Sample records for numerical self-consistent field

  1. Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model

    DOE PAGES

    Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.; ...

    2015-10-30

    We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less

  2. Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.

    We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less

  3. Functional level-set derivative for a polymer self consistent field theory Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ouaknin, Gaddiel; Laachi, Nabil; Bochkov, Daniil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic

    2017-09-01

    We derive functional level-set derivatives for the Hamiltonian arising in self-consistent field theory, which are required to solve free boundary problems in the self-assembly of polymeric systems such as block copolymer melts. In particular, we consider Dirichlet, Neumann and Robin boundary conditions. We provide numerical examples that illustrate how these shape derivatives can be used to find equilibrium and metastable structures of block copolymer melts with a free surface in both two and three spatial dimensions.

  4. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE PAGES

    Qiang, Ji

    2017-01-23

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  5. Periodic Pulay method for robust and efficient convergence acceleration of self-consistent field iterations

    DOE PAGES

    Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.

    2016-01-21

    Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.

  6. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Ji

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  7. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    NASA Astrophysics Data System (ADS)

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-06-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field.

  8. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Chen, Jeff Z. Y.

    2013-10-01

    This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.

  9. Doubly self-consistent field theory of grafted polymers under simple shear in steady state.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.

  10. Self-Consistent Field Lattice Model for Polymer Networks.

    PubMed

    Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G

    2017-12-26

    A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.

  11. Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Firpo, Marie-Christine

    2002-11-01

    We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.

  12. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    PubMed

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  13. Doubly self-consistent field theory of grafted polymers under simple shear in steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    2014-03-21

    We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less

  14. Computation of the bluff-body sound generation by a self-consistent mean flow formulation

    NASA Astrophysics Data System (ADS)

    Fani, A.; Citro, V.; Giannetti, F.; Auteri, F.

    2018-03-01

    The sound generated by the flow around a circular cylinder is numerically investigated by using a finite-element method. In particular, we study the acoustic emissions generated by the flow past the bluff body at low Mach and Reynolds numbers. We perform a global stability analysis by using the compressible linearized Navier-Stokes equations. The resulting direct global mode provides detailed information related to the underlying hydrodynamic instability and data on the acoustic field generated. In order to recover the intensity of the produced sound, we apply the self-consistent model for non-linear saturation proposed by Mantič-Lugo, Arratia, and Gallaire ["Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake," Phys. Rev. Lett. 113, 084501 (2014)]. The application of this model allows us to compute the amplitude of the resulting linear mode and the effects of saturation on the mode structure and acoustic field. Our results show excellent agreement with those obtained by a full compressible simulation direct numerical simulation and those derived by the application of classical acoustic analogy formulations.

  15. Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.

  16. Self-assembled microstructures of confined rod-coil diblock copolymers by self-consistent field theory.

    PubMed

    Yang, Guang; Tang, Ping; Yang, Yuliang; Wang, Qiang

    2010-11-25

    We employ the self-consistent field theory (SCFT) incorporating Maier-Saupe orientational interactions between rods to investigate the self-assembly of rod-coil diblock copolymers (RC DBC) in bulk and especially confined into two flat surfaces in 2D space. A unit vector defined on a spherical surface for describing the orientation of rigid blocks in 3D Euclidean space is discretized with an icosahedron triangular mesh to numerically integrate over rod orientation, which is confirmed to have numerical accuracy and stability higher than that of the normal Gaussian quadrature. For the hockey puck-shaped phases in bulk, geometrical confinement, i.e., the film thickness, plays an important role in the self-assembled structures' transitions for the neutral walls. However, for the lamellar phase (monolayer smectic-C) in bulk, the perpendicular lamellae are always stable, less dependent on the film thicknesses because they can relax to the bulk spacing with less-paid coil-stretching in thin films. In particular, a very thin rod layer near the surfaces is formed even in a very thin film. When the walls prefer rods, parallel lamellae are obtained, strongly dependent on the competition between the degree of the surface fields and film geometrical confinement, and the effect of surface field on lamellar structure as a function of film thickness is investigated. Our simulation results provide a guide to understanding the self-assembly of the rod-coil films with desirable application prospects in the fabrication of organic light emitting devices.

  17. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction.

    PubMed

    Granovsky, Alexander A

    2015-12-21

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  18. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  19. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.

    PubMed

    Xu, X Q

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  20. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  1. The argon nuclear quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sundholm, Dage; Pyykkö, Pekka

    2018-07-01

    New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.

  2. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    DOE PAGES

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-08-06

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less

  3. Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak

    DOE PAGES

    Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-04-07

    A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less

  4. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  5. Integration of RAM-SCB into the Space Weather Modeling Framework

    DOE PAGES

    Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva; ...

    2018-02-07

    We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less

  6. Integration of RAM-SCB into the Space Weather Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva

    We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less

  7. Numerical binary black hole mergers in dynamical Chern-Simons gravity: Scalar field

    NASA Astrophysics Data System (ADS)

    Okounkova, Maria; Stein, Leo C.; Scheel, Mark A.; Hemberger, Daniel A.

    2017-08-01

    Testing general relativity in the nonlinear, dynamical, strong-field regime of gravity is one of the major goals of gravitational wave astrophysics. Performing precision tests of general relativity (GR) requires numerical inspiral, merger, and ringdown waveforms for binary black hole (BBH) systems in theories beyond GR. Currently, GR and scalar-tensor gravity are the only theories amenable to numerical simulations. In this article, we present a well-posed perturbation scheme for numerically integrating beyond-GR theories that have a continuous limit to GR. We demonstrate this scheme by simulating BBH mergers in dynamical Chern-Simons gravity (dCS), to linear order in the perturbation parameter. We present mode waveforms and energy fluxes of the dCS pseudoscalar field from our numerical simulations. We find good agreement with analytic predictions at early times, including the absence of pseudoscalar dipole radiation. We discover new phenomenology only accessible through numerics: a burst of dipole radiation during merger. We also quantify the self-consistency of the perturbation scheme. Finally, we estimate bounds that GR-consistent LIGO detections could place on the new dCS length scale, approximately ℓ≲O (10 ) km .

  8. Thermodynamically self-consistent theory for the Blume-Capel model.

    PubMed

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  9. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  10. Numerical Simulations of Dynamical Mass Transfer in Binaries

    NASA Astrophysics Data System (ADS)

    Motl, P. M.; Frank, J.; Tohline, J. E.

    1999-05-01

    We will present results from our ongoing research project to simulate dynamically unstable mass transfer in near contact binaries with mass ratios different from one. We employ a fully three-dimensional self-consistent field technique to generate synchronously rotating polytropic binaries. With our self-consistent field code we can create equilibrium binaries where one component is, by radius, within about 99 of filling its Roche lobe for example. These initial configurations are evolved using a three-dimensional, Eulerian hydrodynamics code. We make no assumptions about the symmetry of the subsequent flow and the entire binary system is evolved self-consistently under the influence of its own gravitational potential. For a given mass ratio and polytropic index for the binary components, mass transfer via Roche lobe overflow can be predicted to be stable or unstable through simple theoretical arguments. The validity of the approximations made in the stability calculations are tested against our numerical simulations. We acknowledge support from the U.S. National Science Foundation through grants AST-9720771, AST-9528424, and DGE-9355007. This research has been supported, in part, by grants of high-performance computing time on NPACI facilities at the San Diego Supercomputer Center, the Texas Advanced Computing Center and through the PET program of the NAVOCEANO DoD Major Shared Resource Center in Stennis, MS.

  11. Fourier transform-based scattering-rate method for self-consistent simulations of carrier transport in semiconductor heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Grahn, H. T.

    We present a self-consistent model for carrier transport in periodic semiconductor heterostructures completely formulated in the Fourier domain. In addition to the Hamiltonian for the layer system, all expressions for the scattering rates, the applied electric field, and the carrier distribution are treated in reciprocal space. In particular, for slowly converging cases of the self-consistent solution of the Schrödinger and Poisson equations, numerous transformations between real and reciprocal space during the iterations can be avoided by using the presented method, which results in a significant reduction of computation time. Therefore, it is a promising tool for the simulation and efficientmore » design of complex heterostructures such as terahertz quantum-cascade lasers.« less

  12. Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q

    We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less

  13. NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansteen, V.; Pontieu, B. De; Carlsson, M.

    2015-10-01

    Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, andmore » moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.« less

  14. Dust trap formation in a non-self-sustained discharge with external gas ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. Themore » interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.« less

  15. Domain walls of linear polarization in isotropic Kerr media

    NASA Astrophysics Data System (ADS)

    Louis, Y.; Sheppard, A. P.; Haelterman, M.

    1997-09-01

    We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.

  16. Geometric integration in Born-Oppenheimer molecular dynamics.

    PubMed

    Odell, Anders; Delin, Anna; Johansson, Börje; Cawkwell, Marc J; Niklasson, Anders M N

    2011-12-14

    Geometric integration schemes for extended Lagrangian self-consistent Born-Oppenheimer molecular dynamics, including a weak dissipation to remove numerical noise, are developed and analyzed. The extended Lagrangian framework enables the geometric integration of both the nuclear and electronic degrees of freedom. This provides highly efficient simulations that are stable and energy conserving even under incomplete and approximate self-consistent field (SCF) convergence. We investigate three different geometric integration schemes: (1) regular time reversible Verlet, (2) second order optimal symplectic, and (3) third order optimal symplectic. We look at energy conservation, accuracy, and stability as a function of dissipation, integration time step, and SCF convergence. We find that the inclusion of dissipation in the symplectic integration methods gives an efficient damping of numerical noise or perturbations that otherwise may accumulate from finite arithmetics in a perfect reversible dynamics. © 2011 American Institute of Physics

  17. Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.

  18. Particle flows to shape and voltage surface discontinuities in the electron sheath surrounding a high voltage solar array in LEO

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1991-01-01

    This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.

  19. Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; He, X. T.; Zhu, Shao-ping; Zheng, C. Y.

    2005-08-01

    The acceleration of plasma electron in intense laser-plasma interaction is investigated analytically and numerically, where the conjunct effect of laser fields and self-consistent spontaneous fields (including quasistatic electric field Esl, azimuthal quasistatic magnetic field Bsθ and the axial one Bsz) is completely considered for the first time. An analytical relativistic electron fluid model using test-particle method has been developed to give an explicit analysis about the effects of each quasistatic fields. The ponderomotive accelerating and scattering effects on electrons are partly offset by Esl, furthermore, Bsθ pinches and Bsz collimates electrons along the laser axis. The dependences of energy gain and scattering angle of electron on its initial radial position, plasma density, and laser intensity are, respectively, studied. The qualities of the relativistic electron beam (REB), such as energy spread, beam divergence, and emitting (scattering) angle, generated by both circularly polarized (CP) and linearly polarized (LP) lasers are studied. Results show CP laser is of clear advantage comparing to LP laser for it can generate a better REB in collimation and stabilization.

  20. Optimizing the field distribution of a Halbach type permanent magnet cylinder using the soft iron and superhard magnet

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2018-01-01

    When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.

  1. Numerical modeling of the coupling of an ICRH antenna with a plasma with self-consistent antenna currents

    NASA Astrophysics Data System (ADS)

    Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.

    2002-07-01

    A realistic modeling of ICRH antennas requires the knowledge of the antenna currents. The code ICANT determines self-consistently these currents and, as a byproduct, the electrical characteristics of the antenna (radiated power, propagation constants on straps, frequency response, … ). The formalism allows for the description of three-dimensional antenna elements (for instance, finite size thick screen blades). The results obtained for various cases where analytical results are available are discussed. The resonances appearing in the spectrum and the occurrence of unphysical resonant modes are discussed. The capability of this self-consistent method is illustrated by a number of examples, e.g., fully conducting thin or thick screen bars leading to magnetic shielding effects, frequency response and resonances of an end-tuned antenna, field distributions in front of a Tore-Supra type antenna with tilted screen blades.

  2. Theory of many-body radiative heat transfer without the constraint of reciprocity

    NASA Astrophysics Data System (ADS)

    Zhu, Linxiao; Guo, Yu; Fan, Shanhui

    2018-03-01

    Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.

  3. Gas-dynamic model and experimental study of the plasma properties in the Earth's magnetosheath

    NASA Astrophysics Data System (ADS)

    Dobreva, Polya; Zastenker, Georgy; Kartalev, Monio; Borodkova, Natalia

    2016-07-01

    This paper uses numerical self-consistent model to investigate the boundaries and structures in the Earth's magnetosheath. The model is developed to represent the interaction between the regions of the magnetosheath and magnetosphere. In the magnetosheath, the gas-dynamic approach is used for the description of the solar wind flow. The magnetosphere module is based on the modified Tsyganenko magnetic field model, where the magnetopause currents are calculated self-consistently. The magnetosheath boundaries are determined from the boundary conditions. WIND and ACE data are used as a solar wind monitor. The model calculations are compared with real satellite measurements of the boundary positions. The plasma parameters behavior in the magnetosheath is also discussed.

  4. AR Scorpii and possible gravitational wave radiation from pulsar white dwarfs

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Schramm, S.

    2017-06-01

    In view of the new recent observation and measurement of the rotating and highly magnetized white dwarf AR Scorpii, we determine bounds of its moment of inertia, magnetic fields and radius. Moreover, we investigate the possibility of fast rotating and/or magnetized white dwarfs to be sources of detectable gravitational wave (GW) emission. Numerical stellar models at different baryon masses are constructed. For each star configuration, we compute self-consistent relativistic solutions for white dwarfs endowed with poloidal magnetic fields by solving the Einstein-Maxwell field equations in a self-consistent way. The magnetic field supplies an anisotropic pressure, leading to the braking of the spherical symmetry of the star. In this case, we compute the quadrupole moment of the mass distribution. Next, we perform an estimate of the GW of such objects. Finally, we show that the new recent observation and measurement pulsar white dwarf AR Scorpii, as well as other stellar models, might generate GW radiation that lies in the bandwidth of the discussed next generation of space-based GW detectors DECI-hertz Interferometer Gravitational wave Observatory (DECIGO) and Big Bang Observer (BBO).

  5. Particle-In-Cell simulations of electron beam microbunching instability in three dimensions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Zeng, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.; Kwan, T. J. T.

    2013-10-01

    Microbunching instability due to Coherent Synchrotron Radiation (CSR) in a magnetic chicane is one of the major effects that can degrade the electron beam quality in an X-ray Free Electron Laser. Self-consistent simulation using the Particle-In-Cell (PIC) method for the CSR fields of the beam and their effects on beam dynamics have been elusive due to the excessive dispersion error on the grid. We have implemented a high-order finite-volume PIC scheme that models the propagation of the CSR fields accurately. This new scheme is characterized and optimized through a detailed dispersion analysis. The CSR fields from our improved PIC calculation are compared to the extended CSR numerical model based on the Lienard-Wiechert formula in 2D/3D. We also conduct beam dynamics simulation of the microbunching instability using our new PIC capability. Detailed self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.

  6. The density-magnetic field relation in the atomic ISM

    NASA Astrophysics Data System (ADS)

    Gazol, A.; Villagran, M. A.

    2018-07-01

    We present numerical experiments aimed to study the correlation between the magnetic field strength, B, and the density, n, in the cold atomic interstellar medium (CNM). We analyse 24 magnetohydrodynamic models with different initial magnetic field intensities (B0 = 0.4, 2.1, 4.2, and 8.3 μG) and/or mean densities (2, 3, and 4 cm-3), in the presence of driven and decaying turbulence, with and without self-gravity, in a cubic computational domain with 100 pc by side. Our main findings are as follows: (i) For forced simulations that reproduce the main observed physical conditions of the CNM in the solar neighbourhood, a positive correlation between B and n develops for all the B0 values. (ii) The density at which this correlation becomes significant (≲30 cm-3) depends on B0 but is not sensitive to the presence of self-gravity. (iii) The effect of self-gravity, when noticeable, consists of producing a shallower correlation at high densities, suggesting that, in the studied regime, self-gravity induces motions along the field lines. (iv) Self-gravitating decaying models where the CNM is subsonic and sub-Alfvénic with β ≲ 1 develop a high-density positive correlation whose slopes are consistent with a constant β(n). (v) Decaying models where the low-density CNM is subsonic and sub-Alfvénic with β > 1 show a negative correlation at intermediate densities, followed by a high-density positive correlation.

  7. The Density-Magnetic Field Relation in the Atomic ISM

    NASA Astrophysics Data System (ADS)

    Gazol, A.; Villagran, M. A.

    2018-04-01

    We present numerical experiments aimed to study the correlation between the magnetic field strength, B, and the density, n, in the cold atomic interstellar medium (CNM). We analyze 24 magneto-hydrodynamic models with different initial magnetic field intensities (B0 =0.4, 2.1, 4.2, and 8.3 μG) and/or mean densities (2, 3, and 4 cm-3), in the presence of driven and decaying turbulence, with and without self-gravity, in a cubic computational domain with 100 pc by side. Our main findings are: i) For forced simulations, which reproduce the main observed physical conditions of the CNM in the Solar neighborhood, a positive correlation between B and n develops for all the B0 values. ii) The density at which this correlation becomes significant (≲ 30 cm-3) depends on B0 but is not sensitive to the presence of self-gravity. iii) The effect of self-gravity, when noticeable, consists of producing a shallower correlation at high densities, suggesting that, in the studied regime, self-gravity induces motions along the field lines. iv) Self-gravitating decaying models where the CNM is subsonic and sub-Alfvénic with β ≲ 1 develop a high density positive correlation whose slopes are consistent with a constant β(n). v) Decaying models where the low density CNM is subsonic and sub-Alfvénic with β > 1 show a negative correlation at intermediate densities, followed by a high density positive correlation.

  8. Modeling of mid-infrared quantum cascade lasers: The role of temperature and operating field strength on the laser performance

    NASA Astrophysics Data System (ADS)

    Yousefvand, Hossein Reza

    2017-07-01

    In this paper a self-consistent numerical approach to study the temperature and bias dependent characteristics of mid-infrared (mid-IR) quantum cascade lasers (QCLs) is presented which integrates a number of quantum mechanical models. The field-dependent laser parameters including the nonradiative scattering times, the detuning and energy levels, the escape activation energy, the backfilling excitation energy and dipole moment of the optical transition are calculated for a wide range of applied electric fields by a self-consistent solution of Schrodinger-Poisson equations. A detailed analysis of performance of the obtained structure is carried out within a self-consistent solution of the subband population rate equations coupled with carrier coherent transport equations through the sequential resonant tunneling, by taking into account the temperature and bias dependency of the relevant parameters. Furthermore, the heat transfer equation is included in order to calculate the carrier temperature inside the active region levels. This leads to a compact predictive model to analyze the temperature and electric field dependent characteristics of the mid-IR QCLs such as the light-current (L-I), electric field-current (F-I) and core temperature-electric field (T-F) curves. For a typical mid-IR QCL, a good agreement was found between the simulated temperature-dependent L-I characteristic and experimental data, which confirms validity of the model. It is found that the main characteristics of the device such as output power and turn-on delay time are degraded by interplay between the temperature and Stark effects.

  9. Dynamic balance in turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Higashimori, K.; Hoshino, M.

    2012-12-01

    Dynamic balance between the enhancement and suppression of transports due to turbulence in magnetic reconnection is discussed analytically and numerically by considering the interaction of the large-scale field structures with the small-scale turbulence in a consistent manner. Turbulence is expected to play an important role in bridging small and large scales related to magnetic reconnection. The configurations of the mean-field structure are determined by turbulence through the effective transport. At the same time, statistical properties of turbulence are determined by the mean-field structure through the production mechanisms of turbulence. This suggests that turbulence and mean fields should be considered simultaneously in a self-consistent manner. Following the theoretical prediction on the interaction between the mean-fields and turbulence in magnetic reconnection presented by Yokoi and Hoshino (2011), a self-consistent model for the turbulent reconnection is constructed. In the model, the mean-field equations for compressible magnetohydrodynamics are treated with the turbulence effects incorporated through the turbulence correlation such as the Reynolds stress and turbulent electromotive force. Transport coefficients appearing in the expression for these correlations are not adjustable parameters but are determined through the transport equations of the turbulent statistical quantities such as the turbulent MHD energy, the turbulent cross helicity. One of the prominent features of this reconnection model lies in the point that turbulence is not implemented as a prescribed one, but the generation and sustainment of turbulence through the mean-field inhomogeneities are treated. The theoretical predictions are confirmed by the numerical simulation of the model equations. These predictions include the quadrupole cross helicity distribution around the reconnection region, enhancement of reconnection rate due to turbulence, localization of the reconnection region through the cross-helicity effect, etc. Some implications to the satellite observation of the magnetic reconnection will be also given. Reference: Yokoi, N. and Hoshino, M. (2011) Physics of Plasmas, 18, 111208.

  10. Investigation of the effect of phase nonuniformities and the microwave field distribution on the electronic efficiency of a diffraction-radiation generator

    NASA Astrophysics Data System (ADS)

    Maksimov, P. P.; Tsvyk, A. I.; Shestopalov, V. P.

    1985-10-01

    The effect of local phase nonuniformities of the diffraction gratings and the field distribution of the open cavity on the electronic efficiency of a diffraction-radiation generator (DRG) is analyzed numerically on the basis of a self-consistent system of nonlinear stationary equations for the DRG. It is shown that the interaction power and efficiency of a DRG can be increased by the use of an open cavity with a nonuniform diffraction grating and a complex form of microwave field distribution over the interaction space.

  11. Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Guo, Bin; Zhai, Feng; Jiang, Wei

    2018-03-01

    By means of a nonlinear two-component hydrodynamic model, we study the valley-polarized collective motion of electrons in a strained graphene sheet. The self-consistent numerical solution in real space indicates the existence of valley-polarized edge plasmons due to a strain-induced pseudomagnetic field. The valley polarization of the edge pseudomagnetoplasmon can occur in a specific valley, depending on the pseudomagnetic field and the electron density in equilibrium. A full valley polarization is achieved at the edge of the graphene sheet for a pseudomagnetic field of tens of Tesla, which is a realistic value in current experimental technologies.

  12. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    NASA Astrophysics Data System (ADS)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  13. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  14. Plasma Diffusion in Self-Consistent Fluctuations

    NASA Technical Reports Server (NTRS)

    Smets, R.; Belmont, G.; Aunai, N.

    2012-01-01

    The problem of particle diffusion in position space, as a consequence ofeleclromagnetic fluctuations is addressed. Numerical results obtained with a self-consistent hybrid code are presented, and a method to calculate diffusion coefficient in the direction perpendicular to the mean magnetic field is proposed. The diffusion is estimated for two different types of fluctuations. The first type (resuiting from an agyrotropic in itiai setting)is stationary, wide band white noise, and associated to Gaussian probability distribution function for the magnetic fluctuations. The second type (result ing from a Kelvin-Helmholtz instability) is non-stationary, with a power-law spectrum, and a non-Gaussian probabi lity distribution function. The results of the study allow revisiting the question of loading particles of solar wind origin in the Earth magnetosphere.

  15. Observation of chain stretching in Langmuir diblock copolymer monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Factor, B.J.; Lee, L.; Kent, M.S.

    1993-10-01

    We report observations of chain stretching in diblock copolymer monolayers on the surface of a selective solvent. Using neutron reflectivity, we have studied the concentration profile of the submerged block over a large range of surface density [sigma] (chains per area) for two different molecular weights. The observed increase in the layer thickness is weaker than the [sigma][sup 1/3] prediction of mean-field and scaling theories for the limiting behavior, but is in agreement with recent numerical self-consistent-field calculations by Whitmore and Noolandi [Macromolecules 23, 3321 (1990)].

  16. 3D-MHD Simulations of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Forest, C. B.; Wright, J. C.; O'Connell, R.

    2003-10-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations are used to predict behavior of the experiment. The code solves the self-consistent full evolution of the magnetic and velocity fields. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James [Proc. R. Soc. Lond. A 425. 407-429 (1989)]. Initial results indicate that saturation of the magnetic field occurs so that the resulting perturbed backreaction of the induced magnetic field changes the velocity field such that it would no longer be linearly unstable, suggesting non-linear terms are necessary for explaining the resulting state. Saturation and self-excitation depend in detail upon the magnetic Prandtl number.

  17. Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes

    NASA Astrophysics Data System (ADS)

    Levi, Adam; Ori, Amos

    2015-05-01

    Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need to be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to ⟨ϕ2⟩ren , namely the renormalized ⟨ϕ2⟩. So far we have formulated two variants of this method: t -splitting (aimed for stationary backgrounds) and angular splitting (for spherically symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t -splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as a first stage, to calculate ⟨ϕ2⟩ren in Schwarzschild spacetime, for a massless scalar field in the Boulware state. We compare our results to previous ones, obtained by a different method, and find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to analyze the dynamical self-consistent evaporation of black holes.

  18. Self-force via m-mode regularization and 2+1D evolution. II. Scalar-field implementation on Kerr spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Sam R.; Barack, Leor; Wardell, Barry

    2011-10-15

    This is the second in a series of papers aimed at developing a practical time-domain method for self-force calculations in Kerr spacetime. The key elements of the method are (i) removal of a singular part of the perturbation field with a suitable analytic 'puncture' based on the Detweiler-Whiting decomposition, (ii) decomposition of the perturbation equations in azimuthal (m-)modes, taking advantage of the axial symmetry of the Kerr background, (iii) numerical evolution of the individual m-modes in 2+1 dimensions with a finite-difference scheme, and (iv) reconstruction of the physical self-force from the mode sum. Here we report an implementation of themore » method to compute the scalar-field self-force along circular equatorial geodesic orbits around a Kerr black hole. This constitutes a first time-domain computation of the self-force in Kerr geometry. Our time-domain code reproduces the results of a recent frequency-domain calculation by Warburton and Barack, but has the added advantage of being readily adaptable to include the backreaction from the self-force in a self-consistent manner. In a forthcoming paper--the third in the series--we apply our method to the gravitational self-force (in the Lorenz gauge).« less

  19. Effects of a parallel electric field and the geomagnetic field in the topside ionosphere on auroral and photoelectron energy distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  20. Effects of a Parallel Electric Field and the Geomagnetic Field in the Topside Ionosphere on Auroral and Photoelectron Energy Distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogencous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one- dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogencous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of 0(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function in investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogencous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  1. Cavity-induced artificial gauge field in a Bose-Hubbard ladder

    NASA Astrophysics Data System (ADS)

    Halati, Catalin-Mihai; Sheikhan, Ameneh; Kollath, Corinna

    2017-12-01

    We consider theoretically ultracold interacting bosonic atoms confined to quasi-one-dimensional ladder structures formed by optical lattices and coupled to the field of an optical cavity. The atoms can collect a spatial phase imprint during a cavity-assisted tunneling along a rung via Raman transitions employing a cavity mode and a transverse running wave pump beam. By adiabatic elimination of the cavity field we obtain an effective Hamiltonian for the bosonic atoms, with a self-consistency condition. Using the numerical density-matrix renormalization-group method, we obtain a rich steady-state diagram of self-organized steady states. Transitions between superfluid to Mott-insulating states occur, on top of which we can have Meissner, vortex liquid, and vortex lattice phases. Also a state that explicitly breaks the symmetry between the two legs of the ladder, namely, the biased-ladder phase, is dynamically stabilized. We investigate the influence that a trapping potential has on the stability of the self-organized phases.

  2. Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method

    NASA Astrophysics Data System (ADS)

    Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L.

    2018-02-01

    We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010), 10.1103/PhysRevA.81.053845] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Březinová, Lackner, Nagele, and Burgdörfer, Phys. Rev. A 94, 023405 (2016), 10.1103/PhysRevA.94.023405] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (≈50 % ) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.

  3. Numerical Investigation of Near-Field Plasma Flows in Magnetic Nozzles

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2009-01-01

    The development and application of a multidimensional numerical simulation code for investigating near-field plasma processes in magnetic nozzles are presented. The code calculates the time-dependent evolution of all three spatial components of both the magnetic field and velocity in a plasma flow, and includes physical models of relevant transport phenomena. It has been applied to an investigation of the behavior of plasma flows found in high-power thrusters, employing a realistic magnetic nozzle configuration. Simulation of a channel-flow case where the flow was super-Alfvenic has demonstrated that such a flow produces adequate back-emf to significantly alter the shape of the total magnetic field, preventing the flow from curving back to the magnetic field coil in the near-field region. Results from this simulation can be insightful in predicting far-field behavior and can be used as a set of self-consistent boundary conditions for far-field simulations. Future investigations will focus on cases where the inlet flow is sub-Alfvenic and where the flow is allowed to freely expand in the radial direction once it is downstream of the coil.

  4. Anisotropic magnetotail equilibrium and convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, L.N.

    This paper reports on self-consistent two-dimensional equilibria with anisotropic plasma pressure for the Earth's magnetotail. These configurations are obtained by numerically solving the generalized Grad-Shafranov equation, describing anisotropic plasmas with p[parallel] [ne] p[perpendicular], including the Earth's dipolar field. Consistency between these new equilibria and the assumption of steady-state, sunward convection, described by the double-adiabatic laws, is examined. As for the case of isotropic pressure [Erickson and Wolf, 1980], there exists a discrepancy between typical quite-time magnetic field models and the assumption of steady-state double-adiabatic lossless plasma sheet convection. However, unlike that case, this inconsistency cannot be removed by the presencemore » of a weak equatorial normal magnetic field strength in the near tail region: magnetic field configurations of this type produce unreasonably large pressure anisotropies, p[parallel] > p[perpendicular], in the plasma sheet. 16 refs., 5 figs.« less

  5. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less

  6. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    NASA Astrophysics Data System (ADS)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  7. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, R. P.; Rizzato, F. B.

    This work analyzes the transversal dynamics of an inhomogeneous and mismatched charged particle beam. The beam is azimuthally symmetric, initially cold, and evolves in a linear channel permeated by an external constant magnetic field. Based on a Lagrangian approach, a low-dimensional model for the description of the beam dynamics has been obtained. The small set of nonlinear dynamical equations provided results that are in reasonable agreement with that ones observed in full self-consistent N-particle beam numerical simulations.

  9. Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2017-12-01

    We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of the upward flow around the equator and global antisunward convection, is the result of such coupling of the high-latitude and the low-latitude/equatorial ionosphere, and the requirement of the flow continuity, instead of mechanisms such as the penetration electric field.

  10. Non-Gaussianity from self-ordering scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Daniel G.; Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid; Caldwell, Robert R.

    The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and providemore » a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k{sub 1{approx_equal}}2k{sub 2{approx_equal}}2k{sub 3}) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k{sub 1{approx_equal}}k{sub 2}>>k{sub 3}), and the equilateral bispectrum, which peaks at k{sub 1{approx_equal}}k{sub 2{approx_equal}}k{sub 3}. We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.« less

  11. Two dimensional model for coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  12. The tight binding model study of the role of band filling on the charge gap in graphene-on-substrate in paramagnetic state

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.

    2017-05-01

    We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.

  13. Self-compression of spatially limited laser pulses in a system of coupled light-guides

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P < 10 P_cr , slightly exceeding the critical one for self-focusing. At higher powers, the wave beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.

  14. Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems.

    PubMed

    Jung, Hyukjin; Jeong, Ki-Hun

    2009-08-17

    A microfabricated compound eye, comparable to a natural compound eye shows a spherical arrangement of integrated optical units called artificial ommatidia. Each consists of a self-aligned microlens and waveguide. The increase of waveguide length is imperative to obtain high resolution images through an artificial compound eye for wide field-of - view imaging as well as fast motion detection. This work presents an effective method for increasing the waveguide length of artificial ommatidium using a laser induced self-writing process in a photosensitive polymer resin. The numerical and experimental results show the uniform formation of waveguides and the increment of waveguide length over 850 microm. (c) 2009 Optical Society of America

  15. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa, E-mail: thg@berkeley.edu

    2015-11-07

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the coursemore » of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.« less

  16. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields.

    PubMed

    Hassan, Sergio A

    2012-08-21

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.

  17. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields

    NASA Astrophysics Data System (ADS)

    Hassan, Sergio A.

    2012-08-01

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.

  18. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields

    PubMed Central

    Hassan, Sergio A.

    2012-01-01

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098

  19. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  20. Modeling of intragranular misorientation and grain fragmentation in polycrystalline materials using the viscoplastic self-consistent formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zecevic, Miroslav; Lebensohn, Ricardo A.; McCabe, Rodney J.

    In this paper, the recently established methodology to use known algorithmic expressions of the second moments of the stress field in the grains of a polycrystalline aggregate for calculating average fluctuations of lattice rotation rates and the associated average intragranular misorientation distributions using the mean-field viscoplastic self-consistent (VPSC) formulation is extended to solve the coupled problem of considering the effect of intragranular misorientations on stress and rotation rate fluctuations. In turn, these coupled expressions are used to formulate and implement a grain fragmentation (GF) model in VPSC. Case studies, including tension and plane-strain compression of face-centered cubic polycrystals are usedmore » to illustrate the capabilities of the new model. GF-VPSC predictions of intragranular misorientation distributions and texture evolution are compared with experiments and full-field numerical simulations, showing good agreement. In particular, the inclusion of misorientation spreads reduced the intensity of the deformed texture and thus improved the texture predictions. Finally and moreover, considering that intragranular misorientations act as driving forces for recrystallization, the new GF-VPSC formulation is shown to enable modeling of microstructure evolution during deformation and recrystallization, in a computationally efficient manner.« less

  1. Modeling of intragranular misorientation and grain fragmentation in polycrystalline materials using the viscoplastic self-consistent formulation

    DOE PAGES

    Zecevic, Miroslav; Lebensohn, Ricardo A.; McCabe, Rodney J.; ...

    2018-06-15

    In this paper, the recently established methodology to use known algorithmic expressions of the second moments of the stress field in the grains of a polycrystalline aggregate for calculating average fluctuations of lattice rotation rates and the associated average intragranular misorientation distributions using the mean-field viscoplastic self-consistent (VPSC) formulation is extended to solve the coupled problem of considering the effect of intragranular misorientations on stress and rotation rate fluctuations. In turn, these coupled expressions are used to formulate and implement a grain fragmentation (GF) model in VPSC. Case studies, including tension and plane-strain compression of face-centered cubic polycrystals are usedmore » to illustrate the capabilities of the new model. GF-VPSC predictions of intragranular misorientation distributions and texture evolution are compared with experiments and full-field numerical simulations, showing good agreement. In particular, the inclusion of misorientation spreads reduced the intensity of the deformed texture and thus improved the texture predictions. Finally and moreover, considering that intragranular misorientations act as driving forces for recrystallization, the new GF-VPSC formulation is shown to enable modeling of microstructure evolution during deformation and recrystallization, in a computationally efficient manner.« less

  2. Numerical Simulations of Chromospheric Anemone Jets Associated with Moving Magnetic Features

    NASA Astrophysics Data System (ADS)

    Yang, Liping; He, Jiansen; Peter, Hardi; Tu, Chuanyi; Zhang, Lei; Feng, Xueshang; Zhang, Shaohua

    2013-11-01

    Observations with the space-based solar observatory Hinode show that small-scale magnetic structures in the photosphere are found to be associated with a particular class of jets of plasma in the chromosphere called anemone jets. The goal of our study is to conduct a numerical experiment of such chromospheric anemone jets related to the moving magnetic features (MMFs). We construct a 2.5 dimensional numerical MHD model to describe the process of magnetic reconnection between the MMFs and the pre-existing ambient magnetic field, which is driven by the horizontal motion of the magnetic structure in the photosphere. We include thermal conduction parallel to the magnetic field and optically thin radiative losses in the corona to account for a self-consistent description of the evaporation process during the heating of the plasma due to the reconnection process. The motion of the MMFs leads to the expected jet and our numerical results can reproduce many observed characteristics of chromospheric anemone jets, topologically and quantitatively. As a result of the tearing instability, plasmoids are generated in the reconnection process that are consistent with the observed bright moving blobs in the anemone jets. An increase in the thermal pressure at the base of the jet is also driven by the reconnection, which induces a train of slow-mode shocks propagating upward. These shocks are a secondary effect, and only modulate the outflow of the anemone jet. The jet itself is driven by the energy input due to the reconnection of the MMFs and the ambient magnetic field.

  3. Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.

    PubMed

    Gumerov, Nail A; Akhatov, Iskander S

    2017-02-01

    The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.

  4. Nature of self-diffusion in two-dimensional fluids

    NASA Astrophysics Data System (ADS)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun

    2017-12-01

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.

  5. Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculations approaching spectroscopic accuracy.

    PubMed

    Arapiraca, A F C; Jonsson, Dan; Mohallem, J R

    2011-12-28

    We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.

  6. Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Smagley, Vladimir Anatolievich

    Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.

  7. Numerical and experimental study on a pulsed-dc plasma jet

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Pei, X. K.; Lu, X. P.; Liu, D. W.

    2014-06-01

    A numerical and experimental study of plasma jet propagation in a low-temperature, atmospheric-pressure, helium jet in ambient air is presented. A self-consistent, multi-species, two-dimensional axially symmetric plasma model with detailed finite-rate chemistry of helium-air mixture composition is used to provide insights into the propagation of the plasma jet. The obtained simulation results suggest that the sheath forms near the dielectric tube inner surface and shields the plasma channel from the tube surface. The strong electric field at the edge of the dielectric field enhances the ionization in the air mixing layer; therefore, the streamer head becomes ring-shaped when the streamer runs out of the tube. The avalanche-to-streamer transition is the main mechanism of streamer advancement. Penning ionization dominates the ionization reactions and increases the electrical conductivity of the plasma channel. The simulation results are supported by experimental observations under similar discharge conditions.

  8. Finite-element 3D simulation tools for high-current relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  9. Rigid aggregates: theory and applications

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.

    2005-08-01

    Numerical models employing ``perfect'' self-gravitating rubble piles that consist of monodisperse rigid spheres with configurable contact dissipation have been used to explore collisional and rotational disruption of gravitational aggregates. Applications of these simple models include numerical simulations of planetesimal evolution, asteroid family formation, tidal disruption, and binary asteroid formation. These studies may be limited by the idealized nature of the rubble pile model, since perfect identical spheres stack and shear in a very specific, possibly over-idealized way. To investigate how constituent properties affect the overall characteristics of a gravitational aggregate, particularly its failure modes, we have generalized our numerical code to model colliding, self-gravitating, rigid aggregates made up of variable-size spheres. Euler's equation of rigid-body motion in the presence of external torques are implemented, along with a self-consistent prescription for handling non-central impacts. Simple rules for sticking and breaking are also included. Preliminary results will be presented showing the failure modes of gravitational aggregates made up of smaller, rigid, non-idealized components. Applications of this new capability include more realistic aggregate models, convenient modeling of arbitrary rigid shapes for studies of the stability of orbiting companions (replacing one or both bodies with rigid aggregates eliminates expensive interparticle collisions while preserving the shape, spin, and gravity field of the bodies), and sticky particle aggregation in dense planetary rings. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. NAG511722 issued through the Office of Space Science and by the National Science Foundation under Grant No. AST0307549.

  10. Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2008-01-01

    At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liping; He, Jiansen; Tu, Chuanyi

    Observations with the space-based solar observatory Hinode show that small-scale magnetic structures in the photosphere are found to be associated with a particular class of jets of plasma in the chromosphere called anemone jets. The goal of our study is to conduct a numerical experiment of such chromospheric anemone jets related to the moving magnetic features (MMFs). We construct a 2.5 dimensional numerical MHD model to describe the process of magnetic reconnection between the MMFs and the pre-existing ambient magnetic field, which is driven by the horizontal motion of the magnetic structure in the photosphere. We include thermal conduction parallelmore » to the magnetic field and optically thin radiative losses in the corona to account for a self-consistent description of the evaporation process during the heating of the plasma due to the reconnection process. The motion of the MMFs leads to the expected jet and our numerical results can reproduce many observed characteristics of chromospheric anemone jets, topologically and quantitatively. As a result of the tearing instability, plasmoids are generated in the reconnection process that are consistent with the observed bright moving blobs in the anemone jets. An increase in the thermal pressure at the base of the jet is also driven by the reconnection, which induces a train of slow-mode shocks propagating upward. These shocks are a secondary effect, and only modulate the outflow of the anemone jet. The jet itself is driven by the energy input due to the reconnection of the MMFs and the ambient magnetic field.« less

  12. Self-energy renormalization for inhomogeneous nonequilibrium systems and field expansion via complete set of time-dependent wavefunctions

    NASA Astrophysics Data System (ADS)

    Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.

    2018-04-01

    The way to determine the renormalized energy of inhomogeneous systems of a quantum field under an external potential is established for both equilibrium and nonequilibrium scenarios based on thermo field dynamics. The key step is to find an extension of the on-shell concept valid in homogeneous case. In the nonequilibrium case, we expand the field operator by time-dependent wavefunctions that are solutions of the appropriately chosen differential equation, synchronizing with temporal change of thermal situation, and the quantum transport equation is derived from the renormalization procedure. Through numerical calculations of a triple-well model with a reservoir, we show that the number distribution and the time-dependent wavefunctions are relaxed consistently to the correct equilibrium forms at the long-term limit.

  13. Numerical analysis of real gas MHD flow on two-dimensional self-field MPD thrusters

    NASA Astrophysics Data System (ADS)

    Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.

    2015-07-01

    A self-field magnetoplasmadynamic (MPD) thruster is a low-thrust electric propulsion space-system that enables the usage of magnetohydrodynamic (MHD) principles for accelerating a plasma flow towards high speed exhaust velocities. It can produce an high specific impulse, making it suitable for long duration interplanetary space missions. In this paper numerical results obtained with a new code, which is being developed at C-MAST (Centre for Mechanical and Aerospace Technologies), for a two-dimensional self-field MPD thruster are presented. The numerical model is based on the macroscopic MHD equations for compressible and electrically resistive flow and is able to predict the two most important thrust mechanisms that are associated with this kind of propulsion system, namely the thermal thrust and the electromagnetic thrust. Moreover, due to the range of very high temperatures that could occur during the operation of the MPD, it also includes a real gas model for argon.

  14. Colored-noise-induced discontinuous transitions in symbiotic ecosystems

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina

    2004-06-01

    A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [

    R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev. E 65, 051108 (2002)
    ]. Relying on the mean-field theory, an exact self-consistency equation for stationary states is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established that random interactions with the environment can cause discontinuous transitions. The dependence of the critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from the mean-field theory are compared with the results of numerical simulations. Our results provide a possible scenario for catastrophic shifts of population sizes observed in nature.

  15. Predictive simulations and optimization of nanowire field-effect PSA sensors including screening

    NASA Astrophysics Data System (ADS)

    Baumgartner, Stefan; Heitzinger, Clemens; Vacic, Aleksandar; Reed, Mark A.

    2013-06-01

    We apply our self-consistent PDE model for the electrical response of field-effect sensors to the 3D simulation of nanowire PSA (prostate-specific antigen) sensors. The charge concentration in the biofunctionalized boundary layer at the semiconductor-electrolyte interface is calculated using the propka algorithm, and the screening of the biomolecules by the free ions in the liquid is modeled by a sensitivity factor. This comprehensive approach yields excellent agreement with experimental current-voltage characteristics without any fitting parameters. Having verified the numerical model in this manner, we study the sensitivity of nanowire PSA sensors by changing device parameters, making it possible to optimize the devices and revealing the attributes of the optimal field-effect sensor.

  16. The equilibrium and stability of the gaseous component of the galaxy, 2

    NASA Technical Reports Server (NTRS)

    Kellman, S. A.

    1971-01-01

    A time-independent, linear, plane and axially-symmetric stability analysis was performed on a self-gravitating, plane-parallel, isothermal layer of nonmagnetic, nonrotating gas. The gas layer was immersed in a plane-stratified field isothermal layer of stars which supply a self-consistent gravitational field. Only the gaseous component was perturbed. Expressions were derived for the perturbed gas potential and perturbed gas density that satisfied both the Poisson and hydrostatic equilibrium equations. The equation governing the size of the perturbations in the mid-plane was found to be analogous to the one-dimensional time-independent Schrodinger equation for a particle bound by a potential well, and with similar boundary conditions. The radius of the neutral state was computed numerically and compared with the Jeans' and Ledoux radius. The inclusion of a rigid stellar component increased the Ledoux radius, though only slightly. Isodensity contours of the neutrual or marginally unstable state were constructed.

  17. Self-consistent field for fragmented quantum mechanical model of large molecular systems.

    PubMed

    Jin, Yingdi; Su, Neil Qiang; Xu, Xin; Hu, Hao

    2016-01-30

    Fragment-based linear scaling quantum chemistry methods are a promising tool for the accurate simulation of chemical and biomolecular systems. Because of the coupled inter-fragment electrostatic interactions, a dual-layer iterative scheme is often employed to compute the fragment electronic structure and the total energy. In the dual-layer scheme, the self-consistent field (SCF) of the electronic structure of a fragment must be solved first, then followed by the updating of the inter-fragment electrostatic interactions. The two steps are sequentially carried out and repeated; as such a significant total number of fragment SCF iterations is required to converge the total energy and becomes the computational bottleneck in many fragment quantum chemistry methods. To reduce the number of fragment SCF iterations and speed up the convergence of the total energy, we develop here a new SCF scheme in which the inter-fragment interactions can be updated concurrently without converging the fragment electronic structure. By constructing the global, block-wise Fock matrix and density matrix, we prove that the commutation between the two global matrices guarantees the commutation of the corresponding matrices in each fragment. Therefore, many highly efficient numerical techniques such as the direct inversion of the iterative subspace method can be employed to converge simultaneously the electronic structure of all fragments, reducing significantly the computational cost. Numerical examples for water clusters of different sizes suggest that the method shall be very useful in improving the scalability of fragment quantum chemistry methods. © 2015 Wiley Periodicals, Inc.

  18. Short-ranged interaction effects on Z2 topological phase transitions: The perturbative mean-field method

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Hung, Hsiang-Hsuan

    2015-02-01

    Time-reversal symmetric topological insulator (TI) is a novel state of matter that a bulk-insulating state carries dissipationless spin transport along the surfaces, embedded by the Z2 topological invariant. In the noninteracting limit, this exotic state has been intensively studied and explored with realistic systems, such as HgTe/(Hg, Cd)Te quantum wells. On the other hand, electronic correlation plays a significant role in many solid-state systems, which further influences topological properties and triggers topological phase transitions. Yet an interacting TI is still an elusive subject and most related analyses rely on the mean-field approximation and numerical simulations. Among the approaches, the mean-field approximation fails to predict the topological phase transition, in particular at intermediate interaction strength without spontaneously breaking symmetry. In this paper, we develop an analytical approach based on a combined perturbative and self-consistent mean-field treatment of interactions that is capable of capturing topological phase transitions beyond either method when used independently. As an illustration of the method, we study the effects of short-ranged interactions on the Z2 TI phase, also known as the quantum spin Hall (QSH) phase, in three generalized versions of the Kane-Mele (KM) model at half-filling on the honeycomb lattice. The results are in excellent agreement with quantum Monte Carlo (QMC) calculations on the same model and cannot be reproduced by either a perturbative treatment or a self-consistent mean-field treatment of the interactions. Our analytical approach helps to clarify how the symmetries of the one-body terms of the Hamiltonian determine whether interactions tend to stabilize or destabilize a topological phase. Moreover, our method should be applicable to a wide class of models where topological transitions due to interactions are in principle possible, but are not correctly predicted by either perturbative or self-consistent treatments.

  19. Nature of self-diffusion in two-dimensional fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less

  20. Nature of self-diffusion in two-dimensional fluids

    DOE PAGES

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; ...

    2017-12-18

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less

  1. Morphology of Block Copolymer Electrolytes: A Numerical Self-Consistent Field Theory Study

    NASA Astrophysics Data System (ADS)

    Hou, Kevin; Qin, Jian

    Engineering the morphology of ion-containing block copolymers is imperative for the optimization of their charge-transport and mechanical properties. Existing experiments have demonstrated that the addition of ions has a dramatic effect on the morphology and thermodynamic behavior of these structured electrolytes. We have developed an efficient, symmetry-adapted algorithm to calculate the ionic interactions in the SCFT for ion-containing polymers. We present the results of a numerical SCFT study examining how dielectric heterogeneity, ion concentration, and ion solvation affect morphology, domain spacing, ion distribution, and polymer density profiles. Particular attention is given to the detailed morphological analysis of the bicontinuous gyroidal phase, as well as the relevance of the aforementioned results to ionic conductivity.

  2. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  3. Late-time evolution of a self-interacting scalar field in the spacetime of a dilaton black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moderski, Rafal; Rogatko, Marek

    2001-08-15

    We investigate the late-time tails of self-interacting (massive) scalar fields in the spacetime of a dilaton black hole. Following the no hair theorem we examine the mechanism by which self-interacting scalar hair decays. We reveal that the intermediate asymptotic behavior of the considered field perturbations is dominated by an oscillatory inverse power-law decaying tail. The numerical simulations show that at very late time, massive self-interacting scalar hair decays slower than any power law.

  4. The Role of an Electric Field in the Formation of a Detached Regime in Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Senichenkov, I.; Kaveeva, E.; Rozhansky, V.; Sytova, E.; Veselova, I.; Voskoboynikov, S.; Coster, D.

    2018-03-01

    Modeling of the transition to the detachment of ASDEX Upgrade tokamak plasma with increasing density is performed using the SOLPS-ITER numerical code with a self-consistent account of drifts and currents. Their role in plasma redistribution both in the confinement region and in the scrape-off layer (SOL) is investigated. The mechanism of high field side high-density formation in the SOL in the course of detachment is suggested. In the full detachment regime, when the cold plasma region expands above the X-point and reaches closed magnetic-flux surfaces, plasma perturbation in a confined region may lead to a change in the confinement regime.

  5. Self-Consistent Drift-Diffusion Transport in Thermoelectrics and Implications for Measuring the Scattering Parameter

    NASA Astrophysics Data System (ADS)

    Santhanam, Parthiban; Ram, Rajeev J.

    2010-09-01

    We present a microscopic model of the Seebeck effect based on a generalized drift-diffusion equation and use it to predict a simple relationship between the electric field within an operating thermoelectric and the scattering parameter. Our model replicates existing theoretical results and permits an intuitive spatial picture of the Seebeck effect. A similar formalism was independently developed by Cai and Mahan, but this work includes numerical results for high dopant concentrations where the thermoelectric power factor is maximized. Based on these results, we propose that measurement of the bulk electric field should constitute a measurement of the scattering parameter, the improvement of which could lead to greater thermoelectric efficiency.

  6. Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.

    PubMed

    Heislbetz, Sandra; Rauhut, Guntram

    2010-03-28

    A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.

  7. A multi-species exchange model for fully fluctuating polymer field theory simulations.

    PubMed

    Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H

    2014-11-07

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.

  8. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  9. Nonequilibrium self-energy functional theory

    NASA Astrophysics Data System (ADS)

    Hofmann, Felix; Eckstein, Martin; Arrigoni, Enrico; Potthoff, Michael

    2013-10-01

    The self-energy functional theory (SFT) is generalized to describe the real-time dynamics of correlated lattice-fermion models far from thermal equilibrium. This is achieved by starting from a reformulation of the original equilibrium theory in terms of double-time Green's functions on the Keldysh-Matsubara contour. With the help of a generalized Luttinger-Ward functional, we construct a functional Ω̂[Σ] which is stationary at the physical (nonequilibrium) self-energy Σ and which yields the grand potential of the initial thermal state Ω at the physical point. Nonperturbative approximations can be defined by specifying a reference system that serves to generate trial self-energies. These self-energies are varied by varying the reference system's one-particle parameters on the Keldysh-Matsubara contour. In the case of thermal equilibrium, this approach reduces to the conventional SFT. Contrary to the equilibrium theory, however, “unphysical” variations, i.e., variations that are different on the upper and the lower branches of the Keldysh contour, must be considered to fix the time dependence of the optimal physical parameters via the variational principle. Functional derivatives in the nonequilibrium SFT Euler equation are carried out analytically to derive conditional equations for the variational parameters that are accessible to a numerical evaluation via a time-propagation scheme. Approximations constructed by means of the nonequilibrium SFT are shown to be inherently causal, internally consistent, and to respect macroscopic conservation laws resulting from gauge symmetries of the Hamiltonian. This comprises the nonequilibrium dynamical mean-field theory but also dynamical-impurity and variational-cluster approximations that are specified by reference systems with a finite number of degrees of freedom. In this way, nonperturbative and consistent approximations can be set up, the numerical evaluation of which is accessible to an exact-diagonalization approach.

  10. Ion Thruster Discharge Performance Per Magnetic Field Topography

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Goebel, Dan

    2006-01-01

    DC-ION is a detailed computational model for predicting the plasma characteristics of rain-cusp ion thrusters. The advanced magnetic field meshing algorithm used by DC-ION allows precise treatment of the secondary electron flow. This capability allows self-consistent estimates of plasma potential that improves the overall consistency of the results of the discharge model described in Reference [refJPC05mod1]. Plasma potential estimates allow the model to predict the onset of plasma instabilities, and important shortcoming of the previous model for optimizing the design of discharge chambers. A magnetic field mesh simplifies the plasma flow calculations, for both the ions and the secondary electrons, and significantly reduces numerical diffusion that can occur with meshes not aligned with the magnetic field. Comparing the results of this model to experimental data shows that the behavior of the primary electrons, and the precise manner of their confinement, dictates the fundamental efficiency of ring-cusp. This correlation is evident in simulations of the conventionally sized NSTAR thruster (30 cm diameter) and the miniature MiXI thruster (3 cm diameter).

  11. A finite element approach to self-consistent field theory calculations of multiblock polymers

    NASA Astrophysics Data System (ADS)

    Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.; Ganapathysubramanian, Baskar

    2017-02-01

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.

  12. The Earth's magnetosphere is 165 R(sub E) long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Fedder, J. A.; Lyon, J. G.

    1995-01-01

    The subject of this paper is a self-consistent, magnetohydrodynamic numerical realization for the Earth's magnetosphere which is in a quasi-steady dynamic equilibrium for a due northward interplanetary magnetic field (IMF). Although a few hours of steady northward IMF are required for this asymptotic state to be set up, it should still be of considerable theoretical interest because it constitutes a 'ground state' for the solar wind-magnetosphere interaction. Moreover, particular features of this ground state magnetosphere should be observable even under less extreme solar wind conditions. Certain characteristics of this magnetosphere, namely, NBZ Birkeland currents, four-cell ionospheric convection, a relatively weak cross-polar potential, and a prominent flow boundary layer, are widely expected. Other characteristics, such as no open tail lobes, no Earth-connected magnetic flux beyond 155 R(sub E) downstream, magnetic merging in a closed topology at the cusps, and a 'tadpole' shaped magnetospheric boundary, might not be expected. In this paper, we will present the evidence for this unusual but interesting magnetospheric equilibrium. We will also discuss our present understanding of this singular state.

  13. A Least-Squares Commutator in the Iterative Subspace Method for Accelerating Self-Consistent Field Convergence.

    PubMed

    Li, Haichen; Yaron, David J

    2016-11-08

    A least-squares commutator in the iterative subspace (LCIIS) approach is explored for accelerating self-consistent field (SCF) calculations. LCIIS is similar to direct inversion of the iterative subspace (DIIS) methods in that the next iterate of the density matrix is obtained as a linear combination of past iterates. However, whereas DIIS methods find the linear combination by minimizing a sum of error vectors, LCIIS minimizes the Frobenius norm of the commutator between the density matrix and the Fock matrix. This minimization leads to a quartic problem that can be solved iteratively through a constrained Newton's method. The relationship between LCIIS and DIIS is discussed. Numerical experiments suggest that LCIIS leads to faster convergence than other SCF convergence accelerating methods in a statistically significant sense, and in a number of cases LCIIS leads to stable SCF solutions that are not found by other methods. The computational cost involved in solving the quartic minimization problem is small compared to the typical cost of SCF iterations and the approach is easily integrated into existing codes. LCIIS can therefore serve as a powerful addition to SCF convergence accelerating methods in computational quantum chemistry packages.

  14. A finite element approach to self-consistent field theory calculations of multiblock polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibriummore » polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.« less

  15. Numerical methods for studying anharmonic oscillator approximations to the phi super 4 sub 2 quantum field theory

    NASA Technical Reports Server (NTRS)

    Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.

    1980-01-01

    This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.

  16. Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.

    ERIC Educational Resources Information Center

    Rioux, Frank; Harriss, Donald K.

    1980-01-01

    Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.

  17. Intradomain phase transitions in flexible block copolymers with self-aligning segments.

    PubMed

    Burke, Christopher J; Grason, Gregory M

    2018-05-07

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ε). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ε needed to induce this intra-domain phase transition.

  18. Intradomain phase transitions in flexible block copolymers with self-aligning segments

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Grason, Gregory M.

    2018-05-01

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ɛ). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ɛ needed to induce this intra-domain phase transition.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Düchs, Dominik; Delaney, Kris T., E-mail: kdelaney@mrl.ucsb.edu; Fredrickson, Glenn H., E-mail: ghf@mrl.ucsb.edu

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complexmore » Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.« less

  20. High-Accuracy Comparison Between the Post-Newtonian and Self-Force Dynamics of Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.

    The relativistic motion of a compact binary system moving in circular orbit is investigated using the post-Newtonian (PN) approximation and the perturbative self-force (SF) formalism. A particular gauge-invariant observable quantity is computed as a function of the binary's orbital frequency. The conservative effect induced by the gravitational SF is obtained numerically with high precision, and compared to the PN prediction developed to high order. The PN calculation involves the computation of the 3PN regularized metric at the location of the particle. Its divergent self-field is regularized by means of dimensional regularization. The poles ∝ {(d - 3)}^{-1} that occur within dimensional regularization at the 3PN order disappear from the final gauge-invariant result. The leading 4PN and next-to-leading 5PN conservative logarithmic contributions originating from gravitational wave tails are also obtained. Making use of these exact PN results, some previously unknown PN coefficients are measured up to the very high 7PN order by fitting to the numerical SF data. Using just the 2PN and new logarithmic terms, the value of the 3PN coefficient is also confirmed numerically with very high precision. The consistency of this cross-cultural comparison provides a crucial test of the very different regularization methods used in both SF and PN formalisms, and illustrates the complementarity of these approximation schemes when modeling compact binary systems.

  1. On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics

    NASA Technical Reports Server (NTRS)

    Zheng, Y.; Zaharia, S. G.; Fok, M. H.

    2010-01-01

    Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.

  2. Particle Simulations of the Guard Electrode Effects on the Photoelectron Distribution Around an Electric Field Sensor

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.

    2010-12-01

    In tenuous space plasma environment, photoelectrons emitted due to solar illumination produce a high-density photoelectron cloud localized in the vicinity of a spacecraft body and an electric field sensor. The photoelectron current emitted from the sensor has also received considerable attention because it becomes a primary factor in determining floating potentials of the sunlit spacecraft and sensor bodies. Considering the fact that asymmetric photoelectron distribution between sunlit and sunless sides of the spacecraft occasionally causes a spurious sunward electric field, we require quantitative evaluation of the photoelectron distribution around the spacecraft and its influence on electric field measurements by means of a numerical approach. In the current study, we applied the Particle-in-Cell plasma simulation to the analysis of the photoelectron environment around spacecraft. By using the PIC modeling, we can self-consistently consider the plasma kinetics. This enables us to simulate the formation of the photoelectron cloud as well as the spacecraft and sensor charging in a self-consistent manner. We report the progress of an analysis on photoelectron environment around MEFISTO, which is an electric field instrument for the BepiColombo/MMO spacecraft to Mercury’s magnetosphere. The photoelectron guard electrode is a key technology for ensuring an optimum photoelectron environment. We show some simulation results on the guard electrode effects on surrounding photoelectrons and discuss a guard operation condition for producing the optimum photoelectron environment. We also deal with another important issue, that is, how the guard electrode can mitigate an undesirable influence of an asymmetric photoelectron distribution on electric field measurements.

  3. Self-Synchronization of Numerical Granular Flows: A Key to Musical Sands?

    NASA Astrophysics Data System (ADS)

    Staron, L.

    2011-12-01

    In some rare circumstances, sand flows at the surface of dunes are able to produce a loud sound known as "the song of dunes". The complex mechanisms at the source of these singing properties are far from fully understood. In this study, granular flows are simulated in two dimensions using the discrete Contact Dynamics algorithm. We show that the motion of grains at the surface of the flows exhibits a well-defined oscillation, the frequency of which is not described by the natural frequencies of the system, and does not depend on the rigid or erodible bottom condition. To explain this oscillation, we propose a simple synchronization model based on the existence of coherent structures, or clusters, at the surface of the flow, which yields successful prediction of the numerically observed frequencies. Our analysis gives consistent results when compared with field data from booming dunes, offers a possible explanation for the field observation of sound-generation velocity threshold, and provides new keys to the understanding of musical sands.

  4. On the interplay of gas dynamics and the electromagnetic field in an atmospheric Ar/H2 microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zajíčková, Lenka

    2015-04-01

    A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.

  5. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less

  6. Tango

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey

    Tango enables the accelerated numerical solution of the multiscale problem of self-consistent transport and turbulence. Fast turbulence results in fluxes of heat and particles that slowly change the mean profiles of temperature and density. The fluxes are computed by separate turbulence simulation codes; Tang solves for the self-consistent change in mean temperature or density given those fluxes.

  7. Two-fluid Numerical Simulations of Solar Spicules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuźma, Błażej; Murawski, Kris; Kayshap, Pradeep

    2017-11-10

    We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D Cartesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagatesmore » upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20–25 km s{sup −1}. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3–4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.« less

  8. Numerical simulation of electron scattering by nanotube junctions

    NASA Astrophysics Data System (ADS)

    Brüning, J.; Grikurov, V. E.

    2008-03-01

    We demonstrate the possibility of computing the intensity of electronic transport through various junctions of three-dimensional metallic nanotubes. In particular, we observe that the magnetic field can be used to control the switch of electron in Y-type junctions. Keeping in mind the asymptotic modeling of reliable nanostructures by quantum graphs, we conjecture that the scattering matrix of the graph should be the same as the scattering matrix of its nanosize-prototype. The numerical computation of the latter gives a method for determining the "gluing" conditions at a graph. Exploring this conjecture, we show that the Kirchhoff conditions (which are commonly used on graphs) cannot be applied to model reliable junctions. This work is a natural extension of the paper [1], but it is written in a self-consistent manner.

  9. Evaluation of thermal behavior during laser metal deposition using optical pyrometry and numerical simulation

    NASA Astrophysics Data System (ADS)

    Dubrov, Alexander V.; Zavalov, Yuri N.; Mirzade, Fikret K.; Dubrov, Vladimir D.

    2017-06-01

    3D mathematical model of non-stationary processes of heat and mass transfer was developed for additive manufacturing of materials by direct laser metal deposition. The model takes into account self-consistent dynamics of free surface, temperature fields, and melt flow speeds. Evolution of free surface is modelled using combined Volume of Fluid and Level-Set method. Article presents experimental results of the measurement of temperature distribution in the area of bead formation by direct laser metal deposition, using multi-channel pyrometer, that is based on two-color sensors line. A comparison of experimental data with the results of numerical modeling was carried out. Features of thermal dynamics on the surface of melt pool have been detected, which were caused by thermo-capillary convection.

  10. Self-consistent simulation of CdTe solar cells with active defects

    DOE PAGES

    Brinkman, Daniel; Guo, Da; Akis, Richard; ...

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations tomore » demonstrate the accuracy of the solver and then show results unique to the 2D case.« less

  11. Properties of Turbulence in the Reconnection Exhaust: Numerical Simulations Compared with Observations

    NASA Astrophysics Data System (ADS)

    Pucci, F.; Servidio, S.; Sorriso-Valvo, L.; Olshevsky, V.; Matthaeus, W. H.; Malara, F.; Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2017-05-01

    The properties of the turbulence that develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail, investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the dissipation mechanisms in the turbulent outflows similar to the ones observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.

  12. Properties of turbulence in the reconnection exhaust: numerical simulations compared with observations

    NASA Astrophysics Data System (ADS)

    Pucci, Francesco; Servidio, Sergio; Sorriso-Valvo, Luca; Olshevsky, Vyacheslav; Matthaeus, William; Malara, Francesco; Goldman, Martin; Newman, David; Lapenta, Giovanni

    2017-04-01

    The properties of the turbulence which develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with observations of reconnection event in the magnetotail investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show: the development of a turbulent cascade consistent with spacecraft observations, statistics of the the dissipation mechanisms in the turbulent outflows similar to the one observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.

  13. Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil

    NASA Astrophysics Data System (ADS)

    Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi

    2016-10-01

    A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.

  14. Modeling Electric Field Influences on Plasmaspheric Refilling

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Kozyra, J. U.; Khazanov, G. V.; Craven, Paul D.

    1998-01-01

    We have a new model of ion transport that we have applied to the problem of plasmaspheric flux tube refilling after a geomagnetic disturbance. This model solves the Fokker-Planck kinetic equation by applying discrete difference numerical schemes to the various operators. Features of the model include a time-varying ionospheric source, self-consistent Coulomb collisions, field-aligned electric field, hot plasma interactions, and ion cyclotron wave heating. We see refilling rates similar to those of earlier observations and models, except when the electric field is included. In this case, the refilling rates can be quite different that previously predicted. Depending on the populations included and the values of relevant parameters, trap zone densities can increase or decrease. In particular, the inclusion of hot populations near the equatorial region (specifically warm pancake distributions and ring current ions) can dramatically alter the refilling rate. Results are compared with observations as well as previous hydrodynamic and kinetic particle model simulations.

  15. Quantum transport in antidot arrays in magnetic fields

    NASA Astrophysics Data System (ADS)

    Ishizaka, Satoshi; Nihey, Fumiyuki; Nakamura, Kazuo; Sone, Jun' Ichi; Ando, Tsuneya

    1995-04-01

    Transport in antidot arrays in magnetic fields is studied numerically. We calculate the density of states and conductivity tensor by the self-consistent Born approximation. Although peak positions of the density of states agree well with the quantization condition for several short periodic orbits, the behavior of the conductivity tensor is very complicated. Coupling among the periodic orbits causes an oscillation in the Hall conductivity in magnetic fields around the localized peak. In low magnetic fields, the skipping orbit, which runs from an antidot to its neighboring antidot, plays a crucial role for diagonal conductivity, and its coupling with the periodic orbits causes an oscillation in the diagonal conductivity. The resulting magnetoresistance oscillates with a period near one magnetic flux quantum as observed in recent experiments. Furthermore, the oscillation due to the manifestation of Hofstadter's butterfly is present in both the diagonal conductivity and the Hall conductivity.

  16. REVIEWS OF TOPICAL PROBLEMS: Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)

    NASA Astrophysics Data System (ADS)

    Bykov, Andrei M.; Toptygin, Igor'N.

    1993-11-01

    This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.

  17. CSR Fields: Direct Numerical Solution of the Maxwell___s Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novokhatski, A.; /SLAC

    2011-06-22

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particlemore » accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in [1]. Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in [2]. We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields [3].« less

  18. Extended Lagrangian Excited State Molecular Dynamics

    DOE PAGES

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei; ...

    2018-01-09

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  19. Extended Lagrangian Excited State Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  20. Extended Lagrangian Excited State Molecular Dynamics.

    PubMed

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  1. Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.

    PubMed

    Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N

    2015-06-09

    The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.

  2. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  3. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; McGuffey, C., E-mail: cmcguffey@ucsd.edu; Qiao, B.

    2016-04-15

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam depositionmore » profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.« less

  4. Soliton matter in the two-dimensional linear sigma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, L.R.; Lohe, M.A.; Rossi, M.

    1987-10-01

    We consider a one-dimensional model of nuclear matter where the quark clusters are described by solutions of the sigma model on a linear lattice in the self-consistent mean field approximation. Exact expressions are given for the baglike solutions confined to a finite interval, corresponding in the infinite interval limit to the free solitons previously found by Campbell and Liao. Periodic, self-consistent solutions which satisfy Bloch's theorem are constructed. Their energies and associated quark sigma field distributions are calculated numerically as functions of the baryon spacing, and compared with those of the uniform quark plasma. The predicted configuration of the groundmore » state depends critically on the assumed manner of filling the lowest band of quark single-particle levels, and on the density. In the absence of additional repulsive forces in the model, we find that the high density massless quark plasma is energetically favored and that there is a smooth transition from the baglike state to a uniform plasma with nonvanishing sigma field at comparatively large lattice constants 2dapprox. =10m/sub q//sup -1/ (m/sub q/ is the quark mass). If dilute filling of the entire band is employed, the clustered state is stable and a first order phase transition can occur for a range of much smaller lattice spacings 2dapprox. =4m/sub q//sup -1/. .AE« less

  5. Measurement of Academic Self-Concept in College Students.

    ERIC Educational Resources Information Center

    Reynolds, William M.; And Others

    Academic self-concept has been viewed by numerous investigators as an important facet of general self-concept. The Academic Self-Concept Scale (ASCS) was developed as a measure of academic self-concept in college students. The initial item pool consisted of 59 items worded to conform to a four-pont Likert-type response format. On the basis of…

  6. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  7. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    NASA Astrophysics Data System (ADS)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram

    2015-12-01

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  8. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  9. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    NASA Technical Reports Server (NTRS)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  10. Self-consistent field theory simulations of polymers on arbitrary domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouaknin, Gaddiel, E-mail: gaddielouaknin@umail.ucsb.edu; Laachi, Nabil; Delaney, Kris

    2016-12-15

    We introduce a framework for simulating the mesoscale self-assembly of block copolymers in arbitrary confined geometries subject to Neumann boundary conditions. We employ a hybrid finite difference/volume approach to discretize the mean-field equations on an irregular domain represented implicitly by a level-set function. The numerical treatment of the Neumann boundary conditions is sharp, i.e. it avoids an artificial smearing in the irregular domain boundary. This strategy enables the study of self-assembly in confined domains and enables the computation of physically meaningful quantities at the domain interface. In addition, we employ adaptive grids encoded with Quad-/Oc-trees in parallel to automatically refinemore » the grid where the statistical fields vary rapidly as well as at the boundary of the confined domain. This approach results in a significant reduction in the number of degrees of freedom and makes the simulations in arbitrary domains using effective boundary conditions computationally efficient in terms of both speed and memory requirement. Finally, in the case of regular periodic domains, where pseudo-spectral approaches are superior to finite differences in terms of CPU time and accuracy, we use the adaptive strategy to store chain propagators, reducing the memory footprint without loss of accuracy in computed physical observables.« less

  11. Reliability and Validity of an Arabic Version of the Self-Determination Assessment--Internet (SDAi)

    ERIC Educational Resources Information Center

    Alamri, Mona

    2017-01-01

    Self-determination is related to the desirable transition outcomes of an individual. It has gained an increasing amount of attention in numerous fields, including education, sociology, psychology, and other fields related to human behavior. However, there are no measures originally written in Arabic that accurately measure an individual's…

  12. Full color natural light holographic camera.

    PubMed

    Kim, Myung K

    2013-04-22

    Full-color, three-dimensional images of objects under incoherent illumination are obtained by a digital holography technique. Based on self-interference of two beam-split copies of the object's optical field with differential curvatures, the apparatus consists of a beam-splitter, a few mirrors and lenses, a piezo-actuator, and a color camera. No lasers or other special illuminations are used for recording or reconstruction. Color holographic images of daylight-illuminated outdoor scenes and a halogen lamp-illuminated toy figure are obtained. From a recorded hologram, images can be calculated, or numerically focused, at any distances for viewing.

  13. Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.

  14. Self-consistent electrostatic potential due to trapped plasma in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Khazanov, George V.

    1993-01-01

    A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).

  15. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    DOE PAGES

    Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.; ...

    2017-05-10

    Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less

  16. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.

    Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less

  17. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Toth, Gabor; Heelis, Roderick

    2017-05-01

    We report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, and the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a "tongue" of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.

  18. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters

    DTIC Science & Technology

    2016-06-01

    space propulsion . This effort consists of numerical model development, physical model development, and systematic studies of the non-linear plasma...studies of the physical characteristics of Field Reversed Configuration (FRC) plasma for advanced space propulsion . This effort consists of numerical...FRCs for propulsion application. Two of the most advanced designs are based on the theta-pinch formation and the RMF formation mechanism, which

  19. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  20. Numerical investigation of the spreading of self-excited stratified jets

    NASA Technical Reports Server (NTRS)

    Batcho, P. F.; Karniadakis, G. E.; Orszag, S. A.

    1990-01-01

    The structure and evolution of self-excited subsonic periodic arrays of jets of constant and variable density are studied using spectral-element direct numerical simulations. The governing equation of motion is presented, and a method based on spectral element discretizations appropriate for simulating arbitrarily complex geometry jets and large density variations for subsonic flows is developed. Variable density fields are found to be more unstable than the corresponding uniform density fields with much higher rms values; as a result, their spreading is also considerably larger. There is a dramatic increase in spreading after a few pairings occur. Findings presented for low and high side-momentum flux reveal a shifting of the origin of instability from the near-field to the far-field, respectively, and suggest possible routes of stabilization.

  1. Perceptions of Self-Efficacy among STEM Students with Disabilities

    ERIC Educational Resources Information Center

    Jenson, Ronda J.; Petri, Alexis N.; Day, Arden D.; Truman, Kevin Z.; Duffy, Kate

    2011-01-01

    Numerous studies examine the relationship between self-efficacy and positive outcomes for postsecondary students. Collectively they echo that self-efficacy is an essential component to positive outcomes. Relatively few studies focused on students with disabilities majoring in STEM fields. Twenty postsecondary students with disabilities…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, Eric R., E-mail: eric_coughlin@berkeley.edu

    We present the exact solutions for the collapse of a spherically symmetric cold (i.e., pressureless) cloud under its own self-gravity, valid for arbitrary initial density profiles and not restricted to the realm of self-similarity. These solutions exhibit a number of remarkable features, including the self-consistent formation of and subsequent accretion onto a central point mass. A number of specific examples are provided, and we show that Penston’s solution of pressureless self-similar collapse is recovered for polytropic density profiles; importantly, however, we demonstrate that the time over which this solution holds is fleetingly short, implying that much of the collapse proceedsmore » non-self-similarly. We show that our solutions can naturally incorporate turbulent pressure support, and we investigate the evolution of overdensities—potentially generated by such turbulence—as the collapse proceeds. Finally, we analyze the evolution of the angular velocity and magnetic fields in the limit that their dynamical influence is small, and we recover exact solutions for these quantities. Our results may provide important constraints on numerical models that attempt to elucidate the details of protostellar collapse when the initial conditions are far less idealized.« less

  3. Post-Newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.

    2010-03-01

    The problem of a compact binary system whose components move on circular orbits is addressed using two different approximation techniques in general relativity. The post-Newtonian (PN) approximation involves an expansion in powers of v/c≪1, and is most appropriate for small orbital velocities v. The perturbative self-force analysis requires an extreme mass ratio m1/m2≪1 for the components of the binary. A particular coordinate-invariant observable is determined as a function of the orbital frequency of the system using these two different approximations. The post-Newtonian calculation is pushed up to the third post-Newtonian (3PN) order. It involves the metric generated by two point particles and evaluated at the location of one of the particles. We regularize the divergent self-field of the particle by means of dimensional regularization. We show that the poles ∝(d-3)-1 appearing in dimensional regularization at the 3PN order cancel out from the final gauge invariant observable. The 3PN analytical result, through first order in the mass ratio, and the numerical self-force calculation are found to agree well. The consistency of this cross cultural comparison confirms the soundness of both approximations in describing compact binary systems. In particular, it provides an independent test of the very different regularization procedures invoked in the two approximation schemes.

  4. Self-oscillation in spin torque oscillator stabilized by field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  5. Prize of the best thesis 2015: Study of debris discs through state-of-the-art numerical modelling

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.

    2015-12-01

    This proceeding summarises the thesis entitled ``Study of debris discs with a new generation numerical model'' by Quentin Kral, for which he obtained the prize of the best thesis in 2015. The thesis brought major contributions to the field of debris disc modelling. The main achievement is to have created, almost ex-nihilo, the first truly self-consistent numerical model able to simultaneously follow the coupled collisional and dynamical evolutions of debris discs. Such a code has been thought as being the ``Holy Grail'' of disc modellers for the past decade, and while several codes with partial dynamics/collisions coupling have been presented, the code developed in this thesis, called ``LIDT-DD'' is the first to achieve a full coupling. The LIDT-DD model, which is the first of a new-generation of fully self-consistent debris disc models is able to handle both planetesimals and dust and create new fragments after each collision. The main idea of LIDT-DD development was to merge into one code two approaches that were so far used separately in disc modelling, that is, an N-body algorithm to investigate the dynamics, and a statistical scheme to explore the collisional evolution. This complex scheme is not straightforward to develop as there are major difficulties to overcome: 1) collisions in debris discs are highly destructive and produce clouds of small fragments after each single impact, 2) the smallest (and most numerous) of these fragments have a strongly size-dependent dynamics because of the radiation pressure, and 3) the dust usually observed in discs is precisely these smallest grains. These extreme constraints had so far prevented all previous attempts at developing self-consistent disc models to succeed. The thesis contains many examples of the use of LIDT-DD that are not yet published but the case of the collision between two asteroid-like bodies is studied in detail. In particular, LIDT-DD is able to predict the different stages that should be observed after such massive collisions that happen mainly in the latest stages of planetary formation. Some giant impact signatures and observability predictions for VLT/SPHERE and JWST/MIRI are given. JWST should be able to detect many of such impacts and would enable to see on-going planetary formation in dozens of planetary systems.

  6. ELECTRODYNAMICS OF AXISYMMETRIC PULSAR MAGNETOSPHERE WITH ELECTRON-POSITRON DISCHARGE: A NUMERICAL EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Alexander Y.; Beloborodov, Andrei M., E-mail: amb@phys.columbia.edu

    2014-11-01

    We present the first self-consistent global simulations of pulsar magnetospheres with operating e {sup ±} discharge. We focus on the simple configuration of an aligned or anti-aligned rotator. The star is spun up from a zero (vacuum) state to a high angular velocity, and we follow the coupled evolution of its external electromagnetic field and plasma particles using the ''particle-in-cell'' method. A plasma magnetosphere begins to form through the extraction of particles from the star; these particles are accelerated by the rotation-induced electric field, producing curvature radiation and igniting e {sup ±} discharge. We follow the system evolution for severalmore » revolution periods, longer than required to reach a quasi-steady state. Our numerical experiment puts to test previous ideas for the plasma flow and gaps in the pulsar magnetosphere. We first consider rotators capable of producing pairs out to the light cylinder through photon-photon collisions. We find that their magnetospheres are similar to the previously obtained force-free solutions with a Y-shaped current sheet. The magnetosphere continually ejects e {sup ±} pairs and ions. Pair creation is sustained by a strong electric field along the current sheet. We observe powerful curvature and synchrotron emission from the current sheet, consistent with Fermi observations of gamma-ray pulsars. We then study pulsars that can only create pairs in the strong-field region near the neutron star, well inside the light cylinder. We find that both aligned and anti-aligned rotators relax to the ''dead'' state with suppressed pair creation and electric currents, regardless of the discharge voltage.« less

  7. Numerical and Analytical Investigation of the Energy and Momentum Exchange Between the Shocked Solar Wind and Topside Ionosphere for Non-Magnetic Planets and Moons

    NASA Astrophysics Data System (ADS)

    Dobe, Z.; Shapiro, V. D.; Quest, K.; Szego, K.; Huba, J.

    1998-11-01

    Previously[1], we proposed a model of the planetary ions pick-up by the shocked solar wind flow developing in the mantle-turbulent boundary region surrounding the ionospheres of non-magnetic planets-Mars and Venus. In the present paper we are modifying this model taking into account the flow of the planetary elections immediately pick-up by E x B forces of the shocked solar wind. It is shown that flow of the cold planetary electrons drives a strong hydrodynamical instability of the electrostatic whistlers efficiently coupling planetary ions with the flow of the solar wind. The linear stage of the instability is investigated both analytically and numerically, and results are found to be in a good agreement. Nonlunear stage of the instability is investigated with the modified numerical hybrid code[2], and demonstrates both effects of acceleration and heating of the planetary ions by the solar wind. Field aligned electron acceleration is also investigated in a test particle approximation using wave power spectrum obtained in a self-consistent numerical simulation.

  8. TOPICA/TORIC integration for self-consistent antenna and plasma analysis

    NASA Astrophysics Data System (ADS)

    Maggiora, Riccardo; Lancellotti, Vito; Milanesio, Daniele; Kyrytsya, Volodymyr; Vecchi, Giuseppe; Bonoli, Paul T.; Wright, John C.

    2006-10-01

    TOPICA [1] is a numerical suite conceived for prediction and analysis of plasma-facing antennas. It can handle real-life 3D antenna geometries (with housing, Faraday screen, etc.) as well as a realistic plasma model, including measured density and temperature profiles. TORIC [2] solves the finite Larmor radius wave equations in the ICRF regime in arbitrary axisymmetric toroidal plasmas. Due to the approach followed in developing TOPICA (i.e. the formal splitting of the problem in the vacuum region around the antenna and the plasma region inside the toroidal chamber), the code lends itself to handle toroidal plasmas, provided TORIC is run independently to yield the plasma surface admittance tensorsY (m,m',n). The latter enter directly into the integral equations solved by TOPICA, thus allowing a far more accurate plasma description that accounts for curvature effects. TOPICA outputs comprise, among others, the EM fields in front of the plasma: these can in turn be input to TORIC, in order to self-consistently determine the EM field propagation in the plasma. In this work, we report on the theory underlying the TOPICA/TORIC integration and the ongoing evolution of the two codes. [1] V. Lancellotti et al., Nucl. Fusion, 46 (2006) S476 [2] M. Brambilla, Plasma Phys. Contr. Fusion (1999) 41 1

  9. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  10. Multiscale modeling and computation of optically manipulated nano devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Gang, E-mail: baog@zju.edu.cn; Liu, Di, E-mail: richardl@math.msu.edu; Luo, Songting, E-mail: luos@iastate.edu

    2016-07-01

    We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, andmore » use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.« less

  11. Theoretical exploration of competing phases of lattice Bose gases in a cavity

    NASA Astrophysics Data System (ADS)

    Liao, Renyuan; Chen, Huang-Jie; Zheng, Dong-Chen; Huang, Zhi-Gao

    2018-01-01

    We consider bosonic atoms loaded into optical lattices with cavity-mediated infinite-range interactions. Competing short- and global-range interactions cultivate a rich phase diagram. With a systematic field-theoretical perspective, we present an analytical construction of a global ground-state phase diagram. We find that the infinite-range interaction enhances the fluctuation of the number density. In the strong-coupling regime, we find four branches of elementary excitations, with two being "particlelike" and two being "holelike," and that the excitation gap becomes soft at the phase boundary between compressible phases and incompressible phases. We derive an effective theory describing compressible superfluid and supersolid states. To complement this perturbative study, we construct a self-consistent mean-field theory and find numerical results consistent with our theoretical analysis. We map out the phase diagram and find that a charge density wave may undergo a structure phase transition to a different charge density wave before it finally enters into the supersolid phase driven by increasing the hopping amplitude.

  12. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor

    PubMed Central

    Lee, KyeoReh; Park, YongKeun

    2016-01-01

    The word ‘holography' means a drawing that contains all of the information for light—both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor. PMID:27796290

  13. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor.

    PubMed

    Lee, KyeoReh; Park, YongKeun

    2016-10-31

    The word 'holography' means a drawing that contains all of the information for light-both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.

  14. Properties of Turbulence in the Reconnection Exhaust: Numerical Simulations Compared with Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, F.; Olshevsky, V.; Lapenta, G.

    2017-05-20

    The properties of the turbulence that develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail, investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the dissipation mechanisms in the turbulent outflows similar to the ones observed in reconnection jets inmore » the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.« less

  15. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  16. The value of swarm data for practical modeling of plasma devices

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Kochetov, I. V.

    2011-04-01

    The non-thermal plasma is a key component in gas lasers, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and other applications. The specific feature of the non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). The reactivity of the plasma is due to the appearance of atoms and chemical radicals. For the efficient production of chemically active species high average electron energy is required, which is controlled by the balance of gain from the electric field and loss in inelastic collisions. In low-ionized plasma the electron energy distribution function is far from Maxwellian and must be found numerically for specified conditions. Numerical modeling of processes in plasma technologies requires vast databases on electron scattering cross sections to be available. The only reliable criterion for evaluations of validity of a set of cross sections for a particular species is a correct prediction of electron transport and kinetic coefficients measured in swarm experiments. This criterion is used traditionally to improve experimentally measured cross sections, as was suggested earlier by Phelps. The set of cross sections subjected to this procedure is called a self-consistent set. Nowadays, such reliable self-consistent sets are known for many species. Problems encountered in implementation of the fitting procedure and examples of its successful applications are described in the paper. .

  17. Constraining fault constitutive behavior with slip and stress heterogeneity

    USGS Publications Warehouse

    Aagaard, Brad T.; Heaton, T.H.

    2008-01-01

    We study how enforcing self-consistency in the statistical properties of the preshear and postshear stress on a fault can be used to constrain fault constitutive behavior beyond that required to produce a desired spatial and temporal evolution of slip in a single event. We explore features of rupture dynamics that (1) lead to slip heterogeneity in earthquake ruptures and (2) maintain these conditions following rupture, so that the stress field is compatible with the generation of aftershocks and facilitates heterogeneous slip in subsequent events. Our three-dimensional fmite element simulations of magnitude 7 events on a vertical, planar strike-slip fault show that the conditions that lead to slip heterogeneity remain in place after large events when the dynamic stress drop (initial shear stress) and breakdown work (fracture energy) are spatially heterogeneous. In these models the breakdown work is on the order of MJ/m2, which is comparable to the radiated energy. These conditions producing slip heterogeneity also tend to produce narrower slip pulses independent of a slip rate dependence in the fault constitutive model. An alternative mechanism for generating these confined slip pulses appears to be fault constitutive models that have a stronger rate dependence, which also makes them difficult to implement in numerical models. We hypothesize that self-consistent ruptures could also be produced by very narrow slip pulses propagating in a self-sustaining heterogeneous stress field with breakdown work comparable to fracture energy estimates of kJ/M2. Copyright 2008 by the American Geophysical Union.

  18. Self-consistent computation of the electric field near ICRH antennas. Application to the Tore Supra antenna

    NASA Astrophysics Data System (ADS)

    Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.; Bécoulet, A.; Colas, L.

    1999-09-01

    Self-consistent calculations of the 3D electric field patterns between the screen and the plasma have been made with the ICANT code for realistic antennas. Here we explain how the ICRH antennas of the Tore Supra tokamak are modelled.

  19. Self-consistent computation of the electric field near ICRH antennas. Application to the Tore Supra antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecoul, S.; Heuraux, S.; Koch, R.

    1999-09-20

    Self-consistent calculations of the 3D electric field patterns between the screen and the plasma have been made with the ICANT code for realistic antennas. Here we explain how the ICRH antennas of the Tore Supra tokamak are modelled.

  20. Self-consistent hybrid functionals for solids: a fully-automated implementation

    NASA Astrophysics Data System (ADS)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  1. The phonon-coupling model for Skyrme forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyutorovich, N.; Tselyaev, V.; Speth, J., E-mail: J.Speth@fz-juelich.de

    2016-11-15

    A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.

  2. The half-filled Landau level: The case for Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.

    2016-04-01

    In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.

  3. Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Roland

    2007-06-15

    We calculate the self-force acting on a particle with scalar charge moving on a generic geodesic around a Schwarzschild black hole. This calculation requires an accurate computation of the retarded scalar field produced by the moving charge; this is done numerically with the help of a fourth-order convergent finite-difference scheme formulated in the time domain. The calculation also requires a regularization procedure, because the retarded field is singular on the particle's world line; this is handled mode-by-mode via the mode-sum regularization scheme first introduced by Barack and Ori. This paper presents the numerical method, various numerical tests, and a samplemore » of results for mildly eccentric orbits as well as ''zoom-whirl'' orbits.« less

  4. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  5. Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation.

    PubMed

    Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao

    2015-12-01

    Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude.

  6. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  7. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xufen; Wang, Yougang; Feix, Martin

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less

  8. A Theory for Self-consistent Acceleration of Energetic Charged Particles by Dynamic Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Khabarova, O.; Webb, G. M.

    2016-12-01

    Simulations of charged particle acceleration in turbulent plasma regions with numerous small-scale contracting and merging (reconnecting) magnetic islands/flux ropes emphasize the key role of temporary particle trapping in these structures for efficient acceleration that can result in power-law spectra. In response, a comprehensive kinetic transport theory framework was developed by Zank et al. and le Roux et al. to capture the essential physics of energetic particle acceleration in solar wind regions containing numerous dynamic small-scale flux ropes. Examples of test particle solutions exhibiting hard power-law spectra for energetic particles were presented in recent publications by both Zank et al. and le Roux et al.. However, the considerable pressure in the accelerated particles suggests the need for expanding the kinetic transport theory to enable a self-consistent description of energy exchange between energetic particles and small-scale flux ropes. We plan to present the equations of an expanded kinetic transport theory framework that will enable such a self-consistent description.

  9. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  10. Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling

    NASA Astrophysics Data System (ADS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2018-04-01

    Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.

  11. The Hartree-Fock calculation of the magnetic properties of molecular solutes

    NASA Astrophysics Data System (ADS)

    Cammi, R.

    1998-08-01

    In this paper we set the formal bases for the calculation of the magnetic susceptibility and of the nuclear magnetic shielding tensors for molecular solutes described within the framework of the polarizable continuum model (PCM). The theory has been developed at self-consistent field (SCF) level and adapted to be used within the framework of some of the computational procedures of larger use, i.e., the gauge invariant atomic orbital method (GIAO) and the continuous set gauge transformation method (CSGT). The numerical results relative to the magnetizabilities and chemical shielding of acetonitrile and nitrometane in various solvents computed with the PCM-CSGT method are also presented.

  12. Self-contained filtered density function

    DOE PAGES

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...

    2017-09-18

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  13. Self-contained filtered density function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  14. Self-similar Theory of Wind-driven Sea

    NASA Astrophysics Data System (ADS)

    Zakharov, V. E.

    2015-12-01

    More than two dozens field experiments performed in the ocean and on the lakes show that the fetch-limited growth of dimensionless energy and dimensionless peak frequency is described by powerlike functions of the dimensionless fetch. Moreover, the exponents of these two functions are connected with a proper accuracy by the standard "magic relation", 10q-2p=1. Recent massive numerical experiments as far as experiments in wave tanks also confirm this magic relation. All these experimental facts can be interpreted in a framework of the following simple theory. The wind-driven sea is described by the "conservative" Hasselmann kinetic equation. The source terms, wind input and white-capping dissipation, play a secondary role in comparison with the nonlinear term Snl that is responsible for the four-wave resonant interaction. This equation has four-parameter family of self-similar solutions. The magic relation holds for all numbers of this family. This fact gives strong hope that development of self-consistent analytic theory of wind-driven sea is quite realizable task.

  15. Self-contained filtered density function

    NASA Astrophysics Data System (ADS)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  16. Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.

    PubMed

    Guervilly, Céline; Brummell, Nicholas H

    2012-10-01

    We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.

  17. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  18. The Force-Free Magnetosphere of a Rotating Black Hole

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.

    2013-01-01

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."

  19. Spontaneous reorientations of meta-atoms and electromagnetic spatial solitons in a liquid metacrystal.

    PubMed

    Zharov, Alexander A; Zharov, Alexander A; Zharova, Nina A

    2014-08-01

    We show that transverse electromagnetic waves propagating along an external static electric field in liquid metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation of bright spatial solitons. Such spatial solitons are the self-consistent domains of redirected meta-atoms with trapped photons. We find that the instability thresholds as well as energy flux captured by the spatial soliton can be easily managed by variation of the static electric field applied to the LMC. We study the effects of soliton excitation and collisions via numerical simulations.

  20. Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles

    NASA Astrophysics Data System (ADS)

    Krasovsky, Victor L.; Kiselyov, Alexander A.

    2017-12-01

    New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.

  1. Collective dynamics of identical bistable self-sustained oscillators with delayed feedback coupled via a mean field

    NASA Astrophysics Data System (ADS)

    Ponomarenko, V. I.; Kul'minskii, D. D.; Karavaev, A. S.; Prokhorov, M. D.

    2017-03-01

    Peculiarities of the collective dynamics of self-sustained oscillators in an ensemble of identical bistable systems with delayed feedback coupled via a mean field have been experimentally studied and numerically simulated. It is established that the ensemble can occur in so-called "chimera" states, whereby some elements exhibit synchronous oscillations, while other oscillators exhibit asynchronous behavior.

  2. Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel

    NASA Astrophysics Data System (ADS)

    Dong, Li-Yun; Lan, Dong-Kai; Li, Xiang

    2016-09-01

    The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization. In order to reveal the underlying mechanism, a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others. The presented model can well reproduce typical collective behaviors, such as lane formation. Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow, laminar flow, interrupted bidirectional flow, oscillatory flow, intermittent flow, and choked flow. The effects of several parameters, such as the size of view field and the width of opening, on the bottleneck flow are also analyzed in detail. The view field plays a vital role in reproducing self-organized phenomena of pedestrian. Numerical results showed that the presented model can capture key characteristics of bottleneck flows. Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11172164 and 11572184).

  3. Dynamical evolution of galaxies in dense cluster environment.

    NASA Astrophysics Data System (ADS)

    Gnedin, O. Y.

    1997-12-01

    I present the results of study of the dynamics of galaxies in clusters of galaxies. The effects of the galaxy environment could be quite dramatic. The time-varying gravitational potential of the cluster subjects the galaxies to strong tidal effects. The tidal density cutoff effectively strips the dark matter halos and leads to highly concentrated structures in the galactic centers. The fast gravitational tidal shocks raise the random motion of stars in the galaxies, transforming the thin disks into the kinematically hot thick configurations. The tidal shocks also cause relaxation of stellar energies that enhances the rate of accretion onto the galactic centers. These effects of the time-varying cluster potential have not been consistently taken into account before. I present numerical N-body simulations of galaxies using the Self-Consistent Field code with 10(7) - 10(8) particles. The code is coupled with the PM code that provides a fully dynamic simulation of the cluster potential. The tidal field of the cluster along the galaxy trajectories is imposed as an external perturbation on the galaxies in the SCF scheme. Recent HST observations show that the high-redshift (z > 0.4) clusters contain numerous bright blue spirals, often with distorted profiles, whereas the nearby clusters are mostly populated by featureless ellipticals. The goal of my study is to understand whether dynamics is responsible for the observed strong evolution of galaxies in clusters.

  4. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramshaw, J.D.; Chang, C.H.

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain drivingmore » forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.« less

  5. Close proximity electrostatic effect from small clusters of emitters

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Fernando F.; de Assis, Thiago A.

    2017-10-01

    Using a numerical simulation based on the finite-element technique, this work investigates the field emission properties from clusters of a few emitters at close proximity, by analyzing the properties of the maximum local field enhancement factor (γm ) and the corresponding emission current. At short distances between the emitters, we show the existence of a nonintuitive behavior, which consists of the increasing of γm as the distance c between the emitters decreases. Here we investigate this phenomenon for clusters with 2, 3, 4 and 7 identical emitters and study the influence of the proximity effect in the emission current, considering the role of the aspect ratio of the individual emitters. Importantly, our results show that peripheral emitters with high aspect-ratios in large clusters can, in principle, significantly increase the emitted current as a consequence only of the close proximity electrostatic effect (CPEE). This phenomenon can be seen as a physical mechanism to produce self-oscillations of individual emitters. We discuss new insights for understanding the nature of self-oscillations in emitters based on the CPEE, including applications to nanometric oscillators.

  6. Magnetic Field in a Screw Flow with Fluctuations

    NASA Astrophysics Data System (ADS)

    Titov, V. V.; Stepanov, R. A.; Sokoloff, D. D.

    2018-04-01

    We consider the influence of fluctuations in a screw flow of a conducting liquid on the effect of magnetic field self-excitation; the solution of this problem is important for experimental realization of a turbulent dynamo. We propose a theoretical approach based on the solution of averaged equations obtained in the limit of a short correlation time. The applicability of this approach is confirmed by direct numerical simulation of the initial equations. We demonstrate the influence of the correlation of fluctuations on the dynamo effect threshold. It is shown that the solution of the mean-field equations differs from the solution based on direct numerical simulation for a finite correlation time. The advantages and disadvantages of the two approaches are estimates, as well as the importance of the discovered difference in the context of problems of magnetic field self-excitation. The influence of helicity and intermittency on the type of the solution is considered.

  7. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  8. Self-consistent molecular dynamics formulation for electric-field-mediated electrolyte transport through nanochannels

    NASA Astrophysics Data System (ADS)

    Raghunathan, A. V.; Aluru, N. R.

    2007-07-01

    A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2nm and 3.5nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2ns simulation time K+ ions can permeate through a 1nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.

  9. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Koichi, E-mail: khattori@yonsei.ac.kr; Itakura, Kazunori, E-mail: kazunori.itakura@kek.jp; Department of Particle and Nuclear Studies, Graduate University for Advanced Studies

    2013-07-15

    We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon intomore » a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.« less

  10. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    NASA Astrophysics Data System (ADS)

    Thüroff, Florian; Weber, Christoph A.; Frey, Erwin

    2014-10-01

    Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system's dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system's ordered state nematic, despite purely polar interactions on the level of single particles.

  11. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate continental growth and destruction history in global compressible models spanning the age of the Earth.

  12. A numerical study of the nanoribbon field-effect transistors under the ballistic and dissipative transport

    NASA Astrophysics Data System (ADS)

    Ghoreishi, Seyed Saleh; Yousefi, Reza; Saghafi, Kamyar; Aderang, Habib

    2017-08-01

    In this article, a detailed performance comparison is made between ballistic and dissipative quantum transport of metal oxide semicondutor-like graphene nanoribbon field-effect transistor, in ON and OFF-state conditions. By the self-consistent mode-space non-equilibrium Green's function approach, inter- and intraband scattering is accounted and the role of acoustic and optical phonon scattering on the performance of the devices is evaluated. We found that in this structure the dominant mechanism of scattering changes according to the ranges of voltage bias. Under large biasing conditions, the influence of optical phonon scattering becomes important. Also, the ambipolar and OFF-current are impressed by the phonon-assisted band-to-band tunneling and increased considerably compared to the ballistic conditions, although sub-threshold swing degrades due to optical phonon scattering.

  13. LEO high voltage solar array arcing response model, continuation 5

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1989-01-01

    The modeling of the Debye Approximation electron sheaths in the edge and strip geometries was completed. Electrostatic potentials in these sheaths were compared to NASCAP/LEO solutions for similar geometries. Velocity fields, charge densities and particle fluxes to the biased surfaces were calculated for all cases. The major conclusion to be drawn from the comparisons of our Debye Approximation calculations with NASCAP-LEO output is that, where comparable biased structures can be defined and sufficient resolution obtained, these results are in general agreement. Numerical models for the Child-Langmuir, high-voltage electron sheaths in the edge and strip geometries were constructed. Electrostatic potentials were calculated for several cases in each of both geometries. Velocity fields and particle fluxes were calculated. The self-consistent solution process was carried through one cycle and output electrostatic potentials compared to NASCAP-type input potentials.

  14. Dynamics of Nuclear Regions of Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1996-01-01

    Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.

  15. Nonequilibrium evolution of scalar fields in FRW cosmologies

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.; Holman, R.

    1994-03-01

    We derive the effective equations for the out of equilibrium time evolution of the order parameter and the fluctuations of a scalar field theory in spatially flat FRW cosmologies. The calculation is performed both to one loop and in a nonperturbative, self-consistent Hartree approximation. The method consists of evolving an initial functional thermal density matrix in time and is suitable for studying phase transitions out of equilibrium. The renormalization aspects are studied in detail and we find that the counterterms depend on the initial state. We investigate the high temperature expansion and show that it breaks down at long times. We also obtain the time evolution of the initial Boltzmann distribution functions, and argue that to one-loop order or in the Hartree approximation the time evolved state is a ``squeezed'' state. We illustrate the departure from thermal equilibrium by numerically studying the case of a free massive scalar field in de Sitter and radiation-dominated cosmologies. It is found that a suitably defined nonequilibrium entropy per mode increases linearly with comoving time in a de Sitter cosmology, whereas it is not a monotonically increasing function in the radiation-dominated case.

  16. An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers

    NASA Astrophysics Data System (ADS)

    Stellmach, Stephan; Hansen, Ulrich

    2008-05-01

    Numerical simulations of the process of convection and magnetic field generation in planetary cores still fail to reach geophysically realistic control parameter values. Future progress in this field depends crucially on efficient numerical algorithms which are able to take advantage of the newest generation of parallel computers. Desirable features of simulation algorithms include (1) spectral accuracy, (2) an operation count per time step that is small and roughly proportional to the number of grid points, (3) memory requirements that scale linear with resolution, (4) an implicit treatment of all linear terms including the Coriolis force, (5) the ability to treat all kinds of common boundary conditions, and (6) reasonable efficiency on massively parallel machines with tens of thousands of processors. So far, algorithms for fully self-consistent dynamo simulations in spherical shells do not achieve all these criteria simultaneously, resulting in strong restrictions on the possible resolutions. In this paper, we demonstrate that local dynamo models in which the process of convection and magnetic field generation is only simulated for a small part of a planetary core in Cartesian geometry can achieve the above goal. We propose an algorithm that fulfills the first five of the above criteria and demonstrate that a model implementation of our method on an IBM Blue Gene/L system scales impressively well for up to O(104) processors. This allows for numerical simulations at rather extreme parameter values.

  17. On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.; Butman, B.

    2006-01-01

    A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting from the propagation of internal waves of arbitrary amplitude is derived using the concept of available potential energy. The method can be applied to numerical, laboratory or field data. The total energy flux is shown to be the sum of the linear energy flux ??? u??? p??? dz (primes denote baroclinic quantities), plus contributions from the non-hydrostatic pressure anomaly and the self-advection of kinetic and available potential energy. Using highly resolved observations in Massachusetts Bay, it is shown that due to the presence of nonlinear internal waves periodically propagating in the area, ??? u??? p??? dz accounts for only half of the total flux. The same data show that equipartition of available potential and kinetic energy can be violated, especially when the nonlinear waves begin to interact with the bottom. ?? 2006 Cambridge University Press.

  18. On the temperature control in self-controlling hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mahyar

    2016-10-01

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination.

  19. A Markov model for the temporal dynamics of balanced random networks of finite size

    PubMed Central

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644

  20. Self-consistent simulation of radio frequency multipactor on micro-grooved dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024

    2015-02-07

    The multipactor plays a key role in the surface breakdown on the feed dielectric window irradiated by high power microwave. To study the suppression of multipactor, a 2D electrostatic PIC-MCC simulation code was developed. The space charge field, including surface deposited charge and multipactor electron charge field, is obtained by solving 2D Poisson's equation in time. Therefore, the simulation is self-consistent and does not require presetting a fixed space charge field. By using this code, the self-consistent simulation of the RF multipactor on the periodic micro-grooved dielectric surface is realized. The 2D space distributions of the multipactor electrons and spacemore » charge field are presented. From the simulation results, it can be found that only half slopes have multipactor discharge when the slope angle exceeds a certain value, and the groove presents a pronounced suppression effect on the multipactor.« less

  1. Nonadiabatic Dynamics for Electrons at Second-Order: Real-Time TDDFT and OSCF2.

    PubMed

    Nguyen, Triet S; Parkhill, John

    2015-07-14

    We develop a new model to simulate nonradiative relaxation and dephasing by combining real-time Hartree-Fock and density functional theory (DFT) with our recent open-systems theory of electronic dynamics. The approach has some key advantages: it has been systematically derived and properly relaxes noninteracting electrons to a Fermi-Dirac distribution. This paper combines the new dissipation theory with an atomistic, all-electron quantum chemistry code and an atom-centered model of the thermal environment. The environment is represented nonempirically and is dependent on molecular structure in a nonlocal way. A production quality, O(N(3)) closed-shell implementation of our theory applicable to realistic molecular systems is presented, including timing information. This scaling implies that the added cost of our nonadiabatic relaxation model, time-dependent open self-consistent field at second order (OSCF2), is computationally inexpensive, relative to adiabatic propagation of real-time time-dependent Hartree-Fock (TDHF) or time-dependent density functional theory (TDDFT). Details of the implementation and numerical algorithm, including factorization and efficiency, are discussed. We demonstrate that OSCF2 approaches the stationary self-consistent field (SCF) ground state when the gap is large relative to k(b)T. The code is used to calculate linear-response spectra including the effects of bath dynamics. Finally, we show how our theory of finite-temperature relaxation can be used to correct ground-state DFT calculations.

  2. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  3. Numerical computation of the effective-one-body potential q using self-force results

    NASA Astrophysics Data System (ADS)

    Akcay, Sarp; van de Meent, Maarten

    2016-03-01

    The effective-one-body theory (EOB) describes the conservative dynamics of compact binary systems in terms of an effective Hamiltonian approach. The Hamiltonian for moderately eccentric motion of two nonspinning compact objects in the extreme mass-ratio limit is given in terms of three potentials: a (v ) , d ¯ (v ) , q (v ) . By generalizing the first law of mechanics for (nonspinning) black hole binaries to eccentric orbits, [A. Le Tiec, Phys. Rev. D 92, 084021 (2015).] recently obtained new expressions for d ¯(v ) and q (v ) in terms of quantities that can be readily computed using the gravitational self-force approach. Using these expressions we present a new computation of the EOB potential q (v ) by combining results from two independent numerical self-force codes. We determine q (v ) for inverse binary separations in the range 1 /1200 ≤v ≲1 /6 . Our computation thus provides the first-ever strong-field results for q (v ) . We also obtain d ¯ (v ) in our entire domain to a fractional accuracy of ≳10-8 . We find that our results are compatible with the known post-Newtonian expansions for d ¯(v ) and q (v ) in the weak field, and agree with previous (less accurate) numerical results for d ¯(v ) in the strong field.

  4. Self-consistent theory of nanodomain formation on non-polar surfaces of ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozovska, Anna N.; Obukhovskii, Vyacheslav; Fomichov, Evhen

    2016-04-28

    We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy alongmore » the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.« less

  5. Analogies between Jovian magnetodisk and heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Kislov, Roman; Khabarova, Olga; Malova, Helmi

    Recently due to the development of spatial missions the famous model by E. Parker [1] faced with some problems, such as the effect of magnetic flux excess and the existence of latitude component of magnetic field [2]. Thus the incomplete knowledge about large scale current system of heliospheric current sheet (HCS) motivated us to construct and investigate the self-consistent axisymmetric stationary MHD model of HCS and to compare it with earlier presented model of Jupiterian magnetodisk [3]. Both HCS and magnetodisk have inner plasma sources (i.e. the Sun in case of HCS and satellite Io in case of Jupiter); also they depend on the centrifugal force at small distances and on corotation processes. They both have strong radial component of current density, thin elongated structure etc. Thus in the frame of the MHD model we have calculated for HCS the parallel currents (analogous to Jovian Birkeland currents) and we obtained the latitude component of the magnetic field. The results of the model allowed us to explain the magnetic flux excess by the existence of the self-consistent HCS magnetic field. The decrease of radial magnetic field from the distance from the Sun as the power -5/3 obtained by numerical calculations is in good agreement with experimental data. Generally this model can be applied for the quiet period of the low solar activity when the perturbation of HCS structure named “ballerina skirt” does not play any role. References: 1. Parker E. N., Astrophys. J., V. 128, 664, pp. 664-676, 1958. 2. Khabarova O. V., V. 90, No.11, pp. 919-935, 2013. 3. Kislov R.A. et al., Bull. MSU, Physics and Astron., 2013

  6. IslandFAST: A Semi-numerical Tool for Simulating the Late Epoch of Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yidong; Chen, Xuelei; Yue, Bin

    2017-08-01

    We present the algorithm and main results of our semi-numerical simulation, islandFAST, which was developed from 21cmFAST and designed for the late stage of reionization. The islandFAST simulation predicts the evolution and size distribution of the large-scale underdense neutral regions (neutral islands), and we find that the late Epoch of Reionization proceeds very fast, showing a characteristic scale of the neutral islands at each redshift. Using islandFAST, we compare the impact of two types of absorption systems, i.e., the large-scale underdense neutral islands versus small-scale overdense absorbers, in regulating the reionization process. The neutral islands dominate the morphology of themore » ionization field, while the small-scale absorbers dominate the mean-free path of ionizing photons, and also delay and prolong the reionization process. With our semi-numerical simulation, the evolution of the ionizing background can be derived self-consistently given a model for the small absorbers. The hydrogen ionization rate of the ionizing background is reduced by an order of magnitude in the presence of dense absorbers.« less

  7. Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.

    PubMed

    Götz, Andreas W; Kollmar, Christian; Hess, Bernd A

    2005-09-01

    We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.

  8. Numerical simulation of the compressible Orszag-Tang vortex. Interim report, June 1988-February 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, R.B.; Picone, J.M.

    Results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. Initial conditions consist of a nonrandom, periodic field in which the magnetic and velocity fields contain X-points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure-field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average flow Mach number of the flow. In the numerical simulations, this initial Mach number is varied from 0.2 to 0.6. These values correspond to average plasma beta valuesmore » ranging from 30.0 to 3.3, respectively. Compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as mass density and nonsolenoidal flow field. These effects include (1) retardation of growth of correlation between the magnetic field and the velocity field, (2) emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible-flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less

  9. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.

    PubMed

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  10. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, S.G.S.

    1976-09-01

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less

  11. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  12. Material and shape optimization for multi-layered vocal fold models using transient loadings.

    PubMed

    Schmidt, Bastian; Leugering, Günter; Stingl, Michael; Hüttner, Björn; Agaimy, Abbas; Döllinger, Michael

    2013-08-01

    Commonly applied models to study vocal fold vibrations in combination with air flow distributions are self-sustained physical models of the larynx consisting of artificial silicone vocal folds. Choosing appropriate mechanical parameters and layer geometries for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In earlier work by Schmidt et al. [J. Acoust. Soc. Am. 129, 2168-2180 (2011)], the authors presented an approach in which material parameters of a static numerical vocal fold model were optimized to achieve an agreement of the displacement field with data retrieved from hemilarynx experiments. This method is now generalized to a fully transient setting. Moreover in addition to the material parameters, the extended approach is capable of finding optimized layer geometries. Depending on chosen material restriction, significant modifications of the reference geometry are predicted. The additional flexibility in the design space leads to a significantly more realistic deformation behavior. At the same time, the predicted biomechanical and geometrical results are still feasible for manufacturing physical vocal fold models consisting of several silicone layers. As a consequence, the proposed combined experimental and numerical method is suited to guide the construction of physical vocal fold models.

  13. Dynamic properties of the energy loss of multi-MeV charged particles traveling in two-component warm dense plasmas.

    PubMed

    Fu, Zhen-Guo; Wang, Zhigang; Li, Meng-Lei; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2016-12-01

    The energy loss of multi-MeV charged particles moving in two-component warm dense plasmas (WDPs) is studied theoretically beyond the random-phase approximation. The short-range correlations between particles are taken into account via dynamic local field corrections (DLFC) in a Mermin dielectric function for two-component plasmas. The mean ionization states are obtained by employing the detailed configuration accounting model. The Yukawa-type effective potential is used to derive the DLFC. Numerically, the DLFC are obtained via self-consistent iterative operations. We find that the DLFC are significant around the maximum of the stopping power. Furthermore, by using the two-component extended Mermin dielectric function model including the DLFC, the energy loss of a proton with an initial energy of ∼15 MeV passing through a WDP of beryllium with an electronic density around the solid value n_{e}≈3×10^{23}cm^{-3} and with temperature around ∼40 eV is estimated numerically. The numerical result is reasonably consistent with the experimental observations [A. B. Zylsta et al., Phys. Rev. Lett. 111, 215002 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.215002]. Our results show that the partial ionization and the dynamic properties should be of importance for the stopping of charged particles moving in the WDP.

  14. ``Smart'' Surfaces of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  15. Hydrogeophysical investigations at Hidden Dam, Raymond, California

    USGS Publications Warehouse

    Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.

    2011-01-01

    Self-potential and direct current resistivity surveys are carried out at the Hidden Dam site in Raymond, California to assess present-day seepage patterns and better understand the hydrogeologic mechanisms that likely influence seepage. Numerical modeling is utilized in conjunction with the geophysical measurements to predict variably-saturated flow through typical two-dimensional dam cross-sections as a function of reservoir elevation. Several different flow scenarios are investigated based on the known hydrogeology, as well as information about typical subsurface structures gained from the resistivity survey. The flow models are also used to simulate the bulk electrical resistivity in the subsurface under varying saturation conditions, as well as the self-potential response using petrophysical relationships and electrokinetic coupling equations.The self-potential survey consists of 512 measurements on the downstream area of the dam, and corroborates known seepage areas on the northwest side of the dam. Two direct-current resistivity profiles, each approximately 2,500 ft (762 m) long, indicate a broad sediment channel under the northwest side of the dam, which may be a significant seepage pathway through the foundation. A focusing of seepage in low-topography areas downstream of the dam is confirmed from the numerical flow simulations, which is also consistent with past observations. Little evidence of seepage is identified from the self-potential data on the southeast side of the dam, also consistent with historical records, though one possible area of focused seepage is identified near the outlet works. Integration of the geophysical surveys, numerical modeling, and observation well data provides a framework for better understanding seepage at the site through a combined hydrogeophysical approach.

  16. Tunable terahertz optical properties of graphene in dc electric fields

    NASA Astrophysics Data System (ADS)

    Dong, H. M.; Huang, F.; Xu, W.

    2018-03-01

    We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.

  17. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    NASA Astrophysics Data System (ADS)

    Meliani, Zakaria; Mizuno, Yosuke; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2017-02-01

    Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims: We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods: More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results: We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions: The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self-consistently calculate general-relativistic accretion flows onto compact objects. In addition to the accurate handling of the matter, we provide a self-consistent electromagnetic emission from these scenarios by solving the associated radiative-transfer problem. While magnetic fields are currently excluded from our analysis, the tools presented here can have a number of applications to study accretion flows onto black holes or neutron stars.

  18. Equilibrium stellar systems with spindle singularities

    NASA Technical Reports Server (NTRS)

    Shapiro, Stuart L.; Teukolsky, Saul A.

    1992-01-01

    Equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states are constructed. The distribution functions are chosen to be of the form f = f(E, Jz). The numerical method then determines the density and gravitational potential self-consistently to satisfy Poisson's equation. For the prolate models, spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the resulting density enhancement is confined to the region near the axis, the influence of the spindle extends much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong-field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. While the calculations performed here are entirely Newtonian, the issue of singularities is an important topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to relativistic systems.

  19. Spatial correlations in driven-dissipative photonic lattices

    NASA Astrophysics Data System (ADS)

    Biondi, Matteo; Lienhard, Saskia; Blatter, Gianni; Türeci, Hakan E.; Schmidt, Sebastian

    2017-12-01

    We study the nonequilibrium steady-state of interacting photons in cavity arrays as described by the driven-dissipative Bose–Hubbard and spin-1/2 XY model. For this purpose, we develop a self-consistent expansion in the inverse coordination number of the array (∼ 1/z) to solve the Lindblad master equation of these systems beyond the mean-field approximation. Our formalism is compared and benchmarked with exact numerical methods for small systems based on an exact diagonalization of the Liouvillian and a recently developed corner-space renormalization technique. We then apply this method to obtain insights beyond mean-field in two particular settings: (i) we show that the gas–liquid transition in the driven-dissipative Bose–Hubbard model is characterized by large density fluctuations and bunched photon statistics. (ii) We study the antibunching–bunching transition of the nearest-neighbor correlator in the driven-dissipative spin-1/2 XY model and provide a simple explanation of this phenomenon.

  20. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.

    The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + {sigma} approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamicmore » conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition.« less

  1. Fluid dynamic modeling of nano-thermite reactions

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki

    2014-03-01

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.

  2. Fluid dynamic modeling of nano-thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.

    2014-03-14

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less

  3. Fierz Convergence Criterion: A Controlled Approach to Strongly Interacting Systems with Small Embedded Clusters.

    PubMed

    Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier

    2017-10-20

    We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.

  4. Cauchy problem in spacetimes with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Friedman, John; Morris, Michael S.; Novikov, Igor D.; Echeverria, Fernando; Klinkhammer, Gunnar; Thorne, Kip S.; Yurtsever, Ulvi

    1990-09-01

    The laws of physics might permit the existence, in the real Universe, of closed timelike curves (CTC's). Macroscopic CTC's might be a semiclassical consequence of Planck-scale, quantum gravitational, Lorentzian foam, if such foam exists. If CTC's are permitted, then the semiclassical laws of physics (the laws with gravity classical and other fields quantized or classical) should be augmented by a principle of self-consistency, which states that a local solution to the equations of physics can occur in the real Universe only if it can be extended to be part of a global solution, one which is well defined throughout the (nonsingular regions of) classical spacetime. The consequences of this principle are explored for the Cauchy problem of the evolution of a classical, massless scalar field Φ (satisfying □Φ=0) in several model spacetimes with CTC's. In general, self-consistency constrains the initial data for the field Φ. For a family of spacetimes with traversible wormholes, which initially possess no CTC's and then evolve them to the future of a stable Cauchy horizon scrH, self-consistency seems to place no constraints on initial data for Φ that are posed on past null infinity, and none on data posed on spacelike slices which precede scrH. By contrast, initial data posed in the future of scrH, where the CTC's reside, are constrained; but the constraints appear to be mild in the sense that in some neighborhood of every event one is free to specify initial data arbitrarily, with the initial data elsewhere being adjusted to guarantee self-consistent evolution. A spacetime whose self-consistency constraints have this property is defined to be ``benign with respect to the scalar field Φ.'' The question is posed as to whether benign spacetimes in some sense form a generic subset of all spacetimes with CTC's. It is shown that in the set of flat, spatially and temporally closed, 2-dimensional spacetimes the benign ones are not generic. However, it seems likely that every 4-dimensional, asymptotically flat space-time that is stable and has a topology of the form R×(S-one point), where S is a closed 3-manifold, is benign. Wormhole spacetimes are of this type, with S=S1×S2. We suspect that these types of self-consistency behavior of the scalar field Φ are typical for noninteracting (linearly superposing), classical fields. However, interacting classical systems can behave quite differently, as is demonstrated by a study of the motion of a hard-sphere billiard ball in a wormhole spacetime with closed timelike curves: If the ball is classical, then some choices of initial data (some values of the ball's initial position and velocity) give rise to unique, self-consistent motions of the ball; other choices produce two different self-consistent motions; and others might (but we are not yet sure) produce no self-consistent motions whatsoever. By contrast, in a path-integral formulation of the nonrelativistic quantum mechanics of such a billiard ball, there appears to be a unique, self-consistent set of probabilities for the outcomes of all measurements. This paper's conclusion, that CTC's may not be as nasty as people have assumed, is reinforced by the fact that they do not affect Gauss's theorem and thus do not affect the derivation of global conservation laws from differential ones. The standard conservation laws remain valid globally, and in asymptotically flat, wormhole spacetimes they retain a natural, quasilocal interpretation.

  5. Accelerated ions and self-excited Alfvén waves at the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Taneev, S. N.; Trattner, K. J.

    2011-07-01

    The diffuse energetic ion event and related Alfvén waves upstream of the Earth's bow shock, measured by AMPTE/IRM satellite on 29 September 1984, 06:42-07:22 UT, was studied using a self-consistent quasi-linear theory of ion diffusive shock acceleration and associated Alfvén wave generation. The wave energy density satisfies a wave kinetic equation, and the ion distribution function satisfies the diffusive transport equation. These coupled equations are solved numerically, and calculated ion and wave spectra are compared with observations. It is shown that calculated steady state ion and Alfvén wave spectra are established during the time period of about 1000 s. Alfvén waves excited by accelerated ions are confined within the frequency range (10-2 to 1) Hz, and their spectral peak with the wave amplitude δB ≈ B comparable to the interplanetary magnetic field value B corresponds to the frequency 2 × 10-2 Hz. The high-frequency part of the wave spectrum undergoes absorption by thermal protons. It is shown that the observed ion spectra and the associated Alfvén wave spectra are consistent with the theoretical prediction.

  6. Self-Consistent Large-Scale Magnetosphere-Ionosphere Coupling: Computational Aspects and Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Timothy S.

    2003-01-01

    Both external and internal phenomena impact the terrestrial magnetosphere. For example, solar wind and particle precipitation effect the distribution of hot plasma in the magnetosphere. Numerous models exist to describe different aspects of magnetosphere characteristics. For example, Tsyganenko has developed a series of models (e.g., [TSYG89]) that describe the magnetic field, and Stern [STER75] and Volland [VOLL73] have developed an analytical model that describes the convection electric field. Over the past several years, NASA colleague Khazanov, working with Fok and others, has developed a large-scale coupled model that tracks particle flow to determine hot ion and electron phase space densities in the magnetosphere. This model utilizes external data such as solar wind densities and velocities and geomagnetic indices (e.g., Kp) to drive computational processes that evaluate magnetic, electric field, and plasma sheet models at any time point. These models are coupled such that energetic ion and electron fluxes are produced, with those fluxes capable of interacting with the electric field model. A diagrammatic representation of the coupled model is shown.

  7. Collisional transport across the magnetic field in drift-fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.

    2016-03-15

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less

  8. The Awareness of Knowledge and Skill of Self-Defined Instructional Technologists in the Corporate Environment: An Interpretive Study

    ERIC Educational Resources Information Center

    Hutson, Patricia Evonne

    2013-01-01

    The description of the self-defined expert instructional technologist is unclear. Technologists in the field are identified in various ways. To determine the characteristics and competencies of self-defined expert instructional technologists, an interpretive field study consisting of interviews was conducted. The results revealed three core…

  9. Communication: A difference density picture for the self-consistent field ansatz.

    PubMed

    Parrish, Robert M; Liu, Fang; Martínez, Todd J

    2016-04-07

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.

  10. Communication: A difference density picture for the self-consistent field ansatz

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Liu, Fang; Martínez, Todd J.

    2016-04-01

    We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.

  11. Motivation for Weight-Loss Diets: A Clustering, Longitudinal Field Study Using Self-Esteem and Self-Determination Theory Perspectives

    ERIC Educational Resources Information Center

    Georgiadis, Manolis M.; Biddle, Stuart J. H.; Stavrou, Nektarios A.

    2006-01-01

    Background: Gradual elevation of body weight leads numerous individuals to dieting and weight loss behaviours. Nevertheless, the prevalence of obesity continues to rise in industrialised countries. The examination of the motivational determinants of dietary modification ("dieting") in order to identify clusters of individuals in the…

  12. The cross-cultural adaptation of the DASH questionnaire in Thai (DASH-TH).

    PubMed

    Tongprasert, Siam; Rapipong, Jeeranan; Buntragulpoontawee, Montana

    2014-01-01

    Clinical measurement. Currently there are no self-report questionnaires in Thai to evaluate disability levels in patients suffering from upper extremity musculoskeletal disorders. To translate and cross-cultural adaptation the disabilities of the arm, shoulder and hand (DASH) questionnaire to Thai version and to evaluate content validity, construct validity and internal consistency of the questionnaire. The DASH-TH was produced by following cross-cultural adaptation guidelines stated by the Institute for Work and Health (IWH). Forty Thai patients with arm, shoulder or hand problems participated in field testing of the questionnaire. Content validity was determined by obtaining the item-objective congruence (IOC) value for each questionnaire item. Correlation between the DASH-TH score and numeric rating scale was used to assess construct validity. Internal consistency of DASH-TH was measured using Cronbach's alpha coefficient. Forty patients (14 males, 26 females) with arm, shoulder or hand problems enrolled in the present study. The average age of patients was 44.8 years. The index of item-objective congruence (IOC) of each item ranged from 0.7 to 1.0. The Cronbach's alpha coefficient of the questionnaire was 0.938. There was no correlation between DASH-TH score and numeric rating scale. The DASH-TH has high content validity and internal consistency. N/A. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  13. Numerical Simulations of Close and Contact Binary Systems Having Bipolytropic Equation of State

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Motl, Patrick M.; Marcello, Dominic; Frank, Juhan

    2017-01-01

    I present the results of the numerical simulations of the mass transfer in close and contact binary systems with both stars having a bipolytropic (composite polytropic) equation of state. The initial binary systems are obtained by a modifying Hachisu’s self-consistent field technique. Both the stars have fully resolved cores with a molecular weight jump at the core-envelope interface. The initial properties of these simulations are chosen such that they satisfy the mass-radius relation, composition and period of a late W-type contact binary system. The simulations are carried out using two different Eulerian hydrocodes, Flow-ER with a fixed cylindrical grid, and Octo-tiger with an AMR capable cartesian grid. The detailed comparison of the simulations suggests an agreement between the results obtained from the two codes at different resolutions. The set of simulations can be treated as a benchmark, enabling us to reliably simulate mass transfer and merger scenarios of binary systems involving bipolytropic components.

  14. Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation

    NASA Astrophysics Data System (ADS)

    Zhao, Yanxiang; Kwan, Yuen-Yick; Che, Jianwei; Li, Bo; McCammon, J. Andrew

    2013-07-01

    A phase-field variational implicit-solvent approach is developed for the solvation of charged molecules. The starting point of such an approach is the representation of a solute-solvent interface by a phase field that takes one value in the solute region and another in the solvent region, with a smooth transition from one to the other on a small transition layer. The minimization of an effective free-energy functional of all possible phase fields determines the equilibrium conformations and free energies of an underlying molecular system. All the surface energy, the solute-solvent van der Waals interaction, and the electrostatic interaction are coupled together self-consistently through a phase field. The surface energy results from the minimization of a double-well potential and the gradient of a field. The electrostatic interaction is described by the Coulomb-field approximation. Accurate and efficient methods are designed and implemented to numerically relax an underlying charged molecular system. Applications to single ions, a two-plate system, and a two-domain protein reveal that the new theory and methods can capture capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics simulations. Comparisons of the phase-field and the original sharp-interface variational approaches are discussed.

  15. Coherent states field theory in supramolecular polymer physics

    NASA Astrophysics Data System (ADS)

    Fredrickson, Glenn H.; Delaney, Kris T.

    2018-05-01

    In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.

  16. Pressure calculation in hybrid particle-field simulations

    NASA Astrophysics Data System (ADS)

    Milano, Giuseppe; Kawakatsu, Toshihiro

    2010-12-01

    In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.

  17. Ring current Atmosphere interactions Model with Self-Consistent Magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania; Jeffery, Christopher; Welling, Daniel

    The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eVmore » to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.« less

  18. Polaronic effects due to quasi-confined optical phonons in wurtzite nitride nanowire in the presence of an electric field

    NASA Astrophysics Data System (ADS)

    Vardanyan, Karen A.; Asatryan, Anna L.; Vartanian, Arshak L.

    2015-07-01

    Considering the effect of an external electric field in wurtzite nitride cylindrical nanowire (NW), the polaron self-energy and effective mass due to the electron interaction with the quasi-confined optical phonons are studied theoretically by means of Lee-Low-Pines variational approach. The analytical expressions for the quasi-one-dimensional Fröhlich polaron self-energy and effective mass are obtained as functions of the wire radius and the strength of the electric field applied perpendicular to the wire axis. It is found that the main contribution to polaron basic parameters is from higher frequency optical phonon modes. The numerical results on the GaN material show that the polaron self-energy increases with the increase of the electric field and is more sensitive to the field when the wire radius is larger. It is also found that the polaron self-energy in GaN NWs is higher than that in zinc-blende GaAs-based cylindrical NWs.

  19. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model

    NASA Astrophysics Data System (ADS)

    Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki

    2017-11-01

    We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.

  20. Self-Consistent Superthermal Electron Effects on Plasmaspheric Refilling

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.; Moore, T. E.; Guiter, S. M.

    1997-01-01

    The effects of self-consistently including superthermal electrons in the definition of the ambipolar electric field are investigated for the case of plasmaspheric refilling after a geomagnetic storm. By using the total electron population in the hydrodynamic equations, a method for incorporating superthermal electron parameters in the electric field and electron temperature calculation is developed. Also, the ambipolar electric field is included in the kinetic equation for the superthermal electrons through a change of variables using the total energy and the first adiabatic invariant. Calculations based on these changes are performed by coupling time-dependent models of the thermal plasma and superthermal electrons. Results from this treatment of the electric field and the self-consistent development of the solution are discussed in detail. Specifically, there is a decreased thermal electron density in the plasmasphere during the first few minutes of refilling, a slightly accelerated proton shock front, and a decreased superthermal electron flux due to the deceleration by the electric field. The timescales of plasmaspheric refilling are discussed and determined to be somewhat shorter than previously calculated for the thermal plasma and superthermal electron population due to the effects of the field-aligned potential.

  1. Simulations of relativistic quantum plasmas using real-time lattice scalar QED

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.

  2. Integral Equation Method for Electromagnetic Wave Propagation in Stratified Anisotropic Dielectric-Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Shu, Wei-Xing; Fu, Na; Lü, Xiao-Fang; Luo, Hai-Lu; Wen, Shuang-Chun; Fan, Dian-Yuan

    2010-11-01

    We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics, which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.

  3. Nonlinear modulation of an extraordinary wave under the conditions of parametric decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2012-06-15

    A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less

  4. The Neutral Islands during the Late Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Xu, Yidong; Yue, Bin; Chen, Xuelei

    2018-05-01

    The large-scale structure of the ionization field during the epoch of reionization (EoR) can be modeled by the excursion set theory. While the growth of ionized regions during the early stage are described by the ``bubble model'', the shrinking process of neutral regions after the percolation of the ionized region calls for an ``island model''. An excursion set based analytical model and a semi-numerical code (islandFAST) have been developed. The ionizing background and the bubbles inside the islands are also included in the treatment. With two kinds of absorbers of ionizing photons, i.e. the large-scale under-dense neutral islands and the small-scale over-dense clumps, the ionizing background are self-consistently evolved in the model.

  5. Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.

    PubMed

    Wang, Ken Kang-Hsin; Ye, Zhen

    2003-12-01

    We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.

  6. Numerical Solution of the Gyrokinetic Poisson Equation in TEMPEST

    NASA Astrophysics Data System (ADS)

    Dorr, Milo; Cohen, Bruce; Cohen, Ronald; Dimits, Andris; Hittinger, Jeffrey; Kerbel, Gary; Nevins, William; Rognlien, Thomas; Umansky, Maxim; Xiong, Andrew; Xu, Xueqiao

    2006-10-01

    The gyrokinetic Poisson (GKP) model in the TEMPEST continuum gyrokinetic edge plasma code yields the electrostatic potential due to the charge density of electrons and an arbitrary number of ion species including the effects of gyroaveraging in the limit kρ1. The TEMPEST equations are integrated as a differential algebraic system involving a nonlinear system solve via Newton-Krylov iteration. The GKP preconditioner block is inverted using a multigrid preconditioned conjugate gradient (CG) algorithm. Electrons are treated as kinetic or adiabatic. The Boltzmann relation in the adiabatic option employs flux surface averaging to maintain neutrality within field lines and is solved self-consistently with the GKP equation. A decomposition procedure circumvents the near singularity of the GKP Jacobian block that otherwise degrades CG convergence.

  7. Visual Field Asymmetries in Attention Vary with Self-Reported Attention Deficits

    ERIC Educational Resources Information Center

    Poynter, William; Ingram, Paul; Minor, Scott

    2010-01-01

    The purpose of this study was to determine whether an index of self-reported attention deficits predicts the pattern of visual field asymmetries observed in behavioral measures of attention. Studies of "normal" subjects do not present a consistent pattern of asymmetry in attention functions, with some studies showing better left visual field (LVF)…

  8. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    DOE PAGES

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-03-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  9. Towards a fully self-consistent inversion combining historical and paleomagnetic data for geomagnetic field reconstructions

    NASA Astrophysics Data System (ADS)

    Arneitz, P.; Leonhardt, R.; Fabian, K.; Egli, R.

    2017-12-01

    Historical and paleomagnetic data are the two main sources of information about the long-term geomagnetic field evolution. Historical observations extend to the late Middle Ages, and prior to the 19th century, they consisted mainly of pure declination measurements from navigation and orientation logs. Field reconstructions going back further in time rely solely on magnetization acquired by rocks, sediments, and archaeological artefacts. The combined dataset is characterized by a strongly inhomogeneous spatio-temporal distribution and highly variable data reliability and quality. Therefore, an adequate weighting of the data that correctly accounts for data density, type, and realistic error estimates represents the major challenge for an inversion approach. Until now, there has not been a fully self-consistent geomagnetic model that correctly recovers the variation of the geomagnetic dipole together with the higher-order spherical harmonics. Here we present a new geomagnetic field model for the last 4 kyrs based on historical, archeomagnetic and volcanic records. The iterative Bayesian inversion approach targets the implementation of reliable error treatment, which allows different record types to be combined in a fully self-consistent way. Modelling results will be presented along with a thorough analysis of model limitations, validity and sensitivity.

  10. Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin

    2018-07-01

    The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).

  11. A self-consistent two-fluid model of a magnetized plasma-wall transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyergyek, T.; Jožef Stefan Institute, Jamova 39, P.O. Box 100, 1000 Ljubljana; Kovačič, J.

    A self-consistent one-dimensional two-fluid model of the magnetized plasma-wall transition is presented. The model includes magnetic field, elastic collisions between ions and electrons, and creation/annihilation of charged particles. Two systems of differential equations are derived. The first system describes the whole magnetized plasma-wall transition region, which consists of the pre-sheath, the magnetized pre-sheath (Chodura layer), and the sheath, which is not neutral, but contains a positive space charge. The second system of equations describes only the neutral part of the plasma-wall transition region—this means only the pre-sheath and the Chodura layer, but not also the sheath. Both systems are solvedmore » numerically. The first system of equations has two singularities. The first occurs when ion velocity in the direction perpendicularly to the wall drops below the ion thermal velocity. The second occurs when the electron velocity in the direction perpendicularly to the wall exceeds the electron thermal velocity. The second system of differential equations only has one singularity, which has also been derived analytically. For finite electron to ion mass ratio, the integration of the second system always breaks down before the Bohm criterion is fulfilled. Some properties of the first system of equations are examined. It is shown that the increased collision frequency demagnetizes the plasma. On the other hand, if the magnetic field is so strong that the ion Larmor radius and the Debye length are comparable, the electron velocity in the direction perpendicularly to the wall reaches the electron thermal velocity before the ion velocity in the direction perpendicularly to the wall reaches the ion sound velocity. In this case, the integration of the model equations breaks down before the Bohm criterion is fulfilled and the sheath is formed.« less

  12. Modeling and statistical analysis of non-Gaussian random fields with heavy-tailed distributions.

    PubMed

    Nezhadhaghighi, Mohsen Ghasemi; Nakhlband, Abbas

    2017-04-01

    In this paper, we investigate and develop an alternative approach to the numerical analysis and characterization of random fluctuations with the heavy-tailed probability distribution function (PDF), such as turbulent heat flow and solar flare fluctuations. We identify the heavy-tailed random fluctuations based on the scaling properties of the tail exponent of the PDF, power-law growth of qth order correlation function, and the self-similar properties of the contour lines in two-dimensional random fields. Moreover, this work leads to a substitution for the fractional Edwards-Wilkinson (EW) equation that works in the presence of μ-stable Lévy noise. Our proposed model explains the configuration dynamics of the systems with heavy-tailed correlated random fluctuations. We also present an alternative solution to the fractional EW equation in the presence of μ-stable Lévy noise in the steady state, which is implemented numerically, using the μ-stable fractional Lévy motion. Based on the analysis of the self-similar properties of contour loops, we numerically show that the scaling properties of contour loop ensembles can qualitatively and quantitatively distinguish non-Gaussian random fields from Gaussian random fluctuations.

  13. Internal gravity, self-energy, and disruption of comets and asteroids

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2018-03-01

    The internal gravity and self-gravitational energy of a comet, asteroid, or small moon have applications to their geophysics, including their formation, evolution, cratering, and disruption, the stresses and strains inside such objects, sample return, eventual asteroid mining, and planetary defense strategies for potentially hazardous objects. This paper describes the relation of an object's self-energy to its collisional disruption energy, and shows how to determine an object's self-energy from its internal gravitational potential. Any solid object can be approximated to any desired accuracy by a polyhedron of sufficient complexity. An analytic formula is known for the gravitational potential of any homogeneous polyhedron, but it is widely believed that this formula applies only on the surface or outside of the object. Here we show instead that this formula applies equally well inside the object. We have used these formulae to develop a numerical code which evaluates the self-energy of any homogeneous polyhedron, along with the gravitational potential and attraction both inside and outside of the object, as well as the slope of its surface. Then we use our code to find the internal, external, and surface gravitational fields of the Platonic solids, asteroid (216) Kleopatra, and comet 67P/Churyumov-Gerasimenko, as well as their surface slopes and their self-gravitational energies. We also present simple spherical, ellipsoidal, cuboidal, and duplex models of Kleopatra and comet 67P, and show how to generalize our methods to inhomogeneous objects and magnetic fields. At present, only the self-energies of spheres, ellipsoids, and cuboids (boxes) are known analytically (or semi-analytically). The Supplementary Material contours the central potential and self-energy of homogeneous ellipsoids and cuboids of all aspect ratios, and also analytically the self-gravitational energy of a "duplex" consisting of two coupled spheres. The duplex is a good model for "contact binary" comets and asteroids; in fact, most comets seem to be bilobate, and might be described better as "dirty snowmen" than as "dirty snowballs".

  14. Modeling and simulation of RF photoinjectors for coherent light sources

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Krasilnikov, M.; Stephan, F.; Gjonaj, E.; Weiland, T.; Dohlus, M.

    2018-05-01

    We propose a three-dimensional fully electromagnetic numerical approach for the simulation of RF photoinjectors for coherent light sources. The basic idea consists in incorporating a self-consistent photoemission model within a particle tracking code. The generation of electron beams in the injector is determined by the quantum efficiency (QE) of the cathode, the intensity profile of the driving laser as well as by the accelerating field and magnetic focusing conditions in the gun. The total charge emitted during an emission cycle can be limited by the space charge field at the cathode. Furthermore, the time and space dependent electromagnetic field at the cathode may induce a transient modulation of the QE due to surface barrier reduction of the emitting layer. In our modeling approach, all these effects are taken into account. The beam particles are generated dynamically according to the local QE of the cathode and the time dependent laser intensity profile. For the beam dynamics, a tracking code based on the Lienard-Wiechert retarded field formalism is employed. This code provides the single particle trajectories as well as the transient space charge field distribution at the cathode. As an application, the PITZ injector is considered. Extensive electron bunch emission simulations are carried out for different operation conditions of the injector, in the source limited as well as in the space charge limited emission regime. In both cases, fairly good agreement between measurements and simulations is obtained.

  15. Generic features of the primary relaxation in glass-forming materials (Review Article)

    NASA Astrophysics Data System (ADS)

    Kokshenev, Valery B.

    2017-08-01

    We discuss structural relaxation in molecular and polymeric supercooled liquids, metallic alloys and orientational glass crystals. The study stresses especially the relationships between observables raised from underlying constraints imposed on degrees of freedom of vitrification systems. A self-consistent parametrization of the α-timescale on macroscopic level results in the material-and-model independent universal equation, relating three fundamental temperatures, characteristic of the primary relaxation, that is numerically proven in all studied glass formers. During the primary relaxation, the corresponding small and large mesoscopic clusters modify their size and structure in a self-similar way, regardless of underlying microscopic realizations. We show that cluster-shape similarity, instead of cluster-size fictive divergence, gives rise to universal features observed in primary relaxation. In all glass formers with structural disorder, including orientational-glass materials (with the exception of plastic crystals), structural relaxation is shown to be driven by local random fields. Within the dynamic stochastic approach, the universal subdiffusive dynamics corresponds to random walks on small and large fractals.

  16. On effective temperature in network models of collective behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porfiri, Maurizio, E-mail: mporfiri@nyu.edu; Ariel, Gil, E-mail: arielg@math.biu.ac.il

    Collective behavior of self-propelled units is studied analytically within the Vectorial Network Model (VNM), a mean-field approximation of the well-known Vicsek model. We propose a dynamical systems framework to study the stochastic dynamics of the VNM in the presence of general additive noise. We establish that a single parameter, which is a linear function of the circular mean of the noise, controls the macroscopic phase of the system—ordered or disordered. By establishing a fluctuation–dissipation relation, we posit that this parameter can be regarded as an effective temperature of collective behavior. The exact critical temperature is obtained analytically for systems withmore » small connectivity, equivalent to low-density ensembles of self-propelled units. Numerical simulations are conducted to demonstrate the applicability of this new notion of effective temperature to the Vicsek model. The identification of an effective temperature of collective behavior is an important step toward understanding order–disorder phase transitions, informing consistent coarse-graining techniques and explaining the physics underlying the emergence of collective phenomena.« less

  17. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  18. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    DOE PAGES

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less

  19. Self-consistency in the phonon space of the particle-phonon coupling model

    NASA Astrophysics Data System (ADS)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2018-04-01

    In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.

  20. Generic effective source for scalar self-force calculations

    NASA Astrophysics Data System (ADS)

    Wardell, Barry; Vega, Ian; Thornburg, Jonathan; Diener, Peter

    2012-05-01

    A leading approach to the modeling of extreme mass ratio inspirals involves the treatment of the smaller mass as a point particle and the computation of a regularized self-force acting on that particle. In turn, this computation requires knowledge of the regularized retarded field generated by the particle. A direct calculation of this regularized field may be achieved by replacing the point particle with an effective source and solving directly a wave equation for the regularized field. This has the advantage that all quantities are finite and require no further regularization. In this work, we present a method for computing an effective source which is finite and continuous everywhere, and which is valid for a scalar point particle in arbitrary geodesic motion in an arbitrary background spacetime. We explain in detail various technical and practical considerations that underlie its use in several numerical self-force calculations. We consider as examples the cases of a particle in a circular orbit about Schwarzschild and Kerr black holes, and also the case of a particle following a generic timelike geodesic about a highly spinning Kerr black hole. We provide numerical C code for computing an effective source for various orbital configurations about Schwarzschild and Kerr black holes.

  1. A pseudoinverse deformation vector field generator and its applications

    PubMed Central

    Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.

    2010-01-01

    Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247

  2. Bubble nuclei within the self-consistent Hartree-Fock mean field plus pairing approach

    NASA Astrophysics Data System (ADS)

    Phuc, L. Tan; Hung, N. Quang; Dang, N. Dinh

    2018-02-01

    The depletion of the nuclear density at its center, called the nuclear bubble, is studied within the Skyrme Hartree-Fock mean field consistently incorporating the superfluid pairing. The latter is obtained within the finite-temperature Bardeen-Cooper-Schrieffer theory and within the approach using the exact pairing. The numerical calculations are carried out for 22O and 34Si nuclei, whose bubble structures, caused by a very low occupancy of the 2 s1 /2 level, were previously predicted at T =0 . Among 24 Skyrme interactions under consideration, the MSk3 is the only one which reproduces the experimentally measured occupancy of the 2 s1 /2 proton level as well as the binding energy, and consequently produces the most pronounced bubble structure in 34Si. As compared to the approaches employing the same BSk14 interaction, our approach with exact pairing predicts a pairing effect which is stronger in 22O and weaker in 34Si. The increase in temperature depletes the bubble structure and completely washes it out when the temperature reaches a critical value, at which the factor measuring the depletion of the nucleon density vanishes.

  3. Numerical investigation of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in further understanding the ozone generation and pollution control process in a dielectric barrier discharge.

  4. Testing strong-segregation theory against self-consistent-field theory for block copolymer melts

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.

    2001-06-01

    We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.

  5. Self-consistent mean-field approach to the statistical level density in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Kolomietz, V. M.; Sanzhur, A. I.; Shlomo, S.

    2018-06-01

    A self-consistent mean-field approach within the extended Thomas-Fermi approximation with Skyrme forces is applied to the calculations of the statistical level density in spherical nuclei. Landau's concept of quasiparticles with the nucleon effective mass and the correct description of the continuum states for the finite-depth potentials are taken into consideration. The A dependence and the temperature dependence of the statistical inverse level-density parameter K is obtained in a good agreement with experimental data.

  6. Radio frequency self-resonant coil for contactless AC-conductivity in 100 T class ultra-strong pulse magnetic fields

    NASA Astrophysics Data System (ADS)

    Nakamura, D.; Altarawneh, M. M.; Takeyama, S.

    2018-03-01

    A contactless measurement system of electrical conductivity was developed for application under pulsed high magnetic fields over 100 T by using a self-resonant-type, high-frequency circuit. Electromagnetic fields in the circuit were numerically analysed by the finite element method, to show how the resonant power spectra of the circuit depends on the electrical conductivity of a sample set on the probe-coil. The performance was examined using a high-temperature cuprate superconductor, La2-x Sr x CuO4, in magnetic fields up to 102 T with a high frequency of close to 800 MHz. As a result, the upper critical field could be determined with a good signal-to-noise ratio.

  7. Galaxy halo expansions: a new biorthogonal family of potential-density pairs

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn; Erkal, Denis

    2018-05-01

    Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically constructed (or real) cosmological haloes, incorporating the effects of triaxiality, lopsidedness or other distortion. Secondly, they provide the basis functions for self-consistent field expansion algorithms used in the evolution of N-body systems. We present a new family of biorthogonal potential-density pairs constructed using the Hankel transform of the Laguerre polynomials. The lowest order density basis functions are double-power-law profiles cusped like ρ ˜ r-2+1/α at small radii with asymptotic density fall-off like ρ ˜ r-3-1/(2α). Here, α is a parameter satisfying α ≥ 1/2. The family therefore spans the range of inner density cusps found in numerical simulations, but has much shallower - and hence more realistic - outer slopes than the corresponding members of the only previously known family deduced by Zhao and exemplified by Hernquist & Ostriker. When α = 1, the lowest order density profile has an inner density cusp of ρ ˜ r-1 and an outer density slope of ρ ˜ r-3.5, similar to the famous Navarro, Frenk & White (NFW) model. For this reason, we demonstrate that our new expansion provides a more accurate representation of flattened NFW haloes than the competing Hernquist-Ostriker expansion. We utilize our new expansion by analysing a suite of numerically constructed haloes and providing the distributions of the expansion coefficients.

  8. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  9. Electron Beam Return-Current Losses in Solar Flares: Initial Comparison of Analytical and Numerical Results

    NASA Technical Reports Server (NTRS)

    Holman, Gordon

    2010-01-01

    Accelerated electrons play an important role in the energetics of solar flares. Understanding the process or processes that accelerate these electrons to high, nonthermal energies also depends on understanding the evolution of these electrons between the acceleration region and the region where they are observed through their hard X-ray or radio emission. Energy losses in the co-spatial electric field that drives the current-neutralizing return current can flatten the electron distribution toward low energies. This in turn flattens the corresponding bremsstrahlung hard X-ray spectrum toward low energies. The lost electron beam energy also enhances heating in the coronal part of the flare loop. Extending earlier work by Knight & Sturrock (1977), Emslie (1980), Diakonov & Somov (1988), and Litvinenko & Somov (1991), I have derived analytical and semi-analytical results for the nonthermal electron distribution function and the self-consistent electric field strength in the presence of a steady-state return-current. I review these results, presented previously at the 2009 SPD Meeting in Boulder, CO, and compare them and computed X-ray spectra with numerical results obtained by Zharkova & Gordovskii (2005, 2006). The phYSical significance of similarities and differences in the results will be emphasized. This work is supported by NASA's Heliophysics Guest Investigator Program and the RHESSI Project.

  10. Numerical Investigations of Capabilities and Limits of Photospheric Data Driven Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Linton, Mark; Leake, James; Schuck, Peter W.

    2016-05-01

    The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solaractivity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of the magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution.We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data.This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.

  11. Numerical Studies of High-Intensity Injection Painting for Project X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drozhdin, A.I.; Vorobiev, L.G.; Johnson, D.E.

    Injection phase space painting enables the mitigation of space charge and stability issues, and will be indispensable for the Project-X at Fermilab [1], delivering high-intensity proton beams to HEP experiments. Numerical simulations of multi-turn phase space painting have been performed for the FNAL Recycler Ring, including a self-consistent space charge model. The goal of our studies was to study the injection painting with inclusion of 3D space charge, using the ORBIT tracking code. In a current scenario the painting lasts for 110 turns, twice faster, than we considered in this paper. The optimal wave-forms for painting kickers, which ensure themore » flatter phase distributions, should be found. So far we used a simplified model for painting kicker strength (implemented as the 'ideal bump' in ORBIT). We will include a more realistic field map for the chicane magnets. Additional stripping simulations will be combined. We developed a block for longitudinal painting, which works with arbitrary notches in incoming micro-bunch buckets. The appropriate choice of the amplitude of the second harmonic of RF field will help to flatten the RF-bucket contours, as was demonstrated in 1D simulations. Non-linear lattice issue will be also addressed.« less

  12. IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Hujeirat, A.

    1998-07-01

    The 2D implicit hydrodynamical solver developed by Hujeirat & Rannacher is now modified to include the effects of radiation, magnetic fields and self-gravity in different geometries. The underlying numerical concept is based on the operator splitting approach, and the resulting 2D matrices are inverted using different efficient preconditionings such as ADI (alternating direction implicit), the approximate factorization method and Line-Gauss-Seidel or similar iteration procedures. Second-order finite volume with third-order upwinding and second-order time discretization is used. To speed up convergence and enhance efficiency we have incorporated an adaptive time-step control and monotonic multilevel grid distributions as well as vectorizing the code. Test calculations had shown that it requires only 38 per cent more computational effort than its explicit counterpart, whereas its range of application to astrophysical problems is much larger. For example, strongly time-dependent, quasi-stationary and steady-state solutions for the set of Euler and Navier-Stokes equations can now be sought on a non-linearly distributed and strongly stretched mesh. As most of the numerical techniques used to build up this algorithm have been described by Hujeirat & Rannacher in an earlier paper, we focus in this paper on the inclusion of self-gravity, radiation and magnetic fields. Strategies for satisfying the condition ∇.B=0 in the implicit evolution of MHD flows are given. A new discretization strategy for the vector potential which allows alternating use of the direct method is prescribed. We investigate the efficiencies of several 2D solvers for a Poisson-like equation and compare their convergence rates. We provide a splitting approach for the radiative flux within the FLD (flux-limited diffusion) approximation to enhance consistency and accuracy between regions of different optical depths. The results of some test problems are presented to demonstrate the accuracy and robustness of the code.

  13. Accuracy of the Generalized Self-Consistent Method in Modelling the Elastic Behaviour of Periodic Composites

    NASA Technical Reports Server (NTRS)

    Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.

    1993-01-01

    Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.

  14. Scale-invariant puddles in graphene: Geometric properties of electron-hole distribution at the Dirac point.

    PubMed

    Najafi, M N; Nezhadhaghighi, M Ghasemi

    2017-03-01

    We characterize the carrier density profile of the ground state of graphene in the presence of particle-particle interaction and random charged impurity in zero gate voltage. We provide detailed analysis on the resulting spatially inhomogeneous electron gas, taking into account the particle-particle interaction and the remote Coulomb disorder on an equal footing within the Thomas-Fermi-Dirac theory. We present some general features of the carrier density probability measure of the graphene sheet. We also show that, when viewed as a random surface, the electron-hole puddles at zero chemical potential show peculiar self-similar statistical properties. Although the disorder potential is chosen to be Gaussian, we show that the charge field is non-Gaussian with unusual Kondev relations, which can be regarded as a new class of two-dimensional random-field surfaces. Using Schramm-Loewner (SLE) evolution, we numerically demonstrate that the ungated graphene has conformal invariance and the random zero-charge density contours are SLE_{κ} with κ=1.8±0.2, consistent with c=-3 conformal field theory.

  15. Storm time plasma transport in a unified and inter-coupled global magnetosphere model

    NASA Astrophysics Data System (ADS)

    Ilie, R.; Liemohn, M. W.; Toth, G.

    2014-12-01

    We present results from the two-way self-consistent coupling between the kinetic Hot Electron and Ion Drift Integrator (HEIDI) model and the Space Weather Modeling Framework (SWMF). HEIDI solves the time dependent, gyration and bounced averaged kinetic equation for the phase space density of different ring current species and computes full pitch angle distributions for all local times and radial distances. During geomagnetic times the dipole approximation becomes unsuitable even in the inner magnetosphere. Therefore the HEIDI model was generalized to accommodate an arbitrary magnetic field and through the coupling with SWMF it obtains a magnetic field description throughout the HEIDI domain along with a plasma distribution at the model outer boundary from the Block Adaptive Tree Solar Wind Roe Upwind Scheme (BATS-R-US) magnetohydrodynamics (MHD) model within SWMF. Electric field self-consistency is assured by the passing of convection potentials from the Ridley Ionosphere Model (RIM) within SWMF. In this study we test the various levels of coupling between the 3 physics based models, highlighting the role that the magnetic field, plasma sheet conditions and the cross polar cap potential play in the formation and evolution of the ring current. We show that the dynamically changing geospace environment itself plays a key role in determining the geoeffectiveness of the driver. The results of the self-consistent coupling between HEIDI, BATS-R-US and RIM during disturbed conditions emphasize the importance of a kinetic self-consistent approach to the description of geospace.

  16. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE PAGES

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; ...

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  17. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    NASA Astrophysics Data System (ADS)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  18. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

    PubMed

    Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-28

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  19. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package

    NASA Astrophysics Data System (ADS)

    Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-01

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  20. Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan; Wardell, Barry

    2017-04-01

    If a small "particle" of mass μ M (with μ ≪1 ) orbits a black hole of mass M , the leading-order radiation-reaction effect is an O (μ2) "self-force" acting on the particle, with a corresponding O (μ ) "self-acceleration" of the particle away from a geodesic. Such "extreme-mass-ratio inspiral" systems are likely to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we consider the "toy model" problem of computing the self-force for a scalar-field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regularization with a 4th-order puncture field, followed by an ei m ϕ ("m -mode") Fourier decomposition and a separate time-domain numerical evolution in 2 +1 dimensions for each m . We introduce a finite worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner so that the effective source is only used within the worldtube. Viewed as a spatial region, the worldtube moves to follow the particle's orbital motion. We use slices of constant Boyer-Lindquist time in the region of the particle's motion, deformed to be asymptotically hyperboloidal and compactified near the horizon and J+ . Our numerical evolution uses Berger-Oliger mesh refinement with 4th-order finite differencing in space and time. Our computational scheme allows computation for highly eccentric orbits and should be generalizable to orbital evolution in the future. Our present implementation is restricted to equatorial geodesic orbits, but this restriction is not fundamental. We present numerical results for a number of test cases with orbital eccentricities as high as 0.98. In some cases we find large oscillations ("wiggles") in the self-force on the outgoing leg of the orbit shortly after periastron passage; these appear to be caused by the passage of the orbit through the strong-field region close to the background Kerr black hole.

  1. The Role of Self-Efficacy in the Treatment of Substance Use Disorders

    PubMed Central

    Kadden, Ronald M.; Litt, Mark D.

    2011-01-01

    Self-efficacy is the belief that one has the ability to implement the behaviors needed to produce a desired effect. There has been growing interest in the role of self-efficacy as a predictor and/or mediator of treatment outcome in a number of domains. The present paper reviews the recent literature on self-efficacy in the substance abuse field. In numerous studies of substance abuse treatment, self-efficacy has emerged as an important predictor of outcome, or as a mediator of treatment effects. Despite these repeated positive findings, the self-efficacy concept has had little impact on the design of treatments. Since the concept was first introduced, there have been numerous suggestions regarding the means by which self-efficacy may be enhanced in clinical settings, but very little by way of empirical tests of those suggestions. This review concludes with a number of recommendations for further research to improve understanding of this potentially valuable concept and its interactions with other variables, and to develop effective strategies for enhancing self-efficacy. PMID:21849232

  2. The X CO Conversion Factor from Galactic Multiphase ISM Simulations

    NASA Astrophysics Data System (ADS)

    Gong, Munan; Ostriker, Eve C.; Kim, Chang-Goo

    2018-05-01

    {CO}(J=1{--}0) line emission is a widely used observational tracer of molecular gas, rendering essential the X CO factor, which is applied to convert CO luminosity to {{{H}}}2 mass. We use numerical simulations to study how X CO depends on numerical resolution, non-steady-state chemistry, physical environment, and observational beam size. Our study employs 3D magnetohydrodynamics (MHD) simulations of galactic disks with solar neighborhood conditions, where star formation and the three-phase interstellar medium (ISM) are self-consistently regulated by gravity and stellar feedback. Synthetic CO maps are obtained by postprocessing the MHD simulations with chemistry and radiation transfer. We find that CO is only an approximate tracer of {{{H}}}2. On parsec scales, W CO is more fundamentally a measure of mass-weighted volume density, rather than {{{H}}}2 column density. Nevertheless, < {X}{{CO}} > =(0.7{\\textstyle {--}}1.0)× {10}20 {{{cm}}}-2 {{{K}}}-1 {{{km}}}-1 {{s}}, which is consistent with observations and insensitive to the evolutionary ISM state or radiation field strength if steady-state chemistry is assumed. Due to non-steady-state chemistry, younger molecular clouds have slightly lower < {X}CO}> and flatter profiles of X CO versus extinction than older ones. The {CO}-dark {{{H}}}2 fraction is 26%–79%, anticorrelated with the average extinction. As the observational beam size increases from 1 to 100 pc, < {X}CO}> increases by a factor of ∼2. Under solar neighborhood conditions, < {X}CO}> in molecular clouds is converged at a numerical resolution of 2 pc. However, the total CO abundance and luminosity are not converged even at the numerical resolution of 1 pc. Our simulations successfully reproduce the observed variations of X CO on parsec scales, as well as the dependence of X CO on extinction and the CO excitation temperature.

  3. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    NASA Astrophysics Data System (ADS)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.; Kysar, J. W.

    2018-03-01

    A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling this class of complex problems by avoiding issues related to traditional Lagrangian procedures. Moreover, the proposed technique allows for focusing the mesh in the region of interest. In the present paper, the technique is exploited to analyze the well-known wedge indentation problem of an elastic-viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical studies. In this study, the three most common metal crystal structures will be investigated, namely the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close packed (HCP) crystal structures, where the stress and slip rate fields around the moving contact point singularity are presented.

  4. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    PubMed

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  5. On the optimization of Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.

    2003-01-01

    A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.

  6. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    NASA Astrophysics Data System (ADS)

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  7. Influences of different parameters on the microstructure of magnetic-field-induced self-assembled film

    NASA Astrophysics Data System (ADS)

    Dan, X.; Yang, J. J.

    2016-07-01

    Self-assembled films with needle-like microarrays were fabricated using a mixture of cobalt and fluorocarbon resin under a magnetic field. The various influences of magnetic powder content, viscosity and size distribution on the structure of the self-assembled films were investigated. The self-assembled film morphologies were characterized by stereomicroscope and scanning electron microscopy. Experimental results indicate that an increase in magnetic powder content results in greater unit height and diameter, and that a reduction in viscosity results in increasing array density and decreasing unit width. Additionally, particles with narrow size distribution were able to attain more regular microarray structures. The structural alterations were closely related to numerous effects such as van der Waals forces, dipole-dipole interactions, and external-dipole interactions. The self-assembled film demonstrated magnetic anisotropy, as identified by vibrating sample magnetometry (VSM).

  8. Dynamical Evolution of a Coronal Streamer-Flux Rope System: 2. A Self-Consistent Non-Planar Magnetohydrodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Guo, W. P.; Dryer, Murray

    1996-01-01

    The dynamical response of a helmet streamer to a flux rope escape from the sub-photosphere is examined in a physically self-consistent manner within the approximation of axisymmetric three-dimensional magnetohydrodynamics (i.e., so-called '2 1/2 D'). In contrast to the previous planar analyses of Paper 1 (Wu, Guo, and Wang), the present study shows, with the inclusion of out-of-plane components of magnetic and velocity fields, that the magnetic configuration represents a helical flux rope instead of a planar bubble as shown in Paper 1. Because of this more physically-realistic configuration, we are able to examine the dynamical evolution of the helical flux rope's interaction with the helmet streamer. This process leads to the formation of two parts of the solar mass ejection: (i) the expulsion of the helmet dome due to eruption of this flux rope, and (ii) the flux rope's eruption itself. When this two-part feature propagates out to the interplanetary space, it exhibits all the physical characteristics of observed interplanetary magnetic clouds. These numerical simulations also show that the dynamical behavior of the streamer-flux rope system has three distinct states: (i) quasi-equilibrium, (ii) non-equilibrium, and (iii) eruptive state depending on the energy level of the flux rope.

  9. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.

  10. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  11. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance

    NASA Astrophysics Data System (ADS)

    Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.

    2018-05-01

    The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.

  12. Optimization of Antenna Current Feeding for the Alfvén Eigenmodes Active Diagnostic System of JET

    NASA Astrophysics Data System (ADS)

    Albarracin Manrique, Marcos A.; Ruchko, L.; Pires, C. J. A.; Galvão, R. M. O.; Elfimov, A. G.

    2018-04-01

    The possibility of exploring proper phasing of the feeding currents in the existing antenna of the Alfvén Eigenmodes Active Diagnostic system of JET, to excite pure toroidal spectra of Toroidal Alfvén Eigenmodes, is numerically investigated. Special attention is given to the actual perturbed fields excited in the plasma, which are calculated self-consistently using the antenna version of the CASTOR code. It is found that due to the close spacing of the JET antenna modules and quasi degeneracy of modes with medium to high values of the toroidal mode number n, although a proper choice of the phasing of the feeding currents of the antenna modules indeed leads to an increase of the perturbed fields of the selected mode, modes with nearby values of n are also excited with large amplitudes, so that a scheme to proper select the detected modes remains necessary. A scheme using different antenna position distribution is proposed to achieve successful optimization.

  13. Effect of Ponderomotive Terms on Heat Flux in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Li, G.

    2005-10-01

    A laser electromagnetic field introduces ponderomotive termsootnotetextV. N. Goncharov and G. Li, Phys. Plasmas 11, 5680 (2004). in the heat flux in a plasma. To account for the nonlocal effects in the ponderomotive terms, first, the kinetic equation coupled with the Maxwell equations is numerically solved for the isotropic part of the electron distribution function. Such an equation includes self-consistent electromagnetic fields and laser absorption through the inverse bremsstrahlung. Then, the anisotropic part is found by solving a simplified Fokker--Planck equation. Using the distribution function, the electric current and heat flux are obtained and substituted into the hydrocode LILAC to simulate ICF implosions. The simulation results are compared against the existing nonlocal electron conduction modelsootnotetextG. P. Schurtz, P. D. Nicola"i, and M. Busquet, Phys. Plasmas 9, 4238 (2000). and Fokker--Planck simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  14. A numerical study of the phase behaviors of drug particle/star triblock copolymer mixtures in dilute solutions for drug carrier application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less

  15. Interfacial mixing in high energy-density matter with a multiphysics kinetic model

    NASA Astrophysics Data System (ADS)

    Haack, Jeff; Hauck, Cory; Murillo, Michael

    2017-10-01

    We have extended a recently-developed multispecies, multitemperature BGK model to include multiphysics capability that allows modeling of a wider range of plasma conditions. In particular, we have extended the model to describe one spatial dimension, and included a multispecies atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the new model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, similar to a recent molecular dynamics study, but for larger length and time scales and for much higher temperatures. From our numerical results we are able to explore a variety of phenomena, including hydrogen jetting, kinetic effects (non-Maxwellian and anisotropic distributions), plasma physics (size, persistence and role of electric fields) and transport (relative sizes of Fickean diffision, electrodiffusion and barodiffusion). As compared with the recent molecular dynamics work the kinetic model greatly extends the accessible physical domains we are able to model.

  16. Status and future of the 3D MAFIA group of codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeling, F.; Klatt, R.; Krawzcyk, F.

    1988-12-01

    The group of fully three dimensional computer codes for solving Maxwell's equations for a wide range of applications, MAFIA, is already well established. Extensive comparisons with measurements have demonstrated the accuracy of the computations. A large numer of components have been designed for accelerators, such as kicker magnets, non cyclindrical cavities, ferrite loaded cavities, vacuum chambers with slots and transitions, etc. The latest additions to the system include a new static solver that can calculate 3D magneto- and electrostatic fields, and a self consistent version of the 2D-BCI that solves the field equations and the equations of motion in parallel.more » Work on new eddy current modules has started, which will allow treatment of laminated and/or solid iron cores excited by low frequency currents. Based on our experience with the present releases 1 and 2, we have started a complete revision of the whole user interface and data structure, which will make the codes even more user-friendly and flexible.« less

  17. Self-consistent collective coordinate for reaction path and inertial mass

    NASA Astrophysics Data System (ADS)

    Wen, Kai; Nakatsukasa, Takashi

    2016-11-01

    We propose a numerical method to determine the optimal collective reaction path for a nucleus-nucleus collision, based on the adiabatic self-consistent collective coordinate (ASCC) method. We use an iterative method, combining the imaginary-time evolution and the finite amplitude method, for the solution of the ASCC coupled equations. It is applied to the simplest case, α -α scattering. We determine the collective path, the potential, and the inertial mass. The results are compared with other methods, such as the constrained Hartree-Fock method, Inglis's cranking formula, and the adiabatic time-dependent Hartree-Fock (ATDHF) method.

  18. A Self-Consistent Fault Slip Model for the 2011 Tohoku Earthquake and Tsunami

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshiki; Cheung, Kwok Fai; Lay, Thorne

    2018-02-01

    The unprecedented geophysical and hydrographic data sets from the 2011 Tohoku earthquake and tsunami have facilitated numerous modeling and inversion analyses for a wide range of dislocation models. Significant uncertainties remain in the slip distribution as well as the possible contribution of tsunami excitation from submarine slumping or anelastic wedge deformation. We seek a self-consistent model for the primary teleseismic and tsunami observations through an iterative approach that begins with downsampling of a finite fault model inverted from global seismic records. Direct adjustment of the fault displacement guided by high-resolution forward modeling of near-field tsunami waveform and runup measurements improves the features that are not satisfactorily accounted for by the seismic wave inversion. The results show acute sensitivity of the runup to impulsive tsunami waves generated by near-trench slip. The adjusted finite fault model is able to reproduce the DART records across the Pacific Ocean in forward modeling of the far-field tsunami as well as the global seismic records through a finer-scale subfault moment- and rake-constrained inversion, thereby validating its ability to account for the tsunami and teleseismic observations without requiring an exotic source. The upsampled final model gives reasonably good fits to onshore and offshore geodetic observations albeit early after-slip effects and wedge faulting that cannot be reliably accounted for. The large predicted slip of over 20 m at shallow depth extending northward to 39.7°N indicates extensive rerupture and reduced seismic hazard of the 1896 tsunami earthquake zone, as inferred to varying extents by several recent joint and tsunami-only inversions.

  19. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations

    NASA Astrophysics Data System (ADS)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-01

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  20. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    PubMed

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  1. Self-oscillation of standing spin wave in ring resonator with proportional-integral-derivative control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Urazuka, Y.; Chen, H.

    2014-05-07

    We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less

  2. Electric dipole moment of diatomic molecules by configuration interaction. V - Two states of /2/Sigma/+/ symmetry in CN.

    NASA Technical Reports Server (NTRS)

    Green, S.

    1972-01-01

    Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.

  3. Self-force on a scalar charge in Kerr spacetime: Circular equatorial orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, Niels; Barack, Leor

    2010-04-15

    We present a calculation of the scalar-field self-force (SSF) acting on a scalar-charge particle in a strong-field orbit around a Kerr black hole. Our calculation specializes to circular and equatorial geodesic orbits. The analysis is an implementation of the standard mode-sum regularization scheme: We first calculate the multipole modes of the scalar-field perturbation using numerical integration in the frequency domain, and then apply a certain regularization procedure to each of the modes. The dissipative piece of the SSF is found to be consistent with the flux of energy and angular-momentum carried by the scalar waves through the event horizon andmore » out to infinity. The conservative (radial) component of the SSF is calculated here for the first time. When the motion is retrograde this component is found to be repulsive (outward pointing, as in the Schwarzschild case) for any spin parameter a and (Boyer-Lindquist) orbital radius r{sub 0}. However, for prograde orbits we find that the radial SSF becomes attractive (inward pointing) for r{sub 0}>r{sub c}(a), where r{sub c} is a critical a-dependent radius at which the radial SSF vanishes. The dominant conservative effect of the SSF in Schwarzschild spacetime is known to be of third post-Newtonian (3PN) order (with a logarithmic running). Our numerical results suggest that the leading-order PN correction due to the black hole's spin arises from spin-orbit coupling at 3PN order, which dominates the overall SSF effect at large r{sub 0}. In PN language, the change of sign of the radial SSF is attributed to an interplay between the spin-orbit term ({proportional_to}-ar{sub 0}{sup -4.5}) and the Schwarzschild term ({proportional_to}r{sub 0}{sup -5}logr{sub 0}).« less

  4. Scaling laws in magnetized plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features ofmore » MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar wind, solar corona heating, and planetary magnetospheres; strong MHD turbulence, which is relevant for fusion devices, star formation, cosmic rays acceleration, scattering and trapping in galaxies, as well as many aspects of dynamics, distribution and composition of space plasmas, and the process of magnetic dynamo action, which explains the generation and the structure of magnetic fields in turbulent plasmas. The planned work will aim at developing new analytic approaches, conducting new numerical simulations with currently unmatched resolution, and training students in the methods of the modern theory of plasma turbulence. The work will be performed at the University of Wisconsin--Madison.« less

  5. Self-consistent vertical transport calculations in AlxGa1-xN/GaN based resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Rached, A.; Bhouri, A.; Sakr, S.; Lazzari, J.-L.; Belmabrouk, H.

    2016-03-01

    The formation of two-dimensional electron gases (2DEGs) at AlxGa1-xN/GaN hexagonal double-barriers (DB) resonant tunneling diodes (RTD) is investigated by numerical self-consistent (SC) solutions of the coupled Schrödinger and Poisson equations. Spontaneous and piezoelectric effects across the material interfaces are rigorously taken into account. Conduction band profiles, band edges and corresponding envelope functions are calculated in the AlxGa1-xN/GaN structures and likened to those where no polarization effects are included. The combined effect of the polarization-induced bound charge and conduction band offsets between the hexagonal AlGaN and GaN results in the formation of 2DEGs on one side of the DB and a depletion region on the other side. Using the transfer matrix formalism, the vertical transport (J-V characteristics) in AlGaN/GaN RTDs is calculated with a fully SC calculation in the ballistic regime. Compared to standard calculations where the voltage drop along the structure is supposed to be linear, the SC method leads to strong quantitative changes in the J-V characteristics showing that the applied electric field varies significantly in the active region of the structure. The influences of the aluminum composition and the GaN(AlGaN) thickness layers on the evolution of the current characteristics are also self-consistently investigated and discussed. We show that the electrical characteristics are very sensitive to the potential barrier due to the interplay between the potential symmetry and the barrier height and width. More interestingly, we demonstrate that the figures of merit namely the peak-to-valley ratio (PVR) of GaN/AlGaN RTDs can be optimized by increasing the quantum well width.

  6. Response to ``Comment on `Scalings for radiation from plasma bubbles' '' [Phys. Plasmas 18, 034701 (2011)

    NASA Astrophysics Data System (ADS)

    Thomas, A. G. R.

    2011-03-01

    In the preceding Comment, Corde, Stordeur, and Malka claim that the trapping threshold derived in my recent paper is incorrect. Their principal argument is that the elliptical orbits I used are not exact solutions of the equation of motion in the fields of the bubble. The original paper never claimed this—rather I claimed that the use of elliptical orbits was a reasonable approximation, which I based on observations from particle-in-cell simulations. Integration of the equation of motion for analytical expressions for idealized bubble fields (either analytically [I. Kostyukov, E. Nerush, A. Pukhov, and V. Seredov, Phys. Rev. Lett. 103, 175003 (2009)] or numerically [S. Corde, A. Stordeur, and V. Malka, "Comment on `Scalings for radiation from plasma bubbles,' " Phys. Plasmas 18, 034701 (2011)]) produces a trapping threshold wholly inconsistent with experiments and full particle-in-cell (PIC) simulations (e.g., requiring an estimated laser intensity of a0˜30 for ne˜1019 cm-3). The inconsistency in the particle trajectories between PIC and the numeric model used by the comment authors arises due to the fact that the analytical fields are only approximately true for "real" plasma bubbles, and lack certain key features of the field structure. Two possible methods of resolution to this inconsistency are either to find ever more complicated but accurate models for the bubble fields or to find approximate solutions to the equations of motion that capture the essential features of the self-consistent electron trajectories. The latter, heuristic approach used in my recent paper produced a threshold that is better matched to experimental observations. In this reply, I will also revisit the problem and examine the relationship between bubble radius and electron momentum at the point of trapping without reference to a particular trajectory.

  7. Self-consistent theory of atomic Fermi gases with a Feshbach resonance at the superfluid transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiaji; Hu Hui

    2005-12-15

    A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and 'bare' Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T{sub c} increases monotonically at all widths as the effective interaction between atoms becomes moremore » attractive. Furthermore, a residue factor Z{sub m} of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T{sub c}. Our many-body calculations of Z{sub m} agree qualitatively well with recent measurments of the gas of {sup 6}Li atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.« less

  8. Calculation of a coaxial microwave torch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsinin, S. I.; Kossyi, I. A.; Kulumbaev, E. B.

    2006-10-15

    Parameters of an equilibrium microwave discharge in an atmospheric-pressure argon flow in a coaxial waveguide with a truncated inner electrode are calculated numerically by using a self-consistent two-dimensional MHD model. The results obtained agree satisfactorily with the experimental data.

  9. On the Debye-Hückel effect of electric screening

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Lau, F. J. P.

    2014-07-01

    The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potential vanishes differs from the Debye-Hückel radius by a factor of √2 . The preceding (Secs. II-VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.

  10. On the Debye–Hückel effect of electric screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, L. M. B. C.; Lau, F. J. P.

    2014-07-15

    The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potentialmore » vanishes differs from the Debye-Hückel radius by a factor of √(2). The preceding (Secs. II–VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.« less

  11. Two healing lengths in a two-band GL-model with quadratic terms: Numerical results

    NASA Astrophysics Data System (ADS)

    Macias-Medri, A. E.; Rodríguez-Núñez, J. J.

    2018-05-01

    A two-band and quartic interaction order Ginzburg-Landau model in the presence of a single vortex is studied in this work. Interactions of second (quadratic, with coupling parameter γ) and fourth (quartic, with coupling parameter γ˜) order between the two superconducting order parameters (fi with i = 1,2) are incorporated in a functional. Terms beyond quadratic gradient contributions are neglected in the corresponding minimized free energy. The solution of the system of coupled equations is solved by numerical methods to obtain the fi-profiles, where our starting point was the calculation of the superconducting critical temperature Tc. With this at hand, we evaluate fi and the magnetic field along the z-axis, B0, as function of γ, γ˜, the radial distance r/λ1(0) and the temperature T, for T ≈ Tc. The self-consistent equations allow us to compute λ (penetration depth) and the healing lengths of fi (Lhi with i = 1,2) as functions of T, γ and γ˜. At the end, relevant discussions about type-1.5 superconductivity in the compounds we have studied are presented.

  12. Relativistic N-body simulations with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Adamek, Julian; Durrer, Ruth; Kunz, Martin

    2017-11-01

    Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.

  13. Two approaches for the gravitational self-force in black hole spacetime: Comparison of numerical results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sago, Norichika; Barack, Leor; Detweiler, Steven

    2008-12-15

    Recently, two independent calculations have been presented of finite-mass ('self-force') effects on the orbit of a point mass around a Schwarzschild black hole. While both computations are based on the standard mode-sum method, they differ in several technical aspects, which makes comparison between their results difficult--but also interesting. Barack and Sago [Phys. Rev. D 75, 064021 (2007)] invoke the notion of a self-accelerated motion in a background spacetime, and perform a direct calculation of the local self-force in the Lorenz gauge (using numerical evolution of the perturbation equations in the time domain); Detweiler [Phys. Rev. D 77, 124026 (2008)] describesmore » the motion in terms a geodesic orbit of a (smooth) perturbed spacetime, and calculates the metric perturbation in the Regge-Wheeler gauge (using frequency-domain numerical analysis). Here we establish a formal correspondence between the two analyses, and demonstrate the consistency of their numerical results. Specifically, we compare the value of the conservative O({mu}) shift in u{sup t} (where {mu} is the particle's mass and u{sup t} is the Schwarzschild t component of the particle's four-velocity), suitably mapped between the two orbital descriptions and adjusted for gauge. We find that the two analyses yield the same value for this shift within mere fractional differences of {approx}10{sup -5}-10{sup -7} (depending on the orbital radius)--comparable with the estimated numerical error.« less

  14. Generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures

    NASA Astrophysics Data System (ADS)

    Pan'kov, A. A.

    1997-05-01

    The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.

  15. Transport characteristics of a ZnMgO/ZnO hetero junction and the effect of temperature and Mg content

    NASA Astrophysics Data System (ADS)

    Uslu, Salih; Yarar, Zeki

    2017-02-01

    The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.

  16. Numerical analysis of a microwave torch with axial gas injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    2013-07-15

    The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.

  17. The Thomas-Fermi model in the theory of systems of charged particles above the surface of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.

    2012-10-01

    A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharovsky, V. V., E-mail: vkochar@physics.tamu.edu; Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242; Kocharovsky, VI. V.

    Widespread use of a broken-power-law description of the spectra of synchrotron emission of various plasma objects requires an analysis of origin and a proper interpretation of spectral components. We show that, for a self-consistent magnetic configuration in a collisionless plasma, these components may be angle-dependent according to an anisotropic particle momentum distribution and may have no counterparts in a particle energy distribution. That has never been studied analytically and is in contrast to a usual model of synchrotron radiation, assuming an external magnetic field and a particle ensemble with isotropic momentum distribution. We demonstrate that for the wide intervals ofmore » observation angle the power-law spectra and, in particular, the positions and number of spectral breaks may be essentially different for the cases of the self-consistent and not-self-consistent magnetic fields in current structures responsible for the synchrotron radiation of the ensembles of relativistic particles with the multi-power-law energy distributions.« less

  19. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  20. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    NASA Astrophysics Data System (ADS)

    Pillet, N.; Robin, C.; Dupuis, M.; Hupin, G.; Berger, J.-F.

    2017-03-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ˜ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed.

  1. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Segura, A.

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  2. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.

    PubMed

    Bonilla, L L; Carretero, M; Segura, A

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  3. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate inmore » available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.« less

  4. Formation of Electrostatic Potential Drops in the Auroral Zone

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.

    2001-01-01

    In order to examine the self-consistent formation of large-scale quasi-static parallel electric fields in the auroral zone on a micro/meso scale, a particle in cell simulation has been developed. The code resolves electron Debye length scales so that electron micro-processes are included and a variable grid scheme is used such that the overall length scale of the simulation is of the order of an Earth radii along the magnetic field. The simulation is electrostatic and includes the magnetic mirror force, as well as two types of plasmas, a cold dense ionospheric plasma and a warm tenuous magnetospheric plasma. In order to study the formation of parallel electric fields in the auroral zone, different magnetospheric ion and electron inflow boundary conditions are used to drive the system. It has been found that for conditions in the primary (upward) current region an upward directed quasi-static electric field can form across the system due to magnetic mirroring of the magnetospheric ions and electrons at different altitudes. For conditions in the return (downward) current region it is shown that a quasi-static parallel electric field in the opposite sense of that in the primary current region is formed, i.e., the parallel electric field is directed earthward. The conditions for how these different electric fields can be formed are discussed using satellite observations and numerical simulations.

  5. The Mochi project: a field theory approach to plasma dynamics and self-organization

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Lavine, Eric Sander; Card, Alexander; Carroll, Evan

    2016-10-01

    The Mochi project is designed to study the interaction between plasma flows and magnetic fields from the point-of-view of canonical flux tubes. The Mochi Labjet experiment is being commissioned after achieving first plasma. Analytical and numerical tools are being developed to visualize canonical flux tubes. One analytical tool described here is a field theory approach to plasma dynamics and self-organization. A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems. This work is supported by by US DOE Grant DE-SC0010340.

  6. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles

    NASA Astrophysics Data System (ADS)

    Tzirtzilakis, E. E.

    2015-06-01

    In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.

  7. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.

    2017-01-01

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  8. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less

  9. Hunting down the best model of inflation with Bayesian evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jerome; Ringeval, Christophe; Trotta, Roberto

    2011-03-15

    We present the first calculation of the Bayesian evidence for different prototypical single field inflationary scenarios, including representative classes of small field and large field models. This approach allows us to compare inflationary models in a well-defined statistical way and to determine the current 'best model of inflation'. The calculation is performed numerically by interfacing the inflationary code FieldInf with MultiNest. We find that small field models are currently preferred, while large field models having a self-interacting potential of power p>4 are strongly disfavored. The class of small field models as a whole has posterior odds of approximately 3 ratiomore » 1 when compared with the large field class. The methodology and results presented in this article are an additional step toward the construction of a full numerical pipeline to constrain the physics of the early Universe with astrophysical observations. More accurate data (such as the Planck data) and the techniques introduced here should allow us to identify conclusively the best inflationary model.« less

  10. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-01

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ɛ(r) is close to one everywhere inside the protein. The Gaussian widths σi of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σi. A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.

  11. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    PubMed

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.

  12. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    NASA Technical Reports Server (NTRS)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  13. Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, P.P. Gonis, A.; de Fontaine, D.

    1991-12-03

    We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.

  14. Self-consistent-field perturbation theory for the Schröautdinger equation

    NASA Astrophysics Data System (ADS)

    Goodson, David Z.

    1997-06-01

    A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.

  15. Theoretical studies of electronically excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  16. Electron holes in phase space: What they are and why they matter

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2017-05-01

    This is a tutorial and selective review explaining the fundamental concepts and some currently open questions concerning the plasma phenomenon of the electron hole. The widespread occurrence of electron holes in numerical simulations, space-craft observations, and laboratory experiments is illustrated. The elementary underlying theory is developed of a one-dimensional electron hole as a localized potential maximum, self-consistently sustained by a deficit of trapped electron phase-space density. The spatial extent of a hole is typically a few Debye lengths; what determines the minimum and maximum possible lengths is explained, addressing the key aspects of the as yet unsettled dispute between the integral and differential approaches to hole structure. In multiple dimensions, holes tend to form less readily; they generally require a magnetic field and distribution-function anisotropy. The mechanisms by which they break up are explained, noting that this transverse instability is not fully understood. Examples are given of plasma circumstances where holes play an important role, and of recent progress on understanding their holistic kinematics and self-acceleration.

  17. Stabilizing Various Bicontinuous Morphologies via Polydispersity of Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Lai, Chi To; Shi, An-Chang

    Diblock copolymers are macromolecules composed of two chemically distinct homopolymers covalently bound end-to-end. The ability to self-assembly into a wide variety of ordered periodic structures, as means of minimizing the free energy, is their most well-studied property. There are many factors affecting the observed equilibrium morphology, one of which is polydispersity. The phase behaviour of polydispersed diblock copolymers is more rich, and diverse when compared to their monodispersed counterpart. The rich behaviour of polydispersed diblock copolymers provides an opportunity to engineer novel morphologies which are not available in monodispersed systems. Using the self-consistent field theory (SCFT), we explore the possibility of exploiting polydispersity of diblock copolymers in binary mixtures to stabilize the various bicontinuous phases, such as the double-diamond morphology. Specifically, solutions of the SCFT equations corresponding to different bicontinuous phases are obtained numerically for binary mixtures of diblock copolymers. The relative stability of the different ordered phases is examined by comparing their free energy. From the study, we determine optimal sets of parameters that stabilize the double-diamond or other exotic morphologies.

  18. Simulations of Instabilities in Tidal Tails

    NASA Astrophysics Data System (ADS)

    Comparetta, Justin N.; Quillen, A. C.

    2010-05-01

    We use graphics cards to run a hybrid test particle/N-body simulation to integrate 4 million massless particle trajectories within fully self-consistent N-body simulations of 128,000 - 256,000 particles. The number of massless particles allows us to resolve fine structure in the spatial distribution and phase space of a dwarf galaxy that is disrupted in the tidal field of a Milky Way type galaxy. The tidal tails exhibit clumping or a smoke-like appearance. By running simulations with different satellite particle mass, number of massive vs massless particles and with and without a galaxy disk, we have determined that the instabilities are not due to numerical noise or shocking as the satellite passes through the disk of the Galaxy. The instability is possibly a result of self-gravity which indicates it may be due to Jeans instabilities. Simulations involving different halo particle mass may suggest limitations on dark matter halo substructure. We find that the instabilities are visible in velocity space as well as real space and thus could be identified from velocity surveys as well as number counts.

  19. A practical guide to density matrix embedding theory in quantum chemistry

    DOE PAGES

    Wouters, Sebastian; Jimenez-Hoyos, Carlos A.; Sun, Qiming; ...

    2016-05-09

    Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. Here, we also describe in detail how to perform self-consistent DMET optimizations. We explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction.

  20. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  1. Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Petrov, Yu. V.

    2013-10-01

    A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.

  2. Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...

    2013-05-08

    Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in goodmore » qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.« less

  3. Numerical simulation of MPD thruster flows with anomalous transport

    NASA Technical Reports Server (NTRS)

    Caldo, Giuliano; Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.

    1992-01-01

    Anomalous transport effects in an Ar self-field coaxial MPD thruster are presently studied by means of a fully 2D two-fluid numerical code; its calculations are extended to a range of typical operating conditions. An effort is made to compare the spatial distribution of the steady state flow and field properties and thruster power-dissipation values for simulation runs with and without anomalous transport. A conductivity law based on the nonlinear saturation of lower hybrid current-driven instability is used for the calculations. Anomalous-transport simulation runs have indicated that the resistivity in specific areas of the discharge is significantly higher than that calculated in classical runs.

  4. Effects of Dzyaloshinsky-Moriya interaction on magnetism in nanodisks from a self-consistent approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2016-01-01

    We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky-Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.

  5. Symmetry breaking in occupation number based slave-particle methods

    NASA Astrophysics Data System (ADS)

    Georgescu, Alexandru B.; Ismail-Beigi, Sohrab

    2017-10-01

    We describe a theoretical approach to finding spontaneously symmetry-broken electronic phases due to strong electronic interactions when using recently developed slave-particle (slave-boson) approaches based on occupation numbers. We describe why, to date, spontaneous symmetry breaking has proven difficult to achieve in such approaches. We then provide a total energy based approach for introducing auxiliary symmetry-breaking fields into the solution of the slave-particle problem that leads to lowered total energies for symmetry-broken phases. We point out that not all slave-particle approaches yield energy lowering: the slave-particle model being used must explicitly describe the degrees of freedom that break symmetry. Finally, our total energy approach permits us to greatly simplify the formalism used to achieve a self-consistent solution between spinon and slave modes while increasing the numerical stability and greatly speeding up the calculations.

  6. Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Linda Yu; Friesner, Richard A.; Murphy, Robert B.

    1997-07-01

    Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. As an example of the power of the method, we calculate the electronic coupling between two bacteriochlorophyll molecules in various intermolecular geometries. Only a single self-consistent field (SCF) calculation on each of the monomers is needed to generate coupling matrix elements for all of the molecular pairs. The largest calculations performed, utilizing 1778 basis functions, required ˜14 h on an IBM 390 workstation. This is considerably less cpu time than would be necessitated with a supermolecule adiabatic state calculation and a conventional electronic structure code.

  7. Numerical Investigations of Capabilities and Limits of Photospheric Data Driven Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Linton, M.; Leake, J. E.; Schuck, P. W.

    2016-12-01

    The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solar activity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of emerging magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution. We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data. These investigations will then be used to outline future prospects and challenges for using observed photospheric data to drive such solar atmospheric simulations. This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.

  8. Hybrid analysis of multiaxis electromagnetic data for discrimination of munitions and explosives of concern

    USGS Publications Warehouse

    Friedel, M.J.; Asch, T.H.; Oden, C.

    2012-01-01

    The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot–Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the ground. Second, the target response is modelled by three orthogonal dipoles from prolate, oblate and triaxial ellipsoids with one long axis and two shorter axes. Each target consists of all three dipoles. Third, unknown target parameters are determined by comparing modelled to measured target responses. By comparing the rms error among the self-organizing map and numerical classification results, we achieved greater than 95 per cent detection and correct classification of the munitions and explosives of concern at the direct fire and indirect fire test areas at the UXO Standardized Test Site at the Aberdeen Proving Ground, Maryland in 2010.

  9. Hybrid analysis of multiaxis electromagnetic data for discrimination of munitions and explosives of concern

    NASA Astrophysics Data System (ADS)

    Friedel, M. J.; Asch, T. H.; Oden, C.

    2012-08-01

    The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot-Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the ground. Second, the target response is modelled by three orthogonal dipoles from prolate, oblate and triaxial ellipsoids with one long axis and two shorter axes. Each target consists of all three dipoles. Third, unknown target parameters are determined by comparing modelled to measured target responses. By comparing the rms error among the self-organizing map and numerical classification results, we achieved greater than 95 per cent detection and correct classification of the munitions and explosives of concern at the direct fire and indirect fire test areas at the UXO Standardized Test Site at the Aberdeen Proving Ground, Maryland in 2010.

  10. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  11. Small field detector correction factors kQclin,Qmsr (fclin,fmsr) for silicon-diode and diamond detectors with circular 6 MV fields derived using both empirical and numerical methods.

    PubMed

    O'Brien, D J; León-Vintró, L; McClean, B

    2016-01-01

    The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.

  12. Numerical simulation of magnetic field for compact electromagnet consisting of REBCO coils and iron yoke

    NASA Astrophysics Data System (ADS)

    You, Shuangrong; Chi, Changxin; Guo, Yanqun; Bai, Chuanyi; Liu, Zhiyong; Lu, Yuming; Cai, Chuanbing

    2018-07-01

    This paper presents the numerical simulation of a high-temperature superconductor electromagnet consisting of REBCO (RE-Ba2Cu3O7‑x, RE: rare earth) superconducting tapes and a ferromagnetic iron yoke. The REBCO coils with multi-width design are operating at 77 K, with the iron yoke at room temperature, providing a magnetic space with a 32 mm gap between two poles. The finite element method is applied to compute the 3D model of the studied magnet. Simulated results show that the magnet generates a 1.5 T magnetic field at an operating current of 38.7 A, and the spatial inhomogeneity of the field is 0.8% in a Φ–20 mm diameter sphere volume. Compared with the conventional iron electromagnet, the present compact design is more suitable for practical application.

  13. 25 Years of Self-organized Criticality: Numerical Detection Methods

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. James; Aschwanden, Markus J.; Dimitropoulou, Michaila; Georgoulis, Manolis K.; Pruessner, Gunnar; Morales, Laura; Ireland, Jack; Abramenko, Valentyna

    2016-01-01

    The detection and characterization of self-organized criticality (SOC), in both real and simulated data, has undergone many significant revisions over the past 25 years. The explosive advances in the many numerical methods available for detecting, discriminating, and ultimately testing, SOC have played a critical role in developing our understanding of how systems experience and exhibit SOC. In this article, methods of detecting SOC are reviewed; from correlations to complexity to critical quantities. A description of the basic autocorrelation method leads into a detailed analysis of application-oriented methods developed in the last 25 years. In the second half of this manuscript space-based, time-based and spatial-temporal methods are reviewed and the prevalence of power laws in nature is described, with an emphasis on event detection and characterization. The search for numerical methods to clearly and unambiguously detect SOC in data often leads us outside the comfort zone of our own disciplines—the answers to these questions are often obtained by studying the advances made in other fields of study. In addition, numerical detection methods often provide the optimum link between simulations and experiments in scientific research. We seek to explore this boundary where the rubber meets the road, to review this expanding field of research of numerical detection of SOC systems over the past 25 years, and to iterate forwards so as to provide some foresight and guidance into developing breakthroughs in this subject over the next quarter of a century.

  14. Self-consistent asset pricing models

    NASA Astrophysics Data System (ADS)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the self-consistency condition derives a risk-factor decomposition in the multi-factor case which is identical to the principal component analysis (PCA), thus providing a direct link between model-driven and data-driven constructions of risk factors. This correspondence shows that PCA will therefore suffer from the same limitations as the CAPM and its multi-factor generalization, namely lack of out-of-sample explanatory power and predictability. In the multi-period context, the self-consistency conditions force the betas to be time-dependent with specific constraints.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jong-Kyu; Logan, Nikolas C.

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  16. Effect of static porosity fluctuations on reactive transport in a porous medium

    NASA Astrophysics Data System (ADS)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  17. Patients were more consistent in randomized trial at prioritizing childbirth preferences using graphic-numeric than verbal formats.

    PubMed

    Eden, Karen B; Dolan, James G; Perrin, Nancy A; Kocaoglu, Dundar; Anderson, Nicholas; Case, James; Guise, Jeanne-Marie

    2009-04-01

    We developed an evidence-based decision aid to help women with a prior cesarean to prioritize their childbirth preferences related to a future birth. Because there was uncertainty about which scale format would assist the patients in being most consistent in prioritizing preferences in a multiattribute decision model, we compared a graphic-numeric scale with a text-anchored scale. Ninety-six postnatal women with a prior cesarean were randomized to use 1 of 2 preference scale formats in a computerized childbirth decision aid. We measured the level of inconsistency (intransitivity) when patients prioritized their childbirth preferences and clarity of values before and after using the decision aid. When the trade-offs involved risk, women were more consistent when using graphic-numeric than text-anchored formats (P=0.015). They prioritized safety to their baby as 4 times more important than any other decision factor including safety to self. Both groups reduced unclear childbirth values over time (P<0.001). Women who over-used the extreme ends of the scale when evaluating risk were more likely to be inconsistent (P<0.001). Patients were more consistent in making trade-offs involving risk using graphic-numeric formats than text-anchored formats to measure patient preferences.

  18. "But I'm Not Good at Math": The Changing Salience of Mathematical Self-Concept in Shaping Women's and Men's STEM Aspirations

    ERIC Educational Resources Information Center

    Sax, Linda J.; Kanny, M. Allison; Riggers-Piehl, Tiffani A.; Whang, Hannah; Paulson, Laura N.

    2015-01-01

    Math self-concept (MSC) is considered an important predictor of the pursuit of science, technology, engineering and math (STEM) fields. Women's underrepresentation in the STEM fields is often attributed to their consistently lower ratings on MSC relative to men. Research in this area typically considers STEM in the aggregate and does not account…

  19. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    NASA Astrophysics Data System (ADS)

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  20. Brittle fracture in viscoelastic materials as a pattern-formation process

    NASA Astrophysics Data System (ADS)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  1. Observation of Hamiltonian chaos and its control in wave particle interaction

    NASA Astrophysics Data System (ADS)

    Doveil, F.; Macor, A.; Aïssi, A.

    2007-12-01

    Wave-particle interactions are central in plasma physics. They can be studied in a traveling wave tube (TWT) to avoid intrinsic plasma noise. This led to detailed experimental analysis of the self-consistent interaction between unstable waves and an either cold or warm beam. More recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated with a single wave is also observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons from escaping from a given velocity region as well as its robustness are successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics.

  2. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  3. Organization a Culture of Self-Education of Music Teachers

    ERIC Educational Resources Information Center

    Dyganova, Elena Aleksandrovna; Yavgildina, Ziliya Mukhtarovna

    2015-01-01

    The article discusses the culture of self-education of music teacher as a professionally necessary quality of a modern specialist in the field of music education. The author proposes finalized definitions of basic concepts; consistently reveals the essence, structure, criteria and indicators of self-culture of music teacher; reveals the potential…

  4. HOW DID A MAJOR CONFINED FLARE OCCUR IN SUPER SOLAR ACTIVE REGION 12192?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.

    We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution, which gradually created a large-scale coronal current sheet, i.e., a narrow layer with intense current, in the core of the AR. The currentmore » layer was successively enhanced until it became so thin that a tether-cutting reconnection between the sheared magnetic arcades was set in, which led to a flare. The modeled reconnecting field lines and their footpoints match well the observed hot flaring loops and the flare ribbons, respectively, suggesting that the model has successfully “reproduced” the macroscopic magnetic process of the flare. In particular, with simulation, we explained why this event is a confined eruption—the consequence of the reconnection is a shared arcade instead of a newly formed flux rope. We also found a much weaker magnetic implosion effect compared to many other X-class flares.« less

  5. Global Distributions of Ionospheric Electrostatic Potentials for Various Interplanetary Conditions

    NASA Astrophysics Data System (ADS)

    Kartalev, M.; Papitashvili, V.; Keremidarska, V.; Grigorov, K.; Romanov, D.

    2001-12-01

    We report on a study of the global ionospheric electrostatic potential distributions obtained from combining two algorithms used for the mapping of high-latitude and middle-latitude ionospheric electrodynamics; that is, the LiMIE (http://www.sprl.umich.edu/mist/) and IMEH (http://geospace.nat.bg) models, respectively. In this combination, the latter model utilizes the LiMIE high-latitude field-aligned current distributions for various IMF conditions and different seasons (summer, winter, equinox). The IMEH model is a mathematical tool, allowing us to study conjugacy (or non-conjugacy) of the ionospheric electric fields on a global scale, from the northern and southern polar regions to the middle- and low-latitudes. The proposed numerical scheme permits testing of different mechanisms of the interhemispheric coupling and mapping to the ionosphere through the appropriate current systems. The scheme is convenient for determining self-consistently the separatrices in both the northern and southern hemispheres. In this study we focus on the global ionospheric electrostatic field distributions neglecting other possible electric field sources. Considering some implications of the proposed technique for the space weather specification and forecasting, we developed a Web-based interface providing global distributions of the ionospheric electrostatic potentials in near-real time from the ACE upstream solar wind observations at L1.

  6. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    PubMed

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  7. Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, C., E-mail: catherine.krafft@u-psud.fr; Universite´ Paris Sud, 91405 Orsay Cedex; Volokitin, A., E-mail: a.volokitin@mail.ru

    2016-03-25

    The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.

  8. Evolution of the Orszag-Tang vortex system in a compressible medium. I - Initial average subsonic flow

    NASA Technical Reports Server (NTRS)

    Dahlburg, R. B.; Picone, J. M.

    1989-01-01

    The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.

  9. Evolution of the Orszag--Tang vortex system in a compressible medium. I. Initial average subsonic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, R.B.; Picone, J.M.

    In this paper the results of fully compressible, Fourier collocation, numerical simulations of the Orszag--Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2--0.6. Thesemore » values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.« less

  10. Conceptualizing and Measuring Self-Criticism as Both a Personality Trait and a Personality State.

    PubMed

    Zuroff, David C; Sadikaj, Gentiana; Kelly, Allison C; Leybman, Michelle J

    2016-01-01

    Blatt's ( 2004 , 2008 ) conceptualization of self-criticism is consistent with a state-trait model that postulates meaningful variation in self-criticism both between persons (traits) and within person (states). We tested the state-trait model in a 7-day diary study with 99 college student participants. Each evening they completed a 6-item measure of self-criticism, as well as measures of perceived social support, positive and negative affect, compassionate and self-image goals during interactions with others, and interpersonal behavior, including overt self-criticism and given social support. As predicted, self-criticism displayed both trait-like variance between persons and daily fluctuations around individuals' mean scores for the week; slightly more than half of the total variance was between persons (ICC = .56). Numerous associations at both the between-persons and within-person levels were found between self-criticism and the other variables, indicating that individuals' mean levels of self-criticism over the week, and level of self-criticism on a given day relative to their personal mean, were related to their cognitions, affect, interpersonal goals, and behavior. The results supported the construct validity of the daily self-criticism measure. Moreover, the findings were consistent with the state-trait model and with Blatt's theoretical analysis of self-critical personality.

  11. Spectral self-action of THz emission from ionizing two-color laser pulses in gases

    NASA Astrophysics Data System (ADS)

    Cabrera-Granado, Eduardo; Chen, Yxing; Babushkin, Ihar; Bergé, Luc; Skupin, Stefan

    2015-02-01

    The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and numerical simulations in 1D, 2D and 3D geometries taking into account propagation effects of both pump and THz fields. We show that produced THz signals interact with free electron trajectories and thus significantly influence further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action contributes to the observed strong spectral broadening of the generated THz field. We show that diffraction of the generated THz radiation is the limiting factor for the co-propagating low frequency amplitudes and thus for the self-action mechanism in 2D and 3D geometries.

  12. Numerical studies of the fluid and optical fields associated with complex cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1992-01-01

    Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.

  13. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, P.

    1986-01-01

    Progress in the development of computational methods for the characterization of chemical reactions in aerobraking orbit transfer vehicle (AOTV) propulsive flows is reported. Two main areas of code development were undertaken: (1) the implementation of CASSCF (complete active space self-consistent field) and SCF (self-consistent field) analytical first derivatives on the CRAY X-MP; and (2) the installation of the complete set of electronic structure codes on the CRAY 2. In the area of application calculations the main effort was devoted to performing full configuration-interaction calculations and using these results to benchmark other methods. Preprints describing some of the systems studied are included.

  14. Superthermal Electron Energy Interchange in the Ionosphere-Plasmasphere System

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Glocer, A.; Liemohn, M. W.; Himwich, E. W.

    2013-01-01

    A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks.

  15. Collisionless absorption of intense laser radiation in nanoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaretsky, D F; Korneev, Philipp A; Popruzhenko, Sergei V

    The rate of linear collisionless absorption of an electromagnetic radiation in a nanoplasma - classical electron gas localised in a heated ionised nanosystem (thin film or cluster) irradiated by an intense femtosecond laser pulse - is calculated. The absorption is caused by the inelastic electron scattering from the self-consistent potential of the system in the presence of a laser field. The effect proves to be appreciable because of a small size of the systems. General expressions are obtained for the absorption rate as a function of the parameters of the single-particle self-consistent potential and electron distribution function in the regimemore » linear in field. For the simplest cases, where the self-consistent field is created by an infinitely deep well or an infinite charged plane, closed analytic expressions are obtained for the absorption rate. Estimates presented in the paper demonstrate that, over a wide range of the parameters of laser pulses and nanostructures, the collisionless mechanism of heating electron subsystem can be dominant. The possibility of experimental observation of the collisionless absorption of intense laser radiation in nanoplasma is also discussed. (interaction of laser radiation with matter)« less

  16. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  17. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  18. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE PAGES

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  19. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  20. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study

    NASA Astrophysics Data System (ADS)

    Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam

    2018-03-01

    In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.

  1. Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases

    NASA Astrophysics Data System (ADS)

    Arellano, Hugo F.; Delaroche, Jean-Paul

    2015-01-01

    The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the 1 S 0 and 3 SD 1 channels are explicitly accounted for --within the continuous choice for the auxiliary fields-- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range fm-1, using the Argonne bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm-1 0.285 fm-1, corresponding to mass densities between and g cm-3. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.

  2. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process ofmore » positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.« less

  3. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE PAGES

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...

    2017-07-12

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  4. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  5. Self-consistent core-pedestal transport simulations with neural network accelerated models

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.

    2017-08-01

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.

  6. Control of the electromagnetic drag using fluctuating light fields

    NASA Astrophysics Data System (ADS)

    Pastor, Víctor J. López; Marqués, Manuel I.

    2018-05-01

    An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.

  7. Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric

    2018-06-01

    We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.

  8. Excited State Studies of Polyacenes Using the All-Order Constricted Variational Density Functional Theory with Orbital Relaxation.

    PubMed

    Senn, Florian; Krykunov, Mykhaylo

    2015-10-22

    For the polyacenes series from naphthalene to hexacene, we present the vertical singlet excitation energies 1 (1)La and 1 (1)Lb, as well as the first triplet excitation energies obtained by the all-order constricted variational density functional theory with orbital relaxation (R-CV(∞)-DFT). R-CV(∞)-DFT is a further development of variational density functional theory (CV(∞)-DFT), which has already been successfully applied for the calculation of the vertical singlet excitation energies (1)La and (1)Lb for polyacenes,15 and we show that one obtains consistent excitation energies using the local density approximation as a functional for singlet as well as for triplet excitations when going beyond the linear response theory. Furthermore, we apply self-consistent field density functional theory (ΔSCF-DFT) and compare the obtained excitation energies for the first triplet excitations T1, where, due to the character of the transition, ΔSCF-DFT and R-CV(∞)-DFT become numerically equivalent, and for the singlet excitations 1 (1)La and 1 (1)Lb, where the two methods differ.

  9. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  10. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  11. Experiments on Plasma Turbulence Created by Supersonic Plasma Flows with Shear

    DTIC Science & Technology

    2014-04-01

    for producing a plasma column (in black). An insulated wire traverses the plasma and car - ries a pulsed current in x-direction. The unmagnetized ions... electric field which together with the B field around the wire causes an electron ExB drift. The ions are unmagnetized. A radial space charge electric field...by the self-consistent currents passing through the grid. These currents, consisting of electron and ion flows, are controlled by the electrical

  12. Compton scattering collision module for OSIRIS

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Fabrizio; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luís

    2017-10-01

    Compton scattering plays a fundamental role in a variety of different astrophysical environments, such as at the gaps of pulsars and the stagnation surface of black holes. In these scenarios, Compton scattering is coupled with self-consistent mechanisms such as pair cascades. We present the implementation of a novel module, embedded in the self-consistent framework of the PIC code OSIRIS 4.0, capable of simulating Compton scattering from first principles and that is fully integrated with the self-consistent plasma dynamics. The algorithm accounts for the stochastic nature of Compton scattering reproducing without approximations the exchange of energy between photons and unbound charged species. We present benchmarks of the code against the analytical results of Blumenthal et al. and the numerical solution of the linear Kompaneets equation and good agreement is found between the simulations and the theoretical models. This work is supported by the European Research Council Grant (ERC- 2015-AdG 695088) and the Fundao para a Céncia e Tecnologia (Bolsa de Investigao PD/BD/114323/2016).

  13. Performance of local orbital basis sets in the self-consistent Sternheimer method for dielectric matrices of extended systems

    NASA Astrophysics Data System (ADS)

    Hübener, H.; Pérez-Osorio, M. A.; Ordejón, P.; Giustino, F.

    2012-09-01

    We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ's are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.

  14. A space-based climatology of diurnal MLT tidal winds, temperatures and densities from UARS wind measurements

    NASA Astrophysics Data System (ADS)

    Svoboda, Aaron A.; Forbes, Jeffrey M.; Miyahara, Saburo

    2005-11-01

    A self-consistent global tidal climatology, useful for comparing and interpreting radar observations from different locations around the globe, is created from space-based Upper Atmosphere Research Satellite (UARS) horizontal wind measurements. The climatology created includes tidal structures for horizontal winds, temperature and relative density, and is constructed by fitting local (in latitude and height) UARS wind data at 95 km to a set of basis functions called Hough mode extensions (HMEs). These basis functions are numerically computed modifications to Hough modes and are globally self-consistent in wind, temperature, and density. We first demonstrate this self-consistency with a proxy data set from the Kyushu University General Circulation Model, and then use a linear weighted superposition of the HMEs obtained from monthly fits to the UARS data to extrapolate the global, multi-variable tidal structure. A brief explanation of the HMEs’ origin is provided as well as information about a public website that has been set up to make the full extrapolated data sets available.

  15. Self-consistent conversion of a viscous fluid to particles

    NASA Astrophysics Data System (ADS)

    Molnar, Denes; Wolff, Zack

    2017-02-01

    Comparison of hydrodynamic and "hybrid" hydrodynamics+transport calculations with heavy-ion data inevitably requires the conversion of the fluid to particles. For dissipative fluids the conversion is ambiguous without additional theory input complementing hydrodynamics. We obtain self-consistent shear viscous phase-space corrections from linearized Boltzmann transport theory for a gas of hadrons. These corrections depend on the particle species, and incorporating them in Cooper-Frye freeze-out affects identified particle observables. For example, with additive quark model cross sections, proton elliptic flow is larger than pion elliptic flow at moderately high pT in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. This is in contrast to Cooper-Frye freeze-out with the commonly used "democratic Grad" ansatz that assumes no species dependence. Various analytic and numerical results are also presented for massless and massive two-component mixtures to better elucidate how species dependence arises. For convenient inclusion in pure hydrodynamic and hybrid calculations, Appendix G contains self-consistent viscous corrections for each species both in tabulated and parametrized form.

  16. Positive-Negative Birefringence in Multiferroic Layered Metasurfaces.

    PubMed

    Khomeriki, R; Chotorlishvili, L; Tralle, I; Berakdar, J

    2016-11-09

    We uncover and identify the regime for a magnetically and ferroelectrically controllable negative refraction of a light-traversing multiferroic, oxide-based metastructure consisting of alternating nanoscopic ferroelectric (SrTiO 3 ) and ferromagnetic (Y 3 Fe 2 (FeO 4 ) 3 , YIG) layers. We perform analytical and numerical simulations based on discretized, coupled equations for the self-consistent Maxwell/ferroelectric/ferromagnetic dynamics and obtain a biquadratic relation for the refractive index. Various scenarios of ordinary and negative refraction in different frequency ranges are analyzed and quantified by simple analytical formula that are confirmed by full-fledge numerical simulations. Electromagnetic waves injected at the edges of the sample are propagated exactly numerically. We discovered that, for particular GHz frequencies, waves with different polarizations are characterized by different signs of the refractive index, giving rise to novel types of phenomena such as a positive-negative birefringence effect and magnetically controlled light trapping and accelerations.

  17. Evolution of scalar fields surrounding black holes on compactified constant mean curvature hypersurfaces

    NASA Astrophysics Data System (ADS)

    Morales, Manuel D.; Sarbach, Olivier

    2017-02-01

    Motivated by the goal for high accuracy modeling of gravitational radiation emitted by isolated systems, recently, there has been renewed interest in the numerical solution of the hyperboloidal initial value problem for Einstein's field equations in which the outer boundary of the numerical grid is placed at null infinity. In this article, we numerically implement the tetrad-based approach presented by Bardeen, Sarbach, and Buchman [Phys. Rev. D 83, 104045 (2011), 10.1103/PhysRevD.83.104045] for a spherically symmetric, minimally coupled, self-gravitating scalar field. When this field is massless, the evolution system reduces to a regular, first-order symmetric hyperbolic system of equations for the conformally rescaled scalar field which is coupled to a set of singular elliptic constraints for the metric coefficients. We show how to solve this system based on a numerical finite-difference approximation, obtaining stable numerical evolutions for initial black hole configurations which are surrounded by a spherical shell of scalar field, part of which disperses to infinity and part of which is accreted by the black hole. As a nontrivial test, we study the tail decay of the scalar field along different curves, including one along the marginally trapped tube, one describing the world line of a timelike observer at a finite radius outside the horizon, and one corresponding to a generator of null infinity. Our results are in perfect agreement with the usual power-law decay discussed in previous work. This article also contains a detailed analysis for the asymptotic behavior and regularity of the lapse, conformal factor, extrinsic curvature and the Misner-Sharp mass function along constant mean curvature slices.

  18. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  19. Adaptive Self Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Matthew; Draelos, Timothy; Knox, Hunter

    2017-05-02

    The AST software includes numeric methods to 1) adjust STA/LTA signal detector trigger level (TL) values and 2) filter detections for a network of sensors. AST adapts TL values to the current state of the environment by leveraging cooperation within a neighborhood of sensors. The key metric that guides the dynamic tuning is consistency of each sensor with its nearest neighbors: TL values are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The AST algorithm adapts in near real-time to changing conditions in an attempt tomore » automatically self-tune a signal detector to identify (detect) only signals from events of interest.« less

  20. On a self-consistent representation of earth models, with an application to the computing of internal flattening

    NASA Astrophysics Data System (ADS)

    Denis, C.; Ibrahim, A.

    Self-consistent parametric earth models are discussed in terms of a flexible numerical code. The density profile of each layer is represented as a polynomial, and figures of gravity, mass, mean density, hydrostatic pressure, and moment of inertia are derived. The polynomial representation also allows computation of the first order flattening of the internal strata of some models, using a Gauss-Legendre quadrature with a rapidly converging iteration technique. Agreement with measured geophysical data is obtained, and algorithm for estimation of the geometric flattening for any equidense surface identified by its fractional radius is developed. The program can also be applied in studies of planetary and stellar models.

  1. Numerical simulation of abutment pressure redistribution during face advance

    NASA Astrophysics Data System (ADS)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  2. On performing of interference technique based on self-adjusting Zernike filters (SA-AVT method) to investigate flows and validate 3D flow numerical simulations

    NASA Astrophysics Data System (ADS)

    Pavlov, Al. A.; Shevchenko, A. M.; Khotyanovsky, D. V.; Pavlov, A. A.; Shmakov, A. S.; Golubev, M. P.

    2017-10-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  3. Theory verification and numerical benchmarking on neoclassical toroidal viscosity

    NASA Astrophysics Data System (ADS)

    Wang, Z. R.; Park, J.-K.; Liu, Y. Q.; Logan, N. C.; Menard, J. E.

    2013-10-01

    Systematic verification and numerical benchmarking has been successfully carried out among three different approaches of neoclassical toroidal viscosity (NTV) theory and the corresponding codes: IPEC-PENT is developed based on the combined NTV theory but without geometric simplifications; MARS-K originally calculating the kinetic energy is upgraded to calculate the NTV torque based on the equivalence between kinetic energy and NTV torque; MARS-Q includes smoothly connected NTV formula. The derivation and numerical results both indicate that the imaginary part of kinetic energy calculated by MARS-K is equivalent to the NTV torque in IPEC-PENT. In the benchmark of precession resonance between MARS-Q and MARS-K/IPEC-PENT, it is first time to show the agreement and the correlation between the connected NTV formula and the combined NTV theory in different collisional region. Additionally, both IPEC-PENT and MARS-K indicates the importance of the bounce harmonic resonance which could greatly enhance the NTV torque when E cross B drift frequency reaches the bounce resonance condition. Since MARS-K also has the capability to calculate the plasma response including the kinetic effect self-consistently, the self-consistent NTV torque calculations have also been tested. This work is supported by DOE Contract No. DE-AC02-09CH11466.

  4. On build-up of magnetic energy in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.; Steinolfson, R. S.; Wu, S. T.

    1976-01-01

    The dynamic response of the solar atmosphere is examined with the use of self-consistent numerical solutions to the complete set of nonlinear two-dimensional hydromagnetic equations. Of particular interest are the magnetic-energy buildup and the velocity field established by emerging flux at the base of an existing magnetic loop structure in a stationary atmosphere. For a plasma with a relatively low beta (0.03), the magnetic-energy buildup is approximately twice that of the kinetic energy, while the buildup in magnetic energy first exceeds but is eventually overtaken by the kinetic energy for a plasma with an intermediate beta (3). The increased magnetic flux causes the plasma to flow upward near the loop center and downward near the loop edges for the low-beta plasma. The plasma eventually flows downward throughout the lower portion of the loop carrying the magnetic field with it for the intermediate beta plasma. It is hypothesized that this latter case, and possibly the other case as well, may provide a reasonable simulation of the disappearance of prominences by flowing down into the chromosphere (a form of disparition brusque).

  5. Triviality of Quantum Electrodynamics Revisited

    NASA Astrophysics Data System (ADS)

    Djukanovic, D.; Gegelia, J.; Meißner, Ulf-G.

    2018-03-01

    Quantum electrodynamics is often considered to be a trivial theory. This is based on a number of evidences, both numerical and analytical. One of the strong indications for triviality of QED is the existence of the Landau pole for the running coupling. We show that by treating QED as the leading order approximation of an effective field theory and including the next-to-leading order corrections, the Landau pole is removed. We also analyze the cutoff dependence of the bare coupling at two-loop order and conclude that the conjecture, that for reasons of self-consistency, QED needs to be trivial is a mere artefact of the leading order approximation to the corresponding effective field theory. Supported in part by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” National Natural Science Foundation of under Grant No. 11621131001, DFG under Grant No. TRR110, the Georgian Shota Rustaveli National Science Foundation (Grant FR/417/6-100/14) and the Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) under Grant No. 2017VMA0025

  6. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  7. On neoclassical impurity transport in stellarator geometry

    NASA Astrophysics Data System (ADS)

    García-Regaña, J. M.; Kleiber, R.; Beidler, C. D.; Turkin, Y.; Maaßberg, H.; Helander, P.

    2013-07-01

    The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E × B drift and trapping due to the electrostatic potential variation on a flux surface \\tilde{\\Phi} compared with those due to the magnetic field gradient. This work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device heliotron. It shows that the neoclassical impurity transport can be strongly affected by \\tilde{\\Phi} . The central numerical tool used is the δf particle in cell Monte Carlo code EUTERPE. The \\tilde{\\Phi} used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general \\tilde{\\Phi} self-consistently with EUTERPE is also addressed and a preliminary calculation is presented.

  8. Generalized activity equations for spiking neural network dynamics.

    PubMed

    Buice, Michael A; Chow, Carson C

    2013-01-01

    Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales-the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.

  9. Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models

    NASA Astrophysics Data System (ADS)

    Aubert, Julien

    2013-02-01

    This paper introduces inverse geodynamo modelling, a framework imaging flow throughout the Earth's core from observations of the geomagnetic field and its secular variation. The necessary prior information is provided by statistics from 3-D and self-consistent numerical simulations of the geodynamo. The core method is a linear estimation (or Kalman filtering) procedure, combined with standard frozen-flux core surface flow inversions in order to handle the non-linearity of the problem. The inversion scheme is successfully validated using synthetic test experiments. A set of four numerical dynamo models of increasing physical complexity and similarity to the geomagnetic field is then used to invert for flows at single epochs within the period 1970-2010, using data from the geomagnetic field models CM4 and gufm-sat-Q3. The resulting core surface flows generally provide satisfactory fits to the secular variation within the level of modelled errors, and robustly reproduce the most commonly observed patterns while additionally presenting a high degree of equatorial symmetry. The corresponding deep flows present a robust, highly columnar structure once rotational constraints are enforced to a high level in the prior models, with patterns strikingly similar to the results of quasi-geostrophic inversions. In particular, the presence of a persistent planetary scale, eccentric westward columnar gyre circling around the inner core is confirmed. The strength of the approach is to uniquely determine the trade-off between fit to the data and complexity of the solution by clearly connecting it to first principle physics; statistical deviations observed between the inverted flows and the standard model behaviour can then be used to quantitatively assess the shortcomings of the physical modelling. Such deviations include the (i) westwards and (ii) hemispherical character of the eccentric gyre. A prior model with angular momentum conservation of the core-mantle inner-core system, and gravitational coupling of reasonable strength between the mantle and the inner core, is shown to produce enough westward drift to resolve statistical deviation (i). Deviation (ii) is resolved by a prior with an hemispherical buoyancy release at the inner-core boundary, with excess buoyancy below Asia. This latter result suggests that the recently proposed inner-core translational instability presently transports the solid inner-core material westwards, opposite to the seismologically inferred long-term trend but consistently with the eccentricity of the geomagnetic dipole in recent times.

  10. Kinetic modeling of Nernst effect in magnetized hohlraums.

    PubMed

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  11. Self-assembly of inorganic nanoparticles: Ab ovo

    NASA Astrophysics Data System (ADS)

    Kotov, Nicholas A.

    2017-09-01

    There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  12. Self-Taught Learning Based on Sparse Autoencoder for E-Nose in Wound Infection Detection

    PubMed Central

    He, Peilin; Jia, Pengfei; Qiao, Siqi; Duan, Shukai

    2017-01-01

    For an electronic nose (E-nose) in wound infection distinguishing, traditional learning methods have always needed large quantities of labeled wound infection samples, which are both limited and expensive; thus, we introduce self-taught learning combined with sparse autoencoder and radial basis function (RBF) into the field. Self-taught learning is a kind of transfer learning that can transfer knowledge from other fields to target fields, can solve such problems that labeled data (target fields) and unlabeled data (other fields) do not share the same class labels, even if they are from entirely different distribution. In our paper, we obtain numerous cheap unlabeled pollutant gas samples (benzene, formaldehyde, acetone and ethylalcohol); however, labeled wound infection samples are hard to gain. Thus, we pose self-taught learning to utilize these gas samples, obtaining a basis vector θ. Then, using the basis vector θ, we reconstruct the new representation of wound infection samples under sparsity constraint, which is the input of classifiers. We compare RBF with partial least squares discriminant analysis (PLSDA), and reach a conclusion that the performance of RBF is superior to others. We also change the dimension of our data set and the quantity of unlabeled data to search the input matrix that produces the highest accuracy. PMID:28991154

  13. Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Sato, Hikaru

    2018-04-01

    Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.

  14. 3D Geodynamic Modelling Reveals Stress and Strain Partitioning within Continental Rifting

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Mondy, L. S.; Duclaux, G.; Moresi, L. N.

    2014-12-01

    The relative movement between two divergent rigid plates on a sphere can be described using a Euler pole and an angular velocity. On Earth, this typically results in extensional velocities increasing linearly as a function of the distance from the pole (for example in the South Atlantic, North Atlantic, Woodlark Basin, Red Sea Basin, etc.). This property has strong implications for continental rifting and the formation of passive margins, given the role that extensional velocity plays on both rift style (wide or narrow), fault pattern, subsidence histories, and magmatism. Until now, this scissor-style opening has been approached via suites of 2D numerical models of contrasting extensional velocities, complimenting field geology and geophysics. New advances in numerical modelling tools and computational hardware have enabled us to investigate the geodynamics of this problem in a 3D self-consistent high-resolution context. Using Underworld at a grid resolution of 2 km over a domain of 500 km x 500 km x 180 km, we have explored the role of the velocity gradient on the strain pattern, style of rifting, and decompression melting, along the margin. We find that the three dimensionality of this problem is important. The rise of the asthenosphere is enhanced in 2D models compared to 3D numerical solutions, due to the limited volume of material available in 2D. This leads to oceanisation occurring significantly sooner in 2D models. The 3D model shows that there is a significant time and space dependent flows parallel to the rift-axis. A similar picture emerges from the stress field, showing time and space partitioning, including regions of compression separating areas dominated by extension. The strain pattern shows strong zonation along the rift axis, with increasingly localised deformation with extension velocity and though time.

  15. Quantitative verification of ab initio self-consistent laser theory.

    PubMed

    Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E

    2008-10-13

    We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

  16. Hydrodynamic parameters estimation from self-potential data in a controlled full scale site

    NASA Astrophysics Data System (ADS)

    Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore

    2015-03-01

    A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.

  17. Investigation of the structure of the electromagnetic field and related phenomena, generated by the Active Satellite

    NASA Technical Reports Server (NTRS)

    Alpert, Yakov L.

    1991-01-01

    The altitude dependencies of the moduli of the electric field E in the VLF and LF frequency bands (f sub B much less than F less than f sub B) and in the altitude range of the ionosphere Z equals (400 to 2500) km up to Z equals 6000 km (the bottom of the magnetosphere) were calculated by the linear theory. The amplitudes of the field have large maxima in four regions: the axis field (E sub o) close to the direction of the Earth's magnetic field line B sub o, beta approximately 0 degrees, the fields (E sub St), (E sub RevSt) and (E sub Res) in the Storey, Reversed Story and Resonance cones, beta approximately (0 approaches 20) degrees. Their maxima are very pronounced close to the low hybrid frequency F sub L. The nonlinear heating of the magnetoplasma under the action of an electric field Ee (sup iwt) was recently expanded by the macroscopic theory by the author. The velocities, collision frequencies and temperatures of all the constituents of a magnetoplasma - electrons, ions, and neutral particles - are taken into account. Formulae and numerical results are presented for the ionosphere in the frequency band F equals (1 to 10 exp 4) kHz and altitude range Z approximately (100 - 1000) km. Some results of calculations by the self consistent solution of the basis system of equations are also discussed.

  18. ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R., E-mail: riccardo.belvedere@icra.it, E-mail: jorge.rueda@icra.it, E-mail: ruffini@icra.it

    2015-01-20

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are verymore » different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M {sub ☉}, radius R = 10 km, and moment of inertia I = 10{sup 45} g cm{sup 2}. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.« less

  19. A Validation Approach for Quasistatic Numerical/Experimental Indentation Analysis in Soft Materials Using 3D Digital Image Correlation.

    PubMed

    Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A

    2017-06-28

    A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results.

  20. A Validation Approach for Quasistatic Numerical/Experimental Indentation Analysis in Soft Materials Using 3D Digital Image Correlation

    PubMed Central

    Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A.

    2017-01-01

    A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results. PMID:28773081

  1. Theoretical dissociation energies for ionic molecules

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides.

  2. Cosmic Reionization On Computers III. The Clumping Factor

    DOE PAGES

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-09

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  3. A Role for MST Neurons in Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Perrone, J. A.

    1994-01-01

    A template model of human visual self-motion perception, which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions. We tested the model detectors with stimuli used by others in single-unit studies. The detectors showed emergent properties similar to those of MST neurons: (1) Sensitivity to non-preferred flow; Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow, and (2) Position invariance; The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields. It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.

  4. Self-deconstructing algae biomass as feedstock for transportation fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan Wesley

    The potential for producing biofuels from algae has generated much excitement based on projections of large oil yields with relatively little land use. However, numerous technical challenges remain for achieving market parity with conventional non-renewable liquid fuel sources. Among these challenges, the energy intensive requirements of traditional cell rupture, lipid extraction, and residuals fractioning of microalgae biomass have posed significant challenges to the nascent field of algal biotechnology. Our novel approach to address these problems was to employ low cost solution-state methods and biochemical engineering to eliminate the need for extensive hardware and energy intensive methods for cell rupture, carbohydratemore » and protein solubilization and hydrolysis, and fuel product recovery using consolidated bioprocessing strategies. The outcome of the biochemical deconstruction and conversion process consists of an emulsion of algal lipids and mixed alcohol products from carbohydrate and protein fermentation for co-extraction or in situ transesterification.« less

  5. Vectorial model for guided-mode resonance gratings

    NASA Astrophysics Data System (ADS)

    Fehrembach, A.-L.; Gralak, B.; Sentenac, A.

    2018-04-01

    We propose a self-consistent vectorial method, based on a Green's function technique, to describe the resonances that appear in guided-mode resonance gratings. The model provides intuitive expressions of the reflectivity and transmittivity matrices of the structure, involving coupling integrals between the modes of a planar reference structure and radiative modes. When one mode is excited, the diffracted field for a suitable polarization can be written as the sum of a resonant and a nonresonant term, thus extending the intuitive approach used to explain the Fano shape of the resonance in scalar configurations. When two modes are excited, we derive a physical analysis in a configuration which requires a vectorial approach. We provide numerical validations of our model. From a technical point of view, we show how the Green's tensor of our planar reference structure can be expressed as two scalar Green's functions, and how to deal with the singularity of the Green's tensor.

  6. Micro-navigation in complex periodic environments

    NASA Astrophysics Data System (ADS)

    Chamolly, Alexander; Ishikawa, Takuji; Lauga, Eric

    2017-11-01

    Natural and artificial small-scale swimmers may often self-propel in environments subject to complex geometrical constraints. While most past theoretical work on low-Reynolds number locomotion addressed idealised geometrical situations, not much is known on the motion of swimmers in heterogeneous environments. We investigate theoretically and numerically the behaviour of a single spherical micro-swimmer located in an infinite, periodic body-centred cubic lattice consisting of rigid inert spheres of the same size as the swimmer. We uncover a surprising and complex phase diagram of qualitatively different trajectories depending on the lattice packing density and swimming actuation strength. These results are then rationalised using hydrodynamic theory. In particular we show that the far-field nature of the swimmer (pusher vs. puller) governs the behaviour even at high volume fractions. ERC Grant PhyMeBa (682754, EL); JSPS Grant-in-Aid for Scientific Research (A) (17H00853, TI).

  7. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) Atomic nuclei, (2) Metal clusters

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated ("jungle-like") structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonances in spherical sodium clusters Na8, Na20 and Na40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data.

  8. Cosmic Reionization On Computers III. The Clumping Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  9. COSMIC REIONIZATION ON COMPUTERS. III. THE CLUMPING FACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A.; Gnedin, Nickolay Y., E-mail: kaurov@uchicago.edu, E-mail: gnedin@fnal.gov

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective “clumping factor.” The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field (“proximity zones”). That ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. We also discuss a “local clumping factor,” defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  10. Physics of Alfvén waves and energetic particles in burning plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Liu; Zonca, Fulvio

    2016-01-01

    Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically, the review on the linear physics deals with wave spectral properties and collective excitations by energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are presented within a single unified theoretical framework, where experimental observations and numerical simulation results are referred to elucidate concepts and physics processes.

  11. ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.

    2012-10-01

    Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.

  12. The Locations of Ring Current Pressure Peaks: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 CIR Storm

    NASA Astrophysics Data System (ADS)

    Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.

  13. Magnetic field extrapolation with MHD relaxation using AWSoM

    NASA Astrophysics Data System (ADS)

    Shi, T.; Manchester, W.; Landi, E.

    2017-12-01

    Coronal mass ejections are known to be the major source of disturbances in the solar wind capable of affecting geomagnetic environments. In order for accurate predictions of such space weather events, a data-driven simulation is needed. The first step towards such a simulation is to extrapolate the magnetic field from the observed field that is only at the solar surface. Here we present results of a new code of magnetic field extrapolation with direct magnetohydrodynamics (MHD) relaxation using the Alfvén Wave Solar Model (AWSoM) in the Space Weather Modeling Framework. The obtained field is self-consistent with our model and can be used later in time-dependent simulations without modifications of the equations. We use the Low and Lou analytical solution to test our results and they reach a good agreement. We also extrapolate the magnetic field from the observed data. We then specify the active region corona field with this extrapolation result in the AWSoM model and self-consistently calculate the temperature of the active region loops with Alfvén wave dissipation. Multi-wavelength images are also synthesized.

  14. Self-consistent simulation of an electron beam for a new autoresonant x-ray generator based on TE 102 rectangular mode

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; Orozco, E. A.; Herrera, A. M.

    2016-02-01

    The space cyclotron autoresonance interaction of an electron beam with microwaves of TE 102 rectangular mode is simulated. It is shown that in these conditions the beam electrons can achieve energies which are sufficient to generate hard x-rays. The physical model consists of a rectangular cavity fed by a magnetron oscillator through a waveguide with a ferrite isolator, an iris window and a system of dc current coils which generates an axially symmetric magnetic field. The 3D magnetic field profile is that which maintains the electron beam in the space autoresonance regime. To simulate the beam dynamics, a full self-consistent electromagnetic particle-in-cell code is developed. It is shown that the injected 12keV electron beam of 0.5A current is accelerated to energy of 225keV at a distance of an order of 17cm by 2.45GHz standing microwave field with amplitude of 14kV/cm.

  15. An overview of self-consistent methods for fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Gramoll, Kurt C.; Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    The Walker et al. (1989) self-consistent method to predict both the elastic and the inelastic effective material properties of composites is examined and compared with the results of other self-consistent and elastically based solutions. The elastic part of their method is shown to be identical to other self-consistent methods for non-dilute reinforced composite materials; they are the Hill (1965), Budiansky (1965), and Nemat-Nasser et al. (1982) derivations. A simplified form of the non-dilute self-consistent method is also derived. The predicted, elastic, effective material properties for fiber reinforced material using the Walker method was found to deviate from the elasticity solution for the v sub 31, K sub 12, and mu sub 31 material properties (fiber is in the 3 direction) especially at the larger volume fractions. Also, the prediction for the transverse shear modulus, mu sub 12, exceeds one of the accepted Hashin bounds. Only the longitudinal elastic modulus E sub 33 agrees with the elasticity solution. The differences between the Walker and the elasticity solutions are primarily due to the assumption used in the derivation of the self-consistent method, i.e., the strain fields in the inclusions and the matrix are assumed to remain constant, which is not a correct assumption for a high concentration of inclusions.

  16. Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly

    NASA Astrophysics Data System (ADS)

    Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn

    To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.

  17. Dynamo Enhancement and Mode Selection Triggered by High Magnetic Permeability.

    PubMed

    Kreuzahler, S; Ponty, Y; Plihon, N; Homann, H; Grauer, R

    2017-12-08

    We present results from consistent dynamo simulations, where the electrically conducting and incompressible flow inside a cylinder vessel is forced by moving impellers numerically implemented by a penalization method. The numerical scheme models jumps of magnetic permeability for the solid impellers, resembling various configurations tested experimentally in the von Kármán sodium experiment. The most striking experimental observations are reproduced in our set of simulations. In particular, we report on the existence of a time-averaged axisymmetric dynamo mode, self-consistently generated when the magnetic permeability of the impellers exceeds a threshold. We describe a possible scenario involving both the turbulent flow in the vicinity of the impellers and the high magnetic permeability of the impellers.

  18. Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis.

    PubMed

    Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo

    2018-01-01

    This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Anderson acceleration and application to the three-temperature energy equations

    NASA Astrophysics Data System (ADS)

    An, Hengbin; Jia, Xiaowei; Walker, Homer F.

    2017-10-01

    The Anderson acceleration method is an algorithm for accelerating the convergence of fixed-point iterations, including the Picard method. Anderson acceleration was first proposed in 1965 and, for some years, has been used successfully to accelerate the convergence of self-consistent field iterations in electronic-structure computations. Recently, the method has attracted growing attention in other application areas and among numerical analysts. Compared with a Newton-like method, an advantage of Anderson acceleration is that there is no need to form the Jacobian matrix. Thus the method is easy to implement. In this paper, an Anderson-accelerated Picard method is employed to solve the three-temperature energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two strategies are used to improve the robustness of the Anderson acceleration method. One strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another strategy is to monitor and, if necessary, reduce the matrix condition number of the least-squares problem in the Anderson-acceleration implementation so that numerical stability can be guaranteed. Numerical results show that the Anderson-accelerated Picard method can solve the three-temperature energy equations efficiently. Compared with the Picard method without acceleration, Anderson acceleration can reduce the number of iterations by at least half. A comparison between a Jacobian-free Newton-Krylov method, the Picard method, and the Anderson-accelerated Picard method is conducted in this paper.

  20. Magnetic field evolution and reversals in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  1. A tale of two tasks: reversing the self-regulatory resource depletion effect.

    PubMed

    Converse, Patrick D; Deshon, Richard P

    2009-09-01

    This research examined the self-regulatory depletion model (e.g., M. Muraven & R. F. Baumeister, 2000). Although numerous studies support this model's prediction of decrements in self-regulation across tasks, the majority of this research has relied on a single paradigm in which two tasks are performed in succession. Other work related to learned industriousness (R. Eisenberger, 1992) and adaptation-level theory (H. Helson, 1964) indicates that self-regulatory behavior may remain stable or even improve as a result of prior self-regulatory activities in situations involving additional tasks. Three studies examined these differing perspectives with 2- and 3-task designs. Results indicated that, relative to low initial self-regulatory exertion, high exertion can lead to poorer or better subsequent self-regulation. These findings are consistent with an adaptation view of self-regulation, suggesting that the depletion effect may be only part of the picture of self-regulatory behavior over time.

  2. Perception of object trajectory: parsing retinal motion into self and object movement components.

    PubMed

    Warren, Paul A; Rushton, Simon K

    2007-08-16

    A moving observer needs to be able to estimate the trajectory of other objects moving in the scene. Without the ability to do so, it would be difficult to avoid obstacles or catch a ball. We hypothesized that neural mechanisms sensitive to the patterns of motion generated on the retina during self-movement (optic flow) play a key role in this process, "parsing" motion due to self-movement from that due to object movement. We investigated this "flow parsing" hypothesis by measuring the perceived trajectory of a moving probe placed within a flow field that was consistent with movement of the observer. In the first experiment, the flow field was consistent with an eye rotation; in the second experiment, it was consistent with a lateral translation of the eyes. We manipulated the distance of the probe in both experiments and assessed the consequences. As predicted by the flow parsing hypothesis, manipulating the distance of the probe had differing effects on the perceived trajectory of the probe in the two experiments. The results were consistent with the scene geometry and the type of simulated self-movement. In a third experiment, we explored the contribution of local and global motion processing to the results of the first two experiments. The data suggest that the parsing process involves global motion processing, not just local motion contrast. The findings of this study support a role for optic flow processing in the perception of object movement during self-movement.

  3. Electron self-energy in a homogeneous magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gepraegs, R.; Riffert, H.; Herold, H.

    1994-05-15

    A relativistic calculation of the electron self-energy in a strong homogeneous magnetic field is presented, and the final expressions are calculated numerically for the Landau levels [ital N]=0,1,2,3 and both spin projections ([sigma]=[plus minus]1). For a given [ital N][gt]0 the energy of the spin-up state ([sigma]=+1) increases monotonically, but the spin-down ([sigma]=[minus]1) energy is negative for small fields, shows a minimum, and then increases for large fields; a crossing of levels appears for [ital N][gt]0. The total decay rates for these states are also obtained, as well as the spin-flip transition probability for ([ital N]=1, [sigma]=+1)[r arrow]([ital N]=1, [sigma]=[minus]1). Itmore » turns out that this transition rate is extremely small compared to the usual cyclotron emission rates.« less

  4. On a novel self-regulating shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Son, Seyul; Park, Kyungmook; Biggs, David; Andrews, Courtney; Mockensturm, Eric M.; Goulbourne, Nakhiah C.

    2011-04-01

    Polyurethane shape memory polymers (PU-SMPs) are active materials that can be transformed into complex shapes with the ability to recover their original shape even after undergoing large deformations. Because of their light weight, large recoverability, low cost, and high compliance, SMPs can be potentially employed as actuators, MEMS devices, temperature sensors, and damping elements to name a few. One of the key challenges in implementing SMPs is the response time which is limited by the method of heating and cooling and the material. Unlike shape memory alloys, SMPs can be activated by multiple stimuli including lasers, resistive heating, electric fields, and magnetic fields. While these methods may provide an efficient way of heating the SMP, they rely on the slow process of passive conduction for cooling. In this paper, a self regulating SMP (SR-SMP) composite is introduced, whereby a novel heating and cooling system consisting of embedded silica capillary tubes in the SMP (DiAPLEX® MP4510: SMP Technologies, Inc.) has been developed. The tubes are used to pump hot/cold fluid through the SMP membrane and hence provide a local temperature source. In order to show the effectiveness and efficiency of the mechanism, the thermomechanical response of the SR-SMP is compared experimentally to a SMP with "conventional" i.e. global heating and cooling mechanisms. It is shown that the SR-SMP has a faster thermomechanical response. It has been demonstrated previously that soft SMPs can be controlled by an electric field while in the rubbery phase, thus taking advantage of the Maxwell stress or electrostatic stress effect. Thermomechanical characterization of PU-SMPs is described for different weight percentages of resin (Diphenylmethane-4, 4'-diisocyanate) and hardener (1,4-Butanediol). Varying the percent hardener reduced the effective cross-link density of the polymer and hence the thermomechanical properties. The electromechanical response of pure SMP and SR-SMP is predicted numerically. The numerical computation indicates that the softer SMPs (resin:hardener = 5:4, 8:7, and 9:8) could be used as electroactive polymers.

  5. 78 FR 26671 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... also consistent with New York's General Business Law, which, among other things, requires SROs in New... designee for evaluation and use, in accordance with applicable law, in enhancing the security of the... of fingerprint based criminal records is permitted only when authorized by law. Numerous federal and...

  6. A review on the solution of Grad-Shafranov equation in the cylindrical coordinates based on the Chebyshev collocation technique

    NASA Astrophysics Data System (ADS)

    Amerian, Z.; Salem, M. K.; Salar Elahi, A.; Ghoranneviss, M.

    2017-03-01

    Equilibrium reconstruction consists of identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. Numerous methods exist to solve the Grad-Shafranov equation, describing the equilibrium of plasma confined by an axisymmetric magnetic field. In this paper, we have proposed a new numerical solution to the Grad-Shafranov equation (an axisymmetric, magnetic field transformed in cylindrical coordinates solved with the Chebyshev collocation method) when the source term (current density function) on the right-hand side is linear. The Chebyshev collocation method is a method for computing highly accurate numerical solutions of differential equations. We describe a circular cross-section of the tokamak and present numerical result of magnetic surfaces on the IR-T1 tokamak and then compare the results with an analytical solution.

  7. The calculation of transport phenomena in electromagnetically levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation has been developed for the electromagnetic force field, fluid flow field, and solute concentration field of levitation-melted metal specimens. The governing equations consist of the conventional transport equations combined with the appropriate expressions for the electromagnetic force field. The predictions obtained by solving the governing equations numerically on a digital computer are in good agreement with lifting force and average temperature measurements reported in the literature.

  8. Self-consistent current sheet structures in the quiet-time magnetotail

    NASA Technical Reports Server (NTRS)

    Holland, Daniel L.; Chen, James

    1993-01-01

    The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.

  9. Statistical and hydrodynamic properties of double-ring polymers with a fixed linking number between twin rings.

    PubMed

    Uehara, Erica; Deguchi, Tetsuo

    2014-01-28

    For a double-ring polymer in solution we evaluate the mean-square radius of gyration and the diffusion coefficient through simulation of off-lattice self-avoiding double polygons consisting of cylindrical segments with radius rex of unit length. Here, a self-avoiding double polygon consists of twin self-avoiding polygons which are connected by a cylindrical segment. We show numerically that several statistical and dynamical properties of double-ring polymers in solution depend on the linking number of the constituent twin ring polymers. The ratio of the mean-square radius of gyration of self-avoiding double polygons with zero linking number to that of no topological constraint is larger than 1, in particular, when the radius of cylindrical segments rex is small. However, the ratio is almost constant with respect to the number of vertices, N, and does not depend on N. The large-N behavior of topological swelling is thus quite different from the case of knotted random polygons.

  10. Turbulent MHD transport coefficients - An attempt at self-consistency

    NASA Technical Reports Server (NTRS)

    Chen, H.; Montgomery, D.

    1987-01-01

    In this paper, some multiple scale perturbation calculations of turbulent MHD transport coefficients begun in earlier papers are first completed. These generalize 'alpha effect' calculations by treating the velocity field and magnetic field on the same footing. Then the problem of rendering such calculations self-consistent is addressed, generalizing an eddy-viscosity hypothesis similar to that of Heisenberg for the Navier-Stokes case. The method also borrows from Kraichnan's direct interaction approximation. The output is a set of integral equations relating the spectra and the turbulent transport coefficients. Previous 'alpha effect' and 'beta effect' coefficients emerge as limiting cases. A treatment of the inertial range can also be given, consistent with a -5/3 energy spectrum power law. In the Navier-Stokes limit, a value of 1.72 is extracted for the Kolmogorov constant. Further applications to MHD are possible.

  11. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  12. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less

  13. Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2017-03-01

    We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar field. Throughout the paper, we analytically characterize the transition scales of the scalar field and establish the domain of validity of the fast oscillation regime. We analytically confirm and complement the important results of Li, Rindler-Daller, and Shapiro [Phys. Rev. D 89, 083536 (2014), 10.1103/PhysRevD.89.083536]. We determine the phase diagram of a scalar field with repulsive or attractive self-interaction. We show that the transition between the weakly self-interacting regime and the strongly self-interacting regime depends on how the scattering length of the bosons compares with their effective Schwarzschild radius. We also constrain the parameters of the scalar field from astrophysical and cosmological observations. Numerical applications are made for ultralight bosons without self-interaction (fuzzy dark matter), for bosons with repulsive self-interaction, and for bosons with attractive self-interaction (QCD axions and ultralight axions).

  14. Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts

    NASA Astrophysics Data System (ADS)

    Hittmeir, Sabine; Klein, Rupert

    2018-04-01

    Moist processes are among the most important drivers of atmospheric dynamics, and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein and Majda (Theor Comput Fluid Dyn 20:525-551, 2006) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multiscale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modeling framework for atmospheric flows. Deep narrow updrafts, the so-called hot towers, constitute principal building blocks of larger scale storm systems. They are analyzed here in a sample application of the new scaling regime. A single quasi-one-dimensional upright columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy, a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity, and it is responsible for the generation of self-sustained balanced updrafts. The time-dependent updraft structure is encoded in a Hamilton-Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles.

  15. Evidences of landslide earthquake triggering due to self-excitation process

    NASA Astrophysics Data System (ADS)

    Bozzano, F.; Lenti, L.; Martino, Salvatore; Paciello, A.; Scarascia Mugnozza, G.

    2011-06-01

    The basin-like setting of stiff bedrock combined with pre-existing landslide masses can contribute to seismic amplifications in a wide frequency range (0-10 Hz) and induce a self-excitation process responsible for earthquake-triggered landsliding. Here, the self-excitation process is proposed to justify the far-field seismic trigger of the Cerda landslide (Sicily, Italy) which was reactivated by the 6th September 2002 Palermo earthquake ( M s = 5.4), about 50 km far from the epicentre. The landslide caused damage to farm houses, roads and aqueducts, close to the village of Cerda, and involved about 40 × 106 m3 of clay shales; the first ground cracks due to the landslide movement formed about 30 min after the main shock. A stress-strain dynamic numerical modelling, performed by FDM code FLAC 5.0, supports the notion that the combination of local geological setting and earthquake frequency content played a fundamental role in the landslide reactivation. Since accelerometric records of the triggering event are not available, dynamic equivalent inputs have been used for the numerical modelling. These inputs can be regarded as representative for the local ground shaking, having a PGA value up to 0.2 m/s2, which is the maximum expected in 475 years, according to the Italian seismic hazard maps. A 2D numerical modelling of the seismic wave propagation in the Cerda landslide area was also performed; it pointed out amplification effects due to both the structural setting of the stiff bedrock (at about 1 Hz) and the pre-existing landslide mass (in the range 3-6 Hz). The frequency peaks of the resulting amplification functions ( A( f)) fit well the H/ V spectral ratios from ambient noise and the H/ H spectral ratios to a reference station from earthquake records, obtained by in situ velocimetric measurements. Moreover, the Fourier spectra of earthquake accelerometric records, whose source and magnitude are consistent with the triggering event, show a main peak at about 1 Hz. This frequency value well fits the one amplified by the geological setting of the bedrock in correspondence with the landslide area, which is constituted of marly limestones and characterised by a basin-like geometry.

  16. Modeling of the Dynamics of Radio Wave Reflection and Absorption in a Smoothly Ionomogeneous Plasma with Electromagnetically Driven Strong Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Kochetov, A. V.

    2018-05-01

    This work was initiated by experiments on studying the self-action of radio waves incident on the ionosphere from a ground-based transmitter at the stage of electromagnetic excitation of Langmuir turbulence (Langmuir effect). The emphasis is on the impact of "self-consistent" collisionless absorption of radio waves by the Langmuir turbulence, which develops when the incident-wave field swells in the resonant region of a smoothly inhomogeneous plasma, on the dynamics of the radio wave reflection. Electrodynamic characteristics of the nonlinear-plasma layer, which has a linear unperturbed profile of the plasma density, with different features of the absorption development are obtained for a high intensity of the incident radiation. Calculations of "soft" and "hard" regimes of the absorption occurrence, as well as hysteresis modes in which the damping switch-on and off thresholds differ several times, are carried out. The algorithms we devised and the results of the study can serve as the basis for a more adequate and more detailed numerical simulation for interpretation of the experimental data obtained at the stage of the Langmuir effect in the ionosphere.

  17. Drag Reduction On Multiscale Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Jenner, Elliot; Barbier, Charlotte; D'Urso, Brian

    2013-11-01

    Fluid drag reduction is of great interest in a variety of fields, including hull engineering, microfluidics, and drug delivery. We fabricated samples with multi-scale superhydrophobic surfaces, which consist of hexagonally self-ordered microscopic spikes grown via anodization on macroscopic grooves cut in aluminum. The hydrodynamic drag properties were studied with a cone-and-plate rheometer, showing significant drag reduction near 15% in turbulent flow and near 30% in laminar flow. In addition to these experiments, numerical simulations were performed in order to estimate the slip length at high speeds. Furthermore, we will report on the progress of experiments with a new type of surface combining superhydrophobic surfaces like those discussed above with Slippery Liquid Infused Porous Surfaces (SLIPS), which utilize an oil layer to create a hydrophobic self-repairing surface. These ``Super-SLIPS'' may combine the best properties of both superhydrophobic surfaces and SLIPS, by combining a drag reducing air-layer and an oil layer which may improve durability and biofouling resistance. This research was supported by the ORNL Seed Money Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  18. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  19. Self-consistent approach to many-body localization and subdiffusion

    NASA Astrophysics Data System (ADS)

    Prelovšek, P.; Herbrych, J.

    2017-07-01

    An analytical theory, based on the perturbative treatment of the disorder and extended into a self-consistent set of equations for the dynamical density correlations, is developed and applied to the prototype one-dimensional model of many-body localization. Results show a qualitative agreement with the numerically obtained dynamical structure factor in the whole range of frequencies and wave vectors, as well as across the transition to nonergodic behavior. The theory reveals the singular nature of the one-dimensional problem, whereby on the ergodic side the dynamics is subdiffusive with dynamical conductivity σ (ω ) ∝|ω| α , i.e., with vanishing dc limit σ0=0 and α <1 varying with disorder, while we get α >1 in the localized phase.

  20. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    PubMed

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  1. A self-reference PRF-shift MR thermometry method utilizing the phase gradient

    NASA Astrophysics Data System (ADS)

    Langley, Jason; Potter, William; Phipps, Corey; Huang, Feng; Zhao, Qun

    2011-12-01

    In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature.

  2. Electron hybrid simulations of whistler-mode chorus generation with real parameters in the Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Omura, Y.

    2016-12-01

    Whistler-mode chorus emissions play curial roles in the evolution of radiation belt electrons. Chorus emissions are narrow band emissions observed in the typical frequency range of 0.2 to 0.8 fce0 with a gap at half the fce0, where fce0 represents the electron gyrofrequency at the magnetic equator. The generation process of chorus has been explained by the nonlinear wave growth theory [see review by Omura et al., in AGU Monograph "Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, 2012] and has been reproduced by self-consistent numerical experiments [e.g., Katoh and Omura, GRL 2007, JGR 2011, 2013]. In the present study, we show the result of electron hybrid simulation of the generation process of whistler-mode chorus emissions under realistic initial conditions. We refer in-situ observations by Cluster [Santolik et al., 2003] for the initial parameters of energetic electrons and the spatial inhomogeneity of the background magnetic field. In the simulation results we observe chorus emissions with rising tones whose the spectral characteristics are consistent with the observation. We also find that the simulation results are consistently explained by the theoretically estimated threshold and optimum wave amplitudes of chorus elements based on the nonlinear wave growth theory. A series of simulations reveal properties of the chorus generation depending on the velocity distribution of energetic electrons [Katoh and Omura, JGR 2011] and the background magnetic field inhomogeneity [Katoh and Omura, JGR 2013]. These properties should be evaluated by comparison with in-situ and ground-based observations.

  3. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation.

    PubMed

    Ziaei, Vafa; Bredow, Thomas

    2018-05-31

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe-Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  4. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe–Salpeter equation

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2018-05-01

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  5. Nonlinear gravitational self-force: Field outside a small body

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  6. A self-consistency check for unitary propagation of Hawking quanta

    NASA Astrophysics Data System (ADS)

    Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng

    2017-11-01

    The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.

  7. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons.

    PubMed

    Nakatsutsumi, M; Sentoku, Y; Korzhimanov, A; Chen, S N; Buffechoux, S; Kon, A; Atherton, B; Audebert, P; Geissel, M; Hurd, L; Kimmel, M; Rambo, P; Schollmeier, M; Schwarz, J; Starodubtsev, M; Gremillet, L; Kodama, R; Fuchs, J

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5  T at laser intensities ~10 21  W cm -2 ) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

  8. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE PAGES

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; ...

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  9. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  10. Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure

    NASA Technical Reports Server (NTRS)

    Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2003-01-01

    Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid velocity profile due to the contribution of energetic particles to the momentum and energy fluxes.

  11. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere under enhanced convection: RCM simulations combined with force-balance magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.

    2010-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.

  12. Robotic Range Clearance Competition (R2C2)

    DTIC Science & Technology

    2011-10-01

    unexploded ordnance (UXO). A large part of the debris field consists of ferrous metal objects that magnetic 39 Distribution A: Approved for public...was set at 7 degrees above horizontal based on terrain around the Base station. We used the BSUBR file for all fields except the Subsurface...and subsurface clearance test areas had numerous pieces of simulated unexploded ordinance (SUXO) buried at random locations around the field . These

  13. Hydromagnetic flow of a Cu-water nanofluid past a moving wedge with viscous dissipation

    NASA Astrophysics Data System (ADS)

    M. Salem, A.; Galal, Ismail; Rania, Fathy

    2014-04-01

    A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter λ, solid volume fraction φ, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.

  14. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  15. What is a photon?

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2015-09-01

    The linguistic and epistemological constraints on finding and expressing an answer to the title question are reviewed. First, it is recalled that "fields" are defined in terms of their effect on "test charges" and not in terms of any, even idealistically considered, primary, native innate qualities of their own. Thus, before fields can be discussed, the theorist has to have already available a defined "test particle" and field source. Clearly, neither the test nor the engendering particles can be defined as elements of the considered field without redefining the term "field." Further, the development of a theory as a logical structure (i.e., an internally self consistent conceptual complex) entails that the subject(s) of the theory (the primitive elements) and the rules governing their interrelationships (axioms) cannot be deduced by any logical procedure. They are always hypothesized on the basis of intuition supported by empirical experience. Given hypothesized primitive elements and axioms it is possible, in principle, to test for the 'completion' of the axiom set (i.e., any addition introduces redundancy) and for self consistency. Thus, theory building is limited to establishing the self consistency of a theory's mathematical expression and comparing that with the external, ontic world. Finally, a classical model with an event-by-event simulation of an EPR-B experiment to test a Bell Inequality is described. This model leads to a violation of Bell's limit without any quantum input (no nonlocal interaction nor entanglement), thus substantiating previous critical analysis of the derivation of Bell inequalities. On the basis of this result, it can be concluded that the electromagnetic interaction possesses no preternatural aspects, and that the usual models in terms of waves, fields and photons are all just imaginary constructs with questionable relation to a presumed reality.

  16. Persistent superconductor currents in holographic lattices.

    PubMed

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  17. X-ray Full Field Microscopy at 30 keV

    NASA Astrophysics Data System (ADS)

    Marschall, F.; Last, A.; Simon, M.; Kluge, M.; Nazmov, V.; Vogt, H.; Ogurreck, M.; Greving, I.; Mohr, J.

    2014-04-01

    In our X-ray full field microscopy experiments, we demonstrated a resolution better than 260 nm over the entire field of view of 80 μm × 80 μm at 30 keV. Our experimental setup at PETRA III, P05, had a length of about 5 m consisting of an illumination optics, an imaging lens and a detector. For imaging, we used a compound refractive lens (CLR) consisting of mr-L negative photo resist, which was fabricated by deep X-ray lithography. As illumination optics, we choose a refractive rolled X-ray prism lens, which was adapted to the numerical aperture of the imaging lens.

  18. Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.

    PubMed

    Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong

    2017-06-01

    Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.

  19. Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds

    PubMed Central

    Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M.; Tan, Zhihong

    2017-01-01

    Abstract Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS‐II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS‐II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid‐scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS‐II observations are identified. The results show that using weighted essentially non‐oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest‐fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high‐quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest‐fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model. PMID:28943997

  20. The equilibrium of overpressurized polytropes

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Hersant, F.; Nasello, G.

    2018-03-01

    We investigate the impact of an external pressure on the structure of self-gravitating polytropes for axially symmetric ellipsoids and rings. The confinement of the fluid by photons is accounted for through a boundary condition on the enthalpy H. Equilibrium configurations are determined numerically from a generalized `self-consistent-field' method. The new algorithm incorporates an intraloop re-scaling operator R(H), which is essential for both convergence and getting self-normalized solutions. The main control parameter is the external-to-core enthalpy ratio. In the case of uniform rotation rate and uniform surrounding pressure, we compute the mass, the volume, the rotation rate and the maximum enthalpy. This is repeated for a few polytropic indices, n. For a given axial ratio, overpressurization globally increases all output quantities, and this is more pronounced for large n. Density profiles are flatter than in the absence of an external pressure. When the control parameter asymptotically tends to unity, the fluid converges towards the incompressible solution, whatever the index, but becomes geometrically singular. Equilibrium sequences, obtained by varying the axial ratio, are built. States of critical rotation are greatly exceeded or even disappear. The same trends are observed with differential rotation. Finally, the typical response to a photon point source is presented. Strong irradiation favours sharp edges. Applications concern star-forming regions and matter orbiting young stars and black holes.

Top