Sample records for numerical multiphase flow

  1. Methods for compressible multiphase flows and their applications

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  2. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  3. Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones

    NASA Astrophysics Data System (ADS)

    Jackson, Samuel J.; Agada, Simeon; Reynolds, Catriona A.; Krevor, Samuel

    2018-04-01

    In this work, we analyze the characterization of drainage multiphase flow properties on heterogeneous rock cores using a rich experimental data set and mm-m scale numerical simulations. Along with routine multiphase flow properties, 3-D submeter scale capillary pressure heterogeneity is characterized by combining experimental observations and numerical calibration, resulting in a 3-D numerical model of the rock core. The uniqueness and predictive capability of the numerical models are evaluated by accurately predicting the experimentally measured relative permeability of N2—DI water and CO2—brine systems in two distinct sandstone rock cores across multiple fractional flow regimes and total flow rates. The numerical models are used to derive equivalent relative permeabilities, which are upscaled functions incorporating the effects of submeter scale capillary pressure. The functions are obtained across capillary numbers which span four orders of magnitude, representative of the range of flow regimes that occur in subsurface CO2 injection. Removal of experimental boundary artifacts allows the derivation of equivalent functions which are characteristic of the continuous subsurface. We also demonstrate how heterogeneities can be reorientated and restructured to efficiently estimate flow properties in rock orientations differing from the original core sample. This analysis shows how combined experimental and numerical characterization of rock samples can be used to derive equivalent flow properties from heterogeneous rocks.

  4. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.

    2018-05-01

    It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.

  5. Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation

    NASA Astrophysics Data System (ADS)

    Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.

    2017-04-01

    Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.

  6. Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven H.

    This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinitemore » programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.« less

  7. Simulation of Liquid Droplet in Air and on a Solid Surface

    NASA Astrophysics Data System (ADS)

    Launglucknavalai, Kevin

    Although multiphase gas and liquid phenomena occurs widely in engineering problems, many aspects of multiphase interaction like within droplet dynamics are still not quantified. This study aims to qualify the Lattice Boltzmann (LBM) Interparticle Potential multiphase computational method in order to build a foundation for future multiphase research. This study consists of two overall sections. The first section in Chapter 2 focuses on understanding the LBM method and Interparticle Potential model. It outlines the LBM method and how it relates to macroscopic fluid dynamics. The standard form of LBM is obtained. The perturbation solution obtaining the Navier-Stokes equations from the LBM equation is presented. Finally, the Interparticle Potential model is incorporated into the numerical LBM method. The second section in Chapter 3 presents the verification and validation cases to confirm the behavior of the single-phase and multiphase LBM models. Experimental and analytical results are used briefly to compare with numerical results when possible using Poiseuille channel flow and flow over a cylinder. While presenting the numerical results, practical considerations like converting LBM scale variables to physical scale variables are considered. Multiphase results are verified using Laplaces law and artificial behaviors of the model are explored. In this study, a better understanding of the LBM method and Interparticle Potential model is gained. This allows the numerical method to be used for comparison with experimental results in the future and provides a better understanding of multiphase physics overall.

  8. Multi-phase SPH model for simulation of erosion and scouring by means of the shields and Drucker-Prager criteria.

    NASA Astrophysics Data System (ADS)

    Zubeldia, Elizabeth H.; Fourtakas, Georgios; Rogers, Benedict D.; Farias, Márcio M.

    2018-07-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is developed to model the scouring of two-phase liquid-sediments flows with large deformation. The rheology of sediment scouring due to flows with slow kinematics and high shear forces presents a challenge in terms of spurious numerical fluctuations. This paper bridges the gap between the non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer mechanics which are needed to predict accurately the local erosion phenomena. A critical bed-mobility condition based on the Shields criterion is imposed to the particles located at the sediment surface. Thus, the onset of the erosion process is independent on the pressure field and eliminates the numerical problem of pressure dependant erosion at the interface. This is combined with the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been implemented in the open-source DualSPHysics code accelerated with a graphics processing unit (GPU). The multi-phase model has been compared with 2-D reference numerical models and new experimental data for scour with convergent results. Numerical results for a dry-bed dam break over an erodible bed shows improved agreement with experimental scour and water surface profiles compared to well-known SPH multi-phase models.

  9. Numerical study of Tallinn storm-water system flooding conditions using CFD simulations of multi-phase flow in a large-scale inverted siphon

    NASA Astrophysics Data System (ADS)

    Kaur, K.; Laanearu, J.; Annus, I.

    2017-10-01

    The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.

  10. A Direct Numerical Simulation of a Temporally Evolving Liquid-Gas Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Vu, Lam Xuan; Chiodi, Robert; Desjardins, Olivier

    2017-11-01

    Air-blast atomization occurs when streams of co-flowing high speed gas and low speed liquid shear to form drops. Air-blast atomization has numerous industrial applications from combustion engines in jets to sprays used for medical coatings. The high Reynolds number and dynamic pressure ratio of a realistic air-blast atomization case requires large eddy simulation and the use of multiphase sub-grid scale (SGS) models. A direct numerical simulations (DNS) of a temporally evolving mixing layer is presented to be used as a base case from which future multiphase SGS models can be developed. To construct the liquid-gas mixing layer, half of a channel flow from Kim et al. (JFM, 1987) is placed on top of a static liquid layer that then evolves over time. The DNS is performed using a conservative finite volume incompressible multiphase flow solver where phase tracking is handled with a discretely conservative volume of fluid method. This study presents statistics on velocity and volume fraction at different Reynolds and Weber numbers.

  11. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    NASA Astrophysics Data System (ADS)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  12. DEVELOPMENT OF MULTI-PHASE AND MULTI-COMPONENT FLOW MODEL WITH REACTION IN POROUS MEDIA FOR RISK ASSESSMENT ON SOIL CONTAMINATION DUE TO MINERAL OIL

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi

    In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.

  13. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    NASA Astrophysics Data System (ADS)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and multiphase flow detection Fluid-structure interaction induced by cavitation and multiphase flow Multi-scale modelling of cavitating flows and Multiphase Flow Cavitation nuclei: theory and experiments Supercavitation and its applications Synergetic effects of cavitation and silt-laden erosion Shock waves and microjets generated by cavitation Nonlinear oscillations of gas and vapour bubbles Fundamentals of physics of acoustic cavitation Sonochemistry and sonoluminescence Biomedical applications of cavitation effects Ultrasonic cavitation for molten metal treatment Cavitation for enhanced heat transfer The ISCM 2014 brought together 95 scientists, researchers and graduate students from 11 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for cavitation and Multiphase Flow, which would enhance the sustainable development of cavitation and Multiphase Flow in interdisciplinary sciences and technology. The technical committee selected 54 technical papers on the following topics: (i) Hydrodynamic Cavitation, (ii) Super Cavitation, (iii) Pump Cavitation, (iv) Acoustic Cavitation, (v) Interdisciplinary Research of Cavitation and Multi-Phase Flows, and 13 invited plenary and invited forum lectures, which were presented at the symposium, to be included in the proceedings. All the papers of ISCM 2014, which are published in this Volume of IOP Conference Series: Materials Science and Engineering, had been peer reviewed through processes administered by the editors of the ISCM 2014, those are Yulin WU, Shouqi YUAN, Zhengwei WANG, Shuhong LIU, Xingqi LUO, Fujun WANG and Guoyu WANG. The papers published in this Volume include 54 technical papers and 3 full length texts of the invited lectures. We sincerely hope that the International Symposium on Cavitation and Multiphase Flow is a significant step forward in the world wide efforts to address the present challenges in the modern science and technology. Professor Yulin WU Chairman of the Local Organizing Committee International Symposium on Cavitation and Multiphase Flow (ISCM 2014) October, 2014

  14. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    NASA Astrophysics Data System (ADS)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  15. Modeling and Numerical Challenges in Eulerian-Lagrangian Computations of Shock-driven Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Diggs, Angela; Balachandar, Sivaramakrishnan

    2015-06-01

    The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.

  16. Multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Parker, J. C.

    1989-08-01

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.

  17. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  18. Convex Relaxation of OPF in Multiphase Radial Networks with Wye and Delta Connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven

    2017-08-01

    This panel presentation focuses on multiphase radial distribution networks with wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power flow models are developed to facilitate the integration of delta-connected loads or generation resources in the OPF problem. The first model is referred to as the extended branch flow model (EBFM). The second model leverages a linear relationship between phase-to-ground power injections and delta connections that holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studiesmore » on IEEE test feeders show that the proposed SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidence also indicates that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is further shown that the SDP solution under BVA has a small optimality gap, and the BVA model is accurate in the sense that it reproduces actual system voltages.« less

  19. CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break

    NASA Astrophysics Data System (ADS)

    Park, Kyung Min; Yoon, Hyun Sik; Kim, Min Il

    2018-06-01

    This study investigates the multiphase flow of a liquid-gas-particle mixture in dam break. The open source codes, OpenFOAM and CFDEMproject, were used to reproduce the multiphase flow. The results of the present study are compared with those of previous results obtained by numerical and experimental methods, which guarantees validity of present numerical method to handle the multiphase flow. The particle density ranging from 1100 to 2500 kg/m3 is considered to investigate the effect of the particle density on the behavior of the free-surface and the particles. The particle density has no effect on the liquid front, but it makes the particle front move with different velocity. The time when the liquid front reach at the opposite wall is independent of particle density. However, such time for particle front decrease as particle density increases, which turned out to be proportional to particle density. Based on these results, we classified characteristics of the movement by the front positions of the liquid and the particles. Eventually, the response of the free-surface and particles to particle density is identified by three motion regimes of the advancing, overlapping and delaying motions.

  20. Direct Numerical Simulations of Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar

    2013-03-01

    Many natural and industrial processes, such as rain and gas exchange between the atmosphere and oceans, boiling heat transfer, atomization and chemical reactions in bubble columns, involve multiphase flows. Often the mixture can be described as a disperse flow where one phase consists of bubbles or drops. Direct numerical simulations (DNS) of disperse flow have recently been used to study the dynamics of multiphase flows with a large number of bubbles and drops, often showing that the collective motion results in relatively simple large-scale structure. Here we review simulations of bubbly flows in vertical channels where the flow direction, as well as the bubble deformability, has profound implications on the flow structure and the total flow rate. Results obtained so far are summarized and open questions identified. The resolution for DNS of multiphase flows is usually determined by a dominant scale, such as the average bubble or drop size, but in many cases much smaller scales are also present. These scales often consist of thin films, threads, or tiny drops appearing during coalescence or breakup, or are due to the presence of additional physical processes that operate on a very different time scale than the fluid flow. The presence of these small-scale features demand excessive resolution for conventional numerical approaches. However, at small flow scales the effects of surface tension are generally strong so the interface geometry is simple and viscous forces dominate the flow and keep it simple also. These are exactly the conditions under which analytical models can be used and we will discuss efforts to combine a semi-analytical description for the small-scale processes with a fully resolved simulation of the rest of the flow. We will, in particular, present an embedded analytical description to capture the mass transfer from bubbles in liquids where the diffusion of mass is much slower than the diffusion of momentum. This results in very thin mass-boundary layers that are difficult to resolve, but the new approach allows us to simulate the mass transfer from many freely evolving bubbles and examine the effect of the interactions of the bubbles with each other and the flow. We will conclude by attempting to summarize the current status of DNS of multiphase flows. Support by NSF and DOE (CASL)

  1. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed model has been found to perform better than the improved Z-S-C model in this aspect.

  2. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less

  3. Non-invasive studies of multiphase flow in process equipment. Positron emission particle tracking technique

    NASA Astrophysics Data System (ADS)

    Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.

    2017-01-01

    Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.

  4. Experience in using a numerical scheme with artificial viscosity at solving the Riemann problem for a multi-fluid model of multiphase flow

    NASA Astrophysics Data System (ADS)

    Bulovich, S. V.; Smirnov, E. M.

    2018-05-01

    The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.

  5. Direct numerical simulation of incompressible multiphase flow with phase change

    NASA Astrophysics Data System (ADS)

    Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

    2017-09-01

    Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

  6. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul

    2017-11-27

    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providingmore » accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.« less

  7. CFD analysis of multiphase blood flow within aorta and its thoracic branches of patient with coarctation of aorta using multiphase Euler - Euler approach

    NASA Astrophysics Data System (ADS)

    Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.

    2016-09-01

    In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).

  8. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    PubMed

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  9. A separate phase drag model and a surrogate approximation for simulation of the steam assisted gravity drainage (SAGD) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian

    General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less

  10. A separate phase drag model and a surrogate approximation for simulation of the steam assisted gravity drainage (SAGD) process

    DOE PAGES

    Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; ...

    2016-01-01

    General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less

  11. A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

    2017-02-01

    A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.

  12. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions [Algebraic multigrid preconditioners for multiphase flow in porous media with phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less

  13. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions [Algebraic multigrid preconditioners for multiphase flow in porous media with phase transitions

    DOE PAGES

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    2018-02-06

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less

  14. Theoretical and computational analyses of LNG evaporator

    NASA Astrophysics Data System (ADS)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  15. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  16. A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Qinzhuo, E-mail: liaoqz@pku.edu.cn; Zhang, Dongxiao; Tchelepi, Hamdi

    A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod–Patterson–Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiencymore » of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.« less

  17. The use of numerical programs in research and academic institutions

    NASA Astrophysics Data System (ADS)

    Scupi, A. A.

    2016-08-01

    This paper is conceived on the idea that numerical programs using computer models of physical processes can be used both for scientific research and academic teaching to study different phenomena. Computational Fluid Dynamics (CFD) is used today on a large scale in research and academic institutions. CFD development is not limited to computer simulations of fluid flow phenomena. Analytical solutions for most fluid dynamics problems are already available for ideal or simplified situations for different situations. CFD is based on the Navier- Stokes (N-S) equations characterizing the flow of a single phase of any liquid. For multiphase flows the integrated N-S equations are complemented with equations of the Volume of Fluid Model (VOF) and with energy equations. Different turbulent models were used in the paper, each one of them with practical engineering applications: the flow around aerodynamic surfaces used as unconventional propulsion system, multiphase flows in a settling chamber and pneumatic transport systems, heat transfer in a heat exchanger etc. Some of them numerical results were validated by experimental results. Numerical programs are also used in academic institutions where certain aspects of various phenomena are presented to students (Bachelor, Master and PhD) for a better understanding of the phenomenon itself.

  18. Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Haghani Hassan Abadi, Reza; Fakhari, Abbas; Rahimian, Mohammad Hassan

    2018-03-01

    In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of the model. The proposed model can successfully simulate both partial and total spreadings while reducing the parasitic currents to the machine precision.

  19. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  20. Numerical investigation of a modified family of centered schemes applied to multiphase equations with nonconservative sources

    NASA Astrophysics Data System (ADS)

    Crochet, M. W.; Gonthier, K. A.

    2013-12-01

    Systems of hyperbolic partial differential equations are frequently used to model the flow of multiphase mixtures. These equations often contain sources, referred to as nozzling terms, that cannot be posed in divergence form, and have proven to be particularly challenging in the development of finite-volume methods. Upwind schemes have recently shown promise in properly resolving the steady wave solution of the associated multiphase Riemann problem. However, these methods require a full characteristic decomposition of the system eigenstructure, which may be either unavailable or computationally expensive. Central schemes, such as the Kurganov-Tadmor (KT) family of methods, require minimal characteristic information, which makes them easily applicable to systems with an arbitrary number of phases. However, the proper implementation of nozzling terms in these schemes has been mathematically ambiguous. The primary objectives of this work are twofold: first, an extension of the KT family of schemes is proposed that formally accounts for the nonconservative nozzling sources. This modification results in a semidiscrete form that retains the simplicity of its predecessor and introduces little additional computational expense. Second, this modified method is applied to multiple, but equivalent, forms of the multiphase equations to perform a numerical study by solving several one-dimensional test problems. Both ideal and Mie-Grüneisen equations of state are used, with the results compared to an analytical solution. This study demonstrates that the magnitudes of the resulting numerical errors are sensitive to the form of the equations considered, and suggests an optimal form to minimize these errors. Finally, a separate modification of the wave propagation speeds used in the KT family is also suggested that can reduce the extent of numerical diffusion in multiphase flows.

  1. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in porous media : application to gas migration in a nuclear waste repository, Comp.Geosciences. (2009), Volume 13, Number 1, 29-42.

  2. A hybrid interface tracking - level set technique for multiphase flow with soluble surfactant

    NASA Astrophysics Data System (ADS)

    Shin, Seungwon; Chergui, Jalel; Juric, Damir; Kahouadji, Lyes; Matar, Omar K.; Craster, Richard V.

    2018-04-01

    A formulation for soluble surfactant transport in multiphase flows recently presented by Muradoglu and Tryggvason (JCP 274 (2014) 737-757) [17] is adapted to the context of the Level Contour Reconstruction Method, LCRM, (Shin et al. IJNMF 60 (2009) 753-778, [8]) which is a hybrid method that combines the advantages of the Front-tracking and Level Set methods. Particularly close attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with experiments and results from previous simulations. All benchmarking tests compare well with existing data thus providing confidence that the adapted LCRM formulation for surfactant advection and diffusion is accurate and effective in three-dimensional multiphase flows with a structured mesh. We also demonstrate that this approach applies easily to massively parallel simulations.

  3. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Li, Yaofa; Bolster, Diogo; Christensen, Kenneth T.

    2018-04-01

    We implement a phase-field based lattice-Boltzmann (LB) method for numerical simulation of multiphase flows in heterogeneous porous media at pore scales with wettability effects. The present method can handle large density and viscosity ratios, pertinent to many practical problems. As a practical application, we study multiphase flow in a micromodel representative of CO2 invading a water-saturated porous medium at reservoir conditions, both numerically and experimentally. We focus on two flow cases with (i) a crossover from capillary fingering to viscous fingering at a relatively small capillary number, and (ii) viscous fingering at a relatively moderate capillary number. Qualitative and quantitative comparisons are made between numerical results and experimental data for temporal and spatial CO2 saturation profiles, and good agreement is found. In particular, a correlation analysis shows that any differences between simulations and results are comparable to intra-experimental differences from replicate experiments. A key conclusion of this work is that system behavior is highly sensitive to boundary conditions, particularly inlet and outlet ones. We finish with a discussion on small-scale flow features, such as the emergence of strong recirculation zones as well as flow in which the residual phase is trapped, including a close look at the detailed formation of a water cone. Overall, the proposed model yields useful information, such as the spatiotemporal evolution of the CO2 front and instantaneous velocity fields, which are valuable for understanding the mechanisms of CO2 infiltration at the pore scale.

  4. A Computational Model of Coupled Multiphase Flow and Geomechanics to Study Fault Slip and Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Jha, B.

    2014-12-01

    The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around subsurface technologies that tap into water and energy resources. Here we present a new computational approach to model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that illustrate the onset and evolution of earthquakes from fluid injection and withdrawal. We also present the application of the coupled flow-geomechanics simulation technology to the post mortem analysis of the Mw=5.1, May 2011 Lorca earthquake in south-east Spain, and assess the potential that the earthquake was induced by groundwater extraction.

  5. Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios

    NASA Astrophysics Data System (ADS)

    Rao, Parthib; Schaefer, Laura

    2017-11-01

    Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.

  6. Modeling variability in porescale multiphase flow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Bowen; Bao, Jie; Oostrom, Mart

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulationsmore » are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.« less

  7. A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi

    2016-09-01

    Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).

  8. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  9. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    NASA Astrophysics Data System (ADS)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  10. Evaluation of Interfacial Forces and Bubble-Induced Turbulence Using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Feng, Jinyong

    High fidelity prediction of multiphase flows is important in a wide range of engineering applications. While some multiphase flow scenarios can be successfully modeled, many questions remain unanswered regarding the interaction between the bubbles and the turbulence, and present significant challenges in the development of closure laws for the multiphase computational fluid dynamics (M-CFD) models. To address these challenges, we propose to evaluate the interfacial forces and bubble-induced turbulence in both laminar and turbulent flow field with direct numerical simulation (DNS) approach. Advanced finite-element based flow solver (PHASTA) with level-set interface tracking method is utilized for these studies. The proportional-integral-derivative (PID) controller is adopted to ensure the statistically steady state bubble position and perform the detailed study of the turbulent field around the bubble. Selected numerical capabilities and post-processing codes are developed to achieve the research goals. The interface tracking approach is verified and validated by comparing the interfacial forces with the experiment-based data and correlations. The sign change of transverse lift force is observed as the bubble becomes more deformable. A new correlation is proposed to predict the behavior of the drag coefficient over the wide range of conditions. The wall effect on the interfacial forces are also investigated. In homogeneous turbulent flow, the effect of bubble deformability, turbulent intensity and relative velocity on the bubble-induced turbulence are analyzed. The presented method and novel results will complement the experimental database, provide insight to the bubbleinduced turbulence mechanism and help the development of M-CFD closure models.

  11. High altitude chemically reacting gas particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.

  12. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.

    2014-05-01

    Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting from the sudden high-velocity inflow of gas and ash; the formation of a particle-laden plume rising several hundred metres into the atmosphere; the eventual collapse of the plume which generates a volcanic ash fountain and a fast ground-hugging pyroclastic density current; and the growth of a dilute convective region that rises above the ash fountain as a result of buoyancy effects. The results from Fluidity are also compared with results from MFIX, a fixed structured mesh-based multiphase flow code, that uses the same set-up. The key flow features are also captured in MFIX, providing at least some confidence in the plausibility of the numerical results in the absence of quantitative field data. Finally, it is shown by a convergence analysis that Fluidity offers the same solution accuracy for reduced computational cost using an adaptive mesh, compared to the same simulation performed with a uniform fixed mesh.

  13. High temperature helical tubular receiver for concentrating solar power system

    NASA Astrophysics Data System (ADS)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  14. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application ofmore » MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.« less

  15. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions

    NASA Astrophysics Data System (ADS)

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    2018-04-01

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.

  16. Methodologies for extracting kinetic constants for multiphase reacting flow simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.L.; Lottes, S.A.; Golchert, B.

    1997-03-01

    Flows in industrial reactors often involve complex reactions of many species. A computational fluid dynamics (CFD) computer code, ICRKFLO, was developed to simulate multiphase, multi-species reacting flows. The ICRKFLO uses a hybrid technique to calculate species concentration and reaction for a large number of species in a reacting flow. This technique includes a hydrodynamic and reacting flow simulation with a small but sufficient number of lumped reactions to compute flow field properties followed by a calculation of local reaction kinetics and transport of many subspecies (order of 10 to 100). Kinetic rate constants of the numerous subspecies chemical reactions aremore » difficult to determine. A methodology has been developed to extract kinetic constants from experimental data efficiently. A flow simulation of a fluid catalytic cracking (FCC) riser was successfully used to demonstrate this methodology.« less

  17. Multiphase simulation of blood flow within main thoracic arteries of 8-year-old child with coarctation of the aorta

    NASA Astrophysics Data System (ADS)

    Melka, Bartlomiej; Gracka, Maria; Adamczyk, Wojciech; Rojczyk, Marek; Golda, Adam; Nowak, Andrzej J.; Białecki, Ryszard A.; Ostrowski, Ziemowit

    2017-08-01

    In the research, a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analysed. A real geometry of aorta and its thoracic branches of an 8-year old patient diagnosed with a congenital heart defect - coarctation of the aorta was used. The inlet boundary condition was implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase using Euler-Euler approach. Plasma was set as the primary and dominant fluid phase, with the volume fraction of 0.585. The morphological elements (RBC and WBC) were set as dispersed phases being the remaining volume fraction.

  18. Development of Pelton turbine using numerical simulation

    NASA Astrophysics Data System (ADS)

    Patel, K.; Patel, B.; Yadav, M.; Foggia, T.

    2010-08-01

    This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.

  19. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  20. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  1. The validity of multiphase DNS initialized on the basis of single--point statistics

    NASA Astrophysics Data System (ADS)

    Subramaniam, Shankar

    1999-11-01

    A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.

  2. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  3. A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions

    NASA Astrophysics Data System (ADS)

    Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk

    2017-10-01

    A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.

  4. Forecasting production in Liquid Rich Shale plays

    NASA Astrophysics Data System (ADS)

    Nikfarman, Hanieh

    Production from Liquid Rich Shale (LRS) reservoirs is taking center stage in the exploration and production of unconventional reservoirs. Production from the low and ultra-low permeability LRS plays is possible only through multi-fractured horizontal wells (MFHW's). There is no existing workflow that is applicable to forecasting multi-phase production from MFHW's in LRS plays. This project presents a practical and rigorous workflow for forecasting multiphase production from MFHW's in LRS reservoirs. There has been much effort in developing workflows and methodology for forecasting in tight/shale plays in recent years. The existing workflows, however, are applicable only to single phase flow, and are primarily used in shale gas plays. These methodologies do not apply to the multi-phase flow that is inevitable in LRS plays. To account for complexities of multiphase flow in MFHW's the only available technique is dynamic modeling in compositional numerical simulators. These are time consuming and not practical when it comes to forecasting production and estimating reserves for a large number of producers. A workflow was developed, and validated by compositional numerical simulation. The workflow honors physics of flow, and is sufficiently accurate while practical so that an analyst can readily apply it to forecast production and estimate reserves in a large number of producers in a short period of time. To simplify the complex multiphase flow in MFHW, the workflow divides production periods into an initial period where large production and pressure declines are expected, and the subsequent period where production decline may converge into a common trend for a number of producers across an area of interest in the field. Initial period assumes the production is dominated by single-phase flow of oil and uses the tri-linear flow model of Erdal Ozkan to estimate the production history. Commercial software readily available can simulate flow and forecast production in this period. In the subsequent Period, dimensionless rate and dimensionless time functions are introduced that help identify transition from initial period into subsequent period. The production trends in terms of the dimensionless parameters converge for a range of rock permeability and stimulation intensity. This helps forecast production beyond transition to the end of life of well. This workflow is applicable to single fluid system.

  5. Laboratory Scale Experiments and Numerical Modeling of Cosolvent flushing of NAPL Mixtures in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Agaoglu, B.; Scheytt, T. J.; Copty, N. K.

    2011-12-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations were also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with slow flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. The results were less consistent for fast non-equilibrium flow conditions. The dissolution process from the NAPL mixture into the water-ethanol flushing solutions was found to be more complex than dissolution expressions incorporated in the numerical model. The dissolution rate of individual organic compounds (namely Toluene and Benzene) from a mixture NAPL into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.The implications of this controlled experimental and modeling study on field cosolvent remediation applications are discussed.

  6. Nonequilibrium capillarity effects in multiphase flow through small volume fractured porous media

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhan, H.; Lu, S.

    2017-12-01

    Analyzing and understanding the capillary pressure curves in fractured porous media is a crucial subject in a number of industrial applications, such as crude oil recovery in the fractured reservoir, CO2 sequestration in fractured brine aquifers and shale gas development. Many studies have observed the significant nonequilibrium capillarity effects in multiphase flow through porous media and proposed that conventional equilibrium capillary pressure may not accurately describe transient two-phase flow behavior under dynamical conditions. To date, only several laboratory experiments and numerical models have been conducted into investigating the characteristic of nonequilibrium capillary pressure in unfractured porous media, a clear picture of the effects of fractures on the dynamic capillary pressure in fractured porous media remains elusive. In this study, four digital porous models were built based on CT image data from ZEISS Xradia 520 Versa CT scanning, a series of direct simulations of multiphase flow in fractured porous media were carried out based on lattice Boltzmann method and three-dimensional porous models. The results show that both the aperture and orientation of the fractures have significant effects on the nonequilibrium capillary pressure coefficients and multiphase flow behaviors. The nonequilibrium capillary pressure coefficients in fractured porous media are one to two orders of magnitude lower than unfractured porous media. This study presents a new direct simulation based methodology for the detailed analysis of nonequilibrium capillary pressure in fractured porous media.

  7. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Spycher, N.; Sonnenthal, E.

    2010-08-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over themore » past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.« less

  8. Multiphase mean curvature flows with high mobility contrasts: A phase-field approach, with applications to nanowires

    NASA Astrophysics Data System (ADS)

    Bretin, Elie; Danescu, Alexandre; Penuelas, José; Masnou, Simon

    2018-07-01

    The structure of many multiphase systems is governed by an energy that penalizes the area of interfaces between phases weighted by surface tension coefficients. However, interface evolution laws depend also on interface mobility coefficients. Having in mind some applications where highly contrasted or even degenerate mobilities are involved, for which classical phase field models are inapplicable, we propose a new effective phase field approach to approximate multiphase mean curvature flows with mobilities. The key aspect of our model is to incorporate the mobilities not in the phase field energy (which is conventionally the case) but in the metric which determines the gradient flow. We show the consistency of such an approach by a formal analysis of the sharp interface limit. We also propose an efficient numerical scheme which allows us to illustrate the advantages of the model on various examples, as the wetting of droplets on solid surfaces or the simulation of nanowires growth generated by the so-called vapor-liquid-solid method.

  9. Numerical modeling of the early interaction of a planar shock with a dense particle field

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan; Blanquart, Guillaume

    2011-11-01

    Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.

  10. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less

  11. Methane Leakage From Hydrocarbon Wellbores into Overlying Groundwater: Numerical Investigation of the Multiphase Flow Processes Governing Migration

    NASA Astrophysics Data System (ADS)

    Rice, Amy K.; McCray, John E.; Singha, Kamini

    2018-04-01

    Methane leakage due to compromised hydrocarbon well integrity can lead to impaired groundwater quality. Here we use a three-dimensional, multiphase (vapor and aqueous), multicomponent (methane, water, salt), numerical model (TOUGH2 EOS7C) to investigate hydrogeological conditions that could result in groundwater contamination from natural gas wellbore leakage that migrates upward toward a freshwater aquifer. The conceptual model used for the simulations assumes methane leakage at 20-30 m below groundwater. We perform 180 simulations for a sensitivity analysis, examining (1) multiphase flow parameters related to storage, capillarity, and relative permeability, including porosity (ϕ), initial fluid-phase saturation (SL), and van Genuchten n and α, (2) geostatistical variations in intrinsic permeability (ki), and (3) methane source-zone pressure. Simulated mean ki values are 10-18 and 10-13 m2 with variances of 1 and 5 m4. Simulated source-zone pressures range from just over ambient hydrostatic pressure at the depth of leakage (100 kPa) to the maximum pressure that steel casings are commonly rated to withstand (20,340 kPa). ki, initial SL, ϕ, and van Genuchten's n and α were the most important parameters in determining the volume of methane reaching groundwater during a given time period. Multiphase parameterization of formations underlying freshwater aquifers and overlying hydrocarbon production zones is fundamental to assessing aquifer vulnerability to methane leakage.

  12. Dual domain material point method for multiphase flows

    NASA Astrophysics Data System (ADS)

    Zhang, Duan

    2017-11-01

    Although the particle-in-cell method was first invented in the 60's for fluid computations, one of its later versions, the material point method, is mostly used for solid calculations. Recent development of the multi-velocity formulations for multiphase flows and fluid-structure interactions requires the Lagrangian capability of the method be combined with Eulerian calculations for fluids. Because of different numerical representations of the materials, additional numerical schemes are needed to ensure continuity of the materials. New applications of the method to compute fluid motions have revealed numerical difficulties in various versions of the method. To resolve these difficulties, the dual domain material point method is introduced and improved. Unlike other particle based methods, the material point method uses both Lagrangian particles and Eulerian mesh, therefore it avoids direct communication between particles. With this unique property and the Lagrangian capability of the method, it is shown that a multiscale numerical scheme can be efficiently built based on the dual domain material point method. In this talk, the theoretical foundation of the method will be introduced. Numerical examples will be shown. Work sponsored by the next generation code project of LANL.

  13. A genuinely discontinuous approach for multiphase EHD problems

    NASA Astrophysics Data System (ADS)

    Natarajan, Mahesh; Desjardins, Olivier

    2017-11-01

    Electrohydrodynamics (EHD) involves solving the Poisson equation for the electric field potential. For multiphase flows, although the electric field potential is a continuous quantity, due to the discontinuity in the electric permittivity between the phases, additional jump conditions at the interface, for the normal and tangential components of the electric field need to be satisfied. All approaches till date either ignore the jump conditions, or involve simplifying assumptions, and hence yield unconvincing results even for simple test problems. In the present work, we develop a genuinely discontinuous approach for the Poisson equation for multiphase flows using a Finite Volume Unsplit Volume of Fluid method. The governing equation and the jump conditions without assumptions are used to develop the method, and its efficiency is demonstrated by comparison of the numerical results with canonical test problems having exact solutions. Postdoctoral Associate, Department of Mechanical and Aerospace Engineering.

  14. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  15. NETL Crosscutting Research Video Series: Multiphase Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Vaidheeswaran, Avinash

    For over 30 years, NETL’s work in multiphase flow science has served as one of the cornerstones of the lab’s research portfolio. Multiphase flow refers to the simultaneous flow of gases, liquids and/or solid materials. The goal of the multiphase flow science team is to provide computational modeling tools to help offset the risk and cost of multiphase reactor development.

  16. Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver

    DOE PAGES

    Shonibare, Olabanji Y.; Wardle, Kent E.

    2015-06-28

    A novel hybrid multiphase flow solver has been used to conduct simulations of a vertical plunging liquid jet. This solver combines a multifluid methodology with selective interface sharpening to enable simulation of both the initial jet impingement and the long-time entrained bubble plume phenomena. Models are implemented for variable bubble size capturing and dynamic switching of interface sharpened regions to capture transitions between the initially fully segregated flow types into the dispersed bubbly flow regime. It was found that the solver was able to capture the salient features of the flow phenomena under study and areas for quantitative improvement havemore » been explored and identified. In particular, a population balance approach is employed and detailed calibration of the underlying models with experimental data is required to enable quantitative prediction of bubble size and distribution to capture the transition between segregated and dispersed flow types with greater fidelity.« less

  17. NETL Crosscutting Research Video Series: Multiphase Flow (Short Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    For over 30 years, NETL’s work in multiphase flow science has served as one of the cornerstones of the lab’s research portfolio. Multiphase flow refers to the simultaneous flow of gases, liquids and/or solid materials. The goal of the multiphase flow science team is to provide computational modeling tools to help offset the risk and cost of multiphase reactor development.

  18. A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids

    NASA Astrophysics Data System (ADS)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2017-12-01

    We discuss the development and assessment of a robust numerical algorithm for simulating multiphase flows with complex interfaces and high density ratios on arbitrary polygonal meshes. The algorithm combines the volume-of-fluid method with an incremental projection approach for incompressible multiphase flows in a novel hybrid staggered/non-staggered framework. The key principles that characterise the algorithm are the consistent treatment of discrete mass and momentum transport and the similar discretisation of force terms appearing in the momentum equation. The former is achieved by invoking identical schemes for convective transport of volume fraction and momentum in the respective discrete equations while the latter is realised by representing the gravity and surface tension terms as gradients of suitable scalars which are then discretised in identical fashion resulting in a balanced formulation. The hybrid staggered/non-staggered framework employed herein solves for the scalar normal momentum at the cell faces, while the volume fraction is computed at the cell centroids. This is shown to naturally lead to similar terms for pressure and its correction in the momentum and pressure correction equations respectively, which are again treated discretely in a similar manner. We show that spurious currents that corrupt the solution may arise both from an unbalanced formulation where forces (gravity and surface tension) are discretised in dissimilar manner and from an inconsistent approach where different schemes are used to convect the mass and momentum, with the latter prominent in flows which are convection-dominant with high density ratios. Interestingly, the inconsistent approach is shown to perform as well as the consistent approach even for high density ratio flows in some cases while it exhibits anomalous behaviour for other scenarios, even at low density ratios. Using a plethora of test problems of increasing complexity, we conclusively demonstrate that the consistent transport and balanced force treatment results in a numerically stable solution procedure and physically consistent results. The algorithm proposed in this study qualifies as a robust approach to simulate multiphase flows with high density ratios on unstructured meshes and may be realised in existing flow solvers with relative ease.

  19. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows

    NASA Astrophysics Data System (ADS)

    Li, Qing; Luo, K. H.

    2014-05-01

    The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and constructed within the framework of the double-distribution-function LB method, were proposed to simulate thermal multiphase flows [G. Házi and A. Márkus, Phys. Rev. E 77, 026305 (2008), 10.1103/PhysRevE.77.026305; L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012), 10.1103/PhysRevLett.108.104502; S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037; M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013), 10.1103/PhysRevE.88.033302]. The objective of the present paper is to show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the pseudopotential LB modeling of thermal flows.

  20. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

    2016-12-01

    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated geomechanical and reservoir simulation capability for an accurate prediction and assessment of hydrocarbon production and hydraulic fracturing performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. An immersed boundary method for fluid-structure interaction with compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Wang, Li; Currao, Gaetano M. D.; Han, Feng; Neely, Andrew J.; Young, John; Tian, Fang-Bao

    2017-10-01

    This paper presents a two-dimensional immersed boundary method for fluid-structure interaction with compressible multiphase flows involving large structure deformations. This method involves three important parts: flow solver, structure solver and fluid-structure interaction coupling. In the flow solver, the compressible multiphase Navier-Stokes equations for ideal gases are solved by a finite difference method based on a staggered Cartesian mesh, where a fifth-order accuracy Weighted Essentially Non-Oscillation (WENO) scheme is used to handle spatial discretization of the convective term, a fourth-order central difference scheme is employed to discretize the viscous term, the third-order TVD Runge-Kutta scheme is used to discretize the temporal term, and the level-set method is adopted to capture the multi-material interface. In this work, the structure considered is a geometrically non-linear beam which is solved by using a finite element method based on the absolute nodal coordinate formulation (ANCF). The fluid dynamics and the structure motion are coupled in a partitioned iterative manner with a feedback penalty immersed boundary method where the flow dynamics is defined on a fixed Lagrangian grid and the structure dynamics is described on a global coordinate. We perform several validation cases (including fluid over a cylinder, structure dynamics, flow induced vibration of a flexible plate, deformation of a flexible panel induced by shock waves in a shock tube, an inclined flexible plate in a hypersonic flow, and shock-induced collapse of a cylindrical helium cavity in the air), and compare the results with experimental and other numerical data. The present results agree well with the published data and the current experiment. Finally, we further demonstrate the versatility of the present method by applying it to a flexible plate interacting with multiphase flows.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurementsmore » for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.« less

  3. Multiphase, multicomponent simulations and experiments of reactive flow, relevant for combining geologic CO2 sequestration with geothermal energy capture

    NASA Astrophysics Data System (ADS)

    Saar, Martin O.

    2011-11-01

    Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.

  4. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  5. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA

    USGS Publications Warehouse

    Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.

    2011-01-01

    Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.

  6. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  7. Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation

    NASA Astrophysics Data System (ADS)

    Pelanti, Marica

    2017-11-01

    We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.

  8. Studying Turbulence Using Numerical Simulation Databases - X Proceedings of the 2004 Summer Program

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Mansour, Nagi N.

    2004-01-01

    This Proceedings volume contains 32 papers that span a wide range of topics that reflect the ubiquity of turbulence. The papers have been divided into six groups: 1) Solar Simulations; 2) Magnetohydrodynamics (MHD); 3) Large Eddy Simulation (LES) and Numerical Simulations; 4) Reynolds Averaged Navier Stokes (RANS) Modeling and Simulations; 5) Stability and Acoustics; 6) Combustion and Multi-Phase Flow.

  9. A model and numerical method for compressible flows with capillary effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr

    2017-04-01

    A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less

  10. Numerical study of combustion processes in afterburners

    NASA Technical Reports Server (NTRS)

    Zhou, Xiaoqing; Zhang, Xiaochun

    1986-01-01

    Mathematical models and numerical methods are presented for computer modeling of aeroengine afterburners. A computer code GEMCHIP is described briefly. The algorithms SIMPLER, for gas flow predictions, and DROPLET, for droplet flow calculations, are incorporated in this code. The block correction technique is adopted to facilitate convergence. The method of handling irregular shapes of combustors and flameholders is described. The predicted results for a low-bypass-ratio turbofan afterburner in the cases of gaseous combustion and multiphase spray combustion are provided and analyzed, and engineering guides for afterburner optimization are presented.

  11. Atomization simulations using an Eulerian-VOF-Lagrangian method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Chen, C. P.

    1994-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservations are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present innovative approach by simulating benchmark problems including the coaxial jet atomization.

  12. Numerical investigation of spray ignition of a multi-component fuel surrogate

    NASA Astrophysics Data System (ADS)

    Backer, Lara; Narayanaswamy, Krithika; Pepiot, Perrine

    2014-11-01

    Simulating turbulent spray ignition, an important process in engine combustion, is challenging, since it combines the complexity of multi-scale, multiphase turbulent flow modeling with the need for an accurate description of chemical kinetics. In this work, we use direct numerical simulation to investigate the role of the evaporation model on the ignition characteristics of a multi-component fuel surrogate, injected as droplets in a turbulent environment. The fuel is represented as a mixture of several components, each one being representative of a different chemical class. A reduced kinetic scheme for the mixture is extracted from a well-validated detailed chemical mechanism, and integrated into the multiphase turbulent reactive flow solver NGA. Comparisons are made between a single-component evaporation model, in which the evaporating gas has the same composition as the liquid droplet, and a multi-component model, where component segregation does occur. In particular, the corresponding production of radical species, which are characteristic of the ignition of individual fuel components, is thoroughly analyzed.

  13. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  14. A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.

    1991-01-01

    The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.

  15. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  16. An Explicit Algorithm for the Simulation of Fluid Flow through Porous Media

    NASA Astrophysics Data System (ADS)

    Trapeznikova, Marina; Churbanova, Natalia; Lyupa, Anastasiya

    2018-02-01

    The work deals with the development of an original mathematical model of porous medium flow constructed by analogy with the quasigasdynamic system of equations and allowing implementation via explicit numerical methods. The model is generalized to the case of multiphase multicomponent fluid and takes into account possible heat sources. The proposed approach is verified by a number of test predictions.

  17. Contribution of the Recent AUSM Schemes to the Overflow Code: Implementation and Validation

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Buning, Pieter G.

    2000-01-01

    We shall present results of a recent collaborative effort between the authors attempting to implement the numerical flux scheme, AUSM+ and its new developments, into a widely used NASA code, OVERFLOW. This paper is intended to give a thorough and systematic documentation about the solutions of default test cases using the AUSNI+ scheme. Hence we will address various aspects of numerical solutions, such as accuracy, convergence rate, and effects of turbulence models, over a variety of geometries, speed regimes. We will briefly describe the numerical schemes employed in the calculations, including the capability of solving for low-speed flows and multiphase flows by employing the concept of numerical speed of sound. As a bonus, this low Mach number formulations also enhances convergence to steady solutions for flows even at transonic speed. Calculations for complex 3D turbulent flows were performed with several turbulence models and the results display excellent agreements with measured data.

  18. FY16 NRL DoD High Performance Computing Modernization Program

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  19. Impact Detection for Characterization of Complex Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Chan, Wai Hong Ronald; Urzay, Javier; Mani, Ali; Moin, Parviz

    2016-11-01

    Multiphase flows often involve a wide range of impact events, such as liquid droplets impinging on a liquid pool or gas bubbles coalescing in a liquid medium. These events contribute to a myriad of large-scale phenomena, including breaking waves on ocean surfaces. As impacts between surfaces necessarily occur at isolated points, numerical simulations of impact events will require the resolution of molecular scales near the impact points for accurate modeling. This can be prohibitively expensive unless subgrid impact and breakup models are formulated to capture the effects of the interactions. The first step in a large-eddy simulation (LES) based computational methodology for complex multiphase flows like air-sea interactions requires effective detection of these impact events. The starting point of this work is a collision detection algorithm for structured grids on a coupled level set / volume of fluid (CLSVOF) solver adapted from an earlier algorithm for cloth animations that triangulates the interface with the marching cubes method. We explore the extension of collision detection to a geometric VOF solver and to unstructured grids. Supported by ONR/A*STAR. Agency of Science, Technology and Research, Singapore; Office of Naval Research, USA.

  20. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers.

    PubMed

    Lycett-Brown, Daniel; Luo, Kai H

    2016-11-01

    A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.

  1. ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.

    1999-03-01

    ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less

  2. Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model

    NASA Astrophysics Data System (ADS)

    Wan, Hang; Li, Ran; Pu, Xunchi; Zhang, Hongwei; Feng, Jingjie

    2017-11-01

    Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.

  3. Oscillatory multiphase flow strategy for chemistry and biology.

    PubMed

    Abolhasani, Milad; Jensen, Klavs F

    2016-07-19

    Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.

  4. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Motil, Brian; Rame, Enrique

    2016-01-01

    In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

  5. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    DTIC Science & Technology

    2014-04-01

    time integration  Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows  Multiple Equations of State ◦ Perfect Gas...Loci/CHEM: Chemically reacting compressible flow solver . ◦ Currently in production use by NASA for the simulation of rocket motors, plumes, and...vehicles  Loci/DROPLET: Eulerian and Lagrangian multiphase solvers  Loci/STREAM: pressure-based solver ◦ Developed by Streamline Numerics and

  6. Cavitating Propeller Performance in Inclined Shaft Conditions with OpenFOAM: PPTC 2015 Test Case

    NASA Astrophysics Data System (ADS)

    Gaggero, Stefano; Villa, Diego

    2018-05-01

    In this paper, we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case (PPTC) in oblique flow. For our calculations, we used the Reynolds-averaged Navier-Stokes equation (RANSE) solver from the open-source OpenFOAM libraries. We selected the homogeneous mixture approach to solve for multiphase flow with phase change, using the volume of fluid (VoF) approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model. Comparing the model results with the experimental measurements collected during the Second Workshop on Cavitation and Propeller Performance - SMP'15 enabled our assessment of the reliability of the open-source calculations. Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines (mesh arrangements and solver setups) for accurate numerical prediction even in off-design conditions. Lastly, we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.

  7. CO 2 Leakage Into Shallow Aquifers: Modeling CO 2 Gas Evolution and Accumulation at Interfaces of Heterogeneity

    DOE PAGES

    Porter, Mark L.; Plampin, Michael; Pawar, Rajesh; ...

    2014-12-31

    The physicochemical processes associated with CO 2 leakage into shallow aquifer systems are complex and span multiple spatial and time scales. Continuum-scale numerical models that faithfully represent the underlying pore-scale physics are required to predict the long-term behavior and aid in risk analysis regarding regulatory and management decisions. This study focuses on benchmarking the numerical simulator, FEHM, with intermediate-scale column experiments of CO 2 gas evolution in homogeneous and heterogeneous sand configurations. Inverse modeling was conducted to calibrate model parameters and determine model sensitivity to the observed steady-state saturation profiles. It is shown that FEHM is a powerful tool thatmore » is capable of capturing the experimentally observed out ow rates and saturation profiles. Moreover, FEHM captures the transition from single- to multi-phase flow and CO 2 gas accumulation at interfaces separating sands. We also derive a simple expression, based on Darcy's law, for the pressure at which CO 2 free phase gas is observed and show that it reliably predicts the location at which single-phase flow transitions to multi-phase flow.« less

  8. Multidimensional directional flux weighted upwind scheme for multiphase flow modeling in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2012-12-01

    Multiphase flow modeling is an important numerical tool for a better understanding of transport processes in the fields including, but not limited to, petroleum reservoir engineering, remedy of ground water contamination, and risk evaluation of greenhouse gases such as CO2 injected into deep saline reservoirs. However, accurate numerical modeling for multiphase flow remains many challenges that arise from the inherent tight coupling and strong non-linear nature of the governing equations and the highly heterogeneous media. The existence of counter current flow which is caused by the effect of adverse relative mobility contrast and gravitational and capillary forces will introduce additional numerical instability. Recently multipoint flux approximation (MPFA) has become a subject of extensive research and has been demonstrated with great success in reducing considerable grid orientation effects compared to the conventional single point upstream (SPU) weighting scheme, especially in higher dimensions. However, the present available MPFA schemes are mathematically targeted to certain types of grids in two dimensions, a more general form of MPFA scheme is needed for both 2-D and 3-D problems. In this work a new upstream weighting scheme based on multipoint directional incoming fluxes is proposed which incorporates full permeability tensor to account for the heterogeneity of the porous media. First, the multiphase governing equations are decoupled into an elliptic pressure equation and a hyperbolic or parabolic saturation depends on whether the gravitational and capillary pressures are presented or not. Next, a dual secondary grid (called finite volume grid) is formulated from a primary grid (called finite element grid) to create interaction regions for each grid cell over the entire simulation domain. Such a discretization must ensure the conservation of mass and maintain the continuity of the Darcy velocity across the boundaries between neighboring interaction regions. The pressure field is then implicitly calculated from the pressure equation, which in turn results in the derived velocity field for directional flux calculation at each grid node. Directional flux at the center of each interaction surface is also calculated by interpolation from the element nodal fluxes using shape functions. The MPFA scheme is performed by a specific linear combination of all incoming fluxes into the upstream cell represented by either nodal fluxes or interpolated surface boundary fluxes to produce an upwind directional fluxed weighted relative mobility at the center of the interaction region boundary. Such an upwind weighted relative mobility is then used for calculating the saturations of each fluid phase explicitly. The proposed upwind weighting scheme has been implemented into a mixed finite element-finite volume (FE-FV) method, which allows for handling complex reservoir geometry with second-order accuracies in approximating primary variables. The numerical solver has been tested with several bench mark test problems. The application of the proposed scheme to migration path analysis of CO2 injected into deep saline reservoirs in 3-D has demonstrated its ability and robustness in handling multiphase flow with adverse mobility contrast in highly heterogeneous porous media.

  9. Modeling and simulation of multiphase multicomponent multiphysics porous media flows in the context of chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir; Fluids Team

    2015-11-01

    One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  10. FY16 NRL DoD High Performance Computing Modernization Program Annual Reports

    DTIC Science & Technology

    2017-09-15

    explored both wind and wave forcing in the numerical wave tank. The model uses high spatial and temporal resolution and a multi-phase formulation to...Results: The ADVED_NS code was used to predict the effect of the standoff distance between micron- diameter wires and flow frequency on the total...contours for a flow over 3D wire mesh. Figure 2 shows verifications comparing computed and theoretical drag forces for the flow over two cylinders in an

  11. Hybrid upwind discretization of nonlinear two-phase flow with gravity

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.

    2015-08-01

    Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.

  12. Simplified contaminant source depletion models as analogs of multiphase simulators

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.

    2008-04-01

    Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.

  13. Simplified contaminant source depletion models as analogs of multiphase simulators.

    PubMed

    Basu, Nandita B; Fure, Adrian D; Jawitz, James W

    2008-04-28

    Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field=0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.

  14. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  15. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; Wang, Mengyi; Kang, Qinjun

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  16. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE PAGES

    Chen, Li; Wang, Mengyi; Kang, Qinjun; ...

    2018-04-26

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  17. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  18. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.

    2011-12-01

    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.

  19. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    NASA Astrophysics Data System (ADS)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls in parabolic flows were in qualitative agreement with some experimental and numerical results. The Fahraeus and the Fahraeus-Lindqvist effects were reproduced. The proposed LBM model provides a flexible numerical platform consisting of various modules which could be used separately or in combination for the study of a variety of colloids and biological suspensions flow deformation problems.

  20. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    NASA Astrophysics Data System (ADS)

    Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.

    2014-03-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.

  1. Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media

    NASA Astrophysics Data System (ADS)

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.

    2012-10-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.

  2. Numerical Simulation of Shock/Detonation-Deformable-Particle Interaction with Constrained Interface Reinitialization

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas; Balachandar, Sivaramakrishnan

    2015-06-01

    We will develop a computational model built upon our verified and validated in-house SDT code to provide improved description of the multiphase blast wave dynamics where solid particles are considered deformable and can even undergo phase transitions. Our SDT computational framework includes a reactive compressible flow solver with sophisticated material interface tracking capability and realistic equation of state (EOS) such as Mie-Gruneisen EOS for multiphase flow modeling. The behavior of diffuse interface models by Shukla et al. (2010) and Tiwari et al. (2013) at different shock impedance ratio will be first examined and characterized. The recent constrained interface reinitialization by Shukla (2014) will then be developed to examine if conservation property can be improved. This work was supported in part by the U.S. Department of Energy and by the Defense Threat Reduction Agency.

  3. Verification and Validation (V&V) Methodologies for Multiphase Turbulent and Explosive Flows. V&V Case Studies of Computer Simulations from Los Alamos National Laboratory GMFIX codes

    NASA Astrophysics Data System (ADS)

    Dartevelle, S.

    2006-12-01

    Large-scale volcanic eruptions are inherently hazardous events, hence cannot be described by detailed and accurate in situ measurements; hence, volcanic explosive phenomenology is inadequately constrained in terms of initial and inflow conditions. Consequently, little to no real-time data exist to Verify and Validate computer codes developed to model these geophysical events as a whole. However, code Verification and Validation remains a necessary step, particularly when volcanologists use numerical data for mitigation of volcanic hazards as more often performed nowadays. The Verification and Validation (V&V) process formally assesses the level of 'credibility' of numerical results produced within a range of specific applications. The first step, Verification, is 'the process of determining that a model implementation accurately represents the conceptual description of the model', which requires either exact analytical solutions or highly accurate simplified experimental data. The second step, Validation, is 'the process of determining the degree to which a model is an accurate representation of the real world', which requires complex experimental data of the 'real world' physics. The Verification step is rather simple to formally achieve, while, in the 'real world' explosive volcanism context, the second step, Validation, is about impossible. Hence, instead of validating computer code against the whole large-scale unconstrained volcanic phenomenology, we rather suggest to focus on the key physics which control these volcanic clouds, viz., momentum-driven supersonic jets and multiphase turbulence. We propose to compare numerical results against a set of simple but well-constrained analog experiments, which uniquely and unambiguously represent these two key-phenomenology separately. Herewith, we use GMFIX (Geophysical Multiphase Flow with Interphase eXchange, v1.62), a set of multiphase- CFD FORTRAN codes, which have been recently redeveloped to meet the strict Quality Assurance, verification, and validation requirements from the Office of Civilian Radioactive Waste Management of the US Dept of Energy. GMFIX solves Navier-Stokes and energy partial differential equations for each phase with appropriate turbulence and interfacial coupling between phases. For momentum-driven single- to multi-phase underexpanded jets, the position of the first Mach disk is known empirically as a function of both the pressure ratio, K, and the particle mass fraction, Phi at the nozzle. Namely, the higher K, the further downstream the Mach disk and the higher Phi, the further upstream the first Mach disk. We show that GMFIX captures these two essential features. In addition, GMFIX displays all the properties found in these jets, such as expansion fans, incident and reflected shocks, and subsequent downstream mach discs, which make this code ideal for further investigations of equivalent volcanological phenomena. One of the other most challenging aspects of volcanic phenomenology is the multiphase nature of turbulence. We also validated GMFIX in comparing the velocity profiles and turbulence quantities against well constrained analog experiments. The velocity profiles agree with the analog ones as well as these of production of turbulent quantities. Overall, the Verification and the Validation experiments although inherently challenging suggest GMFIX captures the most essential dynamical properties of multiphase and supersonic flows and jets.

  4. Viscosity and surface tension effects during multiphase flow in propped fractures

    NASA Astrophysics Data System (ADS)

    Dzikowski, Michał; Dąbrowski, Marcin

    2017-04-01

    Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants fraction, apertures and flow conditions.

  5. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  6. Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast.

    PubMed

    Shao, J Y; Shu, C; Huang, H B; Chew, Y T

    2014-03-01

    A free-energy-based phase-field lattice Boltzmann method is proposed in this work to simulate multiphase flows with density contrast. The present method is to improve the Zheng-Shu-Chew (ZSC) model [Zheng, Shu, and Chew, J. Comput. Phys. 218, 353 (2006)] for correct consideration of density contrast in the momentum equation. The original ZSC model uses the particle distribution function in the lattice Boltzmann equation (LBE) for the mean density and momentum, which cannot properly consider the effect of local density variation in the momentum equation. To correctly consider it, the particle distribution function in the LBE must be for the local density and momentum. However, when the LBE of such distribution function is solved, it will encounter a severe numerical instability. To overcome this difficulty, a transformation, which is similar to the one used in the Lee-Lin (LL) model [Lee and Lin, J. Comput. Phys. 206, 16 (2005)] is introduced in this work to change the particle distribution function for the local density and momentum into that for the mean density and momentum. As a result, the present model still uses the particle distribution function for the mean density and momentum, and in the meantime, considers the effect of local density variation in the LBE as a forcing term. Numerical examples demonstrate that both the present model and the LL model can correctly simulate multiphase flows with density contrast, and the present model has an obvious improvement over the ZSC model in terms of solution accuracy. In terms of computational time, the present model is less efficient than the ZSC model, but is much more efficient than the LL model.

  7. A Simplified Model for Multiphase Leakage through Faults with Applications for CO2 Storage

    NASA Astrophysics Data System (ADS)

    Watson, F. E.; Doster, F.

    2017-12-01

    In the context of geological CO2 storage, faults in the subsurface could affect storage security by acting as high permeability pathways which allow CO2 to flow upwards and away from the storage formation. To assess the likelihood of leakage through faults and the impacts faults might have on storage security numerical models are required. However, faults are complex geological features, usually consisting of a fault core surrounded by a highly fractured damage zone. A direct representation of these in a numerical model would require very fine grid resolution and would be computationally expensive. Here, we present the development of a reduced complexity model for fault flow using the vertically integrated formulation. This model captures the main features of the flow but does not require us to resolve the vertical dimension, nor the fault in the horizontal dimension, explicitly. It is thus less computationally expensive than full resolution models. Consequently, we can quickly model many realisations for parameter uncertainty studies of CO2 injection into faulted reservoirs. We develop the model based on explicitly simulating local 3D representations of faults for characteristic scenarios using the Matlab Reservoir Simulation Toolbox (MRST). We have assessed the impact of variables such as fault geometry, porosity and permeability on multiphase leakage rates.

  8. The Voronoi Implicit Interface Method for computing multiphase physics

    PubMed Central

    Saye, Robert I.; Sethian, James A.

    2011-01-01

    We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces. PMID:22106269

  9. The Voronoi Implicit Interface Method for computing multiphase physics.

    PubMed

    Saye, Robert I; Sethian, James A

    2011-12-06

    We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.

  10. Lagrangian particle method for compressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  11. The Voronoi Implicit Interface Method for computing multiphase physics

    DOE PAGES

    Saye, Robert I.; Sethian, James A.

    2011-11-21

    In this paper, we introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarilymore » high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. Finally, we test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.« less

  12. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  13. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

    NASA Astrophysics Data System (ADS)

    Xu, Ao; Shyy, Wei; Zhao, Tianshou

    2017-06-01

    Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

  14. Application of numerical grid generation for improved CFD analysis of multiphase screw machines

    NASA Astrophysics Data System (ADS)

    Rane, S.; Kovačević, A.

    2017-08-01

    Algebraic grid generation is widely used for discretization of the working domain of twin screw machines. Algebraic grid generation is fast and has good control over the placement of grid nodes. However, the desired qualities of grid which should be able to handle multiphase flows such as oil injection, may be difficult to achieve at times. In order to obtain fast solution of multiphase screw machines, it is important to further improve the quality and robustness of the computational grid. In this paper, a deforming grid of a twin screw machine is generated using algebraic transfinite interpolation to produce initial mesh upon which an elliptic partial differential equations (PDE) of the Poisson’s form is solved numerically to produce smooth final computational mesh. The quality of numerical cells and their distribution obtained by the differential method is greatly improved. In addition, a similar procedure was introduced to fully smoothen the transition of the partitioning rack curve between the rotors thus improving continuous movement of grid nodes and in turn improve robustness and speed of the Computational Fluid Dynamic (CFD) solver. Analysis of an oil injected twin screw compressor is presented to compare the improvements in grid quality factors in the regions of importance such as interlobe space, radial tip and the core of the rotor. The proposed method that combines algebraic and differential grid generation offer significant improvement in grid quality and robustness of numerical solution.

  15. Coupled Thermo-Hydro-Mechanical Numerical Framework for Simulating Unconventional Formations

    NASA Astrophysics Data System (ADS)

    Garipov, T. T.; White, J. A.; Lapene, A.; Tchelepi, H.

    2016-12-01

    Unconventional deposits are found in all world oil provinces. Modeling these systems is challenging, however, due to complex thermo-hydro-mechanical processes that govern their behavior. As a motivating example, we consider in situ thermal processing of oil shale deposits. When oil shale is heated to sufficient temperatures, kerogen can be converted to oil and gas products over a relatively short timespan. This phase change dramatically impact both the mechanical and hydrologic properties of the rock, leading to strongly coupled THMC interactions. Here, we present a numerical framework for simulating tightly-coupled chemistry, geomechanics, and multiphase flow within a reservoir simulator (the AD-GPRS General Purpose Research Simulator). We model changes in constitutive behavior of the rock using a thermoplasticity model that accounts for microstructural evolution. The multi-component, multiphase flow and transport processes of both mass and heat are modeled at the macroscopic (e.g., Darcy) scale. The phase compositions and properties are described by a cubic equation of state; Arrhenius-type chemical reactions are used to represent kerogen conversion. The system of partial differential equations is discretized using a combination of finite-volumes and finite-elements, respectively, for the flow and mechanics problems. Fully implicit and sequentially implicit method are used to solve resulting nonlinear problem. The proposed framework is verified against available analytical and numerical benchmark cases. We demonstrate the efficiency, performance, and capabilities of the proposed simulation framework by analyzing near well deformation in an oil shale formation.

  16. A free energy-based surface tension force model for simulation of multiphase flows by level-set method

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.

    2017-09-01

    In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.

  17. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  18. A Parallel Stochastic Framework for Reservoir Characterization and History Matching

    DOE PAGES

    Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...

    2011-01-01

    The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.

  19. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    NASA Astrophysics Data System (ADS)

    Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu

    2009-02-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single sensor performance. Among various flow patterns of gas-liquid flow, slug flow occurs frequently in the petroleum, chemical, civil and nuclear industries. In the offshore oil and gas field, the maximum slug length and its statistical distribution are very important for the design of separator and downstream processing facility at steady state operations. However transient conditions may be encountered in the production, such as operational upsets, start-up, shut-down, pigging and blowdown, which are key operational and safety issues related to oil field development. So it is necessary to have an understanding the flow parameters under transient conditions. In this paper, the evolution of slug length along a horizontal pipe in gas-liquid flow is also studied in details and then an experimental study of flowrate transients in slug flow is provided. Also, the special gas-liquid flow phenomena easily encountered in the life span of offshore oil fields, called severe slugging, is studied experimentally and some results are presented.

  20. From model conception to verification and validation, a global approach to multiphase Navier-Stoke models with an emphasis on volcanic explosive phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dartevelle, Sebastian

    2007-10-01

    Large-scale volcanic eruptions are hazardous events that cannot be described by detailed and accurate in situ measurement: hence, little to no real-time data exists to rigorously validate current computer models of these events. In addition, such phenomenology involves highly complex, nonlinear, and unsteady physical behaviors upon many spatial and time scales. As a result, volcanic explosive phenomenology is poorly understood in terms of its physics, and inadequately constrained in terms of initial, boundary, and inflow conditions. Nevertheless, code verification and validation become even more critical because more and more volcanologists use numerical data for assessment and mitigation of volcanic hazards.more » In this report, we evaluate the process of model and code development in the context of geophysical multiphase flows. We describe: (1) the conception of a theoretical, multiphase, Navier-Stokes model, (2) its implementation into a numerical code, (3) the verification of the code, and (4) the validation of such a model within the context of turbulent and underexpanded jet physics. Within the validation framework, we suggest focusing on the key physics that control the volcanic clouds—namely, momentum-driven supersonic jet and buoyancy-driven turbulent plume. For instance, we propose to compare numerical results against a set of simple and well-constrained analog experiments, which uniquely and unambiguously represent each of the key-phenomenology. Key« less

  1. Micro-PIV Study of Supercritical CO2-Water Interactions in Porous Micromodels

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth T.

    2015-11-01

    Multiphase flow of immiscible fluids in porous media is encountered in numerous natural systems and engineering applications such as enhanced oil recovery (EOR), and CO2 sequestration among others. Geological sequestration of CO2 in saline aquifers has emerged as a viable option for reducing CO2 emissions, and thus it has been the subject of numerous studies in recent years. A key objective is improving the accuracy of numerical models used for field-scale simulations by incorporation/better representation of the pore-scale flow physics. This necessitates experimental data for developing, testing and validating such models. We have studied drainage and imbibition processes in a homogeneous, two-dimensional porous micromodel with CO2 and water at reservoir-relevant conditions. Microscopic particle image velocimetry (micro-PIV) technique was applied to obtain spatially- and temporally-resolved velocity vector fields in the aqueous phase. The results provide new insight into the flow processes at the pore scale.

  2. Numerical Studies of Fluid Leakage from a Geologic DisposalReservoir for CO2 Show Self-Limiting Feedback between Fluid Flow and HeatTransfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, Karsten

    2005-03-22

    Leakage of CO2 from a hypothetical geologic storage reservoir along an idealized fault zone has been simulated, including transitions between supercritical, liquid, and gaseous CO2. We find strong non-isothermal effects due to boiling and Joule-Thomson cooling of expanding CO2. Leakage fluxes are limited by limitations in conductive heat transfer to the fault zone. The interplay between multiphase flow and heat transfer effects produces non-monotonic leakage behavior.

  3. Towards a new method for modeling multicomponent, multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Kong, X. Z.; Schaedle, P.; Leal, A. M. M.; Saar, M. O.

    2016-12-01

    The ability to computationally simulate multiphase-multicomponent fluid flow, coupled with geochemical reactions between fluid species and rock minerals, in porous and/or fractured subsurface systems is of major importance to a vast number of applications. These include (1) carbon dioxide storage in geologic formations, (2) geothermal energy extraction, (3) combinations of the latter two applications during CO2-Plume Geothermal energy extraction, (4) waste fluid and waste storage, as well as (5) groundwater and contaminant transport. Modeling these systems with such a wide variety of coupled physical and chemical processes is both challenging and computationally expensive. In this work we present a new approach to develop a simulator for multicomponent-multiphase flow and reactive transport in porous media by using state of the art numerical tools, namely FEniCS (fenicsproject.org) and Reaktoro (reaktoro.org). The governing partial differential equations for fluid flow and transport are solved using FEniCS, which enables fast and efficient implementation of computer codes for the simulation of complex physical phenomena using finite element methods on unstructured meshes. FEniCS supports a wide range of finite element schemes of special interest to porous media flow. In addition, FEniCS interfaces with many sparse linear solvers and provides convenient tools for adaptive mesh refinement and the capability of massively parallel calculations. A fundamental component of our contribution is the coupling of our FEniCS based flow and transport solver with our chemical reaction simulator, Reaktoro, which implements efficient, robust, and accurate methods for chemical equilibrium and kinetics calculations at every node of the mesh, at every time step. These numerical methods for reaction modeling have been especially developed for performance-critical applications such as reactive transport modeling. Furthermore, Reaktoro is also used for the calculation of thermodynamic properties of rock minerals and fluids. The proposed simulator can, however, be coupled with other back-ends for the calculation of both thermodynamic and thermophysical properties of rock minerals and fluids. We present several example applications of our new approach, demonstrating its capabilities and computation speed.

  4. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.

  5. Multiphase flow experiments, mathematical modeling and numerical simulation of the water - gas - solute movement

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ma, X.; Su, N.

    2013-12-01

    The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.

  6. TOUGHREACT: a new code of the TOUGH Family for Non-Isothermal multiphase reactive geochemical transport in variably saturated geologic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.

  7. Towards an avatar for deciphering the modes of three-phase interactions in lava lakes

    NASA Astrophysics Data System (ADS)

    Suckale, J.; Qin, Z.; Culha, C.; Lev, E.

    2016-12-01

    An avatar is the virtual representation of a character, system or idea. Here, we present progress towards building a numerical avatar for lava lakes that allows us to constrain the modes of multiphase interactions between crystals, gas, and magmatic fluid in the interior of lava lakes. We focus on lava lakes, because they expose the free surface of magma to direct observations. They hence offer a unique window into different regimes of the three-phase flow dynamics of crystals, gases, and melts in magmatic convection more generally. The multiphase interactions between crystals, gases and melt give rise to nonlinear and unstable behavior in magmatic systems and are hence key for understanding the behavior of the bulk magma, but are notoriously difficult to capture in numerical models. Our avatar approach solves the full set of governing equations entailing the momentum, mass, and energy balance for each of the three phases at the scale of individual crystals or bubble interfaces. It hence obviates the need for simplifying assumptions regarding the individual behavior of the three phases or their mutual coupling to achieve a minimally preconditioned virtual representation of a lava lake. To identify the multi-phase regime at depth, we compute the observational signatures of different multiphase regimes, both in terms of surface velocity and temperature distribution, and compare the computed synthetic data to observational surface data for lava lakes. We focus specifically on the lava lake dynamics at Mount Erebus, Antarctica, and Kīlauea, Hawai'i. These two lava lakes are particularly well observed, which presents a compelling opportunity for closely linking modeling and observations. The also exhibit notably different circulation patterns. We hypothesize that Erebus and Kīlauea highlight different mechanisms through which multiphase interactions alter magmatic convection and eruptive behavior in basaltic systems. We suggest that volumetric flow effects like bubble dynamics and spatially heterogeneous crystal retention may dominate the behavior at Erebus and that surface effects resulting primarily from the formation of a cool skin on top of the lake govern the dynamics observed at Kīlauea.

  8. Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media.

    PubMed

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K

    2012-10-01

    This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations was also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with low flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. Model simulations over-estimated NAPL recovery for high specific discharges and rate-limited mass transfer, suggesting a constant mass transfer coefficient for the entire flushing experiment may not be valid. When multi-component NAPLs are present, the dissolution rate of individual organic compounds (namely, toluene and benzene) into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Viscous and gravitational fingering in multiphase compositional and compressible flow

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  10. Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations

    NASA Astrophysics Data System (ADS)

    Krimi, Abdelkader; Rezoug, Mehdi; Khelladi, Sofiane; Nogueira, Xesús; Deligant, Michael; Ramírez, Luis

    2018-04-01

    In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model.

  11. PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-02-01

    Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all the participants and the contributors to the symposium, and also to the supporting organizations; The Japanese Society for Multiphase Flow, The Chinese Society for Measurement, National Natural Science Foundation of China, The Chinese Academy of Science, and University of the Ryukyus, Okinawa, Japan. Koji Okamoto Chair of 6th ISMTMF and proceedings editor The University of Tokyo, Japan Yuichi Murai Proceedings co-editor Hokkaido University, Japan

  12. A variational approach to multi-phase motion of gas, liquid and solid based on the level set method

    NASA Astrophysics Data System (ADS)

    Yokoi, Kensuke

    2009-07-01

    We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.

  13. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.

    2013-02-01

    Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an adaptive unstructured mesh approach.

  14. Modelling coupled microbial processes in the subsurface: Model development, verification, evaluation and application

    NASA Astrophysics Data System (ADS)

    Masum, Shakil A.; Thomas, Hywel R.

    2018-06-01

    To study subsurface microbial processes, a coupled model which has been developed within a Thermal-Hydraulic-Chemical-Mechanical (THCM) framework is presented. The work presented here, focuses on microbial transport, growth and decay mechanisms under the influence of multiphase flow and bio-geochemical reactions. In this paper, theoretical formulations and numerical implementations of the microbial model are presented. The model has been verified and also evaluated against relevant experimental results. Simulated results show that the microbial processes have been accurately implemented and their impacts on porous media properties can be predicted either qualitatively or quantitatively or both. The model has been applied to investigate biofilm growth in a sandstone core that is subjected to a two-phase flow and variable pH conditions. The results indicate that biofilm growth (if not limited by substrates) in a multiphase system largely depends on the hydraulic properties of the medium. When the change in porewater pH which occurred due to dissolution of carbon dioxide gas is considered, growth processes are affected. For the given parameter regime, it has been shown that the net biofilm growth is favoured by higher pH; whilst the processes are considerably retarded at lower pH values. The capabilities of the model to predict microbial respiration in a fully coupled multiphase flow condition and microbial fermentation leading to production of a gas phase are also demonstrated.

  15. Statistical representation of a spray as a point process

    NASA Astrophysics Data System (ADS)

    Subramaniam, S.

    2000-10-01

    The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.

  16. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    PubMed

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  17. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  18. Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Sharma, Prateek; Quataert, Eliot; Parrish, Ian J.

    2012-02-01

    We study the interplay among cooling, heating, conduction and magnetic fields in gravitationally stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive haloes such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling time-scale to the dynamical time-scale tcool/tff controls the non-linear evolution and saturation of the thermal instability: when tcool/tff≲ 1, the plasma develops extended multiphase structure, whereas when tcool/tff≳ 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool/tff≲ 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multiphase gas is essentially independent of the thermal conductivity of the plasma. Our criterion for local thermal instability to produce multiphase structure is an extension of the cold versus hot accretion modes in galaxy formation that applies at all radii in hot haloes, not just to the virial shock. We show that this criterion is consistent with data on multiphase gas in galaxy groups and clusters; in addition, when tcool/tff≳ 1, the net cooling rate to low temperatures and the mass flux to small radii are suppressed enough relative to models without heating to be qualitatively consistent with star formation rates and X-ray line emission in groups and clusters.

  19. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  20. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  1. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  2. Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor); Schafer, Charles F. (Editor)

    1988-01-01

    A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.

  3. Statistical analysis on the signals monitoring multiphase flow patterns in pipeline-riser system

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Guo, Liejin

    2013-07-01

    The signals monitoring petroleum transmission pipeline in offshore oil industry usually contain abundant information about the multiphase flow on flow assurance which includes the avoidance of most undesirable flow pattern. Therefore, extracting reliable features form these signals to analyze is an alternative way to examine the potential risks to oil platform. This paper is focused on characterizing multiphase flow patterns in pipeline-riser system that is often appeared in offshore oil industry and finding an objective criterion to describe the transition of flow patterns. Statistical analysis on pressure signal at the riser top is proposed, instead of normal prediction method based on inlet and outlet flow conditions which could not be easily determined during most situations. Besides, machine learning method (least square supported vector machine) is also performed to classify automatically the different flow patterns. The experiment results from a small-scale loop show that the proposed method is effective for analyzing the multiphase flow pattern.

  4. Lagrangian particle method for compressible fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  5. multiUQ: An intrusive uncertainty quantification tool for gas-liquid multiphase flows

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2017-11-01

    Uncertainty quantification (UQ) can improve our understanding of the sensitivity of gas-liquid multiphase flows to variability about inflow conditions and fluid properties, creating a valuable tool for engineers. While non-intrusive UQ methods (e.g., Monte Carlo) are simple and robust, the cost associated with these techniques can render them unrealistic. In contrast, intrusive UQ techniques modify the governing equations by replacing deterministic variables with stochastic variables, adding complexity, but making UQ cost effective. Our numerical framework, called multiUQ, introduces an intrusive UQ approach for gas-liquid flows, leveraging a polynomial chaos expansion of the stochastic variables: density, momentum, pressure, viscosity, and surface tension. The gas-liquid interface is captured using a conservative level set approach, including a modified reinitialization equation which is robust and quadrature free. A least-squares method is leveraged to compute the stochastic interface normal and curvature needed in the continuum surface force method for surface tension. The solver is tested by applying uncertainty to one or two variables and verifying results against the Monte Carlo approach. NSF Grant #1511325.

  6. Vertical multiphase flow correlations for high production rates and large tubulars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggour, M.A.; Al-Yousef, H.Y.; Al-Muraikhi, A.J.

    1996-02-01

    Numerous correlations exist for predicting pressure drop in vertical multiphase flow. These correlations, however, were all developed and tested under limited operating conditions that do not match the high production rates and large tubulars normally found in the Middle East fields. This paper presents a comprehensive evaluation of existing correlations and modifications of some correlations to determine and recommend the best correlation or correlations for various field conditions. More than 400 field data sets covering tubing sizes from 2 3/8 to 7 inches, oil rates up to 23,200 B/D, water cuts up to 95%, and gas/oil ratio (GOR) up tomore » 927 scf/STB were used in this study. Considering all data combined, the Beggs and Brill correlation provided the best pressure predictions. However, the Hagedorn and Brown correlation was better for water cuts above 80%, while the Hasan and Kabir model was better for total liquid rates above 20,000 B/D. The Aziz correlation was significantly improved when the Orkiszewski flow-pattern transition criteria were used.« less

  7. Lagrangian particle method for compressible fluid dynamics

    DOE PAGES

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    2018-02-09

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  8. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  9. A simple mass-conserved level set method for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.

    2018-04-01

    In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

  10. Multiphase Fluid Dynamics for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Sim, J.

    2011-09-01

    Multiphase flows involving moving interfaces between different fluids/phases are observed in nature as well as in a wide range of engineering applications. With the recent development of high fidelity computational techniques, a number of challenging multiphase flow problems can now be computed. We introduce the basic notion of the main categories of multiphase flow computation; Lagrangian, Eulerian, and Eulerian-Lagrangian techniques to represent and follow interface, and sharp and continuous interface methods to model interfacial dynamics. The marker-based adaptive Eulerian-Lagrangian method, which is one of the most popular methods, is highlighted with microgravity and space applications including droplet collision and spacecraft liquid fuel tank surface stability.

  11. Black hole feedback in a multiphase interstellar medium

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander

    2014-07-01

    Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.

  12. Numerical simulation of drop impact on a thin film: the origin of the droplets in the splashing regime

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Che, Zhizhao; Ismail, Renad; Pain, Chris; Matar, Omar

    2015-11-01

    Drop impact on a liquid layer is a feature of numerous multiphase flow problems, and has been the subject of numerous theoretical, experimental and numerical investigations. In the splashing regime, however, little attention has been focused on the origin of the droplets that are formed during the splashing process. The objective of this study is to investigate this issue numerically in order to improve our understanding of the mechanisms underlying splashing as a function of the relevant system parameters. In contrast to the conventional two-phase flow approach, commonly used to simulate splashing, here, a three-dimensional, three-phase flow model, with adaptive, unstructured meshing, is employed to study the liquid (droplet) - gas (surrounding air) - liquid (thin film) system. In the cases to be presented, both liquid phases have the same fluid property, although, clearly, our method can be used in the more general case of two different liquids. Numerical results of droplet impact on a thin film are analysed to determine whether the origin of the droplets following impact corresponds to the mother drop, or the thin film, or both. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  13. TOUGH2 User's Guide Version 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.; Oldenburg, C.M.; Moridis, G.J.

    1999-11-01

    TOUGH2 is a numerical simulator for nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, environmental assessment and remediation, and unsaturated and saturated zone hydrology. TOUGH2 was first released to the public in 1991; the 1991 code was updated in 1994 when a set of preconditioned conjugate gradient solvers was added to allow a more efficient solution of large problems. The current Version 2.0 features several new fluid property modules and offers enhanced process modeling capabilities, such asmore » coupled reservoir-wellbore flow, precipitation and dissolution effects, and multiphase diffusion. Numerous improvements in previously released modules have been made and new user features have been added, such as enhanced linear equation solvers, and writing of graphics files. The T2VOC module for three-phase flows of water, air and a volatile organic chemical (VOC), and the T2DM module for hydrodynamic dispersion in 2-D flow systems have been integrated into the overall structure of the code and are included in the Version 2.0 package. Data inputs are upwardly compatible with the previous version. Coding changes were generally kept to a minimum, and were only made as needed to achieve the additional functionalities desired. TOUGH2 is written in standard FORTRAN77 and can be run on any platform, such as workstations, PCs, Macintosh, mainframe and supercomputers, for which appropriate FORTRAN compilers are available. This report is a self-contained guide to application of TOUGH2 to subsurface flow problems. It gives a technical description of the TOUGH2 code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Illustrative sample problems are presented along with detailed instructions for preparing input data.« less

  14. Effects of Faults on Petroleum Fluid Dynamics, Borderland Basins of Southern California

    NASA Astrophysics Data System (ADS)

    Jung, B.; Garven, G.; Boles, J. R.

    2012-12-01

    Multiphase flow modeling provides a useful quantitative tool for understanding crustal processes such as petroleum migration in geological systems, and also for characterizing subsurface environmental issues such as carbon sequestration in sedimentary basins. However, accurate modeling of multi-fluid behavior is often difficult because of the various coupled and nonlinear physics affecting multiphase fluid saturation and migration, including effects of capillarity and relative permeability, anisotropy and heterogeneity of the medium, and the effects of pore pressure, composition, and temperature on fluid properties. Regional fault structures also play a strong role in controlling fluid pathlines and mobility, so considering hydrogeologic effects of these structures is critical for testing exploration concepts, and for predicting the fate of injected fluids. To address these issues on spatially large and long temporal scales, we have developed a 2-D multiphase fluid flow model, coupled to heat flow, using a hybrid finite element and finite volume method. We have had good success in applying the multiphase flow model to fundamental issues of long-distance petroleum migration and accumulation in the Los Angeles basin, which is intensely faulted and disturbed by transpressional tectonic stresses, and host to the world's richest oil accumulation. To constrain the model, known subsurface geology and fault structures were rendered using geophysical logs from industry exploration boreholes and published seismic profiles. Plausible multiphase model parameters were estimated, either from known fault permeability measurements in similar strata in the Santa Barbara basin, and from known formation properties obtained from numerous oil fields in the Los Angeles basin. Our simulations show that a combination of continuous hydrocarbon generation and primary migration from upper Miocene source rocks in the central LA basin synclinal region, coupled with a subsiding basin fluid dynamics, favored the massive accumulation and alignment of hydrocarbon pools along the Newport-Inglewood fault zone (NIFZ). According to our multiphase flow calculations, the maximum formation water velocities within fault zones likely ranged between 1 ~ 2 m/yr during the middle Miocene to Pliocene (13 to 2.6 Ma). The estimated time for long-distance (~ 25 km) petroleum migration from source beds in the central basin to oil fields along the NIFZ is approximately 150,000 ~ 250,000 years, depending on the effective permeability assigned to the faults and adjacent interbedded sandstone and siltstone "petroleum aquifers". With an average long-distance flow rate (~ 0.6 m/yr) and fault permeability of 100 millidarcys (10-13 m2), the total petroleum oil of Inglewood oil field of 450 million barrels (~ 1.6 × 105 m3) would have accumulated rather quickly, likely over 25,000 years or less. The results also suggest that besides the thermal and structural history of the basin, the fault permeability, capillary pressure, and the configuration of aquifer and aquitard layers played an important role in controlling petroleum migration rates, patterns of flow, and the overall fluid mechanics of petroleum accumulation.

  15. Using Self Potential and Multiphase Flow Modeling to Optimize Groundwater Pumping

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Zhang, Y.; Hubbard, S.

    2008-12-01

    Numerical and field hydrological and geophysical studies have been conducted to investigate the impact of groundwater pumping on near-river hydrology for a segment of the Russian River at the Wohler Site, California, which is a riverbed filtration system managed by the Sonoma County Water Agency. Groundwater pumping near streams can cause a creation of unsaturated regions and hence reduce the pumping capacity and change the flow paths. A three-dimensional multiphase flow and transport model can be calibrated to the temperature, and water levels at monitoring wells based on known pumping rates, and the river stage. Streaming (self) potential (SP) is one of the electrokinetic processes that describes the coupled behavior of hydraulic and electrical flow within a porous medium, and is easily measured on the surface or in boreholes. Observing temporal and spatial variations in geophysical signatures provides a powerful approach for monitoring changes in the natural systems due to natural or forced (pumping) system perturbations. Geophysical and hydrological data were collected before, during and after a pumping experiment at the Wohler Site. Using this monitoring dataset, we illustrate how loose coupling between hydrogeological and geophysical (SP) processes and data can be used to calibrate the flow model and to optimize pumping schedules as needed to guide sustainable water resource development.

  16. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    NASA Astrophysics Data System (ADS)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  17. Phase segregation in multiphase turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Bianco, Federico; Soldati, Alfredo

    2014-11-01

    The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.

  18. Mount St. Helens (Washington, USA) and World Trade Center (New York, USA) collapse: a fluid dynamic analogy

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico; de Tullio, Marco; Pascazio, Giuseppe; Dellino, Pierfrancesco

    2013-04-01

    When a skyscraper collapses, the non-fragmented material is rapidly deposited close to the source, whereas the fragmented counterpart is loaded turbulently in the associated currents. Indeed, on impact with the ground, collapses of volcanic columns, domes, or sectors of volcanoes generate thick deposits of coarser material, and from there on the finer material is suspended over the landscape, to be re-deposited far away in thin deposits. Here, we explore the multiphase fluid dynamic behavior of the World Trade Center (New York, USA) collapse, which on 11 September 2001 followed the fragmentation of the Twin Towers, and generated shear dusty currents. These currents had a multiphase and turbulent behavior, and resemble the volcanic flow generated during the 18 May 1980 explosive eruption of Mount St. Helens (Washington, USA), in which a sector of the volcano collapsed, then a highly mobile, multiphase turbulent current followed and heavily interacted with the surrounding landscape. This analogy allows to focus on the comparison between volcanic and skyscraper collapse. A computational fluid dynamic investigation, along with a locally refined Cartesian grid, are adopted to simulate numerically the propagation of the 11 September dusty currents in Manhattan. Results of flow dynamic pressure, the parameter of volcanic hazard, and particle deposition reveal that the pressure can locally increase up to a factor 10 because of flow-building interaction. Also, the surrounding buildings make the urban setting as of a high turbulence and exponential decay of deposit thickness.

  19. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

    2002-12-01

    Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl. Dynamic viscosities are currently approximated by the approach of Palliser and McKibbin [4]. The numerical solutions of the governing equations and the equation of state are embedded in our object-oriented C++ code CSP3D4.0 [6]. Comparisons of the numerical solutions carried out with CSP for solute transport with analytical solutions and classical test cases for density dependent flow (i.e., Elder problem [1]) show very good agreement. The numerical solutions carried out with CSP and the established United States Geological Survey code HYDROTHERM [3] for multi-phase flow and energy transport also yield a very good agreement. Fluid inclusion data can be used to constrain the PTX properties of the hydrothermal fluids in numerical solutions. [1] Journal of Fluid Mechanics 27, 609-623 [2] ANU Mathematical Research Report, MRR01-023 [3] USGS Water Investigations Report 94-4045 [4] Transport in Porous Media 33, 155-171 [5] AAPG Bulletin 80, 1763-1779 [6] CSP User's Guide, Dept. of Earth Sciences ETH Zurich

  20. Use of an Accurate DNS Particulate Flow Method to Supply and Validate Boundary Conditions for the MFIX Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi-Gang Feng

    2012-05-31

    The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less

  1. Numerical Speed of Sound and its Application to Schemes for all Speeds

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Edwards, Jack R.

    1999-01-01

    The concept of "numerical speed of sound" is proposed in the construction of numerical flux. It is shown that this variable is responsible for the accurate resolution of' discontinuities, such as contacts and shocks. Moreover, this concept can he readily extended to deal with low speed and multiphase flows. As a results, the numerical dissipation for low speed flows is scaled with the local fluid speed, rather than the sound speed. Hence, the accuracy is enhanced the correct solution recovered, and the convergence rate improved. We also emphasize the role of mass flux and analyze the behavior of this flux. Study of mass flux is important because the numerical diffusivity introduced in it can be identified. In addition, it is the term common to all conservation equations. We show calculated results for a wide variety of flows to validate the effectiveness of using the numerical speed of sound concept in constructing the numerical flux. We especially aim at achieving these two goals: (1) improving accuracy and (2) gaining convergence rates for all speed ranges. We find that while the performance at high speed range is maintained, the flux now has the capability of performing well even with the low: speed flows. Thanks to the new numerical speed of sound, the convergence is even enhanced for the flows outside of the low speed range. To realize the usefulness of the proposed method in engineering problems, we have also performed calculations for complex 3D turbulent flows and the results are in excellent agreement with data.

  2. Unraveling the Geometry Dependence of In-Nozzle Cavitation in High-Pressure Injectors

    PubMed Central

    Im, Kyoung-Su; Cheong, Seong-Kyun; Powell, Christopher F.; Lai, Ming-chia D.; Wang, Jin

    2013-01-01

    Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating. PMID:23797665

  3. Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor)

    1989-01-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  5. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  6. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water, which occurred preferentially at the pipe centre. For upward inclined multiphase flows RT#1 was found to give rise to water velocity profiles which are more consistent with results in the previous literature than was the case for RT#2—which leads to the tentative conclusion that the upward inclined multiphase flows investigated in the present study did not contain significant axisymmetric velocity components.

  7. A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Bolster, Diogo; Luo, Li-Shi

    2017-07-01

    We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time (WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct numerical simulation of two-phase flows in three dimensions. The proposed WMRT model enhances the numerical stability of the LBM for immiscible fluids at high density ratios, particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT-LBM-AMR is validated through simulations of (a) buoyancy-driven motion and deformation of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence mechanism of a liquid drop at a liquid-liquid interface. The numerical simulations agree well with available experimental data and theoretical approximations where applicable.

  8. An upscaling method and a numerical analysis of swelling/shrinking processes in a compacted bentonite/sand mixture

    NASA Astrophysics Data System (ADS)

    Xie, M.; Agus, S. S.; Schanz, T.; Kolditz, O.

    2004-12-01

    This paper presents an upscaling concept of swelling/shrinking processes of a compacted bentonite/sand mixture, which also applies to swelling of porous media in general. A constitutive approach for highly compacted bentonite/sand mixture is developed accordingly. The concept is based on the diffuse double layer theory and connects microstructural properties of the bentonite as well as chemical properties of the pore fluid with swelling potential. Main factors influencing the swelling potential of bentonite, i.e. variation of water content, dry density, chemical composition of pore fluid, as well as the microstructures and the amount of swelling minerals are taken into account. According to the proposed model, porosity is divided into interparticle and interlayer porosity. Swelling is the potential of interlayer porosity increase, which reveals itself as volume change in the case of free expansion, or turns to be swelling pressure in the case of constrained swelling. The constitutive equations for swelling/shrinking are implemented in the software GeoSys/RockFlow as a new chemo-hydro-mechanical model, which is able to simulate isothermal multiphase flow in bentonite. Details of the mathematical and numerical multiphase flow formulations, as well as the code implementation are described. The proposed model is verified using experimental data of tests on a highly compacted bentonite/sand mixture. Comparison of the 1D modelling results with the experimental data evidences the capability of the proposed model to satisfactorily predict free swelling of the material under investigation. Copyright

  9. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  10. Direct numerical simulation of a combusting droplet with convection

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1992-01-01

    The evaporation and combustion of a single droplet under forced and natural convection was studied numerically from first principles using a numerical scheme that solves the time-dependent multiphase and multispecies Navier-Stokes equations and tracks the sharp gas-liquid interface cutting across an arbitrary Eulerian grid. The flow fields both inside and outside of the droplet are resolved in a unified fashion. Additional governing equations model the interphase mass, energy, and momentum exchange. Test cases involving iso-octane, n-hexane, and n-propanol droplets show reasonable comparison rate, and flame stand-off distance. The partially validated code is, thus, readied to be applied to more demanding droplet combustion situations where substantial drop deformation render classical models inadequate.

  11. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  12. Viscous fingering and channeling in chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Dutta, Sourav

    2017-11-01

    We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.

  13. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  14. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-03-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian-Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, "Numerical study of collisional particle dynamics in cluster-induced turbulence," J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  15. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capecelatro, Jesse, E-mail: jcaps@illinois.edu; Desjardins, Olivier; Fox, Rodney O.

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components ofmore » the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.« less

  16. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  17. Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán

    2016-11-01

    Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.

  18. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  19. Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  20. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil; St Clair, Jeffrey G.; Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611

    2016-05-07

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force ismore » well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.« less

  1. 3D CFD simulation of Multi-phase flow separators

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiying

    2017-10-01

    During the exploitation of natural gas, some water and sands are contained. It will be better to separate water and sands from natural gas to insure favourable transportation and storage. In this study, we use CFD to analyse the effect of multi-phase flow separator, whose detailed geometrical parameters are designed in advanced. VOF model and DPM are used here. From the results of CFD, we can draw a conclusion that separated effect of multi-phase flow achieves better results. No solid and water is carried out from gas outlet. CFD simulation provides an economical and efficient approach to shed more light on details of the flow behaviour.

  2. Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment.

    PubMed

    Xenakis, A M; Lind, S J; Stansby, P K; Rogers, B D

    2017-03-01

    Tsunamis caused by landslides may result in significant destruction of the surroundings with both societal and industrial impact. The 1958 Lituya Bay landslide and tsunami is a recent and well-documented terrestrial landslide generating a tsunami with a run-up of 524 m. Although recent computational techniques have shown good performance in the estimation of the run-up height, they fail to capture all the physical processes, in particular, the landslide-entry profile and interaction with the water. Smoothed particle hydrodynamics (SPH) is a versatile numerical technique for describing free-surface and multi-phase flows, particularly those that exhibit highly nonlinear deformation in landslide-generated tsunamis. In the current work, the novel multi-phase incompressible SPH method with shifting is applied to the Lituya Bay tsunami and landslide and is the first methodology able to reproduce realistically both the run-up and landslide-entry as documented in a benchmark experiment. The method is the first paper to develop a realistic implementation of the physics that in addition to the non-Newtonian rheology of the landslide includes turbulence in the water phase and soil saturation. Sensitivity to the experimental initial conditions is also considered. This work demonstrates the ability of the proposed method in modelling challenging environmental multi-phase, non-Newtonian and turbulent flows.

  3. Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment

    PubMed Central

    Lind, S. J.; Stansby, P. K.; Rogers, B. D.

    2017-01-01

    Tsunamis caused by landslides may result in significant destruction of the surroundings with both societal and industrial impact. The 1958 Lituya Bay landslide and tsunami is a recent and well-documented terrestrial landslide generating a tsunami with a run-up of 524 m. Although recent computational techniques have shown good performance in the estimation of the run-up height, they fail to capture all the physical processes, in particular, the landslide-entry profile and interaction with the water. Smoothed particle hydrodynamics (SPH) is a versatile numerical technique for describing free-surface and multi-phase flows, particularly those that exhibit highly nonlinear deformation in landslide-generated tsunamis. In the current work, the novel multi-phase incompressible SPH method with shifting is applied to the Lituya Bay tsunami and landslide and is the first methodology able to reproduce realistically both the run-up and landslide-entry as documented in a benchmark experiment. The method is the first paper to develop a realistic implementation of the physics that in addition to the non-Newtonian rheology of the landslide includes turbulence in the water phase and soil saturation. Sensitivity to the experimental initial conditions is also considered. This work demonstrates the ability of the proposed method in modelling challenging environmental multi-phase, non-Newtonian and turbulent flows. PMID:28413334

  4. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at least in the buoyant plume region, and allow to reckon a variable, effective entrainment coefficient with a mean value around 0.1 (consistently with laboratory experiments). For the strong plume, analysis of the results reveals that the two most critical assumptions of one-dimensional integral models are the self-similarity and the pressure equilibrium. In such a case, the plume appears to be controlled by the dynamics in the jet stage (below the buoyancy reversal) and by mesoscale vorticity associated with the development of the umbrella.

  5. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    PubMed

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  6. Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Radhakrishnan, Senthilkumaran

    2013-01-01

    Multiphase turbulent flows are encountered in many practical applications including turbine engines or natural phenomena involving particle dispersion. Numerical computations of multiphase turbulent flows are important because they provide a cheaper alternative to performing experiments during an engine design process or because they can provide predictions of pollutant dispersion, etc. Two-phase flows contain millions and sometimes billions of particles. For flows with volumetrically dilute particle loading, the most accurate method of numerically simulating the flow is based on direct numerical simulation (DNS) of the governing equations in which all scales of the flow including the small scales that are responsible for the overwhelming amount of dissipation are resolved. DNS, however, requires high computational cost and cannot be used in engineering design applications where iterations among several design conditions are necessary. Because of high computational cost, numerical simulations of such flows cannot track all these drops. The objective of this work is to quantify the influence of the number of computational drops and grid spacing on the accuracy of predicted flow statistics, and to possibly identify the minimum number, or, if not possible, the optimal number of computational drops that provide minimal error in flow prediction. For this purpose, several Large Eddy Simulation (LES) of a mixing layer with evaporating drops have been performed by using coarse, medium, and fine grid spacings and computational drops, rather than physical drops. To define computational drops, an integer NR is introduced that represents the ratio of the number of existing physical drops to the desired number of computational drops; for example, if NR=8, this means that a computational drop represents 8 physical drops in the flow field. The desired number of computational drops is determined by the available computational resources; the larger NR is, the less computationally intensive is the simulation. A set of first order and second order flow statistics, and of drop statistics are extracted from LES predictions and are compared to results obtained by filtering a DNS database. First order statistics such as Favre averaged stream-wise velocity, Favre averaged vapor mass fraction, and the drop stream-wise velocity, are predicted accurately independent of the number of computational drops and grid spacing. Second order flow statistics depend both on the number of computational drops and on grid spacing. The scalar variance and turbulent vapor flux are predicted accurately by the fine mesh LES only when NR is less than 32, and by the coarse mesh LES reasonably accurately for all NR values. This is attributed to the fact that when the grid spacing is coarsened, the number of drops in a computational cell must not be significantly lower than that in the DNS.

  7. Support for ACS COLL Division Symposium on: Patchy Particles and Surfaces of Engineered Heterogeneity: Synthesis to Dynamic Function

    DTIC Science & Technology

    2010-04-14

    assembly of new materials with magnetic, optical , and photonic properties, self-replicating colloidal structures, and sensors. (a) Papers published in...Nanostructures: New Properties Driving New Synthetic Opportunities” This talk explored optical properties of assemblies of structured colloids. - I...including  experts on  optical  and photonic materials, numerical simulation, multiphase fluid flows, biomaterials,  bacteriology, tribology

  8. MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA

    EPA Science Inventory

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...

  9. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  10. Recovery Act: An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saar, Martin O.; Seyfried, Jr., William E.; Longmire, Ellen K.

    2016-06-24

    A total of 12 publications and 23 abstracts were produced as a result of this study. In particular, the compilation of a thermodynamic database utilizing consistent, current thermodynamic data is a major step toward accurately modeling multi-phase fluid interactions with solids. Existing databases designed for aqueous fluids did not mesh well with existing solid phase databases. Addition of a second liquid phase (CO2) magnifies the inconsistencies between aqueous and solid thermodynamic databases. Overall, the combination of high temperature and pressure lab studies (task 1), using a purpose built apparatus, and solid characterization (task 2), using XRCT and more developed technologies,more » allowed observation of dissolution and precipitation processes under CO2 reservoir conditions. These observations were combined with results from PIV experiments on multi-phase fluids (task 3) in typical flow path geometries. The results of the tasks 1, 2, and 3 were compiled and integrated into numerical models utilizing Lattice-Boltzmann simulations (task 4) to realistically model the physical processes and were ultimately folded into TOUGH2 code for reservoir scale modeling (task 5). Compilation of the thermodynamic database assisted comparisons to PIV experiments (Task 3) and greatly improved Lattice Boltzmann (Task 4) and TOUGH2 simulations (Task 5). PIV (Task 3) and experimental apparatus (Task 1) have identified problem areas in TOUGHREACT code. Additional lab experiments and coding work has been integrated into an improved numerical modeling code.« less

  11. A numerical method for shock driven multiphase flow with evaporating particles

    NASA Astrophysics Data System (ADS)

    Dahal, Jeevan; McFarland, Jacob A.

    2017-09-01

    A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.

  12. Reactive multiphase flow simulation workshop summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanderHeyden, W.B.

    1995-09-01

    A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphasemore » flow with input from workshop participants will be issued separately.« less

  13. A fast, calibrated model for pyroclastic density currents kinematics and hazard

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, Tomaso; Orsucci, Simone; Cornolti, Fulvio

    2016-11-01

    Multiphase flow models represent valuable tools for the study of the complex, non-equilibrium dynamics of pyroclastic density currents. Particle sedimentation, flow stratification and rheological changes, depending on the flow regime, interaction with topographic obstacles, turbulent air entrainment, buoyancy reversal, and other complex features of pyroclastic currents can be simulated in two and three dimensions, by exploiting efficient numerical solvers and the improved computational capability of modern supercomputers. However, numerical simulations of polydisperse gas-particle mixtures are quite computationally expensive, so that their use in hazard assessment studies (where there is the need of evaluating the probability of hazardous actions over hundreds of possible scenarios) is still challenging. To this aim, a simplified integral (box) model can be used, under the appropriate hypotheses, to describe the kinematics of pyroclastic density currents over a flat topography, their scaling properties and their depositional features. In this work, multiphase flow simulations are used to evaluate integral model approximations, to calibrate its free parameters and to assess the influence of the input data on the results. Two-dimensional numerical simulations describe the generation and decoupling of a dense, basal layer (formed by progressive particle sedimentation) from the dilute transport system. In the Boussinesq regime (i.e., for solid mass fractions below about 0.1), the current Froude number (i.e., the ratio between the current inertia and buoyancy) does not strongly depend on initial conditions and it is consistent to that measured in laboratory experiments (i.e., between 1.05 and 1.2). For higher density ratios (solid mass fraction in the range 0.1-0.9) but still in a relatively dilute regime (particle volume fraction lower than 0.01), numerical simulations demonstrate that the box model is still applicable, but the Froude number depends on the reduced gravity. When the box model is opportunely calibrated with the numerical simulation results, the prediction of the flow runout is fairly accurate and the model predicts a rapid, non-linear decay of the flow kinetic energy (or dynamic pressure) with the distance from the source. The capability of PDC to overcome topographic obstacles can thus be analysed in the framework of the energy-conoid approach, in which the predicted kinetic energy of the flow front is compared with the potential energy jump associated with the elevated topography to derive a condition for blocking. Model results show that, although preferable to the energy-cone, the energy-conoid approach still has some serious limitations, mostly associated with the behaviour of the flow head. Implications of these outcomes are discussed in the context of probabilistic hazard assessment studies, in which a calibrated box model can be used as a fast pyroclastic density current emulator for Monte Carlo simulations.

  14. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Safari, Hesameddin; Rahimian, Mohammad Hassan; Krafczyk, Manfred

    2014-09-01

    In the present article, we extend and generalize our previous article [H. Safari, M. H. Rahimian, and M. Krafczyk, Phys. Rev. E 88, 013304 (2013), 10.1103/PhysRevE.88.013304] to include the gradient of the vapor concentration at the liquid-vapor interface as the driving force for vaporization allowing the evaporation from the phase interface to work for arbitrary temperatures. The lattice Boltzmann phase-field multiphase modeling approach with a suitable source term, accounting for the effect of the phase change on the velocity field, is used to solve the two-phase flow field. The modified convective Cahn-Hilliard equation is employed to reconstruct the dynamics of the interface topology. The coupling between the vapor concentration and temperature field at the interface is modeled by the well-known Clausius-Clapeyron correlation. Numerous validation tests including one-dimensional and two-dimensional cases are carried out to demonstrate the consistency of the presented model. Results show that the model is able to predict the flow features around and inside an evaporating droplet quantitatively in quiescent as well as convective environments.

  15. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method.

    PubMed

    Safari, Hesameddin; Rahimian, Mohammad Hassan; Krafczyk, Manfred

    2014-09-01

    In the present article, we extend and generalize our previous article [H. Safari, M. H. Rahimian, and M. Krafczyk, Phys. Rev. E 88, 013304 (2013)] to include the gradient of the vapor concentration at the liquid-vapor interface as the driving force for vaporization allowing the evaporation from the phase interface to work for arbitrary temperatures. The lattice Boltzmann phase-field multiphase modeling approach with a suitable source term, accounting for the effect of the phase change on the velocity field, is used to solve the two-phase flow field. The modified convective Cahn-Hilliard equation is employed to reconstruct the dynamics of the interface topology. The coupling between the vapor concentration and temperature field at the interface is modeled by the well-known Clausius-Clapeyron correlation. Numerous validation tests including one-dimensional and two-dimensional cases are carried out to demonstrate the consistency of the presented model. Results show that the model is able to predict the flow features around and inside an evaporating droplet quantitatively in quiescent as well as convective environments.

  16. Random Walk Particle Tracking For Multiphase Heat Transfer

    NASA Astrophysics Data System (ADS)

    Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine

    2017-11-01

    As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.

  17. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a more thorough understanding of hydrothermal fluid processes. One such attempt will incorporate geometric data of veins in the Bingham porphyry Cu-Mo-Au deposit into our numerical model. The presentation will introduce the numerical model and show examples and first results of the aforementioned applications.

  18. Efficient C1-continuous phase-potential upwind (C1-PPU) schemes for coupled multiphase flow and transport with gravity

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-10-01

    In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.

  19. Verification on spray simulation of a pintle injector for liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye

    2016-02-01

    The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.

  20. Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Gjennestad, Magnus Aa.; Gruber, Andrea; Lervåg, Karl Yngve; Johansen, Øyvind; Ervik, Åsmund; Hammer, Morten; Munkejord, Svend Tollak

    2017-11-01

    We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase, two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are calculated using the Span-Wagner reference equation of state. The governing equations are spatially discretized on a uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO) scheme and the robust first-order centered (FORCE) flux. The solution is integrated in time using a third-order strong-stability-preserving Runge-Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.

  1. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP projectmore » and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.« less

  2. Numerical and Physical Modelling of Bubbly Flow Phenomena - Final Report to the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Prosperetti

    This report describes the main features of the results obtained in the course of this project. A new approach to the systematic development of closure relations for the averaged equations of disperse multiphase flow is outlined. The focus of the project is on spatially non-uniform systems and several aspects in which such systems differ from uniform ones are described. Then, the procedure used in deriving the closure relations is given and some explicit results shown. The report also contains a list of publications supported by this grant and a list of the persons involved in the work.

  3. Prediction of mass transfer coefficients in non-Newtonian fermentation media using first-principles methods.

    PubMed

    Radl, Stefan; Khinast, Johannes G

    2007-08-01

    Bubble flows in non-Newtonian fluids were analyzed using first-principles methods with the aim to compute and predict mass transfer coefficients in such fermentation media. The method we used is a Direct Numerical Simulation (DNS) of the reactive multiphase flow with deformable boundaries and interfaces. With this method, we are able for the first time to calculate mass transfer coefficients in non-Newtonian liquids of different rheologies without any experimental data. In the current article, shear-thinning fluids are considered. However, the results provide the basis for further investigations, such as the study of viscoelastic fluids. (c) 2007 Wiley Periodicals, Inc.

  4. Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nimmagadda, Rajesh; Venkatasubbaiah, K.

    2017-06-01

    The present study investigates the laminar forced convection flow of single walled carbon nanotube (SWCNT), gold (Au), aluminum oxide (Al2O3), silver (Ag) and hybrid (Al2O3 + Ag) nanofluids (HyNF) in a wide rectangular micro-channel at low Reynolds numbers. The heat transfer characteristics of de-ionized (DI) water and SWCNT nanofluid with different nanoparticle volume concentrations have been experimental studied. Furthermore, numerical study has also been carried out to investigate the flow and heat transfer characteristics of DI water, SWCNT, Au, Al2O3, Ag and HyNF at different Reynolds numbers with different nanoparticle volume concentrations and particle diameters. The numerical study consider the effects of both inertial and viscous forces by solving the full Navier-Stokes equations at low Reynolds numbers. A two dimensional conjugate heat transfer multiphase mixture model has been developed and used for numerical study. A significant enhancement in the average Nusselt number is observed both experimentally and numerically for nanofluids. The study presents four optimized combinations of nanofluids (1 vol% SWCNT and 1 vol% Au with d_p = 50 nm), (2 vol% SWCNT and 3 vol% Au with d_p = 70 nm), (3 vol% Al2O3 and 2 vol% Au with d_p = 70 nm) as well as (3 vol% HyNF (2.4% Al2O3 + 0.6% Ag) and 3 vol% Au with d_p = 50 nm) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The conduction phenomenon of the solid region at bottom of the micro-channel is considered in the present investigation. This phenomenon shows that the interface temperature between solid and fluid region increases along the length of the channel. The present results has been validated with the experimental and numerical results available in the literature.

  5. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  6. Large eddy simulation modeling of particle-laden flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  7. Parallelization of Catalytic Packed-Bed Microchannels with Pressure-Drop Microstructures for Gas-Liquid Multiphase Reactions

    NASA Astrophysics Data System (ADS)

    Murakami, Sunao; Ohtaki, Kenichiro; Matsumoto, Sohei; Inoue, Tomoya

    2012-06-01

    High-throughput and stable treatments are required to achieve the practical production of chemicals with microreactors. However, the flow maldistribution to the paralleled microchannels has been a critical problem in achieving the productive use of multichannel microreactors for multiphase flow conditions. In this study, we newly designed and fabricated a glass four-channel catalytic packed-bed microreactor for the scale-up of gas-liquid multiphase chemical reactions. We embedded microstructures generating high pressure losses at the upstream side of each packed bed, and experimentally confirmed the efficacy of the microstructures in decreasing the maldistribution of the gas-liquid flow to the parallel microchannels.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, R.D.

    The results of a research effort to develop a multiphase naturally fractured, lenticular reservoir simulator is presented. The simulator possesses the capability of investigating the effects of non-Darcy flow, Klinkenberg effect, and transient multiphase wellbore storage for wells with finite and infinite conductivity fractures. The simulator has been utilized to simulate actual pressure transient data for gas wells associated with the United States Department of Energy, Western Gas Sands Project, MWX Experiments. The results of these simulations are contained in the report as well as simulation results for hypothetical wells which are producing under multiphase flow conditions. In addition tomore » the reservoir simulation development, and theoretical and field case studies the results of an experimental program to investigate multiphase non-Darcy flow coefficients (inertial resistance coefficients or beta factors as they are sometimes called) are also presented. The experimental data was obtained for non-Darcy flow in porous and fractured media. The results clearly indicate the dependence of the non-Darcy flow coefficient upon liquid saturation. Where appropriate comparisons are made against data available in the open literature. In addition, theoretical development of a correlation to predict non-Darcy flow coefficients as a function of effective gas permeability, liquid saturations, and porosity is presentd. The results presented in this report will provide scientists and engineers tools to investigate well performance data and production trends for wells completed in lenticular, naturally fractured formations producing under non-Darcy, multiphase conditions. 65 refs., 57 figs., 15 tabs.« less

  9. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented.

  10. Water Management In PEM Fuel Cell -“ A Lattice-Boltzmann Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Shiladitya; Cole, James Vernon; Jain, Kunal

    2009-06-01

    In Proton Exchange Membrane Fuel Cells (PEMFCs), water management and the effective transport of water through the gas-diffusion-layer (GDL) are key issues for improved performance at high power density and for durability during freeze-thaw cycles. The diffusion layer is a thin (~150-350{micro}m), porous material typically composed of a web of carbon fibers and particles, and is usually coated with hydrophobic Teflon to remove the excess water through capillary action. In-situ diagnostics of water movement and gas-reactant transport through this thin opaque substrate is challenging. Numerical analyses are typically based on simplified assumptions, such as Darcy's Law and Leverett functions formore » the capillary pressure. The objective of this work is to develop a high fidelity CFD modeling and analysis tool to capture the details of multiphase transport through the porous GDL. The tool can be utilized to evaluate GDL material design concepts and optimize systems based on the interactions between cell design, materials, and operating conditions. The flow modeling is based on the Lattice Boltzmann Method (LBM). LBM is a powerful modeling tool to simulate multiphase flows. Its strength is in its kinetic theory based foundation, which provides a fundamental basis for incorporating intermolecular forces that lead to liquid-gas phase separation and capillary effects without resorting to expensive or ad-hoc interface reconstruction schemes. At the heart of the solution algorithm is a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The solution advances by a streaming and collision type algorithm, mimicking actual molecular physics, which makes it suitable for porous media involving complex boundaries. We developed a numerical scheme to reconstruct various porous GDL microstructures including Teflon loading. Single and multiphase LBM models are implemented to compute permeability. Predicted values are in good agreement with measured data. The present modeling approach resolves the GDL microstructures and captures the influence of fiber orientation on permeability and the influence of Teflon loading on the development of preferential flow paths through the GDL. These observations can potentially guide the development of novel GDL materials designed for efficient removal of water.« less

  11. Numerical modeling of interface displacement in heterogeneously wetting porous media

    NASA Astrophysics Data System (ADS)

    Hiller, T.; Brinkmann, M.; Herminghaus, S.

    2013-12-01

    We use the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the standard SRD method, we present an approach on implementing complex wettability on heterogeneous surfaces. We use 3D SRD to simulate immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. The simulations are designed to resemble experimental measurements of capillary pressure saturation. We show that the correlation length of the wetting patterns influences the temporal evolution of the interface and thus percolation, residual saturation and work dissipated during the fluid displacement. Our numerical results are in qualitatively good agreement with the experimental data. Besides of modeling flow in porous media, our SRD implementation allows us to address various questions of interfacial dynamics, e.g. the formation of capillary bridges between spherical beads or droplets in microfluidic applications to name only a few.

  12. A compressible multiphase framework for simulating supersonic atomization

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark

    2016-11-01

    The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.

  13. New Turbulent Multiphase Flow Facilities for Simulation Benchmarking

    NASA Astrophysics Data System (ADS)

    Teoh, Chee Hau; Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui

    2017-11-01

    The Fluid Transport Lab at Penn State has devoted last few years on developing new experimental facilities to unveil the underlying physics of coupling between solid-gas and gas-liquid multiphase flow in a turbulent environment. In this poster, I will introduce one bubbly flow facility and one dusty flow facility for validating and verifying simulation results. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  14. Statistical representation of multiphase flow

    NASA Astrophysics Data System (ADS)

    Subramaniam

    2000-11-01

    The relationship between two common statistical representations of multiphase flow, namely, the single--point Eulerian statistical representation of two--phase flow (D. A. Drew, Ann. Rev. Fluid Mech. (15), 1983), and the Lagrangian statistical representation of a spray using the dropet distribution function (F. A. Williams, Phys. Fluids 1 (6), 1958) is established for spherical dispersed--phase elements. This relationship is based on recent work which relates the droplet distribution function to single--droplet pdfs starting from a Liouville description of a spray (Subramaniam, Phys. Fluids 10 (12), 2000). The Eulerian representation, which is based on a random--field model of the flow, is shown to contain different statistical information from the Lagrangian representation, which is based on a point--process model. The two descriptions are shown to be simply related for spherical, monodisperse elements in statistically homogeneous two--phase flow, whereas such a simple relationship is precluded by the inclusion of polydispersity and statistical inhomogeneity. The common origin of these two representations is traced to a more fundamental statistical representation of a multiphase flow, whose concepts derive from a theory for dense sprays recently proposed by Edwards (Atomization and Sprays 10 (3--5), 2000). The issue of what constitutes a minimally complete statistical representation of a multiphase flow is resolved.

  15. Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.

    2006-12-01

    Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.

  16. The study of multiphase flow control during odor reproduction

    NASA Astrophysics Data System (ADS)

    Luo, Dehan; Yu, Hao; Fan, Danjun; He, Meiqiu

    2014-04-01

    Odor reproduction, is the use of the chemical composition of the basic components of odor recipe, according to a certain proportion, to control the flow of the various components, which make them sufficiently blended to achieve reproduction. In this paper, reproducing method is to find the corresponding liquid flavor, and then based on chemical flavor recipes, using flowmeters to control the chemical composition of the liquid flavor ratio. In the proportional control, the liquid chemical composition is very likely to be volatile, so that the proportional control is multiphase flow control. Measurement of the flow control will directly affect the odor reproducible results. Using electronic nose to obtain reproducible odor data, and then use pattern recognition algorithm to determine reproducible results. The experimental results can be achieved on the process of odor components multiphase flow proportional control parameter adjustment.

  17. Pairwise Interaction Extended Point-Particle (PIEP) model for multiphase jets and sedimenting particles

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Balachandar, S.

    2017-11-01

    We perform a series of Euler-Lagrange direct numerical simulations (DNS) for multiphase jets and sedimenting particles. The forces the flow exerts on the particles in these two-way coupled simulations are computed using the Basset-Bousinesq-Oseen (BBO) equations. These forces do not explicitly account for particle-particle interactions, even though such pairwise interactions induced by the perturbations from neighboring particles may be important especially when the particle volume fraction is high. Such effects have been largely unaddressed in the literature. Here, we implement the Pairwise Interaction Extended Point-Particle (PIEP) model to simulate the effect of neighboring particle pairs. A simple collision model is also applied to avoid unphysical overlapping of solid spherical particles. The simulation results indicate that the PIEP model provides a more elaborative and complicated movement of the dispersed phase (droplets and particles). Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project N00014-16-1-2617.

  18. Automated contact angle estimation for three-dimensional X-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less

  19. MOFAT: A TWO-DIMENSIONAL FINITE ELEMENT PROGRAM FOR MULTIPHASE FLOW AND MULTICOMPONENT TRANSPORT - PROGRAM DOCUMENTATION AND USER'S GUIDE

    EPA Science Inventory

    This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...

  20. Kinetics-based phase change approach for VOF method applied to boiling flow

    NASA Astrophysics Data System (ADS)

    Cifani, Paolo; Geurts, Bernard; Kuerten, Hans

    2014-11-01

    Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.

  1. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation // SPE Symp. Res. Sim., 1991. DOI: 10.2118/21221-MS.

  2. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less

  3. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE PAGES

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less

  4. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    NASA Astrophysics Data System (ADS)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The proposed diffuse interface immersed boundary method is shown to be discretely mass-preserving while being temporally second-order accurate and exhibits nominal second-order accuracy in space. We examine the efficacy of the proposed approach through extensive numerical experiments involving one or more fluids and solids, that include two-particle sedimentation in homogeneous and stratified environment. The results from the numerical simulations show that the proposed methodology results in reduced spurious force oscillations in case of moving bodies while accurately resolving complex flow phenomena in multiphase flows with moving solids. These studies demonstrate that the proposed diffuse interface immersed boundary method, which could be related to a class of penalisation approaches, is a robust and promising alternative to computationally expensive conformal moving mesh algorithms as well as the class of sharp interface immersed boundary methods for multibody problems in multi-phase flows.

  5. Seeking simplicity for the understanding of multiphase flows

    NASA Astrophysics Data System (ADS)

    Stone, Howard A.

    2017-10-01

    Fluid mechanics is a discipline with rich phenomena, with motions occurring over an enormous range of length scales, and spanning a wide range of laminar and turbulent flows, instabilities, and applications in industry, nature, biology, and medicine. The subfield of complex fluids typically refers to those flows where the complexity is introduced, for example, by the presence of suspended particles, multiple phases, soft boundaries, and electrokinetic effects; several distinct multiphase flows of Newtonian fluids make up the examples in this article. Interfaces play a significant role and modify the flow with feedback that further changes the shapes of the interfaces. I will provide examples of our work highlighting (i) new features of classical instabilities triggered by changes in geometry, (ii) multiphase flows relevant to the design of liquid-infused substrates exhibiting effective slip while retaining the trapped liquid, and (iii) unexpected dynamics in flow at a T-junction. The interplay of experiments and mathematical models and/or simulations is critical to the new understanding developed.

  6. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.

  7. Upscaling Multiphase Fluid Flow in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Matthai, S.; Maghami-Nick, H.; Belayneh, M.; Geiger, S.

    2009-04-01

    Hydrocarbon recovery from fractured porous reservoirs is difficult to predict as it depends on the focusing of the flow and the local balance of viscous, gravitational, and capillary forces. Hecto-metre scale sub-volumes of fractured oil reservoirs contain thousands of fractures with highly variable flow properties, dimensions and orientations. This complexity precludes direct geometric incorporation into field scale multiphase flow models. Macroscopic laws of their integral effects on multiphase flow are required. These can be investigated by DFM (discrete fracture and matrix) numerical simulations based on discrete fracture models representing fractured reservoir analogues. Here we present DFM results indicating that hecto-metre-scale relative permeability, the time to water breakthrough, and the subsequent water cut primarily depend on the fracture-to-rock matrix flux ratio, qf/qm, quantifying the proportion of the cross-sectional flux that occurs through the fractures. Relative permeability during imbibition runs is best approximated by a rate-dependent new model taking into account capillary fracture-matrix transfer. The up-scaled fractional flow function fo(sw) derived from this new kri formulation is convex with a near-infinity slope at the residual water saturation. This implies that the hector-metre scale spatially averaged Buckley-Leverett equation for fractured porous media does not contain a shock, but a long leading edge in the averaged profile of the invading phase. This dispersive behaviour marks the progressively widening saturation front and an early water breakthrough observed in the discrete fracture reservoir analogues. Since fracture porosity φf is usually only a fraction of a percent, a cross-over from krw < kro to krw/kro ≈ qf/qm occurs after the first few percent of recovery, and because qf/qm ranges between 10-1,000, sweep efficiency ignoring the positive influence of counter-current imbibition is extremely low. The accuracy of reservoir performance predictions by the proposed fo(sw) up-scaling methodology depends on how well φf , qf/qm and a new parameter termed fraction of fracture matrix interface area in contact with the invading fluid, XA,if(si) can be constrained under in situ conditions.

  8. Droplet evaporation and combustion in a liquid-gas multiphase system

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Irfan, Muhammad

    2017-11-01

    Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.

  9. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid-vapor for multi-phase flows

    NASA Astrophysics Data System (ADS)

    Nemati, Maedeh; Shateri Najaf Abady, Ali Reza; Toghraie, Davood; Karimipour, Arash

    2018-01-01

    The incorporation of different equations of state into single-component multiphase lattice Boltzmann model is considered in this paper. The original pseudopotential model is first detailed, and several cubic equations of state, the Redlich-Kwong, Redlich-Kwong-Soave, and Peng-Robinson are then incorporated into the lattice Boltzmann model. A comparison of the numerical simulation achievements on the basis of density ratios and spurious currents is used for presentation of the details of phase separation in these non-ideal single-component systems. The paper demonstrates that the scheme for the inter-particle interaction force term as well as the force term incorporation method matters to achieve more accurate and stable results. The velocity shifting method is demonstrated as the force term incorporation method, among many, with accuracy and stability results. Kupershtokh scheme also makes it possible to achieve large density ratio (up to 104) and to reproduce the coexistence curve with high accuracy. Significant reduction of the spurious currents at vapor-liquid interface is another observation. High-density ratio and spurious current reduction resulted from the Redlich-Kwong-Soave and Peng-Robinson EOSs, in higher accordance with the Maxwell construction results.

  10. Rahman Prize Lecture: Lattice Boltzmann simulation of complex states of flowing matter

    NASA Astrophysics Data System (ADS)

    Succi, Sauro

    Over the last three decades, the Lattice Boltzmann (LB) method has gained a prominent role in the numerical simulation of complex flows across an impressively broad range of scales, from fully-developed turbulence in real-life geometries, to multiphase flows in micro-fluidic devices, all the way down to biopolymer translocation in nanopores and lately, even quark-gluon plasmas. After a brief introduction to the main ideas behind the LB method and its historical developments, we shall present a few selected applications to complex flow problems at various scales of motion. Finally, we shall discuss prospects for extreme-scale LB simulations of outstanding problems in the physics of fluids and its interfaces with material sciences and biology, such as the modelling of fluid turbulence, the optimal design of nanoporous gold catalysts and protein folding/aggregation in crowded environments.

  11. Two-phase flows in the formed tornado funnel

    NASA Astrophysics Data System (ADS)

    Sinkevich, O. A.; Bortsova, A. A.

    2017-10-01

    At present, it is obvious that the problem of the tornado is important not only for our planetЮ to determine the conditions for the formation of a tornado, it is required to take into account a number of hydrodynamic and plasma processes [1 - 6]. Along to prediction of a tornado generation conditions [1 - 3] it is necessary to evaluate the characteristics of its quasi-stationary motion in a formed funnel: the mass of the moving moist air involved in the funnel and the size and form of the funnel. For a complete description of the phenomena, it is necessary to involve numerical calculations. We note that even for numerical calculations using powerful computers, the problem is very difficult because of the need to calculate multiphase turbulent flows with free, self-organizing boundaries [1, 6]. However, “strict” numerical calculations, it is impossible to do without the use of many, often mutually exclusive, models. For example, how to choice an adequate model of turbulence (algebraic, k-ε model, etc.) or the use of additional, often not accepted, hypotheses about certain processes used in calculations (mechanisms on the nature of moisture condensation, etc.). Therefore, along with numerical calculations of such flows, modeling problems that allow an exact solution and allow to determine the most important and observed characteristics of a tornado.

  12. TOUGH+ v1.5 Core Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, George J.

    TOUGH+ v1.5 is a numerical code for the simulation of multi-phase, multi-component flow and transport of mass and heat through porous and fractured media, and represents the third update of the code since its first release [Moridis et al., 2008]. TOUGH+ is a successor to the TOUGH2 [Pruess et al., 1991; 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstations, PC, Macintosh). TOUGH+ v1.5 employs dynamic memory allocation, thus minimizing storage requirements. It has amore » completely modular structure, follows the tenets of Object-Oriented Programming (OOP), and involves the advanced features of FORTRAN 95/2003, i.e., modules, derived data types, the use of pointers, lists and trees, data encapsulation, defined operators and assignments, operator extension and overloading, use of generic procedures, and maximum use of the powerful intrinsic vector and matrix processing operations. TOUGH+ v1.5 is the core code for its family of applications, i.e., the part of the code that is common to all its applications. It provides a description of the underlying physics and thermodynamics of non-isothermal flow, of the mathematical and numerical approaches, as well as a detailed explanation of the general (common to all applications) input requirements, options, capabilities and output specifications. The core code cannot run by itself: it needs to be coupled with the code for the specific TOUGH+ application option that describes a particular type of problem. The additional input requirements specific to a particular TOUGH+ application options and related illustrative examples can be found in the corresponding User's Manual.« less

  13. A boundary element method for Stokes flows with interfaces

    NASA Astrophysics Data System (ADS)

    Alinovi, Edoardo; Bottaro, Alessandro

    2018-03-01

    The boundary element method is a widely used and powerful technique to numerically describe multiphase flows with interfaces, satisfying Stokes' approximation. However, low viscosity ratios between immiscible fluids in contact at an interface and large surface tensions may lead to consistency issues as far as mass conservation is concerned. A simple and effective approach is described to ensure mass conservation at all viscosity ratios and capillary numbers within a standard boundary element framework. Benchmark cases are initially considered demonstrating the efficacy of the proposed technique in satisfying mass conservation, comparing with approaches and other solutions present in the literature. The methodology developed is finally applied to the problem of slippage over superhydrophobic surfaces.

  14. Numerical model of total artificial heart hemodynamics and the effect of its size on stress accumulation.

    PubMed

    Marom, Gil; Chiu, Wei-Che; Slepian, Marvin J; Bluestein, Danny

    2014-01-01

    The total artificial heart (TAH) is a bi-ventricular mechanical circulatory support device that replaces the heart in patients with end-stage congestive heart failure. The device acts as blood pump via pneumatic activation of diaphragms altering the volume of the ventricular chambers. Flow in and out of the ventricles is controlled by mechanical heart valves. The aim of this study is to evaluate the flow regime in the TAH and to estimate the thrombogenic potential during systole. Toward that goal, three numerical models of TAHs of differing sizes, that include the deforming diaphragm and the blood flow from the left chamber to the aorta, are introduced. A multiphase model with injection of platelet particles is employed to calculate their trajectories. The shear stress accumulation in the three models are calculated along the platelets trajectories and their probability density functions, which represent the `thrombogenic footprint' of the device are compared. The calculated flow regime successfully captures the mitral regurgitation and the flows that open and close the aortic valve during systole. Physiological velocity magnitudes are found in all three models, with higher velocities and increased stress accumulation predicted for smaller devices.

  15. Pore-scale simulation of CO2-water-rock interactions

    NASA Astrophysics Data System (ADS)

    Deng, H.; Molins, S.; Steefel, C. I.; DePaolo, D. J.

    2017-12-01

    In Geologic Carbon Storage (GCS) systems, the migration of scCO2 versus CO2-acidifed brine ultimately determines the extent of mineral trapping and caprock integrity, i.e. the long-term storage efficiency and security. While continuum scale multiphase reactive transport models are valuable for large scale investigations, they typically (over-)simplify pore-scale dynamics and cannot capture local heterogeneities that may be important. Therefore, pore-scale models are needed in order to provide mechanistic understanding of how fine scale structural variations and heterogeneous processes influence the transport and geochemistry in the context of multiphase flow, and to inform parameterization of continuum scale modeling. In this study, we investigate the interplay of different processes at pore scale (e.g. diffusion, reactions, and multiphase flow) through the coupling of a well-developed multiphase flow simulator with a sophisticated reactive transport code. The objectives are to understand where brine displaced by scCO2 will reside in a rough pore/fracture, and how the CO2-water-rock interactions may affect the redistribution of different phases. In addition, the coupled code will provide a platform for model testing in pore-scale multiphase reactive transport problems.

  16. Material flow data for numerical simulation of powder injection molding

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Holzer, C.

    2017-01-01

    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  17. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.

    PubMed

    Liang, H; Shi, B C; Guo, Z L; Chai, Z H

    2014-05-01

    In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.

  18. Parallel multiphase microflows: fundamental physics, stabilization methods and applications.

    PubMed

    Aota, Arata; Mawatari, Kazuma; Kitamori, Takehiko

    2009-09-07

    Parallel multiphase microflows, which can integrate unit operations in a microchip under continuous flow conditions, are discussed. Fundamental physics, stabilization methods and some applications are shown.

  19. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2013-10-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  20. Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian

    2003-01-01

    The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.

  1. Verification of bubble tracking method and DNS examinations of single- and two-phase turbulent channel flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryggvason, Gretar; Bolotnov, Igor; Fang, Jun

    2017-03-30

    Direct numerical simulation (DNS) has been regarded as a reliable data source for the development and validation of turbulence models along with experiments. The realization of DNS usually involves a very fine mesh that should be able to resolve all relevant turbulence scales down to Kolmogorov scale [1]. As the most computationally expensive approach compared to other CFD techniques, DNS applications used to be limited to flow studies at very low Reynolds numbers. Thanks to the tremendous growth of computing power over the past decades, the simulation capability of DNS has now started overlapping with some of the most challengingmore » engineering problems. One of those examples in nuclear engineering is the turbulent coolant flow inside reactor cores. Coupled with interface tracking methods (ITM), the simulation capability of DNS can be extended to more complicated two-phase flow regimes. Departure from nucleate boiling (DNB) is the limiting critical heat flux phenomena for the majority of accidents that are postulated to occur in pressurized water reactors (PWR) [2]. As one of the major modeling and simulation (M&S) challenges pursued by CASL, the prediction capability is being developed for the onset of DNB utilizing multiphase-CFD (M-CFD) approach. DNS (coupled with ITM) can be employed to provide closure law information for the multiphase flow modeling at CFD scale. In the presented work, research groups at NCSU and UND will focus on applying different ITM to different geometries. Higher void fraction flow analysis at reactor prototypical conditions will be performed, and novel analysis methods will be developed, implemented and verified for the challenging flow conditions.« less

  2. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE PAGES

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  3. The drag forces exerted by lahar flows on a cylindrical pier: case study of post Mount Merapi eruptions

    NASA Astrophysics Data System (ADS)

    Faizien Haza, Zainul

    2018-03-01

    Debris flows of lahar flows occurred in post mount eruption is a phenomenon in which large quantities of water, mud, and gravel flow down a stream at a high velocity. It is a second stage of danger after the first danger of lava flows, pyroclastic, and toxic gases. The debris flow of lahar flows has a high density and also high velocity; therefore it has potential detrimental consequences against homes, bridges, and infrastructures, as well as loss of life along its pathway. The collision event between lahar flows and pier of a bridge is observed. The condition is numerically simulated using commercial software of computational fluid dynamic (CFD). The work is also conducted in order to investigate drag force generated during collision. Rheological data of lahar is observed through laboratory test of lahar model as density and viscosity. These data were used as the input data of the CFD simulation. The numerical model is involving two types of fluid: mud and water, therefore multiphase model is adopted in the current CFD simulation. The problem formulation is referring to the constitutive equations of mass and momentum conservation for incompressible and viscous fluid, which in perspective of two dimension (2D). The simulation models describe the situation of the collision event between lahar flows and pier of a bridge. It provides sequential view images of lahar flow impaction and the propagation trend line of the drag force coefficient values. Lahar flow analysis used non-dimensional parameter of Reynolds number. According to the results of numerical simulations, the drag force coefficients are in range 1.23 to 1.48 those are generated by value of flow velocity in range 11.11 m/s to 16.67 m/s.

  4. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOEpatents

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  5. 9th International Conference on Multiphase Flow (ICMF 2016)

    DTIC Science & Technology

    2016-08-12

    Office of Naval Research Global (ONRG) Final CSP (Collaborative Science Program) Report Administrative Details: Event Name: 9th ...International Conference on Multiphase Flows Event Dates: May 22-27, 2016 Event City and Country: Florence, Italy Grantee (Name and Contact...2043 Date of the Final Report: August 12, 2016 Abstract: This report summarizes the main activities and outcomes of the 9th International

  6. Simulating anomalous transport and multiphase segregation in porous media with the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Matin, Rastin; Hernandez, Anier; Misztal, Marek; Mathiesen, Joachim

    2015-04-01

    Many hydrodynamic phenomena ranging from flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated on computers using the lattice Boltzmann (LB) method. By solving the Lattice Boltzmann Equation on unstructured meshes in three dimensions, we have developed methods to efficiently model the fluid flow in real rock samples. We use this model to study the spatio-temporal statistics of the velocity field inside three-dimensional real geometries and investigate its relation to the, in general, anomalous transport of passive tracers for a wide range of Peclet and Reynolds numbers. We extend this model by free-energy based method, which allows us to simulate binary systems with large-density ratios in a thermodynamically consistent way and track the interface explicitly. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  7. Measurement Of Multiphase Flow Water Fraction And Water-cut

    NASA Astrophysics Data System (ADS)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  8. Multiphase flow of miscible liquids: jets and drops

    NASA Astrophysics Data System (ADS)

    Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.

    2015-05-01

    Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.

  9. Entrainment of solid particles over irregular wavy walls

    NASA Astrophysics Data System (ADS)

    Milici, Barbara

    2017-11-01

    The distribution of inertial particles in turbulent flows is highly nonuniform and is governed by the dynamics of turbulent structures of the underlying carrier flow field which, in turn, is affected by the presence of a loading of dispersed particles. The issue is discussed here focusing on the coupling between near-bed coherent structures and suspended solid particles dynamics, in wall-bounded turbulent multiphase flows, bounded by rough boundaries. The friction Reynolds number of the unladen flow is Reτ=180 and the dispersed phase spans one order of magnitude of particle diameter. The analysis takes into account fluid-particle interaction (two-way coupling) in the frame of the Particle-Source-In-Cell (PSIC) method, using Direct Numerical Simulations (DNS) for the carrier phase coupled with Lagrangian Particle Tracking (LPT) for the dispersed phase. The effect of the wall's roughness is taken into account modelling the elastic rebound of particles onto it, instead of using a virtual rebound model.

  10. DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski

    The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overallmore » model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.« less

  11. Evaluation of Proteus as a Tool for the Rapid Development of Models of Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Farthing, M. W.; Kees, C. E.; Miller, C. T.

    2013-12-01

    Models of modern hydrologic systems can be complex and involve a variety of operators with varying character. The goal is to implement approximations of such models that are both efficient for the developer and computationally efficient, which is a set of naturally competing objectives. Proteus is a Python-based toolbox that supports prototyping of model formulations as well as a wide variety of modern numerical methods and parallel computing. We used Proteus to develop numerical approximations for three models: Richards' equation, a brine flow model derived using the Thermodynamically Constrained Averaging Theory (TCAT), and a multiphase TCAT-based tumor growth model. For Richards' equation, we investigated discontinuous Galerkin solutions with higher order time integration based on the backward difference formulas. The TCAT brine flow model was implemented using Proteus and a variety of numerical methods were compared to hand coded solutions. Finally, an existing tumor growth model was implemented in Proteus to introduce more advanced numerics and allow the code to be run in parallel. From these three example models, Proteus was found to be an attractive open-source option for rapidly developing high quality code for solving existing and evolving computational science models.

  12. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    NASA Astrophysics Data System (ADS)

    Wei, Jiuan

    Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based on SPH method and macroscopic model based on FVM, FEM and FDM, can be applied to even more complicated system. In the mesoscopic model by SPH method, some fundamental mesoscopic phenomena, such as the microstructure evolution, interface morphology represented by high resolution, particle entrapment in solidification can be studied. In the macroscopic model, the heat transfer, fluid flow, species transport can be modeled, and the simulation results provided the velocity, temperature and species boundary condition necessary for the mesoscopic model. This part falls into the region of future work. (Abstract shortened by UMI.)

  13. Evaluating the performance of the two-phase flow solver interFoam

    NASA Astrophysics Data System (ADS)

    Deshpande, Suraj S.; Anumolu, Lakshman; Trujillo, Mario F.

    2012-01-01

    The performance of the open source multiphase flow solver, interFoam, is evaluated in this work. The solver is based on a modified volume of fluid (VoF) approach, which incorporates an interfacial compression flux term to mitigate the effects of numerical smearing of the interface. It forms a part of the C + + libraries and utilities of OpenFOAM and is gaining popularity in the multiphase flow research community. However, to the best of our knowledge, the evaluation of this solver is confined to the validation tests of specific interest to the users of the code and the extent of its applicability to a wide range of multiphase flow situations remains to be explored. In this work, we have performed a thorough investigation of the solver performance using a variety of verification and validation test cases, which include (i) verification tests for pure advection (kinematics), (ii) dynamics in the high Weber number limit and (iii) dynamics of surface tension-dominated flows. With respect to (i), the kinematics tests show that the performance of interFoam is generally comparable with the recent algebraic VoF algorithms; however, it is noticeably worse than the geometric reconstruction schemes. For (ii), the simulations of inertia-dominated flows with large density ratios {\\sim }\\mathscr {O}(10^3) yielded excellent agreement with analytical and experimental results. In regime (iii), where surface tension is important, consistency of pressure-surface tension formulation and accuracy of curvature are important, as established by Francois et al (2006 J. Comput. Phys. 213 141-73). Several verification tests were performed along these lines and the main findings are: (a) the algorithm of interFoam ensures a consistent formulation of pressure and surface tension; (b) the curvatures computed by the solver converge to a value slightly (10%) different from the analytical value and a scope for improvement exists in this respect. To reduce the disruptive effects of spurious currents, we followed the analysis of Galusinski and Vigneaux (2008 J. Comput. Phys. 227 6140-64) and arrived at the following criterion for stable capillary simulations for interFoam: \\Delta t\\leqslant \\max (10\\tau _\\mu , 0.1\\tau _\\rho) where \\tau _\\mu =\\mu \\Delta x/\\sigma ,~ {and}~\\tau _\\rho =\\sqrt {\\rho \\Delta x^3/\\sigma } . Finally, some capillary flows relevant to atomization were simulated, resulting in good agreement with the results from the literature.

  14. Comparing observations and morphodynamic numerical modeling of upper-flow-regime bedforms in fjords and outcrop

    NASA Astrophysics Data System (ADS)

    Hubbard, Stephen; Kostic, Svetlana; Englert, Rebecca; Coutts, Daniel; Covault, Jacob

    2017-04-01

    Recent bathymetric observations of fjord prodeltas in British Columbia, Canada, reveal evidence for multi-phase channel erosion and deposition. These processes are interpreted to be related to the upstream migration of upper-flow-regime bedforms, namely cyclic steps. We integrate data from high-resolution bathymetric surveys and monitoring to inform morphodynamic numerical models of turbidity currents and associated bedforms in the Squamish prodelta. These models are applied to the interpretation of upper-flow-regime bedforms, including cyclic steps, antidunes, and/or transitional bedforms, in Late Cretaceous submarine conduit strata of the Nanaimo Group at Gabriola Island, British Columbia. In the Squamish prodelta, as bedforms migrate, >90% of the deposits are reworked, making morphology- and facies-based recognition challenging. Sedimentary bodies are 5-30 m long, 0.5-2 m thick and <30 m wide. The Nanaimo Group comprises scour fills of similar scale composed of structureless sandstone, with laminated siltstone locally overlying basal erosion surfaces. Backset stratification is locally observed; packages of 2-4 backset beds, each of which are up to 60 cm thick and up to 15 m long (along dip), commonly share composite basal erosion surfaces. Numerous scour fills are recognized over thin sections (<4 m), indicating limited aggradation and preservation of the bedforms. Preliminary morphodynamic numerical modeling indicates that Squamish and Nanaimo bedforms could be transitional upper-flow-regime bedforms between cyclic steps and antidunes. It is likely that cyclic steps and related upper-flow-regime bedforms are common in strata deposited on high gradient submarine slopes. Evidence for updip-migrating cyclic step and related deposits inform a revised interpretation of a high gradient setting dominated by supercritical flow, or alternating supercritical and subcritical flow in the Nanaimo Group. Integrating direct observations, morphodynamic numerical modeling, and outcrop characterization better constrains fundamental processes that operate in deep-water depositional systems; our analyses aims to further deduce the stratigraphy and preservation potential of upper flow-regime bedforms.

  15. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.

    PubMed

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of daughter droplets is significantly different in both branch channels. Also, it is found that the contact angle hysteresis is strengthened with decreasing the viscosity ratio, leading to an earlier droplet breakup and a decrease in the maximum length that the droplet can reach before the breakup. These simulation results manifest that the present multiphase LBM can be a useful substitute to Ba et al. [Phys. Rev. E 88, 043306 (2013)PLEEE81539-375510.1103/PhysRevE.88.043306] for modeling the contact angle hysteresis, and it can be easily implemented with higher computational efficiency.

  16. Investigation of the complex electroviscous effects on electrolyte (single and multiphase) flow in porous medi.

    NASA Astrophysics Data System (ADS)

    Bolet, A. J. S.; Linga, G.; Mathiesen, J.

    2017-12-01

    Surface charge is an important control parameter for wall-bounded flow of electrolyte solution. The electroviscous effect has been studied theoretically in model geometries such as infinite capillaries. However, in more complex geometries a quantification of the electroviscous effect is a non-trival task due to strong non-linarites of the underlying equations. In general, one has to rely on numerical methods. Here we present numerical studies of the full three-dimensional steady state Stokes-Poisson-Nernst-Planck problem in order to model electrolyte transport in artificial porous samples. The simulations are performed using the finite element method. From the simulation, we quantity how the electroviscous effect changes the general flow permeability in complex three-dimensional porous media. The porous media we consider are mostly generated artificially by connecting randomly dispersed cylindrical pores. Furthermore, we present results of electric driven two-phase immiscible flow in two dimensions. The simulations are performed by augmenting the above equations with a phase field model to handle and track the interaction between the two fluids (using parameters corresponding to oil-water interfaces, where oil non-polar). In particular, we consider the electro-osmotic effect on imbibition due to charged walls and electrolyte-solution.

  17. Fluidization of spherocylindrical particles

    NASA Astrophysics Data System (ADS)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  18. Unfitted Two-Phase Flow Simulations in Pore-Geometries with Accurate

    NASA Astrophysics Data System (ADS)

    Heimann, Felix; Engwer, Christian; Ippisch, Olaf; Bastian, Peter

    2013-04-01

    The development of better macro scale models for multi-phase flow in porous media is still impeded by the lack of suitable methods for the simulation of such flow regimes on the pore scale. The highly complicated geometry of natural porous media imposes requirements with regard to stability and computational efficiency which current numerical methods fail to meet. Therefore, current simulation environments are still unable to provide a thorough understanding of porous media in multi-phase regimes and still fail to reproduce well known effects like hysteresis or the more peculiar dynamics of the capillary fringe with satisfying accuracy. Although flow simulations in pore geometries were initially the domain of Lattice-Boltzmann and other particle methods, the development of Galerkin methods for such applications is important as they complement the range of feasible flow and parameter regimes. In the recent past, it has been shown that unfitted Galerkin methods can be applied efficiently to topologically demanding geometries. However, in the context of two-phase flows, the interface of the two immiscible fluids effectively separates the domain in two sub-domains. The exact representation of such setups with multiple independent and time depending geometries exceeds the functionality of common unfitted methods. We present a new approach to pore scale simulations with an unfitted discontinuous Galerkin (UDG) method. Utilizing a recursive sub-triangulation algorithm, we extent the UDG method to setups with multiple independent geometries. This approach allows an accurate representation of the moving contact line and the interface conditions, i.e. the pressure jump across the interface. Example simulations in two and three dimensions illustrate and verify the stability and accuracy of this approach.

  19. A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities

    NASA Astrophysics Data System (ADS)

    Dedè, Luca; Garcke, Harald; Lam, Kei Fong

    2017-07-01

    Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.

  20. Cytoplasmic motion induced by cytoskeleton stretching and its effect on cell mechanics.

    PubMed

    Zhang, T

    2011-09-01

    Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally applied mechanical stimuli. The spatial distribution of the stresses within a cell under externally applied fluid flow forces were also studied.

  1. Stochastic analysis of multiphase flow in porous media: II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.

    1996-08-01

    The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.

  2. Etude d'un modele de Boltzmann sur reseau pour la simulation assistee par ordinateur des fluides a plusieurs phases immiscibles

    NASA Astrophysics Data System (ADS)

    Leclaire, Sebastien

    The computer assisted simulation of the dynamics of fluid flow has been a highly rewarding topic of research for several decades now, in terms of the number of scientific problems that have been solved as a result, both in the academic world and in industry. In the fluid dynamics field, simulating multiphase immiscible fluid flow remains a challenge, because of the complexity of the interactions at the flow phase interfaces. Various numerical methods are available to study these phenomena, and, the lattice Boltzmann method has been shown in recent years to be well adapted to solving this type of complex flow. In this thesis, a lattice Boltzmann model for the simulation of two-phase immiscible flows is studied. The main objective of the thesis is to develop this promising method further, with a view to enhancing its validity. To achieve this objective, the research is divided into five distinct themes. The first two focus on correcting some of the deficiencies of the original model. The third generalizes the model to support the simulation of N-phase immiscible fluid flows. The fourth is aimed at modifying the model itself, to enable the simulation of immiscible fluid flows in which the density of the phases varies. With the lattice Boltzmann class of models studied here, this density variation has been inadequately modeled, and, after 20 years, the issue still has not been resolved. The fifth, which complements this thesis, is connected with the lattice Boltzmann method, in that it generalizes the theory of 2D and 3D isotropic gradients for a high order of spatial precision. These themes have each been the subject of a scientific article, as listed in the appendix to this thesis, and together they constitute a synthesis that explains the links between the articles, as well as their scientific contributions, and satisfy the main objective of this research. Globally, a number of qualitative and quantitative test cases based on the theory of multiphase fluid flows have highlighted issues plaguing the simulation model. These test cases have resulted in various modifications to the model, which have reduced or eliminated some numerical artifacts that were problematic. They also allowed us to validate the extensions that were applied to the original model.

  3. Laboratory and numerical decompression experiments: an insight into the nucleation and growth of bubbles

    NASA Astrophysics Data System (ADS)

    Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.

    2014-12-01

    Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.

  4. Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Dartevelle

    2005-09-05

    The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either amore » spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of thermodynamics and fulfills the necessary requirements for a well-posed initial-value problem. In the next manuscripts, we will further develop specific closures for multiphase RANS, LES, and hybrid-LES.« less

  5. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    NASA Astrophysics Data System (ADS)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  6. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  7. Mixing and reactions in multiphase flow through porous media

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.

    2016-12-01

    The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.

  8. Verification of capillary pressure functions and relative permeability equations for gas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jaewon

    The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO 2 sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.

  9. On the interaction between fluid turbulence and particle loading: numerical simulation of turbidity currents and prediction of deep-sea arenites

    NASA Astrophysics Data System (ADS)

    Doronzo, D. M.; Dufek, J.

    2012-04-01

    Turbidity currents are water-particle flows able to move large distance over the seafloor, and the deep-sea arenitic facies of their deposits often represents an important class of hydrocarbon reservoirs. Coupling flow behavior and the resulting deposits may thus help finding new reservoirs, as well as reconstructing the sediment transport mechanisms from the continental shelf to the abyssal plain. There is a broad literature of turbidity currents, which includes field, theoretical, experimental, and numerical studies on flow dynamics and associated deposits. Generally, the field and theoretical approaches focus on the scale of actual deposits and currents, respectively, whereas experimental and numerical approaches are often restricted to the laboratory scale and relatively low-Reynolds number, respectively. Fully resolved simulations that incorporate complex bathymetry, large-scale flow, multiphase and 3D effects, are computationally expensive and require closure schemes. Here, a 2D numerical model of turbidity current is proposed, which is based on the Euler-Lagrange formulation of multiphase physics, and on the Reynolds-averaged Navier-Stokes closure of turbulence. This strategy has been recently used in volcanology to simulate the gas-particle flow of pyroclastic density currents, in order to predict their deposits. The incompressible conservation equations of mass and momentum are solved for the water, and the equation of particle motion is solved for the sediment, which for this example, has an initial concentration of 1 % of 0.5 mm sand particles. The equations are solved numerically with the finite-volume method of Ansys Fluent software, and particle and fluid motion are two-way coupled during calculation, which means that the particles are tracked on the basis of water solution, then are allowed to affect the liquid turbulence through a momentum exchange. The Reynolds (turbulent) stresses, which dominate over the viscous ones in the turbidity current, are calculated with a two-equation model (RNG k-ɛ) solving for the turbulent kinetic energy and the turbulent dissipation rate. The simulated seafloor is represented by a ramp 8 km long and 3° steep, over which the particles rebound inelastically, in order to capture the bed-load of the current. Although the sediment is mainly transported as suspended-load (this makes the flow "turbid"), the ground-hugging processes play a fundamental role in the emplacement of deposits, as well as in the flow behavior. A highly refined grid of 0.2 m at the base is thus used to solve for these processes. After 6750 s of flow time, sedimentation rates of 4 and 0.5 kg/m2 s are calculated over the seafloor in proximal (1 km) and medial (4 km) regions, respectively. These values are converted to deposit thickness, resulting in arenitic turbidite sequences of 14.5 and 1.8 m, respectively. Turbulence intensities of 54 and 66 %, respectively in the same areas, indicate the water is further made turbulent by the sediment (water-sand interaction), so the sand moves in suspension toward the deep-sea, where is able to deposit. Richardson numbers of 0.79 and 0.58, respectively, show how the water entrainment in the current increases with distance.

  10. CFD-PBM coupled simulation of a nanobubble generator with honeycomb structure

    NASA Astrophysics Data System (ADS)

    Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H.

    2018-06-01

    In recent years, nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology. The nitrogen nanobubble water circulation can be used to slow the progressions of oxidation and spoilage for the seafood long- term storage. From previous studies, a kind of honeycomb structure for high-efficiency nanobubble generation has been proposed. In this paper, the bubbly flow in the honeycomb structure was studied. The numerical simulations of honeycomb structure were performed by using a computational fluid dynamics–population balance model (CFD-PBM) coupled model. The numerical model was based on the Eulerian multiphase model and the population balance model (PBM) was used to calculate the gas bubble size distribution. The bubble coalescence and breakage were included. Considering the effect of bubble diameter on the fluid flow, the phase interactions were coupled with the PBM. The bubble size distributions in the honeycomb structure under different work conditions were predicted. The experimental results were compared with the simulation predictions.

  11. Pumping Characteristics of a Helical Screw Agitator with a Draught Tube

    NASA Astrophysics Data System (ADS)

    Hwang, Jung-Hoon; Kim, Youn-Jea

    In the use of helical type agitator, the mixing process is usually restricted to the laminar flow regime. Common examples of laminar mixing are found where the fluid has a very high viscosity, i.e., pseudoplastic fluids. It can be indicated that a helical type agitator is sufficiently suited to the creeping flow mixing. The pumping characteristic of a Helical Screw Agitator with a draught tube (HSA) is required to evaluate its capacity for the optimal configuration of the mixing chamber. It could be executed by changing some parameters such as the number of helix, the angular velocity and the rotating direction and so on. In this study, the numerical simulation was carried out with the Eulerian multiphase mixture model and the moving mesh approximation. Some of the optimum design parameters have been developed with the aid of numerical data from the Computational Fluid Dynamics (CFD) analysis. Using the commercial code, Fluent, the pumping characteristics in the HSA are investigated from the rheological properties, and the results are graphically depicted.

  12. Study optimizes gas lift in Gulf of Suez field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Waly, A.A.; Darwish, T.A.; Osman Salama, A.

    1996-06-24

    A study using PVT data combined with fluid and multiphase flow correlations optimized gas lift in the Ramadan field, Nubia C, oil wells, in the Gulf of Suez. Selection of appropriate correlations followed by multiphase flow calculations at various points of injection (POI) were the first steps in the study. After determining the POI for each well from actual pressure and temperature surveys, the study constructed lift gas performance curves for each well. Actual and optimum operating conditions were compared to determine the optimal gas lift. The study indicated a net 2,115 bo/d could be gained from implementing its recommendations.more » The actual net oil gained as a result of this optimization and injected gas reallocation was 2,024 bo/d. The paper discusses the Ramadan field, fluid properties, multiphase flow, production optimization, and results.« less

  13. Groundwater-Quality Impacts from Natural-Gas Wellbore Leakage: Numerical Sensitivity Analysis of Hydrogeologic, Geostatistical, and Source-Term Parameterization at Varying Depths

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; McCray, J. E.; Singha, K.

    2016-12-01

    The development of directional drilling and stimulation of reservoirs by hydraulic fracturing has transformed the energy landscape in the U.S. by making recovery of hydrocarbons from shale formations not only possible but economically viable. Activities associated with hydraulic fracturing present a set of water-quality challenges, including the potential for impaired groundwater quality. In this project, we use a three-dimensional, multiphase, multicomponent numerical model to investigate hydrogeologic conditions that could lead to groundwater contamination from natural gas wellbore leakage. This work explores the fate of methane that enters a well annulus, possibly from an intermediate formation or from the production zone via a flawed cement seal, and leaves the annulus at one of two depths: at the elevation of groundwater or below a freshwater aquifer. The latter leakage scenario is largely ignored in the current scientific literature, where focus has been on leakage directly into freshwater aquifers, despite modern regulations requiring steel casings and cement sheaths at these depths. We perform a three-stage sensitivity analysis, examining (1) hydrogeologic parameters of media surrounding a methane leakage source zone, (2) geostatistical variations in intrinsic permeability, and (3) methane source zone pressurization. Results indicate that in all cases methane reaches groundwater within the first year of leakage. To our knowledge, this is the first study to consider natural gas wellbore leakage in the context of multiphase flow through heterogeneous permeable media; advantages of multiphase modeling include more realistic analysis of methane vapor-phase relative permeability as compared to single-phase models. These results can be used to inform assessment of aquifer vulnerability to hydrocarbon wellbore leakage at varying depths.

  14. Numerical Simulation on Hydrodynamics and Combustion in a Circulating Fluidized Bed under O2/CO2 and Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.

    Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.

  15. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  16. Incorporating Water Boiling in the Numerical Modelling of Thermal Remediation by Electrical Resistance Heating

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2017-12-01

    Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders these results applicable to a wide range of thermal and gas-based remediation techniques. 1. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 2. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.

  17. Numerical and experimental evidence of the inter-blade cavitation vortex development at deep part load operation of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2016-11-01

    Francis turbines are subject to various types of the cavitation flow depending on the operating conditions. In order to compensate for the stochastic nature of renewable energy sources, it is more and more required to extend the operating range of the generating units, from deep part load to full load conditions. In the deep part load condition, the formation of cavitation vortices in the turbine blade to blade channels called inter-blade cavitation vortex is often observed. The understanding of the dynamic characteristics of these inter-blade vortices and their formation mechanisms is of key importance in an effort of developing reliable flow simulation tools. This paper reports the numerical and experimental investigations carried out in order to establish the vortex characteristics, especially the inception and the development of the vortex structure. The unsteady RANS simulation for the multiphase flow is performed with the SST- SAS turbulence model by using the commercial flow solver ANSYS CFX. The simulation results in terms of the vortex structure and the cavitation volume are evaluated by comparing them to the flow visualizations of the blade channel acquired through a specially instrumented guide vane as well as from the downstream of the runner across the draft tube cone. The inter-blade cavitation vortex is successfully captured by the simulation and both numerical and experimental results evidence that the inter-blade vortices are attached to the runner hub.

  18. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  19. Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian J.; Skor, Mark

    2003-01-01

    Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall'Anesey, Emiliano

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated usingmore » two unbalanced multiphase distribution feeders with both wye and delta connections.« less

  1. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    DOE PAGES

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less

  2. Two-Phase Flow and Compaction Within and Outside a Sphere under Pure Shear

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, S.

    2017-12-01

    This work presents a framework for building analytical solutions for coupled flow in two interacting multiphase domains. The coupled system consists of a multiphase sphere embedded in a multiphase substrate. Each of these domains consist of an interconnected load bearing matrix phase and an inviscid interstitial fluid phase. This work outlines techniques for building analytical solutions for velocity, pressure, and compaction within each domain, subject to boundary conditions of continuity of matrix velocity and normal traction at the interface between the two domains. The solutions indicate that the flow is strongly dependent on the ratio of shear viscosities between the matrix phase in the sphere and the matrix phase in the substrate. When deformed under a pure shear deformation, the magnitude of flow within the sphere rapidly decreases with an increase in this ratio until it reaches a value of 40, after which, the velocity within the sphere becomes relatively insensitive to the increase in the viscosity contrast.

  3. Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2016-11-01

    Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.

  4. Advances in Multiphase Flow and Transport in the Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni

    Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.

  5. Advances in Multiphase Flow and Transport in the Subsurface Environment

    DOE PAGES

    Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni; ...

    2018-03-04

    Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.

  6. Smoothed Particle Hydrodynamics and its applications for multiphase flow and reactive transport in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Trask, Nathaniel; Pan, K.

    2016-03-11

    Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and Advection-Diffusion-Reaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-scale multiphase flows and reactive transport in porous and fractured media.

  7. Application of a new multiphase multicomponent volcanic conduit model with magma degassing and crystallization to Stromboli volcano.

    NASA Astrophysics Data System (ADS)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia

    2014-05-01

    Volcanoes exhibit a wide range of eruption styles, from relatively slow effusive eruptions, generating lava flows and lava domes, to explosive eruptions, in which very large volumes of fragmented magma and volcanic gas are ejected high into the atmosphere. During an eruption, much information regarding the magma ascent dynamics can be gathered: melt and exsolved gas composition, crystal content, mass flow rate and ballistic velocities, to name just a few. Due to the lack of direct observations of the conduit itself, mathematical models for magma ascent provide invaluable tools for a better comprehension of the system. The complexity of the multiphase multicomponent gas-magma-solid system is reflected in the corresponding mathematical model; a set of non-linear hyperbolic partial differential and constitutive equations, which describe the physical system, has to be formulated and solved. The standard approach to derive governing equations for two-phase flow is based on averaging procedures, which leads to a system of governing equations in the form of mass, momentum and energy balance laws for each phase coupled with algebraic and differential source terms which represent phase interactions. For this work, we used the model presented by de' Michieli Vitturi et al. (EGU General Assembly Conference Abstracts, 2013), where a different approach based on the theory of thermodynamically compatible systems has been adopted to write the governing multiphase equations for two-phase compressible flow (with two velocities and two pressures) in the form of a conservative hyperbolic system of partial differential equations, coupled with non-differential source terms. Here, in order to better describe the multicomponent nature of the system, we extended the model adding several transport equations to the system for different crystal components and different gas species, and implementing appropriate equations of state. The constitutive equations of the model are chosen to reproduce both effusive and explosive eruptive activities at Stromboli volcano. Three different crystal components (olivine, pyroxene and feldspar) and two different gas species (water and carbon dioxide) are taken into account. The equilibrium profiles of crystallization as function of pressure, temperature and water content are modeled using the numerical codes AlphaMELTS and DAKOTA. The equilibrium of dissolved gas content, instead, is obtained using a non-linear fitting of data computed using VolatileCALC. With these data, we simulate numerically the lava effusion that occurred at Stromboli between 27 February and 2 April 2007, and find good agreement with the observed data (vesicularity, exsolved gas composition, crystal content and mass flow rate) at the vent. We find that the model is highly sensitive to input magma temperature, going from effusive to explosive eruption with temperature changes by just 20 °C. We thoroughly investigated through a sensitivity analysis the control of the temperature of magma chamber and of the radius of the conduit on the mass flow rate, obtaining also a set of admissible temperatures and conduit radii that produce results in agreement with the real observations.

  8. An application of miniscale experiments on Earth to refine microgravity analysis of adiabatic multiphase flow in space

    NASA Technical Reports Server (NTRS)

    Rothe, Paul H.; Martin, Christine; Downing, Julie

    1994-01-01

    Adiabatic two-phase flow is of interest to the design of multiphase fluid and thermal management systems for spacecraft. This paper presents original data and unifies existing data for capillary tubes as a step toward assessing existing multiphase flow analysis and engineering software. Comparisons of theory with these data once again confirm the broad accuracy of the theory. Due to the simplicity and low cost of the capillary tube experiments, which were performed on earth, we were able to closely examine for the first time a flow situation that had not previously been examined appreciably by aircraft tests. This is the situation of a slug flow at high quality, near transition to annular flow. Our comparison of software calculations with these data revealed overprediction of pipeline pressure drop by up to a factor of three. In turn, this finding motivated a reexamination of the existing theory, and then development of a new analytical and is in far better agreement with the data. This sequence of discovery illustrates the role of inexpensive miniscale modeling on earth to anticipate microgravity behavior in space and to complete and help define needs for aircraft tests.

  9. Numerical investigation of the effects of channel geometry on platelet activation and blood damage.

    PubMed

    Wu, Jingshu; Yun, B Min; Fallon, Anna M; Hanson, Stephen R; Aidun, Cyrus K; Yoganathan, Ajit P

    2011-02-01

    Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.

  10. Pore-scale study of multiphase reactive transport in fibrous electrodes of vanadium redox flow batteries

    DOE PAGES

    Chen, Li; He, YaLing; Tao, Wen -Quan; ...

    2017-07-21

    The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less

  11. A partially coupled, fraction-by-fraction modelling approach to the subsurface migration of gasoline spills

    NASA Astrophysics Data System (ADS)

    Fagerlund, F.; Niemi, A.

    2007-01-01

    The subsurface spreading behaviour of gasoline, as well as several other common soil- and groundwater pollutants (e.g. diesel, creosote), is complicated by the fact that it is a mixture of hundreds of different constituents, behaving differently with respect to e.g. dissolution, volatilisation, adsorption and biodegradation. Especially for scenarios where the non-aqueous phase liquid (NAPL) phase is highly mobile, such as for sudden spills in connection with accidents, it is necessary to simultaneously analyse the migration of the NAPL and its individual components in order to assess risks and environmental impacts. Although a few fully coupled, multi-phase, multi-constituent models exist, such models are highly complex and may be time consuming to use. A new, somewhat simplified methodology for modelling the subsurface migration of gasoline while taking its multi-constituent nature into account is therefore introduced here. Constituents with similar properties are grouped together into eight fractions. The migration of each fraction in the aqueous and gaseous phases as well as adsorption is modelled separately using a single-constituent multi-phase flow model, while the movement of the free-phase gasoline is essentially the same for all fractions. The modelling is done stepwise to allow updating of the free-phase gasoline composition at certain time intervals. The output is the concentration of the eight different fractions in the aqueous, gaseous, free gasoline and solid phases with time. The approach is evaluated by comparing it to a fully coupled multi-phase, multi-constituent numerical simulator in the modelling of a typical accident-type spill scenario, based on a tanker accident in northern Sweden. Here the PCFF method produces results similar to those of the more sophisticated, fully coupled model. The benefit of the method is that it is easy to use and can be applied to any single-constituent multi-phase numerical simulator, which in turn may have different strengths in incorporating various processes. The results demonstrate that the different fractions have significantly different migration behaviours and although the methodology involves some simplifications, it is a considerable improvement compared to modelling the gasoline constituents completely individually or as one single mixture.

  12. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    PubMed Central

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jung-Wook; Rutqvist, Jonny; Ryu, Dongwoo

    The present study is aimed at numerically examining the thermal-hydrological-mechanical (THM) processes within the rock mass surrounding a cavern used for thermal energy storage (TES). We considered a cylindrical rock cavern with a height of 50 m and a radius of 10 m storing thermal energy of 350ºC as a conceptual TES model and simulated its operation for 30 years using THM coupled numerical modeling. At first, the insulator performance was not considered for the purpose of investigating the possible coupled THM behavior of the surrounding rock mass; then, the effects of an insulator were examined for different insulator thicknesses.more » The key concerns were focused on the hydro-thermal multiphase flow and heat transport in the rock mass around the thermal storage cavern, the effect of evaporation of rock mass, thermal impact on near the ground surface and the mechanical behavior of the surrounding rock mass. It is shown that the rock temperature around the cavern rapidly increased in the early stage and, consequently, evaporation of groundwater occurred, raising the fluid pressure. However, evaporation and multiphase flow did not have a significant effect on the heat transfer and mechanical behavior in spite of the high-temperature (350ºC) heat source. The simulations showed that large-scale heat flow around a cavern was expected to be conductiondominated for a reasonable value of rock mass permeability. Thermal expansion as a result of the heating of the rock mass from the storage cavern led to a ground surface uplift on the order of a few centimeters and to the development of tensile stress above the storage cavern, increasing the potentials for shear and tensile failures after a few years of the operation. Finally, the analysis showed that high tangential stress in proximity of the storage cavern can some shear failure and local damage, although large rock wall failure could likely be controlled with appropriate insulators and reinforcement.« less

  14. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias

    2013-09-01

    Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow onmore » rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.« less

  15. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}}< T< 2× {10}4 {{K}}) fountains. The hot gas at distance d> 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  16. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influencedmore » by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.« less

  17. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  18. NMR studies of multiphase flows II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  19. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    NASA Astrophysics Data System (ADS)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. KINEMATIC MODELING OF MULTIPHASE SOLUTE TRANSPORT IN THE VADOSE ZONE

    EPA Science Inventory

    The goal of this research was the development of a computationally efficient simulation model for multiphase flow of organic hazardous waste constituents in the shallow soil environment. Such a model is appropriate for investigation of fate and transport of organic chemicals intr...

  1. MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER

    EPA Science Inventory

    Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...

  2. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  3. Numerical and experimental approaches to simulate soil clogging in porous media

    NASA Astrophysics Data System (ADS)

    Kanarska, Yuliya; LLNL Team

    2012-11-01

    Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. The Department of Homeland Security Science and Technology Directorate provided funding for this research.

  4. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    NASA Technical Reports Server (NTRS)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  5. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    PubMed

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  6. Pore scale Assessment of Heat and Mass transfer in Porous Medium Using Phase Field Method with Application to Soil Borehole Thermal Storage (SBTES) Systems

    NASA Astrophysics Data System (ADS)

    Moradi, A.

    2015-12-01

    To properly model soil thermal performance in unsaturated porous media, for applications such as SBTES systems, knowledge of both soil hydraulic and thermal properties and how they change in space and time is needed. Knowledge obtained from pore scale to macroscopic scale studies can help us to better understand these systems and contribute to the state of knowledge which can then be translated to engineering applications in the field (i.e. implementation of SBTES systems at the field scale). One important thermal property that varies with soil water content, effective thermal conductivity, is oftentimes included in numerical models through the use of empirical relationships and simplified mathematical formulations developed based on experimental data obtained at either small laboratory or field scales. These models assume that there is local thermodynamic equilibrium between the air and water phases for a representative elementary volume. However, this assumption may not always be valid at the pore scale, thus questioning the validity of current modeling approaches. The purpose of this work is to evaluate the validity of the local thermodynamic equilibrium assumption as related to the effective thermal conductivity at pore scale. A numerical model based on the coupled Cahn-Hilliard and heat transfer equation was developed to solve for liquid flow and heat transfer through variably saturated porous media. In this model, the evolution of phases and the interfaces between phases are related to a functional form of the total free energy of the system. A unique solution for the system is obtained by solving the Navier-Stokes equation through free energy minimization. Preliminary results demonstrate that there is a correlation between soil temperature / degree of saturation and equivalent thermal conductivity / heat flux. Results also confirm the correlation between pressure differential magnitude and equilibrium time for multiphase flow to reach steady state conditions. Based on these results, the equivalent time for steady-state heat transfer is much larger than the equivalent time for steady-state multiphase flow for a given pressure differential. Moreover, the wetting phase flow and consequently heat transfer appear to be sensitive to contact angle and porosity of the domain.

  7. Micro-positron emission tomography for measuring sub-core scale single and multiphase transport parameters in porous media

    NASA Astrophysics Data System (ADS)

    Zahasky, Christopher; Benson, Sally M.

    2018-05-01

    Accurate descriptions of heterogeneity in porous media are important for understanding and modeling single phase (e.g. contaminant transport, saltwater intrusion) and multiphase (e.g. geologic carbon storage, enhanced oil recovery) transport problems. Application of medical imaging to experimentally quantify these processes has led to significant progress in material characterization and understanding fluid transport behavior at laboratory scales. While widely utilized in cancer diagnosis and management, cardiology, and neurology, positron emission tomography (PET) has had relatively limited applications in earth science. This study utilizes a small-bore micro-PET scanner to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in two heterogeneous Berea sandstone cores. The cores are discretized into axial-parallel streamtubes, and using the reconstructed micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core tracer flux and pore water velocity. Using the flux and velocity measurements, it is possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Second spatial moment analysis enables measurement of sub-core solute dispersion during both single phase and multiphase experiments. A numerical simulation model is developed to verify the assumptions of the streamtube dimension reduction technique. A variation of the reactor ratio is presented as a diagnostic metric to efficiently determine the validity of the streamtube approximation in core and column-scale experiments. This study introduces a new method to quantify sub-core permeability, relative permeability, and dispersion. These experimental and analytical methods provide a foundation for future work on experimental measurements of differences in transport behavior across scales.

  8. The Classification Accuracy of the Minnesota Multiphasic Personality Inventory--Adolescent: Effects of Modifying the Normative Sample

    ERIC Educational Resources Information Center

    Hand, Cynthia G.; Archer, Robert P.; Handel, Richard W.; Forbey, Johnathan D.

    2007-01-01

    Numerous studies have reported that the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) produces a high frequency of within-normal-limits basic scale profiles for adolescents with significant clinical pathology (e.g., Archer, 2005). The current study builds on the observation that the MMPI-A normative sample included participants…

  9. Lattice Boltzmann Modeling of Complex Flows for Engineering Applications

    NASA Astrophysics Data System (ADS)

    Montessori, Andrea; Falcucci, Giacomo

    2018-01-01

    Nature continuously presents a huge number of complex and multiscale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since the very first years of the third millennium, the Lattice Boltzmann method (LB) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LB, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. In this book, the authors present the most recent advances of the application of the LB to complex flow phenomena of scientific and technical interest with focus on the multiscale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

  10. Aspects of wellbore heat transfer during two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, A.R.; Kabir, C.S.

    1994-08-01

    Wellbore fluid temperature is governed by the rate of heat loss from the wellbore to the surrounding formation, which in turn is a function of depth and production/injection time. The authors present an approach to estimate wellbore fluid temperature during steady-state two-phase flow. The method incorporates a new solution of the thermal diffusivity equation and the effect of both conductive and convective heat transport for the wellbore/formation system. For the multiphase flow in the wellbore, the Hasan-Kabir model has been adapted, although other mechanistic models may be used. A field example is used to illustrate the fluid temperature calculation proceduremore » and shows the importance of accounting for convection in the tubing/casing annulus. A sensitivity study shows that significant differences exist between the predicted wellhead temperature and the formation surface temperature and that the fluid temperature gradient is nonlinear. This study further shows that increased free gas lowers the wellhead temperature as a result of the Joule-Thompson effect. In such cases, the expression for fluid temperature developed earlier for single-phase flow should not be applied when multiphase flow is encountered. An appropriate expression is presented in this work for wellbores producing multiphase fluids.« less

  11. A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU-GPU systems

    NASA Astrophysics Data System (ADS)

    McClure, J. E.; Prins, J. F.; Miller, C. T.

    2014-07-01

    Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.

  12. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    DTIC Science & Technology

    2013-08-13

    5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0042 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau and Michael P. Kinzel 5d. PROJECT...REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT U 18. NUMBER OF PAGES 29 19a. NAME OF RESPONSIBLE PERSON Jules W. Lindau...Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows Michael P. Kinzel Jules W. Lindau Penn State University Applied Research

  13. Ultrasonic sensing for noninvasive characterization of oil-water-gas flow in a pipe

    NASA Astrophysics Data System (ADS)

    Chillara, Vamshi Krishna; Sturtevant, Blake T.; Pantea, Cristian; Sinha, Dipen N.

    2017-02-01

    A technique for noninvasive ultrasonic characterization of multiphase crude oil-water-gas flow is discussed. The proposed method relies on determining the sound speed in the mixture. First, important issues associated with making real-time noninvasive measurements are discussed. Then, signal processing approach adopted to determine the sound speed in the multiphase mixture is presented. Finally, results from controlled experiments on crude oil-water mixture in both the presence and absence of gas are presented.

  14. Transport Phenomena During Equiaxed Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  15. Resolved-particle simulation by the Physalis method: Enhancements and new capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierakowski, Adam J., E-mail: sierakowski@jhu.edu; Prosperetti, Andrea; Faculty of Science and Technology and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede

    2016-03-15

    We present enhancements and new capabilities of the Physalis method for simulating disperse multiphase flows using particle-resolved simulation. The current work enhances the previous method by incorporating a new type of pressure-Poisson solver that couples with a new Physalis particle pressure boundary condition scheme and a new particle interior treatment to significantly improve overall numerical efficiency. Further, we implement a more efficient method of calculating the Physalis scalar products and incorporate short-range particle interaction models. We provide validation and benchmarking for the Physalis method against experiments of a sedimenting particle and of normal wall collisions. We conclude with an illustrativemore » simulation of 2048 particles sedimenting in a duct. In the appendix, we present a complete and self-consistent description of the analytical development and numerical methods.« less

  16. Multiphase Modeling of Secondary Atomization in a Shock Environment

    NASA Astrophysics Data System (ADS)

    St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan

    2017-06-01

    Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.

  17. Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity

    NASA Astrophysics Data System (ADS)

    Hamon, F. P.; Mallison, B.; Tchelepi, H.

    2016-12-01

    In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.

  18. Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)

    NASA Astrophysics Data System (ADS)

    Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.

    2013-12-01

    We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG-NMR experiments. We then use our preferred multi-phase model to directly calculate flow in pore space images of two different sandstones and observe excellent agreement with experimental relative permeabilities. Also we calculate cluster size distributions in good agreement with experimental studies. Our analysis shows that the simulations are able to predict both multi-phase flow and transport properties directly on large 3D pore space images of real rocks. Pore space images, left and velocity distributions, right (Yang and Boek, 2013)

  19. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Wang, Y.; Shu, C.

    2017-12-01

    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  20. A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media, 2. Porous medium simulation examples

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.

    1994-06-01

    This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.

  1. Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Guobin; Jiao, Kui

    2018-07-01

    The 3D (three-dimensional) multi-phase CFD (computational fluid dynamics) model is widely utilized in optimizing water and thermal management of PEM (proton exchange membrane) fuel cell. However, a satisfactory 3D multi-phase CFD model which is able to simulate the detailed gas and liquid two-phase flow in channels and reflect its effect on performance precisely is still not developed due to the coupling difficulties and computation amount. Meanwhile, the agglomerate model of CL (catalyst layer) should also be added in 3D CFD model so as to better reflect the concentration loss and optimize CL structure in macroscopic scale. Besides, the effect of thermal management is perhaps underestimated in current 3D multi-phase CFD simulations due to the lack of coolant channel in computation domain and constant temperature boundary condition. Therefore, the 3D CFD simulations in cell and stack levels with convection boundary condition are suggested to simulate the water and thermal management more accurately. Nevertheless, with the rapid development of PEM fuel cell, current 3D CFD simulations are far from practical demand, especially at high current density and low to zero humidity and for the novel designs developed recently, such as: metal foam flow field, 3D fine mesh flow field, anode circulation etc.

  2. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  3. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  4. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  5. Quantifying uncertainty and computational complexity for pore-scale simulations

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yuan, Z.; Wang, P.; Yang, X.; Zhenyan, L.

    2016-12-01

    Pore-scale simulation is an essential tool to understand the complex physical process in many environmental problems, from multi-phase flow in the subsurface to fuel cells. However, in practice, factors such as sample heterogeneity, data sparsity and in general, our insufficient knowledge of the underlying process, render many simulation parameters and hence the prediction results uncertain. Meanwhile, most pore-scale simulations (in particular, direct numerical simulation) incur high computational cost due to finely-resolved spatio-temporal scales, which further limits our data/samples collection. To address those challenges, we propose a novel framework based on the general polynomial chaos (gPC) and build a surrogate model representing the essential features of the underlying system. To be specific, we apply the novel framework to analyze the uncertainties of the system behavior based on a series of pore-scale numerical experiments, such as flow and reactive transport in 2D heterogeneous porous media and 3D packed beds. Comparing with recent pore-scale uncertainty quantification studies using Monte Carlo techniques, our new framework requires fewer number of realizations and hence considerably reduce the overall computational cost, while maintaining the desired accuracy.

  6. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    NASA Astrophysics Data System (ADS)

    Xing, F.; Masson, R.; Lopez, S.

    2017-09-01

    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.

  7. Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-03-01

    We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.

  8. Second order upwind Lagrangian particle method for Euler equations

    DOE PAGES

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    2016-06-01

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  9. Second order upwind Lagrangian particle method for Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  10. Multiphase flowmeter successfully measures three-phase flow at extremely high gas-volume fractions -- Gulf of Suez, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.B.; Borling, D.C.; Powers, B.S.

    1998-02-01

    A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less

  11. Fluid displacement during droplet formation at microfluidic flow-focusing junctions.

    PubMed

    Huang, Haishui; He, Xiaoming

    2015-11-07

    Microdroplets and microcapsules have been widely produced using microfluidic flow-focusing junctions for biomedical and chemical applications. However, the multiphase microfluidic flow at the flow-focusing junction has not been well investigated. In this study, the displacement of two (core and shell) aqueous fluids that disperse into droplets altogether in a carrier oil emulsion was investigated both numerically and experimentally. It was found that extensive displacement of the two aqueous fluids within the droplet during its formation could occur as a result of the shear effect of the carrier fluid and the capillary effect of interfacial tension. We further identified that the two mechanisms of fluid displacement can be evaluated by two dimensionless parameters. The quantitative relationship between the degree of fluid displacement and these two dimensionless parameters was determined experimentally. Finally, we demonstrated that the degree of fluid displacement could be controlled to generate hydrogel microparticles of different morphologies using planar or nonplanar flow-focusing junctions. These findings should provide useful guidance to the microfluidic production of microscale droplets or capsules for various biomedical and chemical applications.

  12. Wall-resolved spectral cascade-transport turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  13. New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Pak, Tannaz; Shokri, Nima

    2017-07-04

    Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO 2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.

  14. Wall-resolved spectral cascade-transport turbulence model

    DOE PAGES

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.; ...

    2017-07-08

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  15. Evaluation of the phase properties of hydrating cement composite using simulated nanoindentation technique

    NASA Astrophysics Data System (ADS)

    Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi

    2017-10-01

    Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.

  16. Modelling CO2 flow in naturally fractured geological media using MINC and multiple subregion upscaling procedure

    NASA Astrophysics Data System (ADS)

    Tatomir, Alexandru Bogdan A. C.; Flemisch, Bernd; Class, Holger; Helmig, Rainer; Sauter, Martin

    2017-04-01

    Geological storage of CO2 represents one viable solution to reduce greenhouse gas emission in the atmosphere. Potential leakage of CO2 storage can occur through networks of interconnected fractures. The geometrical complexity of these networks is often very high involving fractures occurring at various scales and having hierarchical structures. Such multiphase flow systems are usually hard to solve with a discrete fracture modelling (DFM) approach. Therefore, continuum fracture models assuming average properties are usually preferred. The multiple interacting continua (MINC) model is an extension of the classic double porosity model (Warren and Root, 1963) which accounts for the non-linear behaviour of the matrix-fracture interactions. For CO2 storage applications the transient representation of the inter-porosity two phase flow plays an important role. This study tests the accuracy and computational efficiency of the MINC method complemented with the multiple sub-region (MSR) upscaling procedure versus the DFM. The two phase flow MINC simulator is implemented in the free-open source numerical toolbox DuMux (www.dumux.org). The MSR (Gong et al., 2009) determines the inter-porosity terms by solving simplified local single-phase flow problems. The DFM is considered as the reference solution. The numerical examples consider a quasi-1D reservoir with a quadratic fracture system , a five-spot radial symmetric reservoir, and a completely random generated fracture system. Keywords: MINC, upscaling, two-phase flow, fractured porous media, discrete fracture model, continuum fracture model

  17. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE PAGES

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...

    2018-01-01

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  18. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  19. Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.

    2016-10-01

    The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.

  20. Fingering and fracturing during multiphase flow in porous media (Invited)

    NASA Astrophysics Data System (ADS)

    Juanes, R.

    2013-12-01

    The displacement of one fluid by another in a porous medium give rise to a rich variety of hydrodynamic instabilities. Beyond their scientific value as fascinating models of pattern formation, unstable porous-media flows are essential to understanding many natural and man-made processes, including water infiltration in the vadose zone, carbon dioxide injection and storage in deep saline aquifers, and hydrocarbon recovery. Here, we review the pattern-selection mechanisms of a wide spectrum of porous-media flows that develop hydrodynamic instabilities, discuss their origin and the mathematical models that have been used to describe them. We point out many challenges that remain to be resolved in the context of multiphase flows, and suggest modeling approaches that may offer new quantitative understanding.

  1. Experimental measurement of oil-water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    NASA Astrophysics Data System (ADS)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-09-01

    Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.

  2. DNS study of speed of sound in two-phase flows with phase change

    NASA Astrophysics Data System (ADS)

    Fu, Kai; Deng, Xiaolong

    2017-11-01

    Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.

  3. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Mitchell, Travis; Leonardi, Christopher; Bolster, Diogo

    2017-11-01

    Based on phase-field theory, we introduce a robust lattice-Boltzmann equation for modeling immiscible multiphase flows at large density and viscosity contrasts. Our approach is built by modifying the method proposed by Zu and He [Phys. Rev. E 87, 043301 (2013), 10.1103/PhysRevE.87.043301] in such a way as to improve efficiency and numerical stability. In particular, we employ a different interface-tracking equation based on the so-called conservative phase-field model, a simplified equilibrium distribution that decouples pressure and velocity calculations, and a local scheme based on the hydrodynamic distribution functions for calculation of the stress tensor. In addition to two distribution functions for interface tracking and recovery of hydrodynamic properties, the only nonlocal variable in the proposed model is the phase field. Moreover, within our framework there is no need to use biased or mixed difference stencils for numerical stability and accuracy at high density ratios. This not only simplifies the implementation and efficiency of the model, but also leads to a model that is better suited to parallel implementation on distributed-memory machines. Several benchmark cases are considered to assess the efficacy of the proposed model, including the layered Poiseuille flow in a rectangular channel, Rayleigh-Taylor instability, and the rise of a Taylor bubble in a duct. The numerical results are in good agreement with available numerical and experimental data.

  4. Numerical simulation of magmatic hydrothermal systems

    USGS Publications Warehouse

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  5. Multiphase fluid characterization system

    DOEpatents

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  6. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  7. Modeling of gun barrel surface erosion: Historic perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckingham, A.C.

    1996-08-01

    Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given tomore » cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.« less

  8. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integratedmore » into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.« less

  10. Numerical simulation of liquid-layer breakup on a moving wall due to an impinging jet

    NASA Astrophysics Data System (ADS)

    Yu, Taejong; Moon, Hojoon; You, Donghyun; Kim, Dokyun; Ovsyannikov, Andrey

    2014-11-01

    Jet wiping, which is a hydrodynamic method for controlling the liquid film thickness in coating processes, is constrained by a rather violent film instability called splashing. The instability is characterized by the ejection of droplets from the runback flow and results in an explosion of the film. The splashing phenomenon degrades the final coating quality. In the present research, a volume-of-fluid (VOF)-based method, which is developed at Cascade Technologies, is employed to simulate the air-liquid multiphase flow dynamics. The present numerical method is based on an unstructured-grid unsplit geometric VOF scheme and guarantees strict conservation of mass of two-phase flow, The simulation results are compared with experimental measurements such as the liquid-film thickness before and after the jet wiping, wall pressure and shear stress distributions. The trajectories of liquid droplets due to the fluid motion entrained by the gas-jet operation, are also qualitatively compared with experimental visualization. Physical phenomena observed during the liquid-layer breakup due to an impinging jet is characterized in order to develop ideas for controlling the liquid-layer instability and resulting splash generation and propagation. Supported by the Grant NRF-2012R1A1A2003699, the Brain Korea 21+ program, POSCO, and 2014 CTR Summer Program.

  11. Prediction of down-gradient impacts of DNAPL source depletion using tracer techniques: Laboratory and modeling validation

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Basu, N.; Chen, X.

    2007-05-01

    Interwell application of coupled nonreactive and reactive tracers through aquifer contaminant source zones enables quantitative characterization of aquifer heterogeneity and contaminant architecture. Parameters obtained from tracer tests are presented here in a Lagrangian framework that can be used to predict the dissolution of nonaqueous phase liquid (NAPL) contaminants. Nonreactive tracers are commonly used to provide information about travel time distributions in hydrologic systems. Reactive tracers have more recently been introduced as a tool to quantify the amount of NAPL contaminant present within the tracer swept volume. Our group has extended reactive tracer techniques to also characterize NAPL spatial distribution heterogeneity. By conceptualizing the flow field through an aquifer as a collection of streamtubes, the aquifer hydrodynamic heterogeneities may be characterized by a nonreactive tracer travel time distribution, and NAPL spatial distribution heterogeneity may be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to derive a simple analytical solution for contaminant dissolution. This analytical solution, and the tracer techniques used for its parameterization, were validated both numerically and experimentally. Illustrative applications are presented from numerical simulations using the multiphase flow and transport simulator UTCHEM, and laboratory experiments of surfactant-enhanced NAPL remediation in two-dimensional flow chambers.

  12. Dynamic Data-Driven Reduced-Order Models of Macroscale Quantities for the Prediction of Equilibrium System State for Multiphase Porous Medium Systems

    NASA Astrophysics Data System (ADS)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.

  13. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    USGS Publications Warehouse

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  14. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N.

    2016-01-12

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  15. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N

    2014-02-04

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  16. Grain transport mechanics in shallow flow

    USDA-ARS?s Scientific Manuscript database

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  17. Grain transport mechanics in shallow overland flow

    USDA-ARS?s Scientific Manuscript database

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  18. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    NASA Astrophysics Data System (ADS)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  19. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    NASA Astrophysics Data System (ADS)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  20. Multi-scale Pore Imaging Techniques to Characterise Heterogeneity Effects on Flow in Carbonate Rock

    NASA Astrophysics Data System (ADS)

    Shah, S. M.

    2017-12-01

    Digital rock analysis and pore-scale studies have become an essential tool in the oil and gas industry to understand and predict the petrophysical and multiphase flow properties for the assessment and exploitation of hydrocarbon reserves. Carbonate reservoirs, accounting for majority of the world's hydrocarbon reserves, are well known for their heterogeneity and multiscale pore characteristics. The pore sizes in carbonate rock can vary over orders of magnitudes, the geometry and topology parameters of pores at different scales have a great impact on flow properties. A pore-scale study is often comprised of two key procedures: 3D pore-scale imaging and numerical modelling techniques. The fundamental problem in pore-scale imaging and modelling is how to represent and model the different range of scales encountered in porous media, from the pore-scale to macroscopic petrophysical and multiphase flow properties. However, due to the restrictions of image size vs. resolution, the desired detail is rarely captured at the relevant length scales using any single imaging technique. Similarly, direct simulations of transport properties in heterogeneous rocks with broad pore size distributions are prohibitively expensive computationally. In this study, we present the advances and review the practical limitation of different imaging techniques varying from core-scale (1mm) using Medical Computed Tomography (CT) to pore-scale (10nm - 50µm) using Micro-CT, Confocal Laser Scanning Microscopy (CLSM) and Focussed Ion Beam (FIB) to characterise the complex pore structure in Ketton carbonate rock. The effect of pore structure and connectivity on the flow properties is investigated using the obtained pore scale images of Ketton carbonate using Pore Network and Lattice-Boltzmann simulation methods in comparison with experimental data. We also shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging.

  1. The application of an MPM-MFM method for simulating weapon-target interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, X.; Zou, Q.; Zhang, D. Z.

    2005-01-01

    During the past two decades, Los Alamos National Laboratory (LANL) has developed computational algorithms and software for analysis of multiphase flow suitable for high-speed projectile penetration of metallic and nonmetallic materials, using a material point method (MPM)-multiphase flow method (MFM). Recently, ACTA has teamed with LANL to advance a computational algorithm for simulating complex weapon-target interaction for penetrating and exploding munitions, such as tank rounds and artillery shells, as well as non-exploding kinetic energy penetrators. This paper will outline the mathematical basis for the MPM-MFM method as implemented in LANL's CartaBlanca code. CartaBlanca, written entirely in Java using object-oriented design,more » is used to solve complex problems involving (a) failure and penetration of solids, (b) heat transfer, (c) phase change, (d) chemical reactions, and (e) multiphase flow. We will present its application to the penetration of a steel target by a tungsten cylinder and compare results with time-resolved experimental data published by Anderson, et. al., Int. J. Impact Engng., Vol. 16, No. 1, pp. 1-18, 1995.« less

  2. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.

    PubMed

    Zhao, Chun-Xia

    2013-11-01

    Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Zhijie; Li, Tingwen

    In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber’s performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable simulations andmore » manageable computational effort. Previously developed two filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical) on the adsorber’s hydrodynamics and CO2 capture performance are then examined. The simulation result subsequently is compared and contrasted with another predicted by a one-dimensional three-region process model.« less

  4. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    NASA Astrophysics Data System (ADS)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  5. Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers.

    PubMed

    Fakhari, Abbas; Lee, Taehun

    2013-02-01

    The lattice Boltzmann method for immiscible multiphase flows with large density ratio is extended to high Reynolds number flows using a multiple-relaxation-time (MRT) collision operator, and its stability and accuracy are assessed by simulating the Kelvin-Helmholtz instability. The MRT model is successful at damping high-frequency oscillations in the kinetic energy emerging from traveling waves generated by the inclusion of curvature. Numerical results are shown to be in good agreement with prior studies using adaptive mesh refinement techniques applied to the Navier-Stokes equations. Effects of viscosity and surface tension, as well as density ratio, are investigated in terms of the Reynolds and Weber numbers. It is shown that increasing the Reynolds number results in a more chaotic interface evolution and eventually shattering of the interface, while surface tension is shown to have a stabilizing effect.

  6. Experimental characterization of 3-dimensional gravity-driven fingering in a porous medium

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Juanes, Ruben

    2017-11-01

    When water infiltrates a dry porous media, a gravity-driven instability can be observed. Water will penetrate the porous media along preferential paths, called fingers. This gravity-driven unstable multiphase flow has important implications for natural phenomena such as rainwater infiltration in soil and secondary oil migration in reservoir rocks. While several experimental and numerical studies have described the instability in 2-dimensional (2D) settings, fundamental questions remain on the morphodynamics of gravity fingering in 3D. We developed a 3D experimental set-up based on planar laser-induced fluorescence of index-matched fluids that allows us to image this phenomenon dynamically. We study the impact of some crucial parameters such as rainfall rate or grain size on the finger size and velocity. In addition, experiments in stratified media reveal interesting dynamics of finger flow across material interfaces, an essential aspect towards the understanding of water infiltration in soils.

  7. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.

    2016-10-01

    By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

  8. Three Dimensional Simulations of Multiphase Flows Using a Lattice Boltzmann Method Suitable for High Density Ratios - 12126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David

    2012-07-01

    Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filledmore » tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is conducted to solve for the pressure difference between the inside and outside of a gas bubble in a liquid domain. Once the results show that the method is in agreement with the Laplace law, buoyant bubble simulations are conducted. The initial results obtained for bubble shape during the rising process was found to be in agreement with the theoretical expectations. (authors)« less

  9. Coupled thermal-hydrological-mechanical behavior of rock mass surrounding a high-temperature thermal energy storage cavern at shallow depth

    DOE PAGES

    Park, Jung-Wook; Rutqvist, Jonny; Ryu, Dongwoo; ...

    2016-01-15

    The present study is aimed at numerically examining the thermal-hydrological-mechanical (THM) processes within the rock mass surrounding a cavern used for thermal energy storage (TES). We considered a cylindrical rock cavern with a height of 50 m and a radius of 10 m storing thermal energy of 350ºC as a conceptual TES model and simulated its operation for 30 years using THM coupled numerical modeling. At first, the insulator performance was not considered for the purpose of investigating the possible coupled THM behavior of the surrounding rock mass; then, the effects of an insulator were examined for different insulator thicknesses.more » The key concerns were focused on the hydro-thermal multiphase flow and heat transport in the rock mass around the thermal storage cavern, the effect of evaporation of rock mass, thermal impact on near the ground surface and the mechanical behavior of the surrounding rock mass. It is shown that the rock temperature around the cavern rapidly increased in the early stage and, consequently, evaporation of groundwater occurred, raising the fluid pressure. However, evaporation and multiphase flow did not have a significant effect on the heat transfer and mechanical behavior in spite of the high-temperature (350ºC) heat source. The simulations showed that large-scale heat flow around a cavern was expected to be conductiondominated for a reasonable value of rock mass permeability. Thermal expansion as a result of the heating of the rock mass from the storage cavern led to a ground surface uplift on the order of a few centimeters and to the development of tensile stress above the storage cavern, increasing the potentials for shear and tensile failures after a few years of the operation. Finally, the analysis showed that high tangential stress in proximity of the storage cavern can some shear failure and local damage, although large rock wall failure could likely be controlled with appropriate insulators and reinforcement.« less

  10. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents

    NASA Astrophysics Data System (ADS)

    Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.

    1997-02-01

    Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.

  11. Modeling flows of heterogeneous media in pipelines when substantiating operating conditions of hydrocarbon field transportation systems

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Novitskiy, D. V.

    2018-05-01

    The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.

  12. Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Zwick, David; Hackl, Jason; Balachandar, S.

    2017-11-01

    Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.

  13. Multi-Phase Modeling of Rainbird Water Injection

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  14. An efficient adaptive sampling strategy for global surrogate modeling with applications in multiphase flow simulation

    NASA Astrophysics Data System (ADS)

    Mo, S.; Lu, D.; Shi, X.; Zhang, G.; Ye, M.; Wu, J.

    2016-12-01

    Surrogate models have shown remarkable computational efficiency in hydrological simulations involving design space exploration, sensitivity analysis, uncertainty quantification, etc. The central task of constructing a global surrogate models is to achieve a prescribed approximation accuracy with as few original model executions as possible, which requires a good design strategy to optimize the distribution of data points in the parameter domains and an effective stopping criterion to automatically terminate the design process when desired approximation accuracy is achieved. This study proposes a novel adaptive sampling strategy, which starts from a small number of initial samples and adaptively selects additional samples by balancing the collection in unexplored regions and refinement in interesting areas. We define an efficient and effective evaluation metric basing on Taylor expansion to select the most promising potential samples from candidate points, and propose a robust stopping criterion basing on the approximation accuracy at new points to guarantee the achievement of desired accuracy. The numerical results of several benchmark analytical functions indicate that the proposed approach is more computationally efficient and robust than the widely used maximin distance design and two other well-known adaptive sampling strategies. The application to two complicated multiphase flow problems further demonstrates the efficiency and effectiveness of our method in constructing global surrogate models for high-dimensional and highly nonlinear problems. Acknowledgements: This work was financially supported by the National Nature Science Foundation of China grants No. 41030746 and 41172206.

  15. Interfacial Area Development in Two-Phase Fluid Flow: Transient vs. Quasi-Static Flow Conditions

    NASA Astrophysics Data System (ADS)

    Meisenheimer, D. E.; Wildenschild, D.

    2017-12-01

    Fluid-fluid interfaces are important in multiphase flow systems in the environment (e.g. groundwater remediation, geologic CO2 sequestration) and industry (e.g. air stripping, fuel cells). Interfacial area controls mass transfer, and therefore reaction efficiency, between the different phases in these systems but they also influence fluid flow processes. There is a need to better understand this relationship between interfacial area and fluid flow processes so that more robust theories and models can be built for engineers and policy makers to improve the efficacy of many multiphase flow systems important to society. Two-phase flow experiments were performed in glass bead packs under transient and quasi-static flow conditions. Specific interfacial area was calculated from 3D images of the porous media obtained using the fast x-ray microtomography capability at the Advanced Photon Source. We present data suggesting a direct relationship between the transient nature of the fluid-flow experiment (fewer equilibrium points) and increased specific interfacial area. The effect of flow condition on Euler characteristic (a representative measure of fluid topology) will also be presented.

  16. Optimization design of multiphase pump impeller based on combined genetic algorithm and boundary vortex flux diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-ya; Cai, Shu-jie; Li, Yong-jiang; Li, Yong-jiang; Zhang, Yong-xue

    2017-12-01

    A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design (Q3DHD), the boundary vortex flux (BVF) diagnosis, and the genetic algorithm (GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that (1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited, (2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller, (3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible.

  17. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions ofmore » EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.« less

  18. Modeling of the Inter-phase Mass Transfer during Cosolvent-Enhanced NAPL Remediation

    NASA Astrophysics Data System (ADS)

    Agaoglu, B.; Scheytt, T. J.; Copty, N. K.

    2012-12-01

    This study investigates the factors influencing inter-phase mass transfer during cosolvent-enhanced NAPL remediation and the ability of the REV (Representative Elementary Volume) modeling approach to simulate these processes. The NAPLs considered in this study consist of pure toluene, pure benzene and known mixtures of these two compounds, while ethanol-water mixtures were selected as the remedial flushing solutions. Batch tests were performed to identify both the equilibrium and non-equilibrium properties of the multiphase system. A series of column flushing experiments involving different NAPLs were conducted for different ethanol contents in the flushing solution and for different operational parameters. Experimental results were compared to numerical simulations obtained with the UTCHEM multiphase flow simulator (Delshad et al., 1996). Results indicate that the velocity of the flushing solution is a major parameter influencing the inter-phase mass transport processes at the pore scale. Depending on the NAPL composition and porous medium properties, the remedial solution may follow preferential flow paths and be subject to reduced contact with the NAPL. This leads to a steep decrease in the apparent mass transfer coefficient. Correlations of the apparent time-dependent mass transfer coefficient as a function of flushing velocity are developed for various porous media. Experimental results also show that the NAPL mass transfer coefficient into the cosolvent solution increases when the NAPL phase becomes mobile. This is attributed to the increase in pore scale contact area between NAPL and the remedial solution when NAPL mobilization occurs. These results suggest the need to define a temporal and spatially variable mass transfer coefficient of the NAPL into the cosolvent solution to reflect the occurrence of subscale preferential flow paths and the transient bypassing of the NAPL mass. The implications of these findings on field scale NAPL remediation with cosolvents are discussed.

  19. Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Alej, M., E-mail: m.elalej@cranfield.ac.uk; Mba, D., E-mail: m.elalej@cranfield.ac.uk; Yeung, H., E-mail: m.elalej@cranfield.ac.uk

    2014-04-11

    The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

  20. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  1. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  2. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  3. Effects of heat exchanger tubes on hydrodynamics and CO 2 capture of a sorbent-based fluidized bed reactor

    DOE PAGES

    Lai, Canhai; Xu, Zhijie; Li, Tingwen; ...

    2017-08-05

    In virtual design and scale up of pilot-scale carbon capture systems, the coupled reactive multiphase flow problem must be solved to predict the adsorber's performance and capture efficiency under various operation conditions. This paper focuses on the detailed computational fluid dynamics (CFD) modeling of a pilot-scale fluidized bed adsorber equipped with vertical cooling tubes. Multiphase Flow with Interphase eXchanges (MFiX), an open-source multiphase flow CFD solver, is used for the simulations with custom code to simulate the chemical reactions and filtered sub-grid models to capture the effect of the unresolved details in the coarser mesh for simulations with reasonable accuracymore » and manageable computational effort. Previously developed filtered models for horizontal cylinder drag, heat transfer, and reaction kinetics have been modified to derive the 2D filtered models representing vertical cylinders in the coarse-grid CFD simulations. The effects of the heat exchanger configurations (i.e., horizontal or vertical tubes) on the adsorber's hydrodynamics and CO 2 capture performance are then examined. A one-dimensional three-region process model is briefly introduced for comparison purpose. The CFD model matches reasonably well with the process model while provides additional information about the flow field that is not available with the process model.« less

  4. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oilmore » (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.« less

  5. Comparison of electrical capacitance tomography & gamma densitometer measurement in viscous oil-gas flows

    NASA Astrophysics Data System (ADS)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-01

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil & gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil & gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 & 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 & 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  6. The Influence of Multi-Scale Stratal Architecture on Multi-Phase Flow

    NASA Astrophysics Data System (ADS)

    Soltanian, M.; Gershenzon, N. I.; Ritzi, R. W.; Dominic, D.; Ramanathan, R.

    2012-12-01

    Geological heterogeneity affects flow and transport in porous media, including the migration and entrapment patterns of oil, and efforts for enhanced oil recovery. Such effects are only understood through their relation to a hierarchy of reservoir heterogeneities over a range of scales. Recent work on modern rivers and ancient sediments has led to a conceptual model of the hierarchy of fluvial forms within channel-belts of gravelly braided rivers, and a quantitative model for the corresponding scales of heterogeneity within the stratal architecture (e.g. [Lunt et al (2004) Sedimentology, 51 (3), 377]). In related work, a three-dimensional digital model was developed which represents these scales of fluvial architecture, the associated spatial distribution of permeability, and the connectivity of high-permeability pathways across the different scales of the stratal hierarchy [Ramanathan et al, (2010) Water Resour. Res., 46, W04515; Guin et al, (2010) Water Resour. Res., 46, W04516]. In the present work we numerically examine three-phase fluid flow (water-oil-gas) incorporating the multi-scale model for reservoir heterogeneity spanning the scales from 10^-1 to 10^3 meters. Comparison with results of flow in a reservoir with homogeneous permeability is made showing essentially different flow dynamics.

  7. Compressibility Effects on Particle-Fluid Interaction Force for Eulerian-Eulerian Simulations

    NASA Astrophysics Data System (ADS)

    Akiki, Georges; Francois, Marianne; Zhang, Duan

    2017-11-01

    Particle-fluid interaction forces are essential in modeling multiphase flows. Several models can be found in the literature based on empirical, numerical, and experimental results from various simplified flow conditions. Some of these models also account for finite Mach number effects. Using these models is relatively straightforward with Eulerian-Lagrangian calculations if the model for the total force on particles is used. In Eulerian-Eulerian simulations, however, there is the pressure gradient terms in the momentum equation for particles. For low Mach number flows, the pressure gradient force is negligible if the particle density is much greater than that of the fluid. For supersonic flows where a standing shock is present, even for a steady and uniform flow, it is unclear whether the significant pressure-gradient force should to be separated out from the particle force model. To answer this conceptual question, we perform single-sphere fully-resolved DNS simulations for a wide range of Mach numbers. We then examine whether the total force obtained from the DNS can be categorized into well-established models, such as the quasi-steady, added-mass, pressure-gradient, and history forces. Work sponsored by Advanced Simulation and Computing (ASC) program of NNSA and LDRD-CNLS of LANL.

  8. Particle momentum effects from the detonation of heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.

    2007-06-01

    Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.

  9. Continuum approach for aerothermal flow through ablative porous material using discontinuous Galerkin discretization.

    NASA Astrophysics Data System (ADS)

    Schrooyen, Pierre; Chatelain, Philippe; Hillewaert, Koen; Magin, Thierry E.

    2014-11-01

    The atmospheric entry of spacecraft presents several challenges in simulating the aerothermal flow around the heat shield. Predicting an accurate heat-flux is a complex task, especially regarding the interaction between the flow in the free stream and the erosion of the thermal protection material. To capture this interaction, a continuum approach is developed to go progressively from the region fully occupied by fluid to a receding porous medium. The volume averaged Navier-Stokes equations are used to model both phases in the same computational domain considering a single set of conservation laws. The porosity is itself a variable of the computation, allowing to take volumetric ablation into account through adequate source terms. This approach is implemented within a computational tool based on a high-order discontinuous Galerkin discretization. The multi-dimensional tool has already been validated and has proven its efficient parallel implementation. Within this platform, a fully implicit method was developed to simulate multi-phase reacting flows. Numerical results to verify and validate the methodology are considered within this work. Interactions between the flow and the ablated geometry are also presented. Supported by Fund for Research Training in Industry and Agriculture.

  10. Multiphase flows of N immiscible incompressible fluids: A reduction-consistent and thermodynamically-consistent formulation and associated algorithm

    NASA Astrophysics Data System (ADS)

    Dong, S.

    2018-05-01

    We present a reduction-consistent and thermodynamically consistent formulation and an associated numerical algorithm for simulating the dynamics of an isothermal mixture consisting of N (N ⩾ 2) immiscible incompressible fluids with different physical properties (densities, viscosities, and pair-wise surface tensions). By reduction consistency we refer to the property that if only a set of M (1 ⩽ M ⩽ N - 1) fluids are present in the system then the N-phase governing equations and boundary conditions will exactly reduce to those for the corresponding M-phase system. By thermodynamic consistency we refer to the property that the formulation honors the thermodynamic principles. Our N-phase formulation is developed based on a more general method that allows for the systematic construction of reduction-consistent formulations, and the method suggests the existence of many possible forms of reduction-consistent and thermodynamically consistent N-phase formulations. Extensive numerical experiments have been presented for flow problems involving multiple fluid components and large density ratios and large viscosity ratios, and the simulation results are compared with the physical theories or the available physical solutions. The comparisons demonstrate that our method produces physically accurate results for this class of problems.

  11. Insights into the use of time-lapse GPR data as observations for inverse multiphase flow simulations of DNAPL migration

    USGS Publications Warehouse

    Johnson, R.H.; Poeter, E.P.

    2007-01-01

    Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B.V. All rights reserved.

  12. Attenuation of seismic waves in rocks saturated with multiphase fluids: theory and experiments

    NASA Astrophysics Data System (ADS)

    Tisato, N.; Quintal, B.; Chapman, S.; Podladchikov, Y.; Burg, J. P.

    2016-12-01

    Albeit seismic tomography could provide a detailed image of subsurface fluid distribution, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. However, tomographic information is important because the upward migration of multiphase fluids through the crust of the Earth can cause hazardous events such as eruptions, explosions, soil-pollution and earthquakes. In addition, multiphase fluids, such as hydrocarbons, represent important resources for economy. Seismic tomography can be improved considering complex elastic moduli and the attenuation of seismic waves (1/Q) that quantifies the energy lost by propagating elastic waves. In particular, a significant portion of the energy carried by the propagating wave is dissipated in saturated media by the wave-induced-fluid-flow (WIFF) and the wave-induced-gas-exsolution-dissolution (WIGED) mechanism. The latter describes how a propagating wave modifies the thermodynamic equilibrium between different fluid phases causing exsolution and dissolution of gas bubbles in the liquid, which in turn causes a significant frequency-dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but was only recently demonstrated and extended to bubbly water. We report the theory and laboratory experiments that have been performed to confirm the WIGED theory. In particular, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Then, we extend the theory to fluids and pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. This work etends the knowledge of attenuation in rocks saturated with multiphase fluid and emphasizes that the WIGED mechanism is very important to image subsurface gas plumes.

  13. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    NASA Astrophysics Data System (ADS)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.

    2017-06-01

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  14. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D., E-mail: jregele@iastate.edu

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kuttamore » method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.« less

  15. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.

  16. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    NASA Astrophysics Data System (ADS)

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  17. An efficient fully-implicit multislope MUSCL method for multiphase flow with gravity in discrete fractured media

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-06-01

    The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.

  18. A hybrid formulation for the numerical simulation of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2016-07-01

    In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.

  19. Optimization of radioactive sources to achieve the highest precision in three-phase flow meters using Jaya algorithm.

    PubMed

    Roshani, G H; Karami, A; Khazaei, A; Olfateh, A; Nazemi, E; Omidi, M

    2018-05-17

    Gamma ray source has very important role in precision of multi-phase flow metering. In this study, different combination of gamma ray sources (( 133 Ba- 137 Cs), ( 133 Ba- 60 Co), ( 241 Am- 137 Cs), ( 241 Am- 60 Co), ( 133 Ba- 241 Am) and ( 60 Co- 137 Cs)) were investigated in order to optimize the three-phase flow meter. Three phases were water, oil and gas and the regime was considered annular. The required data was numerically generated using MCNP-X code which is a Monte-Carlo code. Indeed, the present study devotes to forecast the volume fractions in the annular three-phase flow, based on a multi energy metering system including various radiation sources and also one NaI detector, using a hybrid model of artificial neural network and Jaya Optimization algorithm. Since the summation of volume fractions is constant, a constraint modeling problem exists, meaning that the hybrid model must forecast only two volume fractions. Six hybrid models associated with the number of used radiation sources are designed. The models are employed to forecast the gas and water volume fractions. The next step is to train the hybrid models based on numerically obtained data. The results show that, the best forecast results are obtained for the gas and water volume fractions of the system including the ( 241 Am- 137 Cs) as the radiation source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modeling: The Right Tool for the Job.

    ERIC Educational Resources Information Center

    Gavanasen, Varut; Hussain, S. Tariq

    1993-01-01

    Reviews the different types of models that can be used in groundwater modeling. Discusses the flow and contaminant transport models in the saturated zone, flow and contaminant transport in variably saturated flow regime, vapor transport, biotransformation models, multiphase models, optimization algorithms, and potentials pitfalls of using these…

  1. Modeling of Liquid Steel/Slag/Argon Gas Multiphase Flow During Tundish Open Eye Formation in a Two-Strand Tundish

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Li, Donghui; Chattopadhyay, Kinnor

    2018-04-01

    Multiphase flows are frequently encountered in metallurgical operations. One of the most effective ways to understand these processes is by flow modeling. The process of tundish open eye (TOE) formation involves three-phase interaction between liquid steel, slag, and argon gas. The two-phase interaction involving argon gas bubbles and liquid steel can be modeled relatively easily using the discrete phase modeling technique. However, the effect of an upper slag layer cannot be captured using this approach. The presence of an upper buoyant phase can have a major effect on the behavior of TOEs. Hence, a multiphase model, including three phases, viz. liquid steel, slag, and argon gas, in a two-strand slab caster tundish, was developed to study the formation and evolution of TOEs. The volume of fluid model was used to track the interphase between liquid steel and slag phases, while the discrete phase model was used to trace the movement of the argon gas bubbles in liquid steel. The variation in the TOE areas with different amounts of aspirated argon gas was examined in the presence of an overlying slag phase. The mathematical model predictions were compared against steel plant measurements.

  2. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakhari, Abbas, E-mail: afakhari@nd.edu; Geier, Martin; Lee, Taehun

    2016-06-15

    A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude fastermore » than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a typical chaotic structure in the flow field is observed at a Reynolds number of 10000, which indicates that the proposed model is a promising tool for direct numerical simulation of two-phase flows.« less

  3. Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan

    2017-11-01

    Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.

  4. On modeling heterogeneous coastal sediment transport - A numerical study using multiphase Eulerian and Euler-Lagrangian approaches

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Yu, X.; Hsu, T. J.; Calantoni, J.; Chauchat, J.

    2016-02-01

    Regional scale coastal evolution models do not explicitly resolve wave-driven sediment transport and must rely on bedload/suspended modules that utilize empirical assumptions. Under extreme wave events or in regions of high sediment heterogeneity, these empirical bedload/suspended load modules may need to be reevaluated with detailed observation and more sophisticated small-scale models. In the past decade, significant research efforts have been devoted to modeling sediment transport using multiphase Eulerian or Euler-Lagrangian approaches. Recently, an open-source multi-dimensional Reynolds-averaged two-phase sediment transport model, SedFOAM is developed by the authors and it has been adopted by many researchers to study momentary bed failure, granular rheology in sheet flow and scour around structures. In this abstract, we further report our recent progress made in extending the model with 3D turbulence-resolving capability and to model the sediment phase with the Discrete Element method (DEM). Adopting the large-eddy simulation methodology, we validate the 3D model with measured fine sediment transport is oscillatory sheet flow and demonstrate that the model is able to resolve sediment burst events during flow reversals. To better resolve the intergranular interactions and to model heterogeneous properties of sediment (e.g., mixed grain sizes and grain shape), we use an Euler-Lagrangian solver called CFDEM, which couples OpenFOAM for the fluid phase and LIGGGHTS for the particle phase. We improve the model by better enforcing conservation of mass in the pressure solver. The modified CFDEM solver is validated with measured oscillatory sheet flow data for coarse sand and we demonstrated that the model can reproduce the well-known armoring effects. We show that under Stokes second-order wave forcing, the armoring effect is more significant during the energetic positive peak, and hence the net onshore transport is reduced. Preliminary results modeling the shape effects using composite particles will be presented. This research is supported by Office of Naval Research and National Science Foundation.

  5. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanes, Ruben

    The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing themore » validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.« less

  7. A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C.; Jackson, M. D.

    2018-01-01

    We present a new, high-order, control-volume-finite-element (CVFE) method for multiphase porous media flow with discontinuous 1st-order representation for pressure and discontinuous 2nd-order representation for velocity. The method has been implemented using unstructured tetrahedral meshes to discretize space. The method locally and globally conserves mass. However, unlike conventional CVFE formulations, the method presented here does not require the use of control volumes (CVs) that span the boundaries between domains with differing material properties. We demonstrate that the approach accurately preserves discontinuous saturation changes caused by permeability variations across such boundaries, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than using conventional CVFE methods. We resolve a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media.

  8. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  9. Equations and simulations for multiphase compressible gas-dust flows

    NASA Astrophysics Data System (ADS)

    Oran, Elaine; Houim, Ryan

    2014-11-01

    Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.

  10. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Huan; Baker, Nathan A.; Wu, Lei

    2016-08-05

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less

  11. Shock Melting of Permafrost on Mars: Water Ice Multiphase Equation of State for Numerical Modeling and Its Testing

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    2005-01-01

    The presence of water/ice/brine in upper layers of Martian crust affects many processes of impact cratering. Modeling of these effects promises better understanding of Martian cratering records. We present here the new ANEOS-based multiphase equation of state for water/ice constructed for usage in hydrocodes and first numerical experiments on permafrost shock melting. Preliminary results show that due to multiple shock compression of ice inclusions in rocks the entropy jump in shocked ice is smaller than in pure ice for the same shock pressure. Hence previous estimates of ice melting during impact cratering on Mars should be re-evaluated. Additional information is included in the original extended abstract.

  12. A Pythonic Approach for Computational Geosciences and Geo-Data Processing

    NASA Astrophysics Data System (ADS)

    Morra, G.; Yuen, D. A.; Lee, S. M.

    2016-12-01

    Computational methods and data analysis play a constantly increasing role in Earth Sciences however students and professionals need to climb a steep learning curve before reaching a sufficient level that allows them to run effective models. Furthermore the recent arrival and new powerful machine learning tools such as Torch and Tensor Flow has opened new possibilities but also created a new realm of complications related to the completely different technology employed. We present here a series of examples entirely written in Python, a language that combines the simplicity of Matlab with the power and speed of compiled languages such as C, and apply them to a wide range of geological processes such as porous media flow, multiphase fluid-dynamics, creeping flow and many-faults interaction. We also explore ways in which machine learning can be employed in combination with numerical modelling. From immediately interpreting a large number of modeling results to optimizing a set of modeling parameters to obtain a desired optimal simulation. We show that by using Python undergraduate and graduate can learn advanced numerical technologies with a minimum dedicated effort, which in turn encourages them to develop more numerical tools and quickly progress in their computational abilities. We also show how Python allows combining modeling with machine learning as pieces of LEGO, therefore simplifying the transition towards a new kind of scientific geo-modelling. The conclusion is that Python is an ideal tool to create an infrastructure for geosciences that allows users to quickly develop tools, reuse techniques and encourage collaborative efforts to interpret and integrate geo-data in profound new ways.

  13. Improving estimates of subsurface gas transport in unsaturated fractured media using experimental Xe diffusion data and numerical methods

    NASA Astrophysics Data System (ADS)

    Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.

    2017-12-01

    Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution/volatilization in order to identify when the assumption of instantaneous equilibrium is reasonable. These efforts will aid us in our application of such models to larger, field-scale tests and improve our ability to predict gas breakthrough times.

  14. DOMAIN DECOMPOSITION METHOD APPLIED TO A FLOW PROBLEM Norberto C. Vera Guzmán Institute of Geophysics, UNAM

    NASA Astrophysics Data System (ADS)

    Vera, N. C.; GMMC

    2013-05-01

    In this paper we present the results of macrohybrid mixed Darcian flow in porous media in a general three-dimensional domain. The global problem is solved as a set of local subproblems which are posed using a domain decomposition method. Unknown fields of local problems, velocity and pressure are approximated using mixed finite elements. For this application, a general three-dimensional domain is considered which is discretized using tetrahedra. The discrete domain is decomposed into subdomains and reformulated the original problem as a set of subproblems, communicated through their interfaces. To solve this set of subproblems, we use finite element mixed and parallel computing. The parallelization of a problem using this methodology can, in principle, to fully exploit a computer equipment and also provides results in less time, two very important elements in modeling. Referencias G.Alduncin and N.Vera-Guzmán Parallel proximal-point algorithms for mixed _nite element models of _ow in the subsurface, Commun. Numer. Meth. Engng 2004; 20:83-104 (DOI: 10.1002/cnm.647) Z. Chen, G.Huan and Y. Ma Computational Methods for Multiphase Flows in Porous Media, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2006. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.

  15. Experimental and numerical investigation of reactive shock-accelerated flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonazza, Riccardo

    2016-12-20

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm 2). Specific goals were to quantify themore » effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.« less

  16. Study on C-S and P-R EOS in pseudo-potential lattice Boltzmann model for two-phase flows

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Mao, Yun Fei; Wang, Bo; Xie, Bo

    Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P-R) and Carnahan and Starling (C-S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P-R and C-S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P-R and C-S EOS agree with the analytical solutions although P-R EOS may perform better. The prediction of liquid phase by P-R EOS is more accurate than that of air phase and the contrary is true for C-S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting T. The P-R EOS can achieve larger maximum density ratio than C-S EOS under the same τ. Besides, no matter the C-S EOS or the P-R EOS, if τ tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P-R is larger than that of C-S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.

  17. Evaluation of liquid aerosol transport through porous media

    NASA Astrophysics Data System (ADS)

    Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, YaLing; Tao, Wen -Quan

    The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less

  19. Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Holmes, A.; Ramos, R. T.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    We demonstrate the use of a novel design of fibre-optical sensor (or `local probe') for immiscible-fluid discrimination in multi-phase flows. These probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with various surface treatments, including a crucial one for wettability control. Total internal reflection is used to distinguish drops, bubbles or other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Such probes have quasi-binary outputs; we demonstrate in this paper their use in distinguishing water from oil (kerosene) in oil/water two-phase flows and compare the results with those obtained from a simple cleaved fibre relying on the (small) difference in Fresnel reflectivity for discrimination. Quantitative accuracy is demonstrated by comparison of profiles, across a pipe diameter, of local, time-averaged volume fractions (`hold-ups'), with pipe-averaged hold-ups determined from a carefully calibrated gradio-manometer in a fully developed region of the flow. Companion papers deal with the sensors used and results achieved in gas/liquid flows and three-phase flows.

  20. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-12-01

    We scrutinize the statistical characteristics of liquid films flowing over an inclined planar surface based on film height and velocity measurements that are recovered simultaneously by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry (PTV), respectively. Our experiments are complemented by direct numerical simulations (DNSs) of liquid films simulated for different conditions so as to expand the parameter space of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of the time-varying flow rate that was presented in our previous research effort on falling films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017), 10.1103/PhysRevFluids.2.014002], and which reveals that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly with the product of the coefficients of variation of the film height and bulk velocity, as well as with the ratio of the Nusselt height to the mean film height, both at the same upstream PLIF/PTV measurement location. Based on relations that are derived to describe these results, a methodology for predicting the mass-transfer capability (through the mean and standard deviation of the bulk flow speed) of these flows is developed in terms of the mean and standard deviation of the film thickness and the mean flow rate, which are considerably easier to obtain experimentally than velocity profiles. The errors associated with these predictions are estimated at ≈1.5 % and 8% respectively in the experiments and at <1 % and <2 % respectively in the DNSs. Beyond the generation of these relations for the prediction of important film flow characteristics based on simple flow information, the data provided can be used to design improved heat- and mass-transfer equipment reactors or other process operation units which exploit film flows, but also to develop and validate multiphase flow models in other physical and technological settings.

  1. Comparing volume of fluid and level set methods for evaporating liquid-gas flows

    NASA Astrophysics Data System (ADS)

    Palmore, John; Desjardins, Olivier

    2016-11-01

    This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.

  2. Verification and benchmark testing of the NUFT computer code

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Nitao, J. J.; Kulshrestha, A.

    1993-10-01

    This interim report presents results of work completed in the ongoing verification and benchmark testing of the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) computer code. NUFT is a suite of multiphase, multicomponent models for numerical solution of thermal and isothermal flow and transport in porous media, with application to subsurface contaminant transport problems. The code simulates the coupled transport of heat, fluids, and chemical components, including volatile organic compounds. Grid systems may be cartesian or cylindrical, with one-, two-, or fully three-dimensional configurations possible. In this initial phase of testing, the NUFT code was used to solve seven one-dimensional unsaturated flow and heat transfer problems. Three verification and four benchmarking problems were solved. In the verification testing, excellent agreement was observed between NUFT results and the analytical or quasianalytical solutions. In the benchmark testing, results of code intercomparison were very satisfactory. From these testing results, it is concluded that the NUFT code is ready for application to field and laboratory problems similar to those addressed here. Multidimensional problems, including those dealing with chemical transport, will be addressed in a subsequent report.

  3. A SPH elastic-viscoplastic model for granular flows and bed-load transport

    NASA Astrophysics Data System (ADS)

    Ghaïtanellis, Alex; Violeau, Damien; Ferrand, Martin; Abderrezzak, Kamal El Kadi; Leroy, Agnès; Joly, Antoine

    2018-01-01

    An elastic-viscoplastic model (Ulrich, 2013) is combined to a multi-phase SPH formulation (Hu and Adams, 2006; Ghaitanellis et al., 2015) to model granular flows and non-cohesive sediment transport. The soil is treated as a continuum exhibiting a viscoplastic behaviour. Thus, below a critical shear stress (i.e. the yield stress), the soil is assumed to behave as an isotropic linear-elastic solid. When the yield stress is exceeded, the soil flows and behaves as a shear-thinning fluid. A liquid-solid transition threshold based on the granular material properties is proposed, so as to make the model free of numerical parameter. The yield stress is obtained from Drucker-Prager criterion that requires an accurate computation of the effective stress in the soil. A novel method is proposed to compute the effective stress in SPH, solving a Laplace equation. The model is applied to a two-dimensional soil collapse (Bui et al., 2008) and a dam break over mobile beds (Spinewine and Zech, 2007). Results are compared with experimental data and a good agreement is obtained.

  4. Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Guo, Chong-Qiang; Zhang, Chun-Jian; Xu, Jun

    2017-12-01

    We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at √{s_{NN}} = 200 and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.

  5. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO 2 from CO 2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution ismore » examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO 2 desorption can be implemented.« less

  6. A new high-performance 3D multiphase flow code to simulate volcanic blasts and pyroclastic density currents: example from the Boxing Day event, Montserrat

    NASA Astrophysics Data System (ADS)

    Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.

    2005-12-01

    For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation of finest particles, and demonstrated the formation of dense pyroclastic flows by drainage of clasts sedimented from dilute flows. Fundamental and accurate hazard information can be obtained from the simulations, and the 3D displays are readily comprehended by officials and the public, making them very effective tools for risk mitigation.

  7. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  8. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  9. Particles climbing along a vertically vibrating tube: numerical simulation using the Discrete Element Method (DEM)

    DOE PAGES

    Xu, Yupeng; Musser, Jordan; Li, Tingwen; ...

    2017-07-22

    It has been reported experimentally that granular particles can climb along a vertically vibrating tube partially inserted inside a granular silo. Here, we use the Discrete Element Method (DEM) available in the Multiphase Flow with Interphase eXchanges (MFIX) code to investigate this phenomenon. By tracking the movement of individual particles, the climbing mechanism was illustrated and analyzed. The numerical results show that a sufficiently high vibration strength is needed to form a low solids volume fraction region inside the lower end of the vibrating tube, a dense region in the middle of the tube, and to bring the particles outsidemore » from the top layers down to fill in the void. The results also show that particle compaction in the middle section of the tube is the main cause of the climbing. Consequently, varying parameters which influence the compacted region, such as the restitution coefficient, change the climbing height.« less

  10. Numerical Simulations of Near-Field Blast Effects using Kinetic Plates

    NASA Astrophysics Data System (ADS)

    Neuscamman, Stephanie; Manner, Virginia; Brown, Geoffrey; Glascoe, Lee

    2013-06-01

    Numerical simulations using two hydrocodes were compared to near-field measurements of blast impulse associated with ideal and non-ideal explosives to gain insight into testing results and predict untested configurations. The recently developed kinetic plate test was designed to measure blast impulse in the near-field by firing spherical charges in close range from steel plates and probing plate acceleration using laser velocimetry. Plate velocities for ideal, non-ideal and aluminized explosives tests were modeled using a three dimensional hydrocode. The effects of inert additives in the explosive formulation were modeled using a 1-D hydrocode with multiphase flow capability using Lagrangian particles. The relative effect of particle impact on the plate compared to the blast wave impulse is determined and modeling is compared to free field pressure results. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is abstract LLNL-ABS-622152.

  11. Particles climbing along a vertically vibrating tube: numerical simulation using the Discrete Element Method (DEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Musser, Jordan; Li, Tingwen

    It has been reported experimentally that granular particles can climb along a vertically vibrating tube partially inserted inside a granular silo. Here, we use the Discrete Element Method (DEM) available in the Multiphase Flow with Interphase eXchanges (MFIX) code to investigate this phenomenon. By tracking the movement of individual particles, the climbing mechanism was illustrated and analyzed. The numerical results show that a sufficiently high vibration strength is needed to form a low solids volume fraction region inside the lower end of the vibrating tube, a dense region in the middle of the tube, and to bring the particles outsidemore » from the top layers down to fill in the void. The results also show that particle compaction in the middle section of the tube is the main cause of the climbing. Consequently, varying parameters which influence the compacted region, such as the restitution coefficient, change the climbing height.« less

  12. Combination of microscopic model and VoF-multiphase approach for numerical simulation of nodular cast iron solidification

    NASA Astrophysics Data System (ADS)

    Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.

    2015-06-01

    The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.

  13. A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas

    NASA Astrophysics Data System (ADS)

    Sivanesapillai, Rakulan; Falkner, Nadine; Hartmaier, Alexander; Steeb, Holger

    2016-09-01

    We present a conservative smoothed particle hydrodynamics (SPH) model to study the flow of multiple, immiscible fluid phases in porous media using direct pore-scale simulations. Particular focus is put on continuously tracking the evolution of interfacial areas, which are considered to be important morphological quantities affecting multiphase transport in porous media. In addition to solving the Navier-Stokes equations, the model accounts for the effects of capillarity at interfaces and contact lines. This is done by means of incorporating the governing interfacial mass and momentum balances using the continuum surface force (CSF) method, thus rendering model calibration routines unnecessary and minimizing the set of constitutive and kinematic assumptions. We address the application of boundary conditions at rigid solid surfaces and study the predictive capability of the model as well as optimal choices for numerical parameters using an extensive model validation procedure. We demonstrate the applicability of the model to simulate multiphase flows involving partial wettability, dynamic effects, large density ratios (up to 1000), large viscosity ratios (up to 100), as well as fragmentation and coalescence of fluid phases. The model is used to study the evolution of fluid-fluid interfacial areas during saturation-controlled primary drainage and main imbibition of heterogeneous pore spaces at low capillary numbers. A variety of pore-scale effects, such as wetting phase entrapment and fragmentation due to snap-off, are observed. Specific fluid-fluid interfacial area is observed to monotonically increase during primary drainage and hysteretic effects are apparent during main imbibition.

  14. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE PAGES

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; ...

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO 2 sequestration sites to track the migration of the CO 2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO 2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO 2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport modulemore » of TOUGHREACT was modified to include separate isotopic species of CO 2 gas and dissolved inorganic carbon (CO 2, CO 3 2-, HCO 3 -,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO 2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  15. Modeling field-scale cosolvent flooding for DNAPL source zone remediation

    NASA Astrophysics Data System (ADS)

    Liang, Hailian; Falta, Ronald W.

    2008-02-01

    A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.

  16. Modeling field-scale cosolvent flooding for DNAPL source zone remediation.

    PubMed

    Liang, Hailian; Falta, Ronald W

    2008-02-19

    A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.

  17. Shock tube Multiphase Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  18. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  19. A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale

    NASA Astrophysics Data System (ADS)

    Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico

    2018-01-01

    A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.

  20. APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS

    EPA Science Inventory

    The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...

  1. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer.

  2. Anisotropic flow and flow fluctuations for Au + Au at √sNN =200 GeV in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Ma, L.; Ma, G. L.; Ma, Y. G.

    2014-04-01

    Anisotropic flow coefficients and their fluctuations are investigated for Au + Au collisions at center-of-mass energy √sNN = 200 GeV by using a multiphase transport model with string melting scenario. Experimental results of azimuthal anisotropies by means of the two- and four-particle cumulants are generally well reproduced by the model including both parton cascade and hadronic rescatterings. Event-by-event treatments of the harmonic flow coefficients vn (for n =2, 3, and 4) are performed, in which event distributions of vn for different orders are consistent with Gaussian shapes over all centrality bins. Systematic studies on centrality, transverse momentum (pT), and pseudorapidity (η) dependencies of anisotropic flows and quantitative estimations of the flow fluctuations are presented. The pT and η dependencies of absolute fluctuations for both v2 and v3 follow trends similar to their flow coefficients. Relative fluctuation of triangular flow v3 is slightly centrality dependent, which is quite different from that of elliptic flow v2. It is observed that parton cascade has a large effect on the flow fluctuations, but hadronic scatterings make little contribution to the flow fluctuations, which indicates flow fluctuations are mainly modified during partonic evolution stage.

  3. A semi-implicit level set method for multiphase flows and fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Cottet, Georges-Henri; Maitre, Emmanuel

    2016-06-01

    In this paper we present a novel semi-implicit time-discretization of the level set method introduced in [8] for fluid-structure interaction problems. The idea stems from a linear stability analysis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter operating as a pre-processing on the level set function. It applies to multiphase flows driven by surface tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stability constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It is validated through comparisons with the original explicit scheme and refinement studies on two-dimensional benchmarks.

  4. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Dall'Anese, Emiliano

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- frommore » advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.« less

  5. Heat transfer optimization for air-mist cooling between a stack of parallel plates

    NASA Astrophysics Data System (ADS)

    Issa, Roy J.

    2010-06-01

    A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.

  6. Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions

    NASA Astrophysics Data System (ADS)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2016-10-01

    The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.

  7. Characterization of heterogeneity in the Heletz sandstone from core to pore scale and quantification of its impact on multi-phase flow

    DOE PAGES

    Hingerl, Ferdinand F.; Yang, Feifei; Pini, Ronny; ...

    2016-02-02

    In this paper we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 °C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomographymore » study complements our cm- to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities.« less

  8. Multiphasic modelling of bone-cement injection into vertebral cancellous bone.

    PubMed

    Bleiler, Christian; Wagner, Arndt; Stadelmann, Vincent A; Windolf, Markus; Köstler, Harald; Boger, Andreas; Gueorguiev-Rüegg, Boyko; Ehlers, Wolfgang; Röhrle, Oliver

    2015-01-01

    Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution μCT image data. The multiphasic model is based on the Theory of Porous Media, providing the theoretical basis to describe within one set of coupled equations the interaction of an elastically deformable solid skeleton, of liquid bone cement and the displacement of liquid bone marrow. The simulation results are validated against an experiment, in which bone cement was injected into a human vertebra under realistic conditions. The major advantage of this comprehensive modelling approach is the fact that one can not only predict the complex cement flow within an entire vertebra but is also capable of taking into account solid deformations in a fully coupled manner. The presented work is the first step towards the ultimate and future goal of extending this framework to a clinical tool allowing for pre-operative cement distribution predictions by means of numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.

  9. A multiphase three-dimensional multi-relaxation time (MRT) lattice Boltzmann model with surface tension adjustment

    NASA Astrophysics Data System (ADS)

    Ammar, Sami; Pernaudat, Guillaume; Trépanier, Jean-Yves

    2017-08-01

    The interdependence of surface tension and density ratio is a weakness of pseudo-potential based lattice Boltzmann models (LB). In this paper, we propose a 3D multi-relaxation time (MRT) model for multiphase flows at large density ratios. The proposed model is capable of adjusting the surface tension independently of the density ratio. We also present the 3D macroscopic equations recovered by the proposed forcing scheme. A high order of isotropy for the interaction force is used to reduce the amplitude of spurious currents. The proposed 3D-MRT model is validated by verifying Laplace's law and by analyzing its thermodynamic consistency and the oscillation period of a deformed droplet. The model is then applied to the simulation of the impact of a droplet on a dry surface. Impact dynamics are determined and the maximum spread factor calculated for different Reynolds and Weber numbers. The numerical results are in agreement with data published in the literature. The influence of surface wettability on the spread factor is also investigated. Finally, our 3D-MRT model is applied to the simulation of the impact of a droplet on a wet surface. The propagation of transverse waves is observed on the liquid surface.

  10. Effects of Initial Particle Distribution on an Energetic Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford

    2017-11-01

    Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  11. Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds

    DOE PAGES

    Xiong, Qingang; Zhang, Jingchao; Wiggins, Gavin; ...

    2015-12-03

    We report results from computational simulations of an experimental, lab-scale bubbling bed biomass pyrolysis reactor that include a distributed activation energy model (DAEM) for the kinetics. In this study, we utilized multiphase computational fluid dynamics (CFD) to account for the turbulent hydrodynamics, and this was combined with the DAEM kinetics in a multi-component, multi-step reaction network. Our results indicate that it is possible to numerically integrate the coupled CFD–DAEM system without significantly increasing computational overhead. It is also clear, however, that reactor operating conditions, reaction kinetics, and multiphase flow dynamics all have major impacts on the pyrolysis products exiting themore » reactor. We find that, with the same pre-exponential factors and mean activation energies, inclusion of distributed activation energies in the kinetics can shift the predicted average value of the exit vapor-phase tar flux and its statistical distribution, compared to single-valued activation-energy kinetics. Perhaps the most interesting observed trend is that increasing the diversity of the DAEM activation energies appears to increase the mean tar yield, all else being equal. As a result, these findings imply that accurate resolution of the reaction activation energy distributions will be important for optimizing biomass pyrolysis processes.« less

  12. Design of a High-Reynolds Number Recirculating Water Tunnel

    NASA Astrophysics Data System (ADS)

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  13. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  14. DIANA: A multi-phase, multi-component hydrodynamic model for the analysis of severe accidents in heavy water reactors with multiple-tube assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tentner, A.M.

    1994-03-01

    A detailed hydrodynamic fuel relocation model has been developed for the analysis of severe accidents in Heavy Water Reactors with multiple-tube Assemblies. This model describes the Fuel Disruption and Relocation inside a nuclear fuel assembly and is designated by the acronym DIANA. DIANA solves the transient hydrodynamic equations for all the moving materials in the core and treats all the relevant flow regimes. The numerical solution techniques and some of the physical models included in DIANA have been developed taking advantage of the extensive experience accumulated in the development and validation of the LEVITATE (1) fuel relocation model of SAS4Amore » [2, 3]. The model is designed to handle the fuel and cladding relocation in both voided and partially voided channels. It is able to treat a wide range of thermal/ hydraulic/neutronic conditions and the presence of various flow regimes at different axial locations within the same hydrodynamic channel.« less

  15. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems, Geosci. Model Dev., 8, 279-294, 2015, doi:10.5194/gmd-8-279-2015 [2] Afanasyev, A.A. Application of the reservoir simulator MUFITS for 3D modeling of CO2 storage in geological formations, Energy Procedia, 40, 365-374, 2013, doi:10.1016/j.egypro.2013.08.042

  16. Large-Scale Multiphase Flow Modeling of Hydrocarbon Migration and Fluid Sequestration in Faulted Cenozoic Sedimentary Basins, Southern California

    NASA Astrophysics Data System (ADS)

    Jung, B.; Garven, G.; Boles, J. R.

    2011-12-01

    Major fault systems play a first-order role in controlling fluid migration in the Earth's crust, and also in the genesis/preservation of hydrocarbon reservoirs in young sedimentary basins undergoing deformation, and therefore understanding the geohydrology of faults is essential for the successful exploration of energy resources. For actively deforming systems like the Santa Barbara Basin and Los Angeles Basin, we have found it useful to develop computational geohydrologic models to study the various coupled and nonlinear processes affecting multiphase fluid migration, including relative permeability, anisotropy, heterogeneity, capillarity, pore pressure, and phase saturation that affect hydrocarbon mobility within fault systems and to search the possible hydrogeologic conditions that enable the natural sequestration of prolific hydrocarbon reservoirs in these young basins. Subsurface geology, reservoir data (fluid pressure-temperature-chemistry), structural reconstructions, and seismic profiles provide important constraints for model geometry and parameter testing, and provide critical insight on how large-scale faults and aquifer networks influence the distribution and the hydrodynamics of liquid and gas-phase hydrocarbon migration. For example, pore pressure changes at a methane seepage site on the seafloor have been carefully analyzed to estimate large-scale fault permeability, which helps to constrain basin-scale natural gas migration models for the Santa Barbara Basin. We have developed our own 2-D multiphase finite element/finite IMPES numerical model, and successfully modeled hydrocarbon gas/liquid movement for intensely faulted and heterogeneous basin profiles of the Los Angeles Basin. Our simulations suggest that hydrocarbon reservoirs that are today aligned with the Newport-Inglewood Fault Zone were formed by massive hydrocarbon flows from deeply buried source beds in the central synclinal region during post-Miocene time. Fault permeability, capillarity forces between the fault and juxtaposition of aquifers/aquitards, source oil saturation, and rate of generation control the efficiency of a petroleum trap and carbon sequestration. This research is focused on natural processes in real geologic systems, but our results will also contribute to an understanding of the subsurface behavior of injected anthropogenic greenhouse gases, especially when targeted storage sites may be influenced by regional faults, which are ubiquitous in the Earth's crust.

  17. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-05-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  18. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-04-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  19. Lattice Boltzmann study of slip flow over structured surface with transverse slots

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Kai; Wang, Lei; Hou, Guoxiang; Leng, Wenjun

    2018-04-01

    Slip flow over structured superhydrophobic surface with transverse slots is investigated by the lattice Boltzmann method. The Shan-Chen multiphase model is employed to simulate the flow over gas bubbles in the slots. The Carnahan-Starling equation of state is applied to obtain large density ratio. The interface thickness of the multiphase model is discussed. We find that the Cahn number Cn should be smaller than 0.02 when the temperature T = 0.5T c to restrict the influence of interface thickness on slip length. Influences of slot fraction on slip length is then studied, and the result is compared with single LB simulation of which the interface is treated as free-slip boundary. The slip length obtained by the multiphase model is a little smaller. After that, the shape of the liquid-gas interface is considered, and simulations with different initial protrusion angles and capillary numbers are performed. Effective slip length as a function of initial protrusion angle is obtained. The result is in qualitative agreement with a previous study and main features are reproduced. Furthermore, the influence of Capillary number Ca is studied. Larger Ca causes larger interface deformation and smaller slip length. But when the interface is concaving into the slot, this influence is less obvious.

  20. The thermal evolution of pyroclastic density currents: Exploring the thermal histories of juvenile clasts of Tungurahua and Cotopaxi, Ecuador

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Degruyter, W.

    2010-12-01

    The thermal history of pyroclastic density currents (PDCs) is critical in determining flow dynamics and deposit characteristics. The thermal history of these flows depends on the particles’ internal rate of heat transfer and heat exchange between discrete particles and a gas phase. We examine the thermal history of a class of dense PDC exemplified by the eruption of Tungurahua (2006) and Cotopaxi (1877) that have abundant breadcrust bombs segregated in levees and in flow snouts. An open question in this type of PDC is the amount of air entrainment (and cooling) during transport. To understand the entrainment and cooling history of these flows we use a multiphase numerical model coupled with a Lagrangian model (Eulerian-Eulerian-Lagrangian [EEL]) that tracks the internal heat transfer and post-eruption bubble evolution in juvenile clasts. We combine the numerical study with the observation of the morphology and vesicularity of breadcrust bombs from dense pyroclastic density currents from Tungurahua and Cotopaxi. Breadcrust bombs are common in many deposits from mafic explosive eruptions, e.g. Montserrat, Cotopaxi, Guagua Pichincha, and Tungurahua volcanoes. At many locations these bombs have likely been transported as ballistics (interacting mostly with ambient air), although several instances of dense scoria bomb flows have been noted (e.g. Cotopaxi and Tungurahua, Ecuador). The dense flow deposits are generally rich in unabraided breadcrust bombs along the flow levee and occasionally along the entire transect of the flow. The breadcrust bombs range in size from tens of centimeters to meters. They can also be found draping around previous deposits suggesting a high temperature of deposition. We discuss the use of clast morphology with other thermal proxies to better understand the thermal evolution of individual PDC and the proportion of time clasts underwent transport in dense flows as compared to ballistic transport.

  1. Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.

    2017-12-01

    The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.

  2. Modeling antimicrobial tolerance and treatment of heterogeneous biofilms.

    PubMed

    Zhao, Jia; Seeluangsawat, Paisa; Wang, Qi

    2016-12-01

    A multiphasic, hydrodynamic model for spatially heterogeneous biofilms based on the phase field formulation is developed and applied to analyze antimicrobial tolerance of biofilms by acknowledging the existence of persistent and susceptible cells in the total population of bacteria. The model implements a new conversion rate between persistent and susceptible cells and its homogeneous dynamics is bench-marked against a known experiment quantitatively. It is then discretized and solved on graphic processing units (GPUs) in 3-D space and time. With the model, biofilm development and antimicrobial treatment of biofilms in a flow cell are investigated numerically. Model predictions agree qualitatively well with available experimental observations. Specifically, numerical results demonstrate that: (i) in a flow cell, nutrient, diffused in solvent and transported by hydrodynamics, has an apparent impact on persister formation, thereby antimicrobial persistence of biofilms; (ii) dosing antimicrobial agents inside biofilms is more effective than dosing through diffusion in solvent; (iii) periodic dosing is less effective in antimicrobial treatment of biofilms in a nutrient deficient environment than in a nutrient sufficient environment. This model provides us with a simulation tool to analyze mechanisms of biofilm tolerance to antimicrobial agents and to derive potentially optimal dosing strategies for biofilm control and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A Diffuse Interface Model with Immiscibility Preservation

    PubMed Central

    Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos

    2013-01-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207

  4. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  5. Remedial options for creosote-contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.J.; Delshad, M.; Oolman, T.

    2000-03-31

    Free-phase DNAPL recovery operations are becoming increasingly prevalent at creosote-contaminated aquifer sites. This paper illustrates the potential of both classical and innovative recovery methods. The UTCHEM multiphase flow and transport numerical simulator was used to predict the migration of creosote DNAPL during a hypothetical spill event, during a long-term redistribution after the spill, and for a variety of subsequent free-phase DNAPL recovery operations. The physical parameters used for the DNAPL and the aquifer in the model are estimates for the DNAPL and the aquifer in the model are estimates for a specific creosote DNAPL site. Other simulations were also conductedmore » using physical parameters that are typical of a trichloroethene (TCE) DNAPL. Dramatic differences in DNAPL migration were observed between these simulations.« less

  6. Numerical simulation of the pairwise interaction of deformable cells during migration in a microchannel

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Khismatullin, Damir B.

    2014-07-01

    Leukocytes and other circulating cells deform and move relatively to the channel flow in the lateral and translational directions. Their migratory property is important in immune response, hemostasis, cancer progression, delivery of nutrients, and microfluidic technologies such as cell separation and enrichment, and flow cytometry. Using our three-dimensional computational algorithm for multiphase viscoelastic flow, we have investigated the effect of pairwise interaction on the lateral and translational migration of circulating cells in a microchannel. The numerical simulation data show that when two cells with the same size and small separation distance interact, repulsive interaction take place until they reach the same lateral equilibrium position. During this process, they undergo swapping or passing, depending on the initial separation distance between each other. The threshold value of this distance increases with cell deformation, indicating that the cells experiencing larger deformation are more likely to swap. When a series of closely spaced cells with the same size are considered, they generally undergo damped oscillation in both lateral and translational directions until they reach equilibrium positions where they become evenly distributed in the flow direction (self-assembly phenomenon). A series of cells with a large lateral separation distance could collide repeatedly with each other, eventually crossing the centerline and entering the other side of the channel. For a series of cells with different deformability, more deformable cells, upon impact with less deformable cells, move to an equilibrium position closer to the centerline. The results of our study show that the bulk deformation of circulating cells plays a key role in their migration in a microchannel.

  7. Multiphase modeling of channelized pyroclastic density currents and the effect of confinement on mobility and entrainment

    NASA Astrophysics Data System (ADS)

    Kubo, A. I.; Dufek, J.

    2017-12-01

    Around explosive volcanic centers such as Mount Saint Helens, pyroclastic density currents (PDCs) pose a great risk to life and property. Understanding of the mobility and dynamics of PDCs and other gravity currents is vital to mitigating hazards of future eruptions. Evidence from pyroclastic deposits at Mount Saint Helens and one-dimensional modeling suggest that channelization of flows effectively increases run out distances. Dense flows are thought to scour and erode the bed leading to confinement for subsequent flows and could result in significant changes to predicted runout distance and mobility. Here, we present the results of three-dimensional multiphase models comparing confined and unconfined flows using simplified geometries. We focus on bed stress conditions as a proxy for conditions that could influence subsequent erosion and self-channelization. We also explore the controls on gas entrainment in all scenarios to determine how confinement impacts the particle concentration gradient, granular interactions, and mobility.

  8. Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin

    2013-11-01

    We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.

  9. Fingering, Fracturing and Dissolution in Granular Media

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Cueto-Felgueroso, L.; Trojer, M.; Zhao, B.; Fu, X.

    2014-12-01

    The displacement of one fluid by another in a porous medium give rise to a rich variety of hydrodynamic instabilities. Beyond their scientific value as fascinating models of pattern formation, unstable porous-media flows are essential to understanding many natural and man-made processes, including water infiltration in the vadose zone, carbon dioxide injection and storage in deep saline aquifers, and hydrocarbon recovery. Here, we review the pattern-selection mechanisms of a wide spectrum of porous-media flows that develop hydrodynamic instabilities, discuss their origin and the mathematical models that have been used to describe them. We point out many challenges that remain to be resolved in the context of multiphase flows, and suggest modeling approaches that may offer new quantitative understanding. In particular, I will present experimental, theoretical and computational results for: (1) fluid spreading under partial wetting; (2) the impact of wettability on viscously unstable multiphase flow in porous media; (3) capillary fracturing in granular media; and (4) rock dissolution during convective mixing in porous media.

  10. Large Eddy Simulation of Engineering Flows: A Bill Reynolds Legacy.

    NASA Astrophysics Data System (ADS)

    Moin, Parviz

    2004-11-01

    The term, Large eddy simulation, LES, was coined by Bill Reynolds, thirty years ago when he and his colleagues pioneered the introduction of LES in the engineering community. Bill's legacy in LES features his insistence on having a proper mathematical definition of the large scale field independent of the numerical method used, and his vision for using numerical simulation output as data for research in turbulence physics and modeling, just as one would think of using experimental data. However, as an engineer, Bill was pre-dominantly interested in the predictive capability of computational fluid dynamics and in particular LES. In this talk I will present the state of the art in large eddy simulation of complex engineering flows. Most of this technology has been developed in the Department of Energy's ASCI Program at Stanford which was led by Bill in the last years of his distinguished career. At the core of this technology is a fully implicit non-dissipative LES code which uses unstructured grids with arbitrary elements. A hybrid Eulerian/ Largangian approach is used for multi-phase flows, and chemical reactions are introduced through dynamic equations for mixture fraction and reaction progress variable in conjunction with flamelet tables. The predictive capability of LES is demonstrated in several validation studies in flows with complex physics and complex geometry including flow in the combustor of a modern aircraft engine. LES in such a complex application is only possible through efficient utilization of modern parallel super-computers which was recognized and emphasized by Bill from the beginning. The presentation will include a brief mention of computer science efforts for efficient implementation of LES.

  11. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Kovacevic, Radovan

    2010-12-01

    The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.

  12. Rheological flow laws for multiphase magmas: An empirical approach

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca

    2016-07-01

    The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as ;lubricant; objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to ;apparent shear-thickening; and ;apparent shear-thinning; for the behaviours observed at low and high crystallinity, respectively. At low crystallinity, increasing deformation rate favours the transfer of gas bubbles in regions of high strain localisation, which, in turn, leads to outgassing and the observed increase of viscosity with increasing strain-rate. At high crystallinity gas bubbles remain trapped within crystals and no outgassing occurs, leading to strain localisation in melt-rich shear bands and to a decrease of viscosity with increasing strain-rate, behaviour observed also in crystal-bearing suspensions. Increasing the volume fraction of weak phases induces limited variation of the stress exponent and pre-exponential factor in both apparent shear-thickening and apparent shear-thinning regimes; conversely, the activation energy is strongly dependent on gas bubble and melt volume fractions. A transient rheology from apparent shear-thickening to apparent shear-thinning behaviour is observed for a crystallinity of 44 vol.%. The proposed equations can be implemented in numerical models dealing with the flow of crystal- and bubble-bearing magmas. We present results of analytical simulations showing the effect of the rheology of three-phase magmas on conduit flow dynamics, and show that limited bubble volumes (< 10 vol.%) lead to strain localisation at the conduit margins during the ascent of crystal-rich lava domes and crystal-poor obsidian flows.

  13. Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD

    NASA Astrophysics Data System (ADS)

    Agostinelli, Giulia; Baglietto, Emilio

    2017-11-01

    The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.

  14. Dynamical phase separation using a microfluidic device: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  15. A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model

    NASA Astrophysics Data System (ADS)

    Jiang, Yongyue; Li, Li; Zhao, Zhijiang

    2017-11-01

    Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.

  16. FV-MHMM: A Discussion on Weighting Schemes.

    NASA Astrophysics Data System (ADS)

    Franc, J.; Gerald, D.; Jeannin, L.; Egermann, P.; Masson, R.

    2016-12-01

    Upscaling or homogenization techniques consist in finding block-equivalentor equivalent upscaled properties on a coarse grid from heterogeneousproperties defined on an underlying fine grid. However, this couldbecome costly and resource consuming. Harder et al., 2013, have developeda Multiscale Hybrid-Mixed Method (MHMM) of upscaling to treat Darcytype equations on heterogeneous fields formulated using a finite elementmethod. Recently, Franc et al. 2016, has extended this method of upscalingto finite volume formulation (FV-MHMM). Although convergence refiningLagrange multipliers space has been observed, numerical artefactscan occur while trapping numerically the flow in regions of low permeability. This work will present the development of the method along with theresults obtained from its classical formulation. Then, two weightingschemes and their benefits on the FV-MHMM method will be presented insome simple random permeability cases. Next example will involve alarger heterogeneous 2D permeability field extracted from the 10thSPE test case. Eventually, multiphase flow will be addressed asan extension of this single phase flow method. An elliptic pressureequation solved on the coarse grid via FV-MHMM will be sequentiallycoupled with a hyperbolic saturation equation on the fine grid. Theimproved accuracy thanks to the weighting scheme will be measuredcompared to a finite volume fine grid solution. References: Harder, C., Paredes, D. and Valentin, F., A family of multiscalehybrid-mixed finite element methods for the Darcy equation with roughcoefficients, Journal of Computational Physics, 2013. Franc J., Debenest G., Jeannin L., Egermann P. and Masson R., FV-MHMMfor reservoir modelling ECMOR XV-15th European Conference on the Mathematicsof Oil Recovery, 2015.

  17. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  18. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.

    PubMed

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-02-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.

  19. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport

    PubMed Central

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-01-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores’ deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles. PMID:29487906

  20. Multiphase flow modeling and simulation of explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Neri, Augusto

    Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation of the initial vertical jet, the column collapse, and the building of the pyroclastic fountain, followed by the generation of radially spreading pyroclastic flows. The development of thermal convective instabilities in the flow lead to the formation of co-ignimbritic or phoenix clouds. Simulation results strongly highlight the importance of the multiphase flow formulation of the mixture. Large particles tend to segregate and sediment along the ground, whereas fine particles tend to form ascending buoyant plumes. Mixtures rich in fine grained particles produce larger runout of the flow and larger ascending plumes than mixtures rich in coarse particles. Simulation results appear to be qualitatively in agreement with field observations, but require to be fully validated by the simulation of well-known test cases.

Top