NASA Astrophysics Data System (ADS)
Jorris, Timothy R.
2007-12-01
To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.
NASA Technical Reports Server (NTRS)
Sreekanta Murthy, T.
1992-01-01
Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.
A technique to remove the tensile instability in weakly compressible SPH
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Yu, Peng
2018-01-01
When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hideshi; Soeda, Takeshi
2015-03-01
A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.
Solving fractional optimal control problems within a Chebyshev-Legendre operational technique
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.
2017-06-01
In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.
Optimal time-domain technique for pulse width modulation in power electronics
NASA Astrophysics Data System (ADS)
Mayergoyz, I.; Tyagi, S.
2018-05-01
Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
Solid oxide fuel cell simulation and design optimization with numerical adjoint techniques
NASA Astrophysics Data System (ADS)
Elliott, Louie C.
This dissertation reports on the application of numerical optimization techniques as applied to fuel cell simulation and design. Due to the "multi-physics" inherent in a fuel cell, which results in a highly coupled and non-linear behavior, an experimental program to analyze and improve the performance of fuel cells is extremely difficult. This program applies new optimization techniques with computational methods from the field of aerospace engineering to the fuel cell design problem. After an overview of fuel cell history, importance, and classification, a mathematical model of solid oxide fuel cells (SOFC) is presented. The governing equations are discretized and solved with computational fluid dynamics (CFD) techniques including unstructured meshes, non-linear solution methods, numerical derivatives with complex variables, and sensitivity analysis with adjoint methods. Following the validation of the fuel cell model in 2-D and 3-D, the results of the sensitivity analysis are presented. The sensitivity derivative for a cost function with respect to a design variable is found with three increasingly sophisticated techniques: finite difference, direct differentiation, and adjoint. A design cycle is performed using a simple optimization method to improve the value of the implemented cost function. The results from this program could improve fuel cell performance and lessen the world's dependence on fossil fuels.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Research on an augmented Lagrangian penalty function algorithm for nonlinear programming
NASA Technical Reports Server (NTRS)
Frair, L.
1978-01-01
The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
Flow optimization study of a batch microfluidics PET tracer synthesizing device
Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.
2010-01-01
We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595
Numerical optimization methods for controlled systems with parameters
NASA Astrophysics Data System (ADS)
Tyatyushkin, A. I.
2017-10-01
First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton's method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.
NASA Astrophysics Data System (ADS)
Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.
2018-05-01
Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.
Rodríguez-Dorado, Rosalia; Landín, Mariana; Altai, Ayça; Russo, Paola; Aquino, Rita P; Del Gaudio, Pasquale
2018-03-01
Numerous studies have been focused on hydrophobic compounds encapsulation as oils. In fact, oils can provide numerous health benefits as synergic ingredient combined with other hydrophobic active ingredients. However, stable microparticles for pharmaceutical purposes are difficult to achieve when commonly techniques are used. In this work, sunflower oil was encapsulated in calcium-alginate capsules by prilling technique in co-axial configuration. Core-shell beads were produced by inverse gelation directly at the nozzle using a w/o emulsion containing aqueous calcium chloride solution in sunflower oil pumped through the inner nozzle while an aqueous alginate solution, coming out from the annular nozzle, produced the beads shell. To optimize process parameters artificial intelligence tools were proposed to optimize the numerous prilling process variables. Homogeneous and spherical microcapsules with narrow size distribution and a thin alginate shell were obtained when the parameters as w/o constituents, polymer concentrations, flow rates and frequency of vibration were optimized by two commercial software, FormRules® and INForm®, which implement neurofuzzy logic and Artificial Neural Networks together with genetic algorithms, respectively. This technique constitutes an innovative approach for hydrophobic compounds microencapsulation. Copyright © 2018 Elsevier B.V. All rights reserved.
Performance of Grey Wolf Optimizer on large scale problems
NASA Astrophysics Data System (ADS)
Gupta, Shubham; Deep, Kusum
2017-01-01
For solving nonlinear continuous problems of optimization numerous nature inspired optimization techniques are being proposed in literature which can be implemented to solve real life problems wherein the conventional techniques cannot be applied. Grey Wolf Optimizer is one of such technique which is gaining popularity since the last two years. The objective of this paper is to investigate the performance of Grey Wolf Optimization Algorithm on large scale optimization problems. The Algorithm is implemented on 5 common scalable problems appearing in literature namely Sphere, Rosenbrock, Rastrigin, Ackley and Griewank Functions. The dimensions of these problems are varied from 50 to 1000. The results indicate that Grey Wolf Optimizer is a powerful nature inspired Optimization Algorithm for large scale problems, except Rosenbrock which is a unimodal function.
2018-03-14
pricing, Appl. Math . Comp. Vol.305, 174-187 (2017) 5. W. Li, S. Wang, Pricing European options with proportional transaction costs and stochastic...for fractional differential equation. Numer. Math . Theor. Methods Appl. 5, 229–241, 2012. [23] Kilbas A.A. and Marzan, S.A., Cauchy problem for...numerical technique for solving fractional optimal control problems, Comput. Math . Appl., 62, Issue 3, 1055–1067, 2011. [26] Lotfi A., Yousefi SA., Dehghan M
Overview: Applications of numerical optimization methods to helicopter design problems
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
There are a number of helicopter design problems that are well suited to applications of numerical design optimization techniques. Adequate implementation of this technology will provide high pay-offs. There are a number of numerical optimization programs available, and there are many excellent response/performance analysis programs developed or being developed. But integration of these programs in a form that is usable in the design phase should be recognized as important. It is also necessary to attract the attention of engineers engaged in the development of analysis capabilities and to make them aware that analysis capabilities are much more powerful if integrated into design oriented codes. Frequently, the shortcoming of analysis capabilities are revealed by coupling them with an optimization code. Most of the published work has addressed problems in preliminary system design, rotor system/blade design or airframe design. Very few published results were found in acoustics, aerodynamics and control system design. Currently major efforts are focused on vibration reduction, and aerodynamics/acoustics applications appear to be growing fast. The development of a computer program system to integrate the multiple disciplines required in helicopter design with numerical optimization technique is needed. Activities in Britain, Germany and Poland are identified, but no published results from France, Italy, the USSR or Japan were found.
Determination of the Conservation Time of Periodicals for Optimal Shelf Maintenance of a Library.
ERIC Educational Resources Information Center
Miyamoto, Sadaaki; Nakayama, Kazuhiko
1981-01-01
Presents a method based on a constrained optimization technique that determines the time of removal of scientific periodicals from the shelf of a library. A geometrical interpretation of the theoretical result is given, and a numerical example illustrates how the technique is applicable to real bibliographic data. (FM)
Geometric versus numerical optimal control of a dissipative spin-(1/2) particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapert, M.; Sugny, D.; Zhang, Y.
2010-12-15
We analyze the saturation of a nuclear magnetic resonance (NMR) signal using optimal magnetic fields. We consider both the problems of minimizing the duration of the control and its energy for a fixed duration. We solve the optimal control problems by using geometric methods and a purely numerical approach, the grape algorithm, the two methods being based on the application of the Pontryagin maximum principle. A very good agreement is obtained between the two results. The optimal solutions for the energy-minimization problem are finally implemented experimentally with available NMR techniques.
Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.
Götz, Andreas W; Kollmar, Christian; Hess, Bernd A
2005-09-01
We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.
Computational experiments in the optimal slewing of flexible structures
NASA Technical Reports Server (NTRS)
Baker, T. E.; Polak, Lucian Elijah
1989-01-01
Numerical experiments on the problem of moving a flexible beam are discussed. An optimal control problem is formulated and transcribed into a form which can be solved using semi-infinite optimization techniques. All experiments were carried out on a SUN 3 microcomputer.
New efficient optimizing techniques for Kalman filters and numerical weather prediction models
NASA Astrophysics Data System (ADS)
Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis
2016-06-01
The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.
Neighboring extremal optimal control design including model mismatch errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T.J.; Hull, D.G.
1994-11-01
The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.
NASA Astrophysics Data System (ADS)
Yu, Long; Druckenbrod, Markus; Greve, Martin; Wang, Ke-qi; Abdel-Maksoud, Moustafa
2015-10-01
A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.
Continuous Optimization on Constraint Manifolds
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1988-01-01
This paper demonstrates continuous optimization on the differentiable manifold formed by continuous constraint functions. The first order tensor geodesic differential equation is solved on the manifold in both numerical and closed analytic form for simple nonlinear programs. Advantages and disadvantages with respect to conventional optimization techniques are discussed.
Optimal design of solidification processes
NASA Technical Reports Server (NTRS)
Dantzig, Jonathan A.; Tortorelli, Daniel A.
1991-01-01
An optimal design algorithm is presented for the analysis of general solidification processes, and is demonstrated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The optimization uses traditional numerical programming techniques which require the evaluation of cost and constraint functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demonstrated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain the desired temperature profile in the crystal, and hence to maximize the crystal's quality. Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective 1-D search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we incorporate the conjugate gradient and quasi-Newton methods for unconstrained problems. The efficiency and effectiveness of each algorithm is presented in the example problem.
Program to Optimize Simulated Trajectories (POST). Volume 1: Formulation manual
NASA Technical Reports Server (NTRS)
Brauer, G. L.; Cornick, D. E.; Habeger, A. R.; Petersen, F. M.; Stevenson, R.
1975-01-01
A general purpose FORTRAN program for simulating and optimizing point mass trajectories (POST) of aerospace vehicles is described. The equations and the numerical techniques used in the program are documented. Topics discussed include: coordinate systems, planet model, trajectory simulation, auxiliary calculations, and targeting and optimization.
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
Optimal startup control of a jacketed tubular reactor.
NASA Technical Reports Server (NTRS)
Hahn, D. R.; Fan, L. T.; Hwang, C. L.
1971-01-01
The optimal startup policy of a jacketed tubular reactor, in which a first-order, reversible, exothermic reaction takes place, is presented. A distributed maximum principle is presented for determining weak necessary conditions for optimality of a diffusional distributed parameter system. A numerical technique is developed for practical implementation of the distributed maximum principle. This involves the sequential solution of the state and adjoint equations, in conjunction with a functional gradient technique for iteratively improving the control function.
NASA Astrophysics Data System (ADS)
Chen, Shiyu; Li, Haiyang; Baoyin, Hexi
2018-06-01
This paper investigates a method for optimizing multi-rendezvous low-thrust trajectories using indirect methods. An efficient technique, labeled costate transforming, is proposed to optimize multiple trajectory legs simultaneously rather than optimizing each trajectory leg individually. Complex inner-point constraints and a large number of free variables are one main challenge in optimizing multi-leg transfers via shooting algorithms. Such a difficulty is reduced by first optimizing each trajectory leg individually. The results may be, next, utilized as an initial guess in the simultaneous optimization of multiple trajectory legs. In this paper, the limitations of similar techniques in previous research is surpassed and a homotopic approach is employed to improve the convergence efficiency of the shooting process in multi-rendezvous low-thrust trajectory optimization. Numerical examples demonstrate that newly introduced techniques are valid and efficient.
Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun
2015-10-01
Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.
Solving traveling salesman problems with DNA molecules encoding numerical values.
Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak
2004-12-01
We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.
Numerical approach of collision avoidance and optimal control on robotic manipulators
NASA Technical Reports Server (NTRS)
Wang, Jyhshing Jack
1990-01-01
Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured.
NASA Technical Reports Server (NTRS)
Burrows, R. R.
1972-01-01
A particular type of three-impulse transfer between two circular orbits is analyzed. The possibility of three plane changes is recognized, and the problem is to optimally distribute these plane changes to minimize the sum of the individual impulses. Numerical difficulties and their solution are discussed. Numerical results obtained from a conjugate gradient technique are presented for both the case where the individual plane changes are unconstrained and for the case where they are constrained. Possibly not unexpectedly, multiple minima are found. The techniques presented could be extended to the finite burn case, but primarily the contents are addressed to preliminary mission design and vehicle sizing.
Applications of numerical optimization methods to helicopter design problems: A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1985-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
High-performance computing — an overview
NASA Astrophysics Data System (ADS)
Marksteiner, Peter
1996-08-01
An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.
A modified form of conjugate gradient method for unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Ghani, Nur Hamizah Abdul; Rivaie, Mohd.; Mamat, Mustafa
2016-06-01
Conjugate gradient (CG) methods have been recognized as an interesting technique to solve optimization problems, due to the numerical efficiency, simplicity and low memory requirements. In this paper, we propose a new CG method based on the study of Rivaie et al. [7] (Comparative study of conjugate gradient coefficient for unconstrained Optimization, Aus. J. Bas. Appl. Sci. 5(2011) 947-951). Then, we show that our method satisfies sufficient descent condition and converges globally with exact line search. Numerical results show that our proposed method is efficient for given standard test problems, compare to other existing CG methods.
Vortex generator design for aircraft inlet distortion as a numerical optimization problem
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Levy, Ralph
1991-01-01
Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.
A hybrid nonlinear programming method for design optimization
NASA Technical Reports Server (NTRS)
Rajan, S. D.
1986-01-01
Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.
Jig-Shape Optimization of a Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2018-01-01
A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on in-house object-oriented optimization tool.
2D Inviscid and Viscous Inverse Design Using Continuous Adjoint and Lax-Wendroff Formulation
NASA Astrophysics Data System (ADS)
Proctor, Camron Lisle
The continuous adjoint (CA) technique for optimization and/or inverse-design of aerodynamic components has seen nearly 30 years of documented success in academia. The benefits of using CA versus a direct sensitivity analysis are shown repeatedly in the literature. However, the use of CA in industry is relatively unheard-of. The sparseness of industry contributions to the field may be attributed to the tediousness of the derivation and/or to the difficulties in implementation due to the lack of well-documented adjoint numerical methods. The focus of this work has been to thoroughly document the techniques required to build a two-dimensional CA inverse-design tool. To this end, this work begins with a short background on computational fluid dynamics (CFD) and the use of optimization tools in conjunction with CFD tools to solve aerodynamic optimization problems. A thorough derivation of the continuous adjoint equations and the accompanying gradient calculations for inviscid and viscous constraining equations follows the introduction. Next, the numerical techniques used for solving the partial differential equations (PDEs) governing the flow equations and the adjoint equations are described. Numerical techniques for the supplementary equations are discussed briefly. Subsequently, a verification of the efficacy of the inverse design tool, for the inviscid adjoint equations as well as possible numerical implementation pitfalls are discussed. The NACA0012 airfoil is used as an initial airfoil and surface pressure distribution and the NACA16009 is used as the desired pressure and vice versa. Using a Savitsky-Golay gradient filter, convergence (defined as a cost function<1E-5) is reached in approximately 220 design iteration using 121 design variables. The inverse-design using inviscid adjoint equations results are followed by the discussion of the viscous inverse design results and techniques used to further the convergence of the optimizer. The relationship between limiting step-size and convergence in a line-search optimization is shown to slightly decrease the final cost function at significant computational cost. A gradient damping technique is presented and shown to increase the convergence rate for the optimization in viscous problems, at a negligible increase in computational cost, but is insufficient to converge the solution. Systematically including adjacent surface vertices in the perturbation of a design variable, also a surface vertex, is shown to affect the convergence capability of the viscous optimizer. Finally, a comparison of using inviscid adjoint equations, as opposed to viscous adjoint equations, on viscous flow is presented, and the inviscid adjoint paired with viscous flow is found to reduce the cost function further than the viscous adjoint for the presented problem.
Extended Analytic Device Optimization Employing Asymptotic Expansion
NASA Technical Reports Server (NTRS)
Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred
2013-01-01
Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.
Least squares polynomial chaos expansion: A review of sampling strategies
NASA Astrophysics Data System (ADS)
Hadigol, Mohammad; Doostan, Alireza
2018-04-01
As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling method, dubbed alphabetic-coherence-optimal, that employs the so-called alphabetic optimality criteria used in the context of ODE in conjunction with coherence-optimal samples. A comparison between the empirical performance of the selected sampling methods applied to three numerical examples, including high-order PCE's, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for practitioners seeking the most suitable sampling technique for a problem at hand. We observed that the alphabetic-coherence-optimal technique outperforms other sampling methods, specially when high-order ODE are employed and/or the oversampling ratio is low.
SNR Improvement of QEPAS System by Preamplifier Circuit Optimization and Frequency Locked Technique
NASA Astrophysics Data System (ADS)
Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Jiang, Fengting; Wang, Mengyao
2018-06-01
Preamplifier circuit noise is of great importance in quartz enhanced photoacoustic spectroscopy (QEPAS) system. In this paper, several noise sources are evaluated and discussed in detail. Based on the noise characteristics, the corresponding noise reduction method is proposed. In addition, a frequency locked technique is introduced to further optimize the QEPAS system noise and improve signal, which achieves a better performance than the conventional frequency scan method. As a result, the signal-to-noise ratio (SNR) could be increased 14 times by utilizing frequency locked technique and numerical averaging technique in the QEPAS system for water vapor detection.
Inverse problems and optimal experiment design in unsteady heat transfer processes identification
NASA Technical Reports Server (NTRS)
Artyukhin, Eugene A.
1991-01-01
Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.
Formal optimization of hovering performance using free wake lifting surface theory
NASA Technical Reports Server (NTRS)
Chung, S. Y.
1986-01-01
Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.
Optimization of porthole die geometrical variables by Taguchi method
NASA Astrophysics Data System (ADS)
Gagliardi, F.; Ciancio, C.; Ambrogio, G.; Filice, L.
2017-10-01
Porthole die extrusion is commonly used to manufacture hollow profiles made of lightweight alloys for numerous industrial applications. The reliability of extruded parts is affected strongly by the quality of the longitudinal and transversal seam welds. According to that, the die geometry must be designed correctly and the process parameters must be selected properly to achieve the desired product quality. In this study, numerical 3D simulations have been created and run to investigate the role of various geometrical variables on punch load and maximum pressure inside the welding chamber. These are important outputs to take into account affecting, respectively, the necessary capacity of the extrusion press and the quality of the welding lines. The Taguchi technique has been used to reduce the number of the required numerical simulations necessary for considering the influence of twelve different geometric variables. Moreover, the Analysis of variance (ANOVA) has been implemented to individually analyze the effect of each input parameter on the two responses. Then, the methodology has been utilized to determine the optimal process configuration individually optimizing the two investigated process outputs. Finally, the responses of the optimized parameters have been verified through finite element simulations approximating the predicted value closely. This study shows the feasibility of the Taguchi technique for predicting performance, optimization and therefore for improving the design of a porthole extrusion process.
Wilson Dslash Kernel From Lattice QCD Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Balint; Smelyanskiy, Mikhail; Kalamkar, Dhiraj D.
2015-07-01
Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show themore » technique gives excellent performance on regular Xeon Architecture as well.« less
Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique
NASA Astrophysics Data System (ADS)
Kulkarni, P. S.
2017-04-01
Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.
A modified three-term PRP conjugate gradient algorithm for optimization models.
Wu, Yanlin
2017-01-01
The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.
NASA Technical Reports Server (NTRS)
Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.
1987-01-01
A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.
An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function
NASA Technical Reports Server (NTRS)
Wrenn, Gregory A.
1989-01-01
A technique is described for converting a constrained optimization problem into an unconstrained problem. The technique transforms one of more objective functions into reduced objective functions, which are analogous to goal constraints used in the goal programming method. These reduced objective functions are appended to the set of constraints and an envelope of the entire function set is computed using the Kreisselmeir-Steinhauser function. This envelope function is then searched for an unconstrained minimum. The technique may be categorized as a SUMT algorithm. Advantages of this approach are the use of unconstrained optimization methods to find a constrained minimum without the draw down factor typical of penalty function methods, and that the technique may be started from the feasible or infeasible design space. In multiobjective applications, the approach has the advantage of locating a compromise minimum design without the need to optimize for each individual objective function separately.
Numerical model updating technique for structures using firefly algorithm
NASA Astrophysics Data System (ADS)
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.
1992-01-01
A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.
Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A
2012-07-02
Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of generic distributed biological systems.
GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING
Liu, Hongcheng; Yao, Tao; Li, Runze
2015-01-01
This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126
Selected Bibliography on Optimizing Techniques in Statistics
1981-08-01
problems in business, industry and .ogovern nt ae f rmulated as optimization problem. Topics in optimization constitute an essential area of study in...numerical, iii) mathematical programming, and (iv) variational. We provide pertinent references with statistical applications Sin the above areas in Part I...TMS Advanced Studies in Managentnt Sciences, North-Holland PIIENli iiiany, Amsterdam. (To appear.) Spang, H. A. (1962). A review of minimization
NASA Astrophysics Data System (ADS)
Miyagawa, Chihiro; Kobayashi, Takumi; Taishi, Toshinori; Hoshikawa, Keigo
2014-09-01
Based on the growth of 3-inch diameter c-axis sapphire using the vertical Bridgman (VB) technique, numerical simulations were made and used to guide the growth of a 6-inch diameter sapphire. A 2D model of the VB hot-zone was constructed, the seeding interface shape of the 3-inch diameter sapphire as revealed by green laser scattering was estimated numerically, and the temperature distributions of two VB hot-zone models designed for 6-inch diameter sapphire growth were numerically simulated to achieve the optimal growth of large crystals. The hot-zone model with one heater was selected and prepared, and 6-inch diameter c-axis sapphire boules were actually grown, as predicted by the numerical results.
Jig-Shape Optimization of a Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2018-01-01
A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run.
Optimal Micropatterns in 2D Transport Networks and Their Relation to Image Inpainting
NASA Astrophysics Data System (ADS)
Brancolini, Alessio; Rossmanith, Carolin; Wirth, Benedikt
2018-04-01
We consider two different variational models of transport networks: the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives. As applications of the convex formulation, we use it to perform numerical simulations (to our knowledge this is the first numerical treatment of urban planning), and we prove a lower bound for the network cost that matches a known upper bound (in terms of how the cost scales in the model parameters) which helps better understand optimal networks and their minimal costs.
Interior point techniques for LP and NLP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evtushenko, Y.
By using surjective mapping the initial constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem we use the generalized gradient-projection method and Newton`s method. After inverse transformation to the initial space we obtain the family of numerical methods for solving optimization problems with equality and inequality constraints. In the linear programming case after some simplification we obtain Dikin`s algorithm, affine scaling algorithm and generalized primal dual interior point linear programming algorithm.
NASA Technical Reports Server (NTRS)
Nash, Stephen G.; Polyak, R.; Sofer, Ariela
1994-01-01
When a classical barrier method is applied to the solution of a nonlinear programming problem with inequality constraints, the Hessian matrix of the barrier function becomes increasingly ill-conditioned as the solution is approached. As a result, it may be desirable to consider alternative numerical algorithms. We compare the performance of two methods motivated by barrier functions. The first is a stabilized form of the classical barrier method, where a numerically stable approximation to the Newton direction is used when the barrier parameter is small. The second is a modified barrier method where a barrier function is applied to a shifted form of the problem, and the resulting barrier terms are scaled by estimates of the optimal Lagrange multipliers. The condition number of the Hessian matrix of the resulting modified barrier function remains bounded as the solution to the constrained optimization problem is approached. Both of these techniques can be used in the context of a truncated-Newton method, and hence can be applied to large problems, as well as on parallel computers. In this paper, both techniques are applied to problems with bound constraints and we compare their practical behavior.
NASA Astrophysics Data System (ADS)
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Modeling of tool path for the CNC sheet cutting machines
NASA Astrophysics Data System (ADS)
Petunin, Aleksandr A.
2015-11-01
In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.
Aerodynamic shape optimization using control theory
NASA Technical Reports Server (NTRS)
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
Multiple control strategies for prevention of avian influenza pandemic.
Ullah, Roman; Zaman, Gul; Islam, Saeed
2014-01-01
We present the prevention of avian influenza pandemic by adjusting multiple control functions in the human-to-human transmittable avian influenza model. First we show the existence of the optimal control problem; then by using both analytical and numerical techniques, we investigate the cost-effective control effects for the prevention of transmission of disease. To do this, we use three control functions, the effort to reduce the number of contacts with human infected with mutant avian influenza, the antiviral treatment of infected individuals, and the effort to reduce the number of infected birds. We completely characterized the optimal control and compute numerical solution of the optimality system by using an iterative method.
Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows
NASA Astrophysics Data System (ADS)
McClure, Jeffrey; Yarusevych, Serhiy
2015-11-01
The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.
Controlling the Transport of an Ion: Classical and Quantum Mechanical Solutions
2014-07-09
quantum systems: tools, achievements, and limitations Christiane P Koch Shortcuts to adiabaticity for an ion in a rotating radially- tight trap M Palmero...Keywords: coherent control, ion traps, quantum information, optimal control theory 1. Introduction Control methods are key enabling techniques in many...figure 6. 3.4. Feasibility analysis of quantum optimal control Numerical optimization of the wavepacket motion is expected to become necessary once
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
A multilevel control system for the large space telescope. [numerical analysis/optimal control
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Sundareshan, S. K.; Vukcevic, M. B.
1975-01-01
A multilevel scheme was proposed for control of Large Space Telescope (LST) modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions. The multilevel stabilization and optimization methods are presented as general tools for design and then used in the design of the LST Control System. The methods are entirely computerized, so that they can accommodate higher order LST models with both conceptual and numerical advantages over standard straightforward design techniques.
Modified Newton-Raphson GRAPE methods for optimal control of spin systems
NASA Astrophysics Data System (ADS)
Goodwin, D. L.; Kuprov, Ilya
2016-05-01
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.
NASA Astrophysics Data System (ADS)
Faria, Paula
2010-09-01
For the past few years, the potential of transcranial direct current stimulation (tDCS) for the treatment of several pathologies has been investigated. Knowledge of the current density distribution is an important factor in optimizing such applications of tDCS. For this goal, we used the finite element method to solve the Laplace equation in a spherical head model in order to investigate the three dimensional distribution of the current density and the variation of its intensity with depth using different electrodes montages: the traditional one with two sponge electrodes and new electrode montages: with sponge and EEG electrodes and with EEG electrodes varying the numbers of electrodes. The simulation results confirm the effectiveness of the mixed system which may allow the use of tDCS and EEG recording concomitantly and may help to optimize this neuronal stimulation technique. The numerical results were used in a promising application of tDCS in epilepsy.
Three-dimensional shape optimization of a cemented hip stem and experimental validations.
Higa, Masaru; Tanino, Hiromasa; Nishimura, Ikuya; Mitamura, Yoshinori; Matsuno, Takeo; Ito, Hiroshi
2015-03-01
This study proposes novel optimized stem geometry with low stress values in the cement using a finite element (FE) analysis combined with an optimization procedure and experimental measurements of cement stress in vitro. We first optimized an existing stem geometry using a three-dimensional FE analysis combined with a shape optimization technique. One of the most important factors in the cemented stem design is to reduce stress in the cement. Hence, in the optimization study, we minimized the largest tensile principal stress in the cement mantle under a physiological loading condition by changing the stem geometry. As the next step, the optimized stem and the existing stem were manufactured to validate the usefulness of the numerical models and the results of the optimization in vitro. In the experimental study, strain gauges were embedded in the cement mantle to measure the strain in the cement mantle adjacent to the stems. The overall trend of the experimental study was in good agreement with the results of the numerical study, and we were able to reduce the largest stress by more than 50% in both shape optimization and strain gauge measurements. Thus, we could validate the usefulness of the numerical models and the results of the optimization using the experimental models. The optimization employed in this study is a useful approach for developing new stem designs.
Optimal-adaptive filters for modelling spectral shape, site amplification, and source scaling
Safak, Erdal
1989-01-01
This paper introduces some applications of optimal filtering techniques to earthquake engineering by using the so-called ARMAX models. Three applications are presented: (a) spectral modelling of ground accelerations, (b) site amplification (i.e., the relationship between two records obtained at different sites during an earthquake), and (c) source scaling (i.e., the relationship between two records obtained at a site during two different earthquakes). A numerical example for each application is presented by using recorded ground motions. The results show that the optimal filtering techniques provide elegant solutions to above problems, and can be a useful tool in earthquake engineering.
Two alternative ways for solving the coordination problem in multilevel optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1991-01-01
Two techniques for formulating the coupling between levels in multilevel optimization by linear decomposition, proposed as improvements over the original formulation, now several years old, that relied on explicit equality constraints which were shown by application experience as occasionally causing numerical difficulties. The two new techniques represent the coupling without using explicit equality constraints, thus avoiding the above diffuculties and also reducing computational cost of the procedure. The old and new formulations are presented in detail and illustrated by an example of a structural optimization. A generic version of the improved algorithm is also developed for applications to multidisciplinary systems not limited to structures.
A comparison of dynamic and static economic models of uneven-aged stand management
Robert G. Haight
1985-01-01
Numerical techniques have been used to compute the discrete-time sequence of residual diameter distributions that maximize the present net worth (PNW) of harvestable volume from an uneven-aged stand. Results contradicted optimal steady-state diameter distributions determined with static analysis. In this paper, optimality conditions for solutions to dynamic and static...
Multiobjective optimization approach: thermal food processing.
Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R
2009-01-01
The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field.
NASA Astrophysics Data System (ADS)
Liao, Haitao; Wu, Wenwang; Fang, Daining
2018-07-01
A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.
Performance Optimization of Marine Science and Numerical Modeling on HPC Cluster
Yang, Dongdong; Yang, Hailong; Wang, Luming; Zhou, Yucong; Zhang, Zhiyuan; Wang, Rui; Liu, Yi
2017-01-01
Marine science and numerical modeling (MASNUM) is widely used in forecasting ocean wave movement, through simulating the variation tendency of the ocean wave. Although efforts have been devoted to improve the performance of MASNUM from various aspects by existing work, there is still large space unexplored for further performance improvement. In this paper, we aim at improving the performance of propagation solver and data access during the simulation, in addition to the efficiency of output I/O and load balance. Our optimizations include several effective techniques such as the algorithm redesign, load distribution optimization, parallel I/O and data access optimization. The experimental results demonstrate that our approach achieves higher performance compared to the state-of-the-art work, about 3.5x speedup without degrading the prediction accuracy. In addition, the parameter sensitivity analysis shows our optimizations are effective under various topography resolutions and output frequencies. PMID:28045972
MIDACO on MINLP space applications
NASA Astrophysics Data System (ADS)
Schlueter, Martin; Erb, Sven O.; Gerdts, Matthias; Kemble, Stephen; Rückmann, Jan-J.
2013-04-01
A numerical study on two challenging mixed-integer non-linear programming (MINLP) space applications and their optimization with MIDACO, a recently developed general purpose optimization software, is presented. These applications are the optimal control of the ascent of a multiple-stage space launch vehicle and the space mission trajectory design from Earth to Jupiter using multiple gravity assists. Additionally, an NLP aerospace application, the optimal control of an F8 aircraft manoeuvre, is discussed and solved. In order to enhance the optimization performance of MIDACO a hybridization technique, coupling MIDACO with an SQP algorithm, is presented for two of these three applications. The numerical results show, that the applications can be solved to their best known solution (or even new best solution) in a reasonable time by the considered approach. Since using the concept of MINLP is still a novelty in the field of (aero)space engineering, the demonstrated capabilities are seen as very promising.
NASA Astrophysics Data System (ADS)
Khatir, Samir; Dekemele, Kevin; Loccufier, Mia; Khatir, Tawfiq; Abdel Wahab, Magd
2018-02-01
In this paper, a technique is presented for the detection and localization of an open crack in beam-like structures using experimentally measured natural frequencies and the Particle Swarm Optimization (PSO) method. The technique considers the variation in local flexibility near the crack. The natural frequencies of a cracked beam are determined experimentally and numerically using the Finite Element Method (FEM). The optimization algorithm is programmed in MATLAB. The algorithm is used to estimate the location and severity of a crack by minimizing the differences between measured and calculated frequencies. The method is verified using experimentally measured data on a cantilever steel beam. The Fourier transform is adopted to improve the frequency resolution. The results demonstrate the good accuracy of the proposed technique.
Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques.
Kishore, Ravi Anant; Sanghadasa, Mohan; Priya, Shashank
2017-12-01
Recent studies have demonstrated that segmented thermoelectric generators (TEGs) can operate over large thermal gradient and thus provide better performance (reported efficiency up to 11%) as compared to traditional TEGs, comprising of single thermoelectric (TE) material. However, segmented TEGs are still in early stages of development due to the inherent complexity in their design optimization and manufacturability. In this study, we demonstrate physics based numerical techniques along with Analysis of variance (ANOVA) and Taguchi optimization method for optimizing the performance of segmented TEGs. We have considered comprehensive set of design parameters, such as geometrical dimensions of p-n legs, height of segmentation, hot-side temperature, and load resistance, in order to optimize output power and efficiency of segmented TEGs. Using the state-of-the-art TE material properties and appropriate statistical tools, we provide near-optimum TEG configuration with only 25 experiments as compared to 3125 experiments needed by the conventional optimization methods. The effect of environmental factors on the optimization of segmented TEGs is also studied. Taguchi results are validated against the results obtained using traditional full factorial optimization technique and a TEG configuration for simultaneous optimization of power and efficiency is obtained.
An unconditionally stable method for numerically solving solar sail spacecraft equations of motion
NASA Astrophysics Data System (ADS)
Karwas, Alex
Solar sails use the endless supply of the Sun's radiation to propel spacecraft through space. The sails use the momentum transfer from the impinging solar radiation to provide thrust to the spacecraft while expending zero fuel. Recently, the first solar sail spacecraft, or sailcraft, named IKAROS completed a successful mission to Venus and proved the concept of solar sail propulsion. Sailcraft experimental data is difficult to gather due to the large expenses of space travel, therefore, a reliable and accurate computational method is needed to make the process more efficient. Presented in this document is a new approach to simulating solar sail spacecraft trajectories. The new method provides unconditionally stable numerical solutions for trajectory propagation and includes an improved physical description over other methods. The unconditional stability of the new method means that a unique numerical solution is always determined. The improved physical description of the trajectory provides a numerical solution and time derivatives that are continuous throughout the entire trajectory. The error of the continuous numerical solution is also known for the entire trajectory. Optimal control for maximizing thrust is also provided within the framework of the new method. Verification of the new approach is presented through a mathematical description and through numerical simulations. The mathematical description provides details of the sailcraft equations of motion, the numerical method used to solve the equations, and the formulation for implementing the equations of motion into the numerical solver. Previous work in the field is summarized to show that the new approach can act as a replacement to previous trajectory propagation methods. A code was developed to perform the simulations and it is also described in this document. Results of the simulations are compared to the flight data from the IKAROS mission. Comparison of the two sets of data show that the new approach is capable of accurately simulating sailcraft motion. Sailcraft and spacecraft simulations are compared to flight data and to other numerical solution techniques. The new formulation shows an increase in accuracy over a widely used trajectory propagation technique. Simulations for two-dimensional, three-dimensional, and variable attitude trajectories are presented to show the multiple capabilities of the new technique. An element of optimal control is also part of the new technique. An additional equation is added to the sailcraft equations of motion that maximizes thrust in a specific direction. A technical description and results of an example optimization problem are presented. The spacecraft attitude dynamics equations take the simulation a step further by providing control torques using the angular rate and acceleration outputs of the numerical formulation.
Optimal guidance for the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
A guidance method for the space shuttle's transition from hypersonic entry to subsonic cruising flight is presented. The method evolves from a numerical trajectory optimization technique in which kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations. This allows the open end-time problem to be transformed to one of fixed terminal energy. In its ultimate form, E-Guidance obtains energy balance (including dynamic-pressure-rate damping) and path length control by angle-of-attack modulation and cross-range control by roll angle modulation. The guidance functions also form the basis for a pilot display of instantaneous maneuver limits and destination. Numerical results illustrate the E-Guidance concept and the optimal trajectories on which it is based.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrixmore » exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.« less
Gain optimization with non-linear controls
NASA Technical Reports Server (NTRS)
Slater, G. L.; Kandadai, R. D.
1984-01-01
An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.
NASA Astrophysics Data System (ADS)
Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.
2015-12-01
Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.
Galerkin v. discrete-optimal projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less
Merits and limitations of optimality criteria method for structural optimization
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Guptill, James D.; Berke, Laszlo
1993-01-01
The merits and limitations of the optimality criteria (OC) method for the minimum weight design of structures subjected to multiple load conditions under stress, displacement, and frequency constraints were investigated by examining several numerical examples. The examples were solved utilizing the Optimality Criteria Design Code that was developed for this purpose at NASA Lewis Research Center. This OC code incorporates OC methods available in the literature with generalizations for stress constraints, fully utilized design concepts, and hybrid methods that combine both techniques. Salient features of the code include multiple choices for Lagrange multiplier and design variable update methods, design strategies for several constraint types, variable linking, displacement and integrated force method analyzers, and analytical and numerical sensitivities. The performance of the OC method, on the basis of the examples solved, was found to be satisfactory for problems with few active constraints or with small numbers of design variables. For problems with large numbers of behavior constraints and design variables, the OC method appears to follow a subset of active constraints that can result in a heavier design. The computational efficiency of OC methods appears to be similar to some mathematical programming techniques.
NASA Astrophysics Data System (ADS)
Yang, Jia Sheng
2018-06-01
In this paper, we investigate a H∞ memory controller with input limitation minimization (HMCIM) for offshore jacket platforms stabilization. The main objective of this study is to reduce the control consumption as well as protect the actuator when satisfying the requirement of the system performance. First, we introduce a dynamic model of offshore platform with low order main modes based on mode reduction method in numerical analysis. Then, based on H∞ control theory and matrix inequality techniques, we develop a novel H∞ memory controller with input limitation. Furthermore, a non-convex optimization model to minimize input energy consumption is proposed. Since it is difficult to solve this non-convex optimization model by optimization algorithm, we use a relaxation method with matrix operations to transform this non-convex optimization model to be a convex optimization model. Thus, it could be solved by a standard convex optimization solver in MATLAB or CPLEX. Finally, several numerical examples are given to validate the proposed models and methods.
Adapted all-numerical correlator for face recognition applications
NASA Astrophysics Data System (ADS)
Elbouz, M.; Bouzidi, F.; Alfalou, A.; Brosseau, C.; Leonard, I.; Benkelfat, B.-E.
2013-03-01
In this study, we suggest and validate an all-numerical implementation of a VanderLugt correlator which is optimized for face recognition applications. The main goal of this implementation is to take advantage of the benefits (detection, localization, and identification of a target object within a scene) of correlation methods and exploit the reconfigurability of numerical approaches. This technique requires a numerical implementation of the optical Fourier transform. We pay special attention to adapt the correlation filter to this numerical implementation. One main goal of this work is to reduce the size of the filter in order to decrease the memory space required for real time applications. To fulfil this requirement, we code the reference images with 8 bits and study the effect of this coding on the performances of several composite filters (phase-only filter, binary phase-only filter). The saturation effect has for effect to decrease the performances of the correlator for making a decision when filters contain up to nine references. Further, an optimization is proposed based for an optimized segmented composite filter. Based on this approach, we present tests with different faces demonstrating that the above mentioned saturation effect is significantly reduced while minimizing the size of the learning data base.
Reliability based design optimization: Formulations and methodologies
NASA Astrophysics Data System (ADS)
Agarwal, Harish
Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgor, R.J.; Feehery, W.F.; Tolsma, J.E.
The batch process development problem serves as good candidate to guide the development of process modeling environments. It demonstrates that very robust numerical techniques are required within an environment that can collect, organize, and maintain the data and models required to address the batch process development problem. This paper focuses on improving the robustness and efficiency of the numerical algorithms required in such a modeling environment through the development of hybrid numerical and symbolic strategies.
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-11-11
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azunre, P.
Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less
Numerical optimization in Hilbert space using inexact function and gradient evaluations
NASA Technical Reports Server (NTRS)
Carter, Richard G.
1989-01-01
Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.
Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
Automated optimization techniques for aircraft synthesis
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1976-01-01
Application of numerical optimization techniques to automated conceptual aircraft design is examined. These methods are shown to be a general and efficient way to obtain quantitative information for evaluating alternative new vehicle projects. Fully automated design is compared with traditional point design methods and time and resource requirements for automated design are given. The NASA Ames Research Center aircraft synthesis program (ACSYNT) is described with special attention to calculation of the weight of a vehicle to fly a specified mission. The ACSYNT procedures for automatically obtaining sensitivity of the design (aircraft weight, performance and cost) to various vehicle, mission, and material technology parameters are presented. Examples are used to demonstrate the efficient application of these techniques.
A robust optimization methodology for preliminary aircraft design
NASA Astrophysics Data System (ADS)
Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.
2016-05-01
This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.
Konstantinidis, Spyridon; Titchener-Hooker, Nigel; Velayudhan, Ajoy
2017-08-01
Bioprocess development studies often involve the investigation of numerical and categorical inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly and consistently. In this work, the method is combined with dummy variables and it is deployed in three case studies wherein spaces are comprised of both categorical and numerical inputs, a situation intractable by traditional Simplex methods. The first study employs in silico data and lays out the dummy variable methodology. The latter two employ experimental data from chromatography based studies performed with the filter-plate and miniature column High Throughput (HT) techniques. The solute of interest in the former case study was a monoclonal antibody whereas the latter dealt with the separation of a binary system of model proteins. The implemented approach prevented the stranding of the Simplex method at local optima, due to the arbitrary handling of the categorical inputs, and allowed for the concurrent optimization of numerical and categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, combined with dummy variables, was therefore entirely successful in identifying and characterizing global optima in all three case studies. The Simplex-based method was further shown to be of equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an approach failed, however, to both capture trends and identify optima, and led to poor operating conditions. It is suggested that the Simplex-variant is suited to development activities involving numerical and categorical inputs in early bioprocess development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
Performance optimization of an MHD generator with physical constraints
NASA Technical Reports Server (NTRS)
Pian, C. C. P.; Seikel, G. R.; Smith, J. M.
1979-01-01
A technique has been described which optimizes the power out of a Faraday MHD generator operating under a prescribed set of electrical and magnetic constraints. The method does not rely on complicated numerical optimization techniques. Instead the magnetic field and the electrical loading are adjusted at each streamwise location such that the resultant generator design operates at the most limiting of the cited stress levels. The simplicity of the procedure makes it ideal for optimizing generator designs for system analysis studies of power plants. The resultant locally optimum channel designs are, however, not necessarily the global optimum designs. The results of generator performance calculations are presented for an approximately 2000 MWe size plant. The difference between the maximum power generator design and the optimal design which maximizes net MHD power are described. The sensitivity of the generator performance to the various operational parameters are also presented.
Research on design method of the full form ship with minimum thrust deduction factor
NASA Astrophysics Data System (ADS)
Zhang, Bao-ji; Miao, Ai-qin; Zhang, Zhu-xin
2015-04-01
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.
Rotorcraft Brownout: Advanced Understanding, Control and Mitigation
2008-12-31
the Gauss Seidel iterative method . The overall steps of SIMPLER algorithm can be summarized as: 1. Guess velocity field, 2. Calculate the momentum...techniques and numerical methods , and the team will begin to develop a methodology that is capable of integrating these solutions and highlighting...rotorcraft design optimization techniques will then be undertaken using the validated computational methods . 15. SUBJECT TERMS Rotorcraft
Efficient Robust Optimization of Metal Forming Processes using a Sequential Metamodel Based Strategy
NASA Astrophysics Data System (ADS)
Wiebenga, J. H.; Klaseboer, G.; van den Boogaard, A. H.
2011-08-01
The coupling of Finite Element (FE) simulations to mathematical optimization techniques has contributed significantly to product improvements and cost reductions in the metal forming industries. The next challenge is to bridge the gap between deterministic optimization techniques and the industrial need for robustness. This paper introduces a new and generally applicable structured methodology for modeling and solving robust optimization problems. Stochastic design variables or noise variables are taken into account explicitly in the optimization procedure. The metamodel-based strategy is combined with a sequential improvement algorithm to efficiently increase the accuracy of the objective function prediction. This is only done at regions of interest containing the optimal robust design. Application of the methodology to an industrial V-bending process resulted in valuable process insights and an improved robust process design. Moreover, a significant improvement of the robustness (>2σ) was obtained by minimizing the deteriorating effects of several noise variables. The robust optimization results demonstrate the general applicability of the robust optimization strategy and underline the importance of including uncertainty and robustness explicitly in the numerical optimization procedure.
Building Energy Modeling and Control Methods for Optimization and Renewables Integration
NASA Astrophysics Data System (ADS)
Burger, Eric M.
This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled dynamics within a building by learning from sensor data. Control techniques encompass the application of optimal control theory, model predictive control, and convex distributed optimization to TCLs. First, we present the alternative control trajectory (ACT) representation, a novel method for the approximate optimization of non-convex discrete systems. This approach enables the optimal control of a population of non-convex agents using distributed convex optimization techniques. Second, we present a distributed convex optimization algorithm for the control of a TCL population. Experimental results demonstrate the application of this algorithm to the problem of renewable energy generation following. This dissertation contributes to the development of intelligent energy management systems for buildings by presenting a suite of novel and adaptable modeling and control techniques. Applications focus on optimizing the performance of building operations and on facilitating the integration of renewable energy resources.
Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D
2014-01-01
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.
Global dynamic optimization approach to predict activation in metabolic pathways.
de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R
2014-01-06
During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.
The use of optimization techniques to design controlled diffusion compressor blading
NASA Technical Reports Server (NTRS)
Sanger, N. L.
1982-01-01
A method for automating compressor blade design using numerical optimization, and applied to the design of a controlled diffusion stator blade row is presented. A general purpose optimization procedure is employed, based on conjugate directions for locally unconstrained problems and on feasible directions for locally constrained problems. Coupled to the optimizer is an analysis package consisting of three analysis programs which calculate blade geometry, inviscid flow, and blade surface boundary layers. The optimizing concepts and selection of design objective and constraints are described. The procedure for automating the design of a two dimensional blade section is discussed, and design results are presented.
Zhang, Rubo; Yang, Yu
2017-01-01
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166
Li, Jianjun; Zhang, Rubo; Yang, Yu
2017-01-01
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.
Blended near-optimal tools for flexible water resources decision making
NASA Astrophysics Data System (ADS)
Rosenberg, David
2015-04-01
State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the static modelled issues and managers often seek near-optimal alternatives that address un-modelled or changing objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally-different alternatives that addressed select un-modelled issues. This paper presents new stratified, Monte Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and full extent of the near-optimal region to an optimization problem. Plot controls allow users to interactively explore region features of most interest. Controls also streamline the process to elicit un-modelled issues and update the model formulation in response to elicited issues. Use for a single-objective water quality management problem at Echo Reservoir, Utah identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, help elicit a larger set of un-modelled issues, and offer managers greater flexibility to cope in a changing world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D.A.
The design techniques and physics analysis of modern stellarator configurations for magnetic fusion research rely heavily on high performance computing and simulation. Stellarators, which are fundamentally 3-dimensional in nature, offer significantly more design flexibility than more symmetric devices such as the tokamak. By varying the outer boundary shape of the plasma, a variety of physics features, such as transport, stability, and heating efficiency can be optimized. Scientific visualization techniques are an important adjunct to this effort as they provide a necessary ergonomic link between the numerical results and the intuition of the human researcher. The authors have developed a varietymore » of visualization techniques for stellarators which both facilitate the design optimization process and allow the physics simulations to be more readily understood.« less
Weak-value amplification and optimal parameter estimation in the presence of correlated noise
NASA Astrophysics Data System (ADS)
Sinclair, Josiah; Hallaji, Matin; Steinberg, Aephraim M.; Tollaksen, Jeff; Jordan, Andrew N.
2017-11-01
We analytically and numerically investigate the performance of weak-value amplification (WVA) and related parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a general measurement strategy that involves sorting data into separate subsets based on the outcome of a second "partitioning" measurement. Using a simplified correlated noise model that can be analyzed exactly together with optimal statistical estimators, we compare WVA to a conventional measurement method. We find that WVA indeed yields a much lower variance of the parameter of interest than the conventional technique does, optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis that employs partitioning measurements, incorporating all partitioned results and their known correlations, is found to yield an improvement—typically slight—over the noise reduction achieved by WVA. This result occurs because the simple WVA technique is not tailored to any specific noise environment and therefore does not make use of correlations between the different partitions. We also compare WVA to traditional background subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets or errors in calibration. Surprisingly, for the cases we consider, background subtraction turns out to be a special case of the optimal partitioning approach, possessing a similar typically slight advantage over WVA. These results give deeper insight into the role of partitioning measurements (with or without postselection) in enhancing measurement precision, which some have found puzzling. They also resolve previously made conflicting claims about the usefulness of weak-value amplification to precision measurement in the presence of correlated noise. We finish by presenting numerical results to model a more realistic laboratory situation of time-decaying correlations, showing that our conclusions hold for a wide range of statistical models.
Evaluating and minimizing noise impact due to aircraft flyover
NASA Technical Reports Server (NTRS)
Jacobson, I. D.; Cook, G.
1979-01-01
Existing techniques were used to assess the noise impact on a community due to aircraft operation and to optimize the flight paths of an approaching aircraft with respect to the annoyance produced. Major achievements are: (1) the development of a population model suitable for determining the noise impact, (2) generation of a numerical computer code which uses this population model along with the steepest descent algorithm to optimize approach/landing trajectories, (3) implementation of this optimization code in several fictitious cases as well as for the community surrounding Patrick Henry International Airport, Virginia.
Optimal control design of turbo spin‐echo sequences with applications to parallel‐transmit systems
Hoogduin, Hans; Hajnal, Joseph V.; van den Berg, Cornelis A. T.; Luijten, Peter R.; Malik, Shaihan J.
2016-01-01
Purpose The design of turbo spin‐echo sequences is modeled as a dynamic optimization problem which includes the case of inhomogeneous transmit radiofrequency fields. This problem is efficiently solved by optimal control techniques making it possible to design patient‐specific sequences online. Theory and Methods The extended phase graph formalism is employed to model the signal evolution. The design problem is cast as an optimal control problem and an efficient numerical procedure for its solution is given. The numerical and experimental tests address standard multiecho sequences and pTx configurations. Results Standard, analytically derived flip angle trains are recovered by the numerical optimal control approach. New sequences are designed where constraints on radiofrequency total and peak power are included. In the case of parallel transmit application, the method is able to calculate the optimal echo train for two‐dimensional and three‐dimensional turbo spin echo sequences in the order of 10 s with a single central processing unit (CPU) implementation. The image contrast is maintained through the whole field of view despite inhomogeneities of the radiofrequency fields. Conclusion The optimal control design sheds new light on the sequence design process and makes it possible to design sequences in an online, patient‐specific fashion. Magn Reson Med 77:361–373, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine PMID:26800383
Azunre, P.
2016-09-21
Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less
Inverse Regional Modeling with Adjoint-Free Technique
NASA Astrophysics Data System (ADS)
Yaremchuk, M.; Martin, P.; Panteleev, G.; Beattie, C.
2016-02-01
The ongoing parallelization trend in computer technologies facilitates the use ensemble methods in geophysical data assimilation. Of particular interest are ensemble techniques which do not require the development of tangent linear numerical models and their adjoints for optimization. These ``adjoint-free'' methods minimize the cost function within the sequence of subspaces spanned by a carefully chosen sets perturbations of the control variables. In this presentation, an adjoint-free variational technique (a4dVar) is demonstrated in an application estimating initial conditions of two numerical models: the Navy Coastal Ocean Model (NCOM), and the surface wave model (WAM). With the NCOM, performance of both adjoint and adjoint-free 4dVar data assimilation techniques is compared in application to the hydrographic surveys and velocity observations collected in the Adriatic Sea in 2006. Numerical experiments have shown that a4dVar is capable of providing forecast skill similar to that of conventional 4dVar at comparable computational expense while being less susceptible to excitation of ageostrophic modes that are not supported by observations. Adjoint-free technique constrained by the WAM model is tested in a series of data assimilation experiments with synthetic observations in the southern Chukchi Sea. The types of considered observations are directional spectra estimated from point measurements by stationary buoys, significant wave height (SWH) observations by coastal high-frequency radars and along-track SWH observations by satellite altimeters. The a4dVar forecast skill is shown to be 30-40% better than the skill of the sequential assimilaiton method based on optimal interpolation which is currently used in operations. Prospects of further development of the a4dVar methods in regional applications are discussed.
The role of optimization in the next generation of computer-based design tools
NASA Technical Reports Server (NTRS)
Rogan, J. Edward
1989-01-01
There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.
NASA Astrophysics Data System (ADS)
Cai, Wei-wei; Yang, Le-ping; Zhu, Yan-wei
2015-01-01
This paper presents a novel method integrating nominal trajectory optimization and tracking for the reorientation control of an underactuated spacecraft with only two available control torque inputs. By employing a pseudo input along the uncontrolled axis, the flatness property of a general underactuated spacecraft is extended explicitly, by which the reorientation trajectory optimization problem is formulated into the flat output space with all the differential constraints eliminated. Ultimately, the flat output optimization problem is transformed into a nonlinear programming problem via the Chebyshev pseudospectral method, which is improved by the conformal map and barycentric rational interpolation techniques to overcome the side effects of the differential matrix's ill-conditions on numerical accuracy. Treating the trajectory tracking control as a state regulation problem, we develop a robust closed-loop tracking control law using the receding-horizon control method, and compute the feedback control at each control cycle rapidly via the differential transformation method. Numerical simulation results show that the proposed control scheme is feasible and effective for the reorientation maneuver.
NASA Astrophysics Data System (ADS)
Rosenberg, David E.
2015-04-01
State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the modeled issues and managers often seek near-optimal alternatives that address unmodeled objectives, preferences, limits, uncertainties, and other issues. Early on, Modeling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally different alternatives that addressed some unmodeled issues. This paper presents new stratified, Monte-Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and extent of the near-optimal region to an optimization problem. Interactive plot controls allow users to explore region features of most interest. Controls also streamline the process to elicit unmodeled issues and update the model formulation in response to elicited issues. Use for an example, single-objective, linear water quality management problem at Echo Reservoir, Utah, identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Flexibility is upheld by further interactive alternative generation, transforming the formulation into a multiobjective problem, and relaxing the tolerance parameter to expand the near-optimal region. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, and help elicit a larger set of unmodeled issues.
Distributed computer system enhances productivity for SRB joint optimization
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Young, Katherine C.; Barthelemy, Jean-Francois M.
1987-01-01
Initial calculations of a redesign of the solid rocket booster joint that failed during the shuttle tragedy showed that the design had a weight penalty associated with it. Optimization techniques were to be applied to determine if there was any way to reduce the weight while keeping the joint opening closed and limiting the stresses. To allow engineers to examine as many alternatives as possible, a system was developed consisting of existing software that coupled structural analysis with optimization which would execute on a network of computer workstations. To increase turnaround, this system took advantage of the parallelism offered by the finite difference technique of computing gradients to allow several workstations to contribute to the solution of the problem simultaneously. The resulting system reduced the amount of time to complete one optimization cycle from two hours to one-half hour with a potential of reducing it to 15 minutes. The current distributed system, which contains numerous extensions, requires one hour turnaround per optimization cycle. This would take four hours for the sequential system.
Optimal Deployment of Sensor Nodes Based on Performance Surface of Underwater Acoustic Communication
Choi, Jee Woong
2017-01-01
The underwater acoustic sensor network (UWASN) is a system that exchanges data between numerous sensor nodes deployed in the sea. The UWASN uses an underwater acoustic communication technique to exchange data. Therefore, it is important to design a robust system that will function even in severely fluctuating underwater communication conditions, along with variations in the ocean environment. In this paper, a new algorithm to find the optimal deployment positions of underwater sensor nodes is proposed. The algorithm uses the communication performance surface, which is a map showing the underwater acoustic communication performance of a targeted area. A virtual force-particle swarm optimization algorithm is then used as an optimization technique to find the optimal deployment positions of the sensor nodes, using the performance surface information to estimate the communication radii of the sensor nodes in each generation. The algorithm is evaluated by comparing simulation results between two different seasons (summer and winter) for an area located off the eastern coast of Korea as the selected targeted area. PMID:29053569
NASA Astrophysics Data System (ADS)
Tseng, Chien-Hsun
2015-02-01
The technique of multidimensional wave digital filtering (MDWDF) that builds on traveling wave formulation of lumped electrical elements, is successfully implemented on the study of dynamic responses of symmetrically laminated composite plate based on the first order shear deformation theory. The philosophy applied for the first time in this laminate mechanics relies on integration of certain principles involving modeling and simulation, circuit theory, and MD digital signal processing to provide a great variety of outstanding features. Especially benefited by the conservation of passivity gives rise to a nonlinear programming problem (NLP) for the issue of numerical stability of a MD discrete system. Adopting the augmented Lagrangian genetic algorithm, an effective optimization technique for rapidly achieving solution spaces of NLP models, numerical stability of the MDWDF network is well received at all time by the satisfaction of the Courant-Friedrichs-Levy stability criterion with the least restriction. In particular, optimum of the NLP has led to the optimality of the network in terms of effectively and accurately predicting the desired fundamental frequency, and thus to give an insight into the robustness of the network by looking at the distribution of system energies. To further explore the application of the optimum network, more numerical examples are engaged in efforts to achieve a qualitative understanding of the behavior of the laminar system. These are carried out by investigating various effects based on different stacking sequences, stiffness and span-to-thickness ratios, mode shapes and boundary conditions. Results are scrupulously validated by cross referencing with early published works, which show that the present method is in excellent agreement with other numerical and analytical methods.
Numerical modeling for an electric-field hyperthermia applicator
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Chou, C. K.; Chan, K. W.; Mcdougall, J.
1993-01-01
Hyperthermia, in conjunction with radiation and chemotherapy for treatment of cancers, is an area of current concern. Experiments have shown that hyperthermia can increase the potency of many chemotherapy drugs and the effectiveness of radiation for treating cancer. A combination of whole body or regional hyperthermia with chemotherapy or radiation should improve treatment results. Conventional methods for inducing whole body hyperthermia, such as exposing a patient in a radiant cabinet or under a hot water blanket, conduct heat very slowly from the skin to the body core. Thus a more efficient system, such as the three-plate electric-field hyperthermia applicator (EHA), is developed. This three-plate EHA has one top plate over and two lower plates beneath the patient. It is driven at 27.12 MHz with 500 Watts through a matching circuit. Using this applicator, a 50 kg pig was successfully heated to 42 C within 45 minutes. However, phantom and animal studies have indicated non-uniform heating near the side of the body. In addition, changes in the size and distance between the electrode plates can affect the heating (or electromagnetic field) pattern. Therefore, numerical models using the method of moments (MOM) or the finite difference time domain (FDTD) technique are developed to optimize the heating pattern of this EHA before it is used for human trials. The accuracy of the numerical modeling has been achieved by the good agreement between the MOM and FDTD results for the three-plate EHA without a biological body. The versatile FDTD technique is then applied to optimize the EHA design with a human body. Both the numerical and measured data in phantom blocks will be presented. The results of this study will be used to design an optimized system for whole body or regional hyperthermia.
Optimal design of solenoid valve to minimize cavitation by numerical analysis
NASA Astrophysics Data System (ADS)
Ko, Seungbin; Jang, Ilhoon; Song, Simon
2012-11-01
Keeping pace with the development of clean energy, hybrid cars and electric vehicles are getting extensive attention recently. In an electronic-control brake system which is essential to those vehicles, a solenoid valve is used to control external hydraulic pressure that boosts up the driver's braking force. However, strong cavitation occurs at the narrow passage between the ball and seat of a solenoid valve due to sudden decrease in pressure, leading to severe damage to the valve. In this study, we investigate the cavitation numerically to discover geometric parameters to affect the cavitation, and an optimal design to minimize the cavitation using optimization technique. As a result, we found four parameters: seat inner radius, seat angle, seat length, and ball radius. Among them, the seat inner radius affects the cavitation most. Also, we found that preventing a sudden reduction in a flow passage is important to reduce cavitation. Finally using an evolutionary algorithm for optimization we minimized cavitation. The optimal design resulted in the maximum vapor volume of fraction of 0.04 while it was 0.7 for reference geometry.
Optimal helicopter trajectory planning for terrain following flight
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1990-01-01
Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.
Optimization model of vaccination strategy for dengue transmission
NASA Astrophysics Data System (ADS)
Widayani, H.; Kallista, M.; Nuraini, N.; Sari, M. Y.
2014-02-01
Dengue fever is emerging tropical and subtropical disease caused by dengue virus infection. The vaccination should be done as a prevention of epidemic in population. The host-vector model are modified with consider a vaccination factor to prevent the occurrence of epidemic dengue in a population. An optimal vaccination strategy using non-linear objective function was proposed. The genetic algorithm programming techniques are combined with fourth-order Runge-Kutta method to construct the optimal vaccination. In this paper, the appropriate vaccination strategy by using the optimal minimum cost function which can reduce the number of epidemic was analyzed. The numerical simulation for some specific cases of vaccination strategy is shown.
Optimal non-linear health insurance.
Blomqvist, A
1997-06-01
Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.
NASA Technical Reports Server (NTRS)
Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.
1993-01-01
New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.
NASA Technical Reports Server (NTRS)
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.
Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R
2017-07-26
Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of level set method to optimal vibration control of plate structures
NASA Astrophysics Data System (ADS)
Ansari, M.; Khajepour, A.; Esmailzadeh, E.
2013-02-01
Vibration control plays a crucial role in many structures, especially in the lightweight ones. One of the most commonly practiced method to suppress the undesirable vibration of structures is to attach patches of the constrained layer damping (CLD) onto the surface of the structure. In order to consider the weight efficiency of a structure, the best shapes and locations of the CLD patches should be determined to achieve the optimum vibration suppression with minimum usage of the CLD patches. This paper proposes a novel topology optimization technique that can determine the best shape and location of the applied CLD patches, simultaneously. Passive vibration control is formulated in the context of the level set method, which is a numerical technique to track shapes and locations concurrently. The optimal damping set could be found in a structure, in its fundamental vibration mode, such that the maximum modal loss factor of the system is achieved. Two different plate structures will be considered and the damping patches will be optimally located on them. At the same time, the best shapes of the damping patches will be determined too. In one example, the numerical results will be compared with those obtained from the experimental tests to validate the accuracy of the proposed method. This comparison reveals the effectiveness of the level set approach in finding the optimum shape and location of the CLD patches.
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
Optimization of design parameters of low-energy buildings
NASA Astrophysics Data System (ADS)
Vala, Jiří; Jarošová, Petra
2017-07-01
Evaluation of temperature development and related consumption of energy required for heating, air-conditioning, etc. in low-energy buildings requires the proper physical analysis, covering heat conduction, convection and radiation, including beam and diffusive components of solar radiation, on all building parts and interfaces. The system approach and the Fourier multiplicative decomposition together with the finite element technique offers the possibility of inexpensive and robust numerical and computational analysis of corresponding direct problems, as well as of the optimization ones with several design variables, using the Nelder-Mead simplex method. The practical example demonstrates the correlation between such numerical simulations and the time series of measurements of energy consumption on a small family house in Ostrov u Macochy (35 km northern from Brno).
Semidefinite Relaxation-Based Optimization of Multiple-Input Wireless Power Transfer Systems
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-11-01
An optimization procedure for multi-transmitter (MISO) wireless power transfer (WPT) systems based on tight semidefinite relaxation (SDR) is presented. This method ensures physical realizability of MISO WPT systems designed via convex optimization -- a robust, semi-analytical and intuitive route to optimizing such systems. To that end, the nonconvex constraints requiring that power is fed into rather than drawn from the system via all transmitter ports are incorporated in a convex semidefinite relaxation, which is efficiently and reliably solvable by dedicated algorithms. A test of the solution then confirms that this modified problem is equivalent (tight relaxation) to the original (nonconvex) one and that the true global optimum has been found. This is a clear advantage over global optimization methods (e.g. genetic algorithms), where convergence to the true global optimum cannot be ensured or tested. Discussions of numerical results yielded by both the closed-form expressions and the refined technique illustrate the importance and practicability of the new method. It, is shown that this technique offers a rigorous optimization framework for a broad range of current and emerging WPT applications.
Determination of full piezoelectric complex parameters using gradient-based optimization algorithm
NASA Astrophysics Data System (ADS)
Kiyono, C. Y.; Pérez, N.; Silva, E. C. N.
2016-02-01
At present, numerical techniques allow the precise simulation of mechanical structures, but the results are limited by the knowledge of the material properties. In the case of piezoelectric ceramics, the full model determination in the linear range involves five elastic, three piezoelectric, and two dielectric complex parameters. A successful solution to obtaining piezoceramic properties consists of comparing the experimental measurement of the impedance curve and the results of a numerical model by using the finite element method (FEM). In the present work, a new systematic optimization method is proposed to adjust the full piezoelectric complex parameters in the FEM model. Once implemented, the method only requires the experimental data (impedance modulus and phase data acquired by an impedometer), material density, geometry, and initial values for the properties. This method combines a FEM routine implemented using an 8-noded axisymmetric element with a gradient-based optimization routine based on the method of moving asymptotes (MMA). The main objective of the optimization procedure is minimizing the quadratic difference between the experimental and numerical electrical conductance and resistance curves (to consider resonance and antiresonance frequencies). To assure the convergence of the optimization procedure, this work proposes restarting the optimization loop whenever the procedure ends in an undesired or an unfeasible solution. Two experimental examples using PZ27 and APC850 samples are presented to test the precision of the method and to check the dependency of the frequency range used, respectively.
Statistical Mechanics and Dynamics of the Outer Solar System.I. The Jupiter/Saturn Zone
NASA Technical Reports Server (NTRS)
Grazier, K. R.; Newman, W. I.; Kaula, W. M.; Hyman, J. M.
1996-01-01
We report on numerical simulations designed to understand how the solar system evolved through a winnowing of planetesimals accreeted from the early solar nebula. This sorting process is driven by the energy and angular momentum and continues to the present day. We reconsider the existence and importance of stable niches in the Jupiter/Saturn Zone using greatly improved numerical techniques based on high-order optimized multi-step integration schemes coupled to roundoff error minimizing methods.
Numerical realization of the variational method for generating self-trapped beams
NASA Astrophysics Data System (ADS)
Duque, Erick I.; Lopez-Aguayo, Servando; Malomed, Boris A.
2018-03-01
We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schr\\"odinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
Design of vibration isolation systems using multiobjective optimization techniques
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The design of vibration isolation systems is considered using multicriteria optimization techniques. The integrated values of the square of the force transmitted to the main mass and the square of the relative displacement between the main mass and the base are taken as the performance indices. The design of a three degrees-of-freedom isolation system with an exponentially decaying type of base disturbance is considered for illustration. Numerical results are obtained using the global criterion, utility function, bounded objective, lexicographic, goal programming, goal attainment and game theory methods. It is found that the game theory approach is superior in finding a better optimum solution with proper balance of the various objective functions.
Conceptual Comparison of Population Based Metaheuristics for Engineering Problems
Green, Paul
2015-01-01
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265
Conceptual comparison of population based metaheuristics for engineering problems.
Adekanmbi, Oluwole; Green, Paul
2015-01-01
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.
Steering Quantum Dynamics of a Two-Qubit System via Optimal Bang-Bang Control
NASA Astrophysics Data System (ADS)
Hu, Juju; Ke, Qiang; Ji, Yinghua
2018-02-01
The optimization of control time for quantum systems has been an important field of control science attracting decades of focus, which is beneficial for efficiency improvement and decoherence suppression caused by the environment. Based on analyzing the advantages and disadvantages of the existing Lyapunov control, using a bang-bang optimal control technique, we investigate the fast state control in a closed two-qubit quantum system, and give three optimized control field design methods. Numerical simulation experiments indicate the effectiveness of the methods. Compared to the standard Lyapunov control or standard bang-bang control method, the optimized control field design methods effectively shorten the state control time and avoid high-frequency oscillation that occurs in bang-bang control.
Optimality study of a gust alleviation system for light wing-loading STOL aircraft
NASA Technical Reports Server (NTRS)
Komoda, M.
1976-01-01
An analytical study was made of an optimal gust alleviation system that employs a vertical gust sensor mounted forward of an aircraft's center of gravity. Frequency domain optimization techniques were employed to synthesize the optimal filters that process the corrective signals to the flaps and elevator actuators. Special attention was given to evaluating the effectiveness of lead time, that is, the time by which relative wind sensor information should lead the actual encounter of the gust. The resulting filter is expressed as an implicit function of the prescribed control cost. A numerical example for a light wing loading STOL aircraft is included in which the optimal trade-off between performance and control cost is systematically studied.
Optimal design of composite hip implants using NASA technology
NASA Technical Reports Server (NTRS)
Blake, T. A.; Saravanos, D. A.; Davy, D. T.; Waters, S. A.; Hopkins, D. A.
1993-01-01
Using an adaptation of NASA software, we have investigated the use of numerical optimization techniques for the shape and material optimization of fiber composite hip implants. The original NASA inhouse codes, were originally developed for the optimization of aerospace structures. The adapted code, which was called OPORIM, couples numerical optimization algorithms with finite element analysis and composite laminate theory to perform design optimization using both shape and material design variables. The external and internal geometry of the implant and the surrounding bone is described with quintic spline curves. This geometric representation is then used to create an equivalent 2-D finite element model of the structure. Using laminate theory and the 3-D geometric information, equivalent stiffnesses are generated for each element of the 2-D finite element model, so that the 3-D stiffness of the structure can be approximated. The geometric information to construct the model of the femur was obtained from a CT scan. A variety of test cases were examined, incorporating several implant constructions and design variable sets. Typically the code was able to produce optimized shape and/or material parameters which substantially reduced stress concentrations in the bone adjacent of the implant. The results indicate that this technology can provide meaningful insight into the design of fiber composite hip implants.
Sequential quantum cloning under real-life conditions
NASA Astrophysics Data System (ADS)
Saberi, Hamed; Mardoukhi, Yousof
2012-05-01
We consider a sequential implementation of the optimal quantum cloning machine of Gisin and Massar and propose optimization protocols for experimental realization of such a quantum cloner subject to the real-life restrictions. We demonstrate how exploiting the matrix-product state (MPS) formalism and the ensuing variational optimization techniques reveals the intriguing algebraic structure of the Gisin-Massar output of the cloning procedure and brings about significant improvements to the optimality of the sequential cloning prescription of Delgado [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.150502 98, 150502 (2007)]. Our numerical results show that the orthodox paradigm of optimal quantum cloning can in practice be realized in a much more economical manner by utilizing a considerably lesser amount of informational and numerical resources than hitherto estimated. Instead of the previously predicted linear scaling of the required ancilla dimension D with the number of qubits n, our recipe allows a realization of such a sequential cloning setup with an experimentally manageable ancilla of dimension at most D=3 up to n=15 qubits. We also address satisfactorily the possibility of providing an optimal range of sequential ancilla-qubit interactions for optimal cloning of arbitrary states under realistic experimental circumstances when only a restricted class of such bipartite interactions can be engineered in practice.
NASA Astrophysics Data System (ADS)
Mamehrashi, K.; Yousefi, S. A.
2017-02-01
This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.
Numerical simulation of the casting process of titanium tooth crowns and bridges.
Wu, M; Augthun, M; Wagner, I; Sahm, P R; Spiekermann, H
2001-06-01
The objectives of this paper were to simulate the casting process of titanium tooth crowns and bridges; to predict and control porosity defect. A casting simulation software, MAGMASOFT, was used. The geometry of the crowns with fine details of the occlusal surface were digitized by means of laser measuring technique, then converted and read in the simulation software. Both mold filling and solidification were simulated, the shrinkage porosity was predicted by a "feeding criterion", and the gas pore sensitivity was studied based on the mold filling and solidification simulations. Two types of dental prostheses (a single-crown casting and a three-unit-bridge) with various sprue designs were numerically "poured", and only one optimal design for each prosthesis was recommended for real casting trial. With the numerically optimized design, real titanium dental prostheses (five replicas for each) were made on a centrifugal casting machine. All the castings endured radiographic examination, and no porosity was detected in the cast prostheses. It indicates that the numerical simulation is an efficient tool for dental casting design and porosity control. Copyright 2001 Kluwer Academic Publishers
Determination of mixed mode (I/II) SIFs of cracked orthotropic materials
NASA Astrophysics Data System (ADS)
Chakraborty, D.; Chakraborty, Debaleena; Murthy, K. S. R. K.
2018-05-01
Strain gage techniques have been successfully but sparsely used for the determination of stress intensity factors (SIFs) of orthotropic materials. For mode I cases, few works have been reported on the strain gage based determination of mode I SIF of orthotropic materials. However, for mixed mode (I/II) cases, neither a theoretical development of a strain gage based technique nor any recommended guidelines for minimum number of strain gages and their locations were reported in the literature for determination of mixed mode SIFs. The authors for the first time came up with a theoretical proposition to successfully use strain gages for determination of mixed mode SIFs of orthotropic materials [1]. Based on these formulations, the present paper discusses a finite element (FE) based numerical simulation of the proposed strain gage technique employing [902/0]10S carbon-epoxy laminates with a slant edge crack. An FE based procedure has also been presented for determination of the optimal radial locations of the strain gages apriori to actual experiments. To substantiate the efficacy of the proposed technique, numerical simulations for strain gage based determination of mixed mode SIFs have been conducted. Results show that it is possible to accurately determine the mixed mode SIFs of orthotropic laminates when the strain gages are placed within the optimal radial locations estimated using the present formulation.
NASA Astrophysics Data System (ADS)
Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang
2017-08-01
We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many-revolution orbital transfers.
Development of Multiobjective Optimization Techniques for Sonic Boom Minimization
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.
1996-01-01
A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.
Update on Postsurgical Scar Management
Commander, Sarah Jane; Chamata, Edward; Cox, Joshua; Dickey, Ryan M.; Lee, Edward I.
2016-01-01
Postoperative scar appearance is often a significant concern among patients, with many seeking advice from their surgeons regarding scar minimization. Numerous products are available that claim to decrease postoperative scar formation and improve wound healing. These products attempt to create an ideal environment for wound healing by targeting the three phases of wound healing: inflammation, proliferation, and remodeling. With that said, preoperative interventions, such as lifestyle modifications and optimization of medical comorbidities, and intraoperative interventions, such as adherence to meticulous operative techniques, are equally important for ideal scarring. In this article, the authors review the available options in postoperative scar management, addressing the benefits of multimodal perioperative intervention. Although numerous treatments exist, no single modality has been proven superior over others. Therefore, each patient should receive a personalized treatment regimen to optimize scar management. PMID:27478420
Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokanowski, Olivier, E-mail: boka@math.jussieu.fr; Picarelli, Athena, E-mail: athena.picarelli@inria.fr; Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr
2015-02-15
This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system ofmore » controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.« less
Singular perturbation techniques for real time aircraft trajectory optimization and control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1982-01-01
The usefulness of singular perturbation methods for developing real time computer algorithms to control and optimize aircraft flight trajectories is examined. A minimum time intercept problem using F-8 aerodynamic and propulsion data is used as a baseline. This provides a framework within which issues relating to problem formulation, solution methodology and real time implementation are examined. Theoretical questions relating to separability of dynamics are addressed. With respect to implementation, situations leading to numerical singularities are identified, and procedures for dealing with them are outlined. Also, particular attention is given to identifying quantities that can be precomputed and stored, thus greatly reducing the on-board computational load. Numerical results are given to illustrate the minimum time algorithm, and the resulting flight paths. An estimate is given for execution time and storage requirements.
Electrokinetic dispersion in microfluidic separation systems
NASA Astrophysics Data System (ADS)
Molho, Joshua Irving
Numerous efforts have focused on engineering miniaturized chemical analysis devices that are faster, more portable and consume smaller volumes of expensive reagents than their macroscale counterparts. Many of these analysis devices employ electrokinetic effects to transport picoliter volumes of liquids and to separate chemical species from an initially mixed sample volume. In these microfluidic separation systems, dispersion must be minimized to obtain the highest resolution separation possible. This work focuses on modeling, simulation and experimental measurement of two electrokinetic dispersion mechanisms that can reduce the effectiveness of microfluidic separation systems: dispersion resulting from non-uniform wall zeta-potential, and dispersion caused by microchannel turns. When the surface of a microchannel has non-uniform zeta-potential (e.g., if the surface charge varies along the length of the microchannel), an applied electric field creates both electroosmotic and pressure-driven flow. A caged-fluorescence imaging technique was used to visualize the dispersion caused by this electrokinetically induced pressure-driven flow. A simple model for a single channel with an axially varying surface charge is presented and compared to experimental measurements. Microchannel turns have been shown to create dispersion of electrokinetically transported analyte bands. Using a method of moments analysis, a model is developed that quantifies this dispersion and identifies the conditions under which turn dispersion limits the resolution of a microfluidic separation system. Measurements using the caged-fluorescence visualization technique were used to verify this model. New turn geometries are presented and were optimized using both a reduced parameter technique as well as a more generalized, numerical shape optimization approach. These improved turn designs were manufactured using two fabrication techniques and then tested experimentally. The turn optimization approaches and resulting turn geometries described here are shown to reduce turn dispersion to less than 1% of the dispersion caused by unoptimized, constant-width turns.
Towards inverse modeling of turbidity currents: The inverse lock-exchange problem
NASA Astrophysics Data System (ADS)
Lesshafft, Lutz; Meiburg, Eckart; Kneller, Ben; Marsden, Alison
2011-04-01
A new approach is introduced for turbidite modeling, leveraging the potential of computational fluid dynamics methods to simulate the flow processes that led to turbidite formation. The practical use of numerical flow simulation for the purpose of turbidite modeling so far is hindered by the need to specify parameters and initial flow conditions that are a priori unknown. The present study proposes a method to determine optimal simulation parameters via an automated optimization process. An iterative procedure matches deposit predictions from successive flow simulations against available localized reference data, as in practice may be obtained from well logs, and aims at convergence towards the best-fit scenario. The final result is a prediction of the entire deposit thickness and local grain size distribution. The optimization strategy is based on a derivative-free, surrogate-based technique. Direct numerical simulations are performed to compute the flow dynamics. A proof of concept is successfully conducted for the simple test case of a two-dimensional lock-exchange turbidity current. The optimization approach is demonstrated to accurately retrieve the initial conditions used in a reference calculation.
Power-limited low-thrust trajectory optimization with operation point detection
NASA Astrophysics Data System (ADS)
Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng
2018-06-01
The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Rosen, I. G.
1988-01-01
In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.
NASA Astrophysics Data System (ADS)
Lali, Mehdi
2009-03-01
A comprehensive computer program is designed in MATLAB to analyze, design and optimize the propulsion, dynamics, thermodynamics, and kinematics of any serial multi-staging rocket for a set of given data. The program is quite user-friendly. It comprises two main sections: "analysis and design" and "optimization." Each section has a GUI (Graphical User Interface) in which the rocket's data are entered by the user and by which the program is run. The first section analyzes the performance of the rocket that is previously devised by the user. Numerous plots and subplots are provided to display the performance of the rocket. The second section of the program finds the "optimum trajectory" via billions of iterations and computations which are done through sophisticated algorithms using numerical methods and incremental integrations. Innovative techniques are applied to calculate the optimal parameters for the engine and designing the "optimal pitch program." This computer program is stand-alone in such a way that it calculates almost every design parameter in regards to rocket propulsion and dynamics. It is meant to be used for actual launch operations as well as educational and research purposes.
Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization
Nalluri, MadhuSudana Rao; K., Kannan; M., Manisha
2017-01-01
With the widespread adoption of e-Healthcare and telemedicine applications, accurate, intelligent disease diagnosis systems have been profoundly coveted. In recent years, numerous individual machine learning-based classifiers have been proposed and tested, and the fact that a single classifier cannot effectively classify and diagnose all diseases has been almost accorded with. This has seen a number of recent research attempts to arrive at a consensus using ensemble classification techniques. In this paper, a hybrid system is proposed to diagnose ailments using optimizing individual classifier parameters for two classifier techniques, namely, support vector machine (SVM) and multilayer perceptron (MLP) technique. We employ three recent evolutionary algorithms to optimize the parameters of the classifiers above, leading to six alternative hybrid disease diagnosis systems, also referred to as hybrid intelligent systems (HISs). Multiple objectives, namely, prediction accuracy, sensitivity, and specificity, have been considered to assess the efficacy of the proposed hybrid systems with existing ones. The proposed model is evaluated on 11 benchmark datasets, and the obtained results demonstrate that our proposed hybrid diagnosis systems perform better in terms of disease prediction accuracy, sensitivity, and specificity. Pertinent statistical tests were carried out to substantiate the efficacy of the obtained results. PMID:29065626
Flow range enhancement by secondary flow effect in low solidity circular cascade diffusers
NASA Astrophysics Data System (ADS)
Sakaguchi, Daisaku; Tun, Min Thaw; Mizokoshi, Kanata; Kishikawa, Daiki
2014-08-01
High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confirm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Milani, Federico
2012-12-01
The main problem in the industrial production process of thick EPM/EPDM elements is constituted by the different temperatures which undergo internal (cooler) and external regions. Indeed, while internal layers remain essentially under-vulcanized, external coating is always over-vulcanized, resulting in an overall average tensile strength insufficient to permit the utilization of the items in several applications where it is required a certain level of performance. Possible ways to improve rubber output mechanical properties include a careful calibration of exposition time and curing temperature in traditional heating or a vulcanization through innovative techniques, such as microwaves. In the present paper, a comprehensive numerical model able to give predictions on the optimized final mechanical properties of vulcanized 2D and 3D thick rubber items is presented and applied to a meaningful example of engineering interest. A detailed comparative numerical study is finally presented in order to establish pros and cons of traditional vulcanization vs microwaves curing.
Finite Element Based Optimization of Material Parameters for Enhanced Ballistic Protection
NASA Astrophysics Data System (ADS)
Ramezani, Arash; Huber, Daniel; Rothe, Hendrik
2013-06-01
The threat imposed by terrorist attacks is a major hazard for military installations, vehicles and other items. The large amounts of firearms and projectiles that are available, pose serious threats to military forces and even civilian facilities. An important task for international research and development is to avert danger to life and limb. This work will evaluate the effect of modern armor with numerical simulations. It will also provide a brief overview of ballistic tests in order to offer some basic knowledge of the subject, serving as a basis for the comparison of simulation results. The objective of this work is to develop and improve the modern armor used in the security sector. Numerical simulations should replace the expensive ballistic tests and find vulnerabilities of items and structures. By progressively changing the material parameters, the armor is to be optimized. Using a sensitivity analysis, information regarding decisive variables is yielded and vulnerabilities are easily found and eliminated afterwards. To facilitate the simulation, advanced numerical techniques have been employed in the analyses.
Discrete optimal control approach to a four-dimensional guidance problem near terminal areas
NASA Technical Reports Server (NTRS)
Nagarajan, N.
1974-01-01
Description of a computer-oriented technique to generate the necessary control inputs to guide an aircraft in a given time from a given initial state to a prescribed final state subject to the constraints on airspeed, acceleration, and pitch and bank angles of the aircraft. A discrete-time mathematical model requiring five state variables and three control variables is obtained, assuming steady wind and zero sideslip. The guidance problem is posed as a discrete nonlinear optimal control problem with a cost functional of Bolza form. A solution technique for the control problem is investigated, and numerical examples are presented. It is believed that this approach should prove to be useful in automated air traffic control schemes near large terminal areas.
Backward bifurcation and optimal control of Plasmodium Knowlesi malaria
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2014-07-01
A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
Legendre spectral-collocation method for solving some types of fractional optimal control problems
Sweilam, Nasser H.; Al-Ajami, Tamer M.
2014-01-01
In this paper, the Legendre spectral-collocation method was applied to obtain approximate solutions for some types of fractional optimal control problems (FOCPs). The fractional derivative was described in the Caputo sense. Two different approaches were presented, in the first approach, necessary optimality conditions in terms of the associated Hamiltonian were approximated. In the second approach, the state equation was discretized first using the trapezoidal rule for the numerical integration followed by the Rayleigh–Ritz method to evaluate both the state and control variables. Illustrative examples were included to demonstrate the validity and applicability of the proposed techniques. PMID:26257937
First-order design of geodetic networks using the simulated annealing method
NASA Astrophysics Data System (ADS)
Berné, J. L.; Baselga, S.
2004-09-01
The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.
Shaw, Calvin B; Prakash, Jaya; Pramanik, Manojit; Yalavarthy, Phaneendra K
2013-08-01
A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison.
Numerical study of combustion processes in afterburners
NASA Technical Reports Server (NTRS)
Zhou, Xiaoqing; Zhang, Xiaochun
1986-01-01
Mathematical models and numerical methods are presented for computer modeling of aeroengine afterburners. A computer code GEMCHIP is described briefly. The algorithms SIMPLER, for gas flow predictions, and DROPLET, for droplet flow calculations, are incorporated in this code. The block correction technique is adopted to facilitate convergence. The method of handling irregular shapes of combustors and flameholders is described. The predicted results for a low-bypass-ratio turbofan afterburner in the cases of gaseous combustion and multiphase spray combustion are provided and analyzed, and engineering guides for afterburner optimization are presented.
NASA Technical Reports Server (NTRS)
Bernhard, R. J.; Bolton, J. S.; Gardner, B.; Mickol, J.; Mollo, C.; Bruer, C.
1986-01-01
Progress was made in the following areas: development of a numerical/empirical noise source identification procedure using bondary element techniques; identification of structure-borne noise paths using structural intensity and finite element methods; development of a design optimization numerical procedure to be used to study active noise control in three-dimensional geometries; measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; and structure-borne sound path identification by use of the Wigner distribution.
An adaptive finite element method for the inequality-constrained Reynolds equation
NASA Astrophysics Data System (ADS)
Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha
2018-07-01
We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.
Numerical realization of the variational method for generating self-trapped beams.
Duque, Erick I; Lopez-Aguayo, Servando; Malomed, Boris A
2018-03-19
We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schrödinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.
Preconditioning the Helmholtz Equation for Rigid Ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1998-01-01
An innovative hyperbolic preconditioning technique is developed for the numerical solution of the Helmholtz equation which governs acoustic propagation in ducts. Two pseudo-time parameters are used to produce an explicit iterative finite difference scheme. This scheme eliminates the large matrix storage requirements normally associated with numerical solutions to the Helmholtz equation. The solution procedure is very fast when compared to other transient and steady methods. Optimization and an error analysis of the preconditioning factors are present. For validation, the method is applied to sound propagation in a 2D semi-infinite hard wall duct.
The Optimization Design of An AC-Electroosmotic Micro mixer
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Suh, Yongkweon; Kang, Sangmo
2007-11-01
We propose the optimization design of an AC-electroosmotic micro-mixer, which is composed of a channel and a series of pairs of electrodes attached on the bottom wall in zigzag patterns. The AC electric field is applied to the electrodes so that a fluid flow takes place around the electrodes across the channel, thus contributing to the mixing of the fluid within the channel. We have performed numerical simulations by using a commercial code (CFX 10) to optimize the shape and pattern of the electrodes via the concept of mixing index. It is found that the best combination of two kinds of electrodes, which leads to good mixing performance, is not simply harmonic one. When the length ratio of the two kinds of electrodes closes to 2:1, we can get the best mixing effect. Furthermore, we will visualize the flow pattern and measure the velocity field with a PTV technique to validate the numerical simulations. In addition, the mixing pattern will be visualized via the experiment.
Multiscale techniques for parabolic equations.
Målqvist, Axel; Persson, Anna
2018-01-01
We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the [Formula: see text]-norm. We present numerical examples, which confirm our theoretical findings.
Aerodynamic shape optimization of wing and wing-body configurations using control theory
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.
Design Tool Using a New Optimization Method Based on a Stochastic Process
NASA Astrophysics Data System (ADS)
Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio
Conventional optimization methods are based on a deterministic approach since their purpose is to find out an exact solution. However, such methods have initial condition dependence and the risk of falling into local solution. In this paper, we propose a new optimization method based on the concept of path integrals used in quantum mechanics. The method obtains a solution as an expected value (stochastic average) using a stochastic process. The advantages of this method are that it is not affected by initial conditions and does not require techniques based on experiences. We applied the new optimization method to a hang glider design. In this problem, both the hang glider design and its flight trajectory were optimized. The numerical calculation results prove that performance of the method is sufficient for practical use.
Structural optimization with approximate sensitivities
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.
1994-01-01
Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.
NASA Astrophysics Data System (ADS)
Harris, S.; Labahn, J. W.; Frank, J. H.; Ihme, M.
2017-11-01
Data assimilation techniques can be integrated with time-resolved numerical simulations to improve predictions of transient phenomena. In this study, optimal interpolation and nudging are employed for assimilating high-speed high-resolution measurements obtained for an inert jet into high-fidelity large-eddy simulations. This experimental data set was chosen as it provides both high spacial and temporal resolution for the three-component velocity field in the shear layer of the jet. Our first objective is to investigate the impact that data assimilation has on the resulting flow field for this inert jet. This is accomplished by determining the region influenced by the data assimilation and corresponding effect on the instantaneous flow structures. The second objective is to determine optimal weightings for two data assimilation techniques. The third objective is to investigate how the frequency at which the data is assimilated affects the overall predictions. Graduate Research Assistant, Department of Mechanical Engineering.
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
Stochastic Optimization for an Analytical Model of Saltwater Intrusion in Coastal Aquifers
Stratis, Paris N.; Karatzas, George P.; Papadopoulou, Elena P.; Zakynthinaki, Maria S.; Saridakis, Yiannis G.
2016-01-01
The present study implements a stochastic optimization technique to optimally manage freshwater pumping from coastal aquifers. Our simulations utilize the well-known sharp interface model for saltwater intrusion in coastal aquifers together with its known analytical solution. The objective is to maximize the total volume of freshwater pumped by the wells from the aquifer while, at the same time, protecting the aquifer from saltwater intrusion. In the direction of dealing with this problem in real time, the ALOPEX stochastic optimization method is used, to optimize the pumping rates of the wells, coupled with a penalty-based strategy that keeps the saltwater front at a safe distance from the wells. Several numerical optimization results, that simulate a known real aquifer case, are presented. The results explore the computational performance of the chosen stochastic optimization method as well as its abilities to manage freshwater pumping in real aquifer environments. PMID:27689362
Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen
2013-02-01
This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.
Global Design Optimization for Aerodynamics and Rocket Propulsion Components
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)
2000-01-01
Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.
Pulse shape optimization for electron-positron production in rotating fields
NASA Astrophysics Data System (ADS)
Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve
2017-07-01
We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.
ERIC Educational Resources Information Center
Mahavier, W. Ted
2002-01-01
Describes a two-semester numerical methods course that serves as a research experience for undergraduate students without requiring external funding or the modification of current curriculum. Uses an engineering problem to introduce students to constrained optimization via a variation of the traditional isoperimetric problem of finding the curve…
Solution techniques for transient stability-constrained optimal power flow – Part II
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...
2017-06-28
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Solution techniques for transient stability-constrained optimal power flow – Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.
Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao
2015-09-08
Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.
A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows
NASA Astrophysics Data System (ADS)
Meldi, M.; Poux, A.
2017-10-01
A Kalman filter based sequential estimator is presented in this work. The estimator is integrated in the structure of segregated solvers for the analysis of incompressible flows. This technique provides an augmented flow state integrating available observation in the CFD model, naturally preserving a zero-divergence condition for the velocity field. Because of the prohibitive costs associated with a complete Kalman Filter application, two model reduction strategies have been proposed and assessed. These strategies dramatically reduce the increase in computational costs of the model, which can be quantified in an augmentation of 10%- 15% with respect to the classical numerical simulation. In addition, an extended analysis of the behavior of the numerical model covariance Q has been performed. Optimized values are strongly linked to the truncation error of the discretization procedure. The estimator has been applied to the analysis of a number of test cases exhibiting increasing complexity, including turbulent flow configurations. The results show that the augmented flow successfully improves the prediction of the physical quantities investigated, even when the observation is provided in a limited region of the physical domain. In addition, the present work suggests that these Data Assimilation techniques, which are at an embryonic stage of development in CFD, may have the potential to be pushed even further using the augmented prediction as a powerful tool for the optimization of the free parameters in the numerical simulation.
NASA Technical Reports Server (NTRS)
Rasmussen, John
1990-01-01
Structural optimization has attracted the attention since the days of Galileo. Olhoff and Taylor have produced an excellent overview of the classical research within this field. However, the interest in structural optimization has increased greatly during the last decade due to the advent of reliable general numerical analysis methods and the computer power necessary to use them efficiently. This has created the possibility of developing general numerical systems for shape optimization. Several authors, eg., Esping; Braibant & Fleury; Bennet & Botkin; Botkin, Yang, and Bennet; and Stanton have published practical and successful applications of general optimization systems. Ding and Homlein have produced extensive overviews of available systems. Furthermore, a number of commercial optimization systems based on well-established finite element codes have been introduced. Systems like ANSYS, IDEAS, OASIS, and NISAOPT are widely known examples. In parallel to this development, the technology of computer aided design (CAD) has gained a large influence on the design process of mechanical engineering. The CAD technology has already lived through a rapid development driven by the drastically growing capabilities of digital computers. However, the systems of today are still considered as being only the first generation of a long row of computer integrated manufacturing (CIM) systems. These systems to come will offer an integrated environment for design, analysis, and fabrication of products of almost any character. Thus, the CAD system could be regarded as simply a database for geometrical information equipped with a number of tools with the purpose of helping the user in the design process. Among these tools are facilities for structural analysis and optimization as well as present standard CAD features like drawing, modeling, and visualization tools. The state of the art of structural optimization is that a large amount of mathematical and mechanical techniques are available for the solution of single problems. By implementing collections of the available techniques into general software systems, operational environments for structural optimization have been created. The forthcoming years must bring solutions to the problem of integrating such systems into more general design environments. The result of this work should be CAD systems for rational design in which structural optimization is one important design tool among many others.
Conversion from Engineering Units to Telemetry Counts on Dryden Flight Simulators
NASA Technical Reports Server (NTRS)
Fantini, Jay A.
1998-01-01
Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order), representing the conversion from counts to engineering units (EU), is numerically inverted in real time. The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain an initial value for the desired telemetry count. The method presented here is not new. What is new is how classical numerical techniques are optimized to take advantage of modem computer power to perform the desired calculations in real time. This technique makes the method simple to understand and implement. There are no interpolation tables to store in memory as in traditional methods. The NASA F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents algorithm development, FORTRAN code, and performance results.
Recent experience in simultaneous control-structure optimization
NASA Technical Reports Server (NTRS)
Salama, M.; Ramaker, R.; Milman, M.
1989-01-01
To show the feasibility of simultaneous optimization as design procedure, low order problems were used in conjunction with simple control formulations. The numerical results indicate that simultaneous optimization is not only feasible, but also advantageous. Such advantages come at the expense of introducing complexities beyond those encountered in structure optimization alone, or control optimization alone. Examples include: larger design parameter space, optimization may combine continuous and combinatoric variables, and the combined objective function may be nonconvex. Future extensions to include large order problems, more complex objective functions and constraints, and more sophisticated control formulations will require further research to ensure that the additional complexities do not outweigh the advantages of simultaneous optimization. Some areas requiring more efficient tools than currently available include: multiobjective criteria and nonconvex optimization. Efficient techniques to deal with optimization over combinatoric and continuous variables, and with truncation issues for structure and control parameters of both the model space as well as the design space need to be developed.
NASA Astrophysics Data System (ADS)
Akmaev, R. a.
1999-04-01
In Part 1 of this work ([Akmaev, 1999]), an overview of the theory of optimal interpolation (OI) ([Gandin, 1963]) and related techniques of data assimilation based on linear optimal estimation ([Liebelt, 1967]; [Catlin, 1989]; [Mendel, 1995]) is presented. The approach implies the use in data analysis of additional statistical information in the form of statistical moments, e.g., the mean and covariance (correlation). The a priori statistical characteristics, if available, make it possible to constrain expected errors and obtain optimal in some sense estimates of the true state from a set of observations in a given domain in space and/or time. The primary objective of OI is to provide estimates away from the observations, i.e., to fill in data voids in the domain under consideration. Additionally, OI performs smoothing suppressing the noise, i.e., the spectral components that are presumably not present in the true signal. Usually, the criterion of optimality is minimum variance of the expected errors and the whole approach may be considered constrained least squares or least squares with a priori information. Obviously, data assimilation techniques capable of incorporating any additional information are potentially superior to techniques that have no access to such information as, for example, the conventional least squares (e.g., [Liebelt, 1967]; [Weisberg, 1985]; [Press et al., 1992]; [Mendel, 1995]).
Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission
NASA Astrophysics Data System (ADS)
Xie, Yiwei; Fu, Songnian; Zhang, Minming; Tang, M.; Shum, P.; Liu, Deming
2013-10-01
Few-mode-fiber (FMF) based mode division multiplexing (MDM) is a promising technique to further increase the transmission capacity of single mode fibers. We propose and numerically investigate a fiber-optical mode converter (MC) using long period gratings (LPGs) fabricated on the FMF by point-by-point CO2 laser inscription technique. In order to precisely excite three modes (LP01, LP11, and LP02), both untilted LPG and tilted LPG are comprehensively optimized through the length, index modulation depth, and tilt angle of the LPG in order to achieve a mode contrast ratio (MCR) of more than 20 dB with less wavelength dependence. It is found that the proposed MCs have obvious advantages of high MCR, low mode crosstalk, easy fabrication and maintenance, and compact size.
Kim, Yoon Jae; Kim, Yoon Young
2010-10-01
This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.
NASA Astrophysics Data System (ADS)
Kazemzadeh Azad, Saeid
2018-01-01
In spite of considerable research work on the development of efficient algorithms for discrete sizing optimization of steel truss structures, only a few studies have addressed non-algorithmic issues affecting the general performance of algorithms. For instance, an important question is whether starting the design optimization from a feasible solution is fruitful or not. This study is an attempt to investigate the effect of seeding the initial population with feasible solutions on the general performance of metaheuristic techniques. To this end, the sensitivity of recently proposed metaheuristic algorithms to the feasibility of initial candidate designs is evaluated through practical discrete sizing of real-size steel truss structures. The numerical experiments indicate that seeding the initial population with feasible solutions can improve the computational efficiency of metaheuristic structural optimization algorithms, especially in the early stages of the optimization. This paves the way for efficient metaheuristic optimization of large-scale structural systems.
Fatigue design of a cellular phone folder using regression model-based multi-objective optimization
NASA Astrophysics Data System (ADS)
Kim, Young Gyun; Lee, Jongsoo
2016-08-01
In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.
Generating moment matching scenarios using optimization techniques
Mehrotra, Sanjay; Papp, Dávid
2013-05-16
An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on a semi-infinite linear programming formulation of the problem thatmore » is shown to be solvable with polynomial iteration complexity. A practical column generation method is implemented. The column generation subproblems are polynomial optimization problems; however, they need not be solved to optimality. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff's. The rate of convergence of the approximation error is established for continuous integrands, and an improved bound is given for smooth integrands. Extensive numerical experiments are presented in which variants of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods on both numerical integration problems and stochastic optimization problems. The benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order, is also demonstrated using optimization problems with 100-dimensional random vectors. Here, empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.« less
NASA Astrophysics Data System (ADS)
Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio
The conventional optimization methods were based on a deterministic approach, since their purpose is to find out an exact solution. However, these methods have initial condition dependence and risk of falling into local solution. In this paper, we propose a new optimization method based on a concept of path integral method used in quantum mechanics. The method obtains a solutions as an expected value (stochastic average) using a stochastic process. The advantages of this method are not to be affected by initial conditions and not to need techniques based on experiences. We applied the new optimization method to a design of the hang glider. In this problem, not only the hang glider design but also its flight trajectory were optimized. The numerical calculation results showed that the method has a sufficient performance.
A real-time guidance algorithm for aerospace plane optimal ascent to low earth orbit
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1989-01-01
Problems of onboard trajectory optimization and synthesis of suitable guidance laws for ascent to low Earth orbit of an air-breathing, single-stage-to-orbit vehicle are addressed. A multimode propulsion system is assumed which incorporates turbojet, ramjet, Scramjet, and rocket engines. An algorithm for generating fuel-optimal climb profiles is presented. This algorithm results from the application of the minimum principle to a low-order dynamic model that includes angle-of-attack effects and the normal component of thrust. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. A nonlinear transformation technique is employed to derived a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths.
NASA Technical Reports Server (NTRS)
Korte, J. J.; Auslender, A. H.
1993-01-01
A new optimization procedure, in which a parabolized Navier-Stokes solver is coupled with a non-linear least-squares optimization algorithm, is applied to the design of a Mach 14, laminar two-dimensional hypersonic subscale flight inlet with an internal contraction ratio of 15:1 and a length-to-throat half-height ratio of 150:1. An automated numerical search of multiple geometric wall contours, which are defined by polynomical splines, results in an optimal geometry that yields the maximum total-pressure recovery for the compression process. Optimal inlet geometry is obtained for both inviscid and viscous flows, with the assumption that the gas is either calorically or thermally perfect. The analysis with a calorically perfect gas results in an optimized inviscid inlet design that is defined by two cubic splines and yields a mass-weighted total-pressure recovery of 0.787, which is a 23% improvement compared with the optimized shock-canceled two-ramp inlet design. Similarly, the design procedure obtains the optimized contour for a viscous calorically perfect gas to yield a mass-weighted total-pressure recovery value of 0.749. Additionally, an optimized contour for a viscous thermally perfect gas is obtained to yield a mass-weighted total-pressure recovery value of 0.768. The design methodology incorporates both complex fluid dynamic physics and optimal search techniques without an excessive compromise of computational speed; hence, this methodology is a practical technique that is applicable to optimal inlet design procedures.
Control of Finite-State, Finite Memory Stochastic Systems
NASA Technical Reports Server (NTRS)
Sandell, Nils R.
1974-01-01
A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.
Optimal plane change during constant altitude hypersonic flight
NASA Technical Reports Server (NTRS)
Mease, K. D.; Vinh, N. X.; Kuo, S. H.
1988-01-01
Future spacecraft operating in the vicinity of the earth may have resort to the atmosphere as an aid in effecting orbital change. While a previous treatment of this technique chose constant altitude, speed, and angle-of-attack values in order to maximize the plane change for a fixed amount of propellant consumption during hypersonic flight, the former two parameters are presently released from the constraint of constancy. The general characteristics of the optimal controls are described on the basis of the domain of maneuverability, and numerical solutions are obtained for several specific cases. Under the condition of constant-altitude flight, it is generally not optimal to fly at constant angle-of-attack.
Optimized random phase only holograms.
Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto
2018-02-15
We propose a simple and efficient technique capable of generating Fourier phase only holograms with a reconstruction quality similar to the results obtained with the Gerchberg-Saxton (G-S) algorithm. Our proposal is to use the traditional G-S algorithm to optimize a random phase pattern for the resolution, pixel size, and target size of the general optical system without any specific amplitude data. This produces an optimized random phase (ORAP), which is used for fast generation of phase only holograms of arbitrary amplitude targets. This ORAP needs to be generated only once for a given optical system, avoiding the need for costly iterative algorithms for each new target. We show numerical and experimental results confirming the validity of the proposal.
Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou
2015-01-01
Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.
Full-order optimal compensators for flow control: the multiple inputs case
NASA Astrophysics Data System (ADS)
Semeraro, Onofrio; Pralits, Jan O.
2018-03-01
Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.
NASA Astrophysics Data System (ADS)
Koziel, Slawomir; Bekasiewicz, Adrian
2016-10-01
Multi-objective optimization of antenna structures is a challenging task owing to the high computational cost of evaluating the design objectives as well as the large number of adjustable parameters. Design speed-up can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation models and design refinement methods permits identification of the Pareto-optimal set of designs within a reasonable timeframe. Here, a study concerning the scalability of surrogate-assisted multi-objective antenna design is carried out based on a set of benchmark problems, with the dimensionality of the design space ranging from six to 24 and a CPU cost of the EM antenna model from 10 to 20 min per simulation. Numerical results indicate that the computational overhead of the design process increases more or less quadratically with the number of adjustable geometric parameters of the antenna structure at hand, which is a promising result from the point of view of handling even more complex problems.
NASA Astrophysics Data System (ADS)
Mangal, S. K.; Sharma, Vivek
2018-02-01
Magneto rheological fluids belong to a class of smart materials whose rheological characteristics such as yield stress, viscosity etc. changes in the presence of applied magnetic field. In this paper, optimization of MR fluid constituents is obtained with on-state yield stress as response parameter. For this, 18 samples of MR fluids are prepared using L-18 Orthogonal Array. These samples are experimentally tested on a developed & fabricated electromagnet setup. It has been found that the yield stress of MR fluid mainly depends on the volume fraction of the iron particles and type of carrier fluid used in it. The optimal combination of the input parameters for the fluid are found to be as Mineral oil with a volume percentage of 67%, iron powder of 300 mesh size with a volume percentage of 32%, oleic acid with a volume percentage of 0.5% and tetra-methyl-ammonium-hydroxide with a volume percentage of 0.7%. This optimal combination of input parameters has given the on-state yield stress as 48.197 kPa numerically. An experimental confirmation test on the optimized MR fluid sample has been then carried out and the response parameter thus obtained has found matching quite well (less than 1% error) with the numerically obtained values.
Trajectory optimization for an asymmetric launch vehicle. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Sullivan, Jeanne Marie
1990-01-01
A numerical optimization technique is used to fully automate the trajectory design process for an symmetric configuration of the proposed Advanced Launch System (ALS). The objective of the ALS trajectory design process is the maximization of the vehicle mass when it reaches the desired orbit. The trajectories used were based on a simple shape that could be described by a small set of parameters. The use of a simple trajectory model can significantly reduce the computation time required for trajectory optimization. A predictive simulation was developed to determine the on-orbit mass given an initial vehicle state, wind information, and a set of trajectory parameters. This simulation utilizes an idealized control system to speed computation by increasing the integration time step. The conjugate gradient method is used for the numerical optimization of on-orbit mass. The method requires only the evaluation of the on-orbit mass function using the predictive simulation, and the gradient of the on-orbit mass function with respect to the trajectory parameters. The gradient is approximated with finite differencing. Prelaunch trajectory designs were carried out using the optimization procedure. The predictive simulation is used in flight to redesign the trajectory to account for trajectory deviations produced by off-nominal conditions, e.g., stronger than expected head winds.
An experimental and numerical study of gas jet diffusion flames enveloped by a cascade of venturis
NASA Astrophysics Data System (ADS)
Qubbaj, Ala Rafat
1999-06-01
A new technique to control carbon monoxide, nitric oxide, and soot emissions of a propane diffusion flame by modifying the air infusion rate into the flame was developed. In this study, the effectiveness of the ``venturi-cascading'' technique was experimentally as well numerically investigated. Propane jet diffusion flames at three burner-exit Reynolds numbers ( 3600, 5100 and 6500) corresponding to burner-rim-attached, undergoing transition from attached to lifted, and fully-lifted configurations were examined with several sets of venturis of different sizes and spacing arrangements. Temperature, and the concentrations of carbon dioxide, oxygen, carbon monoxide and nitric oxide in the exhaust products were measured before and after the modification, and optimal conditions to minimize pollutant emissions were obtained. The optimal value of venturi throat/burner-exit diameter ratio (D/d) was 32 +/- 3, which corresponded to an approximate clearance of 5 +/- 2 mm between the venturi throat and the burning jet width at the mid-flame height. The venturi-cascading technique at its optimal conditions resulted in a decrease of 87% and 33% in CO and NO emission indices along with a 24% decrease in soot emission from a propane jet flame, compared to the baseline condition (same flame without venturis). The reduction of NO without increasing CO was the main attraction of this technique. The temperature and composition measurements, at the optimal conditions, showed that, in the near-burner region, the venturi-cascaded flame had lower temperature and CO2 concentration by an average of 5% and 7%, respectively, than the baseline flame. However, in the mid-flame and far-burner regions, it has higher temperature by 13% and 12%, and higher CO2 concentration by 16% and 13%, in average values, respectively. Laser Induced Fluorescence (LIF) measurements, in the near-burner region of the venturi-cascaded flame, indicated an average decrease of 18%, 24% and 12% in OH, CH and CN radical species, respectively, along with 11% drop in soot precursors (PAR), from their baseline values. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The CO and NO concentrations were determined through CFD-POST, a post processing utility program for CFD-ACE+. The final simulated results were compared with the experimental data. Good agreement was found in the near-burner region. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal
2013-01-01
A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.
Zhang, Hang; Xu, Qingyan; Liu, Baicheng
2014-01-01
The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process. PMID:28788535
Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm
NASA Astrophysics Data System (ADS)
Hasançebi, O.; Kazemzadeh Azad, S.
2014-01-01
This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.
NASA Astrophysics Data System (ADS)
Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT
2018-02-01
Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).
Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I
2016-12-01
Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.
On the design of decoupling controllers for advanced rotorcraft in the hover case
NASA Technical Reports Server (NTRS)
Fan, M. K. H.; Tits, A.; Barlow, J.; Tsing, N. K.; Tischler, M.; Takahashi, M.
1991-01-01
A methodology for design of helicopter control systems is proposed that can account for various types of concurrent specifications: stability, decoupling between longitudinal and lateral motions, handling qualities, and physical limitations of the swashplate motions. This is achieved by synergistic use of analytical techniques (Q-parameterization of all stabilizing controllers, transfer function interpolation) and advanced numerical optimization techniques. The methodology is used to design a controller for the UH-60 helicopter in hover. Good results are achieved for decoupling and handling quality specifications.
Manufacturing engineering: Principles for optimization
NASA Astrophysics Data System (ADS)
Koenig, Daniel T.
Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.
Optical design applications for enhanced illumination performance
NASA Astrophysics Data System (ADS)
Gilray, Carl; Lewin, Ian
1995-08-01
Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Approximation, abstraction and decomposition in search and optimization
NASA Technical Reports Server (NTRS)
Ellman, Thomas
1992-01-01
In this paper, I discuss four different areas of my research. One portion of my research has focused on automatic synthesis of search control heuristics for constraint satisfaction problems (CSPs). I have developed techniques for automatically synthesizing two types of heuristics for CSPs: Filtering functions are used to remove portions of a search space from consideration. Another portion of my research is focused on automatic synthesis of hierarchic algorithms for solving constraint satisfaction problems (CSPs). I have developed a technique for constructing hierarchic problem solvers based on numeric interval algebra. Another portion of my research is focused on automatic decomposition of design optimization problems. We are using the design of racing yacht hulls as a testbed domain for this research. Decomposition is especially important in the design of complex physical shapes such as yacht hulls. Another portion of my research is focused on intelligent model selection in design optimization. The model selection problem results from the difficulty of using exact models to analyze the performance of candidate designs.
Implementation of a numerical holding furnace model in foundry and construction of a reduced model
NASA Astrophysics Data System (ADS)
Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane
2016-09-01
Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts in according to geometrical and structural expectations. The definition of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. In a further stage this model will be used to characterize heat exchanges using internal sensors through inverse techniques to optimize the furnace command and the optimization of its design. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. A detailed model allows the calculation of the internal induction heat source as well as transient radiative transfer inside the furnace. A reduced lumped body model has been defined to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm with Matlab, using two synthetic temperature signals with a further validation test.
DNS of Supersonic Turbulent Flows in a DLR Scramjet Intake
NASA Astrophysics Data System (ADS)
Li, Xinliang; Yu, Changping
2014-11-01
Direct numerical simulation (DNS) of supersonic/hypersonic flow through a DLR scramjet intake GK01 is performed. The free stream Mach numbers are 3, 5 and 7, and the angle of attack is zero degree. The DNS cases are performed by using an optimized MP scheme with adaptive dissipation (OMP-AD) developed by the authors, and the blow-and-suction perturbations near the leading edge are used to trigger the transition. To stabilize the simulation, locally non-linear flittering is used in high-Mach-number case. The transition, separation, and shock-turbulent boundary layer interaction are studied by using both flow visualization and statistical analysis. A new method, OMP-AD, is also addressed in this paper. The OMP-AD scheme is developed by using joint MP method and optimized technique, and the coefficients in the scheme are flexible to show low dissipation in the smoothing region, and to show high robust (but high dissipation) in the large gradient region. Numerical tests show that the OMP-AD is more robust than the original MP schemes, and the numerical dissipation of OMP-AD is very low.
Optical Sensor/Actuator Locations for Active Structural Acoustic Control
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.
1998-01-01
Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.
Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.
2017-10-01
The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.
Numerical Investigations of High Pressure Acoustic Waves in Resonators
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.
2004-01-01
This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.
NASA Astrophysics Data System (ADS)
Ammari, Habib; Qiu, Lingyun; Santosa, Fadil; Zhang, Wenlong
2017-12-01
In this paper we present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor by integrating magneto-acoutic tomography with data acquired from diffusion tensor imaging. Magneto-acoustic tomography with magnetic induction (MAT-MI) is a hybrid, non-invasive medical imaging technique to produce conductivity images with improved spatial resolution and accuracy. Diffusion tensor imaging (DTI) is also a non-invasive technique for characterizing the diffusion properties of water molecules in tissues. We propose a model for anisotropic conductivity in which the conductivity is proportional to the diffusion tensor. Under this assumption, we propose an optimal control approach for reconstructing the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy and feasibility.
2011-01-01
Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task. PMID:21867520
Particle swarm optimization with recombination and dynamic linkage discovery.
Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung
2007-12-01
In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system.
Space shuttle propulsion parameter estimation using optimal estimation techniques
NASA Technical Reports Server (NTRS)
1983-01-01
The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.
Application of optimal data assimilation techniques in oceanography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R.N.
Application of optimal data assimilation methods in oceanography is, if anything, more important than it is in numerical weather prediction, due to the sparsity of data. Here, a general framework is presented and practical examples taken from the author`s work are described, with the purpose of conveying to the reader some idea of the state of the art of data assimilation in oceanography. While no attempt is made to be exhaustive, references to other lines of research are included. Major challenges to the community include design of statistical error models and handling of strong nonlinearity.
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
On Global Optimal Sailplane Flight Strategy
NASA Technical Reports Server (NTRS)
Sander, G. J.; Litt, F. X.
1979-01-01
The derivation and interpretation of the necessary conditions that a sailplane cross-country flight has to satisfy to achieve the maximum global flight speed is considered. Simple rules are obtained for two specific meteorological models. The first one uses concentrated lifts of various strengths and unequal distance. The second one takes into account finite, nonuniform space amplitudes for the lifts and allows, therefore, for dolphin style flight. In both models, altitude constraints consisting of upper and lower limits are shown to be essential to model realistic problems. Numerical examples illustrate the difference with existing techniques based on local optimality conditions.
A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems
Kouri, Drew Philip
2017-12-19
In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robustmore » optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.« less
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1985-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
Bai, Benfeng; Laukkanen, Janne; Kuittinen, Markku; Siitonen, Samuli
2010-10-01
We propose and investigate the use of slanted surface-relief gratings with nonbinary profiles as high-efficiency broadband couplers for light guides. First, a Chandezon-method-based rigorous numerical formulation is presented for modeling the slanted gratings with overhanging profiles. Then, two typical types of slanted grating couplers--a sinusoidal one and a trapezoidal one--are studied and optimized numerically, both exhibiting a high coupling efficiency of over 50% over the full band of white LED under the normal illumination of unpolarized light. Reasonable structural parameters with nice tolerance have been obtained for the optimized designs. It is found that the performance of the couplers depends little on the grating profile shape, but primarily on the grating period and the slant angle of the ridge. The underlying mechanism is analyzed by the equivalence rules of gratings, which provide useful guidelines for the design and fabrication of the couplers. Preliminary investigation has been performed on the fabrication and replication of the slanted overhanging grating couplers, which shows the feasibility of fabrication with mature microfabrication techniques and the perspective for mass production.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
Applications of numerical methods to simulate the movement of contaminants in groundwater.
Sun, N Z
1989-01-01
This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327
Lin, Yang-Cheng; Yeh, Chung-Hsing; Wang, Chen-Cheng; Wei, Chun-Chun
2012-01-01
How to design highly reputable and hot-selling products is an essential issue in product design. Whether consumers choose a product depends largely on their perception of the product image. A consumer-oriented design approach presented in this paper helps product designers incorporate consumers' perceptions of product forms in the design process. The consumer-oriented design approach uses quantification theory type I, grey prediction (the linear modeling technique), and neural networks (the nonlinear modeling technique) to determine the optimal form combination of product design for matching a given product image. An experimental study based on the concept of Kansei Engineering is conducted to collect numerical data for examining the relationship between consumers' perception of product image and product form elements of personal digital assistants (PDAs). The result of performance comparison shows that the QTTI model is good enough to help product designers determine the optimal form combination of product design. Although the PDA form design is used as a case study, the approach is applicable to other consumer products with various design elements and product images. The approach provides an effective mechanism for facilitating the consumer-oriented product design process.
Van Dun, Bram; Wouters, Jan; Moonen, Marc
2009-07-01
Auditory steady-state responses (ASSRs) are used for hearing threshold estimation at audiometric frequencies. Hearing impaired newborns, in particular, benefit from this technique as it allows for a more precise diagnosis than traditional techniques, and a hearing aid can be better fitted at an early age. However, measurement duration of current single-channel techniques is still too long for clinical widespread use. This paper evaluates the practical performance of a multi-channel electroencephalogram (EEG) processing strategy based on a detection theory approach. A minimum electrode set is determined for ASSRs with frequencies between 80 and 110 Hz using eight-channel EEG measurements of ten normal-hearing adults. This set provides a near-optimal hearing threshold estimate for all subjects and improves response detection significantly for EEG data with numerous artifacts. Multi-channel processing does not significantly improve response detection for EEG data with few artifacts. In this case, best response detection is obtained when noise-weighted averaging is applied on single-channel data. The same test setup (eight channels, ten normal-hearing subjects) is also used to determine a minimum electrode setup for 10-Hz ASSRs. This configuration allows to record near-optimal signal-to-noise ratios for 80% of subjects.
Lin, Yang-Cheng; Yeh, Chung-Hsing; Wang, Chen-Cheng; Wei, Chun-Chun
2012-01-01
How to design highly reputable and hot-selling products is an essential issue in product design. Whether consumers choose a product depends largely on their perception of the product image. A consumer-oriented design approach presented in this paper helps product designers incorporate consumers' perceptions of product forms in the design process. The consumer-oriented design approach uses quantification theory type I, grey prediction (the linear modeling technique), and neural networks (the nonlinear modeling technique) to determine the optimal form combination of product design for matching a given product image. An experimental study based on the concept of Kansei Engineering is conducted to collect numerical data for examining the relationship between consumers' perception of product image and product form elements of personal digital assistants (PDAs). The result of performance comparison shows that the QTTI model is good enough to help product designers determine the optimal form combination of product design. Although the PDA form design is used as a case study, the approach is applicable to other consumer products with various design elements and product images. The approach provides an effective mechanism for facilitating the consumer-oriented product design process. PMID:23258961
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAGEE,GLEN I.
Computers transfer data in a number of different ways. Whether through a serial port, a parallel port, over a modem, over an ethernet cable, or internally from a hard disk to memory, some data will be lost. To compensate for that loss, numerous error detection and correction algorithms have been developed. One of the most common error correction codes is the Reed-Solomon code, which is a special subset of BCH (Bose-Chaudhuri-Hocquenghem) linear cyclic block codes. In the AURA project, an unmanned aircraft sends the data it collects back to earth so it can be analyzed during flight and possible flightmore » modifications made. To counter possible data corruption during transmission, the data is encoded using a multi-block Reed-Solomon implementation with a possibly shortened final block. In order to maximize the amount of data transmitted, it was necessary to reduce the computation time of a Reed-Solomon encoding to three percent of the processor's time. To achieve such a reduction, many code optimization techniques were employed. This paper outlines the steps taken to reduce the processing time of a Reed-Solomon encoding and the insight into modern optimization techniques gained from the experience.« less
NASA Astrophysics Data System (ADS)
Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun
2016-01-01
Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.
Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A
2012-05-01
This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.
Airfoil Design and Optimization by the One-Shot Method
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Taasan, Shlomo; Salas, M. D.
1995-01-01
An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.
Topology-optimized metasurfaces: impact of initial geometric layout.
Yang, Jianji; Fan, Jonathan A
2017-08-15
Topology optimization is a powerful iterative inverse design technique in metasurface engineering and can transform an initial layout into a high-performance device. With this method, devices are optimized within a local design phase space, making the identification of suitable initial geometries essential. In this Letter, we examine the impact of initial geometric layout on the performance of large-angle (75 deg) topology-optimized metagrating deflectors. We find that when conventional metasurface designs based on dielectric nanoposts are used as initial layouts for topology optimization, the final devices have efficiencies around 65%. In contrast, when random initial layouts are used, the final devices have ultra-high efficiencies that can reach 94%. Our numerical experiments suggest that device topologies based on conventional metasurface designs may not be suitable to produce ultra-high-efficiency, large-angle metasurfaces. Rather, initial geometric layouts with non-trivial topologies and shapes are required.
Optimal control of the strong-field ionization of silver clusters in helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truong, N. X.; Goede, S.; Przystawik, A.
Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to themore » cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.« less
Airfoil optimization by the one-shot method
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Taasan, Shlomo; Salas, M. D.
1994-01-01
An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.
Aerodynamic design and optimization in one shot
NASA Technical Reports Server (NTRS)
Ta'asan, Shlomo; Kuruvila, G.; Salas, M. D.
1992-01-01
This paper describes an efficient numerical approach for the design and optimization of aerodynamic bodies. As in classical optimal control methods, the present approach introduces a cost function and a costate variable (Lagrange multiplier) in order to achieve a minimum. High efficiency is achieved by using a multigrid technique to solve for all the unknowns simultaneously, but restricting work on a design variable only to grids on which their changes produce nonsmooth perturbations. Thus, the effort required to evaluate design variables that have nonlocal effects on the solution is confined to the coarse grids. However, if a variable has a nonsmooth local effect on the solution in some neighborhood, it is relaxed in that neighborhood on finer grids. The cost of solving the optimal control problem is shown to be approximately two to three times the cost of the equivalent analysis problem. Examples are presented to illustrate the application of the method to aerodynamic design and constraint optimization.
Design optimization of hydraulic turbine draft tube based on CFD and DOE method
NASA Astrophysics Data System (ADS)
Nam, Mun chol; Dechun, Ba; Xiangji, Yue; Mingri, Jin
2018-03-01
In order to improve performance of the hydraulic turbine draft tube in its design process, the optimization for draft tube is performed based on multi-disciplinary collaborative design optimization platform by combining the computation fluid dynamic (CFD) and the design of experiment (DOE) in this paper. The geometrical design variables are considered as the median section in the draft tube and the cross section in its exit diffuser and objective function is to maximize the pressure recovery factor (Cp). Sample matrixes required for the shape optimization of the draft tube are generated by optimal Latin hypercube (OLH) method of the DOE technique and their performances are evaluated through computational fluid dynamic (CFD) numerical simulation. Subsequently the main effect analysis and the sensitivity analysis of the geometrical parameters of the draft tube are accomplished. Then, the design optimization of the geometrical design variables is determined using the response surface method. The optimization result of the draft tube shows a marked performance improvement over the original.
The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot
NASA Astrophysics Data System (ADS)
Hwang, Donghyeok; Tahk, Min-Jea
2018-04-01
The performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise. By the conventional approach, the three-loop autopilot design is handled by time constant, damping factor and open-loop crossover frequency to achieve the desired performance requirements. Note that the general optimal theory can be also used to obtain the same gain as obtained from the conventional approach. The key idea of using optimal control technique for feedback gain design revolves around appropriate selection and interpretation of the performance index for which the control is optimal. This paper derives an explicit expression, which relates the weight parameters appearing in the quadratic performance index to the design parameters such as open-loop crossover frequency, phase margin, damping factor, or time constant, etc. Since all set of selection of design parameters do not guarantee existence of optimal control law, explicit inequalities, which are named the optimality criteria for the three-loop autopilot (OC3L), are derived to find out all set of design parameters for which the control law is optimal. Finally, based on OC3L, an efficient gain selection procedure is developed, where time constant is set to design objective and open-loop crossover frequency and phase margin as design constraints. The effectiveness of the proposed technique is illustrated through numerical simulations.
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent
De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle
2018-01-01
Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770
Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions
NASA Astrophysics Data System (ADS)
Ilgen, Marc R.
This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value of the flight path angle. A summary of performance results for all these guidance laws is presented in the fifth part of this thesis along with recommendations for further research.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kojima, Fumio
1988-01-01
The identification of the geometrical structure of the system boundary for a two-dimensional diffusion system is reported. The domain identification problem treated here is converted into an optimization problem based on a fit-to-data criterion and theoretical convergence results for approximate identification techniques are discussed. Results of numerical experiments to demonstrate the efficacy of the theoretical ideas are reported.
Xu, Daolin; Lu, Fangfang
2006-12-01
We address the problem of reconstructing a set of nonlinear differential equations from chaotic time series. A method that combines the implicit Adams integration and the structure-selection technique of an error reduction ratio is proposed for system identification and corresponding parameter estimation of the model. The structure-selection technique identifies the significant terms from a pool of candidates of functional basis and determines the optimal model through orthogonal characteristics on data. The technique with the Adams integration algorithm makes the reconstruction available to data sampled with large time intervals. Numerical experiment on Lorenz and Rossler systems shows that the proposed strategy is effective in global vector field reconstruction from noisy time series.
Optimum structural design with plate bending elements - A survey
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Prasad, B.
1981-01-01
A survey is presented of recently published papers in the field of optimum structural design of plates, largely with respect to the minimum-weight design of plates subject to such constraints as fundamental frequency maximization. It is shown that, due to the availability of powerful computers, the trend in optimum plate design is away from methods tailored to specific geometry and loads and toward methods that can be easily programmed for any kind of plate, such as finite element methods. A corresponding shift is seen in optimization from variational techniques to numerical optimization algorithms. Among the topics covered are fully stressed design and optimality criteria, mathematical programming, smooth and ribbed designs, design against plastic collapse, buckling constraints, and vibration constraints.
NASA Astrophysics Data System (ADS)
Vasant, Pandian; Barsoum, Nader
2008-10-01
Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.
Optimal parameter estimation with a fixed rate of abstention
NASA Astrophysics Data System (ADS)
Gendra, B.; Ronco-Bonvehi, E.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.
2013-07-01
The problems of optimally estimating a phase, a direction, and the orientation of a Cartesian frame (or trihedron) with general pure states are addressed. Special emphasis is put on estimation schemes that allow for inconclusive answers or abstention. It is shown that such schemes enable drastic improvements, up to the extent of attaining the Heisenberg limit in some cases, and the required amount of abstention is quantified. A general mathematical framework to deal with the asymptotic limit of many qubits or large angular momentum is introduced and used to obtain analytical results for all the relevant cases under consideration. Parameter estimation with abstention is also formulated as a semidefinite programming problem, for which very efficient numerical optimization techniques exist.
Approximate optimal guidance for the advanced launch system
NASA Technical Reports Server (NTRS)
Feeley, T. S.; Speyer, J. L.
1993-01-01
A real-time guidance scheme for the problem of maximizing the payload into orbit subject to the equations of motion for a rocket over a spherical, non-rotating earth is presented. An approximate optimal launch guidance law is developed based upon an asymptotic expansion of the Hamilton - Jacobi - Bellman or dynamic programming equation. The expansion is performed in terms of a small parameter, which is used to separate the dynamics of the problem into primary and perturbation dynamics. For the zeroth-order problem the small parameter is set to zero and a closed-form solution to the zeroth-order expansion term of Hamilton - Jacobi - Bellman equation is obtained. Higher-order terms of the expansion include the effects of the neglected perturbation dynamics. These higher-order terms are determined from the solution of first-order linear partial differential equations requiring only the evaluation of quadratures. This technique is preferred as a real-time, on-line guidance scheme to alternative numerical iterative optimization schemes because of the unreliable convergence properties of these iterative guidance schemes and because the quadratures needed for the approximate optimal guidance law can be performed rapidly and by parallel processing. Even if the approximate solution is not nearly optimal, when using this technique the zeroth-order solution always provides a path which satisfies the terminal constraints. Results for two-degree-of-freedom simulations are presented for the simplified problem of flight in the equatorial plane and compared to the guidance scheme generated by the shooting method which is an iterative second-order technique.
Design of transonic airfoil sections using a similarity theory
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
A study of the available methods for transonic airfoil and wing design indicates that the most powerful technique is the numerical optimization procedure. However, the computer time for this method is relatively large because of the amount of computation required in the searches during optimization. The optimization method requires that base and calibration solutions be computed to determine a minimum drag direction. The design space is then computationally searched in this direction; it is these searches that dominate the computation time. A recent similarity theory allows certain transonic flows to be calculated rapidly from the base and calibration solutions. In this paper the application of the similarity theory to design problems is examined with the object of at least partially eliminating the costly searches of the design optimization method. An example of an airfoil design is presented.
Generation of structural topologies using efficient technique based on sorted compliances
NASA Astrophysics Data System (ADS)
Mazur, Monika; Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization, although well recognized is still widely developed. It has gained recently more attention since large computational ability become available for designers. This process is stimulated simultaneously by variety of emerging, innovative optimization methods. It is observed that traditional gradient-based mathematical programming algorithms, in many cases, are replaced by novel and e cient heuristic methods inspired by biological, chemical or physical phenomena. These methods become useful tools for structural optimization because of their versatility and easy numerical implementation. In this paper engineering implementation of a novel heuristic algorithm for minimum compliance topology optimization is discussed. The performance of the topology generator is based on implementation of a special function utilizing information of compliance distribution within the design space. With a view to cope with engineering problems the algorithm has been combined with structural analysis system Ansys.
Optimal pricing and marketing planning for deteriorating items.
Moosavi Tabatabaei, Seyed Reza; Sadjadi, Seyed Jafar; Makui, Ahmad
2017-01-01
Optimal pricing and marketing planning plays an essential role in production decisions on deteriorating items. This paper presents a mathematical model for a three-level supply chain, which includes one producer, one distributor and one retailer. The proposed study considers the production of a deteriorating item where demand is influenced by price, marketing expenditure, quality of product and after-sales service expenditures. The proposed model is formulated as a geometric programming with 5 degrees of difficulty and the problem is solved using the recent advances in optimization techniques. The study is supported by several numerical examples and sensitivity analysis is performed to analyze the effects of the changes in different parameters on the optimal solution. The preliminary results indicate that with the change in parameters influencing on demand, inventory holding, inventory deteriorating and set-up costs change and also significantly affect total revenue.
Constant-Envelope Waveform Design for Optimal Target-Detection and Autocorrelation Performances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
2013-01-01
We propose an algorithm to directly synthesize in time-domain a constant-envelope transmit waveform that achieves the optimal performance in detecting an extended target in the presence of signal-dependent interference. This approach is in contrast to the traditional indirect methods that synthesize the transmit signal following the computation of the optimal energy spectral density. Additionally, we aim to maintain a good autocorrelation property of the designed signal. Therefore, our waveform design technique solves a bi-objective optimization problem in order to simultaneously improve the detection and autocorrelation performances, which are in general conflicting in nature. We demonstrate this compromising characteristics of themore » detection and autocorrelation performances with numerical examples. Furthermore, in the absence of the autocorrelation criterion, our designed signal is shown to achieve a near-optimum detection performance.« less
Comparison of weighting techniques for acoustic full waveform inversion
NASA Astrophysics Data System (ADS)
Jeong, Gangwon; Hwang, Jongha; Min, Dong-Joo
2017-12-01
To reconstruct long-wavelength structures in full waveform inversion (FWI), the wavefield-damping and weighting techniques have been used to synthesize and emphasize low-frequency data components in frequency-domain FWI. However, these methods have some weak points. The application of wavefield-damping method on filtered data fails to synthesize reliable low-frequency data; the optimization formula obtained introducing the weighting technique is not theoretically complete, because it is not directly derived from the objective function. In this study, we address these weak points and present how to overcome them. We demonstrate that the source estimation in FWI using damped wavefields fails when the data used in the FWI process does not satisfy the causality condition. This phenomenon occurs when a non-causal filter is applied to data. We overcome this limitation by designing a causal filter. Also we modify the conventional weighting technique so that its optimization formula is directly derived from the objective function, retaining its original characteristic of emphasizing the low-frequency data components. Numerical results show that the newly designed causal filter enables to recover long-wavelength structures using low-frequency data components synthesized by damping wavefields in frequency-domain FWI, and the proposed weighting technique enhances the inversion results.
Dwell time algorithm based on the optimization theory for magnetorheological finishing
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Wang, Yang; Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen
2010-10-01
Magnetorheological finishing (MRF) is an advanced polishing technique capable of rapidly converging to the required surface figure. This process can deterministically control the amount of the material removed by varying a time to dwell at each particular position on the workpiece surface. The dwell time algorithm is one of the most important key techniques of the MRF. A dwell time algorithm based on the1 matrix equation and optimization theory was presented in this paper. The conventional mathematical model of the dwell time was transferred to a matrix equation containing initial surface error, removal function and dwell time function. The dwell time to be calculated was just the solution to the large, sparse matrix equation. A new mathematical model of the dwell time based on the optimization theory was established, which aims to minimize the 2-norm or ∞-norm of the residual surface error. The solution meets almost all the requirements of precise computer numerical control (CNC) without any need for extra data processing, because this optimization model has taken some polishing condition as the constraints. Practical approaches to finding a minimal least-squares solution and a minimal maximum solution are also discussed in this paper. Simulations have shown that the proposed algorithm is numerically robust and reliable. With this algorithm an experiment has been performed on the MRF machine developed by ourselves. After 4.7 minutes' polishing, the figure error of a flat workpiece with a 50 mm diameter is improved by PV from 0.191λ(λ = 632.8 nm) to 0.087λ and RMS 0.041λ to 0.010λ. This algorithm can be constructed to polish workpieces of all shapes including flats, spheres, aspheres, and prisms, and it is capable of improving the polishing figures dramatically.
Knowledge-based system for detailed blade design of turbines
NASA Astrophysics Data System (ADS)
Goel, Sanjay; Lamson, Scott
1994-03-01
A design optimization methodology that couples optimization techniques to CFD analysis for design of airfoils is presented. This technique optimizes 2D airfoil sections of a blade by minimizing the deviation of the actual Mach number distribution on the blade surface from a smooth fit of the distribution. The airfoil is not reverse engineered by specification of a precise distribution of the desired Mach number plot, only general desired characteristics of the distribution are specified for the design. Since the Mach number distribution is very complex, and cannot be conveniently represented by a single polynomial, it is partitioned into segments, each of which is characterized by a different order polynomial. The sum of the deviation of all the segments is minimized during optimization. To make intelligent changes to the airfoil geometry, it needs to be associated with features observed in the Mach number distribution. Associating the geometry parameters with independent features of the distribution is a fairly complex task. Also, for different optimization techniques to work efficiently the airfoil geometry needs to be parameterized into independent parameters, with enough degrees of freedom for adequate geometry manipulation. A high-pressure, low reaction steam turbine blade section was optimized using this methodology. The Mach number distribution was partitioned into pressure and suction surfaces and the suction surface distribution was further subdivided into leading edge, mid section and trailing edge sections. Two different airfoil representation schemes were used for defining the design variables of the optimization problem. The optimization was performed by using a combination of heuristic search and numerical optimization. The optimization results for the two schemes are discussed in the paper. The results are also compared to a manual design improvement study conducted independently by an experienced airfoil designer. The turbine blade optimization system (TBOS) is developed using the described methodology of coupling knowledge engineering with multiple search techniques for blade shape optimization. TBOS removes a major bottleneck in the design cycle by performing multiple design optimizations in parallel, and improves design quality at the same time. TBOS not only improves the design but also the designers' quality of work by taking the mundane repetitive task of design iterations away and leaving them more time for innovative design.
Dynamic one-dimensional modeling of secondary settling tanks and system robustness evaluation.
Li, Ben; Stenstrom, M K
2014-01-01
One-dimensional secondary settling tank models are widely used in current engineering practice for design and optimization, and usually can be expressed as a nonlinear hyperbolic or nonlinear strongly degenerate parabolic partial differential equation (PDE). Reliable numerical methods are needed to produce approximate solutions that converge to the exact analytical solutions. In this study, we introduced a reliable numerical technique, the Yee-Roe-Davis (YRD) method as the governing PDE solver, and compared its reliability with the prevalent Stenstrom-Vitasovic-Takács (SVT) method by assessing their simulation results at various operating conditions. The YRD method also produced a similar solution to the previously developed Method G and Enquist-Osher method. The YRD and SVT methods were also used for a time-to-failure evaluation, and the results show that the choice of numerical method can greatly impact the solution. Reliable numerical methods, such as the YRD method, are strongly recommended.
Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation
NASA Astrophysics Data System (ADS)
Fu, Lung-Ming; Tsai, Chien-Hsiung
2007-01-01
In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.
Yang, Anxiong; Berry, David A; Kaltenbacher, Manfred; Döllinger, Michael
2012-02-01
The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. © 2012 Acoustical Society of America
Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael
2012-01-01
The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511
Inverse transport calculations in optical imaging with subspace optimization algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Tian, E-mail: tding@math.utexas.edu; Ren, Kui, E-mail: ren@math.utexas.edu
2014-09-15
Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analyticallymore » recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.« less
Convergence of the Graph Allen-Cahn Scheme
NASA Astrophysics Data System (ADS)
Luo, Xiyang; Bertozzi, Andrea L.
2017-05-01
The graph Laplacian and the graph cut problem are closely related to Markov random fields, and have many applications in clustering and image segmentation. The diffuse interface model is widely used for modeling in material science, and can also be used as a proxy to total variation minimization. In Bertozzi and Flenner (Multiscale Model Simul 10(3):1090-1118, 2012), an algorithm was developed to generalize the diffuse interface model to graphs to solve the graph cut problem. This work analyzes the conditions for the graph diffuse interface algorithm to converge. Using techniques from numerical PDE and convex optimization, monotonicity in function value and convergence under an a posteriori condition are shown for a class of schemes under a graph-independent stepsize condition. We also generalize our results to incorporate spectral truncation, a common technique used to save computation cost, and also to the case of multiclass classification. Various numerical experiments are done to compare theoretical results with practical performance.
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Optimal gains for a single polar orbiting satellite
NASA Technical Reports Server (NTRS)
Banfield, Don; Ingersoll, A. P.; Keppenne, C. L.
1993-01-01
Gains are the spatial weighting of an observation in its neighborhood versus the local values of a model prediction. They are the key to data assimilation, as they are the direct measure of how the data are used to guide the model. As derived in the broad context of data assimilation by Kalman and in the context of meteorology, for example, by Rutherford, the optimal gains are functions of the prediction error covariances between the observation and analysis points. Kalman introduced a very powerful technique that allows one to calculate these optimal gains at the time of each observation. Unfortunately, this technique is both computationally expensive and often numerically unstable for dynamical systems of the magnitude of meteorological models, and thus is unsuited for use in PMIRR data assimilation. However, the optimal gains as calculated by a Kalman filter do reach a steady state for regular observing patterns like that of a satellite. In this steady state, the gains are constants in time, and thus could conceivably be computed off-line. These steady-state Kalman gains (i.e., Wiener gains) would yield optimal performance without the computational burden of true Kalman filtering. We proposed to use this type of constant-in-time Wiener gain for the assimilation of data from PMIRR and Mars Observer.
Applications of fuzzy theories to multi-objective system optimization
NASA Technical Reports Server (NTRS)
Rao, S. S.; Dhingra, A. K.
1991-01-01
Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis.
Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel
2017-11-01
Multiple response optimization is an efficient technique to develop sustained release formulation while decreasing the number of experiments based on trial and error approach. Diclofenac matrix tablets were optimized to achieve a release profile conforming to USP monograph, matching Voltaren ® SR and withstand formulation variables. The percent of drug released at predetermined multiple time points were the response variables in the design. Statistical models were obtained with relative contour diagrams being overlaid to predict process and formulation parameters expected to produce the target release profile. Tablets were prepared by wet granulation using mixture of equivalent quantities of Eudragit RL/RS at overall polymer concentration of 10-30%w/w and compressed at 5-15KN. Drug release from the optimized formulation E4 (15%w/w, 15KN) was similar to Voltaren, conformed to USP monograph and found to be stable. Substituting lactose with mannitol, reversing the ratio between lactose and microcrystalline cellulose or increasing drug load showed no significant difference in drug release. Using dextromethorphan hydrobromide as a model soluble drug showed burst release due to higher solubility and formation of micro cavities. A numerical optimization technique was employed to develop a stable consistent promising formulation for sustained delivery of diclofenac.
A Review of Distributed Parameter Groundwater Management Modeling Methods
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
NASA Astrophysics Data System (ADS)
Szczepanik, M.; Poteralski, A.
2016-11-01
The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.
NASA Astrophysics Data System (ADS)
Alimorad D., H.; Fakharzadeh J., A.
2017-07-01
In this paper, a new approach is proposed for designing the nearly-optimal three dimensional symmetric shapes with desired physical center of mass. Herein, the main goal is to find such a shape whose image in ( r, θ)-plane is a divided region into a fixed and variable part. The nearly optimal shape is characterized in two stages. Firstly, for each given domain, the nearly optimal surface is determined by changing the problem into a measure-theoretical one, replacing this with an equivalent infinite dimensional linear programming problem and approximating schemes; then, a suitable function that offers the optimal value of the objective function for any admissible given domain is defined. In the second stage, by applying a standard optimization method, the global minimizer surface and its related domain will be obtained whose smoothness is considered by applying outlier detection and smooth fitting methods. Finally, numerical examples are presented and the results are compared to show the advantages of the proposed approach.
Global Design Optimization for Fluid Machinery Applications
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Tucker, Kevin; Vaidyanathan, Raj; Griffin, Lisa
2000-01-01
Recent experiences in utilizing the global optimization methodology, based on polynomial and neural network techniques for fluid machinery design are summarized. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. Another advantage is that these methods do not need to calculate the sensitivity of each design variable locally. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables and methods for predicting the model performance. Examples of applications selected from rocket propulsion components including a supersonic turbine and an injector element and a turbulent flow diffuser are used to illustrate the usefulness of the global optimization method.
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1990-01-01
Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.
Multidisciplinary optimization of aeroservoelastic systems using reduced-size models
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1992-01-01
Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.
Topology optimization in acoustics and elasto-acoustics via a level-set method
NASA Astrophysics Data System (ADS)
Desai, J.; Faure, A.; Michailidis, G.; Parry, G.; Estevez, R.
2018-04-01
Optimizing the shape and topology (S&T) of structures to improve their acoustic performance is quite challenging. The exact position of the structural boundary is usually of critical importance, which dictates the use of geometric methods for topology optimization instead of standard density approaches. The goal of the present work is to investigate different possibilities for handling topology optimization problems in acoustics and elasto-acoustics via a level-set method. From a theoretical point of view, we detail two equivalent ways to perform the derivation of surface-dependent terms and propose a smoothing technique for treating problems of boundary conditions optimization. In the numerical part, we examine the importance of the surface-dependent term in the shape derivative, neglected in previous studies found in the literature, on the optimal designs. Moreover, we test different mesh adaptation choices, as well as technical details related to the implicit surface definition in the level-set approach. We present results in two and three-space dimensions.
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta; Kvaternik, Raymond G.
1991-01-01
A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed.
NASA Technical Reports Server (NTRS)
Bernhard, R. J.; Bolton, J. S.
1988-01-01
The objectives are: measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; tests to measure sound transmission paths in the HP137 Jetstream 3; and formulation of a finite element energy model. In addition, the effort to develop a numerical/empirical noise source identification technique was completed. The investigation of a design optimization technique for active noise control was also completed. Monthly progress reports which detail the progress made toward each of the objectives are summarized.
Utility indifference pricing of insurance catastrophe derivatives.
Eichler, Andreas; Leobacher, Gunther; Szölgyenyi, Michaela
2017-01-01
We propose a model for an insurance loss index and the claims process of a single insurance company holding a fraction of the total number of contracts that captures both ordinary losses and losses due to catastrophes. In this model we price a catastrophe derivative by the method of utility indifference pricing. The associated stochastic optimization problem is treated by techniques for piecewise deterministic Markov processes. A numerical study illustrates our results.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
Space Shuttle propulsion parameter estimation using optimal estimation techniques
NASA Technical Reports Server (NTRS)
1983-01-01
This fourth monthly progress report again contains corrections and additions to the previously submitted reports. The additions include a simplified SRB model that is directly incorporated into the estimation algorithm and provides the required partial derivatives. The resulting partial derivatives are analytical rather than numerical as would be the case using the SOBER routines. The filter and smoother routine developments have continued. These routines are being checked out.
A robust, efficient equidistribution 2D grid generation method
NASA Astrophysics Data System (ADS)
Chacon, Luis; Delzanno, Gian Luca; Finn, John; Chung, Jeojin; Lapenta, Giovanni
2007-11-01
We present a new cell-area equidistribution method for two- dimensional grid adaptation [1]. The method is able to satisfy the equidistribution constraint to arbitrary precision while optimizing desired grid properties (such as isotropy and smoothness). The method is based on the minimization of the grid smoothness integral, constrained to producing a given positive-definite cell volume distribution. The procedure gives rise to a single, non-linear scalar equation with no free-parameters. We solve this equation numerically with the Newton-Krylov technique. The ellipticity property of the linearized scalar equation allows multigrid preconditioning techniques to be effectively used. We demonstrate a solution exists and is unique. Therefore, once the solution is found, the adapted grid cannot be folded due to the positivity of the constraint on the cell volumes. We present several challenging tests to show that our new method produces optimal grids in which the constraint is satisfied numerically to arbitrary precision. We also compare the new method to the deformation method [2] and show that our new method produces better quality grids. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Y. Chung, G. Lapenta, A new, robust equidistribution method for two-dimensional grid generation, in preparation. [2] G. Liao and D. Anderson, A new approach to grid generation, Appl. Anal. 44, 285--297 (1992).
Synthesis of Optimal Constant-Gain Positive-Real Controllers for Passive Systems
NASA Technical Reports Server (NTRS)
Mao, Y.; Kelkar, A. G.; Joshi, S. M.
1999-01-01
This paper presents synthesis methods for the design of constant-gain positive real controllers for passive systems. The results presented in this paper, in conjunction with the previous work by the authors on passification of non-passive systems, offer a useful synthesis tool for the design of passivity-based robust controllers for non-passive systems as well. Two synthesis approaches are given for minimizing an LQ-type performance index, resulting in optimal controller gains. Two separate algorithms, one for each of these approaches, are given. The synthesis techniques are demonstrated using two numerical examples: control of a flexible structure and longitudinal control of a fighter aircraft.
Two-dimensional designed fabrication of subwavelength grating HCG mirror on silicon-on-insulator
NASA Astrophysics Data System (ADS)
Huang, Shen-Che; Hong, Kuo-Bin; Lu, Tien-Chang; He, Sailing
2016-03-01
We designed and fabricated a two dimensional high contrast subwavelength grating (HCG) mirrors. The computer-aided software was employed to verify the structural parameters including grating periods and filling factors. From the optimized simulation results, the designed HCG structure has a wide reflection stopband (reflectivity (R) >90%) of over 200 nm, which centered at telecommunication wavelength. The optimized HCG mirrors were fabricated by electron beam lithography and inductively coupled plasma process technique. The experimental result was almost consistent with calculated data. This achievement should have an impact on numerous photonic devices helpful attribution to the integrated HCG VCSELs in the future.
Sliding Mode Control of a Slewing Flexible Beam
NASA Technical Reports Server (NTRS)
Wilson, David G.; Parker, Gordon G.; Starr, Gregory P.; Robinett, Rush D., III
1997-01-01
An output feedback sliding mode controller (SMC) is proposed to minimize the effects of vibrations of slewing flexible manipulators. A spline trajectory is used to generate ideal position and velocity commands. Constrained nonlinear optimization techniques are used to both calibrate nonlinear models and determine optimized gains to produce a rest-to-rest, residual vibration-free maneuver. Vibration-free maneuvers are important for current and future NASA space missions. This study required the development of the nonlinear dynamic system equations of motion; robust control law design; numerical implementation; system identification; and verification using the Sandia National Laboratories flexible robot testbed. Results are shown for a slewing flexible beam.
MDO can help resolve the designer's dilemma. [multidisciplinary design optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Tulinius, Jan R.
1991-01-01
Multidisciplinary design optimization (MDO) is presented as a rapidly growing body of methods, algorithms, and techniques that will provide a quantum jump in the effectiveness and efficiency of the quantitative side of design, and will turn that side into an environment in which the qualitative side can thrive. MDO borrows from CAD/CAM for graphic visualization of geometrical and numerical data, data base technology, and in computer software and hardware. Expected benefits from this methodology are a rational, mathematically consistent approach to hypersonic aircraft designs, designs pushed closer to the optimum, and a design process either shortened or leaving time available for different concepts to be explored.
Aircraft symmetric flight optimization. [gradient techniques for supersonic aircraft control
NASA Technical Reports Server (NTRS)
Falco, M.; Kelley, H. J.
1973-01-01
Review of the development of gradient techniques and their application to aircraft optimal performance computations in the vertical plane of flight. Results obtained using the method of gradients are presented for attitude- and throttle-control programs which extremize the fuel, range, and time performance indices subject to various trajectory and control constraints, including boundedness of engine throttle control. A penalty function treatment of state inequality constraints which generally appear in aircraft performance problems is outlined. Numerical results for maximum-range, minimum-fuel, and minimum-time climb paths for a hypothetical supersonic turbojet interceptor are presented and discussed. In addition, minimum-fuel climb paths subject to various levels of ground overpressure intensity constraint are indicated for a representative supersonic transport. A variant of the Gel'fand-Tsetlin 'method of ravines' is reviewed, and two possibilities for further development of continuous gradient processes are cited - namely, a projection version of conjugate gradients and a curvilinear search.
Doral, Mahmut Nedim; Bozkurt, Murat; Turhan, Egemen; Dönmez, Gürhan; Demirel, Murat; Kaya, Defne; Ateşok, Kıvanç; Atay, Özgür Ahmet; Maffulli, Nicola
2010-01-01
Although the Achilles tendon (AT) is the strongest tendon in the human body, rupture of this tendon is one of the most common sports injuries in the athletic population. Despite numerous nonoperative and operative methods that have been described, there is no universal agreement about the optimal management strategy of acute total AT ruptures. The management of AT ruptures should aim to minimize the morbidity of the injury, optimize rapid return to full function, and prevent complications. Since endoscopy-assisted percutaneous AT repair allows direct visualization of the synovia and protects the paratenon that is important in biological healing of the AT, this technique becomes a reasonable treatment option in AT ruptures. Furthermore, Achilles tendoscopy technique may decrease the complications about the sural nerve. Also, early functional postoperative physiotherapy following surgery may improve the surgical outcomes. PMID:24198562
Gómez, Pablo; Patel, Rita R.; Alexiou, Christoph; Bohr, Christopher; Schützenberger, Anne
2017-01-01
Motivation Human voice is generated in the larynx by the two oscillating vocal folds. Owing to the limited space and accessibility of the larynx, endoscopic investigation of the actual phonatory process in detail is challenging. Hence the biomechanics of the human phonatory process are still not yet fully understood. Therefore, we adapt a mathematical model of the vocal folds towards vocal fold oscillations to quantify gender and age related differences expressed by computed biomechanical model parameters. Methods The vocal fold dynamics are visualized by laryngeal high-speed videoendoscopy (4000 fps). A total of 33 healthy young subjects (16 females, 17 males) and 11 elderly subjects (5 females, 6 males) were recorded. A numerical two-mass model is adapted to the recorded vocal fold oscillations by varying model masses, stiffness and subglottal pressure. For adapting the model towards the recorded vocal fold dynamics, three different optimization algorithms (Nelder–Mead, Particle Swarm Optimization and Simulated Bee Colony) in combination with three cost functions were considered for applicability. Gender differences and age-related kinematic differences reflected by the model parameters were analyzed. Results and conclusion The biomechanical model in combination with numerical optimization techniques allowed phonatory behavior to be simulated and laryngeal parameters involved to be quantified. All three optimization algorithms showed promising results. However, only one cost function seems to be suitable for this optimization task. The gained model parameters reflect the phonatory biomechanics for men and women well and show quantitative age- and gender-specific differences. The model parameters for younger females and males showed lower subglottal pressures, lower stiffness and higher masses than the corresponding elderly groups. Females exhibited higher subglottal pressures, smaller oscillation masses and larger stiffness than the corresponding similar aged male groups. Optimizing numerical models towards vocal fold oscillations is useful to identify underlying laryngeal components controlling the phonatory process. PMID:29121085
NASA Astrophysics Data System (ADS)
Karimi, Milad; Moradlou, Fridoun; Hajipour, Mojtaba
2018-10-01
This paper is concerned with a backward heat conduction problem with time-dependent thermal diffusivity factor in an infinite "strip". This problem is drastically ill-posed which is caused by the amplified infinitely growth in the frequency components. A new regularization method based on the Meyer wavelet technique is developed to solve the considered problem. Using the Meyer wavelet technique, some new stable estimates are proposed in the Hölder and Logarithmic types which are optimal in the sense of given by Tautenhahn. The stability and convergence rate of the proposed regularization technique are proved. The good performance and the high-accuracy of this technique is demonstrated through various one and two dimensional examples. Numerical simulations and some comparative results are presented.
Optimal placement of actuators and sensors in control augmented structural optimization
NASA Technical Reports Server (NTRS)
Sepulveda, A. E.; Schmit, L. A., Jr.
1990-01-01
A control-augmented structural synthesis methodology is presented in which actuator and sensor placement is treated in terms of (0,1) variables. Structural member sizes and control variables are treated simultaneously as design variables. A multiobjective utopian approach is used to obtain a compromise solution for inherently conflicting objective functions such as strucutal mass control effort and number of actuators. Constraints are imposed on transient displacements, natural frequencies, actuator forces and dynamic stability as well as controllability and observability of the system. The combinatorial aspects of the mixed - (0,1) continuous variable design optimization problem are made tractable by combining approximation concepts with branch and bound techniques. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.
Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros
NASA Technical Reports Server (NTRS)
Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.
1973-01-01
Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.
Evolutionary Optimization of Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.
2001-01-01
Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.
Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity
NASA Astrophysics Data System (ADS)
Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.
2018-05-01
The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.
NASA Astrophysics Data System (ADS)
Soeryana, E.; Fadhlina, N.; Sukono; Rusyaman, E.; Supian, S.
2017-01-01
Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on logarithmic utility function. Non constant mean analysed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analysed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyse some Islamic stocks in Indonesia. The expected result is to get the proportion of investment in each Islamic stock analysed.
NASA Astrophysics Data System (ADS)
Soeryana, Endang; Halim, Nurfadhlina Bt Abdul; Sukono, Rusyaman, Endang; Supian, Sudradjat
2017-03-01
Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on the Negative Exponential Utility Function. Non constant mean analyzed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analyzed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyze some stocks in Indonesia. The expected result is to get the proportion of investment in each stock analyzed
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.
2010-01-01
We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero.
Optimal pricing and marketing planning for deteriorating items
Moosavi Tabatabaei, Seyed Reza; Sadjadi, Seyed Jafar; Makui, Ahmad
2017-01-01
Optimal pricing and marketing planning plays an essential role in production decisions on deteriorating items. This paper presents a mathematical model for a three-level supply chain, which includes one producer, one distributor and one retailer. The proposed study considers the production of a deteriorating item where demand is influenced by price, marketing expenditure, quality of product and after-sales service expenditures. The proposed model is formulated as a geometric programming with 5 degrees of difficulty and the problem is solved using the recent advances in optimization techniques. The study is supported by several numerical examples and sensitivity analysis is performed to analyze the effects of the changes in different parameters on the optimal solution. The preliminary results indicate that with the change in parameters influencing on demand, inventory holding, inventory deteriorating and set-up costs change and also significantly affect total revenue. PMID:28306750
Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning
NASA Technical Reports Server (NTRS)
Kleb, William L.; Wood, William A.; vanLeer, Bram
1999-01-01
A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.
A mesh gradient technique for numerical optimization
NASA Technical Reports Server (NTRS)
Willis, E. A., Jr.
1973-01-01
A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.
NASA Astrophysics Data System (ADS)
Crane, D. T.
2011-05-01
High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.
Design of an optimal preview controller for linear discrete-time descriptor systems with state delay
NASA Astrophysics Data System (ADS)
Cao, Mengjuan; Liao, Fucheng
2015-04-01
In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.
NASA Astrophysics Data System (ADS)
Schmit, C. J.; Pritchard, J. R.
2018-03-01
Next generation radio experiments such as LOFAR, HERA, and SKA are expected to probe the Epoch of Reionization (EoR) and claim a first direct detection of the cosmic 21cm signal within the next decade. Data volumes will be enormous and can thus potentially revolutionize our understanding of the early Universe and galaxy formation. However, numerical modelling of the EoR can be prohibitively expensive for Bayesian parameter inference and how to optimally extract information from incoming data is currently unclear. Emulation techniques for fast model evaluations have recently been proposed as a way to bypass costly simulations. We consider the use of artificial neural networks as a blind emulation technique. We study the impact of training duration and training set size on the quality of the network prediction and the resulting best-fitting values of a parameter search. A direct comparison is drawn between our emulation technique and an equivalent analysis using 21CMMC. We find good predictive capabilities of our network using training sets of as low as 100 model evaluations, which is within the capabilities of fully numerical radiative transfer codes.
Microstructure based procedure for process parameter control in rolling of aluminum thin foils
NASA Astrophysics Data System (ADS)
Johannes, Kronsteiner; Kabliman, Evgeniya; Klimek, Philipp-Christoph
2018-05-01
In present work, a microstructure based procedure is used for a numerical prediction of strength properties for Al-Mg-Sc thin foils during a hot rolling process. For this purpose, the following techniques were developed and implemented. At first, a toolkit for a numerical analysis of experimental stress-strain curves obtained during a hot compression testing by a deformation dilatometer was developed. The implemented techniques allow for the correction of a temperature increase in samples due to adiabatic heating and for the determination of a yield strength needed for the separation of the elastic and plastic deformation regimes during numerical simulation of multi-pass hot rolling. At the next step, an asymmetric Hot Rolling Simulator (adjustable table inlet/outlet height as well as separate roll infeed) was developed in order to match the exact processing conditions of a semi-industrial rolling procedure. At each element of a finite element mesh the total strength is calculated by in-house Flow Stress Model based on evolution of mean dislocation density. The strength values obtained by numerical modelling were found in a reasonable agreement with results of tensile tests for thin Al-Mg-Sc foils. Thus, the proposed simulation procedure might allow to optimize the processing parameters with respect to the microstructure development.
Liu, Jianfeng; Laird, Carl Damon
2017-09-22
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
Detection of Fiber Layer-Up Lamination Order of CFRP Composite Using Thermal-Wave Radar Imaging
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Liu, Yang; Wang, Yang; Gong, Jinlong
2016-09-01
In this paper, thermal-wave radar imaging (TWRI) is used as a nondestructive inspection method to evaluate carbon-fiber-reinforced-polymer (CFRP) composite. An inverse methodology that combines TWRI with numerical optimization technique is proposed to determine the fiber layer-up lamination sequences of anisotropic CFRP composite. A 7-layer CFRP laminate [0°/45°/90°/0°]_{{s}} is heated by a chirp-modulated Gaussian laser beam, and then finite element method (FEM) is employed to calculate the temperature field of CFRP laminates. The phase based on lock-in correlation between reference chirp signal and the thermal-wave signal is performed to obtain the phase image of TWRI, and the least square method is applied to reconstruct the cost function that minimizes the square of the difference between the phase of TWRI inspection and numerical calculation. A hybrid algorithm that combines the simulation annealing with Nelder-Mead simplex research method is employed to solve the reconstructed cost function and find the global optimal solution of the layer-up sequences of CFRP composite. The result shows the feasibility of estimating the fiber layer-up lamination sequences of CFRP composite with optimal discrete and constraint conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianfeng; Laird, Carl Damon
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
THz Beam Shaper Realizing Fan-Out Patterns
NASA Astrophysics Data System (ADS)
Liebert, K.; Rachon, M.; Siemion, A.; Suszek, J.; But, D.; Knap, W.; Sypek, M.
2017-08-01
Fan-out elements create an array of beams radiating at particular angles along the propagation axis. Therefore, they are able to form a matrix of equidistant spots in the far-field diffraction region. In this work, we report on the first fan-out structures designed for the THz range of radiation. Two types of light-dividing fan-out structures are demonstrated: (i) the 3×1 matrix fan-out structure based on the optimized binary phase grating and (ii) the 3×3 fan-out structure designed on the basis of the well-known Dammann grating. The structures were generated numerically and manufactured using the 3D printing technique with polyamide PA12. To obtain equal powers and symmetry of diffracted beams, the computer-aided optimization algorithm was used. Diffractive optical elements designed for 140 and 282 GHz were evaluated experimentally at both these frequencies using illumination with the wavefront coming from the point-like source. Described fan-out elements formed uniform intensity and equidistant energy distribution in agreement with the numerical simulations.
Optimization techniques using MODFLOW-GWM
Grava, Anna; Feinstein, Daniel T.; Barlow, Paul M.; Bonomi, Tullia; Buarne, Fabiola; Dunning, Charles; Hunt, Randall J.
2015-01-01
An important application of optimization codes such as MODFLOW-GWM is to maximize water supply from unconfined aquifers subject to constraints involving surface-water depletion and drawdown. In optimizing pumping for a fish hatchery in a bedrock aquifer system overlain by glacial deposits in eastern Wisconsin, various features of the GWM-2000 code were used to overcome difficulties associated with: 1) Non-linear response matrices caused by unconfined conditions and head-dependent boundaries; 2) Efficient selection of candidate well and drawdown constraint locations; and 3) Optimizing against water-level constraints inside pumping wells. Features of GWM-2000 were harnessed to test the effects of systematically varying the decision variables and constraints on the optimized solution for managing withdrawals. An important lesson of the procedure, similar to lessons learned in model calibration, is that the optimized outcome is non-unique, and depends on a range of choices open to the user. The modeler must balance the complexity of the numerical flow model used to represent the groundwater-flow system against the range of options (decision variables, objective functions, constraints) available for optimizing the model.
NASA Technical Reports Server (NTRS)
Ostroff, A. J.
1973-01-01
Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.
Design and fabrication of planar structures with graded electromagnetic properties
NASA Astrophysics Data System (ADS)
Good, Brandon Lowell
Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.
Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.
2014-12-01
The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.
A study of numerical methods for computing reentry trajectories for shuttle-type space vehicles
NASA Technical Reports Server (NTRS)
1972-01-01
The reuseable exterior insulation system (REI) is studied to determine the optimal reentry trajectory for a space shuttle, which minimizes the heat input to the fuselage. The REI is composed of titanium, covered by a surface insulation material. The method of perturbation functions was used to generate the trajectories, and proved to be an effective technique for generating families of solutions, once an initial trajectory has been obtained.
Rapid Mars transits with exhaust-modulated plasma propulsion
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R.; Braden, Ellen; Johnson, Ivan; Hsu, Michael M.; Yang, Tien Fang
1995-01-01
The operational characteristics of the Exhaust-Modulated Plasma Rocket are described. Four basic human and robotic mission scenarios to Mars are analyzed using numerical optimization techniques at variable specific impulse and constant power. The device is well suited for 'split-sprint' missions, allowing fast, one-way low-payload human transits of 90 to 104 days, as well as slower, 180-day, high-payload robotic precursor flights. Abort capabilities, essential for human missions, are also explored.
NASA Astrophysics Data System (ADS)
Brebbia, C. A.; Futagami, T.; Tanaka, M.
The boundary-element method (BEM) in computational fluid and solid mechanics is examined in reviews and reports of theoretical studies and practical applications. Topics presented include the fundamental mathematical principles of BEMs, potential problems, EM-field problems, heat transfer, potential-wave problems, fluid flow, elasticity problems, fracture mechanics, plates and shells, inelastic problems, geomechanics, dynamics, industrial applications of BEMs, optimization methods based on the BEM, numerical techniques, and coupling.
NASA Astrophysics Data System (ADS)
Barkanov, E.; Eglītis, E.; Almeida, F.; Bowering, M. C.; Watson, G.
2013-07-01
The present investigation is devoted to the development of new optimal design concepts that exploit the full potential of advanced composite materials in the upper covers of aircraft lateral wings. A finite-element simulation of three-rib-bay laminated composite panels with T-stiffeners and a stiffener pitch of 200 mm is carried out using ANSYS to investigate the effect of rib attachment to stiffener webs on the performance of stiffened panels in terms of their buckling behavior and in relation to skin and stiffener lay-ups, stiffener height, and root width. Due to the large dimension of numerical problems to be solved, an optimization methodology is developed employing the method of experimental design and the response surface technique. Minimal-weight optimization problems were solved for four load levels with account of manufacturing, repairability, and damage tolerance requirements. The optimal results were verified successfully by using the ANSYS and ABAQUS shared-node models.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
Liu, Meiqin
2009-09-01
This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
Self-Tuning of Design Variables for Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Lin, Chaung; Juang, Jer-Nan
2000-01-01
Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.
Optimal control of information epidemics modeled as Maki Thompson rumors
NASA Astrophysics Data System (ADS)
Kandhway, Kundan; Kuri, Joy
2014-12-01
We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns.
Particle swarm optimization of ascent trajectories of multistage launch vehicles
NASA Astrophysics Data System (ADS)
Pontani, Mauro
2014-02-01
Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (i) first stage propulsion, (ii) second stage propulsion, (iii) coast arc (after release of the second stage), and (iv) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state and costate components, the coast duration, and the upper stage thrust duration. In addition, a simple approach is introduced and successfully applied with the purpose of satisfying exactly the path constraint related to the maximum dynamical pressure in the atmospheric phase. The basic version of the swarming technique, which is used in this research, is extremely simple and easy to program. Nevertheless, the algorithm proves to be capable of yielding the optimal rocket trajectory with a very satisfactory numerical accuracy.
Analysis and control of high-speed wheeled vehicles
NASA Astrophysics Data System (ADS)
Velenis, Efstathios
In this work we reproduce driving techniques to mimic expert race drivers and obtain the open-loop control signals that may be used by auto-pilot agents driving autonomous ground wheeled vehicles. Race drivers operate their vehicles at the limits of the acceleration envelope. An accurate characterization of the acceleration capacity of the vehicle is required. Understanding and reproduction of such complex maneuvers also require a physics-based mathematical description of the vehicle dynamics. While most of the modeling issues of ground-vehicles/automobiles are already well established in the literature, lack of understanding of the physics associated with friction generation results in ad-hoc approaches to tire friction modeling. In this work we revisit this aspect of the overall vehicle modeling and develop a tire friction model that provides physical interpretation of the tire forces. The new model is free of those singularities at low vehicle speed and wheel angular rate that are inherent in the widely used empirical static models. In addition, the dynamic nature of the tire model proposed herein allows the study of dynamic effects such as transients and hysteresis. The trajectory-planning problem for an autonomous ground wheeled vehicle is formulated in an optimal control framework aiming to minimize the time of travel and maximize the use of the available acceleration capacity. The first approach to solve the optimal control problem is using numerical techniques. Numerical optimization allows incorporation of a vehicle model of high fidelity and generates realistic solutions. Such an optimization scheme provides an ideal platform to study the limit operation of the vehicle, which would not be possible via straightforward simulation. In this work we emphasize the importance of online applicability of the proposed methodologies. This underlines the need for optimal solutions that require little computational cost and are able to incorporate real, unpredictable environments. A semi-analytic methodology is developed to generate the optimal velocity profile for minimum time travel along a prescribed path. The semi-analytic nature ensures minimal computational cost while a receding horizon implementation allows application of the methodology in uncertain environments. Extensions to increase fidelity of the vehicle model are finally provided.
Progress technology in microencapsulation methods for cell therapy.
Rabanel, Jean-Michel; Banquy, Xavier; Zouaoui, Hamza; Mokhtar, Mohamed; Hildgen, Patrice
2009-01-01
Cell encapsulation in microcapsules allows the in situ delivery of secreted proteins to treat different pathological conditions. Spherical microcapsules offer optimal surface-to-volume ratio for protein and nutrient diffusion, and thus, cell viability. This technology permits cell survival along with protein secretion activity upon appropriate host stimuli without the deleterious effects of immunosuppressant drugs. Microcapsules can be classified in 3 categories: matrix-core/shell microcapsules, liquid-core/shell microcapsules, and cells-core/shell microcapsules (or conformal coating). Many preparation techniques using natural or synthetic polymers as well as inorganic compounds have been reported. Matrix-core/shell microcapsules in which cells are hydrogel-embedded, exemplified by alginates capsule, is by far the most studied method. Numerous refinement of the technique have been proposed over the years such as better material characterization and purification, improvements in microbead generation methods, and new microbeads coating techniques. Other approaches, based on liquid-core capsules showed improved protein production and increased cell survival. But aside those more traditional techniques, new techniques are emerging in response to shortcomings of existing methods. More recently, direct cell aggregate coating have been proposed to minimize membrane thickness and implants size. Microcapsule performances are largely dictated by the physicochemical properties of the materials and the preparation techniques employed. Despite numerous promising pre-clinical results, at the present time each methods proposed need further improvements before reaching the clinical phase. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
Optimizing the well pumping rate and its distance from a stream
NASA Astrophysics Data System (ADS)
Abdel-Hafez, M. H.; Ogden, F. L.
2008-12-01
Both ground water and surface water are very important component of the water resources. Since they are coupled systems in riparian areas, management strategies that neglect interactions between them penalize senior surface water rights to the benefit of junior ground water rights holders in the prior appropriation rights system. Water rights managers face a problem in deciding which wells need to be shut down and when, in the case of depleted stream flow. A simulation model representing a combined hypothetical aquifer and stream has been developed using MODFLOW 2000 to capture parameter sensitivity, test management strategies and guide field data collection campaigns to support modeling. An optimization approach has been applied to optimize both the well distance from the stream and the maximum pumping rate that does not affect the stream discharge downstream the pumping wells. Conjunctive management can be modeled by coupling the numerical simulation model with the optimization techniques using the response matrix technique. The response matrix can be obtained by calculating the response coefficient for each well and stream. The main assumption of the response matrix technique is that the amount of water out of the stream to the aquifer is linearly proportional to the well pumping rate (Barlow et al. 2003). The results are presented in dimensionless form, which can be used by the water managers to solve conflicts between surface water and ground water holders by making the appropriate decision to choose which well need to be shut down first.
Coelho, Pedro G; Hollister, Scott J; Flanagan, Colleen L; Fernandes, Paulo R
2015-03-01
Bone scaffolds for tissue regeneration require an optimal trade-off between biological and mechanical criteria. Optimal designs may be obtained using topology optimization (homogenization approach) and prototypes produced using additive manufacturing techniques. However, the process from design to manufacture remains a research challenge and will be a requirement of FDA design controls to engineering scaffolds. This work investigates how the design to manufacture chain affects the reproducibility of complex optimized design characteristics in the manufactured product. The design and prototypes are analyzed taking into account the computational assumptions and the final mechanical properties determined through mechanical tests. The scaffold is an assembly of unit-cells, and thus scale size effects on the mechanical response considering finite periodicity are investigated and compared with the predictions from the homogenization method which assumes in the limit infinitely repeated unit cells. Results show that a limited number of unit-cells (3-5 repeated on a side) introduce some scale-effects but the discrepancies are below 10%. Higher discrepancies are found when comparing the experimental data to numerical simulations due to differences between the manufactured and designed scaffold feature shapes and sizes as well as micro-porosities introduced by the manufacturing process. However good regression correlations (R(2) > 0.85) were found between numerical and experimental values, with slopes close to 1 for 2 out of 3 designs. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Foley, Jonathan J.; Mazziotti, David A.
2010-10-01
An efficient method for geometry optimization based on solving the anti-Hermitian contracted Schrödinger equation (ACSE) is presented. We formulate a reduced version of the Hellmann-Feynman theorem (HFT) in terms of the two-electron reduced Hamiltonian operator and the two-electron reduced density matrix (2-RDM). The HFT offers a considerable reduction in computational cost over methods which rely on numerical derivatives. While previous geometry optimizations with numerical gradients required 2M evaluations of the ACSE where M is the number of nuclear degrees of freedom, the HFT requires only a single ACSE calculation of the 2-RDM per gradient. Synthesizing geometry optimization techniques with recent extensions of the ACSE theory to arbitrary electronic and spin states provides an important suite of tools for accurately determining equilibrium and transition-state structures of ground- and excited-state molecules in closed- and open-shell configurations. The ability of the ACSE to balance single- and multi-reference correlation is particularly advantageous in the determination of excited-state geometries where the electronic configurations differ greatly from the ground-state reference. Applications are made to closed-shell molecules N2, CO, H2O, the open-shell molecules B2 and CH, and the excited state molecules N2, B2, and BH. We also study the HCN ↔ HNC isomerization and the geometry optimization of hydroxyurea, a molecule which has a significant role in the treatment of sickle-cell anaemia.
Aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Murman, E. M.; Chapman, G. T.
1983-01-01
The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.
Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad
2018-05-01
The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.
Sun, Li; Hernandez-Guzman, Jessica; Warncke, Kurt
2009-01-01
Electron spin echo envelope modulation (ESEEM) is a technique of pulsed-electron paramagnetic resonance (EPR) spectroscopy. The analyis of ESEEM data to extract information about the nuclear and electronic structure of a disordered (powder) paramagnetic system requires accurate and efficient numerical simulations. A single coupled nucleus of known nuclear g value (gN) and spin I=1 can have up to eight adjustable parameters in the nuclear part of the spin Hamiltonian. We have developed OPTESIM, an ESEEM simulation toolbox, for automated numerical simulation of powder two- and three-pulse one-dimensional ESEEM for arbitrary number (N) and type (I, gN) of coupled nuclei, and arbitrary mutual orientations of the hyperfine tensor principal axis systems for N>1. OPTESIM is based in the Matlab environment, and includes the following features: (1) a fast algorithm for translation of the spin Hamiltonian into simulated ESEEM, (2) different optimization methods that can be hybridized to achieve an efficient coarse-to-fine grained search of the parameter space and convergence to a global minimum, (3) statistical analysis of the simulation parameters, which allows the identification of simultaneous confidence regions at specific confidence levels. OPTESIM also includes a geometry-preserving spherical averaging algorithm as default for N>1, and global optimization over multiple experimental conditions, such as the dephasing time ( ) for three-pulse ESEEM, and external magnetic field values. Application examples for simulation of 14N coupling (N=1, N=2) in biological and chemical model paramagnets are included. Automated, optimized simulations by using OPTESIM lead to a convergence on dramatically shorter time scales, relative to manual simulations. PMID:19553148
Optimization of enhanced coal-bed methane recovery using numerical simulation
NASA Astrophysics Data System (ADS)
Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.
2015-02-01
Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.
Optimal interpolation analysis of leaf area index using MODIS data
Gu, Yingxin; Belair, Stephane; Mahfouf, Jean-Francois; Deblonde, Godelieve
2006-01-01
A simple data analysis technique for vegetation leaf area index (LAI) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is presented. The objective is to generate LAI data that is appropriate for numerical weather prediction. A series of techniques and procedures which includes data quality control, time-series data smoothing, and simple data analysis is applied. The LAI analysis is an optimal combination of the MODIS observations and derived climatology, depending on their associated errors σo and σc. The “best estimate” LAI is derived from a simple three-point smoothing technique combined with a selection of maximum LAI (after data quality control) values to ensure a higher quality. The LAI climatology is a time smoothed mean value of the “best estimate” LAI during the years of 2002–2004. The observation error is obtained by comparing the MODIS observed LAI with the “best estimate” of the LAI, and the climatological error is obtained by comparing the “best estimate” of LAI with the climatological LAI value. The LAI analysis is the result of a weighting between these two errors. Demonstration of the method described in this paper is presented for the 15-km grid of Meteorological Service of Canada (MSC)'s regional version of the numerical weather prediction model. The final LAI analyses have a relatively smooth temporal evolution, which makes them more appropriate for environmental prediction than the original MODIS LAI observation data. They are also more realistic than the LAI data currently used operationally at the MSC which is based on land-cover databases.
Optimization of planar PIV-based pressure estimates in laminar and turbulent wakes
NASA Astrophysics Data System (ADS)
McClure, Jeffrey; Yarusevych, Serhiy
2017-05-01
The performance of four pressure estimation techniques using Eulerian material acceleration estimates from planar, two-component Particle Image Velocimetry (PIV) data were evaluated in a bluff body wake. To allow for the ground truth comparison of the pressure estimates, direct numerical simulations of flow over a circular cylinder were used to obtain synthetic velocity fields. Direct numerical simulations were performed for Re_D = 100, 300, and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A parametric study encompassing a range of temporal and spatial resolutions was performed for each Re_D. The effect of random noise typical of experimental velocity measurements was also evaluated. The results identified optimal temporal and spatial resolutions that minimize the propagation of random and truncation errors to the pressure field estimates. A model derived from linear error propagation through the material acceleration central difference estimators was developed to predict these optima, and showed good agreement with the results from common pressure estimation techniques. The results of the model are also shown to provide acceptable first-order approximations for sampling parameters that reduce error propagation when Lagrangian estimations of material acceleration are employed. For pressure integration based on planar PIV, the effect of flow three-dimensionality was also quantified, and shown to be most pronounced at higher Reynolds numbers downstream of the vortex formation region, where dominant vortices undergo substantial three-dimensional deformations. The results of the present study provide a priori recommendations for the use of pressure estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.
Sun, Tie Gang; Xiao, Rong Bo; Cai, Yun Nan; Wang, Yao Wu; Wu, Chang Guang
2016-08-01
Quantitative assessment of urban thermal environment has become a focus for urban climate and environmental science since the concept of urban heat island has been proposed. With the continual development of space information and computer simulation technology, substantial progresses have been made on quantitative assessment techniques and methods of urban thermal environment. The quantitative assessment techniques have been developed to dynamics simulation and forecast of thermal environment at various scales based on statistical analysis of thermal environment on urban-scale using the historical data of weather stations. This study reviewed the development progress of ground meteorological observation, thermal infrared remote sensing and numerical simulation. Moreover, the potential advantages and disadvantages, applicability and the development trends of these techniques were also summarized, aiming to add fundamental knowledge of understanding the urban thermal environment assessment and optimization.
Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming
NASA Technical Reports Server (NTRS)
Shi, Yun. Y.; Nelson, R. L.; Young, D. H.
1990-01-01
The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints.
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Miller, Corey A.
2008-01-01
This study seeks a numerical algorithm which optimizes frequency precision for the damped sinusoids generated by the nonresonant LITA technique. It compares computed frequencies, frequency errors, and fit errors obtained using five primary signal analysis methods. Using variations on different algorithms within each primary method, results from 73 fits are presented. Best results are obtained using an AutoRegressive method. Compared to previous results using Prony s method, single shot waveform frequencies are reduced approx.0.4% and frequency errors are reduced by a factor of approx.20 at 303K to approx. 0.1%. We explore the advantages of high waveform sample rates and potential for measurements in low density gases.
Applications of Pharmacometrics in the Clinical Development and Pharmacotherapy of Anti-Infectives
Trivedi, Ashit; Lee, Richard E; Meibohm, Bernd
2013-01-01
With the increased emergence of anti-infective resistance in recent years, much focus has recently been drawn to the development of new anti-infectives and the optimization of treatment regimens and combination therapies for established antimicrobials. In this context, the field of pharmacometrics using quantitative numerical modeling and simulation techniques has in recent years emerged as an invaluable tool in the pharmaceutical industry, academia and regulatory agencies to facilitate the integration of preclinical and clinical development data and to provide a scientifically based framework for rationale dosage regimen design and treatment optimization. This review highlights the usefulness of pharmacometric analyses in anti-infective drug development and applied pharmacotherapy with select examples. PMID:23473593
NASA Astrophysics Data System (ADS)
Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.
2018-04-01
In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rian, D.T.; Hage, A.
1994-12-31
A numerical simulator is often used as a reservoir management tool. One of its main purposes is to aid in the evaluation of number of wells, well locations and start time for wells. Traditionally, the optimization of a field development is done by a manual trial and error process. In this paper, an example of an automated technique is given. The core in the automization process is the reservoir simulator Frontline. Frontline is based on front tracking techniques, which makes it fast and accurate compared to traditional finite difference simulators. Due to its CPU-efficiency the simulator has been coupled withmore » an optimization module, which enables automatic optimization of location of wells, number of wells and start-up times. The simulator was used as an alternative method in the evaluation of waterflooding in a North Sea fractured chalk reservoir. Since Frontline, in principle, is 2D, Buckley-Leverett pseudo functions were used to represent the 3rd dimension. The area full field simulation model was run with up to 25 wells for 20 years in less than one minute of Vax 9000 CPU-time. The automatic Frontline evaluation indicated that a peripheral waterflood could double incremental recovery compared to a central pattern drive.« less
Vesapogu, Joshi Manohar; Peddakotla, Sujatha; Kuppa, Seetha Rama Anjaneyulu
2013-01-01
With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.
Mathematical and Numerical Techniques in Energy and Environmental Modeling
NASA Astrophysics Data System (ADS)
Chen, Z.; Ewing, R. E.
Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, J. J.; Sorensen, D. C.
1982-02-01
Newton's method plays a central role in the development of numerical techniques for optimization. In fact, most of the current practical methods for optimization can be viewed as variations on Newton's method. It is therefore important to understand Newton's method as an algorithm in its own right and as a key introduction to the most recent ideas in this area. One of the aims of this expository paper is to present and analyze two main approaches to Newton's method for unconstrained minimization: the line search approach and the trust region approach. The other aim is to present some of themore » recent developments in the optimization field which are related to Newton's method. In particular, we explore several variations on Newton's method which are appropriate for large scale problems, and we also show how quasi-Newton methods can be derived quite naturally from Newton's method.« less
OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING
Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.
2017-01-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369
Optimal experiment design for magnetic resonance fingerprinting.
Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L
2016-08-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.
NASA Astrophysics Data System (ADS)
Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro
2015-10-01
Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip velocity afterwards. Also, further experiment shows the importance of employing a fine-mesh model. It will contribute to the further understanding of the frictional properties on plate interfaces and lead to the forecasting system that provides useful information on the possibility of consequent earthquakes.
Scattering of Acoustic Energy from Rough Deep Ocean Seafloor: a Numerical Modeling Approach.
NASA Astrophysics Data System (ADS)
Robertsson, Johan Olof Anders
1995-01-01
The highly heterogeneous and anelastic nature of deep ocean seafloor results in complex reverberation as acoustic energy incident from the overlaying water column interacts and scatters from it. To gain a deeper understanding of the mechanisms causing the reverberation in sonar and seafloor scattering experiments, we have developed numerical simulation techniques that are capable of modeling the principal physical properties of complex seafloor structures. A new viscoelastic finite-difference technique for modeling anelastic wave propagation in 2-D and 3-D heterogeneous media, as well as a computationally optimally efficient method for quantifying the anelastic properties in terms of viscoelastic mechanics are presented. A method for reducing numerical dispersion using a Galerkin-wavelet formulation that enables large computational savings is also presented. The widely different regimes of wave propagation occurring in ocean acoustic problems motivate the use of hybrid simulation techniques. HARVEST (Hybrid Adaptive Regime Visco-Elastic Simulation Technique) combines solutions from Gaussian beams, viscoelastic finite-differences, and Kirchhoff extrapolation, to simulate large offset scattering problems. Several scattering hypotheses based on finite -difference simulations of short-range acoustic scattering from realistic seafloor models are presented. Anelastic sediments on the seafloor are found to have a significant impact on the backscattered field from low grazing angle scattering experiments. In addition, small perturbations in the sediment compressional velocity can also dramatically alter the backscattered field due to transitions between pre- and post-critical reflection regimes. The hybrid techniques are employed to simulate deep ocean acoustic reverberation data collected in the vicinity of the northern mid-Atlantic ridge. In general, the simulated data compare well to the real data. Noise partly due to side-lobes in the beam-pattern of the receiver -array is the principal source of reverberation at lower levels. Overall, the employed seafloor models were found to model the real seafloor well. Inaccurately predicted events may partly be attributed to the intrinsic uncertainty in the stochastic seafloor models. For optimal comparison between real and HARVEST simulated data the experimental geometry should be chosen so that 3-D effects may be ignored, and to yield a cross-range resolution in the beam-formed acoustic data that is small relative to the lineation of the seafloor.
Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L
2015-03-01
Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Variational data assimilation for the initial-value dynamo problem.
Li, Kuan; Jackson, Andrew; Livermore, Philip W
2011-11-01
The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries.
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre
2010-06-01
The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples demonstrate the method versatility. They include billet shape optimization of a common rail, the cogging of a bar and a wire drawing problem.
Krylov Deferred Correction Accelerated Method of Lines Transpose for Parabolic Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jun; Jingfang, Huang
2008-01-01
In this paper, a new class of numerical methods for the accurate and efficient solutions of parabolic partial differential equations is presented. Unlike traditional method of lines (MoL), the new {\\bf \\it Krylov deferred correction (KDC) accelerated method of lines transpose (MoL^T)} first discretizes the temporal direction using Gaussian type nodes and spectral integration, and symbolically applies low-order time marching schemes to form a preconditioned elliptic system, which is then solved iteratively using Newton-Krylov techniques such as Newton-GMRES or Newton-BiCGStab method. Each function evaluation in the Newton-Krylov method is simply one low-order time-stepping approximation of the error by solving amore » decoupled system using available fast elliptic equation solvers. Preliminary numerical experiments show that the KDC accelerated MoL^T technique is unconditionally stable, can be spectrally accurate in both temporal and spatial directions, and allows optimal time-step sizes in long-time simulations.« less
Poirier, Bill; Salam, A
2004-07-22
In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.
NASA Astrophysics Data System (ADS)
Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi
2018-01-01
Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.
Analytical and numerical solutions for mass diffusion in a composite cylindrical body
NASA Astrophysics Data System (ADS)
Kumar, A.
1980-12-01
The analytical and numerical solution techniques were investigated to study moisture diffusion problems in cylindrical bodies that are assumed to be composed of a finite number of layers of different materials. A generalized diffusion model for an n-layer cylindrical body with discontinuous moisture content at the interfaces was developed and the formal solutions were obtained. The model is to be used for describing mass transfer rates of any composite body, such as an ear of corn which could be assumed of consisting two different layers: the inner core represents the woody cob and the outer cylinder represents the kernel layer. Data describing the fully exposed drying characteristics of ear corn at high air velocity were obtained under different drying conditions. Ear corns were modeled as homogeneous bodies since composite model did not improve the fit substantially. A computer program using multidimensional optimization technique showed that diffusivity was an exponential function of moisture content and an arrhenius function of temperature of drying air.
NASA Technical Reports Server (NTRS)
Song, Y. T.
2002-01-01
It is found that two adaptive parametric functions can be introduced into the basic ocean equations for utilizing the optimal or hybrid features of commonly used z-level, terrain- following, isopycnal, and pressure coordinates in numerical ocean models. The two parametric functions are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara (1 974), the Jacobian pressure gradient formulation of Song (1 998), and a newly developed metric factor that permits both compressible (non-Boussinesq) and incompressible (Boussinesq) approximations. Based on the new formulation, an adaptive modeling strategy is proposed and a staggered finite volume method is designed to ensure conservation of important physical properties and numerical accuracy. Implementation of the combined techniques to SCRUM (Song and Haidvogel1994) shows that the adaptive modeling strategy can be applied to any existing ocean model without incurring computational expense or altering the original numerical schemes. Such a generalized coordinate model is expected to benefit diverse ocean modelers for easily choosing optimal vertical structures and sharing modeling resources based on a common model platform. Several representing oceanographic problems with different scales and characteristics, such as coastal canyons, basin-scale circulation, and global ocean circulation, are used to demonstrate the model's capability for multiple applications. New results show that the model is capable of simultaneously resolving both Boussinesq and non-Boussinesq, and both small- and large-scale processes well. This talk will focus on its applications of multiple satellite sensing data in eddy-resolving simulations of Asian Marginal Sea and Kurosio. Attention will be given to how Topex/Poseidon SSH, TRMM SST; and GRACE ocean bottom pressure can be correctly represented in a non- Boussinesq model.
NASA Astrophysics Data System (ADS)
Lei, F.; Crow, W. T.; Kustas, W. P.; Yang, Y.; Anderson, M. C.
2017-12-01
Improving the water usage efficiency and maintaining water use sustainability is challenging under rapidly changed natural environments. For decades, extensive field investigations and conceptual/physical numerical modeling have been developed to quantify and track surface water and energy fluxes at different spatial and temporal scales. Meanwhile, with the development of satellite-based sensors, land surface eco-hydrological parameters can be retrieved remotely to supplement ground-based observations. However, both models and remote sensing retrievals contain various sources of errors and an accurate and spatio-temporally continuous simulation and forecasting system at the field-scale is crucial for the efficient water management in agriculture. Specifically, data assimilation technique can optimally integrate measurements acquired from various sources (including in-situ and remotely-sensed data) with numerical models through consideration of different types of uncertainties. In this presentation, we will focus on improving the estimation of water and energy fluxes over a vineyard in California, U.S. A high-resolution remotely-sensed Evaporative Fraction (EF) product from the Atmosphere-Land Exchange Inverse (ALEXI) model will be incorporated into a Soil Vegetation Atmosphere Transfer (SVAT) model via a 2-D data assimilation method. The results will show that both the accuracy and spatial variability of soil water content and evapotranspiration in SVAT model can be enhanced through the assimilation of EF data. Furthermore, we will demonstrate that by taking the optimized soil water flux as initial condition and combining it with weather forecasts, future field water status can be predicted under different irrigation scenarios. Finally, we will discuss the practical potential of these advances by leveraging our numerical experiment for the design of new irrigation strategies and water management techniques.
Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard
2002-01-01
The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.
Constrained H1-regularization schemes for diffeomorphic image registration
Mang, Andreas; Biros, George
2017-01-01
We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361
A New Control Paradigm for Stochastic Differential Equations
NASA Astrophysics Data System (ADS)
Schmid, Matthias J. A.
This study presents a novel comprehensive approach to the control of dynamic systems under uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) techniques are employed to arrive at a control law for a large class of nonlinear systems minimizing sample path deviations. Thereby, a paradigm shift is suggested from point-in-time to sample path statistics on function spaces. A suitable formal control framework which leverages embedded Freidlin-Wentzell theory is proposed and described in detail. This includes the precise definition of the control objective and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem to the particular situation. The new control design is enabled by the transformation of an ill-posed control objective into a well-conditioned sequential optimization problem. A direct numerical solution process is presented using quadratic programming, but the emphasis is on the development of a closed-form expression reflecting the asymptotic deviation probability of a particular nominal path. This is identified as the key factor in the success of the new paradigm. An approach employing the second variation and the differential curvature of the effective action is suggested for small deviation channels leading to the Jacobi field of the rate function and the subsequently introduced Jacobi field performance measure. This closed-form solution is utilized in combination with the supplied parametrization of the objective space. For the first time, this allows for an LD based control design applicable to a large class of nonlinear systems. Thus, Minimum Large Deviations (MLD) control is effectively established in a comprehensive structured framework. The construction of the new paradigm is completed by an optimality proof for the Jacobi field performance measure, an interpretive discussion, and a suggestion for efficient implementation. The potential of the new approach is exhibited by its extension to scalar systems subject to state-dependent noise and to systems of higher order. The suggested control paradigm is further advanced when a sequential application of MLD control is considered. This technique yields a nominal path corresponding to the minimum total deviation probability on the entire time domain. It is demonstrated that this sequential optimization concept can be unified in a single objective function which is revealed to be the Jacobi field performance index on the entire domain subject to an endpoint deviation. The emerging closed-form term replaces the previously required nested optimization and, thus, results in a highly efficient application-ready control design. This effectively substantiates Minimum Path Deviation (MPD) control. The proposed control paradigm allows the specific problem of stochastic cost control to be addressed as a special case. This new technique is employed within this study for the stochastic cost problem giving rise to Cost Constrained MPD (CCMPD) as well as to Minimum Quadratic Cost Deviation (MQCD) control. An exemplary treatment of a generic scalar nonlinear system subject to quadratic costs is performed for MQCD control to demonstrate the elementary expandability of the new control paradigm. This work concludes with a numerical evaluation of both MPD and CCMPD control for three exemplary benchmark problems. Numerical issues associated with the simulation of SDEs are briefly discussed and illustrated. The numerical examples furnish proof of the successful design. This study is complemented by a thorough review of statistical control methods, stochastic processes, Large Deviations techniques and the Freidlin-Wentzell theory, providing a comprehensive, self-contained account. The presentation of the mathematical tools and concepts is of a unique character, specifically addressing an engineering audience.
Concept design and simulation study on a "phantom" anvil for circular stapler.
Rulli, Francesco; Kartheuser, Alex; Amirhassankhani, Sasan; Mourad, Michel; Stefani, Mario; de Ferrá Aureli, Andrés; Sileri, Pierpaolo; Valentini, Pier Paolo
2015-04-01
Complications and challenges arising from the intraoperative double-stapling technique are seldom reported in colorectal surgery literature. Partial or full-thickness rectal injuries can occur during the introduction and the advancement of the circular stapler along the upper rectum. The aim of this study is to address some of these issues by designing and optimizing a "phantom" anvil manufactured to overcome difficulties throughout the rectal introduction and advancement of the circular stapler for the treatment of benign and malignant colon disease. The design of the "phantom" anvil has been performed using computer-aided modeling techniques, finite element investigations, and 2 essential keynotes in mind. The first one is the internal shape of the anvil, which is used for the connection to the gun. The second is the shape of the cap, which makes possible the insertion of the gun through the rectum. The "phantom" anvil has 2 functional requirements, which have been taken into account. The design has been optimized to avoid colorectal injuries, neoplastic dissemination (ie, mechanical seeding) and to reduce the fecal contamination. Numerical simulations show that a right combination of both top and bottom fillet radii of the shape of the anvil can reduce the stress for the considered anatomic configuration of >90%. Both the fillet radii at the top and the bottom of the device influence the local stress of the colon rectum. A dismountable device, which is used only for the insertion and advancement of the stapler, allows a dedicated design of its shape, keeping the remainder of the stapler unmodified. Computer-aided simulations are useful to perform numerical investigations to optimize the design of this auxiliary part for both the safety of the patient and the ease of the stapler advancement through the rectum.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1991-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.
A numerical algorithm for optimal feedback gains in high dimensional LQR problems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1986-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.
Managing a Common Pool Resource: Real Time Decision-Making in a Groundwater Aquifer
NASA Astrophysics Data System (ADS)
Sahu, R.; McLaughlin, D.
2017-12-01
In a Common Pool Resource (CPR) such as a groundwater aquifer, multiple landowners (agents) are competing for a limited resource of water. Landowners pump out the water to grow their own crops. Such problems can be posed as differential games, with agents all trying to control the behavior of the shared dynamic system. Each agent aims to maximize his/her own personal objective like agriculture yield, being aware that the action of every other agent collectively influences the behavior of the shared aquifer. The agents therefore choose a subgame perfect Nash equilibrium strategy that derives an optimal action for each agent based on the current state of the aquifer and assumes perfect information of every other agents' objective function. Furthermore, using an Iterated Best Response approach and interpolating techniques, an optimal pumping strategy can be computed for a more-realistic description of the groundwater model under certain assumptions. The numerical implementation of dynamic optimization techniques for a relevant description of the physical system yields results qualitatively different from the previous solutions obtained from simple abstractions.This work aims to bridge the gap between extensive modeling approaches in hydrology and competitive solution strategies in differential game theory.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi
2000-06-01
Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.
NASA Astrophysics Data System (ADS)
El-Hakim, H. A.; Mahmoud, K. R.
2017-10-01
In this paper, straightforward and efficient techniques have been addressed into double-layer structure to enlarge the operating bandwidth to include the X, Ku and K bands, in addition to increase the electromagnetic wave absorption for wide varieties of incident angles and both polarization types. To increase the band-stop resonating frequency up to 26 GHz, an additional layer of meta-surface, circuit analog radar absorber material (CAR), or a thin radar absorber material (RAM) layer is engineered. The synthesized layers are designed based on optimization process with genetic algorithm (GA) through numerical technique (Ansoft design software HFSS) for both transmission line (T.L) and the free space method to get optimal material properties suitable for the design. For different approaches, the designed structures achieved a reflectivity value less than -16 dB on average in the desired bandwidth from 8 to 26 GHz for TE/TM modes with incidence angle up to 50o.
Solving Fractional Programming Problems based on Swarm Intelligence
NASA Astrophysics Data System (ADS)
Raouf, Osama Abdel; Hezam, Ibrahim M.
2014-04-01
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.
Nonlinear zero-sum differential game analysis by singular perturbation methods
NASA Technical Reports Server (NTRS)
Sinar, J.; Farber, N.
1982-01-01
A class of nonlinear, zero-sum differential games, exhibiting time-scale separation properties, can be analyzed by singular-perturbation techniques. The merits of such an analysis, leading to an approximate game solution, as well as the 'well-posedness' of the formulation, are discussed. This approach is shown to be attractive for investigating pursuit-evasion problems; the original multidimensional differential game is decomposed to a 'simple pursuit' (free-stream) game and two independent (boundary-layer) optimal-control problems. Using multiple time-scale boundary-layer models results in a pair of uniformly valid zero-order composite feedback strategies. The dependence of suboptimal strategies on relative geometry and own-state measurements is demonstrated by a three dimensional, constant-speed example. For game analysis with realistic vehicle dynamics, the technique of forced singular perturbations and a variable modeling approach is proposed. Accuracy of the analysis is evaluated by comparison with the numerical solution of a time-optimal, variable-speed 'game of two cars' in the horizontal plane.
An extended continuum model considering optimal velocity change with memory and numerical tests
NASA Astrophysics Data System (ADS)
Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng
2018-01-01
In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.
NASA Astrophysics Data System (ADS)
Han, Jinghua; Cui, Xudong; Wang, Sha; Feng, Guoying; Deng, Guoliang; Hu, Ruifeng
2017-10-01
Paint removal by laser ablation is favoured among cleaning techniques due to its high efficiency. How to predict the optimal laser parameters without producing damage to substrate still remains challenging for accurate paint stripping. On the basis of ablation morphologies and combining experiments with numerical modelling, the underlying mechanisms and the optimal conditions for paint removal by laser ablation are thoroughly investigated. Our studies suggest that laser paint removal is dominated by the laser vaporization effect, thermal stress effect and laser plasma effect, in which thermal stress effect is the most favoured while laser plasma effect should be avoided during removal operations. Based on the thermodynamic equations, we numerically evaluated the spatial distribution of the temperature as well as thermal stress in the paint and substrate under the irradiation of laser pulse at 1064 nm. The obtained curves of the paint thickness vs. threshold fluences can provide the reference standard of laser parameter selection in view of the paint layer with different thickness. A multi-pulse model is proposed and validated under a constant laser fluence to perfectly remove a thicker paint layer. The investigations and the methods proposed here might give hints to the efficient operations on the paint removal and lowering the risk of substrate damages.
NASA Astrophysics Data System (ADS)
Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.
2017-10-01
As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machnes, S.; Institute for Theoretical Physics, University of Ulm, D-89069 Ulm; Sander, U.
2011-08-15
For paving the way to novel applications in quantum simulation, computation, and technology, increasingly large quantum systems have to be steered with high precision. It is a typical task amenable to numerical optimal control to turn the time course of pulses, i.e., piecewise constant control amplitudes, iteratively into an optimized shape. Here, we present a comparative study of optimal-control algorithms for a wide range of finite-dimensional applications. We focus on the most commonly used algorithms: GRAPE methods which update all controls concurrently, and Krotov-type methods which do so sequentially. Guidelines for their use are given and open research questions aremore » pointed out. Moreover, we introduce a unifying algorithmic framework, DYNAMO (dynamic optimization platform), designed to provide the quantum-technology community with a convenient matlab-based tool set for optimal control. In addition, it gives researchers in optimal-control techniques a framework for benchmarking and comparing newly proposed algorithms with the state of the art. It allows a mix-and-match approach with various types of gradients, update and step-size methods as well as subspace choices. Open-source code including examples is made available at http://qlib.info.« less
Integrated design optimization research and development in an industrial environment
NASA Astrophysics Data System (ADS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-04-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
Integrated design optimization research and development in an industrial environment
NASA Technical Reports Server (NTRS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-01-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
Taguchi optimization of bismuth-telluride based thermoelectric cooler
NASA Astrophysics Data System (ADS)
Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank
2017-07-01
In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.
Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Visser, H. G.
1985-01-01
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.
Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel
2016-05-01
Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests. Copyright © 2016 Elsevier B.V. All rights reserved.
Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media
NASA Astrophysics Data System (ADS)
Mehmani, Yashar; Tchelepi, Hamdi
2017-11-01
Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).
Optimal structure and parameter learning of Ising models
Lokhov, Andrey; Vuffray, Marc Denis; Misra, Sidhant; ...
2018-03-16
Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. Here, we introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, whichmore » is known to be the hardest for learning. Here, the efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. Finally, this study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.« less
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems
Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.
Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.
Optimal structure and parameter learning of Ising models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokhov, Andrey; Vuffray, Marc Denis; Misra, Sidhant
Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. Here, we introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, whichmore » is known to be the hardest for learning. Here, the efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. Finally, this study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.« less
NASA Astrophysics Data System (ADS)
Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.
2016-03-01
The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.
Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O
2018-05-01
Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.
Synthesis of ALD zinc oxide and thin film materials optimization for UV photodetector applications
NASA Astrophysics Data System (ADS)
Tapily, Kandabara Nouhoum
Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an n-type material with numerous intrinsic defect levels responsible for the electrical and optical behaviors. Presently, there is no clear consensus about the origin of those defects. In this work, ZnO was synthesized by atomic layer deposition (ALD). ALD is a novel deposition technique suitable for nanotechnology engineering that provides unique features such as precise control of ZnO thin film with atomic resolution, high uniformity, good conformity and high aspect ratio. Using this novel deposition technique, the ALD ZnO deposition process was developed and optimized using diethyl zinc as the precursor for zinc and water vapor as the oxygen source. In order to optimize the film quality for use in electronic applications, the physical, mechanical and electrical properties were investigated. The structural and mechanical properties of the ALD ZnO thin films were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic Ellipsometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-VIS absorption and nanoindentation. The electrical characterizations were performed using C-V, I-V, DLTS, Hall Effect, and four-point probe. The intrinsic defects responsible for the electrical and optical properties of the ALD ZnO films were analyzed and identified. ALD ZnO based electronic devices were fabricated, optimized and their electrical characteristics measured. The photocurrent characteristics of ALD ZnO were also optimized, and high efficiency UV-photodetectors were achieved.
Computational unsteady aerodynamics for lifting surfaces
NASA Technical Reports Server (NTRS)
Edwards, John W.
1988-01-01
Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Ian; Hiskens, Ian; Linderoth, Jeffrey
Building on models of electrical power systems, and on powerful mathematical techniques including optimization, model predictive control, and simluation, this project investigated important issues related to the stable operation of power grids. A topic of particular focus was cascading failures of the power grid: simulation, quantification, mitigation, and control. We also analyzed the vulnerability of networks to component failures, and the design of networks that are responsive to and robust to such failures. Numerous other related topics were investigated, including energy hubs and cascading stall of induction machines
Second-order shaped pulsed for solid-state quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Pinaki
2008-01-01
We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site andmore » nearest-neighbor couplings.« less
Design, realization and structural testing of a compliant adaptable wing
NASA Astrophysics Data System (ADS)
Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.
2015-10-01
This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.
A heuristic statistical stopping rule for iterative reconstruction in emission tomography.
Ben Bouallègue, F; Crouzet, J F; Mariano-Goulart, D
2013-01-01
We propose a statistical stopping criterion for iterative reconstruction in emission tomography based on a heuristic statistical description of the reconstruction process. The method was assessed for MLEM reconstruction. Based on Monte-Carlo numerical simulations and using a perfectly modeled system matrix, our method was compared with classical iterative reconstruction followed by low-pass filtering in terms of Euclidian distance to the exact object, noise, and resolution. The stopping criterion was then evaluated with realistic PET data of a Hoffman brain phantom produced using the GATE platform for different count levels. The numerical experiments showed that compared with the classical method, our technique yielded significant improvement of the noise-resolution tradeoff for a wide range of counting statistics compatible with routine clinical settings. When working with realistic data, the stopping rule allowed a qualitatively and quantitatively efficient determination of the optimal image. Our method appears to give a reliable estimation of the optimal stopping point for iterative reconstruction. It should thus be of practical interest as it produces images with similar or better quality than classical post-filtered iterative reconstruction with a mastered computation time.
Design optimization of superconducting coils based on asymmetrical characteristics of REBCO tapes
NASA Astrophysics Data System (ADS)
Hong, Zhiyong; Li, Wenrong; Chen, Yanjun; Gömöry, Fedor; Frolek, Lubomír; Zhang, Min; Sheng, Jie
2018-07-01
Angle dependence Ic(B,θ) of superconducting tape is a crucial parameter to calculate the influence of magnetic field during the design of superconducting applications,. This paper focuses on the asymmetrical characteristics found in REBCO tapes and further applications based on this phenomenon. This paper starts with angle dependence measurements of different HTS tapes, asymmetrical characteristics are found in some of the testing samples. On basis of this property, optimization of superconducting coils in superconducting motor, transformer and insert magnet is discussed by simulation. Simplified experiments which represent the structure of insert magnet were carried out to prove the validity of numerical studies. Conclusions obtained in this paper show that the asymmetrical property of superconducting tape is quite important in design of superconducting applications, and optimized winding technique based on this property can be used to improve the performance of superconducting devices.
Control theory based airfoil design using the Euler equations
NASA Technical Reports Server (NTRS)
Jameson, Antony; Reuther, James
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.
Stochastic DG Placement for Conservation Voltage Reduction Based on Multiple Replications Procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaoyu; Chen, Bokan; Wang, Jianhui
2015-06-01
Conservation voltage reduction (CVR) and distributed-generation (DG) integration are popular strategies implemented by utilities to improve energy efficiency. This paper investigates the interactions between CVR and DG placement to minimize load consumption in distribution networks, while keeping the lowest voltage level within the predefined range. The optimal placement of DG units is formulated as a stochastic optimization problem considering the uncertainty of DG outputs and load consumptions. A sample average approximation algorithm-based technique is developed to solve the formulated problem effectively. A multiple replications procedure is developed to test the stability of the solution and calculate the confidence interval ofmore » the gap between the candidate solution and optimal solution. The proposed method has been applied to the IEEE 37-bus distribution test system with different scenarios. The numerical results indicate that the implementations of CVR and DG, if combined, can achieve significant energy savings.« less
Control theory based airfoil design for potential flow and a finite volume discretization
NASA Technical Reports Server (NTRS)
Reuther, J.; Jameson, A.
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. The goal of our present work is to develop a method which does not depend on conformal mapping, so that it can be extended to treat three-dimensional problems. Therefore, we have developed a method which can address arbitrary geometric shapes through the use of a finite volume method to discretize the potential flow equation. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented, where both target speed distributions and minimum drag are used as objective functions.
LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.
Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong
2017-03-01
In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.
Towards optimal experimental tests on the reality of the quantum state
NASA Astrophysics Data System (ADS)
Knee, George C.
2017-02-01
The Barrett-Cavalcanti-Lal-Maroney (BCLM) argument stands as the most effective means of demonstrating the reality of the quantum state. Its advantages include being derived from very few assumptions, and a robustness to experimental error. Finding the best way to implement the argument experimentally is an open problem, however, and involves cleverly choosing sets of states and measurements. I show that techniques from convex optimisation theory can be leveraged to numerically search for these sets, which then form a recipe for experiments that allow for the strongest statements about the ontology of the wavefunction to be made. The optimisation approach presented is versatile, efficient and can take account of the finite errors present in any real experiment. I find significantly improved low-cardinality sets which are guaranteed partially optimal for a BCLM test in low Hilbert space dimension. I further show that mixed states can be more optimal than pure states.
Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments
NASA Technical Reports Server (NTRS)
Cole, Kevin D.
2003-01-01
In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.
Supersonic civil airplane study and design: Performance and sonic boom
NASA Technical Reports Server (NTRS)
Cheung, Samson
1995-01-01
Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.
Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo
2018-06-01
The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.
Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners
NASA Astrophysics Data System (ADS)
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan
2015-03-01
In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.
Role of slack variables in quasi-Newton methods for constrained optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tapia, R.A.
In constrained optimization the technique of converting an inequality constraint into an equality constraint by the addition of a squared slack variable is well known but rarely used. In choosing an active constraint philosophy over the slack variable approach, researchers quickly justify their choice with the standard criticisms: the slack variable approach increases the dimension of the problem, is numerically unstable, and gives rise to singular systems. It is shown that these criticisms of the slack variable approach need not apply and the two seemingly distinct approaches are actually very closely related. In fact, the squared slack variable formulation canmore » be used to develop a superior and more comprehensive active constraint philosophy.« less
Regularization iteration imaging algorithm for electrical capacitance tomography
NASA Astrophysics Data System (ADS)
Tong, Guowei; Liu, Shi; Chen, Hongyan; Wang, Xueyao
2018-03-01
The image reconstruction method plays a crucial role in real-world applications of the electrical capacitance tomography technique. In this study, a new cost function that simultaneously considers the sparsity and low-rank properties of the imaging targets is proposed to improve the quality of the reconstruction images, in which the image reconstruction task is converted into an optimization problem. Within the framework of the split Bregman algorithm, an iterative scheme that splits a complicated optimization problem into several simpler sub-tasks is developed to solve the proposed cost function efficiently, in which the fast-iterative shrinkage thresholding algorithm is introduced to accelerate the convergence. Numerical experiment results verify the effectiveness of the proposed algorithm in improving the reconstruction precision and robustness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, D.; Yi, Q.; Buduc, R.
2005-02-17
ROSE is an object-oriented software infrastructure for source-to-source translation that provides an interface for programmers to write their own specialized translators for optimizing scientific applications. ROSE is a part of current research on telescoping languages, which provides optimizations of the use of libraries in scientific applications. ROSE defines approaches to extend the optimization techniques, common in well defined languages, to the optimization of scientific applications using well defined libraries. ROSE includes a rich set of tools for generating customized transformations to support optimization of applications codes. We currently support full C and C++ (including template instantiation etc.), with Fortran 90more » support under development as part of a collaboration and contract with Rice to use their version of the open source Open64 F90 front-end. ROSE represents an attempt to define an open compiler infrastructure to handle the full complexity of full scale DOE applications codes using the languages common to scientific computing within DOE. We expect that such an infrastructure will also be useful for the development of numerous tools that may then realistically expect to work on DOE full scale applications.« less
Jan, Show-Li; Shieh, Gwowen
2016-08-31
The 2 × 2 factorial design is widely used for assessing the existence of interaction and the extent of generalizability of two factors where each factor had only two levels. Accordingly, research problems associated with the main effects and interaction effects can be analyzed with the selected linear contrasts. To correct for the potential heterogeneity of variance structure, the Welch-Satterthwaite test is commonly used as an alternative to the t test for detecting the substantive significance of a linear combination of mean effects. This study concerns the optimal allocation of group sizes for the Welch-Satterthwaite test in order to minimize the total cost while maintaining adequate power. The existing method suggests that the optimal ratio of sample sizes is proportional to the ratio of the population standard deviations divided by the square root of the ratio of the unit sampling costs. Instead, a systematic approach using optimization technique and screening search is presented to find the optimal solution. Numerical assessments revealed that the current allocation scheme generally does not give the optimal solution. Alternatively, the suggested approaches to power and sample size calculations give accurate and superior results under various treatment and cost configurations. The proposed approach improves upon the current method in both its methodological soundness and overall performance. Supplementary algorithms are also developed to aid the usefulness and implementation of the recommended technique in planning 2 × 2 factorial designs.
Performance evaluation of a digital mammography unit using a contrast-detail phantom
NASA Astrophysics Data System (ADS)
Elizalde-Cabrera, J.; Brandan, M.-E.
2015-01-01
The relation between image quality and mean glandular dose (MGD) has been studied for a Senographe 2000D mammographic unit used for research in our laboratory. The magnitudes were evaluated for a clinically relevant range of acrylic thicknesses and radiological techniques. The CDMAM phantom was used to determine the contrast-detail curve. Also, an alternative method based on the analysis of signal-to-noise (SNR) and contrast-to-noise (CNR) ratios from the CDMAM image was proposed and applied. A simple numerical model was utilized to successfully interpret the results. Optimum radiological techniques were determined using the figures-of-merit FOMSNR=SNR2/MGD and FOMCNR=CNR2/MGD. Main results were: the evaluation of the detector response flattening process (it reduces by about one half the spatial non-homogeneities due to the X- ray field), MGD measurements (the values comply with standards), and verification of the automatic exposure control performance (it is sensitive to fluence attenuation, not to contrast). For 4-5 cm phantom thicknesses, the optimum radiological techniques were Rh/Rh 34 kV to optimize SNR, and Rh/Rh 28 kV to optimize CNR.
NASA Astrophysics Data System (ADS)
Shamarokov, A. S.; Zorin, V. M.; Dai, Fam Kuang
2016-03-01
At the current stage of development of nuclear power engineering, high demands on nuclear power plants (NPP), including on their economy, are made. In these conditions, improving the quality of NPP means, in particular, the need to reasonably choose the values of numerous managed parameters of technological (heat) scheme. Furthermore, the chosen values should correspond to the economic conditions of NPP operation, which are postponed usually a considerable time interval from the point of time of parameters' choice. The article presents the technique of optimization of controlled parameters of the heat circuit of a steam turbine plant for the future. Its particularity is to obtain the results depending on a complex parameter combining the external economic and operating parameters that are relatively stable under the changing economic environment. The article presents the results of optimization according to this technique of the minimum temperature driving forces in the surface heaters of the heat regeneration system of the steam turbine plant of a K-1200-6.8/50 type. For optimization, the collector-screen heaters of high and low pressure developed at the OAO All-Russia Research and Design Institute of Nuclear Power Machine Building, which, in the authors' opinion, have the certain advantages over other types of heaters, were chosen. The optimality criterion in the task was the change in annual reduced costs for NPP compared to the version accepted as the baseline one. The influence on the decision of the task of independent variables that are not included in the complex parameter was analyzed. An optimization task was decided using the alternating-variable descent method. The obtained values of minimum temperature driving forces can guide the design of new nuclear plants with a heat circuit, similar to that accepted in the considered task.
NASA Technical Reports Server (NTRS)
Soller, Jeffrey Alan; Grunwald, Arthur J.; Ellis, Stephen R.
1991-01-01
Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is special because the space station will define a multivehicle environment in space. The optimization surface is a complex nonlinear function of the initial conditions of the chase and target crafts. Small permutations in the input conditions can result in abrupt changes to the optimization surface. Since no prior knowledge about the number or location of local minima on the surface is available, the optimization must be capable of functioning on a multimodal surface. It was reported in the literature that the simulated annealing algorithm is more effective on such surfaces than descent techniques using random starting points. The simulated annealing optimization was found to be capable of identifying a minimum fuel, two-burn trajectory subject to four constraints which are integrated into the optimization using a barrier method. The computations required to solve the optimization are fast enough that missions could be planned on board the space station. Potential applications for on board planning of missions are numerous. Future research topics may include optimal planning of multi-waypoint maneuvers using a knowledge base to guide the optimization, and a study aimed at developing robust annealing schedules for potential on board missions.
NASA Astrophysics Data System (ADS)
Kuo, Chih-Hao
Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.
Numerical modeling and optimization of the Iguassu gas centrifuge
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.
2017-07-01
The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.; Jacobsen, S. E.
1986-01-01
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.
Isotropic three-dimensional T2 mapping of knee cartilage: Development and validation.
Colotti, Roberto; Omoumi, Patrick; Bonanno, Gabriele; Ledoux, Jean-Baptiste; van Heeswijk, Ruud B
2018-02-01
1) To implement a higher-resolution isotropic 3D T 2 mapping technique that uses sequential T 2 -prepared segmented gradient-recalled echo (Iso3DGRE) images for knee cartilage evaluation, and 2) to validate it both in vitro and in vivo in healthy volunteers and patients with knee osteoarthritis. The Iso3DGRE sequence with an isotropic 0.6 mm spatial resolution was developed on a clinical 3T MR scanner. Numerical simulations were performed to optimize the pulse sequence parameters. A phantom study was performed to validate the T 2 estimation accuracy. The repeatability of the sequence was assessed in healthy volunteers (n = 7). T 2 values were compared with those from a clinical standard 2D multislice multiecho (MSME) T 2 mapping sequence in knees of healthy volunteers (n = 13) and in patients with knee osteoarthritis (OA, n = 5). The numerical simulations resulted in 100 excitations per segment and an optimal radiofrequency (RF) excitation angle of 15°. The phantom study demonstrated a good correlation of the technique with the reference standard (slope 0.9 ± 0.05, intercept 0.2 ± 1.7 msec, R 2 ≥ 0.99). Repeated measurements of cartilage T 2 values in healthy volunteers showed a coefficient of variation of 5.6%. Both Iso3DGRE and MSME techniques found significantly higher cartilage T 2 values (P < 0.03) in OA patients. Iso3DGRE precision was equal to that of the MSME T 2 mapping in healthy volunteers, and significantly higher in OA (P = 0.01). This study successfully demonstrated that high-resolution isotropic 3D T 2 mapping for knee cartilage characterization is feasible, accurate, repeatable, and precise. The technique allows for multiplanar reformatting and thus T 2 quantification in any plane of interest. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:362-371. © 2017 International Society for Magnetic Resonance in Medicine.
Prakash, Jaya; Yalavarthy, Phaneendra K
2013-03-01
Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.
Bridging the gap between high and low acceleration for planetary escape
NASA Astrophysics Data System (ADS)
Indrikis, Janis; Preble, Jeffrey C.
With the exception of the often time consuming analysis by numerical optimization, no single orbit transfer analysis technique exists that can be applied over a wide range of accelerations. Using the simple planetary escape (parabolic trajectory) mission some of the more common techniques are considered as the limiting bastions at the high and the extremely low acceleration regimes. The brachistochrone, the minimum time of flight path, is proposed as the technique to bridge the gap between the high and low acceleration regions, providing a smooth bridge over the entire acceleration spectrum. A smooth and continuous velocity requirement is established for the planetary escape mission. By using these results, it becomes possible to determine the effect of finite accelerations on mission performance and target propulsion and power system designs which are consistent with a desired mission objective.
Numerical Optimization Using Computer Experiments
NASA Technical Reports Server (NTRS)
Trosset, Michael W.; Torczon, Virginia
1997-01-01
Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.
The optimal design of UAV wing structure
NASA Astrophysics Data System (ADS)
Długosz, Adam; Klimek, Wiktor
2018-01-01
The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.
Conjugate-gradient optimization method for orbital-free density functional calculations.
Jiang, Hong; Yang, Weitao
2004-08-01
Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.
Implementation of a partitioned algorithm for simulation of large CSI problems
NASA Technical Reports Server (NTRS)
Alvin, Kenneth F.; Park, K. C.
1991-01-01
The implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems is reviewed. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. A general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Also presented are: example problems; a user's guide to the software; the procedures and algorithm scripts; a stability analysis for the algorithm; and the source code for the parallel implementation.
Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants
Lopez-Arraiza, Alberto; Rey-Santano, Carmen; Mielgo, Victoria; Basterretxea, Francisco Jose; Sancho, Javier; Gomez-Solaetxe, Miguel Angel
2018-01-01
Respiratory distress syndrome (RDS) represents one of the major causes of mortality among preterm infants, and the best approach to treat it is an open research issue. The use of perfluorocarbons (PFC) along with non-invasive respiratory support techniques has proven the usefulness of PFC as a complementary substance to achieve a more homogeneous surfactant distribution. The aim of this work was to study the inhaled particles generated by means of an intracorporeal inhalation catheter, evaluating the size and mass distribution of different PFC aerosols. In this article, we discuss different experiments with the PFC perfluorodecalin (PFD) and FC75 with a driving pressure of 4–5 bar, evaluating properties such as the aerodynamic diameter (Da), since its value is directly linked to particle deposition in the lung. Furthermore, we develop a numerical model with computational fluid dynamics (CFD) techniques. The computational results showed an accurate prediction of the airflow axial velocity at different downstream positions when compared with the data gathered from the real experiments. The numerical validation of the cumulative mass distribution for PFD particles also confirmed a closer match with the experimental data measured at the optimal distance of 60 mm from the catheter tip. In the case of FC75, the cumulative mass fraction for particles above 10 µm was considerable higher with a driving pressure of 5 bar. These numerical models could be a helpful tool to assist parametric studies of new non-invasive devices for the treatment of RDS in preterm infants. PMID:29495619
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
Olama, Mohammed M.; Ma, Xiao; Killough, Stephen M.; ...
2015-03-12
In recent years, there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their inherent uses in military communications. This is because HSS can accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence modulation with fast frequency hopping, denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. Inmore » this paper, error-probability analyses are performed for a hybrid DS/FFH system over standard Gaussian and fading-type channels, progressively including the effects from wide- and partial-band jamming, multi-user interference, and varying degrees of Rayleigh and Rician fading. In addition, an optimization approach is formulated that minimizes the bit-error performance of a hybrid DS/FFH communication system and solves for the resulting system design parameters. The optimization objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. We also present our efforts toward exploring the design, implementation, and evaluation of a hybrid DS/FFH radio transceiver using a single FPGA. Numerical and experimental results are presented under widely varying design parameters to demonstrate the adaptability of the waveform for varied harsh smart grid RF signal environments.« less
Numerical Characterization of Piezoceramics Using Resonance Curves
Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar
2016-01-01
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875
Numerical Characterization of Piezoceramics Using Resonance Curves.
Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar
2016-01-27
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.
A sensitivity equation approach to shape optimization in fluid flows
NASA Technical Reports Server (NTRS)
Borggaard, Jeff; Burns, John
1994-01-01
A sensitivity equation method to shape optimization problems is applied. An algorithm is developed and tested on a problem of designing optimal forebody simulators for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization scheme with sensitivities computed by numerically approximating the linear partial differential equations that determine the flow sensitivities. Numerical examples are presented to illustrate the method.
Growth of zinc selenide single crystals by physical vapor transport in microgravity
NASA Technical Reports Server (NTRS)
Rosenberger, Franz
1993-01-01
The goals of this research were the optimization of growth parameters for large (20 mm diameter and length) zinc selenide single crystals with low structural defect density, and the development of a 3-D numerical model for the transport rates to be expected in physical vapor transport under a given set of thermal and geometrical boundary conditions, in order to provide guidance for an advantageous conduct of the growth experiments. In the crystal growth studies, it was decided to exclusively apply the Effusive Ampoule PVT technique (EAPVT) to the growth of ZnSe. In this technique, the accumulation of transport-limiting gaseous components at the growing crystal is suppressed by continuous effusion to vacuum of part of the vapor contents. This is achieved through calibrated leaks in one of the ground joints of the ampoule. Regarding the PVT transport rates, a 3-D spectral code was modified. After introduction of the proper boundary conditions and subroutines for the composition-dependent transport properties, the code reproduced the experimentally determined transport rates for the two cases with strongest convective flux contributions to within the experimental and numerical error.
Effects of rear cavities on the wake behind an accelerating D-shaped bluff body
NASA Astrophysics Data System (ADS)
Lorite-Díez, M.; Jiménez-González, J. I.; Gutiérrez-Montes, C.; Martínez-Bazán, C.
2018-04-01
We investigate experimentally and numerically the transient development of the wake induced by a constant acceleration of a D-shaped bluff body, starting from rest and reaching a permanent regime of Reynolds number Re = 2000, under different values of acceleration and implementing three distinct rear geometrical configurations. Thus, alongside the classical blunt base, two control passive devices, namely, a straight cavity and an optimized, curved cavity, recently designed using adjoint optimization techniques, have also been used to assess their performance in transient flow conditions. Particle image velocimetry measurements were performed in a towing tank to characterize the near wake development in the early transient stages. It has been observed that the flow first develops symmetric shear layers with primary eddies attracted toward the base of the body due to the flow suction generated by the accelerated motion. Eventually, the interaction between the upper and lower shear layers provokes the destabilization of the flow and the symmetry breaking of the wake, finally giving rise to an alternate transitional vortex shedding regime. The transition between these phases is sped-up when the optimized cavity is used, reaching earlier the permanent flow conditions. In particular, the use of the optimized geometry has been shown to limit the growth of the primary eddies, decreasing both the recirculation and vortex formation length and providing with a more regularized, more organized vortex shedding. In addition, numerical simulations have been performed to evaluate the distribution of forces induced by the addition of rear cavities. In general, the aforementioned smoother and faster transition related to the use of optimized cavity translates into a lower averaged value of the drag coefficient, together with less energetic force fluctuations, regardless of the acceleration value.
Turbulence management: Application aspects
NASA Astrophysics Data System (ADS)
Hirschel, E. H.; Thiede, P.; Monnoyer, F.
1989-04-01
Turbulence management for the reduction of turbulent friction drag is an important topic. Numerous research programs in this field have demonstrated that valuable net drag reduction is obtainable by techniques which do not involve substantial, expensive modifications or redesign of existing aircraft. Hence, large projects aiming at short term introduction of turbulence management technology into airline service are presently under development. The various points that have to be investigated for this purpose are presented. Both design and operational aspects are considered, the first dealing with optimizing of turbulence management techniques at operating conditions, and the latter defining the technical problems involved by application of turbulence management to in-service aircraft. The cooperative activities of Airbus Industrie and its partners are cited as an example.
Process simulation for advanced composites production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, M.D.; Ferko, S.M.; Griffiths, S.
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less
Neural dynamic programming and its application to control systems
NASA Astrophysics Data System (ADS)
Seong, Chang-Yun
There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.
Jha, Abhinav K; Caffo, Brian; Frey, Eric C
2016-01-01
The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation. PMID:26982626
Jha, Abhinav K; Caffo, Brian; Frey, Eric C
2016-04-07
The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation.
Optimal Synthesis of Compliant Mechanisms using Subdivision and Commercial FEA (DETC2004-57497)
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Canfield, Stephen
2004-01-01
The field of distributed-compliance mechanisms has seen significant work in developing suitable topology optimization tools for their design. These optimal design tools have grown out of the techniques of structural optimization. This paper will build on the previous work in topology optimization and compliant mechanism design by proposing an alternative design space parameterization through control points and adding another step to the process, that of subdivision. The control points allow a specific design to be represented as a solid model during the optimization process. The process of subdivision creates an additional number of control points that help smooth the surface (for example a C(sup 2) continuous surface depending on the method of subdivision chosen) creating a manufacturable design free of some traditional numerical instabilities. Note that these additional control points do not add to the number of design parameters. This alternative parameterization and description as a solid model effectively and completely separates the design variables from the analysis variables during the optimization procedure. The motivation behind this work is to create an automated design tool from task definition to functional prototype created on a CNC or rapid-prototype machine. This paper will describe the proposed compliant mechanism design process and will demonstrate the procedure on several examples common in the literature.
Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model
NASA Astrophysics Data System (ADS)
Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung
2017-12-01
This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.
Simon, L
2007-10-01
The integral transform technique was implemented to solve a mathematical model developed for percutaneous drug absorption. The model included repeated application and removal of a patch from the skin. Fick's second law of diffusion was used to study the transport of a medicinal agent through the vehicle and subsequent penetration into the stratum corneum. Eigenmodes and eigenvalues were computed and introduced into an inversion formula to estimate the delivery rate and the amount of drug in the vehicle and the skin. A dynamic programming algorithm calculated the optimal doses necessary to achieve a desired transdermal flux. The analytical method predicted profiles that were in close agreement with published numerical solutions and provided an automated strategy to perform therapeutic drug monitoring and control.
NASA Astrophysics Data System (ADS)
Massambone de Oliveira, Rafael; Salomão Helou, Elias; Fontoura Costa, Eduardo
2016-11-01
We present a method for non-smooth convex minimization which is based on subgradient directions and string-averaging techniques. In this approach, the set of available data is split into sequences (strings) and a given iterate is processed independently along each string, possibly in parallel, by an incremental subgradient method (ISM). The end-points of all strings are averaged to form the next iterate. The method is useful to solve sparse and large-scale non-smooth convex optimization problems, such as those arising in tomographic imaging. A convergence analysis is provided under realistic, standard conditions. Numerical tests are performed in a tomographic image reconstruction application, showing good performance for the convergence speed when measured as the decrease ratio of the objective function, in comparison to classical ISM.
NASA Astrophysics Data System (ADS)
Divecha, Mia S.; Derby, Jeffrey J.
2017-12-01
Historically, the melt growth of II-VI crystals has benefitted from the application of the accelerated crucible rotation technique (ACRT). Here, we employ a comprehensive numerical model to assess the impact of two ACRT schedules designed for a cadmium zinc telluride growth system per the classical recommendations of Capper and co-workers. The ;flow maximizing; ACRT schedule, with higher rotation, effectively mixes the solutal field in the melt but does not reduce supercooling adjacent to the growth interface. The ACRT schedule derived for stable Ekman flow, with lower rotation, proves more effective in reducing supercooling and promoting stable growth. These counterintuitive results highlight the need for more comprehensive studies on the optimization of ACRT schedules for specific growth systems and for desired growth outcomes.
NASA Astrophysics Data System (ADS)
Amigo, R. C. R.; Vatanabe, S. L.; Silva, E. C. N.
2013-03-01
Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.
Machine Learning Techniques in Optimal Design
NASA Technical Reports Server (NTRS)
Cerbone, Giuseppe
1992-01-01
Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution to the problem, is then obtained by solving in parallel each of the sub-problems in the set and computing the one with the minimum cost. In addition to speeding up the optimization process, our use of learning methods also relieves the expert from the burden of identifying rules that exactly pinpoint optimal candidate sub-problems. In real engineering tasks it is usually too costly to the engineers to derive such rules. Therefore, this paper also contributes to a further step towards the solution of the knowledge acquisition bottleneck [Feigenbaum, 1977] which has somewhat impaired the construction of rulebased expert systems.
An optimal transportation approach for nuclear structure-based pathology.
Wang, Wei; Ozolek, John A; Slepčev, Dejan; Lee, Ann B; Chen, Cheng; Rohde, Gustavo K
2011-03-01
Nuclear morphology and structure as visualized from histopathology microscopy images can yield important diagnostic clues in some benign and malignant tissue lesions. Precise quantitative information about nuclear structure and morphology, however, is currently not available for many diagnostic challenges. This is due, in part, to the lack of methods to quantify these differences from image data. We describe a method to characterize and contrast the distribution of nuclear structure in different tissue classes (normal, benign, cancer, etc.). The approach is based on quantifying chromatin morphology in different groups of cells using the optimal transportation (Kantorovich-Wasserstein) metric in combination with the Fisher discriminant analysis and multidimensional scaling techniques. We show that the optimal transportation metric is able to measure relevant biological information as it enables automatic determination of the class (e.g., normal versus cancer) of a set of nuclei. We show that the classification accuracies obtained using this metric are, on average, as good or better than those obtained utilizing a set of previously described numerical features. We apply our methods to two diagnostic challenges for surgical pathology: one in the liver and one in the thyroid. Results automatically computed using this technique show potentially biologically relevant differences in nuclear structure in liver and thyroid cancers.
An optimal transportation approach for nuclear structure-based pathology
Wang, Wei; Ozolek, John A.; Slepčev, Dejan; Lee, Ann B.; Chen, Cheng; Rohde, Gustavo K.
2012-01-01
Nuclear morphology and structure as visualized from histopathology microscopy images can yield important diagnostic clues in some benign and malignant tissue lesions. Precise quantitative information about nuclear structure and morphology, however, is currently not available for many diagnostic challenges. This is due, in part, to the lack of methods to quantify these differences from image data. We describe a method to characterize and contrast the distribution of nuclear structure in different tissue classes (normal, benign, cancer, etc.). The approach is based on quantifying chromatin morphology in different groups of cells using the optimal transportation (Kantorovich-Wasserstein) metric in combination with the Fisher discriminant analysis and multidimensional scaling techniques. We show that the optimal transportation metric is able to measure relevant biological information as it enables automatic determination of the class (e.g. normal vs. cancer) of a set of nuclei. We show that the classification accuracies obtained using this metric are, on average, as good or better than those obtained utilizing a set of previously described numerical features. We apply our methods to two diagnostic challenges for surgical pathology: one in the liver and one in the thyroid. Results automatically computed using this technique show potentially biologically relevant differences in nuclear structure in liver and thyroid cancers. PMID:20977984
Design and optimization of input shapers for liquid slosh suppression
NASA Astrophysics Data System (ADS)
Aboel-Hassan, Ameen; Arafa, Mustafa; Nassef, Ashraf
2009-02-01
The need for fast maneuvering and accurate positioning of flexible structures poses a control challenge. The inherent flexibility in these lightly damped systems creates large undesirable residual vibrations in response to rapid excitations. Several control approaches have been proposed to tackle this class of problems, of which the input shaping technique is appealing in many aspects. While input shaping has been widely investigated to attenuate residual vibrations in flexible structures, less attention was granted to expand its viability in further applications. The aim of this work is to develop a methodology for applying input shaping techniques to suppress sloshing effects in open moving containers to facilitate safe and fast point-to-point movements. The liquid behavior is modeled using finite element analysis. The input shaper parameters are optimized to find the commands that would result in minimum residual vibration. Other objectives, such as improved robustness, and motion constraints such as deflection limiting are also addressed in the optimization scheme. Numerical results are verified on an experimental setup consisting of a small motor-driven water tank undergoing rectilinear motion, while measuring both the tank motion and free surface displacement of the water. The results obtained suggest that input shaping is an effective method for liquid slosh suppression.
Numerical Investigation of Flow in a Centrifugal Compressor
NASA Astrophysics Data System (ADS)
Grishin, Yu. A.; Bakulin, V. N.
2015-09-01
With the use of the domestic software suite of computational hydrodynamics Flow Vision based on application of the method of control volumes, numerical simulation of air composition and delivery by a centrifugal compressor employed for supercharging a piston engine has been carried out. The head-flow characteristics of the compressor, as well as the 3D fields of flow velocity and pressure distributions in the elements of the compressor flow passage, including the interblade channels of the impeller, have been obtained for various regimes. In the regimes of diminished air flow rate, surging phenomena are identified, characterized by a return flow. The application of the technique of numerical experiment will make it possible from here on to carry out design optimization of the compressor flow passage profile and thus to improve its basic characteristics — the degree of pressure increase, compressed air flow rate, and the efficiency — as well as to reduce the costs of the development and production of compressors.
Interfaces detection after corneal refractive surgery by low coherence optical interferometry
Verrier, I.; Veillas, C.; Lépine, T.; Nguyen, F.; Thuret, G.; Gain, P.
2010-01-01
The detection of refractive corneal surgery by LASIK, during the storage of corneas in Eye Banks will become a challenge when the numerous operated patients will arrive at the age of cornea donation. The subtle changes of corneal structure and refraction are highly suspected to negatively influence clinical results in recipients of such corneas. In order to detect LASIK cornea interfaces we developed a low coherence interferometry technique using a broadband continuum source. Real time signal recording, without moving any optical elements and without need of a Fourier Transform operation, combined with good measurement resolution is the main asset of this interferometer. The associated numerical processing is based on a method initially used in astronomy and offers an optimal correlation signal without the necessity to image the whole cornea that is time consuming. The detection of corneal interfaces - both outer and inner surface and the buried interface corresponding to the surgical wound – is then achieved directly by the innovative combination of interferometry and this original numerical process. PMID:21258562
GPU accelerated manifold correction method for spinning compact binaries
NASA Astrophysics Data System (ADS)
Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying
2018-04-01
The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi
2017-03-01
To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.
Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.
2018-04-01
Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.
NASA Astrophysics Data System (ADS)
Koliopoulos, T. C.; Koliopoulou, G.
2007-10-01
We present an input-output solution for simulating the associated behavior and optimized physical needs of an environmental system. The simulations and numerical analysis determined the accurate boundary loads and areas that were required to interact for the proper physical operation of a complicated environmental system. A case study was conducted to simulate the optimum balance of an environmental system based on an artificial intelligent multi-interacting input-output numerical scheme. The numerical results were focused on probable further environmental management techniques, with the objective of minimizing any risks and associated environmental impact to protect the quality of public health and the environment. Our conclusions allowed us to minimize the associated risks, focusing on probable cases in an emergency to protect the surrounded anthropogenic or natural environment. Therefore, the lining magnitude could be determined for any useful associated technical works to support the environmental system under examination, taking into account its particular boundary necessities and constraints.
Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination.
Ahmad, Muhammad Dure; Usman, Muhammad; Khan, Adnan; Imran, Mudassar
2016-07-13
The 2014 Ebola epidemic is the largest in history, affecting multiple countries in West Africa. Some isolated cases were also observed in other regions of the world. In this paper, we introduce a deterministic SEIR type model with additional hospitalization, quarantine and vaccination components in order to understand the disease dynamics. Optimal control strategies, both in the case of hospitalization (with and without quarantine) and vaccination are used to predict the possible future outcome in terms of resource utilization for disease control and the effectiveness of vaccination on sick populations. Further, with the help of uncertainty and sensitivity analysis we also have identified the most sensitive parameters which effectively contribute to change the disease dynamics. We have performed mathematical analysis with numerical simulations and optimal control strategies on Ebola virus models. We used dynamical system tools with numerical simulations and optimal control strategies on our Ebola virus models. The original model, which allowed transmission of Ebola virus via human contact, was extended to include imperfect vaccination and quarantine. After the qualitative analysis of all three forms of Ebola model, numerical techniques, using MATLAB as a platform, were formulated and analyzed in detail. Our simulation results support the claims made in the qualitative section. Our model incorporates an important component of individuals with high risk level with exposure to disease, such as front line health care workers, family members of EVD patients and Individuals involved in burial of deceased EVD patients, rather than the general population in the affected areas. Our analysis suggests that in order for R 0 (i.e., the basic reproduction number) to be less than one, which is the basic requirement for the disease elimination, the transmission rate of isolated individuals should be less than one-fourth of that for non-isolated ones. Our analysis also predicts, we need high levels of medication and hospitalization at the beginning of an epidemic. Further, optimal control analysis of the model suggests the control strategies that may be adopted by public health authorities in order to reduce the impact of epidemics like Ebola.
Next-generation acceleration and code optimization for light transport in turbid media using GPUs
Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar
2010-01-01
A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498
Lorenz, Romy; Monti, Ricardo Pio; Violante, Inês R.; Anagnostopoulos, Christoforos; Faisal, Aldo A.; Montana, Giovanni; Leech, Robert
2016-01-01
Functional neuroimaging typically explores how a particular task activates a set of brain regions. Importantly though, the same neural system can be activated by inherently different tasks. To date, there is no approach available that systematically explores whether and how distinct tasks probe the same neural system. Here, we propose and validate an alternative framework, the Automatic Neuroscientist, which turns the standard fMRI approach on its head. We use real-time fMRI in combination with modern machine-learning techniques to automatically design the optimal experiment to evoke a desired target brain state. In this work, we present two proof-of-principle studies involving perceptual stimuli. In both studies optimization algorithms of varying complexity were employed; the first involved a stochastic approximation method while the second incorporated a more sophisticated Bayesian optimization technique. In the first study, we achieved convergence for the hypothesized optimum in 11 out of 14 runs in less than 10 min. Results of the second study showed how our closed-loop framework accurately and with high efficiency estimated the underlying relationship between stimuli and neural responses for each subject in one to two runs: with each run lasting 6.3 min. Moreover, we demonstrate that using only the first run produced a reliable solution at a group-level. Supporting simulation analyses provided evidence on the robustness of the Bayesian optimization approach for scenarios with low contrast-to-noise ratio. This framework is generalizable to numerous applications, ranging from optimizing stimuli in neuroimaging pilot studies to tailoring clinical rehabilitation therapy to patients and can be used with multiple imaging modalities in humans and animals. PMID:26804778
Lorenz, Romy; Monti, Ricardo Pio; Violante, Inês R; Anagnostopoulos, Christoforos; Faisal, Aldo A; Montana, Giovanni; Leech, Robert
2016-04-01
Functional neuroimaging typically explores how a particular task activates a set of brain regions. Importantly though, the same neural system can be activated by inherently different tasks. To date, there is no approach available that systematically explores whether and how distinct tasks probe the same neural system. Here, we propose and validate an alternative framework, the Automatic Neuroscientist, which turns the standard fMRI approach on its head. We use real-time fMRI in combination with modern machine-learning techniques to automatically design the optimal experiment to evoke a desired target brain state. In this work, we present two proof-of-principle studies involving perceptual stimuli. In both studies optimization algorithms of varying complexity were employed; the first involved a stochastic approximation method while the second incorporated a more sophisticated Bayesian optimization technique. In the first study, we achieved convergence for the hypothesized optimum in 11 out of 14 runs in less than 10 min. Results of the second study showed how our closed-loop framework accurately and with high efficiency estimated the underlying relationship between stimuli and neural responses for each subject in one to two runs: with each run lasting 6.3 min. Moreover, we demonstrate that using only the first run produced a reliable solution at a group-level. Supporting simulation analyses provided evidence on the robustness of the Bayesian optimization approach for scenarios with low contrast-to-noise ratio. This framework is generalizable to numerous applications, ranging from optimizing stimuli in neuroimaging pilot studies to tailoring clinical rehabilitation therapy to patients and can be used with multiple imaging modalities in humans and animals. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
An Initial Multi-Domain Modeling of an Actively Cooled Structure
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur
1997-01-01
A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.
Design of WLAN microstrip antenna for 5.17 - 5.835 GHz
NASA Astrophysics Data System (ADS)
Bugaj, Jarosław; Bugaj, Marek; Wnuk, Marian
2017-04-01
This paper presents the project of miniaturized WLAN Antenna made in microstrip technique working at a frequency of 5.17 - 5.835 GHz in 802.11ac IEEE standard. This dual layer antenna is designed on RT/duroid 5870 ROGERS CORPORATION substrate with dielectric constant 2.33 and thickness of 3.175 mm. The antenna parameters such as return loss, VSWR, gain and directivity are simulated and optimized using commercial computer simulation technology microwave studio (CST MWS). The paper presents the results of discussed numerical analysis.
Computing the optimal path in stochastic dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora
2016-08-15
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less
Design of refractive laser beam shapers to generate complex irradiance profiles
NASA Astrophysics Data System (ADS)
Li, Meijie; Meuret, Youri; Duerr, Fabian; Vervaeke, Michael; Thienpont, Hugo
2014-05-01
A Gaussian laser beam is reshaped to have specific irradiance distributions in many applications in order to ensure optimal system performance. Refractive optics are commonly used for laser beam shaping. A refractive laser beam shaper is typically formed by either two plano-aspheric lenses or by one thick lens with two aspherical surfaces. Ray mapping is a general optical design technique to design refractive beam shapers based on geometric optics. This design technique in principle allows to generate any rotational-symmetric irradiance profile, yet in literature ray mapping is mainly developed to transform a Gaussian irradiance profile to a uniform profile. For more complex profiles especially with low intensity in the inner region, like a Dark Hollow Gaussian (DHG) irradiance profile, ray mapping technique is not directly applicable in practice. In order to these complex profiles, the numerical effort of calculating the aspherical surface points and fitting a surface with sufficient accuracy increases considerably. In this work we evaluate different sampling approaches and surface fitting methods. This allows us to propose and demonstrate a comprehensive numerical approach to efficiently design refractive laser beam shapers to generate rotational-symmetric collimated beams with a complex irradiance profile. Ray tracing analysis for several complex irradiance profiles demonstrates excellent performance of the designed lenses and the versatility of our design procedure.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo
2017-03-01
We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
Adjoint Sensitivity Method to Determine Optimal Set of Stations for Tsunami Source Inversion
NASA Astrophysics Data System (ADS)
Gusman, A. R.; Hossen, M. J.; Cummins, P. R.; Satake, K.
2017-12-01
We applied the adjoint sensitivity technique in tsunami science for the first time to determine an optimal set of stations for a tsunami source inversion. The adjoint sensitivity (AS) method has been used in numerical weather prediction to find optimal locations for adaptive observations. We implemented this technique to Green's Function based Time Reverse Imaging (GFTRI), which is recently used in tsunami source inversion in order to reconstruct the initial sea surface displacement, known as tsunami source model. This method has the same source representation as the traditional least square (LSQ) source inversion method where a tsunami source is represented by dividing the source region into a regular grid of "point" sources. For each of these, Green's function (GF) is computed using a basis function for initial sea surface displacement whose amplitude is concentrated near the grid point. We applied the AS method to the 2009 Samoa earthquake tsunami that occurred on 29 September 2009 in the southwest Pacific, near the Tonga trench. Many studies show that this earthquake is a doublet associated with both normal faulting in the outer-rise region and thrust faulting in the subduction interface. To estimate the tsunami source model for this complex event, we initially considered 11 observations consisting of 5 tide gauges and 6 DART bouys. After implementing AS method, we found the optimal set of observations consisting with 8 stations. Inversion with this optimal set provides better result in terms of waveform fitting and source model that shows both sub-events associated with normal and thrust faulting.
NASA Technical Reports Server (NTRS)
Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.
1995-01-01
This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.
Channel modeling, signal processing and coding for perpendicular magnetic recording
NASA Astrophysics Data System (ADS)
Wu, Zheng
With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple write precompensation scheme. Soft-decision decoding for algebraic codes can improve performance for magnetic recording systems. In this dissertation, we propose two soft-decision decoding methods for tensor-product parity codes. We also present a list decoding algorithm for generalized error locating codes.
Improved numerical methods for turbulent viscous recirculating flows
NASA Technical Reports Server (NTRS)
Vandoormaal, J. P.; Turan, A.; Raithby, G. D.
1986-01-01
The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.
NASA Astrophysics Data System (ADS)
Srivastava, Y.; Srivastava, S.; Boriwal, L.
2016-09-01
Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.
Comparison of some optimal control methods for the design of turbine blades
NASA Technical Reports Server (NTRS)
Desilva, B. M. E.; Grant, G. N. C.
1977-01-01
This paper attempts a comparative study of some numerical methods for the optimal control design of turbine blades whose vibration characteristics are approximated by Timoshenko beam idealizations with shear and incorporating simple boundary conditions. The blade was synthesized using the following methods: (1) conjugate gradient minimization of the system Hamiltonian in function space incorporating penalty function transformations, (2) projection operator methods in a function space which includes the frequencies of vibration and the control function, (3) epsilon-technique penalty function transformation resulting in a highly nonlinear programming problem, (4) finite difference discretization of the state equations again resulting in a nonlinear program, (5) second variation methods with complex state differential equations to include damping effects resulting in systems of inhomogeneous matrix Riccatti equations some of which are stiff, (6) quasi-linear methods based on iterative linearization of the state and adjoint equation. The paper includes a discussion of some substantial computational difficulties encountered in the implementation of these techniques together with a resume of work presently in progress using a differential dynamic programming approach.
Three-dimensional electrical impedance tomography: a topology optimization approach.
Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli
2008-02-01
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Yurtkuran, Alkın; Emel, Erdal
2014-01-01
The traveling salesman problem with time windows (TSPTW) is a variant of the traveling salesman problem in which each customer should be visited within a given time window. In this paper, we propose an electromagnetism-like algorithm (EMA) that uses a new constraint handling technique to minimize the travel cost in TSPTW problems. The EMA utilizes the attraction-repulsion mechanism between charged particles in a multidimensional space for global optimization. This paper investigates the problem-specific constraint handling capability of the EMA framework using a new variable bounding strategy, in which real-coded particle's boundary constraints associated with the corresponding time windows of customers, is introduced and combined with the penalty approach to eliminate infeasibilities regarding time window violations. The performance of the proposed algorithm and the effectiveness of the constraint handling technique have been studied extensively, comparing it to that of state-of-the-art metaheuristics using several sets of benchmark problems reported in the literature. The results of the numerical experiments show that the EMA generates feasible and near-optimal results within shorter computational times compared to the test algorithms.
Yurtkuran, Alkın
2014-01-01
The traveling salesman problem with time windows (TSPTW) is a variant of the traveling salesman problem in which each customer should be visited within a given time window. In this paper, we propose an electromagnetism-like algorithm (EMA) that uses a new constraint handling technique to minimize the travel cost in TSPTW problems. The EMA utilizes the attraction-repulsion mechanism between charged particles in a multidimensional space for global optimization. This paper investigates the problem-specific constraint handling capability of the EMA framework using a new variable bounding strategy, in which real-coded particle's boundary constraints associated with the corresponding time windows of customers, is introduced and combined with the penalty approach to eliminate infeasibilities regarding time window violations. The performance of the proposed algorithm and the effectiveness of the constraint handling technique have been studied extensively, comparing it to that of state-of-the-art metaheuristics using several sets of benchmark problems reported in the literature. The results of the numerical experiments show that the EMA generates feasible and near-optimal results within shorter computational times compared to the test algorithms. PMID:24723834
Optimized open-flow mixing: insights from microbubble streaming
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
Optimizing spectral CT parameters for material classification tasks
NASA Astrophysics Data System (ADS)
Rigie, D. S.; La Rivière, P. J.
2016-06-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.
NASA Astrophysics Data System (ADS)
Sarghini, Fabrizio; De Vivo, Angela; Marra, Francesco
2017-10-01
Computational science and engineering methods have allowed a major change in the way products and processes are designed, as validated virtual models - capable to simulate physical, chemical and bio changes occurring during production processes - can be realized and used in place of real prototypes and performing experiments, often time and money consuming. Among such techniques, Optimal Shape Design (OSD) (Mohammadi & Pironneau, 2004) represents an interesting approach. While most classical numerical simulations consider fixed geometrical configurations, in OSD a certain number of geometrical degrees of freedom is considered as a part of the unknowns: this implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize the objective function. The applications of optimal shape design (OSD) are uncountable. For systems governed by partial differential equations, they range from structure mechanics to electromagnetism and fluid mechanics or to a combination of the three. This paper presents one of possible applications of OSD, particularly how extrusion bell shape, for past production, can be designed by applying a multivariate constrained shape optimization.
Optimal stimulus scheduling for active estimation of evoked brain networks.
Kafashan, MohammadMehdi; Ching, ShiNung
2015-12-01
We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.
Optimizing Spectral CT Parameters for Material Classification Tasks
Rigie, D. S.; La Rivière, P. J.
2017-01-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430
Optimal stimulus scheduling for active estimation of evoked brain networks
NASA Astrophysics Data System (ADS)
Kafashan, MohammadMehdi; Ching, ShiNung
2015-12-01
Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.
Digital robust control law synthesis using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivekananda
1989-01-01
Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.
Chasioti, Evdokia; Chiang, Tat Fai; Drew, Howard J
2013-01-01
Prosthetic guided implant surgery requires adequate ridge dimensions for proper implant placement. Various surgical procedures can be used to augment deficient alveolar ridges. Studies have examined new bone formation on deficient ridges, utilizing numerous surgical techniques and biomaterials. The goal is to develop time efficient techniques, which have low morbidity. A crucial factor for successful bone grafting procedures is space maintenance. The article discusses space maintenance tenting screws, used in conjunction with bone allografts and resorbable barrier membranes, to ensure uneventful guided bone regeneration (GBR) enabling optimal implant positioning. The technique utilized has been described in the literature to treat severely resorbed alveolar ridges and additionally can be considered in restoring the vertical and horizontal component of deficient extraction sites. Three cases are presented to illustrate the utilization and effectiveness of tenting screw technology in the treatment of atrophic extraction sockets and for deficient ridges.
NASA Astrophysics Data System (ADS)
Singh, Mandeep; Khare, Kedar
2018-05-01
We describe a numerical processing technique that allows single-shot region-of-interest (ROI) reconstruction in image plane digital holographic microscopy with full pixel resolution. The ROI reconstruction is modelled as an optimization problem where the cost function to be minimized consists of an L2-norm squared data fitting term and a modified Huber penalty term that are minimized alternately in an adaptive fashion. The technique can provide full pixel resolution complex-valued images of the selected ROI which is not possible to achieve with the commonly used Fourier transform method. The technique can facilitate holographic reconstruction of individual cells of interest from a large field-of-view digital holographic microscopy data. The complementary phase information in addition to the usual absorption information already available in the form of bright field microscopy can make the methodology attractive to the biomedical user community.
Multi-Resolution Unstructured Grid-Generation for Geophysical Applications on the Sphere
NASA Technical Reports Server (NTRS)
Engwirda, Darren
2015-01-01
An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is designed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay triangulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The use of user-defined mesh-sizing functions to generate smoothly graded, non-uniform grids is discussed.
An integrated approach to improving noisy speech perception
NASA Astrophysics Data System (ADS)
Koval, Serguei; Stolbov, Mikhail; Smirnova, Natalia; Khitrov, Mikhail
2002-05-01
For a number of practical purposes and tasks, experts have to decode speech recordings of very poor quality. A combination of techniques is proposed to improve intelligibility and quality of distorted speech messages and thus facilitate their comprehension. Along with the application of noise cancellation and speech signal enhancement techniques removing and/or reducing various kinds of distortions and interference (primarily unmasking and normalization in time and frequency fields), the approach incorporates optimal listener expert tactics based on selective listening, nonstandard binaural listening, accounting for short-term and long-term human ear adaptation to noisy speech, as well as some methods of speech signal enhancement to support speech decoding during listening. The approach integrating the suggested techniques ensures high-quality ultimate results and has successfully been applied by Speech Technology Center experts and by numerous other users, mainly forensic institutions, to perform noisy speech records decoding for courts, law enforcement and emergency services, accident investigation bodies, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klishin, G.S.; Seleznev, V.E.; Aleoshin, V.V.
1997-12-31
Gas industry enterprises such as main pipelines, compressor gas transfer stations, gas extracting complexes belong to the energy intensive industry. Accidents there can result into the catastrophes and great social, environmental and economic losses. Annually, according to the official data several dozens of large accidents take place at the pipes in the USA and Russia. That is why prevention of the accidents, analysis of the mechanisms of their development and prediction of their possible consequences are acute and important tasks nowadays. The accidents reasons are usually of a complicated character and can be presented as a complex combination of natural,more » technical and human factors. Mathematical and computer simulations are safe, rather effective and comparatively inexpensive methods of the accident analysis. It makes it possible to analyze different mechanisms of a failure occurrence and development, to assess its consequences and give recommendations to prevent it. Besides investigation of the failure cases, numerical simulation techniques play an important role in the treatment of the diagnostics results of the objects and in further construction of mathematical prognostic simulations of the object behavior in the period of time between two inspections. While solving diagnostics tasks and in the analysis of the failure cases, the techniques of theoretical mechanics, of qualitative theory of different equations, of mechanics of a continuous medium, of chemical macro-kinetics and optimizing techniques are implemented in the Conversion Design Bureau {number_sign}5 (DB{number_sign}5). Both universal and special numerical techniques and software (SW) are being developed in DB{number_sign}5 for solution of such tasks. Almost all of them are calibrated on the calculations of the simulated and full-scale experiments performed at the VNIIEF and MINATOM testing sites. It is worth noting that in the long years of work there has been established a fruitful and effective collaboration of theoreticians, mathematicians and experimentalists of the institute to solve such tasks.« less
Topology optimization of natural convection: Flow in a differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Berggren, Martin; Henningson, Dan
2017-11-01
The goal of the present work is to develop methods for optimization of the design of natural convection cooled heat sinks, using resolved simulation of both fluid flow and heat transfer. We rely on mathematical programming techniques combined with direct numerical simulations in order to iteratively update the topology of a solid structure towards optimality, i.e. until the design yielding the best performance is found, while satisfying a specific set of constraints. The investigated test case is a two-dimensional differentially heated cavity, in which the two vertical walls are held at different temperatures. The buoyancy force induces a swirling convective flow around a solid structure, whose topology is optimized to maximize the heat flux through the cavity. We rely on the spectral-element code Nek5000 to compute a high-order accurate solution of the natural convection flow arising from the conjugate heat transfer in the cavity. The laminar, steady-state solution of the problem is evaluated with a time-marching scheme that has an increased convergence rate; the actual iterative optimization is obtained using a steepest-decent algorithm, and the gradients are conveniently computed using the continuous adjoint equations for convective heat transfer.
Computer Based Porosity Design by Multi Phase Topology Optimization
NASA Astrophysics Data System (ADS)
Burblies, Andreas; Busse, Matthias
2008-02-01
A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.
Surrogate-Based Optimization of Biogeochemical Transport Models
NASA Astrophysics Data System (ADS)
Prieß, Malte; Slawig, Thomas
2010-09-01
First approaches towards a surrogate-based optimization method for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Oschlies and Garcon [1], simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. A key issue is to minimize the misfit between the model output and given observational data. Our aim is to reduce the overall optimization cost avoiding expensive function and derivative evaluations by using a surrogate model replacing the high-fidelity model in focus. This in particular becomes important for more complex three-dimensional models. We analyse a coarsening in the discretization of the model equations as one way to create such a surrogate. Here the numerical stability crucially depends upon the discrete stepsize in time and space and the biochemical terms. We show that for given model parameters the level of grid coarsening can be choosen accordingly yielding a stable and satisfactory surrogate. As one example of a surrogate-based optimization method we present results of the Aggressive Space Mapping technique (developed by John W. Bandler [2, 3]) applied to the optimization of this one-dimensional biogeochemical transport model.
A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.
Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao
2011-08-01
The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.
NASA Astrophysics Data System (ADS)
Tang, Gao; Jiang, FanHuag; Li, JunFeng
2015-11-01
Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.
CORSS: Cylinder Optimization of Rings, Skin, and Stringers
NASA Technical Reports Server (NTRS)
Finckenor, J.; Rogers, P.; Otte, N.
1994-01-01
Launch vehicle designs typically make extensive use of cylindrical skin stringer construction. Structural analysis methods are well developed for preliminary design of this type of construction. This report describes an automated, iterative method to obtain a minimum weight preliminary design. Structural optimization has been researched extensively, and various programs have been written for this purpose. Their complexity and ease of use depends on their generality, the failure modes considered, the methodology used, and the rigor of the analysis performed. This computer program employs closed-form solutions from a variety of well-known structural analysis references and joins them with a commercially available numerical optimizer called the 'Design Optimization Tool' (DOT). Any ring and stringer stiffened shell structure of isotropic materials that has beam type loading can be analyzed. Plasticity effects are not included. It performs a more limited analysis than programs such as PANDA, but it provides an easy and useful preliminary design tool for a large class of structures. This report briefly describes the optimization theory, outlines the development and use of the program, and describes the analysis techniques that are used. Examples of program input and output, as well as the listing of the analysis routines, are included.