construction of local integrals of motion in the MBL phase. We show that any local operator (e.g., a local particle number or a spin-flip operator), evolved with the system's Hamiltonian and averaged over time, becomes a LIOM in the MBL phase. Such operators have a clear physical meaning, describing the response of the MBL system to a local perturbation. In particular, when a local operator represents a density of some globally conserved quantity, the corresponding LIOM describes how this conserved quantity propagates through the MBL phase. Being uniquely defined and experimentally measurable, these LIOMs provide a natural tool for characterizing the properties of the MBL phase, in both experiments and numerical simulations. We demonstrate the latter by numerically constructing an extensive set of LIOMs in the MBL phase of a disordered spin-chain model. We show that the resulting LIOMs are quasilocal and use their decay to extract the localization length and establish the location of the transition between the MBL and ergodic phases.

  14. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  15. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    NASA Astrophysics Data System (ADS)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This contribution is based on several studies that were undertaken on carbonate rocks diagenesis in some of the major reservoir rocks in the Middle East and outcrop analogues in Europe. Here, the main processes at hand are related to fracture-related dolomitization and carbonate dissolution. We would like to present the workflows we have followed and the questioning that resulted for a series of case studies. The way forward, seems evident as the integration of workflows and numerical modelling tools at different scales, bringing better constrains on the boundary data and less uncertainty.

  16. Hydrodynamic controls on the long-term construction of large river floodplains and alluvial ridges

    NASA Astrophysics Data System (ADS)

    Nicholas, Andrew; Aalto, Rolf; Sambrook Smith, Gregory; Schwendel, Arved

    2017-04-01

    Floodplain construction involves the interplay between channel belt sedimentation and avulsion, overbank deposition of fines, and sediment reworking by channel migration. Each of these processes is controlled, in part, by within-channel and/or overbank hydraulics. However, while spatially-distributed hydrodynamic models are used routinely to simulate floodplain inundation and overbank sedimentation during individual floods, most existing models of long-term floodplain construction and alluvial architecture do not account for flood hydraulics explicitly. Instead, floodplain sedimentation is typically modelled as an exponential function of distance from the river, and avulsion thresholds are defined using topographic indices that quantify alluvial ridge morphology (e.g., lateral:downstream slope ratios or metrics of channel belt super-elevation). Herein, we apply a hydraulically driven model of floodplain evolution, in order to quantify the controls on alluvial ridge construction and avulsion likelihood in large lowland rivers. We combine a simple model of meander migration and cutoff with a 2D grid-based model of flood hydrodynamics and overbank sedimentation. The latter involves a finite volume solution of the shallow water equations and an advection-diffusion model for suspended sediment transport. The model is used to carry out a series of numerical experiments to investigate floodplain construction for a range of flood regimes and sediment supply scenarios, and results are compared to field data from the Rio Beni system, northern Bolivia. Model results, supported by field data, illustrate that floodplain sedimentation is characterised by a high degree of intermittency that is driven by autogenic mechanisms (i.e. even in the absence of temporal variations in flood magnitude and sediment supply). Intermittency in overbank deposits occurs over a range of temporal and spatial scales, and is associated with the interaction between channel migration dynamics and crevasse splay formation. Moreover, alluvial ridge construction, by splay deposition, is controlled by the balance between in-channel and overbank sedimentation rates, and by ridge reworking linked to channel migration. The resulting relationship between sedimentation rates, ridge morphology and avulsion likelihood is more complex than that which is incorporated with existing models of long-term floodplain construction that neglect flood hydraulics. These results have implications for the interpretation of floodplain deposits as records of past flood regimes, and for the controls on the alluvial architecture of large river floodplains.

  17. Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators

    NASA Astrophysics Data System (ADS)

    Hoff, Anderson; dos Santos, Juliana V.; Manchein, Cesar; Albuquerque, Holokx A.

    2014-07-01

    The behavior of neurons can be modeled by the FitzHugh-Nagumo oscillator model, consisting of two nonlinear differential equations, which simulates the behavior of nerve impulse conduction through the neuronal membrane. In this work, we numerically study the dynamical behavior of two coupled FitzHugh-Nagumo oscillators. We consider unidirectional and bidirectional couplings, for which Lyapunov and isoperiodic diagrams were constructed calculating the Lyapunov exponents and the number of the local maxima of a variable in one period interval of the time-series, respectively. By numerical continuation method the bifurcation curves are also obtained for both couplings. The dynamics of the networks here investigated are presented in terms of the variation between the coupling strength of the oscillators and other parameters of the system. For the network of two oscillators unidirectionally coupled, the results show the existence of Arnold tongues, self-organized sequentially in a branch of a Stern-Brocot tree and by the bifurcation curves it became evident the connection between these Arnold tongues with other periodic structures in Lyapunov diagrams. That system also presents multistability shown in the planes of the basin of attractions.

  18. MULTI-SHELL MAGNETIC TWISTERS AS A NEW MECHANISM FOR CORONAL HEATING AND SOLAR WIND ACCELERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murawski, K.; Srivastava, A. K.; Dwivedi, B. N.

    2015-07-20

    We perform numerical simulations of impulsively generated Alfvén waves in an isolated photospheric flux tube and explore the propagation of these waves along such magnetic structure that extends from the photosphere, where these waves are triggered, to the solar corona, and we analyze resulting magnetic shells. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical model and specifying the curved magnetic field lines that constitute the magnetic flux tube that is rooted in the solar photosphere. The evolution of the solar atmosphere is described by 3D, ideal MHD equations that are numerically solvedmore » by the FLASH code. Our numerical simulations reveal, based on the physical properties of the multi-shell magnetic twisters and the amount of energy and momentum associated with them, that these multi-shell magnetic twisters may be responsible for the observed heating of the lower solar corona and for the formation of solar wind. Moreover, it is likely that the existence of these twisters can be verified by high-resolution observations.« less

  19. Numerical and Experimental Studies on Impact Loaded Concrete Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saarenheimo, Arja; Hakola, Ilkka; Karna, Tuomo

    2006-07-01

    An experimental set-up has been constructed for medium scale impact tests. The main objective of this effort is to provide data for the calibration and verification of numerical models of a loading scenario where an aircraft impacts against a nuclear power plant. One goal is to develop and take in use numerical methods for predicting response of reinforced concrete structures to impacts of deformable projectiles that may contain combustible liquid ('fuel'). Loading, structural behaviour, like collapsing mechanism and the damage grade, will be predicted by simple analytical methods and using non-linear FE-method. In the so-called Riera method the behavior ofmore » the missile material is assumed to be rigid plastic or rigid visco-plastic. Using elastic plastic and elastic visco-plastic material models calculations are carried out by ABAQUS/Explicit finite element code, assuming axisymmetric deformation mode for the missile. With both methods, typically, the impact force time history, the velocity of the missile rear end and the missile shortening during the impact were recorded for comparisons. (authors)« less

  20. An implicit boundary integral method for computing electric potential of macromolecules in solvent

    NASA Astrophysics Data System (ADS)

    Zhong, Yimin; Ren, Kui; Tsai, Richard

    2018-04-01

    A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.

  1. Compliance matrices for cracked bodies

    NASA Technical Reports Server (NTRS)

    Ballarini, R.

    1986-01-01

    An algorithm is developed to construct the compliance matrix for a cracked solid in the integral-equation formulation of two-dimensional linear-elastic fracture mechanics. The integral equation is reduced to a system of algebraic equations for unknown values of the dislocation-density function at discrete points on the interval from -1 to 1, using the numerical procedure described by Gerasoulis (1982). Sample numerical results are presented, and it is suggested that the algorithm is especially useful in cases where iterative solutions are required; e.g., models of fiber-reinforced concrete, rocks, or ceramics where microcracking, fiber bridging, and other nonlinear effects are treated as nonlinear springs along the crack surfaces (Ballarini et al., 1984).

  2. Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction

    NASA Astrophysics Data System (ADS)

    Khajanchi, Subhas

    This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.

  3. A numerical study of the ex-ROFI of the Colorado River

    NASA Astrophysics Data System (ADS)

    Carbajal, N.; Souza, A.; Durazo, R.

    1997-08-01

    The freshwater discharge of the Colorado River into the Gulf of California has been reduced to negligible quantities since the construction of the Hoover Dam in 1935. These radical anthropogenic changes in the hydrography of the Colorado River Delta had striking repercussions on both physical and biological processes. Using historical river discharge data, the changes in the flow dynamics and hydrographic patterns before and after the drastic freshwater reduction are studied numerically, using a three-dimensional nonlinear shelf model. The results are applied to assess the environmental impact of the reduction of river discharge on the area. Satellite imagery is also used to compare our results with observed fronts.

  4. Hydraulic alterations resulting from hydropower development in the Bonneville Reach of the Columbia River

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.

    2010-01-01

    We used a two-dimensional (2D) hydrodynamic model to simulate and compare the hydraulic characteristics in a 74-km reach of the Columbia River (the Bonneville Reach) before and after construction of Bonneville Dam. For hydrodynamic modeling, we created a bathymetric layer of the Bonneville Reach from single-beam and multi-beam echo-sounder surveys, digital elevation models, and navigation surveys. We calibrated the hydrodynamic model at 100 and 300 kcfs with a user-defined roughness layer, a variable-sized mesh, and a U.S. Army Corps of Engineers backwater curve. We verified the 2D model with acoustic Doppler current profiler (ADCP) data at 14 transects and three flows. The 2D model was 88% accurate for water depths, and 77% accurate for velocities. We verified a pre-dam 2D model run at 126 kcfs using pre-dam aerial photos from September 1935. Hydraulic simulations indicated that mean water depths in the Bonneville Reach increased by 34% following dam construction, while mean velocities decreased by 58%. There are numerous activities that would benefit from data output from the 2D model, including biological sampling, bioenergetics, and spatially explicit habitat modeling.

  5. Equal Area Logistic Estimation for Item Response Theory

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li

    2009-08-01

    Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.

  6. The origins of computer weather prediction and climate modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Peter

    2008-03-20

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. Amore » fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.« less

  7. The origins of computer weather prediction and climate modeling

    NASA Astrophysics Data System (ADS)

    Lynch, Peter

    2008-03-01

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

  8. A mathematical model of the passage of an asteroid-comet body through the Earth’s atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaydurov, V., E-mail: shaidurov04@mail.ru; Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk; Shchepanovskaya, G.

    In the paper, a mathematical model and a numerical algorithm are proposed for modeling the complex of phenomena which accompany the passage of a friable asteroid-comet body through the Earth’s atmosphere: the material ablation, the dissociation of molecules, and the radiation. The proposed model is constructed on the basis of the Navier-Stokes equations for viscous heat-conducting gas with an additional equation for the motion and propagation of a friable lumpy-dust material in air. The energy equation is modified for the relation between two its kinds: the usual energy of the translation of molecules (which defines the temperature and pressure) andmore » the combined energy of their rotation, oscillation, electronic excitation, dissociation, and radiation. For the mathematical model of atmosphere, the distribution of density, pressure, and temperature in height is taken as for the standard atmosphere. An asteroid-comet body is taken initially as a round body consisting of a friable lumpy-dust material with corresponding density and significant viscosity which far exceed those for the atmosphere gas. A numerical algorithm is proposed for solving the initial-boundary problem for the extended system of Navier-Stokes equations. The algorithm is the combination of the semi-Lagrangian approximation for Lagrange transport derivatives and the conforming finite element method for other terms. The implementation of these approaches is illustrated by a numerical example.« less

  9. Numerical Polynomial Homotopy Continuation Method and String Vacua

    DOE PAGES

    Mehta, Dhagash

    2011-01-01

    Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less

  10. Finite-Strain Fractional-Order Viscoelastic (FOV) Material Models and Numerical Methods for Solving Them

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.

  11. Evaluation of Sunshine Duration around a Building in an Urban Area

    NASA Astrophysics Data System (ADS)

    Kang, J. E.; Kim, J.

    2017-12-01

    In this study, sunshine duration around a building in a building-congested district in Busan, Korea was analyzed using a numerical model. This model considers sunshine duration blocking caused by topography and buildings and it is properly applicable to evaluation of sunshine duration environment in urban areas. The 2 km Í 2 km area where the building with 45-m height was located at the center was selected as a target area. We selected the target period from December 21 to December 23, 2015, considering the winter solstice (December 22, 2015) when it is expected to have the largest effect of sunshine blocking due to buildings. We validated the calculated solar altitude and azimuth angles against those provided by Korea astronomy and space science institute (KASI) and the calculated results gave very good agreement with those provided by KASI. Topography and buildings used as the input data of the model were constructed using a geographic information system (GIS) data. In order to analyze, in detail, the change in sunshine duration caused by the construction of the building, the sunshine duration on the roof and walls (eastern, western, southern, northern side) were investigated before and after the construction.

  12. Dynamic properties of unbonded, multi-strand beams subjected to flexural loading

    NASA Astrophysics Data System (ADS)

    Asker, Haval K.; Rongong, Jem A.; Lord, Charles E.

    2018-02-01

    Beam-like structures, constructed from many long strands that are constrained rather than bonded together, can provide appreciable levels of structural damping through friction between individual strands. This paper describes experimental and numerical studies, carried out on square-section metal beams, which are aimed at improving understanding of the relationship between construction and performance. A beam is formed from a pack of square-section strands that is held together at various compression loads with pre-calibrated clamps. Flexural deformation of the assembled beam is simulated using standard finite element analysis employing simple Coulomb friction at the interfaces. The validity of the assumptions used in the models is confirmed by comparison with three point bend tests on a regular nine strand construction at several different clamp loads. Dynamic loss factors for this beam are obtained by conducting forced vibration tests, which show that the damping is insensitive to frequency. Subsequent numerical studies are used to investigate the effects of increasing the number of strands whilst maintaining the overall cross-section geometry of the beam. It is found that the system stiffness drops and loss factor increases when more strands are used for a maintained beam cross-section. Interestingly, the energy dissipated by each beam construction is almost the same. These results provide a vital and necessary insight into the physics for stranded structures and materials that are largely prevalent in mechanical (e.g. cables) and electrical (e.g. wires) elements.

  13. Delft Dashboard: a quick setup tool for coastal and estuarine models

    NASA Astrophysics Data System (ADS)

    Nederhoff, C., III; Van Dongeren, A.; Van Ormondt, M.; Veeramony, J.

    2016-02-01

    We developed easy-to-use Delft DashBoard (DDB) software for the rapid set-up of coastal and estuarine hydrodynamic and basic morphological numerical models. In the "Model Maker" toolbox, users have the capability to set-up Delft3D models, in a minimal amount of time (in the order of a hour), for any location in the world. DDB draws upon public internet data sources of bathymetry and tidesto construct the model. With additional toolboxes, these models can be forced with parameterized hurricane wind fields, uplift of the sea surface due to tsunamis nested in publically available ocean models and forced with meteo data (wind speed, pressure, temperature) In this presentation we will show the skill of a model which is setup with Delft Dashboard and compare it to well-calibrated benchmark models. These latter models have been set-up using detailed input data and boundary conditions. We have tested the functionality of Delft DashBoard and evaluate the performance and robustness of the DDB model system on a variety of cases, ranging from a coastal to basin models. Furthermore, we have performed a sensitivity study to investigate the most critical physical and numerical processes. The software can benefit operational modellers, as well as scientists and consultants.

  14. Biomechanical Evaluation of an Electric Power-Assisted Bicycle by a Musculoskeletal Model

    NASA Astrophysics Data System (ADS)

    Takehara, Shoichiro; Murakami, Musashi; Hase, Kazunori

    In this study, we construct an evaluation system for the muscular activity of the lower limbs when a human pedals an electric power-assisted bicycle. The evaluation system is composed of an electric power-assisted bicycle, a numerical simulator and a motion capture system. The electric power-assisted bicycle in this study has a pedal with an attached force sensor. The numerical simulator for pedaling motion is a musculoskeletal model of a human. The motion capture system measures the joint angles of the lower limb. We examine the influence of the electric power-assisted force on each muscle of the human trunk and legs. First, an experiment of pedaling motion is performed. Then, the musculoskeletal model is calculated by using the experimental data. We discuss the influence on each muscle by electric power-assist. It is found that the muscular activity is decreased by the electric power-assist bicycle, and the reduction of the muscular force required for pedaling motion was quantitatively shown for every muscle.

  15. Numerical modeling of Stokes flows over a superhydrophobic surface containing gas bubbles

    NASA Astrophysics Data System (ADS)

    Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.

    2017-10-01

    This paper continues the numerical modeling of Stokes flows near cavities of a superhydrophobic surface, occupied by gas bubbles, based on the Boundary Element Method (BEM). The aim of the present study is to estimate the friction reduction (pressure drop) in a microchannel with a bottom superhydrophobic surface, the texture of which is formed by a periodic system of striped rectangular microcavities containing compressible gas bubbles. The model proposed takes into account the streamwise variation of the bubble shift into the cavities, caused by the longitudinal pressure gradient in the channel flow. The solution for the macroscopic (averaged) flow in the microchannel, constructed using an effective slip boundary condition on the superhydrophobic bottom wall, is matched with the solution of the Stokes problem at the microscale of a single cavity containing a gas bubble. The 2D Stokes problems of fluid flow over single cavities containing curved phase interfaces with the condition of zero shear stress are reduced to the boundary integral equations which are solved using the BEM method.

  16. On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Compton, William Bernard

    1985-01-01

    The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.

  17. Vibration Analysis of a Tire in Ground Contact under Varied Conditions

    NASA Astrophysics Data System (ADS)

    Karakus, Murat; Cavus, Aydin; Colakoglu, Mehmet

    2017-03-01

    The effect of three different factors, which are inflation pressure, vertical load and coefficient of friction on the natural frequencies of a tire (175/70 R13) has been studied. A three dimensional tire model is constructed, using four different material properties and parts in the tire. Mechanical properties of the composite parts are evaluated. After investigating the free vibration, contact analysis is carried out. A concrete block and the tire are modelled together, using three different coefficients of friction. Experiments are run under certain conditions to check the accuracy of the numerical model. The natural frequencies are measured to describe free vibration and vibration of the tire contacted by ground, using a damping monitoring method. It is seen, that experimental and numerical results are in good agreement. On the other hand, investigating the impact of three different factors together is quite difficult on the natural frequencies. When some of these factors are assumed to be constant and the variables are taken one by one, it is easier to assess the effects.

  18. Modelling the behaviour of steel fibre reinforced precast beam-to-column connection

    NASA Astrophysics Data System (ADS)

    Chai, C. E.; Sarbini, NN; Ibrahim, I. S.; Ma, C. K.; Tajol Anuar, M. Z.

    2017-11-01

    The numerical behaviour of steel fibre reinforced concrete (SFRC) corbels reinforced with different fibre volume ratio subjected to vertical incremental load is presented in this paper. Precast concrete structures had become popular in the construction field, which offer a faster, neater, safer, easier and cheaper construction work. The construction components are prefabricated in controlled environment under strict supervision before being erected on site. However, precast beam-column connections are prone to failure due to the brittle properties of concrete. Finite element analysis (FEA) is adopted due to the nonlinear behaviour of concrete and SFRC. The key objective of this research is to develop a reliable nonlinear FEA model to represent the behaviour of reinforced concrete corbel. The developed model is validated with experimental data from previous researches. Then, the validated FEA model is used to predict the behaviour of SFRC corbel reinforced with different fibre volume ratio by changing the material parameters. The results show that the addition of steel fibre (SF) increases the load carrying capacity, ductility, stiffness, and changed the failure mode of corbel from brittle bending-shear to flexural ductile. On the other hand, the increasing of SF volume ratio also leads to increased load carrying capacity, ductility, and stiffness of corbel.

  19. Ordinal Expressions in Japanese. Papers in Japanese Linguistics, Vol. 2, No. 1.

    ERIC Educational Resources Information Center

    Backus, Robert L.

    The varied forms and semantic factors of Japanese ordinal expressions are related to one another in a coherent system. In Japanese, the cardinal number form is a numeral compound in construction with a referent. The numeral compound consists of a number and a numeral adjunct. Numeral adjuncts are derived from bound forms, or numeral suffixes, and…

  20. Three dimensional numerical modeling of Hydrodynamics and sediment transport in the Mississippi River Diversion at West Bay

    NASA Astrophysics Data System (ADS)

    Sadid, K. M.; Meselhe, E. A.; Roth, B.; Allison, M. A.

    2013-12-01

    The coastal wetlands of Louisiana have been experiencing high rates of land subsidence and erosion for decades. Anthropogenic alterations to the hydrology and geology, powerful hurricanes, and relative sea level rise have caused major coastal land loss in Louisiana. After years of research and discussions, the use of sediment diversions from the Mississippi River to adjacent embayment areas were proposed and further authorized as a solution for land building. To this end, the West Bay diversion (WBD) was constructed in 2003 to restore approximately 9,831 acres of wetlands in the West Bay area under the Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA). The WBD is located along the right-descending bank of the Mississippi River south of Venice, LA near River Mile (RM) 4.7. The initial size of the channel post-construction was designed to convey 20,000 cubic feet per second (cfs), and over time it was anticipated to support a maximum of 50,000 cfs. This sediment diversion provides an opportunity to examine and analyze the impact of such diversion on the morphology of the river channel, and the retention characteristics and rate of delta growth in the receiving basin. Additionally, the WBD serve as analogue to fully validate morphologic models that could consequently be used to model proposed land building sediment diversions in the Lower Mississippi River. In this study a three-dimensional numerical model is developed for the WBD which includes the main channel of the Mississippi River as well as the receiving basin. The model is being calibrated and validated for hydrodynamics and morphology using detailed field observations. Since 2003 regular monitoring has taken place as per the CWPPRA project guidelines. This includes bathymetric surveys of the receiving basin from 2002 (pre-construction), 2003, 2006, and 2009. A recent monitoring survey has been completed and will be available in the near future. In addition to this monitoring data, the U.S. Army Corps of Engineers (USACE) has conducted a study of the diversion to assess the impact on sedimentation within the Pilottown Anchorage Area and the navigation channel. This model will provide quantitative information regarding the sediment load and size distribution diverted through the WBD and deposited in the receiving basin, as well as that deposited within river channel. Further, the WBD model will provide great insights on the morphological response of the river and the receiving basin to such diversions. The validated WBD model will help to establish the appropriate parameterizations for other Delft3D models that will analyze and predict the morphological development within the receiving basins of the proposed diversions located along the lower Mississippi River. These models will be used not only to assess the performance of individual diversions, but also to evaluate the effects of multiple diversions operating simultaneously along the River. Keywords: Three Dimensional Numerical Modeling, West Bay, Sediment Diversions, Lower Mississippi River, Delft3D

  1. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less

  2. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.

    PubMed

    Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi

    2008-03-01

    In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.

  3. Stability analysis and nonstandard Grünwald-Letnikov scheme for a fractional order predator-prey model with ratio-dependent functional response

    NASA Astrophysics Data System (ADS)

    Suryanto, Agus; Darti, Isnani

    2017-12-01

    In this paper we discuss a fractional order predator-prey model with ratio-dependent functional response. The dynamical properties of this model is analyzed. Here we determine all equilibrium points of this model including their existence conditions and their stability properties. It is found that the model has two type of equilibria, namely the predator-free point and the co-existence point. If there is no co-existence equilibrium, i.e. when the coefficient of conversion from the functional response into the growth rate of predator is less than the death rate of predator, then the predator-free point is asymptotically stable. On the other hand, if the co-existence point exists then this equilibrium is conditionally stable. We also construct a nonstandard Grnwald-Letnikov (NSGL) numerical scheme for the propose model. This scheme is a combination of the Grnwald-Letnikov approximation and the nonstandard finite difference scheme. This scheme is implemented in MATLAB and used to perform some simulations. It is shown that our numerical solutions are consistent with the dynamical properties of our fractional predator-prey model.

  4. Material and shape optimization for multi-layered vocal fold models using transient loadings.

    PubMed

    Schmidt, Bastian; Leugering, Günter; Stingl, Michael; Hüttner, Björn; Agaimy, Abbas; Döllinger, Michael

    2013-08-01

    Commonly applied models to study vocal fold vibrations in combination with air flow distributions are self-sustained physical models of the larynx consisting of artificial silicone vocal folds. Choosing appropriate mechanical parameters and layer geometries for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In earlier work by Schmidt et al. [J. Acoust. Soc. Am. 129, 2168-2180 (2011)], the authors presented an approach in which material parameters of a static numerical vocal fold model were optimized to achieve an agreement of the displacement field with data retrieved from hemilarynx experiments. This method is now generalized to a fully transient setting. Moreover in addition to the material parameters, the extended approach is capable of finding optimized layer geometries. Depending on chosen material restriction, significant modifications of the reference geometry are predicted. The additional flexibility in the design space leads to a significantly more realistic deformation behavior. At the same time, the predicted biomechanical and geometrical results are still feasible for manufacturing physical vocal fold models consisting of several silicone layers. As a consequence, the proposed combined experimental and numerical method is suited to guide the construction of physical vocal fold models.

  5. Exploring different strategies for imbalanced ADME data problem: case study on Caco-2 permeability modeling.

    PubMed

    Pham-The, Hai; Casañola-Martin, Gerardo; Garrigues, Teresa; Bermejo, Marival; González-Álvarez, Isabel; Nguyen-Hai, Nam; Cabrera-Pérez, Miguel Ángel; Le-Thi-Thu, Huong

    2016-02-01

    In many absorption, distribution, metabolism, and excretion (ADME) modeling problems, imbalanced data could negatively affect classification performance of machine learning algorithms. Solutions for handling imbalanced dataset have been proposed, but their application for ADME modeling tasks is underexplored. In this paper, various strategies including cost-sensitive learning and resampling methods were studied to tackle the moderate imbalance problem of a large Caco-2 cell permeability database. Simple physicochemical molecular descriptors were utilized for data modeling. Support vector machine classifiers were constructed and compared using multiple comparison tests. Results showed that the models developed on the basis of resampling strategies displayed better performance than the cost-sensitive classification models, especially in the case of oversampling data where misclassification rates for minority class have values of 0.11 and 0.14 for training and test set, respectively. A consensus model with enhanced applicability domain was subsequently constructed and showed improved performance. This model was used to predict a set of randomly selected high-permeability reference drugs according to the biopharmaceutics classification system. Overall, this study provides a comparison of numerous rebalancing strategies and displays the effectiveness of oversampling methods to deal with imbalanced permeability data problems.

  6. Description and comparison of selected models for hydrologic analysis of ground-water flow, St Joseph River basin, Indiana

    USGS Publications Warehouse

    Peters, J.G.

    1987-01-01

    The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with simple lithology and boundary conditions and with few pumping wells. Numerical models are useful in regional areas with complex hydrogeology with many pumping wells and provide detailed water budgets useful for estimating the sources of water in pumping simulations. Numerical models are useful in constructing flow nets. The choice of which type of model to use is also based on the nature and scope of questions to be answered and on the degree of accuracy required. (Author 's abstract)

  7. Experimental and simulation flow rate analysis of the 3/2 directional pneumatic valve

    NASA Astrophysics Data System (ADS)

    Blasiak, Slawomir; Takosoglu, Jakub E.; Laski, Pawel A.; Pietrala, Dawid S.; Zwierzchowski, Jaroslaw; Bracha, Gabriel; Nowakowski, Lukasz; Blasiak, Malgorzata

    The work includes a study on the comparative analysis of two test methods. The first method - numerical method, consists in determining the flow characteristics with the use of ANSYS CFX. A modeled poppet directional valve 3/2 3D CAD software - SolidWorks was used for this purpose. Based on the solid model that was developed, simulation studies of the air flow through the way valve in the software for computational fluid dynamics Ansys CFX were conducted. The second method - experimental, entailed conducting tests on a specially constructed test stand. The comparison of the test results obtained on the basis of both methods made it possible to determine the cross-correlation. High compatibility of the results confirms the usefulness of the numerical procedures. Thus, they might serve to determine the flow characteristics of directional valves as an alternative to a costly and time-consuming test stand.

  8. A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1988-01-01

    Research has been undertaken to achieve an improved understanding of physical phenomena present when a supersonic flow undergoes chemical reaction. A detailed understanding of supersonic reacting flows is necessary to successfully develop advanced propulsion systems now planned for use late in this century and beyond. In order to explore such flows, a study was begun to create appropriate physical models for describing supersonic combustion, and to develop accurate and efficient numerical techniques for solving the governing equations that result from these models. From this work, two computer programs were written to study reacting flows. Both programs were constructed to consider the multicomponent diffusion and convection of important chemical species, the finite rate reaction of these species, and the resulting interaction of the fluid mechanics and the chemistry. The first program employed a finite difference scheme for integrating the governing equations, whereas the second used a hybrid Chebyshev pseudospectral technique for improved accuracy.

  9. Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.

    PubMed

    Oettinger, D; Mendoza, M; Herrmann, H J

    2013-07-01

    We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.

  10. Modelling and simulation of “Free Cooling” process applied to building construction

    NASA Astrophysics Data System (ADS)

    Ousegui, A.; Asbik, M.

    2018-05-01

    Thermal energy storage systems (TES), using phase change material (PCM) in building walls, consists a hot topic within the research community currently. In the present work, a numerical model is developed to simulate free cooling of air-PCM heat exchanger in both charging and discharging steps. The studied case is taken from experimental work. The domain consists in two parallel plates made of Paraffin as PCM, separate by a gap where air circulates. The flow and temperature can be adjusted. The goal is to calculate the temperature of the air at the outlet, in order to analyse the performance of the device. A good agreement was founded between experimental and numerical results. The analysis of the influence of the flow rate on the efficiency of the process confirms a previous works, that the heating flow rate should be higher than cooling one.

  11. Source localization in electromyography using the inverse potential problem

    NASA Astrophysics Data System (ADS)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2011-02-01

    We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.

  12. Exactly Solvable Models for Topological Phases of Matter

    NASA Astrophysics Data System (ADS)

    Tarantino, Nicolas Alessandro

    Topological systems are characterized by some collection of features which remain unchanged under deformations of the Hamiltonian which leave the band gap open. The earliest examples of these were free fermion systems, allowing us to study the band structure to determine if a candidate material supports topological features. However, we can also ask the reversed question, i.e. Given a band gap, what topological features can be engineered? This classification problem proved to have numerous answers depending on which extra assumptions we allow, producing many candidate phases. While free fermion topological features could be classified by their band structures (culminating in the 10-fold way), strongly interacting systems defied this approach, and so classification outstripped the construction of even the most elementary Hamiltonians, leaving us with a number of phases which could exist, but do not have a single strongly interacting representative. The purpose of this thesis is to resolve this in certain cases by constructing commuting projector models (CPM), a class of exactly solvable models, for two types of topological phases, known as symmetry enriched topological (SET) order and fermionic symmetry protected topological (SPT) phases respectively. After introducing the background and history of commuting projector models, we will move on to the details of how these Hamiltonians are built. In the first case, we construct a CPM for a SET, showing how to encode the necessary group cohomology data into a lattice model. In the second, we construct a CPM for a fermionic SPT, and find that we must include a combinatorial representation of a spin structure to make the model consistent. While these two projects were independent, they are linked thematically by a technique known as decoration, where extra data is encoded onto simple models to generate exotic phases.

  13. Prediction of barrier island restoration response and its interactions with the natural environment

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Stockdon, H. F.; Flocks, J.; Sallenger, A. H.; Long, J. W.; Cormier, J. M.; Guy, K.; Thompson, D. M.

    2012-12-01

    A 2-meter high sand berm was constructed along Chandeleur Island, Louisiana, in an attempt to provide protection against the Deepwater Horizon oil spill. Berm construction started in June 2010 and ended in April 2011. Variations in both island morphology and construction of the 15-km long berm resulted in the development of four different morphologies: a berm built on a submerged island platform to the north of the existing island, a berm built seaward of the existing island, a berm built along the island shoreline, and portions of the island where no berm was constructed. These different morphologies provide a natural laboratory for testing the understanding of berm and barrier island response to storms. In particular, the ability to predict berm evolution using statistical modeling of the interactions between the island, berm, and oceanographic processes was tested. This particular test was part of a broader USGS research effort to understand processes that bridge the gap between short-term storm response and longer-term geologic and climate interactions that shape barrier-island systems. Berm construction and subsequent berm and island evolution were monitored using satellite and aerial remote sensing and topographic and bathymetric surveys. To date, significant berm evolution occurred in both the north (including terminal erosion, overwash, and a large breach), center (overwash and numerous breaches), and south (overwash). The response of the central portion of the berm to winter and tropical storms was significant such that none of the residual berm remained within its construction footprint. The evolution of the central portion of the berm was well predicted using a statistical modeling approach that used predicted and modeled wave conditions to identify the likelihood of overwash events. Comparison of different modeled evolution scenarios to the one that was observed showed that berm response was sensitive to the frequency and severity of winter and tropical storms. These findings demonstrate an observation and modeling approach that can be applied to understanding and managing other natural and restored barrier islands.

  14. Numerical investigation of the flow inside the combustion chamber of a plant oil stove

    NASA Astrophysics Data System (ADS)

    Pritz, B.; Werler, M.; Wirbser, H.; Gabi, M.

    2013-10-01

    Recently a low cost cooking device for developing and emerging countries was developed at KIT in cooperation with the company Bosch und Siemens Hausgeräte GmbH. After constructing an innovative basic design further development was required. Numerical investigations were conducted in order to investigate the flow inside the combustion chamber of the stove under variation of different geometrical parameters. Beyond the performance improvement a further reason of the investigations was to rate the effects of manufacturing tolerance problems. In this paper the numerical investigation of a plant oil stove by means of RANS simulation will be presented. In order to reduce the computational costs different model reduction steps were necessary. The simulation results of the basic configuration compare very well with experimental measurements and problematic behaviors of the actual stove design could be explained by the investigation.

  15. Experimental, Numerical, and Analytical Slosh Dynamics of Water and Liquid Nitrogen in a Spherical Tank

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah Morse

    2016-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.

  16. Recursive linearization of multibody dynamics equations of motion

    NASA Technical Reports Server (NTRS)

    Lin, Tsung-Chieh; Yae, K. Harold

    1989-01-01

    The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.

  17. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    PubMed

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Application of variational principles and adjoint integrating factors for constructing numerical GFD models

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2015-04-01

    The proposed method is considered on an example of hydrothermodynamics and atmospheric chemistry models [1,2]. In the development of the existing methods for constructing numerical schemes possessing the properties of total approximation for operators of multiscale process models, we have developed a new variational technique, which uses the concept of adjoint integrating factors. The technique is as follows. First, a basic functional of the variational principle (the integral identity that unites the model equations, initial and boundary conditions) is transformed using Lagrange's identity and the second Green's formula. As a result, the action of the operators of main problem in the space of state functions is transferred to the adjoint operators defined in the space of sufficiently smooth adjoint functions. By the choice of adjoint functions the order of the derivatives becomes lower by one than those in the original equations. We obtain a set of new balance relationships that take into account the sources and boundary conditions. Next, we introduce the decomposition of the model domain into a set of finite volumes. For multi-dimensional non-stationary problems, this technique is applied in the framework of the variational principle and schemes of decomposition and splitting on the set of physical processes for each coordinate directions successively at each time step. For each direction within the finite volume, the analytical solutions of one-dimensional homogeneous adjoint equations are constructed. In this case, the solutions of adjoint equations serve as integrating factors. The results are the hybrid discrete-analytical schemes. They have the properties of stability, approximation and unconditional monotony for convection-diffusion operators. These schemes are discrete in time and analytic in the spatial variables. They are exact in case of piecewise-constant coefficients within the finite volume and along the coordinate lines of the grid area in each direction on a time step. In each direction, they have tridiagonal structure. They are solved by the sweep method. An important advantage of the discrete-analytical schemes is that the values of derivatives at the boundaries of finite volume are calculated together with the values of the unknown functions. This technique is particularly attractive for problems with dominant convection, as it does not require artificial monotonization and limiters. The same idea of integrating factors is applied in temporal dimension to the stiff systems of equations describing chemical transformation models [2]. The proposed method is applicable for the problems involving convection-diffusion-reaction operators. The work has been partially supported by the Presidium of RAS under Program 43, and by the RFBR grants 14-01-00125 and 14-01-31482. References: 1. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Variational approach and Euler's integrating factors for environmental studies// Computers and Mathematics with Applications, (2014) V.67, Issue 12, P. 2240-2256. 2. V.V.Penenko, E.A.Tsvetova. Variational methods of constructing monotone approximations for atmospheric chemistry models // Numerical analysis and applications, 2013, V. 6, Issue 3, pp 210-220.

  19. Processes that generate and deplete liquid water and snow in thin midlevel mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Smith, Adam J.; Larson, Vincent E.; Niu, Jianguo; Kankiewicz, J. Adam; Carey, Lawrence D.

    2009-06-01

    This paper uses a numerical model to investigate microphysical, radiative, and dynamical processes in mixed-phase altostratocumulus clouds. Three cloud cases are chosen for study, each of which was observed by aircraft during the fifth or ninth Complex Layered Cloud Experiment (CLEX). These three clouds are numerically modeled using large-eddy simulation (LES). The observed and modeled clouds consist of a mixed-phase layer with a quasi-adiabatic profile of liquid, and a virga layer below that consists of snow. A budget of cloud (liquid) water mixing ratio is constructed from the simulations. It shows that large-scale ascent/descent, radiative cooling/heating, turbulent transport, and microphysical processes are all significant. Liquid is depleted indirectly via depositional growth of snow (the Bergeron-Findeisen process). This process is more influential than depletion of liquid via accretional growth of snow. Also constructed is a budget of snow mixing ratio, which turns out to be somewhat simpler. It shows that snow grows by deposition in and below the liquid (mixed-phase) layer, and sublimates in the remainder of the virga region below. The deposition and sublimation are balanced primarily by sedimentation, which transports the snow from the growth region to the sublimation region below. In our three clouds, the vertical extent of the virga layer is influenced more by the profile of saturation ratio below the liquid (mixed-phase) layer than by the mixing ratio of snow at the top of the virga layer.

  20. A mathematical study of a model for childhood diseases with non-permanent immunity

    NASA Astrophysics Data System (ADS)

    Moghadas, S. M.; Gumel, A. B.

    2003-08-01

    Protecting children from diseases that can be prevented by vaccination is a primary goal of health administrators. Since vaccination is considered to be the most effective strategy against childhood diseases, the development of a framework that would predict the optimal vaccine coverage level needed to prevent the spread of these diseases is crucial. This paper provides this framework via qualitative and quantitative analysis of a deterministic mathematical model for the transmission dynamics of a childhood disease in the presence of a preventive vaccine that may wane over time. Using global stability analysis of the model, based on constructing a Lyapunov function, it is shown that the disease can be eradicated from the population if the vaccination coverage level exceeds a certain threshold value. It is also shown that the disease will persist within the population if the coverage level is below this threshold. These results are verified numerically by constructing, and then simulating, a robust semi-explicit second-order finite-difference method.

  1. Multidisciplinary optimization of aeroservoelastic systems using reduced-size models

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1992-01-01

    Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.

  2. Development of a statistical oil spill model for risk assessment.

    PubMed

    Guo, Weijun

    2017-11-01

    To gain a better understanding of the impacts from potential risk sources, we developed an oil spill model using probabilistic method, which simulates numerous oil spill trajectories under varying environmental conditions. The statistical results were quantified from hypothetical oil spills under multiple scenarios, including area affected probability, mean oil slick thickness, and duration of water surface exposed to floating oil. The three sub-indices together with marine area vulnerability are merged to compute the composite index, characterizing the spatial distribution of risk degree. Integral of the index can be used to identify the overall risk from an emission source. The developed model has been successfully applied in comparison to and selection of an appropriate oil port construction location adjacent to a marine protected area for Phoca largha in China. The results highlight the importance of selection of candidates before project construction, since that risk estimation from two adjacent potential sources may turn out to be significantly different regarding hydrodynamic conditions and eco-environmental sensitivity. Copyright © 2017. Published by Elsevier Ltd.

  3. The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

    NASA Astrophysics Data System (ADS)

    Anggriani, N.; Supriatna, A. K.; Soewono, E.

    2015-06-01

    In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.

  4. The space-dependent model and output characteristics of intra-cavity pumped dual-wavelength lasers

    NASA Astrophysics Data System (ADS)

    He, Jin-Qi; Dong, Yuan; Zhang, Feng-Dong; Yu, Yong-Ji; Jin, Guang-Yong; Liu, Li-Da

    2016-01-01

    The intra-cavity pumping scheme which is used to simultaneously generate dual-wavelength lasers was proposed and published by us and the space-independent model of quasi-three-level and four-level intra-cavity pumped dual-wavelength lasers was constructed based on this scheme. In this paper, to make the previous study more rigorous, the space-dependent model is adopted. As an example, the output characteristics of 946 nm and 1064 nm dual-wavelength lasers under the conditions of different output mirror transmittances are numerically simulated by using the derived formula and the results are nearly identical to what was previously reported.

  5. Using numerical simulations to study the ICM metallicity fields in clusters and groups

    NASA Astrophysics Data System (ADS)

    Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.

    2018-01-01

    Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.

  6. The Tightness of the Kesten-Stigum Reconstruction Bound of Symmetric Model with Multiple Mutations

    NASA Astrophysics Data System (ADS)

    Liu, Wenjian; Jammalamadaka, Sreenivasa Rao; Ning, Ning

    2018-02-01

    It is well known that reconstruction problems, as the interdisciplinary subject, have been studied in numerous contexts including statistical physics, information theory and computational biology, to name a few. We consider a 2 q-state symmetric model, with two categories of q states in each category, and 3 transition probabilities: the probability to remain in the same state, the probability to change states but remain in the same category, and the probability to change categories. We construct a nonlinear second-order dynamical system based on this model and show that the Kesten-Stigum reconstruction bound is not tight when q ≥ 4.

  7. Hopf solitons in the Nicole model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillard, Mike; Sutcliffe, Paul

    2010-12-15

    The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in themore » two theories.« less

  8. The influence of nonstationarity of the solar activity and general solar field on modulation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zusmanovich, A. G.; Kryakunova, O. N.; Churunova, L. F.; Shvartsman, Y. E.

    1985-01-01

    A numerical model of the propagation of galactic cosmic rays in interplanetary space was constructed for the case when the modulation depth determined by the level of solar activity changed in time. Also the contribution of particle drift in the regular field was calculated, and the agreement with experimental data concerning the ratio of protons and electrons in two solar activity minima is shown.

  9. A comparative study of integrators for constructing ephemerides with high precision.

    NASA Astrophysics Data System (ADS)

    Huang, Tian-Yi

    1990-09-01

    There are four indexes for evaluating various integrators. They are the local truncation error, the numerical stability, the complexity of computation and the quality of adaptation. A review and a comparative study of several numerical integration methods, such as Adams, Cowell, Runge-Kutta-Fehlberg, Gragg-Bulirsch-Stoer extrapolation, Everhart, Taylor series and Krogh, which are popular for constructing ephemerides with high precision, has been worked out.

  10. Mycoplasma pneumoniae, an Underutilized Model for Bacterial Cell Biology

    PubMed Central

    2014-01-01

    In recent decades, bacterial cell biology has seen great advances, and numerous model systems have been developed to study a wide variety of cellular processes, including cell division, motility, assembly of macromolecular structures, and biogenesis of cell polarity. Considerable attention has been given to these model organisms, which include Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and Myxococcus xanthus. Studies of these processes in the pathogenic bacterium Mycoplasma pneumoniae and its close relatives have also been carried out on a smaller scale, but this work is often overlooked, in part due to this organism's reputation as minimalistic and simple. In this minireview, I discuss recent work on the role of the M. pneumoniae attachment organelle (AO), a structure required for adherence to host cells, in these processes. The AO is constructed from proteins that generally lack homology to those found in other organisms, and this construction occurs in coordination with cell cycle events. The proteins of the M. pneumoniae AO share compositional features with proteins with related roles in model organisms. Once constructed, the AO becomes activated for its role in a form of gliding motility whose underlying mechanism appears to be distinct from that of other gliding bacteria, including Mycoplasma mobile. Together with the FtsZ cytoskeletal protein, motility participates in the cell division process. My intention is to bring this deceptively complex organism into alignment with the better-known model systems. PMID:25157081

  11. Numerical simulation and fracture identification of dual laterolog in organic shale

    NASA Astrophysics Data System (ADS)

    Maojin, Tan; Peng, Wang; Qiong, Liu

    2012-09-01

    Fracture is one of important spaces in shale oil and shale gas reservoirs, and fractures identification and evaluation are an important part in organic shale interpretation. According to the fractured shale gas reservoir, a physical model is set up to study the dual laterolog logging responses. First, based on the principle of dual laterolog, three-dimensional finite element method (FEM) is used to simulate the dual laterolog responses in various formation models with different fractures widths, different fracture numbers, different fractures inclination angle. All the results are extremely important for the fracture identification and evaluation in shale reservoirs. Appointing to different base rock resistivity models, the fracture models are constructed respectively through a number of numerical simulation, and the fracture porosity can be calculated by solving the corresponding formulas. A case study about organic shale formation is analyst and discussed, and the fracture porosity is calculated from dual laterolog. The fracture evaluation results are also be validated right by Full borehole Micro-resistivity Imaging (FMI). So, in case of the absence of borehole resistivity imaging log, the dual laterolog resistivity can be used to estimate the fracture development.

  12. Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2013-10-01

    This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.

  13. Semantic Information Processing of Physical Simulation Based on Scientific Concept Vocabulary Model

    NASA Astrophysics Data System (ADS)

    Kino, Chiaki; Suzuki, Yoshio; Takemiya, Hiroshi

    Scientific Concept Vocabulary (SCV) has been developed to actualize Cognitive methodology based Data Analysis System: CDAS which supports researchers to analyze large scale data efficiently and comprehensively. SCV is an information model for processing semantic information for physics and engineering. In the model of SCV, all semantic information is related to substantial data and algorisms. Consequently, SCV enables a data analysis system to recognize the meaning of execution results output from a numerical simulation. This method has allowed a data analysis system to extract important information from a scientific view point. Previous research has shown that SCV is able to describe simple scientific indices and scientific perceptions. However, it is difficult to describe complex scientific perceptions by currently-proposed SCV. In this paper, a new data structure for SCV has been proposed in order to describe scientific perceptions in more detail. Additionally, the prototype of the new model has been constructed and applied to actual data of numerical simulation. The result means that the new SCV is able to describe more complex scientific perceptions.

  14. Effects of Nonlinear Inhomogeneity on the Cosmic Expansion with Numerical Relativity.

    PubMed

    Bentivegna, Eloisa; Bruni, Marco

    2016-06-24

    We construct a three-dimensional, fully relativistic numerical model of a universe filled with an inhomogeneous pressureless fluid, starting from initial data that represent a perturbation of the Einstein-de Sitter model. We then measure the departure of the average expansion rate with respect to this homogeneous and isotropic reference model, comparing local quantities to the predictions of linear perturbation theory. We find that collapsing perturbations reach the turnaround point much earlier than expected from the reference spherical top-hat collapse model and that the local deviation of the expansion rate from the homogeneous one can be as high as 28% at an underdensity, for an initial density contrast of 10^{-2}. We then study, for the first time, the exact behavior of the backreaction term Q_{D}. We find that, for small values of the initial perturbations, this term exhibits a 1/a scaling, and that it is negative with a linearly growing absolute value for larger perturbation amplitudes, thereby contributing to an overall deceleration of the expansion. Its magnitude, on the other hand, remains very small even for relatively large perturbations.

  15. Traveling waves in a continuum model of 1D schools

    NASA Astrophysics Data System (ADS)

    Oza, Anand; Kanso, Eva; Shelley, Michael

    2017-11-01

    We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.

  16. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  17. Generalized ocean color inversion model for retrieving marine inherent optical properties.

    PubMed

    Werdell, P Jeremy; Franz, Bryan A; Bailey, Sean W; Feldman, Gene C; Boss, Emmanuel; Brando, Vittorio E; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J; Lee, ZhongPing; Loisel, Hubert; Maritorena, Stéphane; Mélin, Fréderic; Moore, Timothy S; Smyth, Timothy J; Antoine, David; Devred, Emmanuel; d'Andon, Odile Hembise Fanton; Mangin, Antoine

    2013-04-01

    Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.

  18. Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.; Feldman, Gene C.; Boss, Emmanuel; Brando, Vittorio E.; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J.; Lee, ZhongPing; hide

    2013-01-01

    Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future ensemble applications.

  19. A damage analysis for brittle materials using stochastic micro-structural information

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Po; Chen, Jiun-Shyan; Liang, Shixue

    2016-03-01

    In this work, a micro-crack informed stochastic damage analysis is performed to consider the failures of material with stochastic microstructure. The derivation of the damage evolution law is based on the Helmholtz free energy equivalence between cracked microstructure and homogenized continuum. The damage model is constructed under the stochastic representative volume element (SRVE) framework. The characteristics of SRVE used in the construction of the stochastic damage model have been investigated based on the principle of the minimum potential energy. The mesh dependency issue has been addressed by introducing a scaling law into the damage evolution equation. The proposed methods are then validated through the comparison between numerical simulations and experimental observations of a high strength concrete. It is observed that the standard deviation of porosity in the microstructures has stronger effect on the damage states and the peak stresses than its effect on the Young's and shear moduli in the macro-scale responses.

  20. A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping

    2012-06-01

    The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.

  1. Quantum-enhanced deliberation of learning agents using trapped ions

    NASA Astrophysics Data System (ADS)

    Dunjko, V.; Friis, N.; Briegel, H. J.

    2015-02-01

    A scheme that successfully employs quantum mechanics in the design of autonomous learning agents has recently been reported in the context of the projective simulation (PS) model for artificial intelligence. In that approach, the key feature of a PS agent, a specific type of memory which is explored via random walks, was shown to be amenable to quantization, allowing for a speed-up. In this work we propose an implementation of such classical and quantum agents in systems of trapped ions. We employ a generic construction by which the classical agents are ‘upgraded’ to their quantum counterparts by a nested process of adding coherent control, and we outline how this construction can be realized in ion traps. Our results provide a flexible modular architecture for the design of PS agents. Furthermore, we present numerical simulations of simple PS agents which analyze the robustness of our proposal under certain noise models.

  2. A mathematical model for mixed convective flow of chemically reactive Oldroyd-B fluid between isothermal stretching disks

    NASA Astrophysics Data System (ADS)

    Hashmi, M. S.; Khan, N.; Ullah Khan, Sami; Rashidi, M. M.

    In this study, we have constructed a mathematical model to investigate the heat source/sink effects in mixed convection axisymmetric flow of an incompressible, electrically conducting Oldroyd-B fluid between two infinite isothermal stretching disks. The effects of viscous dissipation and Joule heating are also considered in the heat equation. The governing partial differential equations are converted into ordinary differential equations by using appropriate similarity variables. The series solution of these dimensionless equations is constructed by using homotopy analysis method. The convergence of the obtained solution is carefully examined. The effects of various involved parameters on pressure, velocity and temperature profiles are comprehensively studied. A graphical analysis has been presented for various values of problem parameters. The numerical values of wall shear stress and Nusselt number are computed at both upper and lower disks. Moreover, a graphical and tabular explanation for critical values of Frank-Kamenetskii regarding other flow parameters.

  3. Near-wall effects for momentum, heat and mass transport in gas-particle suspensions at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Radl, Stefan; Municchi, Federico; Goniva, Christoph

    2016-11-01

    Understanding transport phenomena in fluid-particle systems is of primary importance for the design of large-scale equipment, e.g., in the chemical industry. Typically, the analysis of such systems is performed by numerically solving a set of partial differential equations modeling the particle phase and the fluid phase as interpenetrating continua. Such models require a number of closure models that are often constructed via spatial filtering of data obtained from particle-resolved direct numerical simulations (PR-DNS). In the present work we make use of PR-DNS to evaluate corrections to existing closure models. Specifically, we aim on accounting for wall effects on the fluid-particle drag force and the particle-individual Nusselt number. We then propose an improved closure model to be used in particle-unresolved Euler-Lagrange (PU-EL) simulations. We demonstrate that such an advanced closure should account for a dimensionless filter size, as well as a normalized distance from the wall. In addition, we make an attempt to model the filtered fluid velocity profile in wall-bounded suspension flows. The authors acknowledge funding from the European Commission through FP7 Grant Agreement No. 604656, as well as VSC-3 and dcluster.tugraz.at.

  4. Numerical modeling of laser assisted tape winding process

    NASA Astrophysics Data System (ADS)

    Zaami, Amin; Baran, Ismet; Akkerman, Remko

    2017-10-01

    Laser assisted tape winding (LATW) has become more and more popular way of producing new thermoplastic products such as ultra-deep sea water riser, gas tanks, structural parts for aerospace applications. Predicting the temperature in LATW has been a source of great interest since the temperature at nip-point plays a key role for mechanical interface performance. Modeling the LATW process includes several challenges such as the interaction of optics and heat transfer. In the current study, numerical modeling of the optical behavior of laser radiation on circular surfaces is investigated based on a ray tracing and non-specular reflection model. The non-specular reflection is implemented considering the anisotropic reflective behavior of the fiber-reinforced thermoplastic tape using a bidirectional reflectance distribution function (BRDF). The proposed model in the present paper includes a three-dimensional circular geometry, in which the effects of reflection from different ranges of the circular surface as well as effect of process parameters on temperature distribution are studied. The heat transfer model is constructed using a fully implicit method. The effect of process parameters on the nip-point temperature is examined. Furthermore, several laser distributions including Gaussian and linear are examined which has not been considered in literature up to now.

  5. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhihui; Ma, Qiang; Wu, Junlin

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinatemore » points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.« less

  6. A stochastic Markov chain model to describe lung cancer growth and metastasis.

    PubMed

    Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter

    2012-01-01

    A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model.

  7. Effect of climate change on morphology around a port

    NASA Astrophysics Data System (ADS)

    Bharathan Radhamma, R.; Deo, M. C.

    2017-12-01

    It is well known that with the construction of a port and harbour structure the natural shoreline gets interrupted and this disturbs the surrounding coastal morphology. Added to this concern is another one of recent origin, namely, the likely impact of climate change induced by global warming. The present work addresses this issue by describing a case study at New Mangalore Port situated along the west coast of India. The harbour was formed by constructing two breakwaters along either side of the port since the year 1975. We have first determined the rate of change of the shoreline surrounding the port using historic satellite imageries over a period of 36 years. Thereafter a numerical shoreline change model: LITPACK was used to do the same and it was forced by waves simulated over a period of past 36 years varying from 1979 to 2016 and future 36 years ranging from 2016 to 2052. The wave simulation was done with the help of numerical wave model: Mike21-SW which was driven by the wind from a regional climate model called CORDEX. This climate model was earlier run for a moderate global warming pathway called: RCP-4.5. The analysis of satellite imageries indicated that in the past the shoreline change varied from -1.69 m/year to 2.56 m/year with an uncertainty of ± 0.35 m/year and approximately half of the coastal stretch faced extensive erosion. It was found that the wind and waves at this region would intensify in future and also raise the probability of occurrence of high waves. As per the numerical shoreline modelling this would give rise to a much enhanced rate of erosion, namely -2.87 m/year to -3.62 m/year. This would call for a modified shoreline management strategy around the port area. The study highlights the importance of considering potential changes in wind and wave forcing because of the climate change in evaluating future rates of shoreline changes around a port and harbour structure.

  8. Effective post-construction best management practices (BMPs) to infiltrate and retain stormwater runoff.

    DOT National Transportation Integrated Search

    2017-06-01

    Performance analyses of newly constructed linear BMPs in retaining stormwater run-off from 1 in. precipitation in : post-construction highway applications and urban areas were conducted using numerical simulations and field : observation. A series of...

  9. Modelling of vegetation-driven morphodynamics in braided rivers.

    NASA Astrophysics Data System (ADS)

    Stecca, Guglielmo; Fedrizzi, Davide; Hicks, Murray; Measures, Richard; Zolezzi, Guido; Bertoldi, Walter; Tal, Michal

    2017-04-01

    River planform results from the complex interaction between flow, sediment transport and vegetation, and can evolve following a change in these controls. The braided planform of New Zealand's Lower Waitaki River, for instance, is endangered by the action of artificially-introduced alien vegetation, which spread across the braidplain following the reduction in magnitude of floods by hydropower dam construction. This vegetation, by encouraging flow concentration into the main channel, would likely promote a shift towards a single-thread morphology if it was not artificially removed within a central fairway. The purpose of this work is to study the evolution of braided rivers such as the Waitaki under different management scenarios through two-dimensional numerical modelling. The construction of a suitable model represents a task in itself, since a modelling framework coupling all the relevant processes is not yet readily available. Our starting point is the physics-based GIAMT2D numerical model, which solves two-dimensional flow and bedload transport in wet/dry domains, and recently modified by the inclusion of a rule-based bank erosion model. We have further developed this model by adding a vegetation module, which accounts in a simplified manner for time-evolving biomass density, adjusting local flow roughness, critical shear stress for sediment transport, and bank erodibility accordingly. Our goal is to use the model to study decadal-scale evolution of a reach on the Waitaki River and predict planform characteristics under different vegetation management scenarios. Here we present the results of a preliminary application of the model to reproduce the morphodynamic evolution of a braided channel in a set of flume experiments that used alfalfa as vegetation. The experiments began with a braided morphology that spontaneoulsy formed at constant flow over a bed of bare uniform sand. The planform transitioned towards single-thread when this discharge was repeatedly cycled with periods of low flow and vegetation growth.

  10. Numerical Facilities: A Review of the Literature. Technical Report 1985-3.

    ERIC Educational Resources Information Center

    Tal, Joseph S.

    This review of the relevant literature in the area of numerical facility attempts to clarify the construct of numerical facility and provide guidance for items tapping this ability. The review is presented in five parts. The first section introduces two approaches that can be used to investigate numerical facility, including factor analysis.…

  11. ADSC-sheet Transplantation to Prevent Stricture after Extended Esophageal Endoscopic Submucosal Dissection.

    PubMed

    Perrod, Guillaume; Pidial, Laetitia; Camilleri, Sophie; Bellucci, Alexandre; Casanova, Amaury; Viel, Thomas; Tavitian, Bertrand; Cellier, Chirstophe; Clément, Olivier; Rahmi, Gabriel

    2017-02-10

    In past years, the cell-sheet construct has spurred wide interest in regenerative medicine, especially for reconstructive surgery procedures. The development of diversified technologies combining adipose tissue-derived stromal cells (ADSCs) with various biomaterials has led to the construction of numerous types of tissue-engineered substitutes, such as bone, cartilage, and adipose tissues from rodent, porcine, or human ADSCs. Extended esophageal endoscopic submucosal dissection (ESD) is responsible for esophageal stricture formation. Stricture prevention remains challenging, with no efficient treatments available. Previous studies reported the effectiveness of mucosal cell-sheet transplantation in a canine model and in humans. ADSCs are attributed anti-inflammatory properties, local immune modulating effects, neovascularization induction, and differentiation abilities into mesenchymal and non-mesenchymal lineages. This original study describes the endoscopic transplantation of an ADSC tissue-engineered construct to prevent esophageal stricture in a swine model. The ADSC construct was composed of two allogenic ADSC sheets layered upon each other on a paper support membrane. The ADSCs were labeled with the PKH67 fluorophore to allow probe-based confocal laser endomicroscopy (pCLE) monitoring. On the day of transplantation, a 5-cm and hemi-circumferential ESD known to induce esophageal stricture was performed. Animals were immediately endoscopically transplanted with 4 ADSC constructs. The complete adhesion of the ADSC constructs was obtained after 10 min of gentle application. Animals were sacrificed on day 28. All animals were successfully transplanted. Transplantation was confirmed on day 3 with a positive pCLE evaluation. Compared to transplanted animals, control animals developed severe strictures, with major fibrotic tissue development, more frequent alimentary trouble, and reduced weight gain. In our model, the transplantation of allogenic ADSCs, organized in double cell sheets, after extended ESD was successful and strongly associated with a lower esophageal stricture rate.

  12. Analogue and numerical modelling in Volcanology: Development, evolution and future challenges

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine; Annen, Catherine

    2015-04-01

    Since the inception of volcanology as a science, analogue modelling has been an important methodology to study the formation and evolution of the volcanic system. With the development of computing capacities numerical modelling has become a widely used tool to explore magmatic process quantitatively and try to predict eruptive behaviour. Processes of interest include the development and establishment of the volcanic plumbing system, the propagation of magma to the surface to feed eruptions, the construction of a volcanic edifice and the dynamics of eruptive processes. An important ultimate aim is to characterise and measure the experimental volcanic and magmatic phenomena, to inform and improve eruption forecasting for hazard assessments. In nature, volcanic activity is often unpredictable and in an environment that is highly changeable and forbidding. Volcanic or magmatic activity cannot be repeated at will and has many (often unconstrained) variables. The processes of interest are frequently hidden from view, for example occurring beneath the Earth's surface or within a pyroclastic flow or plume. The challenges of working in volcanic terrains and gathering 'real' volcano data mean that analogue and numerical models have gained significant importance as a method to study the geometrics, kinematics, and dynamics of volcano growth and eruption. A huge variety of analogue materials have been used in volcanic modelling, often bringing out the more creative side of the scientific mind. As with all models, the choice of appropriate materials and boundary conditions are critical for assessing the relevance and usefulness of the experimental results. Numerical simulation has proved a useful tool to test the physical plausibility of conceptual models and presents the advantage of being applicable at different scales. It is limited however in its predictive power by the number of free parameters needed to describe geological systems. In this special symposium we will attempt to review the use and significance of analogue and numerical modelling in volcanological research over the past century to the present day. We introduce some of the new techniques being developed through a multidisciplinary approach, and offer some perspectives on how these might be used to help shape the direction of future research in volcanology.

  13. Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Yang, Chin Tien

    1998-01-01

    The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.

  14. Study of Convection Heat Transfer in a Very High Temperature Reactor Flow Channel: Numerical and Experimental Results

    DOE PAGES

    Valentin, Francisco I.; Artoun, Narbeh; Anderson, Ryan; ...

    2016-12-01

    Very High Temperature Reactors (VHTRs) are one of the Generation IV gas-cooled reactor models proposed for implementation in next generation nuclear power plants. A high temperature/pressure test facility for forced and natural circulation experiments has been constructed. This test facility consists of a single flow channel in a 2.7 m (9’) long graphite column equipped with four 2.3kW heaters. Extensive 3D numerical modeling provides a detailed analysis of the thermal-hydraulic behavior under steady-state, transient, and accident scenarios. In addition, forced/mixed convection experiments with air, nitrogen and helium were conducted for inlet Reynolds numbers from 500 to 70,000. Our numerical resultsmore » were validated with forced convection data displaying maximum percentage errors under 15%, using commercial finite element package, COMSOL Multiphysics. Based on this agreement, important information can be extracted from the model, with regards to the modified radial velocity and property gas profiles. Our work also examines flow laminarization for a full range of Reynolds numbers including laminar, transition and turbulent flow under forced convection and its impact on heat transfer under various scenarios to examine the thermal-hydraulic phenomena that could occur during both normal operation and accident conditions.« less

  15. Simulating flow around scaled model of a hypersonic vehicle in wind tunnel

    NASA Astrophysics Data System (ADS)

    Markova, T. V.; Aksenov, A. A.; Zhluktov, S. V.; Savitsky, D. V.; Gavrilov, A. D.; Son, E. E.; Prokhorov, A. N.

    2016-11-01

    A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In order to obtain the aerodynamic characteristics of a new construction design of the aircraft, experiments with a scaled model have been carried out in a wind tunnel under different conditions. The runs have been performed at different angles of attack with and without hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities do not provide all the information about the flowfield. Numerical simulation can complete the experimental data as well as to reduce the number of wind tunnel experiments. Besides that, reliable CFD software can be used for calculations of the aerodynamic characteristics for any possible design of the full-scale aircraft under different operation conditions. The reliability of the numerical predictions must be confirmed in verification study of the software. The given work is aimed at numerical investigation of the flowfield around and inside the scaled model of the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion) was selected for this study. The calculations are performed in the FlowVision CFD software. The flow characteristics are compared against the available experimental data. The carried out verification study confirms the capability of the FlowVision CFD software to calculate the flows discussed.

  16. Hall viscosity of hierarchical quantum Hall states

    NASA Astrophysics Data System (ADS)

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  17. A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2001-01-01

    Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.

  18. Wind field near complex terrain using numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Chim, Kin-Sang

    The PennState/NCAR MM5 model was modified to simulate an idealized flow pass through a 3D obstacle in the Micro- Alpha Scale domain. The obstacle used were the idealized Gaussian obstacle and the real topography of Lantau Island of Hong Kong. The Froude number under study is ranged from 0.22 to 1.5. Regime diagrams for both the idealized Gaussian obstacle and Lantau island were constructed. This work is divided into five parts. The first part is the problem definition and the literature review of the related publications. The second part briefly discuss as the PennState/NCAR MM5 model and a case study of long- range transport is included. The third part is devoted to the modification and the verification of the PennState/NCAR MM5 model on the Micro-Alpha Scale domain. The implementation of the Orlanski (1976) open boundary condition is included with the method of single sounding initialization of the model. Moreover, an upper dissipative layer, Klemp and Lilly (1978), is implemented on the model. The simulated result is verified by the Automatic Weather Station (AWS) data and the Wind Profiler data. Four different types of Planetary Boundary Layer (PBL) parameterization schemes have been investigated in order to find out the most suitable one for Micro-Alpha Scale domain in terms of both accuracy and efficiency. Bulk Aerodynamic type of PBL parameterization scheme is found to be the most suitable PBL parameterization scheme. Investigation of the free- slip lower boundary condition is performed and the simulated result is compared with that with friction. The fourth part is the use of the modified PennState/NCAR MM5 model for an idealized flow simulation. The idealized uniform flow used is nonhydrostatic and has constant Froude number. Sensitivity test is performed by varying the Froude number and the regime diagram is constructed. Moreover, nondimensional drag is found to be useful for regime identification. The model result is also compared with the analytic results by Miles (1969) and Smith (1980, 1985), and the numerical results of Stein (1992), Miranda and James (1992) and Olaffson and Bougeault (1997). It is found that the simulated result in the present study is comparable with others. The fifth part is the construction of the regime diagram for the Lantau island of Hong Kong. All eight major wind directions are discussed.

  19. Uncertainty Quantification in CO 2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Sahinidis, Nikolaos V.

    2013-03-06

    In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using amore » classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.« less

  20. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.

    PubMed

    Zhang, Jing; Tian, Jiabin; Ta, Na; Huang, Xinsheng; Rao, Zhushi

    2016-08-01

    Finite element method was employed in this study to analyze the change in performance of implantable hearing devices due to the consideration of soft tissues' viscoelasticity. An integrated finite element model of human ear including the external ear, middle ear and inner ear was first developed via reverse engineering and analyzed by acoustic-structure-fluid coupling. Viscoelastic properties of soft tissues in the middle ear were taken into consideration in this model. The model-derived dynamic responses including middle ear and cochlea functions showed a better agreement with experimental data at high frequencies above 3000 Hz than the Rayleigh-type damping. On this basis, a coupled finite element model consisting of the human ear and a piezoelectric actuator attached to the long process of incus was further constructed. Based on the electromechanical coupling analysis, equivalent sound pressure and power consumption of the actuator corresponding to viscoelasticity and Rayleigh damping were calculated using this model. The analytical results showed that the implant performance of the actuator evaluated using a finite element model considering viscoelastic properties gives a lower output above about 3 kHz than does Rayleigh damping model. Finite element model considering viscoelastic properties was more accurate to numerically evaluate implantable hearing devices. © IMechE 2016.

Top