A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well
NASA Astrophysics Data System (ADS)
Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun
2017-11-01
Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.
Chen, Zhiwei; Chen, Bo
2014-01-01
Many long-span bridges have been built throughout the world in recent years but they are often subject to multiple types of dynamic loads, especially those located in wind-prone regions and carrying both trains and road vehicles. To ensure the safety and functionality of these bridges, dynamic responses of long-span bridges are often required for bridge assessment. Given that there are several limitations for the assessment based on field measurement of dynamic responses, a promising approach is based on numerical simulation technologies. This paper provides a detailed review of key issues involved in dynamic response analysis of long-span multiload bridges based on numerical simulation technologies, including dynamic interactions between running trains and bridge, between running road vehicles and bridge, and between wind and bridge, and in the wind-vehicle-bridge coupled system. Then a comprehensive review is conducted for engineering applications of newly developed numerical simulation technologies to safety assessment of long-span bridges, such as assessment of fatigue damage and assessment under extreme events. Finally, the existing problems and promising research efforts for the numerical simulation technologies and their applications to assessment of long-span multiload bridges are explored.
Chen, Zhiwei; Chen, Bo
2014-01-01
Many long-span bridges have been built throughout the world in recent years but they are often subject to multiple types of dynamic loads, especially those located in wind-prone regions and carrying both trains and road vehicles. To ensure the safety and functionality of these bridges, dynamic responses of long-span bridges are often required for bridge assessment. Given that there are several limitations for the assessment based on field measurement of dynamic responses, a promising approach is based on numerical simulation technologies. This paper provides a detailed review of key issues involved in dynamic response analysis of long-span multiload bridges based on numerical simulation technologies, including dynamic interactions between running trains and bridge, between running road vehicles and bridge, and between wind and bridge, and in the wind-vehicle-bridge coupled system. Then a comprehensive review is conducted for engineering applications of newly developed numerical simulation technologies to safety assessment of long-span bridges, such as assessment of fatigue damage and assessment under extreme events. Finally, the existing problems and promising research efforts for the numerical simulation technologies and their applications to assessment of long-span multiload bridges are explored. PMID:25006597
NASA Astrophysics Data System (ADS)
Bella, P.; Buček, P.; Ridzoň, M.; Mojžiš, M.; Parilák, L.'
2017-02-01
Production of multi-rifled seamless steel tubes is quite a new technology in Železiarne Podbrezová. Therefore, a lot of technological questions emerges (process technology, input feedstock dimensions, material flow during drawing, etc.) Pilot experiments to fine tune the process cost a lot of time and energy. For this, numerical simulation would be an alternative solution for achieving optimal parameters in production technology. This would reduce the number of experiments needed, lowering the overall costs of development. However, to claim the numerical results to be relevant it is necessary to verify them against the actual plant trials. Searching for optimal input feedstock dimension for drawing of multi-rifled tube with dimensions Ø28.6 mm × 6.3 mm is what makes the main topic of this paper. As a secondary task, effective position of the plug - die couple has been solved via numerical simulation. Comparing the calculated results with actual numbers from plant trials a good agreement was observed.
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2000-01-01
Over three million Americans and 20 million people worldwide suffer from some form of heart failure. Mechanical heart assist devices are being used as a temporary support to sick ventricle and valves as a bridge-to-transplant or bridge-to-recovery. This viewgraph presentation gives an overview of the development of NASA-DeBakey Ventricular Assist Device (VAD) using numerical aerospace simulation technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serafimovich, P. G.; Stepikhova, M. V., E-mail: mst@ipm.sci-nnov.ru; Kazanskiy, N. L.
2016-08-15
The production technology of a photonic-crystal cavity formed as a group of holes in a silicon strip waveguide by ion-beam etching is described. The parasitic effect associated with hole conicity which develops upon hole formation by the given technology is studied. Numerical simulation shows that the hole-conicity induced decrease in the cavity quality factor can be compensated with consideration for the hole volume. The influence of the waveguide thickness on the resonance wavelength and quality factor of the photonic-crystal cavity is analyzed.
Numerical simulation of cavitating flows in shipbuilding
NASA Astrophysics Data System (ADS)
Bagaev, D.; Yegorov, S.; Lobachev, M.; Rudnichenko, A.; Taranov, A.
2018-05-01
The paper presents validation of numerical simulations of cavitating flows around different marine objects carried out at the Krylov State Research Centre (KSRC). Preliminary validation was done with reference to international test objects. The main part of the paper contains results of solving practical problems of ship propulsion design. The validation of numerical simulations by comparison with experimental data shows a good accuracy of the supercomputer technologies existing at Krylov State Research Centre for both hydrodynamic and cavitation characteristics prediction.
The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems
1999-09-30
The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Environmental Technology Laboratory...formulation, and numerical prediction of the life cycles of synoptic-scale and mesoscale extratropical weather systems, including the influence of planetary...scale inter-annual and intra-seasonal variability on their evolution. These weather systems include: extratropical oceanic and land-falling cyclones
Particle-in-cell code library for numerical simulation of the ECR source plasma
NASA Astrophysics Data System (ADS)
Shirkov, G.; Alexandrov, V.; Preisendorf, V.; Shevtsov, V.; Filippov, A.; Komissarov, R.; Mironov, V.; Shirkova, E.; Strekalovsky, O.; Tokareva, N.; Tuzikov, A.; Vatulin, V.; Vasina, E.; Fomin, V.; Anisimov, A.; Veselov, R.; Golubev, A.; Grushin, S.; Povyshev, V.; Sadovoi, A.; Donskoi, E.; Nakagawa, T.; Yano, Y.
2003-05-01
The project ;Numerical simulation and optimization of ion accumulation and production in multicharged ion sources; is funded by the International Science and Technology Center (ISTC). A summary of recent project development and the first version of a computer code library for simulation of electron-cyclotron resonance (ECR) source plasmas based on the particle-in-cell method are presented.
Simulation-Based Evaluation of Learning Sequences for Instructional Technologies
ERIC Educational Resources Information Center
McEneaney, John E.
2016-01-01
Instructional technologies critically depend on systematic design, and learning hierarchies are a commonly advocated tool for designing instructional sequences. But hierarchies routinely allow numerous sequences and choosing an optimal sequence remains an unsolved problem. This study explores a simulation-based approach to modeling learning…
Large-Scale Simulations and Detailed Flow Field Measurements for Turbomachinery Aeroacoustics
NASA Technical Reports Server (NTRS)
VanZante, Dale
2008-01-01
The presentation is a review of recent work in highly loaded compressors, turbine aeroacoustics and cooling fan noise. The specific topics are: the importance of correct numerical modeling to capture blade row interactions in the Ultra Efficient Engine Technology Proof-of-Concept Compressor, the attenuation of a detonation pressure wave by an aircraft axial turbine stage, current work on noise sources and acoustic attenuation in turbines, and technology development work on cooling fans for spaceflight applications. The topic areas were related to each other by certain themes such as the advantage of an experimentalist s viewpoint when analyzing numerical simulations and the need to improve analysis methods for very large numerical datasets.
Numerical aerodynamic simulation facility preliminary study, volume 1
NASA Technical Reports Server (NTRS)
1977-01-01
A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.
NASA Astrophysics Data System (ADS)
Nagy, M.; Behúlová, M.
2017-11-01
Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.
VCSEL Applications and Simulation
NASA Technical Reports Server (NTRS)
Cheung, Samson; Goorjian, Peter; Ning, Cun-Zheng; Li, Jian-Zhong
2000-01-01
This viewgraph presentation gives an overview of Vertical Cavity Surface Emitting Laser (VCSEL) simulation and its applications. Details are given on the optical interconnection in information technology of VCSEL, the formulation of the simulation, its numeric algorithm, and the computational results.
NASA Technical Reports Server (NTRS)
Follen, Gregory; auBuchon, M.
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.
Discussion of DNS: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1997-01-01
This paper covers the review, status, and projected future of direct numerical simulation (DNS) methodology relative to the state-of-the-art in computer technology, numerical methods, and the trends in fundamental research programs.
A system for the simulation and evaluation of satellite communication networks
NASA Technical Reports Server (NTRS)
Bagwell, J. W.
1983-01-01
With the emergence of a new era in satellite communications brought about by NASA's thrust into the Ka band with multibeam and onboard processing technologies, new and innovative techniques for evaluating these concepts and systems are required. To this end, NASA, in conjunction with its extensive program for advanced communications technology development, has undertaken to develop a concept for the simulation and evaluation of a complete communications network. Incorporated in this network will be proof of concept models of the latest technologies proposed for future satellite communications systems. These include low noise receivers, matrix switches, baseband processors, and solid state and tube type high power amplifiers. To accomplish this, numerous supporting technologies must be added to those aforementioned proof of concept models. These include controllers for synchronization, order wire, and resource allocation, gain compensation, signal leveling, power augmentation, and rain fade and range delay simulation. Taken together, these will be assembled to comprise a system capable of addressing numerous design and performance questions. The simulation and evaluation system as planned will be modular in design and implementation, capable of modification and updating to track and evaluate a continuum emerging concepts and technologies.
Numerical simulation of hull curved plate forming by electromagnetic force assisted line heating
NASA Astrophysics Data System (ADS)
Wang, Ji; Wang, Shun; Liu, Yujun; Li, Rui; Liu, xiao
2017-11-01
Line heating is a common method in shipyards for forming of hull curved plate. The aluminum alloy plate is widely used in shipbuilding. To solve the problem of thick aluminum alloy plate forming with complex curved surface, a new technology named electromagnetic force assisted line heating(EFALH) was proposed in this paper. The FEM model of EFALH was established and the effect of electromagnetic force assisted forming was verified by self development equipment. Firstly, the solving idea of numerical simulation for EFALH was illustrated. Then, the coupled numerical simulation model of multi physical fields were established. Lastly, the reliability of the numerical simulation model was verified by comparing the experimental data. This paper lays a foundation for solving the forming problems of thick aluminum alloy curved plate in shipbuilding.
Appropriate Simulants are a Requirement for Mars Surface Systems Technology Development
NASA Technical Reports Server (NTRS)
Edmunson, Jennifer E.; McLemore, Carole A.; Rickman, Douglas L.
2012-01-01
To date, there are two simulants for martian regolith: JSC Mars-1A, produced from palagonitic (weathered) basaltic tephra mined from the Pu'u Nene cinder cone in Hawaii [1] by commercial company Orbitec, and Mojave Mars Simulant (MMS), produced from Saddleback Basalt in the western Mojave desert by the Jet Propulsion Laboratory [2]. Until numerous recent orbiters, rovers, and landers were sent to Mars, weathered basalt was surmised to cover every inch of the martian landscape. All missions since Viking have disproven that the entire martian surface is weathered basalt. In fact, the outcrops, features, and surfaces that are significantly different from weathered basalt are too numerous to realistically count. There are gullies, evaporites, sand dunes, lake deposits, hydrothermal deposits, alluvium, etc. that indicate sedimentary and chemical processes. There is no one size fits all simulant. Each unique area requires its own simulant in order to test technologies and hardware, thereby reducing risk.
Explicit finite-difference simulation of optical integrated devices on massive parallel computers.
Sterkenburgh, T; Michels, R M; Dress, P; Franke, H
1997-02-20
An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.
Multidisciplinary propulsion simulation using NPSS
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.
1992-01-01
The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.
Numerical simulation of intelligent compaction technology for construction quality control.
DOT National Transportation Integrated Search
2014-12-01
Intelligent compaction (IC) technique is a fast-developing technology for compaction quality control and acceptance. Proof rolling using the intelligent compaction rollers after completing compaction can eectively identify : the weak spots and sig...
Experimental and numerical research on forging with torsion
NASA Astrophysics Data System (ADS)
Petrov, Mikhail A.; Subich, Vadim N.; Petrov, Pavel A.
2017-10-01
Increasing the efficiency of the technological operations of blank production is closely related to the computer-aided technologies (CAx). On the one hand, the practical result represents reality exactly. On the other hand, the development procedure of new process development demands unrestricted resources, which are limited on the SMEs. The tools of CAx were successfully applied for development of new process of forging with torsion and result analysis as well. It was shown, that the theoretical calculations find the confirmation both in praxis and during numerical simulation. The mostly used constructional materials were under study. The torque angles were stated. The simulated results were evaluated by experimental procedure.
Seismic waveform modeling over cloud
NASA Astrophysics Data System (ADS)
Luo, Cong; Friederich, Wolfgang
2016-04-01
With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.
The development and application of CFD technology in mechanical engineering
NASA Astrophysics Data System (ADS)
Wei, Yufeng
2017-12-01
Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.
Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel
NASA Astrophysics Data System (ADS)
Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.
2017-09-01
Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.
Benchmark Problems of the Geothermal Technologies Office Code Comparison Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; Podgorney, Robert; Kelkar, Sharad M.
A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office has sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulationmore » capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. Study participants submitted solutions to problems for which their simulation tools were deemed capable or nearly capable. Some participating codes were originally developed for EGS applications whereas some others were designed for different applications but can simulate processes similar to those in EGS. Solution submissions from both were encouraged. In some cases, participants made small incremental changes to their numerical simulation codes to address specific elements of the problem, and in other cases participants submitted solutions with existing simulation tools, acknowledging the limitations of the code. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of modern numerical simulation tools by recognized expert practitioners.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Yushuke; Yamamoto, Tsuyoshi; Yamada, Minetsugu
2008-12-31
The Project of Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship (PROITERES) was started at Osaka Institute of Technology. In PROITERES, a 10-kg small satellite with electrothermal pulsed plasma thrusters (PPTs), named JOSHO, will be launched in 2010. The main mission is powered flight of small satellite by electric thruster itself. Electrothermal PPTs were studied with both experiments and numerical simulations. An electrothermal PPT with a side-fed propellant feeding mechanism achieved a total impulse of 3.6 Ns with a repetitive 10000-shot operation. An unsteady numerical simulation showed the existence of considerable amount of ablation delaying to the discharge. However, it was alsomore » shown that this phenomenon should not be regarded as the 'late time ablation' for electrothermal PPTs.« less
Technology Focus: Multi-Representational Approaches to Equation Solving
ERIC Educational Resources Information Center
Garofalo, Joe; Trinter, Christine
2009-01-01
Most mathematical functions can be represented in numerous ways. The main representations typically addressed in school, often referred to as "the big three," are graphical, algebraic, and numerical representations, but there are others as well (e.g., diagrams, words, simulations). These different types of representations "often illuminate…
The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Chen, Jundong
2018-03-01
Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.
Simulation and Experimental Study on Cavitating Water Jet Nozzle
NASA Astrophysics Data System (ADS)
Zhou, Wei; He, Kai; Cai, Jiannan; Hu, Shaojie; Li, Jiuhua; Du, Ruxu
2017-01-01
Cavitating water jet technology is a new kind of water jet technology with many advantages, such as energy-saving, efficient, environmentally-friendly and so on. Based on the numerical simulation and experimental verification in this paper, the research on cavitating nozzle has been carried out, which includes comparison of the cleaning ability of the cavitating jet and the ordinary jet, and comparison of cavitation effects of different structures of cavitating nozzles.
Research on numerical simulation technology about regional important pollutant diffusion of haze
NASA Astrophysics Data System (ADS)
Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan
2018-02-01
In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.
Mission Simulation Facility: Simulation Support for Autonomy Development
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael
2003-01-01
The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.
Simulation of forced convection in non-Newtonian fluid through sandstones
NASA Astrophysics Data System (ADS)
Gokhale, M. Y.; Fernandes, Ignatius
2017-11-01
Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.
SiMon: Simulation Monitor for Computational Astrophysics
NASA Astrophysics Data System (ADS)
Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming
2017-09-01
Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.
Simulation study on combustion of biomass
NASA Astrophysics Data System (ADS)
Zhao, M. L.; Liu, X.; Cheng, J. W.; Liu, Y.; Jin, Y. A.
2017-01-01
Biomass combustion is the most common energy conversion technology, offering the advantages of low cost, low risk and high efficiency. In this paper, the transformation and transfer of biomass in the process of combustion are discussed in detail. The process of furnace combustion and gas phase formation was analyzed by numerical simulation. The experimental results not only help to optimize boiler operation and realize the efficient combustion of biomass, but also provide theoretical basis for the improvement of burner technology.
The change in critical technologies for computational physics
NASA Technical Reports Server (NTRS)
Watson, Val
1990-01-01
It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.
2015-01-01
Troubleshooting Emergent Issues Edward Dawson Maritime Division Defence Science and Technology Organisation DSTO-TN-1402 ABSTRACT This...UNCLASSIFIED UNCLASSIFIED Published by Maritime Division DSTO Defence Science and Technology Organisation 506...tools used by the Defence Science and Technology Organisation (DSTO) are an efficient and effective means to determine and evaluate the motion
NASA Astrophysics Data System (ADS)
Hu, P.; Dai, M. H.; Ying, L.; Shi, D. Y.; Zhao, K. M.; Lu, J. D.
2013-05-01
The warm forming technology of aluminum alloy has attracted attention from worldwide automotive engineering sector in recent years, with which the complex geometry parts can be realized at elevated temperature. A non-isothermal warm forming process for the heat treatable aluminum can quickly carry out its application on traditional production line by adding a furnace to heat up the aluminum alloy sheet. The 6000 aluminum alloy was investigated by numerical simulation and experiment using the Nakajima test model in this paper. A modified Fields-Backofen model was introduced into numerical simulation process to describe the thermo-mechanical flow behavior of a 6000 series aluminum alloy. The experimental data was obtained by conducting thermal-mechanical uniaxial tensile experiment in temperatures range of 25˜400°C to guarantee the numerical simulation more accurate. The numerical simulation was implemented with LS_DYNA software in terms of coupled dynamic explicit method for investigating the effect of initial forming temperature and the Binder Holder Force (BHF), which are critical process parameters in non-isothermal warm forming. The results showed that the optimal initial forming temperature range was 300°C˜350°C. By means of conducting numerical simulation in deep drawing box model, the forming window of BHF and temperature around the optimal initial forming temperature (275°, 300° and 325°) are investigated, which can provide guidance to actual experiment.
Three-dimensional magnetohydrodynamical simulation of expanding magnetic flux ropes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, L.; Dreher, J.; Grauer, R.
Three-dimensional, time-dependent numerical simulations of the dynamics of magnetic flux ropes are presented. The simulations are targeted towards an experiment previously conducted at California Institute of Technology [P. M. Bellan and J. F. Hansen, Phys. Plasmas 5, 1991 (1998)] which aimed at simulating solar prominence eruptions in the laboratory. The plasma dynamics is described by ideal magnetohydrodynamics using different models for the evolution of the mass density. The initial current distribution represents the situation at the plasma creation phase, while it is not increased during the simulation. Key features of the reported experimental observations like pinching of the current loop,more » its expansion and distortion into helical shape are reproduced in the numerical simulations. Details of the final structure depend on the choice of a specific model for the mass density.« less
Mandujano-Ramírez, Humberto J; González-Vázquez, José P; Oskam, Gerko; Dittrich, Thomas; Garcia-Belmonte, Germa; Mora-Seró, Iván; Bisquert, Juan; Anta, Juan A
2014-03-07
Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies.
Numerical and experimental approaches to simulate soil clogging in porous media
NASA Astrophysics Data System (ADS)
Kanarska, Yuliya; LLNL Team
2012-11-01
Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. The Department of Homeland Security Science and Technology Directorate provided funding for this research.
Advanced graphical user interface for multi-physics simulations using AMST
NASA Astrophysics Data System (ADS)
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
Heterojunction Solid-State Devices for Millimeter-Wave Sources.
1983-10-01
technology such as MBE and/or OK-CVD will be required. Our large-signal, numerical WATT device simulations are the first to predict from basic transport...results are due to an improved method for determining semiconductor material parameters. We use a theoretical Monte Carlo materials simulation ... simulations . These calculations have helped provide insight into velocity overshoot and ballistic transport phenomena. We find that ballistic or near
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-01-01
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-06-23
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
NASA Technical Reports Server (NTRS)
Follen, Gregory J.; Naiman, Cynthia G.
1999-01-01
The NASA Lewis Research Center is developing an environment for analyzing and designing aircraft engines-the Numerical Propulsion System Simulation (NPSS). NPSS will integrate multiple disciplines, such as aerodynamics, structure, and heat transfer, and will make use of numerical "zooming" on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS uses the latest computing and communication technologies to capture complex physical processes in a timely, cost-effective manner. The vision of NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Through the NASA/Industry Cooperative Effort agreement, NASA Lewis and industry partners are developing a new engine simulation called the National Cycle Program (NCP). NCP, which is the first step toward NPSS and is its initial framework, supports the aerothermodynamic system simulation process for the full life cycle of an engine. U.S. aircraft and airframe companies recognize NCP as the future industry standard common analysis tool for aeropropulsion system modeling. The estimated potential payoff for NCP is a $50 million/yr savings to industry through improved engineering productivity.
Cost-effective and low-technology options for simulation and training in neonatology.
Bruno, Christie J; Glass, Kristen M
2016-11-01
The purpose of this review is to explore low-cost options for simulation and training in neonatology. Numerous cost-effective options exist for simulation and training in neonatology. Lower cost options are available for teaching clinical skills and procedural training in neonatal intubation, chest tube insertion, and pericardiocentesis, among others. Cost-effective, low-cost options for simulation-based education can be developed and shared in order to optimize the neonatal simulation training experience. Copyright © 2016 Elsevier Inc. All rights reserved.
CFD-PBM coupled simulation of a nanobubble generator with honeycomb structure
NASA Astrophysics Data System (ADS)
Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H.
2018-06-01
In recent years, nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology. The nitrogen nanobubble water circulation can be used to slow the progressions of oxidation and spoilage for the seafood long- term storage. From previous studies, a kind of honeycomb structure for high-efficiency nanobubble generation has been proposed. In this paper, the bubbly flow in the honeycomb structure was studied. The numerical simulations of honeycomb structure were performed by using a computational fluid dynamics–population balance model (CFD-PBM) coupled model. The numerical model was based on the Eulerian multiphase model and the population balance model (PBM) was used to calculate the gas bubble size distribution. The bubble coalescence and breakage were included. Considering the effect of bubble diameter on the fluid flow, the phase interactions were coupled with the PBM. The bubble size distributions in the honeycomb structure under different work conditions were predicted. The experimental results were compared with the simulation predictions.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
Perspectives on the Future of CFD
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2000-01-01
This viewgraph presentation gives an overview of the future of computational fluid dynamics (CFD), which in the past has pioneered the field of flow simulation. Over time CFD has progressed as computing power. Numerical methods have been advanced as CPU and memory capacity increases. Complex configurations are routinely computed now and direct numerical simulations (DNS) and large eddy simulations (LES) are used to study turbulence. As the computing resources changed to parallel and distributed platforms, computer science aspects such as scalability (algorithmic and implementation) and portability and transparent codings have advanced. Examples of potential future (or current) challenges include risk assessment, limitations of the heuristic model, and the development of CFD and information technology (IT) tools.
Multidisciplinary propulsion simulation using the numerical propulsion system simulator (NPSS)
NASA Technical Reports Server (NTRS)
Claus, Russel W.
1994-01-01
Implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributions to the high cost is the need to perform many large scale system tests. The traditional design analysis procedure decomposes the engine into isolated components and focuses attention on each single physical discipline (e.g., fluid for structural dynamics). Consequently, the interactions that naturally occur between components and disciplines can be masked by the limited interactions that occur between individuals or teams doing the design and must be uncovered during expensive engine testing. This overview will discuss a cooperative effort of NASA, industry, and universities to integrate disciplines, components, and high performance computing into a Numerical propulsion System Simulator (NPSS).
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, Leonic E.; Li, Xujing
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L.E. Zakharov [Plasma Science and Technology, accepted, ID:2013-257 (2013)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electricmore » conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.« less
Proceedings of the NASA Aerospace Technology Symposium 2002
NASA Technical Reports Server (NTRS)
Bowen, Brent D. (Editor); Fink, Mary M. (Editor); Schaaf, Michaela M. (Editor)
2002-01-01
Reports are presented from the NASA Aerospace Technology Symposium 2002 on the following: Geo-Referenced Altitude Hold For Latex Ballons; NASA Spaceport Research: Opportunities For space Grant and EPSCoR Involvement; Numerical Simulation Of The Combustion Of Fuel Droplets: Applications, Aircraft/Spacecraft Flight Control, Guidance Navigation; Expertise In System Dynamics and Control, Control Theory and Aerospace Education Ooutreach Opportunities; and Technology For The Improvement Of General Aviation Security: A Needs Assessmemt.
Interfacing Simulations with Training Content
2006-09-01
a panelist at numerous international training and elearning conferences, ADL Plugfests and IMS Global Learning Consortium Open Technical Forums. Dr...communication technologies has enabled higher quality learning to be made available through increasingly sophisticated modes of presentation. Traditional...However, learning is a comprehensive process which does not simply consist of the transmission and learning of content. While simulations offer the
NASA Astrophysics Data System (ADS)
Yang, Xi; Ma, Wenhui; Lv, Guoqiang; Zhang, Mingyu
2018-01-01
The shape of solid-liquid interface during the directional solidification process, which is difficult to be observed and measured in actual processes, controls the grain orientation and grain size of polysilicon ingot. We carried out numerical calculations of the directional solidification progress of polycrystalline silicon and invested the means to deal with the latent heat of solidification in numerical simulation. The distributions of the temperature field of the melt for the crystallization progress as well as the transformation of the solid-liquid interface were obtained. The simulation results are consistent with the experimental outcomes. The results show that the curvature of solid-liquid interface is small and stability, larger grain sized columnar crystal can be grown in the laboratory-scale furnace at a solidification rate of 10 μm•s-1. It shall provide important theoretical basis for metallurgical process and polysilicon production technology.
Numerical and experimental investigations on cavitation erosion
NASA Astrophysics Data System (ADS)
Fortes Patella, R.; Archer, A.; Flageul, C.
2012-11-01
A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.
Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang
2015-12-01
Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, Leonid E.; Li, Xujing
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasmamore » electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
2015-12-01
Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.
Simulation Applications at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Inouye, M.
1984-01-01
Aeronautical applications of simulation technology at Ames Research Center are described. The largest wind tunnel in the world is used to determine the flow field and aerodynamic characteristics of various aircraft, helicopter, and missile configurations. Large computers are used to obtain similar results through numerical solutions of the governing equations. Capabilities are illustrated by computer simulations of turbulence, aileron buzz, and an exhaust jet. Flight simulators are used to assess the handling qualities of advanced aircraft, particularly during takeoff and landing.
NASA's aircraft icing technology program
NASA Technical Reports Server (NTRS)
Reinmann, John J.
1991-01-01
NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.
seismo-live: Training in Computational Seismology using Jupyter Notebooks
NASA Astrophysics Data System (ADS)
Igel, H.; Krischer, L.; van Driel, M.; Tape, C.
2016-12-01
Practical training in computational methodologies is still underrepresented in Earth science curriculae despite the increasing use of sometimes highly sophisticated simulation technologies in research projects. At the same time well-engineered community codes make it easy to return simulation-based results yet with the danger that the inherent traps of numerical solutions are not well understood. It is our belief that training with highly simplified numerical solutions (here to the equations describing elastic wave propagation) with carefully chosen elementary ingredients of simulation technologies (e.g., finite-differencing, function interpolation, spectral derivatives, numerical integration) could substantially improve this situation. For this purpose we have initiated a community platform (www.seismo-live.org) where Python-based Jupyter notebooks can be accessed and run without and necessary downloads or local software installations. The increasingly popular Jupyter notebooks allow combining markup language, graphics, equations with interactive, executable python codes. We demonstrate the potential with training notebooks for the finite-difference method, pseudospectral methods, finite/spectral element methods, the finite-volume and the discontinuous Galerkin method. The platform already includes general Python training, introduction to the ObsPy library for seismology as well as seismic data processing and noise analysis. Submission of Jupyter notebooks for general seismology are encouraged. The platform can be used for complementary teaching in Earth Science courses on compute-intensive research areas.
NASA Astrophysics Data System (ADS)
Ward, M. J.; Walløe, S. J.
2004-06-01
Numerical models are used extensively in the aerospace sector to identify appropriate manufacturing parameters, and to minimize the risk associated with new product introduction and manufacturing change. This usage is equally prevalent in original equipment manufacturers (OEMs), and in their supply chains. The wide range of manufacturing processes and production environments involved, coupled with the varying degrees of technology maturity associated with numerical models of different processes leads to a situation of significant complexity from the OEM perspective. In addition, the intended use of simulation technology can vary considerably between applications, from simple geometric assessment of die shape at one extreme, to full process design or development at the other. Consequently there is an increasing trend towards multi-scale modelling, i.e. the use of several different model types, with differing attributes in terms of accuracy and speed to support a range of different new product introduction decisions. This makes the allocation of appropriate levels of activity to the research and implementation of new capabilities a difficult problem. This paper uses a number of industrial cases studies to illustrate a framework for making such allocation decisions such that value to the OEM is maximized, and investigates how such a framework is likely to shift over the next few years based on technological developments.
NASA Astrophysics Data System (ADS)
Gong, Yuanhao; Liu, Lei; Chang, Limin; Li, Zhiyong; Tan, Manqing; Yu, Yude
2017-10-01
We propose and numerically simulate a polarization-independent 1×3 broadband beam splitter based on silicon-on-insulator (SOI) technology with adiabatic coupling. The designed structure is simulated by beam-propagation-method (BPM) and gets simulated transmission uniformity of three outputs better than 0.3dB for TE-polarization and 0.8dB for TM-polarization in a broadband of 180nm.
Simulation and Spacecraft Design: Engineering Mars Landings.
Conway, Erik M
2015-10-01
A key issue in history of technology that has received little attention is the use of simulation in engineering design. This article explores the use of both mechanical and numerical simulation in the design of the Mars atmospheric entry phases of the Viking and Mars Pathfinder missions to argue that engineers used both kinds of simulation to develop knowledge of their designs' likely behavior in the poorly known environment of Mars. Each kind of simulation could be used as a warrant of the other's fidelity, in an iterative process of knowledge construction.
Numerical reconstruction and injury biomechanism in a car-pedestrian crash accident.
Zou, Dong-Hua; Li, Zheng-Dong; Shao, Yu; Feng, Hao; Chen, Jian-Guo; Liu, Ning-Guo; Huang, Ping; Chen, Yi-Jiu
2012-12-01
To reconstruct a car-pedestrian crash accident using numerical simulation technology and explore the injury biomechanism as forensic evidence for injury identification. An integration of multi-body dynamic, finite element (FE), and classical method was applied to a car-pedestrian crash accident. The location of the collision and the details of the traffic accident were determined by vehicle trace verification and autopsy. The accident reconstruction was performed by coupling the three-dimensional car behavior from PC-CRASH with a MADYMO dummy model. The collision FE models of head and leg, developed from CT scans of human remains, were loaded with calculated dummy collision parameters. The data of the impact biomechanical responses were extracted in terms of von Mises stress, relative displacement, strain and stress fringes. The accident reconstruction results were identical with the examined ones and the biomechanism of head and leg injuries, illustrated through the FE methods, were consistent with the classical injury theories. The numerical simulation technology is proved to be effective in identifying traffic accidents and exploring of injury biomechanism.
The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Lytle, John K.
1999-01-01
Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
Optimally analyzing and implementing of bolt fittings in steel structure based on ANSYS
NASA Astrophysics Data System (ADS)
Han, Na; Song, Shuangyang; Cui, Yan; Wu, Yongchun
2018-03-01
ANSYS simulation software for its excellent performance become outstanding one in Computer-aided Engineering (CAE) family, it is committed to the innovation of engineering simulation to help users to shorten the design process. First, a typical procedure to implement CAE was design. The framework of structural numerical analysis on ANSYS Technology was proposed. Then, A optimally analyzing and implementing of bolt fittings in beam-column join of steel structure was implemented by ANSYS, which was display the cloud chart of XY-shear stress, the cloud chart of YZ-shear stress and the cloud chart of Y component of stress. Finally, ANSYS software simulating results was compared with the measured results by the experiment. The result of ANSYS simulating and analyzing is reliable, efficient and optical. In above process, a structural performance's numerical simulating and analyzing model were explored for engineering enterprises' practice.
How the Geothermal Community Upped the Game for Computer Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Geothermal Technologies Office Code Comparison Study brought 11 research institutions together to collaborate on coupled thermal, hydrologic, geomechanical, and geochemical numerical simulators. These codes have the potential to help facilitate widespread geothermal energy development.
Study on key technologies of optimization of big data for thermal power plant performance
NASA Astrophysics Data System (ADS)
Mao, Mingyang; Xiao, Hong
2018-06-01
Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.
Successes and Challenges of Incompressible Flow Simulation
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2003-01-01
During the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of CFD discipline. Even though incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient, CFD tools become indispensable in fluid engineering for incompressible and low speed flow. This paper is intended to review some of the successes made possible by advances in computational technologies during the same period, and discuss some of the current challenges.
NASA Astrophysics Data System (ADS)
Skibinski, Jakub; Caban, Piotr; Wejrzanowski, Tomasz; Kurzydlowski, Krzysztof J.
2014-10-01
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.
NASA Technical Reports Server (NTRS)
Lopez, Isaac; Follen, Gregory J.; Gutierrez, Richard; Foster, Ian; Ginsburg, Brian; Larsson, Olle; Martin, Stuart; Tuecke, Steven; Woodford, David
2000-01-01
This paper describes a project to evaluate the feasibility of combining Grid and Numerical Propulsion System Simulation (NPSS) technologies, with a view to leveraging the numerous advantages of commodity technologies in a high-performance Grid environment. A team from the NASA Glenn Research Center and Argonne National Laboratory has been studying three problems: a desktop-controlled parameter study using Excel (Microsoft Corporation); a multicomponent application using ADPAC, NPSS, and a controller program-, and an aviation safety application running about 100 jobs in near real time. The team has successfully demonstrated (1) a Common-Object- Request-Broker-Architecture- (CORBA-) to-Globus resource manager gateway that allows CORBA remote procedure calls to be used to control the submission and execution of programs on workstations and massively parallel computers, (2) a gateway from the CORBA Trader service to the Grid information service, and (3) a preliminary integration of CORBA and Grid security mechanisms. We have applied these technologies to two applications related to NPSS, namely a parameter study and a multicomponent simulation.
2000 Numerical Propulsion System Simulation Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2001-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2000 by the High Performance Computing and Communications Program.
2001 Numerical Propulsion System Simulation Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2002-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2001 by the High Performance Computing and Communications Program.
Thermo-elasto-plastic simulations of femtosecond laser-induced multiple-cavity in fused silica
NASA Astrophysics Data System (ADS)
Beuton, R.; Chimier, B.; Breil, J.; Hébert, D.; Mishchik, K.; Lopez, J.; Maire, P. H.; Duchateau, G.
2018-04-01
The formation and the interaction of multiple cavities, induced by tightly focused femtosecond laser pulses, are studied using a developed numerical tool, including the thermo-elasto-plastic material response. Simulations are performed in fused silica in cases of one, two, and four spots of laser energy deposition. The relaxation of the heated matter, launching shock waves in the surrounding cold material, leads to cavity formation and emergence of areas where cracks may be induced. Results show that the laser-induced structure shape depends on the energy deposition configuration and demonstrate the potential of the used numerical tool to obtain the desired designed structure or technological process.
Radaelli, A G; Augsburger, L; Cebral, J R; Ohta, M; Rüfenacht, D A; Balossino, R; Benndorf, G; Hose, D R; Marzo, A; Metcalfe, R; Mortier, P; Mut, F; Reymond, P; Socci, L; Verhegghe, B; Frangi, A F
2008-07-19
This paper presents the results of the Virtual Intracranial Stenting Challenge (VISC) 2007, an international initiative whose aim was to establish the reproducibility of state-of-the-art haemodynamical simulation techniques in subject-specific stented models of intracranial aneurysms (IAs). IAs are pathological dilatations of the cerebral artery walls, which are associated with high mortality and morbidity rates due to subarachnoid haemorrhage following rupture. The deployment of a stent as flow diverter has recently been indicated as a promising treatment option, which has the potential to protect the aneurysm by reducing the action of haemodynamical forces and facilitating aneurysm thrombosis. The direct assessment of changes in aneurysm haemodynamics after stent deployment is hampered by limitations in existing imaging techniques and currently requires resorting to numerical simulations. Numerical simulations also have the potential to assist in the personalized selection of an optimal stent design prior to intervention. However, from the current literature it is difficult to assess the level of technological advancement and the reproducibility of haemodynamical predictions in stented patient-specific models. The VISC 2007 initiative engaged in the development of a multicentre-controlled benchmark to analyse differences induced by diverse grid generation and computational fluid dynamics (CFD) technologies. The challenge also represented an opportunity to provide a survey of available technologies currently adopted by international teams from both academic and industrial institutions for constructing computational models of stented aneurysms. The results demonstrate the ability of current strategies in consistently quantifying the performance of three commercial intracranial stents, and contribute to reinforce the confidence in haemodynamical simulation, thus taking a step forward towards the introduction of simulation tools to support diagnostics and interventional planning.
Helical Channel Design and Technology for Cooling of Muon Beams
NASA Astrophysics Data System (ADS)
Yonehara, K.; Derbenev, Y. S.; Johnson, R. P.
2010-11-01
Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.
Development of multi-touch panel backlight system
NASA Astrophysics Data System (ADS)
Chomiczewski, J.; Długosz, M.; Godlewski, G.; Kochanowicz, M.
2013-10-01
The paper presents design, simulation analysis, and measurements of parameters of optical multi touch panel backlight system. Comparison of optical technology with commercially available solutions was also performed. The numerical simulation of laser based backlight system was made. The influence of the laser power, beam divergence, and placing reflective surfaces on the uniformity of illumination were examined. Optimal illumination system was used for further studies.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
Numerical simulation of intelligent compaction technology for construction quality control.
DOT National Transportation Integrated Search
2015-02-01
For eciently updating models of large-scale structures, the response surface (RS) method based on radial basis : functions (RBFs) is proposed to model the input-output relationship of structures. The key issues for applying : the proposed method a...
Quantification of uncertainties for application in detonation simulation
NASA Astrophysics Data System (ADS)
Zheng, Miao; Ma, Zhibo
2016-06-01
Numerical simulation has become an important means in designing detonation systems, and the quantification of its uncertainty is also necessary to reliability certification. As to quantifying the uncertainty, it is the most important to analyze how the uncertainties occur and develop, and how the simulations develop from benchmark models to new models. Based on the practical needs of engineering and the technology of verification & validation, a framework of QU(quantification of uncertainty) is brought forward in the case that simulation is used on detonation system for scientific prediction. An example is offered to describe the general idea of quantification of simulation uncertainties.
NASA Astrophysics Data System (ADS)
Himr, D.
2013-04-01
Article describes simulation of unsteady flow during water hammer with two programs, which use different numerical approaches to solve ordinary one dimensional differential equations describing the dynamics of hydraulic elements and pipes. First one is Matlab-Simulink-SimHydraulics, which is a commercial software developed to solve the dynamics of general hydraulic systems. It defines them with block elements. The other software is called HYDRA and it is based on the Lax-Wendrff numerical method, which serves as a tool to solve the momentum and continuity equations. This program was developed in Matlab by Brno University of Technology. Experimental measurements were performed on a simple test rig, which consists of an elastic pipe with strong damping connecting two reservoirs. Water hammer is induced with fast closing the valve. Physical properties of liquid and pipe elasticity parameters were considered in both simulations, which are in very good agreement and differences in comparison with experimental data are minimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celik, I.; Chattree, M.
1988-07-01
An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situationsmore » in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.« less
Development Of Maneuvering Autopilot For Flight Tests
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Walker, R. A.
1992-01-01
Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.
Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model
NASA Astrophysics Data System (ADS)
Wen, Y.; Chen, Z. H.; Zang, Y.
2013-11-01
In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.
Development of a numerical methodology for flowforming process simulation of complex geometry tubes
NASA Astrophysics Data System (ADS)
Varela, Sonia; Santos, Maite; Arroyo, Amaia; Pérez, Iñaki; Puigjaner, Joan Francesc; Puigjaner, Blanca
2017-10-01
Nowadays, the incremental flowforming process is widely explored because of the usage of complex tubular products is increasing due to the light-weighting trend and the use of expensive materials. The enhanced mechanical properties of finished parts combined with the process efficiency in terms of raw material and energy consumption are the key factors for its competitiveness and sustainability, which is consistent with EU industry policy. As a promising technology, additional steps for extending the existing flowforming limits in the production of tubular products are required. The objective of the present research is to further expand the current state of the art regarding limitations on tube thickness and diameter, exploring the feasibility to flowform complex geometries as tubes of elevated thickness of up to 60 mm. In this study, the analysis of the backward flowforming process of 7075 aluminum tubular preform is carried out to define the optimum process parameters, machine requirements and tooling geometry as demonstration case. Numerical simulation studies on flowforming of thin walled tubular components have been considered to increase the knowledge of the technology. The calculation of the rotational movement of the mesh preform, the high ratio thickness/length and the thermomechanical condition increase significantly the computation time of the numerical simulation model. This means that efficient and reliable tools able to predict the forming loads and the quality of flowformed thick tubes are not available. This paper aims to overcome this situation by developing a simulation methodology based on FEM simulation code including new strategies. Material characterization has also been performed through tensile test to able to design the process. Finally, to check the reliability of the model, flowforming tests at industrial environment have been developed.
Numerical Analysis of Shear Thickening Fluids for Blast Mitigation Applications
2011-12-01
integrate with other types of physics simulation technologies ( ANSYS , 2011). One well-known product offered by ANSYS is the ANSYS CFX . The ANSYS CFD...centered. The ANSYS CFX solver uses coupled algebraic multigrid to achieve its solutions and its engineered scalability ensures a linear increase in CPU...on the user-defined distribution and size. As the numerical analysis focused on the behavior of each individual particle, the ANSYS CFX Rigid Body
NASA Astrophysics Data System (ADS)
Ji, Liang-Bo; Chen, Fang
2017-07-01
Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1994-01-01
As part of NASA's High Alpha Technology Program, research has been aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 High Alpha Research Vehicle (HARV) at large angles of attack. The HARV aircraft is equipped with a bidirectional thrust vectoring unit which enables stable, controlled flight through 70 deg angle of attack. Currently, high-fidelity numerical solutions for the flow about the HARV have been obtained at alpha = 30 deg, and validated against flight-test data. It is planned to simulate the flow about the HARV through alpha = 60 deg, and obtain solutions of the same quality as those at the lower angles of attack. This report presents the status of work aimed at extending the HARV computations to the extreme angle of attack range.
Behaviors of printed circuit boards due to microwave supported curing process of coating materials.
Bremerkamp, Felix; Nowottnick, Mathias; Seehase, Dirk; Bui, Trinh Dung
2012-01-01
The Application of a microwave supported curing process for coatings in the field of electronic industry poses a challenge. Here the implementation of this technology is represented. Within the scope of the investigation special PCB Test Layouts were designed and the polymer curing process examined by the method of dielectric analysis. Furthermore the coupling of microwave radiation with conductive PCB structures was analyzed experimentally by means of special test boards. The formation of standing waves and regular heating distribution along the conductive wires on the PCB could be observed. The experimental results were compared with numerical simulation. In this context the numerical analysis of microwave PCB interaction led to important findings concerning wave propagation on wired PCB. The final valuation demonstrated a substantial similarity between numerical simulations and experimental results.
Diffusion in Clay Layers and Groundwater Remediation
In a collaborative SERDP-funded study, researchers from the Air Force Institute of Technology, the U.S. Environmental Protection Agency, and the University of Michigan developed a numerical model that simulates the enhanced transport of CAHs into and out of low permeability clay ...
Advanced BCD technology with vertical DMOS based on a semi-insulation structure
NASA Astrophysics Data System (ADS)
Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang
2016-07-01
A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).
Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation
NASA Astrophysics Data System (ADS)
Uday Kumar, A.; Javed, Arshad; Dubey, Satish K.
2018-04-01
Heat dissipation during the operation of electronic devices causes rise in temperature, which demands an effective thermal management for their performance, life and reliability. Single phase liquid cooling in microchannels is an effective and proven technology for electronics cooling. However, due to the ongoing trends of miniaturization and developments in the microelectronics technology, the future needs of heat flux dissipation rate are expected to rise to 1 kW/cm2. Air cooled systems are unable to meet this demand. Hence, liquid cooled heatsinks are preferred. This paper presents conjugate heat transfer simulation of single phase flow in microchannels with application to electronic cooling. The numerical model is simulated for different materials: copper, aluminium and silicon as solid and water as liquid coolant. The performances of microchannel heatsink are analysed for mass flow rate range of 20-40 ml/min. The investigation has been carried out on same size of electronic chip and heat flux in order to have comparative study of different materials. This paper is divided into two sections: fabrication techniques and numerical simulation for different materials. In the first part, a brief discussion of fabrication techniques of microchannel heatsink have been presented. The second section presents conjugate heat transfer simulation and parametric investigation for different material microchannel heatsink. The presented study and findings are useful for selection of materials for microchannel heatsink.
Traumatic eye injuries as a result of blunt impact: computational issues
NASA Astrophysics Data System (ADS)
Clemente, C.; Esposito, L.; Bonora, N.; Limido, J.; Lacome, J. L.; Rossi, T.
2014-05-01
The detachment or tearing of the retina in the human eye as a result of a collision is a phenomenon that occurs very often. Reliable numerical simulations of eye impact can be very useful tools to understand the physical mechanisms responsible for traumatic eye injuries accompanying blunt impact. The complexity and variability of the physical and mechanical properties of the biological materials, the lack of agreement on their related experimental data as well as the unsuitability of specific numerical codes and models are only some of the difficulties when dealing with this matter. All these challenging issues must be solved to obtain accurate numerical analyses involving dynamic behavior of biological soft tissues. To this purpose, a numerical and experimental investigation of the dynamic response of the eye during an impact event was performed. Numerical simulations were performed with IMPETUS-AFEA, a new general non-linear finite element (FE) software which offers non uniform rational B-splines (NURBS) FE technology for the simulation of large deformation and fracture in materials. IMPETUS code was selected in order to solve hourglass and locking problems typical of nearly incompressible materials like eye tissues. Computational results were compared with the experimental results on fresh enucleated porcine eyes impacted with airsoft pellets.
NASA Astrophysics Data System (ADS)
Lou, Yang; Zhou, Weimin; Matthews, Thomas P.; Appleton, Catherine M.; Anastasio, Mark A.
2017-04-01
Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies play a critically important role in developing and optimizing the designs of hardware and image reconstruction methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be systematically and comprehensively explored in a way that is generally not possible through experimentation. When conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms that are realistic, especially when task-based measures of image quality are to be utilized to guide system design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We develop and implement a methodology for generating anatomically realistic numerical breast phantoms from clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic parameters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT and USCT studies.
Modern methods for the quality management of high-rate melt solidification
NASA Astrophysics Data System (ADS)
Vasiliev, V. A.; Odinokov, S. A.; Serov, M. M.
2016-12-01
The quality management of high-rate melt solidification needs combined solution obtained by methods and approaches adapted to a certain situation. Technological audit is recommended to estimate the possibilities of the process. Statistical methods are proposed with the choice of key parameters. Numerical methods, which can be used to perform simulation under multifactor technological conditions, and an increase in the quality of decisions are of particular importance.
Numerical simulation of complex part manufactured by selective laser melting process
NASA Astrophysics Data System (ADS)
Van Belle, Laurent
2017-10-01
Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.
Numerical aerodynamic simulation facility feasibility study, executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability, reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year.
NAS technical summaries. Numerical aerodynamic simulation program, March 1992 - February 1993
NASA Technical Reports Server (NTRS)
1994-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1992-93 operational year concluded with 399 high-speed processor projects and 91 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.
Advances in Raman Lidar Measurements of Water Vapor
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)
2002-01-01
Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.
Assessment of chemistry models for compressible reacting flows
NASA Astrophysics Data System (ADS)
Lapointe, Simon; Blanquart, Guillaume
2014-11-01
Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.
A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.
2006-12-01
Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using the STARS (Solar-terrestrial data Analysis and Reference System). The STARS is a data analysis system for satellite and ground-based observation data for solar-terrestrial physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.
2008-07-29
Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less
Computational Challenges of Viscous Incompressible Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Kim, Chang Sung
2004-01-01
Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.
NASA Technical Reports Server (NTRS)
Kung, Ernest C.
1994-01-01
The contract research has been conducted in the following three major areas: analysis of numerical simulations and parallel observations of atmospheric blocking, diagnosis of the lower boundary heating and the response of the atmospheric circulation, and comprehensive assessment of long-range forecasting with numerical and regression methods. The essential scientific and developmental purpose of this contract research is to extend our capability of numerical weather forecasting by the comprehensive general circulation model. The systematic work as listed above is thus geared to developing a technological basis for future NASA long-range forecasting.
The quiet revolution of numerical weather prediction.
Bauer, Peter; Thorpe, Alan; Brunet, Gilbert
2015-09-03
Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.
From LIDAR Scanning to 3d FEM Analysis for Complex Surface and Underground Excavations
NASA Astrophysics Data System (ADS)
Chun, K.; Kemeny, J.
2017-12-01
Light detection and ranging (LIDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease to use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of three-dimensional numerical model that can be used in FEM analysis. To date, however, straightforward techniques in reconstructing numerical model from the scanned data of underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating from LIDAR scanning to finite element numerical analysis, specifically converting LIDAR 3D point clouds of object containing complex surface geometry into finite element model. This methodology has been applied to the Kartchner Caverns in Arizona for the stability analysis. Numerical simulations were performed using the finite element code ABAQUS. The results indicate that the highlights of our technologies obtained from LIDAR is effective and provide reference for other similar engineering project in practice.
NASA Astrophysics Data System (ADS)
Beneda, Károly
2012-11-01
The utilization of turbomachines requires up-to-date technologies to ensure safe operation throughout the widest possible range that makes novel ideas necessary to cope with classic problems. One of the most dangerous instability in compression systems is surge that has to be suppressed before its onset to avoid structural damages as well as other adverse consequences in the system. As surge occurs at low delivered mass flow rates the conventional widely spread surge control is based on bypassing the unnecessary airflow back to the atmosphere. This method has been implemented on a large number of aircraft and provides a robust control on suppressing compressor surge while creating a significant efficiency loss. This paper deals with an idea that has been originally designed as a fixed geometry that could be realized using up-to-date MEMS technology resulting in moderate losses but comparable stability enhancement. Previously the author has established the one-dimensional mathematical model of the concept, but it is indispensable - before the real instrument can be developed - to carry out detailed numerical simulation of the device. The aim of the paper is to acquaint the efforts of this CFD simulation.
Developments in optical modeling methods for metrology
NASA Astrophysics Data System (ADS)
Davidson, Mark P.
1999-06-01
Despite the fact that in recent years the scanning electron microscope has come to dominate the linewidth measurement application for wafer manufacturing, there are still many applications for optical metrology and alignment. These include mask metrology, stepper alignment, and overlay metrology. Most advanced non-optical lithographic technologies are also considering using topics for alignment. In addition, there have been a number of in-situ technologies proposed which use optical measurements to control one aspect or another of the semiconductor process. So optics is definitely not dying out in the semiconductor industry. In this paper a description of recent advances in optical metrology and alignment modeling is presented. The theory of high numerical aperture image simulation for partially coherent illumination is discussed. The implications of telecentric optics on the image simulation is also presented. Reciprocity tests are proposed as an important measure of numerical accuracy. Diffraction efficiencies for chrome gratings on reticles are one good way to test Kirchoff's approximation as compared to rigorous calculations. We find significant differences between the predictions of Kirchoff's approximation and rigorous methods. The methods for simulating brightfield, confocal, and coherence probe microscope imags are outlined, as are methods for describing aberrations such as coma, spherical aberration, and illumination aperture decentering.
A suite of benchmark and challenge problems for enhanced geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark; Fu, Pengcheng; McClure, Mark
A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulation capabilitiesmore » to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of modern numerical simulation tools by recognized expert practitioners. We present the suite of benchmark and challenge problems developed for the GTO-CCS, providing problem descriptions and sample solutions.« less
Magnetic biosensors: Modelling and simulation.
Nabaei, Vahid; Chandrawati, Rona; Heidari, Hadi
2018-04-30
In the past few years, magnetoelectronics has emerged as a promising new platform technology in various biosensors for detection, identification, localisation and manipulation of a wide spectrum of biological, physical and chemical agents. The methods are based on the exposure of the magnetic field of a magnetically labelled biomolecule interacting with a complementary biomolecule bound to a magnetic field sensor. This Review presents various schemes of magnetic biosensor techniques from both simulation and modelling as well as analytical and numerical analysis points of view, and the performance variations under magnetic fields at steady and nonstationary states. This is followed by magnetic sensors modelling and simulations using advanced Multiphysics modelling software (e.g. Finite Element Method (FEM) etc.) and home-made developed tools. Furthermore, outlook and future directions of modelling and simulations of magnetic biosensors in different technologies and materials are critically discussed. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Application of cylindrical, triangular and hemispherical dimples in the film cooling technology
NASA Astrophysics Data System (ADS)
Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.
2017-11-01
The results of film cooling numerical simulation over a flat plate with coolant supply through a single span-wise array of inclined (α = 30°) holes arranged inside cylindrical, triangular, and hemispherical dimples are represented in the paper. Such configurations are of a great practical interest for application in advanced blade cooling systems of high-performance gas turbines. The schemes with coolant supply into triangular and hemispherical dimples were first proposed and patented by the IET of the NAS of Ukraine. For numerical simulation the ANSYS CFX 14 commercial code was used. Numerical simulation were carried out in a wide range of the blowing ratio parameter varied from 0.5 to 2.0. For low blowing ratio parameter (m = 0.5) the laterally averaged film cooling efficiency is actually the same for all investigated schemes over the main film cooling area. In this area, the most simple in terms of the film cooling production technology configuration can be used. At the medium and high blowing ratios (m = 1.0 or higher) all investigated film cooling schemes allow to increase the laterally averaged film cooling efficiency in comparison with the traditional cooling scheme with single row of incline holes. In this case the configuration with coolant supply into triangular dimples of the «crater» type demonstrates the best film cooling efficiency due to significant reduction in the intensity and scale of the “kidney” vortex beyond configuration, as well as due to decrease in the coolant blowing non-uniformity factor.
MATSIM: Development of a Voxel Model of the MATROSHKA Astronaut Dosimetric Phantom
NASA Astrophysics Data System (ADS)
Beck, Peter; Zechner, Andrea; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Hranitzky, Christian; Latocha, Marcin; Reitz, Günther; Stadtmann, Hannes; Vana, Norbert; Wind, Michael
2011-08-01
The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center, to perform FLUKA Monte Carlo simulations of the MATROSHKA numerical phantom irradiated under reference radiation field conditions as well as for the radiation environment at the International Space Station (ISS). MATSIM is carried out as co-investigation of the ESA ELIPS projects SORD and RADIS (commonly known as MATROSHKA), an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. During MATSIM a computer tomography scan of the MATROSHKA phantom has been converted into a high resolution 3-dimensional voxel model. The energy imparted and absorbed dose distribution inside the model is determined for various radiation fields. The major goal of the MATSIM project is the validation of the numerical model under reference radiation conditions and further investigations under the radiation environment at ISS. In this report we compare depth dose distributions inside the phantom measured with thermoluminescence detectors (TLDs) and an ionization chamber with FLUKA Monte Carlo particle transport simulations due to 60Co photon exposure. Further reference irradiations with neutrons, protons and heavy ions are planned. The fully validated numerical model MATSIM will provide a perfect tool to assess the radiation exposure to humans during current and future space missions to ISS, Moon, Mars and beyond.
Rapid Technology Assessment via Unified Deployment of Global Optical and Virtual Diagnostics
NASA Technical Reports Server (NTRS)
Jordan, Jeffrey D.; Watkins, A. Neal; Fleming, Gary A.; Leighty, Bradley D.; Schwartz, Richard J.; Ingram, JoAnne L.; Grinstead, Keith D., Jr.; Oglesby, Donald M.; Tyler, Charles
2003-01-01
This paper discusses recent developments in rapid technology assessment resulting from an active collaboration between researchers at the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base (WPAFB) and the NASA Langley Research Center (LaRC). This program targets the unified development and deployment of global measurement technologies coupled with a virtual diagnostic interface to enable the comparative evaluation of experimental and computational results. Continuing efforts focus on the development of seamless data translation methods to enable integration of data sets of disparate file format in a common platform. Results from a successful low-speed wind tunnel test at WPAFB in which global surface pressure distributions were acquired simultaneously with model deformation and geometry measurements are discussed and comparatively evaluated with numerical simulations. Intensity- and lifetime-based pressure-sensitive paint (PSP) and projection moire interferometry (PMI) results are presented within the context of rapid technology assessment to enable simulation-based R&D.
Use of natural user interfaces in water simulations
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; van Dam, A.; Jagers, B.
2013-12-01
Conventional graphical user interfaces, used to edit input and present results of earth science models, have seen little innovation for the past two decades. In most cases model data is presented and edited using 2D projections even when working with 3D data. The emergence of 3D motion sensing technologies, such as Microsoft Kinect and LEAP Motion, opens new possibilities for user interaction by adding more degrees of freedom compared to a classical way using mouse and keyboard. Here we investigate how interaction with hydrodynamic numerical models can be improved using these new technologies. Our research hypothesis (H1) states that properly designed 3D graphical user interface paired with the 3D motion sensor can significantly reduce the time required to setup and use numerical models. In this work we have used a LEAP motion controller combined with a shallow water flow model engine D-Flow Flexible Mesh. Interacting with numerical model using hands
NASA Astrophysics Data System (ADS)
Filippov, Prokopy; Levin, Evgeny; Ryzhkov, Alexander
2017-10-01
The leading gas turbines manufacturers are developing the technologies of the environmental friendly combustion of industrial and synthetic gases of low calorific values. In this case they are faced with critical problems concerning combustion stability assurance and the necessity of the gas turbines significant modernization due to the differences between the low calorific and natural gases. The numerical simulation results of the low calorific value synthetic gas combustion in the combustion chamber by means of different technologies are considered in the paper.
Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining
1993-01-01
A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.
Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play architecture, called NPSS Version 1, (2) A full engine simulation that combines a 3D low-pressure subsystem with a 0D high pressure core simulation. This demonstrates the ability to integrate analyses at different levels of detail and to aerodynamically couple components, the fan/booster and low-pressure turbine, through a 3D computational fluid dynamics simulation. (3) Simulation of all of the turbomachinery in a modern turbofan engine on parallel computing platform for rapid and cost-effective execution. This capability can also be used to generate full compressor map, requiring both design and off-design simulation. (4) Three levels of coupling characterize the multidisciplinary analysis under NPSS: loosely coupled, process coupled and tightly coupled. The loosely coupled and process coupled approaches require a common geometry definition to link CAD to analysis tools. The tightly coupled approach is currently validating the use of arbitrary Lagrangian/Eulerian formulation for rotating turbomachinery. The validation includes both centrifugal and axial compression systems. The results of the validation will be reported in the paper. (5) The demonstration of significant computing cost/performance reduction for turbine engine applications using PC clusters. The NPSS Project is supported under the NASA High Performance Computing and Communications Program.
1993-05-19
The Laboratories Theory, Modeling and Simulation , • ATP Characterization J Education and Human Resources • MTC Facilities -- NBSR and CNRF MISSION...34 Automiated System for Composite Analysis (ASCA).Y -Basis for usefri(eadly numerical methods to describe composite laminates and predict ?heir response
The Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
Numerical aerodynamic simulation facility feasibility study
NASA Technical Reports Server (NTRS)
1979-01-01
There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.
Numerical Propulsion System Simulation (NPSS) 1999 Industry Review
NASA Technical Reports Server (NTRS)
Lytle, John; Follen, Greg; Naiman, Cynthia; Evans, Austin
2000-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. In addition, the paper contains a summary of the feedback received from industry partners in the development effort and the actions taken over the past year to respond to that feedback. The NPSS development was supported in FY99 by the High Performance Computing and Communications Program.
Traffic Flow Density Distribution Based on FEM
NASA Astrophysics Data System (ADS)
Ma, Jing; Cui, Jianming
In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.
Emerging aerospace technologies
NASA Technical Reports Server (NTRS)
Ballhaus, W. F., Jr.; Milov, L. A.
1985-01-01
The United States Government has a long history of promoting the advancement of technology to strengthen the economy and national defense. An example is NASA, which was formed in 1958 to establish and maintain U.S. space technology leadership. This leadership has resulted in technological benefits to many fields and the establishment of new commercial industries, such as satellite communications. Currently, NASA's leading technology development at Ames Research Center includes the Tilt Rotor XV-15, which provides the versatility of a helicopter with the speed of a turboprop aircraft; the Numerical Aerodynamic Simulator, which is pushing the state of the art in advanced computational mathematics and computer simulation; and the Advanced Automation and Robotics programs, which will improve all areas of space development as well as life on Earth. Private industry is involved in maintaining technological leadership through NASA's Commercial Use of Space Program, which provides for synergistic relationships among government, industry, and academia. The plan for a space station by 1992 has framed much of NASA's future goals and has provided new areas of opportunity for both domestic space technology and leadership improvement of life on Earth.
NextGen Technologies on the FAA's Standard Terminal Automation Replacement System
NASA Technical Reports Server (NTRS)
Witzberger, Kevin; Swenson, Harry; Martin, Lynne; Lin, Melody; Cheng, Jinn-Hwei
2014-01-01
This paper describes the integration, evaluation, and results from a high-fidelity human-in-the-loop (HITL) simulation of key NASA Air Traffic Management Technology Demonstration - 1 (ATD- 1) technologies implemented in an enhanced version of the FAA's Standard Terminal Automation Replacement System (STARS) platform. These ATD-1 technologies include: (1) a NASA enhanced version of the FAA's Time-Based Flow Management, (2) a NASA ground-based automation technology known as controller-managed spacing (CMS), and (3) a NASA advanced avionics airborne technology known as flight-deck interval management (FIM). These ATD-1 technologies have been extensively tested in large-scale HITL simulations using general-purpose workstations to study air transportation technologies. These general purpose workstations perform multiple functions and are collectively referred to as the Multi-Aircraft Control System (MACS). Researchers at NASA Ames Research Center and Raytheon collaborated to augment the STARS platform by including CMS and FIM advisory tools to validate the feasibility of integrating these automation enhancements into the current FAA automation infrastructure. NASA Ames acquired three STARS terminal controller workstations, and then integrated the ATD-1 technologies. HITL simulations were conducted to evaluate the ATD-1 technologies when using the STARS platform. These results were compared with the results obtained when the ATD-1 technologies were tested in the MACS environment. Results collected from the numerical data show acceptably minor differences, and, together with the subjective controller questionnaires showing a trend towards preferring STARS, validate the ATD-1/STARS integration.
Software To Secure Distributed Propulsion Simulations
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2003-01-01
Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan
2015-02-16
CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less
Numerical investigations of wake interactions of two wind turbines in tandem
NASA Astrophysics Data System (ADS)
Qian, Yaoru; Wang, Tongguang
2018-05-01
Aerodynamic performance and wake interactions between two wind turbine models under different layouts are investigated numerically using large eddy simulation in conjunction with actuator line method based on the “Blind Test” series wind tunnel experiments from Norwegian University of Science and Technology. Numerical results of the power and thrust coefficients of the two rotors and wake characteristics are in good agreement with the experimental measurements. Extended investigations emphasizing the influence of different layout arrangements on the downstream rotor performance and wake development are conducted. Results show that layout arrangements have great influence on the power and thrust prediction of the downstream turbine.
Numerical propulsion system simulation
NASA Technical Reports Server (NTRS)
Lytle, John K.; Remaklus, David A.; Nichols, Lester D.
1990-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.
How to identify dislocations in molecular dynamics simulations?
NASA Astrophysics Data System (ADS)
Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu
2014-12-01
Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.
NASA Technical Reports Server (NTRS)
Kim, B. F.; Moorjani, K.; Phillips, T. E.; Adrian, F. J.; Bohandy, J.; Dolecek, Q. E.
1993-01-01
A method for characterization of granular superconducting thin films has been developed which encompasses both the morphological state of the sample and its fabrication process parameters. The broad scope of this technique is due to the synergism between experimental measurements and their interpretation using numerical simulation. Two novel technologies form the substance of this system: the magnetically modulated resistance method for characterizing superconductors; and a powerful new computer peripheral, the Parallel Information Processor card, which provides enhanced computing capability for PC computers. This enhancement allows PC computers to operate at speeds approaching that of supercomputers. This makes atomic scale simulations possible on low cost machines. The present development of this system involves the integration of these two technologies using mesoscale simulations of thin film growth. A future stage of development will incorporate atomic scale modeling.
Steam-assisted gravity drainage technology enhancement
NASA Astrophysics Data System (ADS)
Durkin, S.; Menshikova, I.
2018-05-01
A hydrodynamic model of a region of Yaregskoye heavy oilfield was build. The results of the simulation have shown that injection capacity along the wellbore of a horizontal well is not uniform. It is determined by the geological heterogeneity of the formation. Therefore, there is importance of enhancing SAGD technology for Yaregskoye oilfield. A new technology was created. The efficiency of the technology is proved by numerical modelling. Horizontal injector and two-wellhead production wells penetrate the formation. Horizontal sections of the wells are located one above the other in the payzone. Wells are divided into two sections. Those sections work simultaneously and independently of one another. This technology allows to increase oil recovery of the oilfield.
Efficient numerical simulation of heat storage in subsurface georeservoirs
NASA Astrophysics Data System (ADS)
Boockmeyer, A.; Bauer, S.
2015-12-01
The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and the cycle time. The temperature distribution is most sensitive to thermal conductivity of both borehole grouting and storage formation while storage efficiency is mainly controlled by the thermal conductivity of the storage formation.
Spectral and Spatial Coherent Emission of Thermal Radiation from Metal-Semiconductor Nanostructures
2012-03-01
Coupled Wave Analysis (RCWA) numerical technique and Computer Simulation Technology (CST) electromagnetic modeling software, two structures were...Stephanie Gray, IR-VASE and modeling Dr. Kevin Gross, FTIR Mr. Richard Johnston, Cleanroom and Photolithography Ms. Abbey Juhl, Nanoscribe...Appendix B. Supplemental IR-VASE Measurements and Modeling .............................114 Bibliography
Some Numerical Simulations and an Experimental Investigation of Finger Seals
NASA Technical Reports Server (NTRS)
Braun, Minel J.; Smith, Ian; Marie, Hazel
2007-01-01
All seal types have been shown to lift effectively, and experience only minor wear during startup. .. The double pad design outperforms previous seals, providing lower operating temperatures, and less leakage at higher pressures. .. Future experimentation at higher pressures, temperatures, and operating speeds will show the full potential of finger sealing technology.
An equivalent circuit model for terahertz quantum cascade lasers: Modeling and experiments
NASA Astrophysics Data System (ADS)
Yao, Chen; Xu, Tian-Hong; Wan, Wen-Jian; Zhu, Yong-Hao; Cao, Jun-Cheng
2015-09-01
Terahertz quantum cascade lasers (THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model. Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61404149), the Major National Development Project of Scientific Instrument and Equipment, China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the Major Project, China (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300).
Numerical Modelling of Rayleigh Wave Propagation in Course of Rapid Impulse Compaction
NASA Astrophysics Data System (ADS)
Herbut, Aneta; Rybak, Jarosław
2017-10-01
As the soil improvement technologies are the area of a rapid development, they require designing and implementing novel methods of control and calibration in order to ensure the safety of geotechnical works. At Wroclaw University of Science and Technology (Poland), these new methods are continually developed with the aim to provide the appropriate tools for the preliminary design of work process, as well as for the further ongoing on-site control of geotechnical works (steel sheet piling, pile driving or soil improvement technologies). The studies include preliminary numerical simulations and field tests concerning measurements and continuous histogram recording of shocks and vibrations and its ground-born dynamic impact on engineering structures. The impact of vibrations on reinforced concrete and masonry structures in the close proximity of the construction site may be destroying in both architectural and structural meaning. Those limits are juxtaposed in codes of practice, but always need an individual judgment. The results and observations make it possible to delineate specific modifications to the parameters of technology applied (e.g. hammer drop height). On the basis of numerous case studies of practical applications, already summarized and published, we were able to formulate the guidelines for work on the aforementioned sites. This work presents specific aspects of the active design (calibration of building site numerical model) by means of technology calibration, using the investigation of the impact of vibrations that occur during the Impulse Compaction on adjacent structures. A case study entails the impact of construction works on Rayleigh wave propagation in the zone of 100 m (radius) around the Compactor.
Advances and trends in computational structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1986-01-01
Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.
Study on launch scheme of space-net capturing system.
Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang
2017-01-01
With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.
NASA Astrophysics Data System (ADS)
Blecka, Maria I.
2010-05-01
The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.
Study on launch scheme of space-net capturing system
Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang
2017-01-01
With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187
NASA Aeronautics: Research and Technology Program Highlights
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.
Space technology test facilities at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Rodrigues, Annette T.
1990-01-01
The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.
An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Vickerman, Mary B.; Hackenberg, Anthony W.; Rigby, David L.
2003-01-01
This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen. Some of the issues that need to be addressed and discussed by the icing community are also included.
Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation
NASA Astrophysics Data System (ADS)
Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred
2005-08-01
In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.
NASA Astrophysics Data System (ADS)
Nikolov, N.; Avdjieva, T.; Altaparmakov, I.
2014-06-01
Some specially designed metallic alloys crystallize during process of rapid quenching which aims their amorphization. Nevertheless, change in their mechanical properties could be seen compared to these obtained during conventional technological regimes of cooling. That attracts the attention in this elaboration. Full 3-D numerical simulations of nanoindentation process of two material models are performed. The models reflect equivalent elastic and different plastic material properties. The plastic behaviour of the first one is subjected to yield criterion of Dracker-Prager and this of the second one to yield criterion of Mises. The reported numerical results depending on the nanoindentation scale length of 1000 nanometers, suggest different adequacy of the two yield criteria to the data obtained experimentally with a Zr-Al-Cu-Ni-Mo alloy. It could be speculated that the different effects developed depending on the indenter travel of 1000 nanometers and taken into account in the two yield criteria stand behind this fact and determinate three structural levels of plastic deformation.
NASA Astrophysics Data System (ADS)
Ullio, Roberto; Gily, Alessandro; Jones, Howard; Geelen, Kelly; Larranaga, Jonan
2014-06-01
In the frame of the ESA Mars Robotic Exploration Preparation (MREP) programme and within its Technology Development Plan [1] the activity "E913- 007MM Shock Mitigation Operating Only at Touch- down by use of minimalist/dispensable Hardware" (SMOOTH) was conducted under the framework of Rover technologies and to support the ESA MREP Mars Precision Lander (MPL) Phase A system study with the objectives to:• study the behaviour of the Sample Fetching Rover (SFR) landing on Mars on its wheels• investigate and implement into the design of the SFR Locomotion Sub-System (LSS) an impact energy absorption system (SMOOTH)• verify by simulation the performances of SMOOTH The main purpose of this paper is to present the obtained numerical simulation results and to explain how these results have been utilized first to iterate on the design of the SMOOTH concept and then to validate its performances.
A performance comparison of ultrasonically aided electric propulsion extractor configurations
NASA Astrophysics Data System (ADS)
Dong, L.; Song, W.; Kang, X. M.; Zhao, W. S.
2012-08-01
As a novel propulsion technology, ultrasonically aided electric propulsion (UAEP) offers a high specific impulse and a high thrust density. In this paper, the effects of extractor grid configuration on performance of a UAEP thruster have been investigated by both experimental studies and numerical simulation. Relationships between spray current and operation parameters, including applied voltage, propellant flow rate, and vibration power and frequency, are explored for different extractor mesh sizes and shapes. Numerical simulation is also carried out for a better understanding of the formation of capillary standing waves as well as the electric field distribution in the acceleration zone. Experimental results show that compared with a circular shaped extractor, a reticular shaped extractor is able to produce a higher spray current. The current density increases with a denser mesh, which agrees well with the numerical simulation results. This phenomenon indicates that optimizing extractors with appropriate shapes and sizes can be an effective way to improve the performance of a UAEP system. A performance evaluation based on hydrodynamic and electrostatic calculations indicates that the present UAEP system can produce a thrust competitive to that of the colloid thruster with an emitter array.
The QuakeSim Project: Numerical Simulations for Active Tectonic Processes
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry
2004-01-01
In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.
High-Order Numerical Simulations of Wind Turbine Wakes
NASA Astrophysics Data System (ADS)
Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.
2017-05-01
Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.
Numerical simulation of polishing U-tube based on solid-liquid two-phase
NASA Astrophysics Data System (ADS)
Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo
2018-03-01
As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.
NASA Technical Reports Server (NTRS)
Mehta, Unmeel; Lomax, Harvard
1981-01-01
During the past five years, numerous pioneering archival publications have appeared that have presented computer solutions of the mass-weighted, time-averaged Navier-Stokes equations for transonic problems pertinent to the aircraft industry. These solutions have been pathfinders of developments that could evolve into a major new technological capability, namely the computational Navier-Stokes technology, for the aircraft industry. So far these simulations have demonstrated that computational techniques, and computer capabilities have advanced to the point where it is possible to solve forms of the Navier-Stokes equations for transonic research problems. At present there are two major shortcomings of the technology: limited computer speed and memory, and difficulties in turbulence modelling and in computation of complex three-dimensional geometries. These limitations and difficulties are the pacing items of the continuing developments, although the one item that will most likely turn out to be the most crucial to the progress of this technology is turbulence modelling. The objective of this presentation is to discuss the state of the art of this technology and suggest possible future areas of research. We now discuss some of the flow conditions for which the Navier-Stokes equations appear to be required. On an airfoil there are four different types of interaction of a shock wave with a boundary layer: (1) shock-boundary-layer interaction with no separation, (2) shock-induced turbulent separation with immediate reattachment (we refer to this as a shock-induced separation bubble), (3) shock-induced turbulent separation without reattachment, and (4) shock-induced separation bubble with trailing edge separation.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyang; Qi, Huan
2014-04-01
A turbine blade made of single-crystal superalloys has been commonly used in gas turbine and aero engines. As an effective repair technology, laser powder deposition has been implemented to restore the worn turbine blade tips with a near-net shape capability and highly controllable solidified microstructure. Successful blade repair technology for single-crystal alloys requires a continuous epitaxial grain growth in the same direction of the crystalline orientation of the substrate material to the newly deposited layers. This work presents a three-dimensional numerical model to simulate the transport phenomena for a multilayer coaxial laser powder deposition process. Nickel-based single-crystal superalloy Rene N5 powder is deposited on a directional solidified substrate made of nickel-based directional-solidified alloy GTD 111 to verify the simulation results. The effects of processing parameters including laser power, scanning speed, and powder feeding rate on the resultant temperature field, fluid velocity field, molten pool geometric sizes, and the successive layer remelting ratios are studied. Numerical simulation results show that the maximum temperature of molten pool increases over layers due to the reduced heat dissipation capacity of the deposited geometry, which results in an increased molten pool size and fluid flow velocity at the successive deposited layer. The deposited bead geometry agrees well between the simulation and the experimental results. A large part of the first deposition layer, up to 85 pct of bead height, can be remelted during the deposition of the second layer. The increase of scanning speed decreases the ratio of G/ V (temperature gradient/solidification velocity), leading to an increased height ratio of the misoriented grain near the top surface of the previous deposited layer. It is shown that the processing parameters used in the simulation and experiment can produce a remelting ratio R larger than the misoriented grain height ratio S, which enables remelting of all the misoriented grains and guarantees a continuous growth of the substrate directional-solidified crystalline orientation during the multilayer deposition of single-crystal alloys.
Numerical simulation of metallic wire arc additive manufacturing (WAAM)
NASA Astrophysics Data System (ADS)
Graf, M.; Pradjadhiana, K. P.; Hälsig, A.; Manurung, Y. H. P.; Awiszus, B.
2018-05-01
Additive-manufacturing technologies have been gaining tremendously in popularity for some years in the production of single-part series with complex, close-to-final-contour geometries and the processing of special or hybrid materials. In principle, the processes can be subdivided into wire-based and powder-based processes in accordance with the Association of German Engineers (VDI) Guideline 3405. A further subdivision is made with respect to the smelting technology. In all of the processes, the base material is applied in layers at the points where it is needed in accordance with the final contour. The process that was investigated was wire-based, multi-pass welding by means of gas-metal arc welding. This was accomplished in the present study by determining the material parameters (thermo-mechanical and thermo-physical characteristics) of the welding filler G3Si1 (material number: 1.5125) that were necessary for the numerical simulation and implementing them in a commercial FE program (MSC Marc Mentat). The focus of this paper was on simulation and validation with respect to geometry and microstructural development in the welding passes. The resulting minimal deviation between reality and simulation was a result of the measurement inertia of the thermocouples. In general, however, the FE model can be used to make a very good predetermination of the cooling behaviour, which affects the microstructural development and thus the mechanical properties of the joining zone, as well as the geometric design of the component (distortion, etc.).
MATSIM -The Development and Validation of a Numerical Voxel Model based on the MATROSHKA Phantom
NASA Astrophysics Data System (ADS)
Beck, Peter; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Latocha, Marcin; Vana, Norbert; Zechner, Andrea; Reitz, Guenther
The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center. The aim of the project is to develop a voxel-based model of the MATROSHKA anthro-pomorphic torso used at the International Space Station (ISS) as foundation to perform Monte Carlo high-energy particle transport simulations for different irradiation conditions. Funded by the Austrian Space Applications Programme (ASAP), MATSIM is a co-investigation with the European Space Agency (ESA) ELIPS project MATROSHKA, an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. The MATROSHKA facility is designed to determine the radiation exposure of an astronaut onboard ISS and especially during an ex-travehicular activity. The numerical model developed in the frame of MATSIM is validated by reference measurements. In this report we give on overview of the model development and compare photon and neutron irradiations of the detector-equipped phantom torso with Monte Carlo simulations using FLUKA. Exposure to Co-60 photons was realized in the standard ir-radiation laboratory at Seibersdorf, while investigations with neutrons were performed at the thermal column of the Vienna TRIGA Mark-II reactor. The phantom was loaded with passive thermoluminescence dosimeters. In addition, first results of the calculated dose distribution within the torso are presented for a simulated exposure in low-Earth orbit.
Roll Damping Characterisation Program: User Guide
2014-06-01
integral to conducting accurate numerical simulations of maritime platforms in support of the Australian Defence Organisation’s capability acquisition...programs and the Royal Australian Navy’s in-theatre operations and through-life capability management. This report provides detailed operational...Research Scientist with the Australian Defence Science and Technology Organisation. After graduating from the University of Tasmania with a Bachelor
A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. P. Short; D. Gaston; C. R. Stanek
2014-01-01
The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the developmentmore » of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.« less
2017-12-08
The NASA Center for Climate Simulation (NCCS) Data Exploration Theater features a 17- by 6-foot multi-screen visualization wall for engaging visitors and scientists with high-definition movies of simulation results. Here, the wall displays a 3.5-kilometer-resolution global simulation that captures numerous cloud types at groundbreaking fidelity. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
2017-12-08
The NASA Center for Climate Simulation (NCCS) Data Exploration Theater features a 17- by 6-foot multi-screen visualization wall for engaging visitors and scientists with high-definition movies of simulation results. Here, the wall displays a 5-kilometer-resolution global simulation that captures numerous cloud types at groundbreaking fidelity. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
2017-12-08
The NASA Center for Climate Simulation (NCCS) Data Exploration Theater features a 17- by 6-foot multi-screen visualization wall for engaging visitors and scientists with high-definition movies of simulation results. Here, the wall displays a 3.5-kilometer-resolution global simulation that captures numerous cloud types at groundbreaking fidelity. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
2017-12-08
The NASA Center for Climate Simulation (NCCS) Data Exploration Theater features a 17- by 6-foot multi-screen visualization wall for engaging visitors and scientists with high-definition movies of simulation results. Here, the wall displays a 5-kilometer-resolution global simulation that captures numerous cloud types at groundbreaking fidelity. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1997-01-01
The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.
Numerical Study of a High Head Francis Turbine with Measurements from the Francis-99 Project
NASA Astrophysics Data System (ADS)
Wallimann, H.; Neubauer, R.
2015-01-01
For the Francis-99 project initiated by the Norwegian University of Science and Technology (NTNU, Norway) and the Luleå University of Technology (LTU, Sweden) numerical flow simulation has been performed and the results compared to experimentally obtained data. The full machine including spiral casing, stay vanes, guide vanes, runner and draft tube was simulated transient for three operating points defined by the Francis-99 organisers. Two sets of results were created with differing time steps. Additionally, a reduced domain was simulated in a stationary manner to create a complete cut along constant prototype head and constant prototype discharge. The efficiency values and shape of the curves have been investigated and compared to the experimental data. Special attention has been given to rotor stator interaction (RSI). Signals from several probes and their counterpart in the simulation have been processed to evaluate the pressure fluctuations occurring due to the RSI. The direct comparison of the hydraulic efficiency obtained by the full machine simulation compared to the experimental data showed no improvement when using a 1° time step compared to a coarser 2° time step. At the BEP the 2° time step even showed a slightly better result with an absolute deviation 1.08% compared with 1.24% for the 1° time step. At the other two operating points the simulation results were practically identical but fell short of predicting the measured values. The RSI evaluation was done using the results of the 2° time step simulation, which proved to be an adequate setting to reproduce pressure signals with peaks at the correct frequencies. The simulation results showed the highest amplitudes in the vaneless space at the BEP operating point at a location different from the probe measurements available. This implies that not only the radial distance, but the shape of the vaneless space influences the RSI.
NASA Astrophysics Data System (ADS)
Bellver, Fernando Gimeno; Garratón, Manuel Caravaca; Soto Meca, Antonio; López, Juan Antonio Vera; Guirao, Juan L. G.; Fernández-Martínez, Manuel
In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems. The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software. Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper.
Towards Bridging the Gaps in Holistic Transition Prediction via Numerical Simulations
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Duan, Lian; Chang, Chau-Lyan; Carpenter, Mark H.; Streett, Craig L.; Malik, Mujeeb R.
2013-01-01
The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition prediction in particular. Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper provides a summary of selected research activities targeting the current gaps in high-fidelity transition prediction, specifically those related to the receptivity and laminar breakdown phases of crossflow induced transition in a subsonic swept-wing boundary layer. The results of direct numerical simulations are used to obtain an enhanced understanding of the laminar breakdown region as well as to validate reduced order prediction methods.
Design of WLAN microstrip antenna for 5.17 - 5.835 GHz
NASA Astrophysics Data System (ADS)
Bugaj, Jarosław; Bugaj, Marek; Wnuk, Marian
2017-04-01
This paper presents the project of miniaturized WLAN Antenna made in microstrip technique working at a frequency of 5.17 - 5.835 GHz in 802.11ac IEEE standard. This dual layer antenna is designed on RT/duroid 5870 ROGERS CORPORATION substrate with dielectric constant 2.33 and thickness of 3.175 mm. The antenna parameters such as return loss, VSWR, gain and directivity are simulated and optimized using commercial computer simulation technology microwave studio (CST MWS). The paper presents the results of discussed numerical analysis.
Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang
2014-09-05
The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.
Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang
2014-01-01
The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686
NASA Astrophysics Data System (ADS)
Watanabe, Tomoaki; Nagata, Koji
2016-11-01
The mixing volume model (MVM), which is a mixing model for molecular diffusion in Lagrangian simulations of turbulent mixing problems, is proposed based on the interactions among spatially distributed particles in a finite volume. The mixing timescale in the MVM is derived by comparison between the model and the subgrid scale scalar variance equation. A-priori test of the MVM is conducted based on the direct numerical simulations of planar jets. The MVM is shown to predict well the mean effects of the molecular diffusion under various conditions. However, a predicted value of the molecular diffusion term is positively correlated to the exact value in the DNS only when the number of the mixing particles is larger than two. Furthermore, the MVM is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (ILES/LPS). The ILES/LPS with the present mixing model predicts well the decay of the scalar variance in planar jets. This work was supported by JSPS KAKENHI Nos. 25289030 and 16K18013. The numerical simulations presented in this manuscript were carried out on the high performance computing system (NEC SX-ACE) in the Japan Agency for Marine-Earth Science and Technology.
An Optimization Study of Hot Stamping Operation
NASA Astrophysics Data System (ADS)
Ghoo, Bonyoung; Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu; Averill, Ron
2010-06-01
In the present study, 3-dimensional finite element analyses for hot-stamping processes of Audi B-pillar product are conducted using JSTAMP/NV and HEEDS. Special attention is paid to the optimization of simulation technology coupling with thermal-mechanical formulations. Numerical simulation based on FEM technology and optimization design using the hybrid adaptive SHERPA algorithm are applied to hot stamping operation to improve productivity. The robustness of the SHERPA algorithm is found through the results of the benchmark example. The SHERPA algorithm is shown to be far superior to the GA (Genetic Algorithm) in terms of efficiency, whose calculation time is about 7 times faster than that of the GA. The SHERPA algorithm could show high performance in a large scale problem having complicated design space and long calculation time.
Laser manipulation of atomic and molecular flows
NASA Astrophysics Data System (ADS)
Lilly, Taylor C.
The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow steering and collimation. The use of one of these interactions, the induced dipole force, was extended beyond a single Gaussian laser field. The interference patterns associated with counter-propagating laser fields, or "optical lattices," were shown to be capable of both direct species acceleration and gas heating. This study resulted in predictions for a continuous, resonant laser-cesium flow with accelerations of 106 m/s2. For this circumstance, a future straightforward proof of principle experiment has been identified. To demonstrate non-resonant gas heating, a series of pulsed optical lattices were simulated interacting with neutral non-polar species. An optimum time between pulses was identified as a function of the collisional relaxation time. Using the optimum time between pulses, molecular nitrogen simulations showed an increase in gas temperature from 300 K to 2470 K at 1 atm, for 50 successive optical lattice pulses. A second proof of principle experiment was identified for future investigation.
NASA Astrophysics Data System (ADS)
Patyk, Radoslaw; Kukielka, Leon; Kaldunski, Pawel; Bohdal, Lukasz; Chodor, Jaroslaw; Kulakowska, Agnieszka; Kukielka, Krzysztof; Nagnajewicz, Slawomir
2018-05-01
The paper presents the results of experimental researches and numerical simulations of the duplex burnishing process. During duplex burnishing process the treatment is carry out in two stages. In the first stage - on the semi-fabrication surface, the regular asperities are embossed with triangular, symmetrical, periodic outline. In the second stage the asperities are burnished (smooth burnishing) till the needed asperities equalized, resulting in a smooth and strengthened surface layer. The implementation of such technology results in receiving of a new surface layer characterized by favorable functional properties, particularly increased resistance to fatigue wear.
NASA Astrophysics Data System (ADS)
Iqbal, S.; Benim, A. C.; Fischer, S.; Joos, F.; Kluβ, D.; Wiedermann, A.
2016-10-01
Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally. In the investigation, an emphasis is placed upon the external flue gas recirculation, which is a promising technology for increasing the efficiency of the carbon capture and storage process, which, however, can change the combustion behaviour significantly. A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas. Flames are also investigated numerically using the open source CFD software OpenFOAM. In the numerical simulations, a laminar flamelet model based on mixture fraction and reaction progress variable is adopted. As turbulence model, the SST model is used within a URANS concept. Computational results are compared with the experimental data, where a fair agreement is observed.
CPU and GPU-based Numerical Simulations of Combustion Processes
2012-04-27
Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and
Improving PET spatial resolution and detectability for prostate cancer imaging
NASA Astrophysics Data System (ADS)
Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.
2014-08-01
Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.
Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2003-01-01
NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.
Variational data assimilation system "INM RAS - Black Sea"
NASA Astrophysics Data System (ADS)
Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir
2013-04-01
Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 95-111 [4] V.I. Agoshkov, S.V. Giniatulin, G.V. Kuimov. OpenMP technology and linear algebra packages in the variation data assimilation systems. - Abstracts of the 1-st China-Russia Conference on Numerical Algebra with Applications in Radiactive Hydrodynamics, Beijing, China, October 16-18, 2012. [5] Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1995-12-31
The objective of this research is to develop cost-effective surfactant flooding technology by using simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. In this quarter, we have continued working on Task 2 to optimizemore » surfactant flooding design and have included economic analysis to the optimization process. An economic model was developed using a spreadsheet and the discounted cash flow (DCF) method of economic analysis. The model was designed specifically for a domestic onshore surfactant flood and has been used to economically evaluate previous work that used a technical approach to optimization. The DCF model outputs common economic decision making criteria, such as net present value (NPV), internal rate of return (IRR), and payback period.« less
Direct numerical simulations of on-demand vortex generators: Mathematical formulation
NASA Technical Reports Server (NTRS)
Koumoutsakos, Petros
1994-01-01
The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).
Numerical and experimental investigation of light trapping effect of nanostructured diatom frustules
NASA Astrophysics Data System (ADS)
Chen, Xiangfan; Wang, Chen; Baker, Evan; Sun, Cheng
2015-07-01
Recent advances in nanophotonic light-trapping technologies offer promising solutions in developing high-efficiency thin-film solar cells. However, the cost-effective scalable manufacturing of those rationally designed nanophotonic structures remains a critical challenge. In contrast, diatoms, the most common type of phytoplankton found in nature, may offer a very attractive solution. Diatoms exhibit high solar energy harvesting efficiency due to their frustules (i.e., hard porous cell wall made of silica) possessing remarkable hierarchical micro-/nano-scaled features optimized for the photosynthetic process through millions of years of evolution. Here we report numerical and experimental studies to investigate the light-trapping characteristic of diatom frustule. Rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods are employed to investigate the light-trapping characteristics of the diatom frustules. In simulation, placing the diatom frustules on the surface of the light-absorption materials is found to strongly enhance the optical absorption over the visible spectrum. The absorption spectra are also measured experimentally and the results are in good agreement with numerical simulations.
Combustion of Biofuel as a Renewable Energy Source in Sandia Flame Geometry
NASA Astrophysics Data System (ADS)
Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen
Energy security and climate change are two important key causes of wide spread employment of biofuel notwithstanding of problems associated with its usage. In this research, combustion of biofuel as a renewable energy source was numerically investigated in the well-known and practical Sandia flame geometry. Combustion performance of the flame has been simulated by burning biodiesel (methyl decanoate, methyl 9-decenoate, and n-heptane) oxidation with 118 species reduced/skeletal mechanism. The open-source code OpenFoam was used for simulating turbulent biodiesel-air combustion in the cylindrical chamber using the standard k-epsilon model. To check the accuracy of numerical results, the system was initially validated with methane-air Sandia national laboratories flame D experimental results. Excellent agreements between numerical and experimental results were observed at different cross sections. After ignition, temperature distributions at different distances of axial and radial directions as well as species mass fraction were investigated. It is concluded that biofuel has the capability of implementation in the turbulent jet flame that is a step forward in promotion of sustainable energy technologies and applications.
Direct numerical simulations of on-demand vortex generators: Mathematical formulation
NASA Astrophysics Data System (ADS)
Koumoutsakos, Petros
1994-12-01
The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).
Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics
NASA Technical Reports Server (NTRS)
Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.
An introduction to medical simulation.
Brindley, Peter G; Arabi, Yaseen M
2009-08-01
While medical simulation is no panacea, it offers numerous potential strategies for comprehensive and practical training, safer patient care, and for those keen to attract and retain staff. It is a technique, rather than just a technology that promotes experiential and reflective learning. It is also a key strategy to teach Crisis Resource Management skills. Simulation can benefit the individual learner, the multidisciplinary team, and the hospital as a whole. It has been described as a key driver of patient safety, and even as the patient safety laboratory of the future. As such is endorsed by many professional societies in many nations. While challenges remain (and are outlined) there are great opportunities for clinicians, administrators, and educators alike.
Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis
NASA Technical Reports Server (NTRS)
Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo
2010-01-01
The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.
Strain Rate and Stress Triaxiality Effects on Ductile Damage of Additive Manufactured TI-6AL-4V
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone
2017-06-01
In this work, the effects of strain rate and stress triaxiality on ductile damage of additive manufactured Ti-6Al-4V, also considering the build direction, were investigated. Raw material was manufactured by means of EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technology, and machined to obtain round notched bar and Rod-on-Rod (RoR) specimens. Tensile tests on round notched bar specimens were performed in a wide range of strain rates. The failure strains at different stress triaxiality were used to calibrate the Bonora Damage Model. In order to design the RoR tests, numerical simulations were performed for assessing velocities at which incipient and fully developed damage occur. Tests at selected velocities were carried out and soft-recovered specimens were sectioning and polishing to observe the developed damage. Nucleated voids maps were compared with numerical simulations results.
Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V
2014-08-21
The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.
NASA Astrophysics Data System (ADS)
Chu, Qiuhui; Shen, Yijie; Yuan, Meng; Gong, Mali
2017-12-01
Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is a cutting-edge electro-optical imaging technology to realize miniaturization and complanation of imaging systems. In this paper, the principle of SPIDER has been numerically demonstrated based on the partially coherent light theory, and a novel concept of adjustable baseline pairing SPIDER system has further been proposed. Based on the results of simulation, it is verified that the imaging quality could be effectively improved by adjusting the Nyquist sampling density, optimizing the baseline pairing method and increasing the spectral channel of demultiplexer. Therefore, an adjustable baseline pairing algorithm is established for further enhancing the image quality, and the optimal design procedure in SPIDER for arbitrary targets is also summarized. The SPIDER system with adjustable baseline pairing method can broaden its application and reduce cost under the same imaging quality.
Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program
NASA Technical Reports Server (NTRS)
1994-01-01
Direct numerical simulation databases were used to study turbulence physics and modeling issues at the fifth Summer Program of the Center for Turbulence Research. The largest group, comprising more than half of the participants, was the Turbulent Reacting Flows and Combustion group. The remaining participants were in three groups: Fundamentals, Modeling & LES, and Rotating Turbulence. For the first time in the CTR Summer Programs, participants included engineers from the U.S. aerospace industry. They were exposed to a variety of problems involving turbulence, and were able to incorporate the models developed at CTR in their company codes. They were exposed to new ideas on turbulence prediction, methods which already appear to have had an impact on their capabilities at their laboratories. Such interactions among the practitioners in the government, academia, and industry are the most meaningful way of transferring technology.
De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto
2012-05-01
Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.
Polymer translocation under a pulling force: Scaling arguments and threshold forces
NASA Astrophysics Data System (ADS)
Menais, Timothée
2018-02-01
DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .
NASA Astrophysics Data System (ADS)
Shaheed, M. Reaz
1995-01-01
Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.
High-NA EUV lithography enabling Moore's law in the next decade
NASA Astrophysics Data System (ADS)
van Schoot, Jan; Troost, Kars; Bornebroek, Frank; van Ballegoij, Rob; Lok, Sjoerd; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos P.; Finders, Jo; Meiling, Hans; van Setten, Eelco; Kneer, Bernhard; Kuerz, Peter; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha; Neumann, Jens Timo
2017-10-01
While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their activities on a EUV exposure tool with Numerical Aperture of 0.55. The purpose of this scanner, targeting an ultimate resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, capable of providing the required Numerical Aperture has been investigated; This lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the target specifications, key technology innovations and imaging simulations demonstrating the advantages as compared to 0.33NA and showing the capabilities of the next generation EUV systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya
2012-07-01
The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste residues. The immediate benefit is the independent assessment of radio-active inventory declarations and much facilitated product quality control of waste residues that need to be returned to Germany and submitted to a German HLW-repository requirements. Wherever possible, internationally accepted standard programs are used and embedded. The innovative coupling of burn-up calculations (SCALE) with neutron and gamma transport codes (MCPN-X) allows an application in the world of virtual waste properties. If-then-else scenarios of hypothetical waste material compositions and distributions provide valuable information of long term nuclide property propagation under repository conditions over a very long time span. Benchmarking the program with real residue data demonstrates the power and remarkable accuracy of this numerical approach, boosting the reliability of the confidence aforementioned numerous applications, namely the proof tool set for on-the-spot production quality checking and data evaluation and independent verification. Moreover, using the numerical bottom-up approach helps to avoid the accumulation of fake activities that may gradually build up in a repository from the so-called conservative or penalizing nuclide inventory declarations. The radioactive waste properties and the hydrolytic and chemical stability can be predicted. The interaction with invasive chemicals can be assessed and propagation scenarios can be developed from reliable and sound data and HLW properties. Hence, the appropriate design of a future HLW repository can be based upon predictable and quality assured waste characteristics. (authors)« less
SDF technology in location and navigation procedures: a survey of applications
NASA Astrophysics Data System (ADS)
Kelner, Jan M.; Ziółkowski, Cezary
2017-04-01
The basis for development the Doppler location method, also called the signal Doppler frequency (SDF) method or technology is the analytical solution of the wave equation for a mobile source. This paper presents an overview of the simulations, numerical analysis and empirical studies of the possibilities and the range of SDF method applications. In the paper, the various applications from numerous publications are collected and described. They mainly focus on the use of SDF method in: emitter positioning, electronic warfare, crisis management, search and rescue, navigation. The developed method is characterized by an innovative, unique property among other location methods, because it allows the simultaneous location of the many radio emitters. Moreover, this is the first method based on the Doppler effect, which allows positioning of transmitters, using a single mobile platform. In the paper, the results of the using SDF method by the other teams are also presented.
Djukic, Maja; Fulmer, Terry; Adams, Jennifer G; Lee, Sabrina; Triola, Marc M
2012-09-01
Interprofessional education is a critical precursor to effective teamwork and the collaboration of health care professionals in clinical settings. Numerous barriers have been identified that preclude scalable and sustainable interprofessional education (IPE) efforts. This article describes NYU3T: Teaching, Technology, Teamwork, a model that uses novel technologies such as Web-based learning, virtual patients, and high-fidelity simulation to overcome some of the common barriers and drive implementation of evidence-based teamwork curricula. It outlines the program's curricular components, implementation strategy, evaluation methods, and lessons learned from the first year of delivery and describes implications for future large-scale IPE initiatives. Copyright © 2012 Elsevier Inc. All rights reserved.
The Application of High Energy Resolution Green's Functions to Threat Scenario Simulation
NASA Astrophysics Data System (ADS)
Thoreson, Gregory G.; Schneider, Erich A.
2012-04-01
Radiation detectors installed at key interdiction points provide defense against nuclear smuggling attempts by scanning vehicles and traffic for illicit nuclear material. These hypothetical threat scenarios may be modeled using radiation transport simulations. However, high-fidelity models are computationally intensive. Furthermore, the range of smuggler attributes and detector technologies create a large problem space not easily overcome by brute-force methods. Previous research has demonstrated that decomposing the scenario into independently simulated components using Green's functions can simulate photon detector signals with coarse energy resolution. This paper extends this methodology by presenting physics enhancements and numerical treatments which allow for an arbitrary level of energy resolution for photon transport. As a result, spectroscopic detector signals produced from full forward transport simulations can be replicated while requiring multiple orders of magnitude less computation time.
1989-11-01
tool for planning, programming , The TERMOS is a digital terrain modeling system and simulating, initiating, and surveying small-scale was developed ...workshop fea- (FRG) turing the European Strategic Program for Research and Conference Language: English Development in Information Technologies...self- * Research and Development in the Numerical addressed mailer and return it to ONREUR. Aerodynamic Systems Program , R. Bailey, NASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Eddy, N.; Edstrom, D.
Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.
Study on Thermal Conductivity of Personal Computer Aluminum-Magnesium Alloy Casing
NASA Astrophysics Data System (ADS)
Liao, MeiHong
With the rapid development of computer technology, micro-state atoms by simulating the movement of material to analyze the nature of the macro-state have become an important subject. Materials, especially aluminium-magnesium alloy materials, often used in personal computer case, this article puts forward heat conduction model of the material, and numerical methods of heat transfer performance of the material.
NASA Astrophysics Data System (ADS)
Kulikova, N. V.; Chepurova, V. M.
2009-10-01
So far we investigated the nonperturbation dynamics of meteoroid complexes. The numerical integration of the differential equations of motion in the N-body problem by the Everhart algorithm (N=2-6) and introduction of the intermediate hyperbolic orbits build on the base of the generalized problem of two fixed centers permit to take into account some gravitational perturbations.
2016-07-01
14. ABSTRACT The Warrior Injury Assessment Manikin was developed to provide an instrumented anthropomorphic test device (ATD) specifically...underbody blasts . To achieve that goal, the ATD used numerous polymeric materials for component parts that simulate human tissue and enable compliance in...strain rate, underbody blast , mechanical testing, tension, compression 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT
NASA Technical Reports Server (NTRS)
Maul, William A.; Chicatelli, Amy; Fulton, Christopher E.; Balaban, Edward; Sweet, Adam; Hayden, Sandra Claire; Bajwa, Anupa
2005-01-01
The Propulsion IVHM Technology Experiment (PITEX) has been an on-going research effort conducted over several years. PITEX has developed and applied a model-based diagnostic system for the main propulsion system of the X-34 reusable launch vehicle, a space-launch technology demonstrator. The application was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real-time on flight-like hardware. In an attempt to expose potential performance problems, these PITEX algorithms were subject to numerous real-world effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. The current research has demonstrated the potential benefits of model-based diagnostics, defined the performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.
Propulsion IVHM Technology Experiment
NASA Technical Reports Server (NTRS)
Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.
2006-01-01
The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.
NASA Astrophysics Data System (ADS)
Ye, Ming; Li, Yun; He, Yongning; Daneshmand, Mojgan
2017-05-01
With the development of space technology, microwave components with increased power handling capability and reduced weight have been urgently required. In this work, the perforated waveguide technology is proposed to suppress the multipactor effect of high power microwave components. Meanwhile, this novel method has the advantage of reducing components' weight, which makes it to have great potential in space applications. The perforated part of the waveguide components can be seen as an electron absorber (namely, its total electron emission yield is zero) since most of the electrons impacting on this part will go out of the components. Based on thoroughly benchmarked numerical simulation procedures, we simulated an S band and an X band waveguide transformer to conceptually verify this idea. Both electron dynamic simulations and electrical loss simulations demonstrate that the perforation technology can improve the multipactor threshold at least ˜8 dB while maintaining the acceptable insertion loss level compared with its un-perforated components. We also found that the component with larger minimum gap is easier to achieve multipactor suppression. This effect is interpreted by a parallel plate waveguide model. What's more, to improve the multipactor threshold of the X band waveguide transformer with a minimum gap of ˜0.1 mm, we proposed a perforation structure with the slope edge and explained its mechanism. Future study will focus on further optimization of the perforation structure, size, and distribution to maximize the comprehensive performances of microwave components.
Evolving Educational Techniques in Surgical Training.
Evans, Charity H; Schenarts, Kimberly D
2016-02-01
Training competent and professional surgeons efficiently and effectively requires innovation and modernization of educational methods. Today's medical learner is quite adept at using multiple platforms to gain information, providing surgical educators with numerous innovative avenues to promote learning. With the growth of technology, and the restriction of work hours in surgical education, there has been an increase in use of simulation, including virtual reality, robotics, telemedicine, and gaming. The use of simulation has shifted the learning of basic surgical skills to the laboratory, reserving limited time in the operating room for the acquisition of complex surgical skills". Copyright © 2016 Elsevier Inc. All rights reserved.
Field programmable gate array-assigned complex-valued computation and its limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang
We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.
Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds
NASA Astrophysics Data System (ADS)
Samaha, Mohamed A.; Kahwaji, Ghalib Y.
2017-11-01
Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.
NASA Astrophysics Data System (ADS)
Niemi, K.; Waskoenig, J.; Sadeghi, N.; Gans, T.; O'Connell, D.
2011-10-01
Absolute densities of metastable He(23S1) atoms were measured line-of-sight integrated along the discharge channel of a capacitively coupled radio-frequency driven atmospheric pressure plasma jet operated in technologically relevant helium-oxygen mixtures by tunable diode-laser absorption spectroscopy. The dependences of the He(23S1) density in the homogeneous-glow-like α-mode plasma with oxygen admixtures up to 1% were investigated. The results are compared with a one-dimensional numerical simulation, which includes a semi-kinetical treatment of the pronounced electron dynamics and the complex plasma chemistry (in total 20 species and 184 reactions). Very good agreement between measurement and simulation is found. The main formation mechanisms for metastable helium atoms are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.
Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM
NASA Astrophysics Data System (ADS)
Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.
2014-12-01
Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.
NASA Astrophysics Data System (ADS)
Yan, Xuewei; Xu, Qingyan; Liu, Baicheng
2017-12-01
Dendritic structures are the predominant microstructural constituents of nickel-based superalloys, an understanding of the dendrite growth is required in order to obtain the desirable microstructure and improve the performance of castings. For this reason, numerical simulation method and an in-situ observation technology by employing high temperature confocal laser scanning microscopy (HT-CLSM) were used to investigate dendrite growth during solidification process. A combined cellular automaton-finite difference (CA-FD) model allowing for the prediction of dendrite growth of binary alloys was developed. The algorithm of cells capture was modified, and a deterministic cellular automaton (DCA) model was proposed to describe neighborhood tracking. The dendrite and detail morphology, especially hundreds of dendrites distribution at a large scale and three-dimensional (3-D) polycrystalline growth, were successfully simulated based on this model. The dendritic morphologies of samples before and after HT-CLSM were both observed by optical microscope (OM) and scanning electron microscope (SEM). The experimental observations presented a reasonable agreement with the simulation results. It was also found that primary or secondary dendrite arm spacing, and segregation pattern were significantly influenced by dendrite growth. Furthermore, the directional solidification (DS) dendritic evolution behavior and detail morphology were also simulated based on the proposed model, and the simulation results also agree well with experimental results.
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-03-01
Coating of solid dosage forms is an important unit operation in the pharmaceutical industry. In recent years, numerical simulations of drug manufacturing processes have been gaining interest as process analytical technology tools. The discrete element method (DEM) in particular is suitable to model tablet-coating processes. For the development of accurate simulations, information on the material properties of the tablets is required. In this study, the mechanical parameters Young's modulus, coefficient of restitution (CoR), and coefficients of friction (CoF) of gastrointestinal therapeutic systems (GITS) and of active-coated GITS were measured experimentally. The dynamic angle of repose of these tablets in a drum coater was investigated to revise the CoF. The resulting values were used as input data in DEM simulations to compare simulation and experiment. A mean value of Young's modulus of 31.9 MPa was determined by the uniaxial compression test. The CoR was found to be 0.78. For both tablet-steel and tablet-tablet friction, active-coated GITS showed a higher CoF compared with GITS. According to the values of the dynamic angle of repose, the CoF was adjusted to obtain consistent tablet motion in the simulation and in the experiment. On the basis of this experimental characterization, mechanical parameters are integrated into DEM simulation programs to perform numerical analysis of coating processes.
The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)
NASA Astrophysics Data System (ADS)
Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.
2016-06-01
Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.
Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface.
Tan, Huanshu; Diddens, Christian; Versluis, Michel; Butt, Hans-Jürgen; Lohse, Detlef; Zhang, Xuehua
2017-04-12
Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.
Numerical simulation of disperse particle flows on a graphics processing unit
NASA Astrophysics Data System (ADS)
Sierakowski, Adam J.
In both nature and technology, we commonly encounter solid particles being carried within fluid flows, from dust storms to sediment erosion and from food processing to energy generation. The motion of uncountably many particles in highly dynamic flow environments characterizes the tremendous complexity of such phenomena. While methods exist for the full-scale numerical simulation of such systems, current computational capabilities require the simplification of the numerical task with significant approximation using closure models widely recognized as insufficient. There is therefore a fundamental need for the investigation of the underlying physical processes governing these disperse particle flows. In the present work, we develop a new tool based on the Physalis method for the first-principles numerical simulation of thousands of particles (a small fraction of an entire disperse particle flow system) in order to assist in the search for new reduced-order closure models. We discuss numerous enhancements to the efficiency and stability of the Physalis method, which introduces the influence of spherical particles to a fixed-grid incompressible Navier-Stokes flow solver using a local analytic solution to the flow equations. Our first-principles investigation demands the modeling of unresolved length and time scales associated with particle collisions. We introduce a collision model alongside Physalis, incorporating lubrication effects and proposing a new nonlinearly damped Hertzian contact model. By reproducing experimental studies from the literature, we document extensive validation of the methods. We discuss the implementation of our methods for massively parallel computation using a graphics processing unit (GPU). We combine Eulerian grid-based algorithms with Lagrangian particle-based algorithms to achieve computational throughput up to 90 times faster than the legacy implementation of Physalis for a single central processing unit. By avoiding all data communication between the GPU and the host system during the simulation, we utilize with great efficacy the GPU hardware with which many high performance computing systems are currently equipped. We conclude by looking forward to the future of Physalis with multi-GPU parallelization in order to perform resolved disperse flow simulations of more than 100,000 particles and further advance the development of reduced-order closure models.
Hardware simulation of fuel cell/gas turbine hybrids
NASA Astrophysics Data System (ADS)
Smith, Thomas Paul
Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.
NASA Astrophysics Data System (ADS)
Amiraux, Mathieu
Rotorcraft Blade-Vortex Interaction (BVI) remains one of the most challenging flow phenomenon to simulate numerically. Over the past decade, the HART-II rotor test and its extensive experimental dataset has been a major database for validation of CFD codes. Its strong BVI signature, with high levels of intrusive noise and vibrations, makes it a difficult test for computational methods. The main challenge is to accurately capture and preserve the vortices which interact with the rotor, while predicting correct blade deformations and loading. This doctoral dissertation presents the application of a coupled CFD/CSD methodology to the problem of helicopter BVI and compares three levels of fidelity for aerodynamic modeling: a hybrid lifting-line/free-wake (wake coupling) method, with modified compressible unsteady model; a hybrid URANS/free-wake method; and a URANS-based wake capturing method, using multiple overset meshes to capture the entire flow field. To further increase numerical correlation, three helicopter fuselage models are implemented in the framework. The first is a high resolution 3D GPU panel code; the second is an immersed boundary based method, with 3D elliptic grid adaption; the last one uses a body-fitted, curvilinear fuselage mesh. The main contribution of this work is the implementation and systematic comparison of multiple numerical methods to perform BVI modeling. The trade-offs between solution accuracy and computational cost are highlighted for the different approaches. Various improvements have been made to each code to enhance physical fidelity, while advanced technologies, such as GPU computing, have been employed to increase efficiency. The resulting numerical setup covers all aspects of the simulation creating a truly multi-fidelity and multi-physics framework. Overall, the wake capturing approach showed the best BVI phasing correlation and good blade deflection predictions, with slightly under-predicted aerodynamic loading magnitudes. However, it proved to be much more expensive than the other two methods. Wake coupling with RANS solver had very good loading magnitude predictions, and therefore good acoustic intensities, with acceptable computational cost. The lifting-line based technique often had over-predicted aerodynamic levels, due to the degree of empiricism of the model, but its very short run-times, thanks to GPU technology, makes it a very attractive approach.
Large Eddy Simulation of Engineering Flows: A Bill Reynolds Legacy.
NASA Astrophysics Data System (ADS)
Moin, Parviz
2004-11-01
The term, Large eddy simulation, LES, was coined by Bill Reynolds, thirty years ago when he and his colleagues pioneered the introduction of LES in the engineering community. Bill's legacy in LES features his insistence on having a proper mathematical definition of the large scale field independent of the numerical method used, and his vision for using numerical simulation output as data for research in turbulence physics and modeling, just as one would think of using experimental data. However, as an engineer, Bill was pre-dominantly interested in the predictive capability of computational fluid dynamics and in particular LES. In this talk I will present the state of the art in large eddy simulation of complex engineering flows. Most of this technology has been developed in the Department of Energy's ASCI Program at Stanford which was led by Bill in the last years of his distinguished career. At the core of this technology is a fully implicit non-dissipative LES code which uses unstructured grids with arbitrary elements. A hybrid Eulerian/ Largangian approach is used for multi-phase flows, and chemical reactions are introduced through dynamic equations for mixture fraction and reaction progress variable in conjunction with flamelet tables. The predictive capability of LES is demonstrated in several validation studies in flows with complex physics and complex geometry including flow in the combustor of a modern aircraft engine. LES in such a complex application is only possible through efficient utilization of modern parallel super-computers which was recognized and emphasized by Bill from the beginning. The presentation will include a brief mention of computer science efforts for efficient implementation of LES.
Time-Accurate Numerical Prediction of Free Flight Aerodynamics of a Finned Projectile
2005-09-01
develop (with fewer dollars) more lethal and effective munitions. The munitions must stay abreast of the latest technology available to our...consuming. Computer simulations can and have provided an effective means of determining the unsteady aerodynamics and flight mechanics of guided projectile...Recently, the time-accurate technique was used to obtain improved results for Magnus moment and roll damping moment of a spinning projectile at transonic
2007-06-01
possible means to improve a variety of processes: supercritical water in steam Rankine cycles (fossil-fuel powered plants), supercritical carbon ... dioxide and supercritical water in advanced nuclear power plants, and oxidation in supercritical water for use in destroying toxic military wastes and...destruction technologies are installed in a class of ship. Additionally, the properties of one waste water destruction medium, supercritical
Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices
NASA Technical Reports Server (NTRS)
1977-01-01
Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.
Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu
2016-01-01
The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance–performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system. PMID:27598390
Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu
2016-01-01
The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance-performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system.
Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization
Vutova, Katia; Donchev, Veliko
2013-01-01
Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials. PMID:28788351
Aerodynamic design on high-speed trains
NASA Astrophysics Data System (ADS)
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-04-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
NASA Astrophysics Data System (ADS)
Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar
2017-07-01
Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.
Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus
2015-01-01
Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology.
Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus
2015-01-01
Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology. PMID:26441628
Unsteady Flow Simulation of a Sweeping Jet Actuator Using a Lattice-Boltzmann Method
NASA Technical Reports Server (NTRS)
Duda, B.; Wessels, M.; Fares, E.; Vatsa, V.
2016-01-01
Active flow control technology is increasingly used in aerospace applications to control flow separation and to improve aerodynamic performance. In this paper, PowerFLOW is used to simulate the flow through a sweeping jet actuator at two different pressure ratios. The lower pressure ratio leads to a high subsonic flow, whereas the high pressure ratio produces a choked flow condition. Comparison of numerical results with experimental data is shown, which includes qualitatively good agreement of pressure histories and spectra. PIV measurements are also available but the simulation overestimates mean and fluctuation quantities outside the actuator. If supply pressure is matched at one point inside the mixing chamber a good qualitative agreement is achieved at all other monitor points.
Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure
NASA Astrophysics Data System (ADS)
Konakov, S. A.; Krzhizhanovskaya, V. V.
2015-01-01
We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1994-09-01
The objective of this research is to develop cost-effective surfactant flooding technology by using surfactant simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics, process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. The goal of Task 2 is to understand and generalize themore » impact of both process and reservoir characteristics on the optimal design of surfactant flooding. We have studied the effect of process parameters such as salinity gradient, surfactant adsorption, surfactant concentration, surfactant slug size, pH, polymer concentration and well constraints on surfactant floods. In this report, we show three dimensional field scale simulation results to illustrate the impact of one important design parameter, the salinity gradient. Although the use of a salinity gradient to improve the efficiency and robustness of surfactant flooding has been studied and applied for many years, this is the first time that we have evaluated it using stochastic simulations rather than simulations using the traditional layered reservoir description. The surfactant flooding simulations were performed using The University of Texas chemical flooding simulator called UTCHEM.« less
Recovery Discontinuous Galerkin Jacobian-free Newton-Krylov Method for all-speed flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
HyeongKae Park; Robert Nourgaliev; Vincent Mousseau
2008-07-01
There is an increasing interest to develop the next generation simulation tools for the advanced nuclear energy systems. These tools will utilize the state-of-art numerical algorithms and computer science technology in order to maximize the predictive capability, support advanced reactor designs, reduce uncertainty and increase safety margins. In analyzing nuclear energy systems, we are interested in compressible low-Mach number, high heat flux flows with a wide range of Re, Ra, and Pr numbers. Under these conditions, the focus is placed on turbulent heat transfer, in contrast to other industries whose main interest is in capturing turbulent mixing. Our objective ismore » to develop singlepoint turbulence closure models for large-scale engineering CFD code, using Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) tools, requireing very accurate and efficient numerical algorithms. The focus of this work is placed on fully-implicit, high-order spatiotemporal discretization based on the discontinuous Galerkin method solving the conservative form of the compressible Navier-Stokes equations. The method utilizes a local reconstruction procedure derived from weak formulation of the problem, which is inspired by the recovery diffusion flux algorithm of van Leer and Nomura [?] and by the piecewise parabolic reconstruction [?] in the finite volume method. The developed methodology is integrated into the Jacobianfree Newton-Krylov framework [?] to allow a fully-implicit solution of the problem.« less
Direct numerical simulation of incompressible axisymmetric flows
NASA Technical Reports Server (NTRS)
Loulou, Patrick
1994-01-01
In the present work, we propose to conduct direct numerical simulations (DNS) of incompressible turbulent axisymmetric jets and wakes. The objectives of the study are to understand the fundamental behavior of axisymmetric jets and wakes, which are perhaps the most technologically relevant free shear flows (e.g. combuster injectors, propulsion jet). Among the data to be generated are various statistical quantities of importance in turbulence modeling, like the mean velocity, turbulent stresses, and all the terms in the Reynolds-stress balance equations. In addition, we will be interested in the evolution of large-scale structures that are common in free shear flow. The axisymmetric jet or wake is also a good problem in which to try the newly developed b-spline numerical method. Using b-splines as interpolating functions in the non-periodic direction offers many advantages. B-splines have local support, which leads to sparse matrices that can be efficiently stored and solved. Also, they offer spectral-like accuracy that are C(exp O-1) continuous, where O is the order of the spline used; this means that derivatives of the velocity such as the vorticity are smoothly and accurately represented. For purposes of validation against existing results, the present code will also be able to simulate internal flows (ones that require a no-slip boundary condition). Implementation of no-slip boundary condition is trivial in the context of the b-splines.
NASA Astrophysics Data System (ADS)
Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi
2018-05-01
Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.
NASA Astrophysics Data System (ADS)
Mucha, Waldemar; Kuś, Wacław
2018-01-01
The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.
Numerical Simulation of Non-Thermal Food Preservation
NASA Astrophysics Data System (ADS)
Rauh, C.; Krauss, J.; Ertunc, Ö.; Delgado, a.
2010-09-01
Food preservation is an important process step in food technology regarding product safety and product quality. Novel preservation techniques are currently developed, that aim at improved sensory and nutritional value but comparable safety than in conventional thermal preservation techniques. These novel non-thermal food preservation techniques are based for example on high pressures up to one GPa or pulsed electric fields. in literature studies the high potential of high pressures (HP) and of pulsed electric fields (PEF) is shown due to their high retention of valuable food components as vitamins and flavour and selective inactivation of spoiling enzymes and microorganisms. for the design of preservation processes based on the non-thermal techniques it is crucial to predict the effect of high pressure and pulsed electric fields on the food components and on the spoiling enzymes and microorganisms locally and time-dependent in the treated product. Homogenous process conditions (especially of temperature fields in HP and PEF processing and of electric fields in PEF) are aimed at to avoid the need of over-processing and the connected quality loss and to minimize safety risks due to under-processing. the present contribution presents numerical simulations of thermofluiddynamical phenomena inside of high pressure autoclaves and pulsed electric field treatment chambers. in PEF processing additionally the electric fields are considered. Implementing kinetics of occurring (bio-) chemical reactions in the numerical simulations of the temperature, flow and electric fields enables the evaluation of the process homogeneity and efficiency connected to different process parameters of the preservation techniques. Suggestions to achieve safe and high quality products are concluded out of the numerical results.
Friction Stir Welding of Magnesium Alloy Type AZ 31
NASA Astrophysics Data System (ADS)
Kupec, Tomáš; Behúlová, Mária; Turňa, Milan; Sahul, Miroslav
The paper deals with welding of Mg alloy of the type AZ 31 by Friction Stir Welding technology (FSW). The FSW technology is at present predominantly used for welding light metals and alloys, as aluminium, magnesium and their alloys. Experimental part consists of performing the simulation and fabrication of welded joints on a new-installed welding equipment available at the Welding Research Institute — Industrial Institute of SR Bratislava. Welding tools made of tool steel type H 13 were used for welding experiments. Geometry of welding tools was designed on the base of literature knowledge. Suitable welding parameters and conditions were determined using numerical simulation. Main emphasis was laid upon the tool revolutions, welding speed and tool bevel angle. The effect of welding parameters on the quality of welded joints was assessed. Assessment of welded joints was carried out by radiography, light microscopy, hardness measurement and EDX microanalysis. Static tensile test was employed for mechanical testing.
NASA Astrophysics Data System (ADS)
Russkova, Tatiana V.
2017-11-01
One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; ...
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less
Simulations of Scatterometry Down to 22 nm Structure Sizes and Beyond with Special Emphasis on LER
NASA Astrophysics Data System (ADS)
Osten, W.; Ferreras Paz, V.; Frenner, K.; Schuster, T.; Bloess, H.
2009-09-01
In recent years, scatterometry has become one of the most commonly used methods for CD metrology. With decreasing structure size for future technology nodes, the search for optimized scatterometry measurement configurations gets more important to exploit maximum sensitivity. As widespread industrial scatterometry tools mainly still use a pre-set measurement configuration, there are still free parameters to improve sensitivity. Our current work uses a simulation based approach to predict and optimize sensitivity of future technology nodes. Since line edge roughness is getting important for such small structures, these imperfections of the periodic continuation cannot be neglected. Using fourier methods like e.g. rigorous coupled wave approach (RCWA) for diffraction calculus, nonperiodic features are hard to reach. We show that in this field certain types of fieldstitching methods show nice numerical behaviour and lead to useful results.
Modeling and dynamic environment analysis technology for spacecraft
NASA Astrophysics Data System (ADS)
Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei
Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.
Numerical and experimental approaches to study soil transport and clogging in granular filters
NASA Astrophysics Data System (ADS)
Kanarska, Y.; Smith, J. J.; Ezzedine, S. M.; Lomov, I.; Glascoe, L. G.
2012-12-01
Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. Numerical modeling has proved to be a cost-effective tool for improving our understanding of physical processes. Traditionally, the consideration of flow and particle transport in porous media has focused on treating the media as continuum. Practical models typically address flow and transport based on the Darcy's law as a function of a pressure gradient and a medium-dependent permeability parameter. Additional macroscopic constitutes describe porosity, and permeability changes during the migration of a suspension through porous media. However, most of them rely on empirical correlations, which often need to be recalibrated for each application. Grain-scale modeling can be used to gain insight into scale dependence of continuum macroscale parameters. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration in the filter layers of gravity dam. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. It is believed that the agreement between simulations and experimental data demonstrates the applicability of the proposed approach for prediction of the soil transport and clogging in embankment dams. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Department of Homeland Security Science and Technology Directorate provided funding for this research.
Multi-d CFD Modeling of a Free-piston Stirling Convertor at NASA Glenn
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Ibrahim, Mounir B.
2004-01-01
A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed.
A perspective on future directions in aerospace propulsion system simulation
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Szuch, John R.; Gaugler, Raymond E.; Wood, Jerry R.
1989-01-01
The design and development of aircraft engines is a lengthy and costly process using today's methodology. This is due, in large measure, to the fact that present methods rely heavily on experimental testing to verify the operability, performance, and structural integrity of components and systems. The potential exists for achieving significant speedups in the propulsion development process through increased use of computational techniques for simulation, analysis, and optimization. This paper outlines the concept and technology requirements for a Numerical Propulsion Simulation System (NPSS) that would provide capabilities to do interactive, multidisciplinary simulations of complete propulsion systems. By combining high performance computing hardware and software with state-of-the-art propulsion system models, the NPSS will permit the rapid calculation, assessment, and optimization of subcomponent, component, and system performance, durability, reliability and weight-before committing to building hardware.
Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.
1999-01-01
The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)
2002-01-01
Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.
NASA Astrophysics Data System (ADS)
Zhao, Shi-Bo; Liu, Ming-Zhe; Yang, Lan-Ying
2015-04-01
In this paper we investigate the dynamics of an asymmetric exclusion process on a one-dimensional lattice with long-range hopping and random update via Monte Carlo simulations theoretically. Particles in the model will firstly try to hop over successive unoccupied sites with a probability q, which is different from previous exclusion process models. The probability q may represent the random access of particles. Numerical simulations for stationary particle currents, density profiles, and phase diagrams are obtained. There are three possible stationary phases: the low density (LD) phase, high density (HD) phase, and maximal current (MC) in the system, respectively. Interestingly, bulk density in the LD phase tends to zero, while the MC phase is governed by α, β, and q. The HD phase is nearly the same as the normal TASEP, determined by exit rate β. Theoretical analysis is in good agreement with simulation results. The proposed model may provide a better understanding of random interaction dynamics in complex systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 41274109 and 11104022), the Fund for Sichuan Youth Science and Technology Innovation Research Team (Grant No. 2011JTD0013), and the Creative Team Program of Chengdu University of Technology.
NASA Astrophysics Data System (ADS)
Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.
2017-04-01
The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni; Gonzalez, Daniel
Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with that resulting from a microgravity exposure. These results suggest that long-term activities on the surface of Mars may have a greater impact on the cardiovascular health than previously thought.
Computational Methods for HSCT-Inlet Controls/CFD Interdisciplinary Research
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Melcher, Kevin J.; Chicatelli, Amy K.; Hartley, Tom T.; Chung, Joongkee
1994-01-01
A program aimed at facilitating the use of computational fluid dynamics (CFD) simulations by the controls discipline is presented. The objective is to reduce the development time and cost for propulsion system controls by using CFD simulations to obtain high-fidelity system models for control design and as numerical test beds for control system testing and validation. An interdisciplinary team has been formed to develop analytical and computational tools in three discipline areas: controls, CFD, and computational technology. The controls effort has focused on specifying requirements for an interface between the controls specialist and CFD simulations and a new method for extracting linear, reduced-order control models from CFD simulations. Existing CFD codes are being modified to permit time accurate execution and provide realistic boundary conditions for controls studies. Parallel processing and distributed computing techniques, along with existing system integration software, are being used to reduce CFD execution times and to support the development of an integrated analysis/design system. This paper describes: the initial application for the technology being developed, the high speed civil transport (HSCT) inlet control problem; activities being pursued in each discipline area; and a prototype analysis/design system in place for interactive operation and visualization of a time-accurate HSCT-inlet simulation.
Mass transfer in thin films under counter-current gas: experiments and numerical study
NASA Astrophysics Data System (ADS)
Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant
2016-11-01
Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.
Experimental and numerical study of Bondura® 6.6 PIN joints
NASA Astrophysics Data System (ADS)
Berkani, I.; Karlsen, Ø.; Lemu, H. G.
2017-12-01
Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.
Burnishing rolling process of the surface prepared in the turning process
NASA Astrophysics Data System (ADS)
Kulakowska, Agnieszka; Kukielka, Leon; Kaldunski, Pawel; Bohdal, Lukasz; Patyk, Radoslaw; Chodor, Jaroslaw; Kukielka, Krzysztof
2018-05-01
The aim of this article is to demonstrate the possibility of using burnishing rolling process as the technology of product development. The experimental researches were carried out, showing the ability to form the surface layer of the product with the desired properties. First, during turning rolling the surfaces of the samples were prepared. Then, the surfaces were burnished. The influence of turning process on the state of the surface layer parameters of C45 steel shafts are shown. Among the examined aspects the surface roughness, nano-roughness, material bearing, surface microstructure, metallographic structure were considered. Numerical simulation were conducted. Conclusions from the experiments and simulation were given.
Flight Validation of Mars Mission Technologies
NASA Technical Reports Server (NTRS)
Eberspeaker, P. J.
2000-01-01
Effective exploration and characterization of Mars will require the deployment of numerous surface probes, tethered balloon stations and free-flying balloon systems as well as larger landers and orbiting satellite systems. Since launch opportunities exist approximately every two years it is extremely critical that each and every mission maximize its potential for success. This will require significant testing of each system in an environment that simulates the actual operational environment as closely as possible. Analytical techniques and laboratory testing goes a long way in mitigating the inherent risks associated with space exploration, however they fall sort of accurately simulating the unpredictable operational environment in which these systems must function.
Open Source Radiation Hardened by Design Technology
NASA Technical Reports Server (NTRS)
Shuler, Robert
2016-01-01
The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.
Phase field benchmark problems for dendritic growth and linear elasticity
Jokisaari, Andrea M.; Voorhees, P. W.; Guyer, Jonathan E.; ...
2018-03-26
We present the second set of benchmark problems for phase field models that are being jointly developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST) along with input from other members in the phase field community. As the integrated computational materials engineering (ICME) approach to materials design has gained traction, there is an increasing need for quantitative phase field results. New algorithms and numerical implementations increase computational capabilities, necessitating standard problems to evaluate their impact on simulated microstructure evolution as well as their computational performance. We propose one benchmark problem formore » solidifiication and dendritic growth in a single-component system, and one problem for linear elasticity via the shape evolution of an elastically constrained precipitate. We demonstrate the utility and sensitivity of the benchmark problems by comparing the results of 1) dendritic growth simulations performed with different time integrators and 2) elastically constrained precipitate simulations with different precipitate sizes, initial conditions, and elastic moduli. As a result, these numerical benchmark problems will provide a consistent basis for evaluating different algorithms, both existing and those to be developed in the future, for accuracy and computational efficiency when applied to simulate physics often incorporated in phase field models.« less
Phase field benchmark problems for dendritic growth and linear elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokisaari, Andrea M.; Voorhees, P. W.; Guyer, Jonathan E.
We present the second set of benchmark problems for phase field models that are being jointly developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST) along with input from other members in the phase field community. As the integrated computational materials engineering (ICME) approach to materials design has gained traction, there is an increasing need for quantitative phase field results. New algorithms and numerical implementations increase computational capabilities, necessitating standard problems to evaluate their impact on simulated microstructure evolution as well as their computational performance. We propose one benchmark problem formore » solidifiication and dendritic growth in a single-component system, and one problem for linear elasticity via the shape evolution of an elastically constrained precipitate. We demonstrate the utility and sensitivity of the benchmark problems by comparing the results of 1) dendritic growth simulations performed with different time integrators and 2) elastically constrained precipitate simulations with different precipitate sizes, initial conditions, and elastic moduli. As a result, these numerical benchmark problems will provide a consistent basis for evaluating different algorithms, both existing and those to be developed in the future, for accuracy and computational efficiency when applied to simulate physics often incorporated in phase field models.« less
Design, qualification, manufacturing and integration of IXV Ablative Thermal Protection System
NASA Astrophysics Data System (ADS)
Cioeta, Mario; Di Vita, Gandolfo; Signorelli Maria, Teresa; Bianco, Gianluca; Cutroni, Maurizio; Damiani, Francesco; Ferretti, Viviana; Rotondo, Adriano
2016-07-01
In the present paper, all the activities carried out by Avio S.p.A in order to define, qualify, manufacture and integrate the IXV Ablative TPS will be presented. In particular the extensive numerical simulation in both small and full scale testing activities will be overviewed. Wide-ranging testing activity has been carried out in order to verify, confirm and correlate the numerical models used for TPS sizing. Tests ranged from classical thermo-mechanical characterization traction specimens to tests in plasma wind tunnels on dedicated prototypes. Finally manufacturing and integration activities will be described emphasizing technological aspects solved in order to meet the stringent requirements in terms of shape accuracy and integration tolerances.
Juncture flow improvement for wing/pylon configurations by using CFD methodology
NASA Technical Reports Server (NTRS)
Gea, Lie-Mine; Chyu, Wei J.; Stortz, Michael W.; Chow, Chuen-Yen
1993-01-01
Transonic flow field around a fighter wing/pylon configuration was simulated by using an implicit upwinding Navier-Stokes flow solver (F3D) and overset grid technology (Chimera). Flow separation and local shocks near the wing/pylon junction were observed in flight and predicted by numerical calculations. A new pylon/fairing shape was proposed to improve the flow quality. Based on numerical results, the size of separation area is significantly reduced and the onset of separation is delayed farther downstream. A smoother pressure gradient is also obtained near the junction area. This paper demonstrates that computational fluid dynamics (CFD) methodology can be used as a practical tool for aircraft design.
Optical ablation/temperature gage (COTA)
NASA Astrophysics Data System (ADS)
Cassaing, J.; Balageas, D.
ONERA has ground and flight tested for heat-shield recession a novel technique, different from current radiation and acoustic measurement methods. It uses a combined ablation/temperature gage that views the radiation optically from a cavity embedded within the heat shield. Flight measurements, both of temperature and of passage of the ablation front, are compared with data generated by a predictive numerical code. The ablation and heat diffusion into the instrumented ablator can be simulated numerically to evaluate accurately the errors due to the presence of the gage. This technology was established in 1978 and finally adopted after ground tests in arc heater facilities. After four years of flight evaluations, it is possible to evaluate and criticize the sensor reliability.
NASA Astrophysics Data System (ADS)
Wang, Qun; Gao, Qing-Yu; Lü, Hua-Ping; Zheng, Zhi-Gang
2010-05-01
Multi-mode spiral wave and its breakup in 1-d and 2-d coupled oscillatory media is studied here by theoretic analysis and numerical simulations. The analysis in 1-d system shows that the dispersion relation curve could be non-monotonic depending on the coupling strength. It may also lead to the coexistence of different wave numbers within one system. Direct numerical observations in 1-d and 2-d systems conform to the prediction of dispersion relation analysis. Our findings indicate that the wave grouping can also be observed in oscillatory media without tip meandering and waves with negative group velocity can occur without inhomogeneity.
Experimental and numerical studies of rotating drum grate furnace
NASA Astrophysics Data System (ADS)
Basista, Grzegorz; Szubel, Mateusz; Filipowicz, Mariusz; Tomczyk, Bartosz; Krakowiak, Joanna
Waste material from the meat industry can be taken into account as a biofuel. Studies confirm, that calorific value is higher and ash content is lower comparing to some conventional fuels. EU directives regulate details of thermal disposal of the waste material from the meat industry - especially in range of the process temperature and time of the particle presence in area of the combustion zone. The paper describes design of the rotating drum grate stove, dedicated to thermal disposal of the meat wastes as well as solid biomass (pellet, small bricket, wood chips) combustion. Device has been developed in frames of cooperation between AGH University of Science and Technology (Krakow, Poland) and producer focused on technologies of energy utilization of biomass in distributed generation. Results of measurements of selected operational parameters performed during startup of the furnace have been presented and discussed. Furthermore, numerical model of the combustion process has been developed to complement experimental results in range of the temperature and oxygen distribution in the area of the combustion chamber. ANSYS CFX solver has been applied to perform simulations including rotational domain related with specifics of operation of the device. Results of numerical modelling and experimental studies have been summarized and compared.
Acoustofluidic particle dynamics: Beyond the Rayleigh limit.
Baasch, Thierry; Dual, Jürg
2018-01-01
In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.
Numerical simulation of filtration of mine water from coal slurry particles
NASA Astrophysics Data System (ADS)
Dyachenko, E. N.; Dyachenko, N. N.
2017-11-01
The discrete element method is applied to model a technology for clarification of industrial waste water containing fine-dispersed solid impurities. The process is analyzed at the level of discrete particles and pores. The effect of filter porosity on the volume fraction of particles has been shown. The degree of clarification of mine water was also calculated depending on the coal slurry particle size, taking into account the adhesion force.
JPRS Report, Science & Technology Europe
1988-09-08
with good temperature dependence. In the use of the 1B2B balance code, the average value of the optical power emitted by the photodiode equals one...Workers Clerical staff Total 9.7 6.6 18.8 10.3 28.8 8.4 9.4 General facilities 8.0 Table 2. MANPOWER ( Average staff in 1986) 170 180...Propulsion and High Temperatures Scientific Assistant Technical Assistant Special Assistant, Gas Turbines Modeling and Numerical Simulation in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R.
The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation systemmore » and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.« less
Investigation of air transportation technology at Princeton University, 1988-1989
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1990-01-01
The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along several avenues during the past year. A study of optimal trajectories for penetration of microbursts when encounter is unavoidable was conducted. The emphasis of current wind shear research is on developing an expert system for wind shear avoidance. A knowledge-based reconfigurable flight control system that is implemented with the Pascal programming language using parallel microprocessors was developed. This expert system could be considered a prototype for a failure-tolerant control system that can be constructed using existing hardware. Development of a real-time cockpit simulator continued during the year. The simulator provides a single-person crew station with both conventional and advanced control devices; it currently is programmed to simulate the Navion single-engine general aviation airplane. Alternatives for the air traffic control system giving particular attention to the institutional structure of the FAA are analyzed. A simple numerical procedure for estimating the stochastic robustness of control systems is being investigated. The revitalization of the general aviation industry is also discussed.
Modeling of carbonate reservoir variable secondary pore space based on CT images
NASA Astrophysics Data System (ADS)
Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.
2017-12-01
Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.
Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions
NASA Technical Reports Server (NTRS)
Rizzi, Arthur; Jirasek, Adam; Lamar, John; Crippa, Simone; Badcock, Kenneth; Boelens, Oklo
2009-01-01
Nine groups participating in the Cranked Arrow Wing Aerodynamics Project International (CAWAPI) project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, steady or unsteady, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Troy; Bhat, Sham; Marcy, Peter
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive computational fluid dynamics (CFD) simulations are valuable tools in evaluating and deploying oxyfuel and other carbon capture technologies, either as retrofit technologies or for new construction. However, accurate predictive combustor simulations require physically realistic submodels with low computational requirements. A recent sensitivity analysis of a detailed char conversion model (Char Conversion Kinetics (CCK)) found thermal annealing to be an extremely sensitive submodel. In the present work, further analysis of the previous annealing model revealed significant disagreement with numerous datasets from experiments performed after that annealing model was developed. Themore » annealing model was accordingly extended to reflect experimentally observed reactivity loss, because of the thermal annealing of a variety of coals under diverse char preparation conditions. The model extension was informed by a Bayesian calibration analysis. In addition, since oxyfuel conditions include extraordinarily high levels of CO 2, the development of a first-ever CO 2 reactivity loss model due to annealing is presented.« less
Holland, Troy; Bhat, Sham; Marcy, Peter; ...
2017-08-25
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive computational fluid dynamics (CFD) simulations are valuable tools in evaluating and deploying oxyfuel and other carbon capture technologies, either as retrofit technologies or for new construction. However, accurate predictive combustor simulations require physically realistic submodels with low computational requirements. A recent sensitivity analysis of a detailed char conversion model (Char Conversion Kinetics (CCK)) found thermal annealing to be an extremely sensitive submodel. In the present work, further analysis of the previous annealing model revealed significant disagreement with numerous datasets from experiments performed after that annealing model was developed. Themore » annealing model was accordingly extended to reflect experimentally observed reactivity loss, because of the thermal annealing of a variety of coals under diverse char preparation conditions. The model extension was informed by a Bayesian calibration analysis. In addition, since oxyfuel conditions include extraordinarily high levels of CO 2, the development of a first-ever CO 2 reactivity loss model due to annealing is presented.« less
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.
1992-01-01
The presentation gives a partial overview of research and development underway in the Structures Division of LeRC, which collectively is referred to as the Computational Structures Technology Program. The activities in the program are diverse and encompass four major categories: (1) composite materials and structures; (2) probabilistic analysis and reliability; (3) design optimization and expert systems; and (4) computational methods and simulation. The approach of the program is comprehensive and entails exploration of fundamental theories of structural mechanics to accurately represent the complex physics governing engine structural performance, formulation, and implementation of computational techniques and integrated simulation strategies to provide accurate and efficient solutions of the governing theoretical models by exploiting the emerging advances in computer technology, and validation and verification through numerical and experimental tests to establish confidence and define the qualities and limitations of the resulting theoretical models and computational solutions. The program comprises both in-house and sponsored research activities. The remainder of the presentation provides a sample of activities to illustrate the breadth and depth of the program and to demonstrate the accomplishments and benefits that have resulted.
NASA Astrophysics Data System (ADS)
Truong, Cao Dung; Trinh, M. Tuan; Dang, Hoai Bac; Nguyen, Van Tho
2017-02-01
We propose a polarization insensitive two-mode division (de)multiplexer based on a silicon-on-insulator platform operating with a broadband, low insertion and scattering loss, and small crosstalk. By using an asymmetric directional coupler, two-mode (de)multiplexing functions for both polarization TE and TM states can be realized by the numerical simulation. Simulated results using a three dimensional beam propagation method (3D-BPM) incorporated with an effective index method (EIM) show high performance of the device with an operation efficiency above 81.2% (i.e., insertion loss is less than 0.9 dB) in the range of ±5 nm around the central wavelength of 1550 nm. Fabrication tolerances also have proved suitability to current manufacture technologies for the planar waveguides. Besides a low scattering loss of the sidewall roughness and a little influence of dispersion, a small footprint can bring the device to applications of high bitrate and compact on-chip silicon photonic integrated circuits.
Numerical Simulation and Chaotic Analysis of an Aluminum Holding Furnace
NASA Astrophysics Data System (ADS)
Wang, Ji-min; Zhou, Yuan-yuan; Lan, Shen; Chen, Tao; Li, Jie; Yan, Hong-jie; Zhou, Jie-min; Tian, Rui-jiao; Tu, Yan-wu; Li, Wen-ke
2014-12-01
To achieve high heat efficiency, low pollutant emission and homogeneous melt temperature during thermal process of secondary aluminum, taking into account the features of aluminum alloying process, a CFD process model was developed and integrated with heat load and aluminum temperature control model. This paper presented numerical simulation of aluminum holding furnaces using the customized code based on FLUENT packages. Thermal behaviors of aluminum holding furnaces were investigated by probing into main physical fields such as flue gas temperature, velocity, and concentration, and combustion instability of aluminum holding process was represented by chaos theory. The results show that aluminum temperature uniform coefficient firstly decreases during heating phase, then increases and reduces alternately during holding phase, lastly rises during standing phase. Correlation dimension drops with fuel velocity. Maximal Lyapunov exponent reaches to a maximum when air-fuel ratio is close to 1. It would be a clear comprehension about each phase of aluminum holding furnaces to find new technology, retrofit furnace design, and optimize parameters combination.
Improvements in continuum modeling for biomolecular systems
NASA Astrophysics Data System (ADS)
Yu, Qiao; Ben-Zhuo, Lu
2016-01-01
Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.
Lu, Liqiang; Gao, Xi; Li, Tingwen; ...
2017-11-02
For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models tomore » predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. The RTD of large-scale reactors can then be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.« less
Numerical modeling and simulation studies for the M4 adaptive mirror of the E-ELT
NASA Astrophysics Data System (ADS)
Carbillet, Marcel; Riccardi, Armando; Xompero, Marco
2012-07-01
We report in this paper on the progress of numerical modeling and simulation studies of the M4 adaptive mirror, a representative of the "adaptive secondary mirrors" technology, for the European Extremely Large Telescope (E-ELT). This is based on both dedicated routines and the existing code of the Software Package CADS. The points approached are basically the specific problems encountered with this particular type of voice-coil adaptive mirrors on the E-ELT: (*) the segmentation of the adaptive mirror, implying a fitting error due also to the edges of its six petals, as well as possible co-phasing problems to be evaluated in terms of interaction with the wavefront sensor (a pyramid here); (**) the necessary presence of "master" and "slave" actuators which management, in terms of wavefront reconstruction, implies to consider different strategies. The on-going work being performed for the two above points is described in details, and some preliminary results are given.
Massively Parallel Real-Time TDDFT Simulations of Electronic Stopping Processes
NASA Astrophysics Data System (ADS)
Yost, Dillon; Lee, Cheng-Wei; Draeger, Erik; Correa, Alfredo; Schleife, Andre; Kanai, Yosuke
Electronic stopping describes transfer of kinetic energy from fast-moving charged particles to electrons, producing massive electronic excitations in condensed matter. Understanding this phenomenon for ion irradiation has implications in modern technologies, ranging from nuclear reactors, to semiconductor devices for aerospace missions, to proton-based cancer therapy. Recent advances in high-performance computing allow us to achieve an accurate parameter-free description of these phenomena through numerical simulations. Here we discuss results from our recently-developed large-scale real-time TDDFT implementation for electronic stopping processes in important example materials such as metals, semiconductors, liquid water, and DNA. We will illustrate important insight into the physics underlying electronic stopping and we discuss current limitations of our approach both regarding physical and numerical approximations. This work is supported by the DOE through the INCITE awards and by the NSF. Part of this work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James
2010-01-01
Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.
Modeling Bird Migration in Changing Habitats: Space-based Ornithology using Satellites and GIS
NASA Technical Reports Server (NTRS)
Smith, James A.; Deppe, Jill L.
2008-01-01
Understanding bird migration and avian biodiversity is one of the most compelling and challenging problems of modern biology with major implications for human health and conservation biology. Migration and conservation efforts cross national boundaries and are subject to numerous international agreements and treaties presenting challenges in both geographic space and time. Space based technology, coupled with geographic information systems, yields new opportunities to shed light on the distribution and movement of organisms on the planet and their sensitivity to human disturbances and environmental changes. At NASA, we are creating ecological forecasting tools for science and application users to address the consequences of loss of wetlands, flooding, drought or other natural disasters such as hurricanes on avian biodiversity and bird migration. In our work, we use individual organism biophysical models and drive these models with satellite observations and numerical weather predictions of the spatio-temporal gradients in climate and habitat. Geographic information system technology comprises one component of our overall simulation framework, especially for characterizing the changing habitats and conditions encountered by en-route migratory birds. Simulation provides a tool for studying bird migration across multiple scales and can be linked to mechanistic processes describing the time and energy budget states of migrating birds. Such models yield an understanding of how a migratory flyway and its component habitats function as a whole and link stop-over ecology with biological conservation and management. We present examples of our simulation of shorebirds, principally, pectoral sandpipers, along the central flyways of the United States and Canada from the Gulf of Mexico to Alaska.
Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T.; Koh, C.; Sloan, E.D.
2009-01-01
Gas hydrates (GHs) are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural GH accumulations, the status of the primary international research and development (R&D) programs, and the remaining science and technological challenges facing the commercialization of production. After a brief examination of GH accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate-production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical-simulation capabilities are quite advanced and that the related gaps either are not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of GH deposits and determine that there are consistent indications of a large production potential at high rates across long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets; (b) methods to maximize production; and (c) some of the conditions and characteristics that render certain GH deposits undesirable for production. Copyright ?? 2009 Society of Petroleum Engineers.
Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T.; Koh, C.; Sloan, E.D.
2008-01-01
Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production. Copyright 2008, Society of Petroleum Engineers.
Numerical Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.
Onyx-Advanced Aeropropulsion Simulation Framework Created
NASA Technical Reports Server (NTRS)
Reed, John A.
2001-01-01
The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.
Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits
Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano
2015-01-01
Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence. PMID:26563516
Analog quantum simulation of generalized Dicke models in trapped ions
NASA Astrophysics Data System (ADS)
Aedo, Ibai; Lamata, Lucas
2018-04-01
We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images
2009-12-01
Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong...Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong DRDC Ottawa...for simulating radar images of a target is obtained, through direct simulation-to-measurement comparisons. A 3-dimensional computer-aided design
Numerical simulation of the SAGD process coupled with geomechanical behavior
NASA Astrophysics Data System (ADS)
Li, Pingke
Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production performance can be quantified. This research program involves the analyses of laboratory testing results obtained from literatures. However, no laboratory testing was conducted in the process of this research.
Investigation of Hill's optical turbulence model by means of direct numerical simulation.
Muschinski, Andreas; de Bruyn Kops, Stephen M
2015-12-01
For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian.
Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays
Yao, Nan; Yan, Liang; Wang, Tianyi; Wang, Shaoping
2017-01-01
The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system’s redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation. PMID:29156577
A Long-Term Mathematical Model for Mining Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Giraud, Pierre-Noel; Lasry, Jean-Michel
A parcimonious long term model is proposed for a mining industry. Knowing the dynamics of the global reserve, the strategy of each production unit consists of an optimal control problem with two controls, first the flux invested into prospection and the building of new extraction facilities, second the production rate. In turn, the dynamics of the global reserve depends on the individual strategies of the producers, so the models leads to an equilibrium, which is described by low dimensional systems of partial differential equations. The dimensionality depends on the number of technologies that a mining producer can choose. In somemore » cases, the systems may be reduced to a Hamilton–Jacobi equation which is degenerate at the boundary and whose right hand side may blow up at the boundary. A mathematical analysis is supplied. Then numerical simulations for models with one or two technologies are described. In particular, a numerical calibration of the model in order to fit the historical data is carried out.« less
Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays.
Yao, Nan; Yan, Liang; Wang, Tianyi; Wang, Shaoping
2017-11-18
The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system's redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation.
NASA Astrophysics Data System (ADS)
Jin, Shi; Wang, Xuelei
2003-04-01
Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.
Computational aerodynamics development and outlook /Dryden Lecture in Research for 1979/
NASA Technical Reports Server (NTRS)
Chapman, D. R.
1979-01-01
Some past developments and current examples of computational aerodynamics are briefly reviewed. An assessment is made of the requirements on future computer memory and speed imposed by advanced numerical simulations, giving emphasis to the Reynolds averaged Navier-Stokes equations and to turbulent eddy simulations. Experimental scales of turbulence structure are used to determine the mesh spacings required to adequately resolve turbulent energy and shear. Assessment also is made of the changing market environment for developing future large computers, and of the projections of micro-electronics memory and logic technology that affect future computer capability. From the two assessments, estimates are formed of the future time scale in which various advanced types of aerodynamic flow simulations could become feasible. Areas of research judged especially relevant to future developments are noted.
Zhang, Hang; Xu, Qingyan; Liu, Baicheng
2014-01-01
The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process. PMID:28788535
Direct Numerical Simulations of Aerofoils with Serrated Trailing-Edge Extensions
NASA Astrophysics Data System (ADS)
Shahab, Muhammad Farrukh; Omidyeganeh, Mohammad; Pinelli, Alfredo
2017-11-01
Owl-feather-inspired technology motivates engineers to develop quieter wings. Direct numerical simulations of NACA-4412 aerofoil with retrofitted flat plate, serrated sawtooth shaped and porous (serrations with filaments) extensions have been performed to study the effects of these modifications on the hydrodynamic characteristics of the turbulent wake and their upstream influence on the interacting boundary layer. A chord based Reynolds number of 100,000 and an angle of attack of 5° has been chosen for all simulations, moreover the surface boundary layers are tripped using a a volume forcing method. This contribution will present a detailed statistical analysis of the mean and fluctuating behaviour of the flow and the key differences in the flow topologies will be highlighted. The preliminary analysis of results identifies a system of counter rotating streamwise vortices for the case of saw-tooth shaped serrations. The presence of the latter is generally considered responsible for an increased parasitic higher frequency noise for serrated aerofoils. To palliate the effect of aforementioned system of streamwise vortices, a filamentous layer occupying the voids of the serrations has been added which is expected to improve the aeroacoustic performance of the system.
CME Simulations with Boundary Conditions Derived from Multiple Viewpoints of STEREO
NASA Astrophysics Data System (ADS)
Singh, T.; Yalim, M. S.; Pogorelov, N. V.
2017-12-01
Coronal Mass Ejections (CMEs) are major drivers of extreme space weather conditions, which is a matter of huge concern for our modern technologically dependent society. Development of numerical approaches that would reproduce CME propagation through the interplanetary space is an important step towards our capability to predict CME arrival time at Earth and their geo-effectiveness. It is also important that CMEs are propagating through a realistic, data-driven background solar wind (SW). In this study, we use a version of the flux-rope-driven Gibson-Low (GL) model to simulate CMEs. We derive inner boundary conditions for the GL flux rope model using the Graduate Cylindrical Shell (GCS) method. This method uses viewpoints from STEREO A and B, and SOHO/LASCO coronagraphs to determine the size and orientation of a CME flux rope as it starts to erupt from Sun. A flux rope created this way is inserted into an SDO/HMI vector magnetogram driven SW background obtained with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). Numerical results are compared with STEREO, SDO/AIA and SOHO/LASCO observations in particular in terms of the CME speed, acceleration and magnetic field structure.
Li, Jianfeng; Zhou, Ya-Fei
2015-02-01
The manufacturing processes in chip industries are complex, and many kinds of raw materials and solvents of different nature are used, most of which are highly toxic and dangerous. During the machine preventive maintenance period, these toxic and harmful substances will escape from the sealed reaction chamber to the clean workshop environment and endanger the health of the workers on-site, resulting in occupational diseases. From the perspective of prevention, the spread and prediction of hydrochloric acid (HCl) that escaped from the metal-etching chamber during maintenance were studied in this article. The computational fluid dynamics technology was used for a three-dimensional numerical simulation of the indoor air velocity field and the HCl concentration field, and the simulation results were then compared with the on-site monitoring data to verify the correctness and feasibility. The occupational hazards and control measures were analyzed based on the numerical simulation, and the optimal control measure was obtained. In this article, using the method of ambient air to analyze the occupational exposure can provide a new idea to the field of occupational health research in the integrated circuit industry and had theoretical and practical significance. © The Author(s) 2012.
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien
2015-07-01
NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.
3D simulation of floral oil storage in the scopa of South American insects
NASA Astrophysics Data System (ADS)
Ruettgers, Alexander; Griebel, Michael; Pastrik, Lars; Schmied, Heiko; Wittmann, Dieter; Scherrieble, Andreas; Dinkelmann, Albrecht; Stegmaier, Thomas; InstituteNumerical Simulation Team; Institute of Crop Science; Resource Conservation Team; Institute of Textile Technology; Process Engineering Team
2014-11-01
Several species of bees in South America possess structures to store and transport floral oils. By using closely spaced hairs at their back legs, the so called scopa, these bees can absorb and release oil droplets without loss. The high efficiency of this process is a matter of ongoing research. Basing on recent x-ray microtomography scans from the scopa of these bees at the Institute of Textile Technology and Process Engineering Denkendorf, we build a three-dimensional computer model. Using NaSt3DGPF, a two-phase flow solver developed at the Institute for Numerical Simulation of the University of Bonn, we perform massively parallel flow simulations with the complex micro-CT data. In this talk, we discuss the results of our simulations and the transfer of the x-ray measurement into a computer model. This research was funded under GR 1144/18-1 by the Deutsche Forschungsgemeinschaft (DFG).
NASA Astrophysics Data System (ADS)
Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide
2016-04-01
Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D distinct element simulations to better understand the stochastic nature of the geological structure and its effect on the quarry slope failure mechanism. The numerical modelling results highlight the influence of discontinuity characteristics and kinematics on the slope failure mechanism and the variability in the size and shape of the failed blocks.
Numerical investigation of the effects of channel geometry on platelet activation and blood damage.
Wu, Jingshu; Yun, B Min; Fallon, Anna M; Hanson, Stephen R; Aidun, Cyrus K; Yoganathan, Ajit P
2011-02-01
Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.
Numerical simulation of mechanical properties tests of tungsten mud waste geopolymer
NASA Astrophysics Data System (ADS)
Paszek, Natalia; Krystek, Małgorzata
2018-03-01
Geopolymers are believed to become in the future an environmental friendly alternative for the concrete. The low CO2 emission during the production process and the possibility of ecological management of the industrial wastes are mentioned as main advantages of geopolymers. The main drawback, causing problems with application of geopolymers as a building material is the lack of the theoretical material model. Indicated problem is being solved now by the group of scientists from the Silesian University of Technology. The series of laboratory tests are carried out within the European research project REMINE. The paper introduces the numerical analyses of tungsten mud waste geopolymer samples which have been performed in the Atena software on the basis of the laboratory tests. Numerical models of bended and compressed samples of different shapes are presented in the paper. The results obtained in Atena software were compared with results obtained in Abaqus and Mafem3D software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; McPherson, Brian J.; Grigg, Reid B.
Numerical simulation is an invaluable analytical tool for scientists and engineers in making predictions about of the fate of carbon dioxide injected into deep geologic formations for long-term storage. Current numerical simulators for assessing storage in deep saline formations have capabilities for modeling strongly coupled processes involving multifluid flow, heat transfer, chemistry, and rock mechanics in geologic media. Except for moderate pressure conditions, numerical simulators for deep saline formations only require the tracking of two immiscible phases and a limited number of phase components, beyond those comprising the geochemical reactive system. The requirements for numerically simulating the utilization and storagemore » of carbon dioxide in partially depleted petroleum reservoirs are more numerous than those for deep saline formations. The minimum number of immiscible phases increases to three, the number of phase components may easily increase fourfold, and the coupled processes of heat transfer, geochemistry, and geomechanics remain. Public and scientific confidence in the ability of numerical simulators used for carbon dioxide sequestration in deep saline formations has advanced via a natural progression of the simulators being proven against benchmark problems, code comparisons, laboratory-scale experiments, pilot-scale injections, and commercial-scale injections. This paper describes a new numerical simulator for the scientific investigation of carbon dioxide utilization and storage in partially depleted petroleum reservoirs, with an emphasis on its unique features for scientific investigations; and documents the numerical simulation of the utilization of carbon dioxide for enhanced oil recovery in the western section of the Farnsworth Unit and represents an early stage in the progression of numerical simulators for carbon utilization and storage in depleted oil reservoirs.« less
1978-09-01
generally recognized that the best possible configura- tion for engines operating at high speeds and at high-pressure levels is probably the single...engines is invariably accom- plished by the operation of computer simulation models that generate specific numerical data rather than the generalized re...lationships common to other forms of prime mover based on units of mass or volume. Thus, providing such generalized relation- ships for a Stirling
Computational Methods for Crashworthiness
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Carden, Huey D. (Compiler)
1993-01-01
Presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Crashworthiness held at Langley Research Center on 2-3 Sep. 1992 are included. The presentations addressed activities in the area of impact dynamics. Workshop attendees represented NASA, the Army and Air Force, the Lawrence Livermore and Sandia National Laboratories, the aircraft and automotive industries, and academia. The workshop objectives were to assess the state-of-technology in the numerical simulation of crash and to provide guidelines for future research.
2010-08-01
petroleum industry. Moreover, heterogeneity control strategies can be applied to improve the efficiency of a variety of in situ remediation technologies...conditions that differ significantly from those found in environmental systems . Therefore many of the design criteria used by the petroleum industry for...were helpful in constructing numerical models in up-scaled systems (2-D tanks). The UTCHEM model was able to successfully simulate 2-D experimental
Interference, focusing and excitation of ultracold atoms
NASA Astrophysics Data System (ADS)
Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.
2011-05-01
One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.
Color visual simulation applications at the Defense Mapping Agency
NASA Astrophysics Data System (ADS)
Simley, J. D.
1984-09-01
The Defense Mapping Agency (DMA) produces the Digital Landmass System data base to provide culture and terrain data in support of numerous aircraft simulators. In order to conduct data base and simulation quality control and requirements analysis, DMA has developed the Sensor Image Simulator which can rapidly generate visual and radar static scene digital simulations. The use of color in visual simulation allows the clear portrayal of both landcover and terrain data, whereas the initial black and white capabilities were restricted in this role and thus found limited use. Color visual simulation has many uses in analysis to help determine the applicability of current and prototype data structures to better meet user requirements. Color visual simulation is also significant in quality control since anomalies can be more easily detected in natural appearing forms of the data. The realism and efficiency possible with advanced processing and display technology, along with accurate data, make color visual simulation a highly effective medium in the presentation of geographic information. As a result, digital visual simulation is finding increased potential as a special purpose cartographic product. These applications are discussed and related simulation examples are presented.
NASA Astrophysics Data System (ADS)
Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.
2015-12-01
The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.
Process Simulation of Cold Pressing and Sintering of Armstrong CP-Ti Powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorti, Sarma B; Sabau, Adrian S; Peter, William H
A computational methodology is presented for the process simulation of cold pressing and sintering of Armstrong CP-Ti powders. Since the powder consolidation is governed by specific pressure-dependent constitutive equations, solution algorithms were developed for the ABAQUS user material subroutine, UMAT, for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations. Sintering was simulated using a model based on diffusional creep using the user subroutine CREEP. The initial mesh, stress, and density for the simulation of sintering were obtained from the results of the cold pressing simulation, minimizing the errorsmore » from decoupling the cold pressing and sintering simulations. Numerical simulation results are presented for the cold compaction followed by a sintering step of the Ti powders. The numerical simulation results for the relative density were compared to those measured from experiments before and after sintering, showing that the relative density can be accurately predicted. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. ACKNOWLEDGEMENTS This research was sponsored by the U.S. DOE, and carried out at ORNL, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. This research was sponsored by the U.S. DOE, EERE Industrial Technology Program Office under CPS Agreement # 17881.« less
Left ventricular fluid mechanics: the long way from theoretical models to clinical applications.
Pedrizzetti, Gianni; Domenichini, Federico
2015-01-01
The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.
Numerical grid generation in computational field simulations. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, B.K.; Thompson, J.F.; Haeuser, J.
1996-12-31
To enhance the CFS technology to its next level of applicability (i.e., to create acceptance of CFS in an integrated product and process development involving multidisciplinary optimization) the basic requirements are: rapid turn-around time, reliable and accurate simulation, affordability and appropriate linkage to other engineering disciplines. In response to this demand, there has been a considerable growth in the grid generation related research activities involving automization, parallel processing, linkage with the CAD-CAM systems, CFS with dynamic motion and moving boundaries, strategies and algorithms associated with multi-block structured, unstructured, hybrid, hexahedral, and Cartesian grids, along with its applicability to various disciplinesmore » including biomedical, semiconductor, geophysical, ocean modeling, and multidisciplinary optimization.« less
A polymorphic reconfigurable emulator for parallel simulation
NASA Technical Reports Server (NTRS)
Parrish, E. A., Jr.; Mcvey, E. S.; Cook, G.
1980-01-01
Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described.
Upgrades to the NESS (Nuclear Engine System Simulation) Code
NASA Technical Reports Server (NTRS)
Fittje, James E.
2007-01-01
In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.
Computational fluid dynamics - The coming revolution
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.
1982-01-01
The development of aerodynamic theory is traced from the days of Aristotle to the present, with the next stage in computational fluid dynamics dependent on superspeed computers for flow calculations. Additional attention is given to the history of numerical methods inherent in writing computer codes applicable to viscous and inviscid analyses for complex configurations. The advent of the superconducting Josephson junction is noted to place configurational demands on computer design to avoid limitations imposed by the speed of light, and a Japanese projection of a computer capable of several hundred billion operations/sec is mentioned. The NASA Numerical Aerodynamic Simulator is described, showing capabilities of a billion operations/sec with a memory of 240 million words using existing technology. Near-term advances in fluid dynamics are discussed.
NASA Astrophysics Data System (ADS)
Lin, Xiangyue; Peng, Minli; Lei, Fengming; Tan, Jiangxian; Shi, Huacheng
2017-12-01
Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.
NASA Technical Reports Server (NTRS)
Oliger, Joseph
1997-01-01
Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.
Li, Longxiang; Xue, Donglin; Deng, Weijie; Wang, Xu; Bai, Yang; Zhang, Feng; Zhang, Xuejun
2017-11-10
In deterministic computer-controlled optical surfacing, accurate dwell time execution by computer numeric control machines is crucial in guaranteeing a high-convergence ratio for the optical surface error. It is necessary to consider the machine dynamics limitations in the numerical dwell time algorithms. In this paper, these constraints on dwell time distribution are analyzed, and a model of the equal extra material removal is established. A positive dwell time algorithm with minimum equal extra material removal is developed. Results of simulations based on deterministic magnetorheological finishing demonstrate the necessity of considering machine dynamics performance and illustrate the validity of the proposed algorithm. Indeed, the algorithm effectively facilitates the determinacy of sub-aperture optical surfacing processes.
NASA Astrophysics Data System (ADS)
Delistoian, Dmitri; Chirchor, Mihael
2017-12-01
Fluid transportation from production areas to final customer is effectuated by pipelines. For oil and gas industry, pipeline safety and reliability represents a priority. From this reason, pipe quality guarantee directly influence pipeline designed life, but first of all protects environment. A significant number of longitudinally welded pipes, for onshore/offshore pipelines, are manufactured by UOE method. This method is based on cold forming. In present study, using finite element method is modeled UOE pipe manufacturing process and is obtained von Mises stresses for each step. Numerical simulation is performed for L415 MB (X60) steel plate with 7,9 mm thickness, length 30 mm and width 1250mm, as result it is obtained a DN 400 pipe.
Quantifying induced effects of subsurface renewable energy storage
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas
2015-04-01
New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry of Education and Research (BMBF).
Study of Wind Effects on Unique Buildings
NASA Astrophysics Data System (ADS)
Olenkov, V.; Puzyrev, P.
2017-11-01
The article deals with a numerical simulation of wind effects on the building of the Church of the Intercession of the Holy Virgin in the village Bulzi of the Chelyabinsk region. We presented a calculation algorithm and obtained pressure fields, velocity fields and the fields of kinetic energy of a wind stream, as well as streamlines. Computational fluid dynamic (CFD) evolved three decades ago at the interfaces of calculus mathematics and theoretical hydromechanics and has become a separate branch of science the subject of which is a numerical simulation of different fluid and gas flows as well as the solution of arising problems with the help of methods that involve computer systems. This scientific field which is of a great practical value is intensively developing. The increase in CFD-calculations is caused by the improvement of computer technologies, creation of multipurpose easy-to-use CFD-packagers that are available to a wide group of researchers and cope with various tasks. Such programs are not only competitive in comparison with physical experiments but sometimes they provide the only opportunity to answer the research questions. The following advantages of computer simulation can be pointed out: a) Reduction in time spent on design and development of a model in comparison with a real experiment (variation of boundary conditions). b) Numerical experiment allows for the simulation of conditions that are not reproducible with environmental tests (use of ideal gas as environment). c) Use of computational gas dynamics methods provides a researcher with a complete and ample information that is necessary to fully describe different processes of the experiment. d) Economic efficiency of computer calculations is more attractive than an experiment. e) Possibility to modify a computational model which ensures efficient timing (change of the sizes of wall layer cells in accordance with the chosen turbulence model).
NASA Astrophysics Data System (ADS)
Hu, Rui; Liu, Quan
2017-04-01
During the engineering projects with artificial ground freezing (AFG) techniques in coastal area, the freezing effect is affected by groundwater salinity. Based on the theories of artificially frozen soil and heat transfer in porous material, and with the assumption that only the variations of total dissolved solids (TDS) impact on freezing point and thermal conductivity, a numerical model of an AFG project in a saline aquifer was established and validated by comparing the simulated temperature field with the calculated temperature based on the analytic solution of rupak (reference) for single-pipe freezing temperature field T. The formation and development of freezing wall were simulated with various TDS. The results showed that the variety of TDS caused the larger temperature difference near the frozen front. With increasing TDS in the saline aquifer (1 35g/L), the average thickness of freezing wall decreased linearly and the total formation time of the freezing wall increased linearly. Compared with of the scenario of fresh-water (<1g/L), the average thickness of frozen wall decreased by 6% and the total formation time of the freezing wall increased by 8% with each increasing TDS of 7g/L. Key words: total dissolved solids, freezing point, thermal conductivity, freezing wall, numerical simulation Reference D.J.Pringel, H.Eicken, H.J.Trodahl, etc. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research, 2007, 112: 1-13. Lukas U.Arenson, Dave C.Sego. The effect of salinity on the freezing of coarse- grained sand[J]. Canadian Geotechnical Journal, 2006, 43: 325-337. Hui Bing, Wei Ma. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science and Technology, 2011, 67: 79-88.
Optimization design of turbo-expander gas bearing for a 500W helium refrigerator
NASA Astrophysics Data System (ADS)
Li, S. S.; Fu, B.; Y Zhang, Q.
2017-12-01
Turbo-expander is the core machinery of the helium refrigerator. Bearing as the supporting element is the core technology to impact the design of turbo-expander. The perfect design and performance study for the gas bearing are essential to ensure the stability of turbo-expander. In this paper, numerical simulation is used to analyze the performance of gas bearing for a 500W helium refrigerator turbine, and the optimization design of the gas bearing has been completed. And the results of the gas bearing optimization have a guiding role in the processing technology. Finally, the turbine experiments verify that the gas bearing has good performance, and ensure the stable operation of the turbine.
Editorial opinion: public dissemination of raw turbulence data
NASA Astrophysics Data System (ADS)
Sillero, Juan A.; Jiménez, Javier
2016-04-01
Many of the papers in this issue deal with processing of pre-existing large-scale turbulence data. We argue here that there is a certain urgency to the discussion of whether raw data should be made publicly available within the turbulence community, and of which are the best procedures, technology and rules for possible dissemination. Besides expressing the personal opinion that such sharing would be advantageous for the field, the urgency mostly arises from the danger that funding agencies and other institutions would otherwise set standards without proper community input. The experience of the Madrid School of Aeronautics with the dissemination of numerical simulation results is briefly reviewed, including the present technological solutions and usage statistics.
Development of Metal Casting Molds By Sol-Gel Technology Using Planetary Resources
NASA Technical Reports Server (NTRS)
Sibille, L.; Sen, S.; Curreri, P.; Stefanescu, D.
2000-01-01
Metals extracted from planetary soils will eventually need to be casted and shaped in-situ to produce useful products. In response to this challenge, we propose to develop and demonstrate the manufacturing of a specific product using Lunar and Martian soil simulants, i.e. a mold for the casting of metal and alloy parts, which will be an indispensable tool for the survival of outposts on the Moon and Mars. Drawing from our combined knowledge of sol-gel and metal casting technologies, we set out to demonstrate the extraordinary potential of mesoporous materials such as aerogels to serve as efficient casting molds as well as fulfilling numerous other needs of an autonomous planetary outpost.
Determining Marine Renewable Energy Areas in the Bay of Fundy
NASA Astrophysics Data System (ADS)
Karsten, R.; Roc, T.; O'Flaherty-Sproul, M.
2016-02-01
The Bay of Fundy has the world's highest tides and several excellent sites for the development of in-stream tidal energy. In particular, Minas Passage in the upper Bay of Fundy has been identified as a site with the theoretical potential to produce over 2000 MW of power. Recently, the Nova Scotia government has enacted legislation to define Marine Renewable Energy Areas where tidal energy will be developed. As part of this process, the practical potential of the regions in the upper Bay of Fundy must be accurately quantified. To assist in this process, we have conducted a practical resource assement of the region. The resource asssesment includes an analysis of the hydrodynamic characteristics of the region. The assessment uses the simulations data from a high-resolution, multi-layered, unstructured-grid, coastal-ocean model (FVCOM). The numerical model has been validated through comparison to numerous measurements of tdial flow from ADCPs, surface drifters and X-band radar. The simulations data is used to estimate the power production of different turbine technologies across the study area. The technologies will have varying hub-height and power curves. Other characteristics of the flow (i.e., water depth, variation in flow) will be used to determine if sites are more or less suitable for turbine deployment. As well, the numerical data will be used to design practical layouts for turbine farms, that have suitable spacing of turbines to allow deployment and minimize the interaction of wakes. The final output will be a prediction of the number of turbines and the power production of an array for a given region. The results of the analysis of the simulation data will be processed into a series of GIS layers. These will be combined with other indications of suitability for deployment of a turbine array: for example, geo-technical, marine conditions, environmental factors, social factors, proximity to on-shore infrastructure etc. The final GIS tool will allow the user to evaluate the suitablility of a region for turbine development, and calculate a practical installed capacity for the region. While this presentation will focus on the development and validation of the numerical model, it will also discuss how the other criteria enter into the process and influence the modelling procedure.
NASA Astrophysics Data System (ADS)
Wrożyna, Andrzej; Pernach, Monika; Kuziak, Roman; Pietrzyk, Maciej
2016-04-01
Due to their exceptional strength properties combined with good workability the Advanced High-Strength Steels (AHSS) are commonly used in automotive industry. Manufacturing of these steels is a complex process which requires precise control of technological parameters during thermo-mechanical treatment. Design of these processes can be significantly improved by the numerical models of phase transformations. Evaluation of predictive capabilities of models, as far as their applicability in simulation of thermal cycles thermal cycles for AHSS is considered, was the objective of the paper. Two models were considered. The former was upgrade of the JMAK equation while the latter was an upgrade of the Leblond model. The models can be applied to any AHSS though the examples quoted in the paper refer to the Dual Phase (DP) steel. Three series of experimental simulations were performed. The first included various thermal cycles going beyond limitations of the continuous annealing lines. The objective was to validate models behavior in more complex cooling conditions. The second set of tests included experimental simulations of the thermal cycle characteristic for the continuous annealing lines. Capability of the models to describe properly phase transformations in this process was evaluated. The third set included data from the industrial continuous annealing line. Validation and verification of models confirmed their good predictive capabilities. Since it does not require application of the additivity rule, the upgrade of the Leblond model was selected as the better one for simulation of industrial processes in AHSS production.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi
2011-04-15
Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.
NASA Astrophysics Data System (ADS)
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-12-01
Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.
Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels
NASA Astrophysics Data System (ADS)
Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.
2016-10-01
Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.
Static Load Test on Instrumented Pile - Field Data and Numerical Simulations
NASA Astrophysics Data System (ADS)
Krasiński, Adam; Wiszniewski, Mateusz
2017-09-01
Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.
NASA Astrophysics Data System (ADS)
Lebon, G. S. B.; Pericleous, K.; Tzanakis, I.; Eskin, D.
2015-01-01
Ultrasonic cavitation treatment of melt significantly improves the downstream properties and quality of conventional and advanced metallic materials. However, the transfer of this technology has been hindered by difficulties in treating large volumes of liquid metal. To improve the understanding of cavitation processing efficiency, the Full Cavitation Model, which is derived from a reduced form of the Rayleigh-Plesset equation, is modified and applied to the two-phase problem of bubble propagation in liquid melt. Numerical simulations of the sound propagation are performed in the microsecond time scale to predict the maximum and minimum acoustic pressure amplitude fields in the domain. This field is applied to the source term of the bubble transport equation to predict the generation and destruction of cavitation bubbles in a time scale relevant to the fluid flow. The use of baffles to limit flow speed in a launder conduit is studied numerically, to determine the optimum configuration that maximizes the residence time of the liquid in high cavitation activity regions. With this configuration, it is then possible to convert the batch processing of liquid metal into a continuous process. The numerical simulations will be validated against water and aluminium alloy experiments, carried out at Brunel University.
Black Holes, Gravitational Waves, and LISA
NASA Technical Reports Server (NTRS)
Baker, John
2009-01-01
Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.
Electro-Thermal-Mechanical Simulation Capability Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D
This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There aremore » numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R&D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems such as magnetic flux compression generators and railguns. This project compliments ongoing DNT projects that have an experimental emphasis. Our research efforts have been encapsulated in the Diablo and ALE3D simulation codes. This new ETM capability already has both internal and external users, and has spawned additional research in plasma railgun technology. By developing this capability Engineering has become a world-leader in ETM design, analysis, and simulation. This research has positioned LLNL to be able to compete for new business opportunities with the DoD in the area of railgun design. We currently have a three-year $1.5M project with the Office of Naval Research to apply our ETM simulation capability to railgun bore life issues and we expect to be a key player in the railgun community.« less
Carbon Nanotubules: Building Blocks for Nanometer-Scale Engineering
NASA Technical Reports Server (NTRS)
Sinnott, Susan B.
1997-01-01
Proximal probe technology has provided researchers with new ways to investigate and manipulate matter on the nanometer scale. We have studied, through molecular dynamics simulations, using a many-body empirical potential, the indentation of a hydrogen-terminated, diamond (111 ) surface, with a proximal probe tip that consists of an open, hydrogen-terminated, (10,10) carbon nanotubule. The simulations showed that upon indenting 1.8 A, the tubule deforms but returns to its original shape upon retraction. The Young's modulus of the tubule was determined using the predicted Euler buckling force and was found to be comparable to measured and calculated values. In a second series of simulations, an open (10, 10) nanotubule was heated to 4500 K and allowed to close. We find that at this temperature the resulting cap contains numerous imperfections, including some not mentioned previously in the literature.
Sun, Tie Gang; Xiao, Rong Bo; Cai, Yun Nan; Wang, Yao Wu; Wu, Chang Guang
2016-08-01
Quantitative assessment of urban thermal environment has become a focus for urban climate and environmental science since the concept of urban heat island has been proposed. With the continual development of space information and computer simulation technology, substantial progresses have been made on quantitative assessment techniques and methods of urban thermal environment. The quantitative assessment techniques have been developed to dynamics simulation and forecast of thermal environment at various scales based on statistical analysis of thermal environment on urban-scale using the historical data of weather stations. This study reviewed the development progress of ground meteorological observation, thermal infrared remote sensing and numerical simulation. Moreover, the potential advantages and disadvantages, applicability and the development trends of these techniques were also summarized, aiming to add fundamental knowledge of understanding the urban thermal environment assessment and optimization.
2000-12-01
Numerical Simulations ..... ................. .... 42 1.4.1. Impact of a rod on a rigid wall ..... ................. .... 42 1.4.2. Impact of two...dissipative properties of the proposed scheme . . . . 81 II.4. Representative Numerical Simulations ...... ................. ... 84 11.4.1. Forging of...Representative numerical simulations ...... ............. .. 123 111.3. Model Problem II: a Simplified Model of Thin Beams ... ......... ... 127 III
Simulation study of reticle enhancement technology applications for 157-nm lithography
NASA Astrophysics Data System (ADS)
Schurz, Dan L.; Flack, Warren W.; Karklin, Linard
2002-03-01
The acceleration of the International Technology Roadmap for Semiconductors (ITRS) is placing significant pressure on the industry's infrastructure, particularly the lithography equipment. As recently as 1997, there was no optical solution offered past the 130 nm design node. The current roadmap has the 65 nm node (reduced from 70 nm) pulled in one year to 2007. Both 248 nm and 193 nm wavelength lithography tools will be pushed to their practical resolution limits in the near term. Very high numerical aperture (NA) 193 nm exposure tools in conjunction with resolution enhancement techniques (RET) will postpone the requirement for 157 nm lithography in manufacturing. However, ICs produced at 70 nm design rules with manufacturable k 1 values will require that 157 nm wavelength lithography tools incorporate the same RETs utilized in 248nm, and 193 nm tools. These enhancements will include Alternating Phase Shifting Masks (AltPSM) and Optical Proximity Correction (OPC) on F 2 doped quartz reticle substrates. This study investigates simulation results when AltPSM is applied to sub-100 nm test patterns in 157 nm lithography in order to maintain Critical Dimension (CD) control for both nested and isolated geometries. Aerial image simulations are performed for a range of numerical apertures, chrome regulators, gate pitches and gate widths. The relative performance for phase shifted versus binary structures is also compared. Results are demonstrated in terms of aerial image contrast and process window changes. The results clearly show that a combination of high NA and RET is necessary to achieve usable process windows for 70 nm line/space structures. In addition, it is important to consider two-dimensional proximity effects for sub-100 nm gate structures.
Assessment of the National Combustion Code
NASA Technical Reports Server (NTRS)
Liu, nan-Suey; Iannetti, Anthony; Shih, Tsan-Hsing
2007-01-01
The advancements made during the last decade in the areas of combustion modeling, numerical simulation, and computing platform have greatly facilitated the use of CFD based tools in the development of combustion technology. Further development of verification, validation and uncertainty quantification will have profound impact on the reliability and utility of these CFD based tools. The objectives of the present effort are to establish baseline for the National Combustion Code (NCC) and experimental data, as well as to document current capabilities and identify gaps for further improvements.
NASA's supercomputing experience
NASA Technical Reports Server (NTRS)
Bailey, F. Ron
1990-01-01
A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.
Bunch Compression of Flat Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.; Edstrom Jr., D.
Flat beams can be produced via a linear manipulation of canonical-angular-momentum (CAM) dominated beams using a set of skew-quadrupole magnets. Recently, such beams were produced at Fermilab Accelerator Science and Technology (FAST) facility 1. In this paper we report the results of flat beam compression study in a magnetic chicane at an energy E ~ 32 MeV. Additionally, we investigate the effect of energy chirp in the round-to-flat beam transform. The experimental results are compared with numerical simulations.
2014-12-01
Simulated Solute Transport in a Numerical Replication of Britt’s 2005 Experiment Figure 44 In-Well Flow Inhibitor Figure 45 Results of a Preliminary Dye ...Tracer Experiment Conducted at INL Figure 46 Results Horizontally-Oriented Dye Tracer Experiment Conducted at INL ER-1704 Final Report 2014 vii...possible sources of well convection and mixing. Specifically, the modeling explored: • 2D and 3D physical tank models. Dye tracer testing was conducted
On estimating the phase of a periodic waveform in additive Gaussian noise, part 3
NASA Technical Reports Server (NTRS)
Rauch, L. L.
1991-01-01
Motivated by advances in signal processing technology that support more complex algorithms, researchers have taken a new look at the problem of estimating the phase and other parameters of a nearly periodic waveform in additive Gaussian noise, based on observation during a given time interval. Parts 1 and 2 are very briefly reviewed. In part 3, the actual performances of some of the highly nonlinear estimation algorithms of parts 1 and 2 are evaluated by numerical simulation using Monte Carlo techniques.
NASA Astrophysics Data System (ADS)
Okabe, Ryo; Tanaka, Toshiki; Nishihara, Masato; Kai, Yutaka; Takahara, Tomoo; Chen, Hao; Yan, Weizhen; Tao, Zhenning; Rasmussen, Jens C.
2015-01-01
Discrete multi-tone (DMT) technology is an attractive modulation technique for short reach optical transmission system. One of the main factors that limit system performance is fiber dispersion, which is strongly influenced by the chirp characteristics of transmitters. We investigated the fiber dispersion impairment in a 400GbE (4 × 116.1-Gb/s) DMT system on LAN-WDM grid for reach enhancement up to 40 km through experiments and numerical simulations.
JPRS Report, Science & Technology, Japan
1987-10-06
Onuki 61 - a - Numerical Simulation of Flight Body Circumference Flow 62 Research on Internal Fluid Mechanism Between Turbine Blades, by Takamasa...Figure 7 for producing great amounts of inexpensive oxygen.-* Stabilized zirooni Positive electrode Insulator Inter- ^ connector H .0...2c »H2 1 q K ’ y !*• U&ter u&por V Proton £*’ .? conductor fc £ solid * •j >> H2(K :J % — H ’ — * n^ o2 : !£ Pure * £ hyrogen A •• * A
Toward a Big Data Science: A challenge of "Science Cloud"
NASA Astrophysics Data System (ADS)
Murata, Ken T.; Watanabe, Hidenobu
2013-04-01
During these 50 years, along with appearance and development of high-performance computers (and super-computers), numerical simulation is considered to be a third methodology for science, following theoretical (first) and experimental and/or observational (second) approaches. The variety of data yielded by the second approaches has been getting more and more. It is due to the progress of technologies of experiments and observations. The amount of the data generated by the third methodologies has been getting larger and larger. It is because of tremendous development and programming techniques of super computers. Most of the data files created by both experiments/observations and numerical simulations are saved in digital formats and analyzed on computers. The researchers (domain experts) are interested in not only how to make experiments and/or observations or perform numerical simulations, but what information (new findings) to extract from the data. However, data does not usually tell anything about the science; sciences are implicitly hidden in the data. Researchers have to extract information to find new sciences from the data files. This is a basic concept of data intensive (data oriented) science for Big Data. As the scales of experiments and/or observations and numerical simulations get larger, new techniques and facilities are required to extract information from a large amount of data files. The technique is called as informatics as a fourth methodology for new sciences. Any methodologies must work on their facilities: for example, space environment are observed via spacecraft and numerical simulations are performed on super-computers, respectively in space science. The facility of the informatics, which deals with large-scale data, is a computational cloud system for science. This paper is to propose a cloud system for informatics, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science cloud, we named as OneSpaceNet (OSN), is the first open cloud system for scientists who are going to carry out their informatics for their own science. The science cloud is not for simple uses. Many functions are expected to the science cloud; such as data standardization, data collection and crawling, large and distributed data storage system, security and reliability, database and meta-database, data stewardship, long-term data preservation, data rescue and preservation, data mining, parallel processing, data publication and provision, semantic web, 3D and 4D visualization, out-reach and in-reach, and capacity buildings. Figure (not shown here) is a schematic picture of the NICT science cloud. Both types of data from observation and simulation are stored in the storage system in the science cloud. It should be noted that there are two types of data in observation. One is from archive site out of the cloud: this is a data to be downloaded through the Internet to the cloud. The other one is data from the equipment directly connected to the science cloud. They are often called as sensor clouds. In the present talk, we first introduce the NICT science cloud. We next demonstrate the efficiency of the science cloud, showing several scientific results which we achieved with this cloud system. Through the discussions and demonstrations, the potential performance of sciences cloud will be revealed for any research fields.
NASA Astrophysics Data System (ADS)
Moortgat, J.
2015-12-01
Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.
A hybrid localization technique for patient tracking.
Rodionov, Denis; Kolev, George; Bushminkin, Kirill
2013-01-01
Nowadays numerous technologies are employed for tracking patients and assets in hospitals or nursing homes. Each of them has advantages and drawbacks. For example, WiFi localization has relatively good accuracy but cannot be used in case of power outage or in the areas with poor WiFi coverage. Magnetometer positioning or cellular network does not have such problems but they are not as accurate as localization with WiFi. This paper describes technique that simultaneously employs different localization technologies for enhancing stability and average accuracy of localization. The proposed algorithm is based on fingerprinting method paired with data fusion and prediction algorithms for estimating the object location. The core idea of the algorithm is technology fusion using error estimation methods. For testing accuracy and performance of the algorithm testing simulation environment has been implemented. Significant accuracy improvement was showed in practical scenarios.
Review and assessment of the database and numerical modeling for turbine heat transfer
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Simoneau, R. J.
1989-01-01
The objectives of the NASA Hot Section Technology (HOST) Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
Realtime Data to Enable Earth-Observing Sensor Web Capabilities
NASA Astrophysics Data System (ADS)
Seablom, M. S.
2015-12-01
Over the past decade NASA's Earth Science Technology Office (ESTO) has invested in new technologies for information systems to enhance the Earth-observing capabilities of satellites, aircraft, and ground-based in situ observations. One focus area has been to create a common infrastructure for coordinated measurements from multiple vantage points which could be commanded either manually or through autonomous means, such as from a numerical model. This paradigm became known as the sensor web, formally defined to be "a coherent set of heterogeneous, loosely-coupled, distributed observing nodes interconnected by a communications fabric that can collectively behave as a single dynamically adaptive and reconfigurable observing system". This would allow for adaptive targeting of rapidly evolving, transient, or variable meteorological features to improve our ability to monitor, understand, and predict their evolution. It would also enable measurements earmarked at critical regions of the atmosphere that are highly sensitive to data analysis errors, thus offering the potential for significant improvements in the predictive skill of numerical weather forecasts. ESTO's investment strategy was twofold. Recognizing that implementation of an operational sensor web would not only involve technical cost and risk but also would require changes to the culture of how flight missions were designed and operated, ESTO funded the development of a mission-planning simulator that would quantitatively assess the added value of coordinated observations. The simulator was designed to provide the capability to perform low-cost engineering and design trade studies using synthetic data generated by observing system simulation experiments (OSSEs). The second part of the investment strategy was to invest in prototype applications that implemented key features of a sensor web, with the dual goals of developing a sensor web reference architecture as well as supporting useful science activities that would produce immediate benefit. We briefly discuss three of ESTO's sensor web projects that resulted from solicitations released in 2008 and 2011: the Earth System Sensor Web Simulator, the Earth Phenomena Observing System, and the Sensor Web 3G Namibia Flood Pilot.
NASA Astrophysics Data System (ADS)
Denn, Michael E.
Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and the analysis of simulation data that a flow control device's influence on boundary layer quality is a function of three factors: (1) the strength of the longitudinal vortex emanating from the flow control device or devices, (2) the height of the vortex core above the surface and, when a synthetic jet is present, (3) the momentum added to the boundary layer flow.
Benzi, Roberto; Ching, Emily S C; De Angelis, Elisabetta; Procaccia, Itamar
2008-04-01
Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number (Re) and Deborah number (De). The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high Re and De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.
NASA Astrophysics Data System (ADS)
Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark; Ossokine, Serguei
2016-03-01
In this talk, we describe a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. For sufficiently massive sources, existing numerical relativity simulations are long enough to cover the observationally accessible part of the signal. Due to the signal's brevity, the posterior parameter distribution it implies is broad, simple, and easily reconstructed from information gained by comparing to only the sparse sample of existing numerical relativity simulations. We describe how followup simulations can corroborate and improve our understanding of a detected source. Since our method can include all physics provided by full numerical relativity simulations of coalescing binaries, it provides a valuable complement to alternative techniques which employ approximations to reconstruct source parameters. Supported by NSF Grant PHY-1505629.
A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
Ling, Hong; Luo, Ercang; Dai, Wei
2006-12-22
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.
Interoperability of Neuroscience Modeling Software
Cannon, Robert C.; Gewaltig, Marc-Oliver; Gleeson, Padraig; Bhalla, Upinder S.; Cornelis, Hugo; Hines, Michael L.; Howell, Fredrick W.; Muller, Eilif; Stiles, Joel R.; Wils, Stefan; De Schutter, Erik
2009-01-01
Neuroscience increasingly uses computational models to assist in the exploration and interpretation of complex phenomena. As a result, considerable effort is invested in the development of software tools and technologies for numerical simulations and for the creation and publication of models. The diversity of related tools leads to the duplication of effort and hinders model reuse. Development practices and technologies that support interoperability between software systems therefore play an important role in making the modeling process more efficient and in ensuring that published models can be reliably and easily reused. Various forms of interoperability are possible including the development of portable model description standards, the adoption of common simulation languages or the use of standardized middleware. Each of these approaches finds applications within the broad range of current modeling activity. However more effort is required in many areas to enable new scientific questions to be addressed. Here we present the conclusions of the “Neuro-IT Interoperability of Simulators” workshop, held at the 11th computational neuroscience meeting in Edinburgh (July 19-20 2006; http://www.cnsorg.org). We assess the current state of interoperability of neural simulation software and explore the future directions that will enable the field to advance. PMID:17873374
NPSS on NASA's IPG: Using CORBA and Globus to Coordinate Multidisciplinary Aeroscience Applications
NASA Technical Reports Server (NTRS)
Lopez, Isaac; Follen, Gregory J.; Gutierrez, Richard; Naiman, Cynthia G.; Foster, Ian; Ginsburg, Brian; Larsson, Olle; Martin, Stuart; Tuecke, Steven; Woodford, David
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, the NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. To this end, NPSS integrates multiple disciplines such as aerodynamics, structures, and heat transfer and supports "numerical zooming" between O-dimensional to 1-, 2-, and 3-dimensional component engine codes. In order to facilitate the timely and cost-effective capture of complex physical processes, NPSS uses object-oriented technologies such as C++ objects to encapsulate individual engine components and CORBA ORBs for object communication and deployment across heterogeneous computing platforms. Recently, the HPCC program has initiated a concept called the Information Power Grid (IPG), a virtual computing environment that integrates computers and other resources at different sites. IPG implements a range of Grid services such as resource discovery, scheduling, security, instrumentation, and data access, many of which are provided by the Globus toolkit. IPG facilities have the potential to benefit NPSS considerably. For example, NPSS should in principle be able to use Grid services to discover dynamically and then co-schedule the resources required for a particular engine simulation, rather than relying on manual placement of ORBs as at present. Grid services can also be used to initiate simulation components on parallel computers (MPPs) and to address inter-site security issues that currently hinder the coupling of components across multiple sites. These considerations led NASA Glenn and Globus project personnel to formulate a collaborative project designed to evaluate whether and how benefits such as those just listed can be achieved in practice. This project involves firstly development of the basic techniques required to achieve co-existence of commodity object technologies and Grid technologies; and secondly the evaluation of these techniques in the context of NPSS-oriented challenge problems. The work on basic techniques seeks to understand how "commodity" technologies (CORBA, DCOM, Excel, etc.) can be used in concert with specialized "Grid" technologies (for security, MPP scheduling, etc.). In principle, this coordinated use should be straightforward because of the Globus and IPG philosophy of providing low-level Grid mechanisms that can be used to implement a wide variety of application-level programming models. (Globus technologies have previously been used to implement Grid-enabled message-passing libraries, collaborative environments, and parameter study tools, among others.) Results obtained to date are encouraging: we have successfully demonstrated a CORBA to Globus resource manager gateway that allows the use of CORBA RPCs to control submission and execution of programs on workstations and MPPs; a gateway from the CORBA Trader service to the Grid information service; and a preliminary integration of CORBA and Grid security mechanisms. The two challenge problems that we consider are the following: 1) Desktop-controlled parameter study. Here, an Excel spreadsheet is used to define and control a CFD parameter study, via a CORBA interface to a high throughput broker that runs individual cases on different IPG resources. 2) Aviation safety. Here, about 100 near real time jobs running NPSS need to be submitted, run and data returned in near real time. Evaluation will address such issues as time to port, execution time, potential scalability of simulation, and reliability of resources. The full paper will present the following information: 1. A detailed analysis of the requirements that NPSS applications place on IPG. 2. A description of the techniques used to meet these requirements via the coordinated use of CORBA and Globus. 3. A description of results obtained to date in the first two challenge problems.
NASA Astrophysics Data System (ADS)
Shahriar, Bakrani Balani; Arthur, Cantarel; France, Chabert; Valérie, Nassiet
2018-05-01
Extrusion is one of the oldest manufacturing processes; it is widely used for manufacturing finished and semi-finished products. Moreover, extrusion is also the main process in additive manufacturing technologies such as Fused Filament Fabrication (FFF). In FFF process, the parts are manufactured layer by layer using thermoplastic material. The latter in form of filament, is melted in the liquefier and then it is extruded and deposited on the previous layer. The mechanical properties of the printed parts rely on the coalescence of each extrudate with another one. The coalescence phenomenon is driven by the flow properties of the melted polymer when it comes out the nozzle just before the deposition step. This study aims to master the quality of the printed parts by controlling the effect of the parameters of the extruder on the flow properties in the FFF process. In the current study, numerical simulation of the polymer coming out of the extruder was carried out using Computational Fluid Dynamics (CFD) and two phase flow (TPF) simulation Level Set (LS) method by 2D axisymmetric module of COMSOL Multiphysics software. In order to pair the heat transfer with the flow simulation, an advection-diffusion equation was used. Advection-diffusion equation was implemented as a Partial Differential Equation (PDE) in the software. In order to define the variation of viscosity of the polymer with temperature, the rheological behaviors of two thermoplastics were measured by extensional rheometer and using a parallel-plate configuration of an oscillatory rheometer. The results highlight the influence of the environment temperature and the cooling rate on the temperature and viscosity of the extrudate exiting from the nozzle. Moreover, the temperature and its corresponding viscosity at different times have been determined using numerical simulation. At highest shear rates, the extrudate undergoes deformation from typical cylindrical shape. These results are required to predict the coalescence of filaments, a step towards understanding the mechanical properties of the printed parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klishin, G.S.; Seleznev, V.E.; Aleoshin, V.V.
1997-12-31
Gas industry enterprises such as main pipelines, compressor gas transfer stations, gas extracting complexes belong to the energy intensive industry. Accidents there can result into the catastrophes and great social, environmental and economic losses. Annually, according to the official data several dozens of large accidents take place at the pipes in the USA and Russia. That is why prevention of the accidents, analysis of the mechanisms of their development and prediction of their possible consequences are acute and important tasks nowadays. The accidents reasons are usually of a complicated character and can be presented as a complex combination of natural,more » technical and human factors. Mathematical and computer simulations are safe, rather effective and comparatively inexpensive methods of the accident analysis. It makes it possible to analyze different mechanisms of a failure occurrence and development, to assess its consequences and give recommendations to prevent it. Besides investigation of the failure cases, numerical simulation techniques play an important role in the treatment of the diagnostics results of the objects and in further construction of mathematical prognostic simulations of the object behavior in the period of time between two inspections. While solving diagnostics tasks and in the analysis of the failure cases, the techniques of theoretical mechanics, of qualitative theory of different equations, of mechanics of a continuous medium, of chemical macro-kinetics and optimizing techniques are implemented in the Conversion Design Bureau {number_sign}5 (DB{number_sign}5). Both universal and special numerical techniques and software (SW) are being developed in DB{number_sign}5 for solution of such tasks. Almost all of them are calibrated on the calculations of the simulated and full-scale experiments performed at the VNIIEF and MINATOM testing sites. It is worth noting that in the long years of work there has been established a fruitful and effective collaboration of theoreticians, mathematicians and experimentalists of the institute to solve such tasks.« less
NASA Astrophysics Data System (ADS)
Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian
2018-01-01
ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical experiment yields that we could verify the effects of heterogeneity of propagation medium on waves in Liquid sodium.
Method for simulating discontinuous physical systems
Baty, Roy S.; Vaughn, Mark R.
2001-01-01
The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.
Streaming current for particle-covered surfaces: simulations and experiments
NASA Astrophysics Data System (ADS)
Blawzdziewicz, Jerzy; Adamczyk, Zbigniew; Ekiel-Jezewska, Maria L.
2017-11-01
Developing in situ methods for assessment of surface coverage by adsorbed nanoparticles is crucial for numerous technological processes, including controlling protein deposition and fabricating diverse microstructured materials (e.g., antibacterial coatings, catalytic surfaces, and particle-based optical systems). For charged surfaces and particles, promising techniques for evaluating surface coverage are based on measurements of the electrokinetic streaming current associated with ion convection in the double-layer region. We have investigated the dependence of the streaming current on the area fraction of adsorbed particles for equilibrium and random-sequential-adsorption (RSA) distributions of spherical particles, and for periodic square and hexagonal sphere arrays. The RSA results have been verified experimentally. Our numerical results indicate that the streaming current weakly depends on the microstructure of the particle monolayer. Combining simulations with the virial expansion, we provide convenient fitting formulas for the particle and surface contributions to the streaming current as functions of area fractions. For particles that have the same ζ-potential as the surface, we find that surface roughness reduces the streaming current. Supported by NSF Award No. 1603627.
Study on the leakage flow through a clearance gap between two stationary walls
NASA Astrophysics Data System (ADS)
Zhao, W.; Billdal, J. T.; Nielsen, T. K.; Brekke, H.
2012-11-01
In the present paper, the leakage flow in the clearance gap between stationary walls was studied experimentally, theoretically and numerically by the computational fluid dynamics (CFD) in order to find the relationship between leakage flow, pressure difference and clearance gap. The experimental set-up of the clearance gap between two stationary walls is the simplification of the gap between the guide vane faces and facing plates in Francis turbines. This model was built in the Waterpower laboratory at Norwegian University of Science and Technology (NTNU). The empirical formula for calculating the leakage flow rate between the two stationary walls was derived from the empirical study. The experimental model is simulated by computational fluid dynamics employing the ANSYS CFX commercial software in order to study the flow structure. Both numerical simulation results and empirical formula results are in good agreement with the experimental results. The correction of the empirical formula is verified by experimental data and has been proven to be very useful in terms of quickly predicting the leakage flow rate in the guide vanes for hydraulic turbines.
NASA Astrophysics Data System (ADS)
Su, Chuqi; Dong, Wenbin; Deng, Yadong; Wang, Yiping; Liu, Xun
2017-11-01
Heating, ventilating and air conditioning (HVAC) is the most significant auxiliary load in vehicles and largely increases extra emissions. Therefore, thermoelectric cooling automotive seat, a relatively new technology, is used in an attempt to reduce HVAC consumption and improve thermal comfort. In this study, three design schemes of the thermoelectric cooler (TEC) are proposed. Then the numerical simulation is used to analyze their heat transfer performance, and evaluate the improvement of the seat cooling in terms of the occupant back thermal comfort. Moreover, an experiment is conducted to validate the accuracy of the simulation results. The experimental results show that: (1) an average reduction in air temperature of 4°C in 60 s is obtained; (2) the temperature of the occupant's back drops from 33.5°C to 25.7°C in cooperation with the HVAC system; (3) back thermal comfort is greatly improved. As expected, the thermoelectric cooling automotive seat is able to provide an improvement in the occupant's thermal comfort at a reduced energy consumption rate, which makes it promising for vehicular application.
NASA Astrophysics Data System (ADS)
Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.
2015-10-01
An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.
Experimental and numerical modeling research of rubber material during microwave heating process
NASA Astrophysics Data System (ADS)
Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling
2018-05-01
This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.
NASA Astrophysics Data System (ADS)
Su, Chuqi; Dong, Wenbin; Deng, Yadong; Wang, Yiping; Liu, Xun
2018-06-01
Heating, ventilating and air conditioning (HVAC) is the most significant auxiliary load in vehicles and largely increases extra emissions. Therefore, thermoelectric cooling automotive seat, a relatively new technology, is used in an attempt to reduce HVAC consumption and improve thermal comfort. In this study, three design schemes of the thermoelectric cooler (TEC) are proposed. Then the numerical simulation is used to analyze their heat transfer performance, and evaluate the improvement of the seat cooling in terms of the occupant back thermal comfort. Moreover, an experiment is conducted to validate the accuracy of the simulation results. The experimental results show that: (1) an average reduction in air temperature of 4°C in 60 s is obtained; (2) the temperature of the occupant's back drops from 33.5°C to 25.7°C in cooperation with the HVAC system; (3) back thermal comfort is greatly improved. As expected, the thermoelectric cooling automotive seat is able to provide an improvement in the occupant's thermal comfort at a reduced energy consumption rate, which makes it promising for vehicular application.
Numerical simulation of liquid-layer breakup on a moving wall due to an impinging jet
NASA Astrophysics Data System (ADS)
Yu, Taejong; Moon, Hojoon; You, Donghyun; Kim, Dokyun; Ovsyannikov, Andrey
2014-11-01
Jet wiping, which is a hydrodynamic method for controlling the liquid film thickness in coating processes, is constrained by a rather violent film instability called splashing. The instability is characterized by the ejection of droplets from the runback flow and results in an explosion of the film. The splashing phenomenon degrades the final coating quality. In the present research, a volume-of-fluid (VOF)-based method, which is developed at Cascade Technologies, is employed to simulate the air-liquid multiphase flow dynamics. The present numerical method is based on an unstructured-grid unsplit geometric VOF scheme and guarantees strict conservation of mass of two-phase flow, The simulation results are compared with experimental measurements such as the liquid-film thickness before and after the jet wiping, wall pressure and shear stress distributions. The trajectories of liquid droplets due to the fluid motion entrained by the gas-jet operation, are also qualitatively compared with experimental visualization. Physical phenomena observed during the liquid-layer breakup due to an impinging jet is characterized in order to develop ideas for controlling the liquid-layer instability and resulting splash generation and propagation. Supported by the Grant NRF-2012R1A1A2003699, the Brain Korea 21+ program, POSCO, and 2014 CTR Summer Program.
MagLIF scaling on Z and future machines
NASA Astrophysics Data System (ADS)
Slutz, Stephen; Stygar, William; Gomez, Matthew; Campbell, Edward; Peterson, Kyle; Sefkow, Adam; Sinars, Daniel; Vesey, Roger
2015-11-01
The MagLIF (Magnetized Liner Inertial Fusion) concept [S.A. Slutz et al Phys. Plasmas 17, 056303, 2010] has demonstrated [M.R. Gomez et al., PRL 113, 155003, 2014] fusion-relevant plasma conditions on the Z machine. We present 2D numerical simulations of the scaling of MagLIF on Z indicating that deuterium/tritium (DT) fusion yields greater than 100 kJ could be possible on Z when operated at a peak current of 25 MA. Much higher yields are predicted for MagLIF driven with larger peak currents. Two high performance pulsed-power machines (Z300 and Z800) have been designed based on Linear Transformer Driver (LTD) technology. The Z300 design would provide approximately 48 MA to a MagLIF load, while Z800 would provide about 66 MA. We used a parameterized Thevenin equivalent circuit to drive a series of 1D and 2D numerical simulations with currents between and beyond these two designs. Our simulations indicate that 5-10 MJ yields may be possible with Z300, while yields of about 1 GJ may be possible with Z800. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.
Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.
Traumatic eye injuries as a result of blunt impact
NASA Astrophysics Data System (ADS)
Clemente, Chiara; Esposito, Luca; Bonora, Nicola; Limido, Jerome; Lacome, Jean-Luc; Rossi, Tommaso
2013-06-01
The detachment or tearing of the retina in the human eye as a result of a collision is a phenomenon that occurs very often. This research is aimed at identifying and understanding the actual dynamic physical mechanisms responsible for traumatic eye injuries accompanying blunt impact, with particular attention to the damage processes that take place at the retina. To this purpose, a numerical and experimental investigation of the dynamic response of the eye during an impact event was performed. Numerical simulation of both tests was performed with IMPETUS-FEA, a general non-linear finite element software which offers NURBS finite element technology for the simulation of large deformation and fracture in materials. Computational results were compared with the experimental results on fresh enucleated porcine eyes impacted with airsoft pellets. The eyes were placed in a container filled with 10 percent ballistic gelatin simulating the fatty tissue surrounding the eye. A miniature pressure transducer was inserted into the eye bulb through the optic nerve in order to measure the pressure of the eye during blunt-projectile impacts. Each test was recorded using a high speed video camera. The ocular injuries observed in the impacted eyes were assessed by an ophthalmologist in order to evaluate the correlation between the pressure measures and the risk of retinal damage.
Embedded Cohesive Elements (ECE) Approach to the Simulation of Spall Fracture Experiment
NASA Astrophysics Data System (ADS)
Bonora, Nicola; Esposito, Luca; Ruggiero, Andrew
2007-06-01
Discrepancies between the calculated and observed velocity vs time plot, relatively to the spall signal portion in terms of both signal amplitude and frequency, in numerical simulations of flyer plate impact test are usually shown. These are often ascribed either to material model or the numerical scheme used. Bonora et al. (2003 )[Bonora N., Ruggiero A. and Milella P.P., 2003, Fracture energy effect on spall signal, Proc. of 13^th APS SCCM03, Portland, USA] showed that, for ductile metals, these differences can be the imputed to the dissipation process during fracturing due to the viscous separation of spall fracture plane surfaces. In this work that concept has been further developed implementing an embedded cohesive elements (ECE) technology into FEM. The ECE method consists in embedding cohesive elements (normal and shear forces only) into standard isoparametric 2D or 3D FEM continuum elements. The cohesive elements remain silent and inactive until the continuum element fails. At failure, the continuum element is removed while the ECE becomes active until the separation energy is dissipated. Here, the methodology is presented and applied to simulate soft spall in ductile metals such as OHFC copper. Results of parametric study on mesh size and cohesive law shape effect are presented.
Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis
NASA Technical Reports Server (NTRS)
Morgan, Morris H., III; Gilinsky, Mikhail M.
2004-01-01
In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for example, Figures 4). The FM&AL Team uses analytical methods, numerical simulations and experimental tests at the Hampton University campus, NASA and IM/MSU.
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1995-01-01
A major difficulty in designing aeropropulsion systems is that of identifying and understanding the interactions between the separate engine components and disciplines (e.g., fluid mechanics, structural mechanics, heat transfer, material properties, etc.). The traditional analysis approach is to decompose the system into separate components with the interaction between components being evaluated by the application of each of the single disciplines in a sequential manner. Here, one discipline uses information from the calculation of another discipline to determine the effects of component coupling. This approach, however, may not properly identify the consequences of these effects during the design phase, leaving the interactions to be discovered and evaluated during engine testing. This contributes to the time and cost of developing new propulsion systems as, typically, several design-build-test cycles are needed to fully identify multidisciplinary effects and reach the desired system performance. The alternative to sequential isolated component analysis is to use multidisciplinary coupling at a more fundamental level. This approach has been made more plausible due to recent advancements in computation simulation along with application of concurrent engineering concepts. Computer simulation systems designed to provide an environment which is capable of integrating the various disciplines into a single simulation system have been proposed and are currently being developed. One such system is being developed by the Numerical Propulsion System Simulation (NPSS) project. The NPSS project, being developed at the Interdisciplinary Technology Office at the NASA Lewis Research Center is a 'numerical test cell' designed to provide for comprehensive computational design and analysis of aerospace propulsion systems. It will provide multi-disciplinary analyses on a variety of computational platforms, and a user-interface consisting of expert systems, data base management and visualization tools, to allow the designer to investigate the complex interactions inherent in these systems. An interactive programming software system, known as the Application Visualization System (AVS), was utilized for the development of the propulsion system simulation. The modularity of this system provides the ability to couple propulsion system components, as well as disciplines, and provides for the ability to integrate existing, well established analysis codes into the overall system simulation. This feature allows the user to customize the simulation model by inserting desired analysis codes. The prototypical simulation environment for multidisciplinary analysis, called Turbofan Engine System Simulation (TESS), which incorporates many of the characteristics of the simulation environment proposed herein, is detailed.
3D printing application and numerical simulations in a fracture system
NASA Astrophysics Data System (ADS)
Yoon, H.; Martinez, M. J.
2017-12-01
The hydrogeological and mechanical properties in fractured and porous media are fundamental to predicting coupled multiphysics processes in the subsurface. Recent advances in experimental methods and multi-scale imaging capabilities have revolutionized our ability to quantitatively characterize geomaterials and digital counterparts are now routinely used for numerical simulations to characterize petrophysical and mechanical properties across scales. 3D printing is a very effective and creative technique that reproduce the digital images in a controlled way. For geoscience applications, 3D printing can be co-opted to print reproducible porous and fractured structures derived from CT-imaging of actual rocks and theoretical algorithms for experimental testing. In this work we used a stereolithography (SLA) method to create a single fracture network. The fracture in shale was first scanned using a microCT system and then the digital fracture network was printed into two parts and assembled. Aperture ranges from 0.3 to 1 mm. In particular, we discuss the design of single fracture network and the progress of printing practices to reproduce the fracture network system. Printed samples at different scales are used to measure the permeability and surface roughness. Various numerical simulations including (non-)reactive transport and multiphase flow cases are performed to study fluid flow characterization. We will also discuss the innovative advancement of 3D printing techniques applicable for coupled processes in the subsurface. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Numerical heating in Particle-In-Cell simulations with Monte Carlo binary collisions
NASA Astrophysics Data System (ADS)
Alves, E. Paulo; Mori, Warren; Fiuza, Frederico
2017-10-01
The binary Monte Carlo collision (BMCC) algorithm is a robust and popular method to include Coulomb collision effects in Particle-in-Cell (PIC) simulations of plasmas. While a number of works have focused on extending the validity of the model to different physical regimes of temperature and density, little attention has been given to the fundamental coupling between PIC and BMCC algorithms. Here, we show that the coupling between PIC and BMCC algorithms can give rise to (nonphysical) numerical heating of the system, that can be far greater than that observed when these algorithms operate independently. This deleterious numerical heating effect can significantly impact the evolution of the simulated system particularly for long simulation times. In this work, we describe the source of this numerical heating, and derive scaling laws for the numerical heating rates based on the numerical parameters of PIC-BMCC simulations. We compare our theoretical scalings with PIC-BMCC numerical experiments, and discuss strategies to minimize this parasitic effect. This work is supported by DOE FES under FWP 100237 and 100182.
Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea
NASA Astrophysics Data System (ADS)
Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge
2017-04-01
Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and the model settings. In particular, the permeability and the available heat, which is required to decompose the hydrate, play an important role. The work is focused on the thermodynamic principles and technological approaches for the exploitation.
Performance Analysis of IIUM Wireless Campus Network
NASA Astrophysics Data System (ADS)
Abd Latif, Suhaimi; Masud, Mosharrof H.; Anwar, Farhat
2013-12-01
International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement.
Proceedings: Joint DOE/NSF Workshop on flow of particulates and fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
These proceedings are the result of the Fifth DOR-NSF Workshop on fundamental research in the area of particulate two-phase flow and granular flow. The present collection of twenty contributions from universities and national laboratories is based on research projects sponsored by either the Department of Energy or the National Science Foundation. These papers illustrate some of the latest advances in theory, simulations, and experiments. The papers from the Workshop held September 29--October 1, 1993 have been separated into three basic areas: experiments, theory, and numerical simulations. A list of attendees at the workshop is included at the end of themore » proceedings. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Hysteretic Flux Response and Nondegenerate Gain of Flux-Driven Josephson Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Pogorzalek, Stefan; Fedorov, Kirill G.; Zhong, Ling; Goetz, Jan; Wulschner, Friedrich; Fischer, Michael; Eder, Peter; Xie, Edwar; Inomata, Kunihiro; Yamamoto, Tsuyoshi; Nakamura, Yasunobu; Marx, Achim; Deppe, Frank; Gross, Rudolf
2017-08-01
Josephson parametric amplifiers (JPAs) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs exhibiting a hysteretic dependence of the resonant frequency on the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices, which provide the JPA nonlinearity for a nonzero screening parameter βL>0 and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.
Hot zone design for controlled growth to mitigate cracking in laser crystal growth
NASA Astrophysics Data System (ADS)
Zhang, Hui; Zheng, Lili; Fang, Haisheng
2011-03-01
Cracking is a major problem during large diameter crystal growth. The objective of this work is to design an effective hot zone for a controlled growth of Yb:S-FAP [Yb3+:Sr5(PO4)3F] laser crystal by the Czochralski technology and effective cooling that can reduce stress. Theoretical and numerical analyses are performed to study the causes of cracking, mitigate the major cracking, as well as reduce cooling time. In the current system, three locations in the crystal are prone to crack, such as the top shoulder of the crystal, the middle portion above the crucible edge, and the bottom tail portion. Based on numerical simulations, we propose a new hot zone design and cooling procedure to grow and cool large diameter crystal without cracking.
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2017-10-01
Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.
Bifurcation structures of a cobweb model with memory and competing technologies
NASA Astrophysics Data System (ADS)
Agliari, Anna; Naimzada, Ahmad; Pecora, Nicolò
2018-05-01
In this paper we study a simple model based on the cobweb demand-supply framework with costly innovators and free imitators. The evolutionary selection between technologies depends on a performance measure which is related to the degree of memory. The resulting dynamics is described by a two-dimensional map. The map has a fixed point which may lose stability either via supercritical Neimark-Sacker bifurcation or flip bifurcation and several multistability situations exist. We describe some sequences of global bifurcations involving attracting and repelling closed invariant curves. These bifurcations, characterized by the creation of homoclinic connections or homoclinic tangles, are described through several numerical simulations. Particular bifurcation phenomena are also observed when the parameters are selected inside a periodicity region.
Long-range temporal correlations in the Kardar-Parisi-Zhang growth: numerical simulations
NASA Astrophysics Data System (ADS)
Song, Tianshu; Xia, Hui
2016-11-01
To analyze long-range temporal correlations in surface growth, we study numerically the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) equation driven by temporally correlated noise, and obtain the scaling exponents based on two different numerical methods. Our simulations show that the numerical results are in good agreement with the dynamic renormalization group (DRG) predictions, and are also consistent with the simulation results of the ballistic deposition (BD) model.
Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device
NASA Astrophysics Data System (ADS)
Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin
A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.
Simulation of Small-Pitch HgCdTe Photodetectors
NASA Astrophysics Data System (ADS)
Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich
2017-09-01
Recent studies indicate as an important technological step the development of infrared HgCdTe-based focal plane arrays (FPAs) with sub-wavelength pixel pitch, with the advantage of smaller volume, lower weight, and potentially lower cost. In order to assess the limits of pixel pitch scaling, we present combined three-dimensional optical and electrical simulations of long-wavelength infrared HgCdTe FPAs, with 3 μm, 5 μm, and 10 μm pitch. Numerical simulations predict significant cavity effects, brought by the array periodicity. The optical and electrical contributions to spectral inter-pixel crosstalk are investigated as functions of pixel pitch, by illuminating the FPAs with Gaussian beams focused on the central pixel. Despite the FPAs being planar with 100% pixel duty cycle, our calculations suggest that the total crosstalk with nearest-neighbor pixels could be kept acceptably small also with pixels only 3 μ m wide and a diffraction-limited optical system.
Object oriented studies into artificial space debris
NASA Technical Reports Server (NTRS)
Adamson, J. M.; Marshall, G.
1988-01-01
A prototype simulation is being developed under contract to the Royal Aerospace Establishment (RAE), Farnborough, England, to assist in the discrimination of artificial space objects/debris. The methodology undertaken has been to link Object Oriented programming, intelligent knowledge based system (IKBS) techniques and advanced computer technology with numeric analysis to provide a graphical, symbolic simulation. The objective is to provide an additional layer of understanding on top of conventional classification methods. Use is being made of object and rule based knowledge representation, multiple reasoning, truth maintenance and uncertainty. Software tools being used include Knowledge Engineering Environment (KEE) and SymTactics for knowledge representation. Hooks are being developed within the SymTactics framework to incorporate mathematical models describing orbital motion and fragmentation. Penetration and structural analysis can also be incorporated. SymTactics is an Object Oriented discrete event simulation tool built as a domain specific extension to the KEE environment. The tool provides facilities for building, debugging and monitoring dynamic (military) simulations.
Numerical simulation of the effect of regular and sub-caliber projectiles on military bunkers
NASA Astrophysics Data System (ADS)
Jiricek, Pavel; Foglar, Marek
2015-09-01
One of the most demanding topics in blast and impact engineering is the modelling of projectile impact. To introduce this topic, a set of numerical simulations was undertaken. The simulations study the impact of regular and sub-calibre projectile on Czech pre-WW2 military bunkers. The penetrations of the military objects are well documented and can be used for comparison. The numerical model composes of a part from a wall of a military object. The concrete block is subjected to an impact of a regular and sub-calibre projectile. The model is divided into layers to simplify the evaluation of the results. The simulations are processed within ANSYS AUTODYN software. A nonlinear material model of with damage and incorporated strain-rate effect was used. The results of the numerical simulations are evaluated in means of the damage of the concrete block. Progress of the damage is described versus time. The numerical simulation provides good agreement with the documented penetrations.
Numerical simulations in the development of propellant management devices
NASA Astrophysics Data System (ADS)
Gaulke, Diana; Winkelmann, Yvonne; Dreyer, Michael
Propellant management devices (PMDs) are used for positioning the propellant at the propel-lant port. It is important to provide propellant without gas bubbles. Gas bubbles can inflict cavitation and may lead to system failures in the worst case. Therefore, the reliable operation of such devices must be guaranteed. Testing these complex systems is a very intricate process. Furthermore, in most cases only tests with downscaled geometries are possible. Numerical sim-ulations are used here as an aid to optimize the tests and to predict certain results. Based on these simulations, parameters can be determined in advance and parts of the equipment can be adjusted in order to minimize the number of experiments. In return, the simulations are validated regarding the test results. Furthermore, if the accuracy of the numerical prediction is verified, then numerical simulations can be used for validating the scaling of the experiments. This presentation demonstrates some selected numerical simulations for the development of PMDs at ZARM.
System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations
NASA Technical Reports Server (NTRS)
Nixon, D. D.
2001-01-01
Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.
Numerical Simulation Applications in the Design of EGS Collab Experiment 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; White, Mark D.; Fu, Pengcheng
The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less
Vector scattering analysis of TPF coronagraph pupil masks
NASA Astrophysics Data System (ADS)
Ceperley, Daniel P.; Neureuther, Andrew R.; Lieber, Michael D.; Kasdin, N. Jeremy; Shih, Ta-Ming
2004-10-01
Rigorous finite-difference time-domain electromagnetic simulation is used to simulate the scattering from proto-typical pupil mask cross-section geometries and to quantify the differences from the normally assumed ideal on-off behavior. Shaped pupil plane masks are a promising technology for the TPF coronagraph mission. However the stringent requirements placed on the optics require that the detailed behavior of the edge-effects of these masks be examined carefully. End-to-end optical system simulation is essential and an important aspect is the polarization and cross-section dependent edge-effects which are the subject of this paper. Pupil plane masks are similar in many respects to photomasks used in the integrated circuit industry. Simulation capabilities such as the FDTD simulator, TEMPEST, developed for analyzing polarization and intensity imbalance effects in nonplanar phase-shifting photomasks, offer a leg-up in analyzing coronagraph masks. However, the accuracy in magnitude and phase required for modeling a chronograph system is extremely demanding and previously inconsequential errors may be of the same order of magnitude as the physical phenomena under study. In this paper, effects of thick masks, finite conductivity metals, and various cross-section geometries on the transmission of pupil-plane masks are illustrated. Undercutting the edge shape of Cr masks improves the effective opening width to within λ/5 of the actual opening but TE and TM polarizations require opposite compensations. The deviation from ideal is examined at the reference plane of the mask opening. Numerical errors in TEMPEST, such as numerical dispersion, perfectly matched layer reflections, and source haze are also discussed along with techniques for mitigating their impacts.
Numerical Simulation of a High Mach Number Jet Flow
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli; Mankbadi, Reda R.
1993-01-01
The recent efforts to develop accurate numerical schemes for transition and turbulent flows are motivated, among other factors, by the need for accurate prediction of flow noise. The success of developing high speed civil transport plane (HSCT) is contingent upon our understanding and suppression of the jet exhaust noise. The radiated sound can be directly obtained by solving the full (time-dependent) compressible Navier-Stokes equations. However, this requires computational storage that is beyond currently available machines. This difficulty can be overcome by limiting the solution domain to the near field where the jet is nonlinear and then use acoustic analogy (e.g., Lighthill) to relate the far-field noise to the near-field sources. The later requires obtaining the time-dependent flow field. The other difficulty in aeroacoustics computations is that at high Reynolds numbers the turbulent flow has a large range of scales. Direct numerical simulations (DNS) cannot obtain all the scales of motion at high Reynolds number of technological interest. However, it is believed that the large scale structure is more efficient than the small-scale structure in radiating noise. Thus, one can model the small scales and calculate the acoustically active scales. The large scale structure in the noise-producing initial region of the jet can be viewed as a wavelike nature, the net radiated sound is the net cancellation after integration over space. As such, aeroacoustics computations are highly sensitive to errors in computing the sound sources. It is therefore essential to use a high-order numerical scheme to predict the flow field. The present paper presents the first step in a ongoing effort to predict jet noise. The emphasis here is in accurate prediction of the unsteady flow field. We solve the full time-dependent Navier-Stokes equations by a high order finite difference method. Time accurate spatial simulations of both plane and axisymmetric jet are presented. Jet Mach numbers of 1.5 and 2.1 are considered. Reynolds number in the simulations was about a million. Our numerical model is based on the 2-4 scheme by Gottlieb & Turkel. Bayliss et al. applied the 2-4 scheme in boundary layer computations. This scheme was also used by Ragab and Sheen to study the nonlinear development of supersonic instability waves in a mixing layer. In this study, we present two dimensional direct simulation results for both plane and axisymmetric jets. These results are compared with linear theory predictions. These computations were made for near nozzle exit region and velocity in spanwise/azimuthal direction was assumed to be zero.
NASA Astrophysics Data System (ADS)
Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias
2018-06-01
This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.
Resolution requirements for numerical simulations of transition
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Krist, Steven E.; Hussaini, M. Yousuff
1989-01-01
The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition.
Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test
NASA Astrophysics Data System (ADS)
Huang, Yifeng; Yang, Jixin
The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.
Utilization of FEM model for steel microstructure determination
NASA Astrophysics Data System (ADS)
Kešner, A.; Chotěborský, R.; Linda, M.; Hromasová, M.
2018-02-01
Agricultural tools which are used in soil processing, they are worn by abrasive wear mechanism cases by hard minerals particles in the soil. The wear rate is influenced by mechanical characterization of tools material and wear rate is influenced also by soil mineral particle contents. Mechanical properties of steel can be affected by a technology of heat treatment that it leads to a different microstructures. Experimental work how to do it is very expensive and thanks to numerical methods like FEM we can assumed microstructure at low cost but each of numerical model is necessary to be verified. The aim of this work has shown a procedure of prediction microstructure of steel for agricultural tools. The material characterizations of 51CrV4 grade steel were used for numerical simulation like TTT diagram, heat capacity, heat conduction and other physical properties of material. A relationship between predicted microstructure by FEM and real microstructure after heat treatment shows a good correlation.
NASA Technical Reports Server (NTRS)
Hersh, Alan S.; Tam, Christopher
2009-01-01
Two significant advances have been made in the application of computational aeroacoustics methodology to acoustic liner technology. The first is that temperature effects for discrete sound are not the same as for broadband noise. For discrete sound, the normalized resistance appears to be insensitive to temperature except at high SPL. However, reactance is lower, significantly lower in absolute value, at high temperature. The second is the numerical investigation the acoustic performance of a liner by direct numerical simulation. Liner impedance is affected by the non-uniformity of the incident sound waves. This identifies the importance of pressure gradient. Preliminary design one and two-dimensional impedance models were developed to design sound absorbing liners in the presence of intense sound and grazing flow. The two-dimensional model offers the potential to empirically determine incident sound pressure face-plate distance from resonator orifices. This represents an important initial step in improving our understanding of how to effectively use the Dean Two-Microphone impedance measurement method.
GPU accelerated manifold correction method for spinning compact binaries
NASA Astrophysics Data System (ADS)
Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying
2018-04-01
The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.
Numerical and Experimental Investigations on the Hydrodynamic Performance of a Tidal Current Turbine
NASA Astrophysics Data System (ADS)
Su, Xiaohui; Zhang, Jiantao; Zhao, Yong; Zhang, Huiying; Zhao, Guang; Cao, Yao
2017-12-01
In this paper, numerical and experimental investigations are presented on the hydrodynamic performance of a horizontal tidal current turbine (TCT) designed and made by our Dalian University of Technology (DUT) research group. Thus it is given the acronym: DUTTCT. An open source CFD solver, called PimpleDyMFoam, is employed to perform numerical simulations for design analysis, while experimental tests are conducted in a DUT towing tank. The important factors, including self-starting velocity, tip speed ratio (TSR) and yaw angle, which play important roles in the turbine output power, are studied in the investigations. Results obtained show that the maximum power efficiency of the newly developed turbine (DUTTCT) could reach up to 47.6% and all its power efficiency is over 40% in the TSR range from 3.5 to 6; the self-starting velocity of DUTTCT is about 0.745m/s; the yaw angle has negligible influence on its efficiency as it is less than 10°.
How to Overcome Numerical Challenges to Modeling Stirling Engines
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.
2004-01-01
Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.
NASA Astrophysics Data System (ADS)
Crassous, Jerome; Gabay, Claude; Liogier, Gaetan; Berge, Bruno
2004-12-01
A new technology for focus variation with direct electric control without moving part will be presented. The technology relies on an interface between two non-miscible transparent liquids, which can be deformed by electrowetting. This technology has been developed since 10 years in the lab and starts to be available commercially, with the following characteristics: large amplitude of dioptric correction (20 dioptries for a 5mm pupil size), fast response, small power consumption and good transmission in the visible range, clear pupil 1-10mm diameter. This paper will show the basic principle, as well as the physical limitations and optical aberrations due to differential thermal expansion of the two liquids in the cell. Experimental measurements made with a Schack Hartmann wave front analyzer will be presented, as well as numerical simulations of the liquid-liquid interface. Applications will be discussed, mainly in consumer electronics.
Study on government's optimal incentive intensity of intellectual property rights
NASA Astrophysics Data System (ADS)
Yang, Chengbin; Sun, Shengxiang; Wei, Hua
2018-05-01
The integration of military and civilian technology in the development stage of weapon equipment is an inherent requirement for the development of the deep integration of the military and the civilian. In order to avoid repeated development of existing technology and improve the efficiency of weaponry development, the government should take effective measures to encourage development institutions to actively adopt existing intellectual property technology in the process of equipment development. According to the theory of utility function and the characteristics of practical problems, the utility function of government and weapon equipment development units is constructed, and the optimization model of incentive strength for national defense intellectual property is established. According to the numerical simulation, the conclusion is, to improve the development efficiency, and at the same time, to encourage innovation, thre government need to make a trade-off in incentive policy making, to achieve a high level in intellectual property rights' innovation and application.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.
2000-01-01
The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.
NASA Technical Reports Server (NTRS)
Wright, William B.
1988-01-01
Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Investigating dynamic underground coal fires by means of numerical simulation
NASA Astrophysics Data System (ADS)
Wessling, S.; Kessels, W.; Schmidt, M.; Krause, U.
2008-01-01
Uncontrolled burning or smoldering of coal seams, otherwise known as coal fires, represents a worldwide natural hazard. Efficient application of fire-fighting strategies and prevention of mining hazards require that the temporal evolution of fire propagation can be sufficiently precise predicted. A promising approach for the investigation of the temporal evolution is the numerical simulation of involved physical and chemical processes. In the context of the Sino-German Research Initiative `Innovative Technologies for Detection, Extinction and Prevention of Coal Fires in North China,' a numerical model has been developed for simulating underground coal fires at large scales. The objective of such modelling is to investigate observables, like the fire propagation rate, with respect to the thermal and hydraulic parameters of adjacent rock. In the model, hydraulic, thermal and chemical processes are accounted for, with the last process complemented by laboratory experiments. Numerically, one key challenge in modelling coal fires is to circumvent the small time steps resulting from the resolution of fast reaction kinetics at high temperatures. In our model, this problem is solved by means of an `operator-splitting' approach, in which transport and reactive processes of oxygen are independently calculated. At high temperatures, operator-splitting has the decisive advantage of allowing the global time step to be chosen according to oxygen transport, so that time-consuming simulation through the calculation of fast reaction kinetics is avoided. Also in this model, because oxygen distribution within a coal fire has been shown to remain constant over long periods, an additional extrapolation algorithm for the coal concentration has been applied. In this paper, we demonstrate that the operator-splitting approach is particularly suitable for investigating the influence of hydraulic parameters of adjacent rocks on coal fire propagation. A study shows that dynamic propagation strongly depends on permeability variations. For the assumed model, no fire exists for permeabilities k < 10-10m2, whereas the fire propagation velocity ranges between 340ma-1 for k = 10-8m2, and drops to lower than 3ma-1 for k = 5 × 10-10m2. Additionally, strong temperature variations are observed for the permeability range 5 × 10-10m2 < k < 10-8m2.
Coincidental match of numerical simulation and physics
NASA Astrophysics Data System (ADS)
Pierre, B.; Gudmundsson, J. S.
2010-08-01
Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.
Physics-based multiscale coupling for full core nuclear reactor simulation
Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...
2015-10-01
Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less
NASA Astrophysics Data System (ADS)
Basile, A. F.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics.
Nonisothermal glass molding for the cost-efficient production of precision freeform optics
NASA Astrophysics Data System (ADS)
Vu, Anh-Tuan; Kreilkamp, Holger; Dambon, Olaf; Klocke, Fritz
2016-07-01
Glass molding has become a key replication-based technology to satisfy intensively growing demands of complex precision optics in the today's photonic market. However, the state-of-the-art replicative technologies are still limited, mainly due to their insufficiency to meet the requirements of mass production. This paper introduces a newly developed nonisothermal glass molding in which a complex-shaped optic is produced in a very short process cycle. The innovative molding technology promises a cost-efficient production because of increased mold lifetime, less energy consumption, and high throughput from a fast process chain. At the early stage of the process development, the research focuses on an integration of finite element simulation into the process chain to reduce time and labor-intensive cost. By virtue of numerical modeling, defects including chill ripples and glass sticking in the nonisothermal molding process can be predicted and the consequent effects are avoided. In addition, the influences of process parameters and glass preforms on the surface quality, form accuracy, and residual stress are discussed. A series of experiments was carried out to validate the simulation results. The successful modeling, therefore, provides a systematic strategy for glass preform design, mold compensation, and optimization of the process parameters. In conclusion, the integration of simulation into the entire nonisothermal glass molding process chain will significantly increase the manufacturing efficiency as well as reduce the time-to-market for the mass production of complex precision yet low-cost glass optics.
Numerical simulation of gender differences in a long-term microgravity exposure
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni
The objective of this work is to analyse and simulate gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairment which may put in jeopardy a long-term mission is also evaluated. Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numerical Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular architecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electricallike model of this control system, using inexpensive software development frameworks, and has been tested and validated with the available experimental data. Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobical exercise, and also thermal stress simulating an extra-vehicular activity. Results show that significant differences appear between men and women physiological response after long-term exposure (more than three months) to microgravity. Risk evaluation for every gender, and specific risk thresholds are provided. Initial results are compatible with the existing data, and provide unique information regarding different patterns of microgravity exposure. We conclude that computer-based models such us NELME are a promising line of work to predict health risks in long-term missions. More experimental work is needed to adjust some parameters of the model. This work may be seen as another contribution to a better understanding of the underlying processes involved for both women in man adaptation to long-term microgravity.
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
NASA Technical Reports Server (NTRS)
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
Investigation of the adhesion interface obtained through two-component injection molding
NASA Astrophysics Data System (ADS)
Fetecau, Catalin; Stan, Felicia; Dobrea, Daniel
2011-01-01
In this paper we study the interface strength obtained through two-component (2C) injection molding of LDPE-HDPE polymers. First, numerical simulation of the over-molding process is carried out using Moldflow technology. Second, butt-joint specimens were produced by over-molding under different process condition, and tested. Two injection sequences were considered, injection of LDPE on HDPE polymer, and HDLE on LDPE, respectively. To investigate the effects of the mold surface roughness on the polymers adhesion at interface, different inserts with different roughness are employed.
Numerical simulation on chain-die forming of an AHSS top-hat section
NASA Astrophysics Data System (ADS)
Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui
2018-05-01
The applications of Advanced High-Strength Steels (AHSS) in the automotive industry are rapidly increasing due to a demand for a lightweight material that significantly reduces fuel consumption without compromising passenger safety. Automotive industries and material suppliers are expected by consumers to deliver reliable and affordable products, thus stimulating these manufacturers to research solutions to meet these customer requirements. The primary advantage of AHSS is its extremely high strength to weight ratio, an ideal material for the automotive industry. However, its low ductility is a major disadvantage, in particular, when using traditional cold forming processes such as roll forming and deep drawing process to form profiles. Consequently, AHSS parts frequently fail to form. Thereby, in order to improve quality and reliability on manufacturing AHSS products, a recently-developed incremental cold sheet metal forming technology called Chain-die Forming (CDF) is recognised as a potential solution to the forming process of AHSS. The typical CDF process is a combination of bending and roll forming processes which is equivalent to a roll with a large deforming radius, and incrementally forms the desired shape with split die and segments. This study focuses on manufacturing an AHSS top-hat section with minimum passes without geometrical or surface defects by using finite element modelling and simulations. The developed numerical simulation is employed to investigate the influences on the main control parameter of the CDF process while forming AHSS products and further develop new die-punch sets of compensation design via a numerical optimal process. In addition, the study focuses on the tool design to compensate spring-back and reduce friction between tooling and sheet-metal. This reduces the number of passes, thereby improving productivity and reducing energy consumption and material waste. This numerical study reveals that CDF forms AHSS products of complex profiles with much less residual stress, low spring back, low strain and of higher geometrical accuracy compared to other traditional manufacturing processes.
Fast solver for large scale eddy current non-destructive evaluation problems
NASA Astrophysics Data System (ADS)
Lei, Naiguang
Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.
LISA on Table: an optical simulator for LISA
NASA Astrophysics Data System (ADS)
Halloin, H.; Jeannin, O.; Argence, B.; Bourrier, V.; de Vismes, E.; Prat, P.
2017-11-01
LISA, the first space project for detecting gravitational waves, relies on two main technical challenges: the free falling masses and an outstanding precision on phase shift measurements (a few pm on 5 Mkm in the LISA band). The technology of the free falling masses, i.e. their isolation to forces other than gravity and the capability for the spacecraft to precisely follow the test masses, will soon be tested with the technological LISA Pathfinder mission. The performance of the phase measurement will be achieved by at least two stabilization stages: a pre-stabilisation of the laser frequency at a level of 10-13 (relative frequency stability) will be further improved by using numerical algorithms, such as Time Delay Interferometry, which have been theoretically and numerically demonstrated to reach the required performance level (10-21). Nevertheless, these algorithms, though already tested with numerical model of LISA, require experimental validation, including `realistic' hardware elements. Such an experiment would allow to evaluate the expected noise level and the possible interactions between subsystems. To this end, the APC is currently developing an optical benchtop experiment, called LISA On Table (LOT), which is representative of the three LISA spacecraft. A first module of the LOT experiment has been mounted and is being characterized. After completion this facility may be used by the LISA community to test hardware (photodiodes, phasemeters) or software (reconstruction algorithms) components.
The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems
2003-09-30
The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Office of Weather and Air Quality...predictability of extratropical cyclones. APPROACH My approach toward achieving the above objectives has been to foster national and...TITLE AND SUBTITLE The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
2016-01-22
Numerical electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna...and are not necessarily endorsed by the United States Government. numerical simulations with the multilevel fast multipole method (MLFMM...and optimized using numerical simulations conducted with the multilevel fast multipole method (MLFMM) using FEKO software (www.feko.info). The
Numerical simulations of quasi-perpendicular collisionless shocks
NASA Technical Reports Server (NTRS)
Goodrich, C. C.
1985-01-01
Numerical simulations of collisionless quasi-perpendicular shock waves are reviewed. The strengths and limitations of these simulations are discussed and their experimental (laboratory and spacecraft) context is given. Recent simulation results are emphasized that, with ISEE bow shock observations, are responsible for recent progress in understanding quasi-steady shock structure.
Numerical human models for accident research and safety - potentials and limitations.
Praxl, Norbert; Adamec, Jiri; Muggenthaler, Holger; von Merten, Katja
2008-01-01
The method of numerical simulation is frequently used in the area of automotive safety. Recently, numerical models of the human body have been developed for the numerical simulation of occupants. Different approaches in modelling the human body have been used: the finite-element and the multibody technique. Numerical human models representing the two modelling approaches are introduced and the potentials and limitations of these models are discussed.
Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields
NASA Astrophysics Data System (ADS)
Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo
The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.
A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI
Kabil, J.; Belguerras, L.; Trattnig, S.; Pasquier, C.; Missoffe, A.
2016-01-01
Summary Objectives To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. Methods A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Results Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Conclusions Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges. PMID:27830244
A Numerical Simulation of a Normal Sonic Jet into a Hypersonic Cross-Flow
NASA Technical Reports Server (NTRS)
Jeffries, Damon K.; Krishnamurthy, Ramesh; Chandra, Suresh
1997-01-01
This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.
A Level-set based framework for viscous simulation of particle-laden supersonic flows
NASA Astrophysics Data System (ADS)
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-06-01
Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.
2002 Blue Marble and Developments in HDTV Technology for Public Outreach
NASA Technical Reports Server (NTRS)
Hasler, Fritz; Starr, David OC. (Technical Monitor)
2001-01-01
Fritz Hasler (NASA/Goddard) will demonstrate the latest Blue Marble Digital Earth technology. We will fly in from space through Terra, Landsat 7, to 1 m Ikonos "Spy Satellite" data of Disney World and the Orlando Convention Center. You will see the complete global cloud free and cloudy 500 m datasets from the EOS Terra satellite. Spectacular new animations from Terra, Landsat 7, and SeaWiFS will be presented. See also animations of the hurricanes & tropical storms of the 2001 season, as well as Floyd, Georges, and Mitch, etc. from GOES & TRMM supported by MM5 3-D nested numerical model results. See movies assembled using new low cost HDTV nonlinear editing equipment that is revolutionizing the way we communicate scientific results. See climate change in action with Global Land & Ocean productivity changes over the last 20 years. Remote sensing observations of ocean SST, height, winds, color, and El Nino from GOES, AVHRR, SSMI & SeaWiFS are put in context with atmospheric and ocean simulations. Compare symmetrical equatorial eddies observed by GOES with the simulations.
Design of FastQuery: How to Generalize Indexing and Querying System for Scientific Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jerry; Wu, Kesheng
2011-04-18
Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies such as FastBit are critical for facilitating interactive exploration of large datasets. These technologies rely on adding auxiliary information to existing datasets to accelerate query processing. To use these indices, we need to match the relational data model used by the indexing systems with the array data model used by most scientific data, and to provide an efficient input and output layer for reading and writing the indices. In this work, we present a flexible design that can be easily applied to most scientific datamore » formats. We demonstrate this flexibility by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using simulation data from the particle accelerator and climate simulation communities. To demonstrate the effectiveness of the new design, we also present a detailed performance study using both synthetic and real scientific workloads.« less
Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.
Ashrafi, Reza; Azaña, José
2012-07-01
A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.
Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage
NASA Astrophysics Data System (ADS)
Khrapov, Sergey; Khoperskov, Alexander
2018-03-01
A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.
Prediction of Business Jet Airloads Using The Overflow Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bounajem, Elias; Buning, Pieter G.
2001-01-01
The objective of this work is to evaluate the application of Navier-Stokes computational fluid dynamics technology, for the purpose of predicting off-design condition airloads on a business jet configuration in the transonic regime. The NASA Navier-Stokes flow solver OVERFLOW with Chimera overset grid capability, availability of several numerical schemes and convergence acceleration techniques was selected for this work. A set of scripts which have been compiled to reduce the time required for the grid generation process are described. Several turbulence models are evaluated in the presence of separated flow regions on the wing. Computed results are compared to available wind tunnel data for two Mach numbers and a range of angles-of-attack. Comparisons of wing surface pressure from numerical simulation and wind tunnel measurements show good agreement up to fairly high angles-of-attack.
Numerical study of particle deposition and scaling in dust exhaust of cyclone separator
NASA Astrophysics Data System (ADS)
Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.
2016-05-01
The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.
Simulation of crack propagation in rock in plasma blasting technology
NASA Astrophysics Data System (ADS)
Ikkurthi, V. R.; Tahiliani, K.; Chaturvedi, S.
Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time τ , we have determined the P- τ curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures Ppeak. We have determined the E- Ppeak curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal Ppeak that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.
Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M
2011-05-15
Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. Copyright © 2011 Elsevier B.V. All rights reserved.
A domain-specific design architecture for composite material design and aircraft part redesign
NASA Technical Reports Server (NTRS)
Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.
1992-01-01
Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in fact this difficulty that our research will address.
Large Eddy Simulation in the Computation of Jet Noise
NASA Technical Reports Server (NTRS)
Mankbadi, R. R.; Goldstein, M. E.; Povinelli, L. A.; Hayder, M. E.; Turkel, E.
1999-01-01
Noise can be predicted by solving Full (time-dependent) Compressible Navier-Stokes Equation (FCNSE) with computational domain. The fluctuating near field of the jet produces propagating pressure waves that produce far-field sound. The fluctuating flow field as a function of time is needed in order to calculate sound from first principles. Noise can be predicted by solving the full, time-dependent, compressible Navier-Stokes equations with the computational domain extended to far field - but this is not feasible as indicated above. At high Reynolds number of technological interest turbulence has large range of scales. Direct numerical simulations (DNS) can not capture the small scales of turbulence. The large scales are more efficient than the small scales in radiating sound. The emphasize is thus on calculating sound radiated by large scales.
Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code
NASA Technical Reports Server (NTRS)
Fittje, James E.; Schnitzler, Bruce G.
2008-01-01
The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.
Getting ready for petaflop capacities and beyond: a utility perspective
NASA Astrophysics Data System (ADS)
Hamelin, J. F.; Berthou, J. Y.
2008-07-01
Why should EDF, the leading producer and marketer of electricity in Europe, start adding teraflops to its terawatt-hours and become involved in high-performance computing (HPC)? In this paper we answer this question through examples of major opportunities that HPC brings to our business today and, we hope well into the future of petaflop and exaflop computing. Five cases are presented dealing with nondestructive testing, nuclear fuel management, mechanical behavior of nuclear fuel assemblies, water management, and energy management. For each case we show the benefits brought by HPC, describe the current level of numerical simulation performance, and discuss the perspectives for future steps. We also present the general background that explains why EDF is moving to this technology and briefly comment on the development of user-oriented simulation platforms.
Hybrid Particle-Element Simulation of Impact on Composite Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2004-01-01
This report describes the development of new numerical methods and new constitutive models for the simulation of hypervelocity impact effects on spacecraft. The research has included parallel implementation of the numerical methods and material models developed under the project. Validation work has included both one dimensional simulations, for comparison with exact solutions, and three dimensional simulations of published hypervelocity impact experiments. The validated formulations have been applied to simulate impact effects in a velocity and kinetic energy regime outside the capabilities of current experimental methods. The research results presented here allow for the expanded use of numerical simulation, as a complement to experimental work, in future design of spacecraft for hypervelocity impact effects.
Zradziński, Patryk
2015-01-01
Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781
NASA Astrophysics Data System (ADS)
Castiglioni, Giacomo
Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general cases. Additionally, a two-dimensional sweep of angles of attack from 0° to 5° is performed showing a qualitative prediction of the jump in lift and drag coefficients due to the appearance of the laminar separation bubble. The numerical dissipation inhibits the predictive capabilities of large eddy simulations whenever it is of the same order of magnitude or larger than the sub-grid scale dissipation. The need to estimate the numerical dissipation is most pressing for low-order methods employed by commercial computational fluid dynamics codes. Following the recent work of Schranner et al., the equations and procedure for estimating the numerical dissipation rate and the numerical viscosity in a commercial code are presented. The method allows for the computation of the numerical dissipation rate and numerical viscosity in the physical space for arbitrary sub-domains in a self-consistent way, using only information provided by the code in question. The method is first tested for a three-dimensional Taylor-Green vortex flow in a simple cubic domain and compared with benchmark results obtained using an accurate, incompressible spectral solver. Afterwards the same procedure is applied for the first time to a realistic flow configuration, specifically to the above discussed laminar separation bubble flow over a NACA 0012 airfoil. The method appears to be quite robust and its application reveals that for the code and the flow in question the numerical dissipation can be significantly larger than the viscous dissipation or the dissipation of the classical Smagorinsky sub-grid scale model, confirming the previously qualitative finding.
Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao
2011-12-01
With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.
Gold, Jeffrey Allen; Stephenson, Laurel E; Gorsuch, Adriel; Parthasarathy, Keshav; Mohan, Vishnu
2016-09-01
Numerous reports describe unintended consequences of electronic health record implementation. Having previously described physicians' failures to recognize patient safety issues within our electronic health record simulation environment, we now report on our use of eye and screen-tracking technology to understand factors associated with poor error recognition during an intensive care unit-based electronic health record simulation. We linked performance on the simulation to standard eye and screen-tracking readouts including number of fixations, saccades, mouse clicks and screens visited. In addition, we developed an overall Composite Eye Tracking score which measured when, where and how often each safety item was viewed. For 39 participants, the Composite Eye Tracking score correlated with performance on the simulation (p = 0.004). Overall, the improved performance was associated with a pattern of rapid scanning of data manifested by increased number of screens visited (p = 0.001), mouse clicks (p = 0.03) and saccades (p = 0.004). Eye tracking can be successfully integrated into electronic health record-based simulation and provides a surrogate measure of cognitive decision making and electronic health record usability. © The Author(s) 2015.
Shock Generation and Control Using DBD Plasma Actuators
NASA Technical Reports Server (NTRS)
Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.
2012-01-01
This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance.
NASA Astrophysics Data System (ADS)
Kusaiynov, K.; Tanasheva, N. K.; Min'kov, L. L.; Nusupbekov, B. R.; Stepanova, Yu. O.; Rozhkova, A. V.
2016-02-01
An air flow past a single triangular sail-type blade of a wind turbine is analyzed by numerical simulation for low velocities of the incoming flow. The results of numerical simulation indicate a monotonic increase in the drag force and the lift force as functions of the incoming flow; empirical dependences of these quantities are obtained.
Boundary acquisition for setup of numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diegert, C.
1997-12-31
The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discoveredmore » in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.« less
Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.
2002-01-01
The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha=0. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C(sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.
Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.
2002-01-01
The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha = 0 degrees. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C (sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.
NASA Astrophysics Data System (ADS)
Johnson, Donald R.; Lenzen, Allen J.; Zapotocny, Tom H.; Schaack, Todd K.
2000-11-01
A challenge common to weather, climate, and seasonal numerical prediction is the need to simulate accurately reversible isentropic processes in combination with appropriate determination of sources/sinks of energy and entropy. Ultimately, this task includes the distribution and transport of internal, gravitational, and kinetic energies, the energies of water substances in all forms, and the related thermodynamic processes of phase changes involved with clouds, including condensation, evaporation, and precipitation processes.All of the processes noted above involve the entropies of matter, radiation, and chemical substances, conservation during transport, and/or changes in entropies by physical processes internal to the atmosphere. With respect to the entropy of matter, a means to study a model's accuracy in simulating internal hydrologic processes is to determine its capability to simulate the appropriate conservation of potential and equivalent potential temperature as surrogates of dry and moist entropy under reversible adiabatic processes in which clouds form, evaporate, and precipitate. In this study, a statistical strategy utilizing the concept of `pure error' is set forth to assess the numerical accuracies of models to simulate reversible processes during 10-day integrations of the global circulation corresponding to the global residence time of water vapor. During the integrations, the sums of squared differences between equivalent potential temperature e numerically simulated by the governing equations of mass, energy, water vapor, and cloud water and a proxy equivalent potential temperature te numerically simulated as a conservative property are monitored. Inspection of the differences of e and te in time and space and the relative frequency distribution of the differences details bias and random errors that develop from nonlinear numerical inaccuracies in the advection and transport of potential temperature and water substances within the global atmosphere.A series of nine global simulations employing various versions of Community Climate Models CCM2 and CCM3-all Eulerian spectral numerics, all semi-Lagrangian numerics, mixed Eulerian spectral, and semi-Lagrangian numerics-and the University of Wisconsin-Madison (UW) isentropic-sigma gridpoint model provides an interesting comparison of numerical accuracies in the simulation of reversibility. By day 10, large bias and random differences were identified in the simulation of reversible processes in all of the models except for the UW isentropic-sigma model. The CCM2 and CCM3 simulations yielded systematic differences that varied zonally, vertically, and temporally. Within the comparison, the UW isentropic-sigma model was superior in transporting water vapor and cloud water/ice and in simulating reversibility involving the conservation of dry and moist entropy. The only relative frequency distribution of differences that appeared optimal, in that the distribution remained unbiased and equilibrated with minimal variance as it remained statistically stationary, was the distribution from the UW isentropic-sigma model. All other distributions revealed nonstationary characteristics with spreading and/or shifting of the maxima as the biases and variances of the numerical differences of e and te amplified.
NASA Astrophysics Data System (ADS)
Parshin, Dmitry A.
2018-05-01
The additive process of forming a semicircular arched structure by means of layer-by-layer addition of material to its inner surface is simulated. The impact of this process running mode on the development of the technological stresses fields in the structure being formed under the action of gravity under properties of the material creep and aging is examined. In the framework of the linear mechanics of accreted solids a mathematical model of the process under study is offered and numerical experiments are conducted. It is shown that the stress-strain state of the additively formed heavy objects decisively depends on their formation mode. Various practically important trends and features of this dependence are studied.
NASA Astrophysics Data System (ADS)
Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.
2018-03-01
Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.
Orbiter entry aerothermodynamics
NASA Technical Reports Server (NTRS)
Ried, R. C.
1985-01-01
The challenge in the definition of the entry aerothermodynamic environment arising from the challenge of a reliable and reusable Orbiter is reviewed in light of the existing technology. Select problems pertinent to the orbiter development are discussed with reference to comprehensive treatments. These problems include boundary layer transition, leeward-side heating, shock/shock interaction scaling, tile gap heating, and nonequilibrium effects such as surface catalysis. Sample measurements obtained from test flights of the Orbiter are presented with comparison to preflight expectations. Numerical and wind tunnel simulations gave efficient information for defining the entry environment and an adequate level of preflight confidence. The high quality flight data provide an opportunity to refine the operational capability of the orbiter and serve as a benchmark both for the development of aerothermodynamic technology and for use in meeting future entry heating challenges.
Center for Computational Structures Technology
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Perry, Ferman W.
1995-01-01
The Center for Computational Structures Technology (CST) is intended to serve as a focal point for the diverse CST research activities. The CST activities include the use of numerical simulation and artificial intelligence methods in modeling, analysis, sensitivity studies, and optimization of flight-vehicle structures. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The key elements of the Center are: (1) conducting innovative research on advanced topics of CST; (2) acting as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); (3) strong collaboration with NASA scientists and researchers from universities and other government laboratories; and (4) rapid dissemination of CST to industry, through integration of industrial personnel into the ongoing research efforts.
Review and assessment of the database and numerical modeling for turbine heat transfer
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Simoneau, R. J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
A review of micromachined thermal accelerometers
NASA Astrophysics Data System (ADS)
Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar
2017-12-01
A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented.
Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model
NASA Astrophysics Data System (ADS)
Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung
2017-12-01
This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.
Code Validation Studies of High-Enthalpy Flows
2006-12-01
stage of future hypersonic vehicles. The development and design of such vehicles is aided by the use of experimentation and numerical simulation... numerical predictions and experimental measurements. 3. Summary of Previous Work We have studied extensively hypersonic double-cone flows with and in...the experimental measurements and the numerical predictions. When we accounted for that effect in numerical simulations, and also augmented the
Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr; Stolarski, Adam
2017-10-01
Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.
Experimental and numerical study of a flapping tidal stream generator
NASA Astrophysics Data System (ADS)
Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam
2017-11-01
The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.
NASA Astrophysics Data System (ADS)
Šimkanin, Ján; Kyselica, Juraj
2017-12-01
Numerical simulations of the geodynamo are becoming more realistic because of advances in computer technology. Here, the geodynamo model is investigated numerically at the extremely low Ekman and magnetic Prandtl numbers using the PARODY dynamo code. These parameters are more realistic than those used in previous numerical studies of the geodynamo. Our model is based on the Boussinesq approximation and the temperature gradient between upper and lower boundaries is a source of convection. This study attempts to answer the question how realistic the geodynamo models are. Numerical results show that our dynamo belongs to the strong-field dynamos. The generated magnetic field is dipolar and large-scale while convection is small-scale and sheet-like flows (plumes) are preferred to a columnar convection. Scales of magnetic and velocity fields are separated, which enables hydromagnetic dynamos to maintain the magnetic field at the low magnetic Prandtl numbers. The inner core rotation rate is lower than that in previous geodynamo models. On the other hand, dimensional magnitudes of velocity and magnetic fields and those of the magnetic and viscous dissipation are larger than those expected in the Earth's core due to our parameter range chosen.
Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2010-01-01
The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.
NASA Astrophysics Data System (ADS)
Li, Kexin; Rakheja, Shaloo
2017-02-01
In this paper, we develop a physically motivated compact model of the charge-voltage (Q-V) characteristics in various III-nitride high-electron mobility transistors (HEMTs) operating under highly non-equilibrium transport conditions, i.e. high drain-source current. By solving the coupled Schrödinger-Poisson equation and incorporating the two-dimensional electrostatics in the channel, we obtain the charge at the top-of-the-barrier for various applied terminal voltages. The Q-V model accounts for cutting off of the negative momenta states from the drain terminal under high drain-source bias and when the transmission in the channel is quasi-ballistic. We specifically focus on AlGaN and AlInN as barrier materials and InGaN and GaN as the channel material in the heterostructure. The Q-V model is verified and calibrated against numerical results using the commercial TCAD simulator Sentaurus from Synopsys for a 20-nm channel length III-nitride HEMT. With 10 fitting parameters, most of which have a physical origin and can easily be obtained from numerical or experimental calibration, the compact Q-V model allows us to study the limits and opportunities of III-nitride technology. We also identify optimal material and geometrical parameters of the device that maximize the carrier concentration in the HEMT channel in order to achieve superior RF performance. Additionally, the compact charge model can be easily integrated in a hierarchical circuit simulator, such as Keysight ADS and CADENCE, to facilitate circuit design and optimization of various technology parameters.
Studying Turbulence Using Numerical Simulation Databases - X Proceedings of the 2004 Summer Program
NASA Technical Reports Server (NTRS)
Moin, Parviz; Mansour, Nagi N.
2004-01-01
This Proceedings volume contains 32 papers that span a wide range of topics that reflect the ubiquity of turbulence. The papers have been divided into six groups: 1) Solar Simulations; 2) Magnetohydrodynamics (MHD); 3) Large Eddy Simulation (LES) and Numerical Simulations; 4) Reynolds Averaged Navier Stokes (RANS) Modeling and Simulations; 5) Stability and Acoustics; 6) Combustion and Multi-Phase Flow.
Analysis of impact of general-purpose graphics processor units in supersonic flow modeling
NASA Astrophysics Data System (ADS)
Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.
2017-06-01
Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.
Crashworthiness analysis using advanced material models in DYNA3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, R.W.; Burger, M.J.; McMichael, L.D.
1993-10-22
As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber compositesmore » being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.« less
Numerically modelling the large scale coronal magnetic field
NASA Astrophysics Data System (ADS)
Panja, Mayukh; Nandi, Dibyendu
2016-07-01
The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.
NASA Astrophysics Data System (ADS)
Marin, I. S.; Molson, J. W.
2013-05-01
Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.
Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.
Luca, Adrian; Marchiano, Regis; Chassaing, Jean-Camille
2016-06-01
This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.
Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.
2004-01-01
This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.
NASA Astrophysics Data System (ADS)
Pryazhnikov, Maxim; Guzei, Dmitriy; Minakov, Andrey; Rodionova, Tatyana
2017-10-01
In this paper, the study of ferromagnetic nanoparticles behaviour in the constant magnetic field is carried out. For numerical simulation we have used Euler-Lagrange two-component approach. Using numerical simulation we have studied the growth of deposition of nanoparticles on the channel walls depending on the Reynolds number and the position of the magnet. The flow pattern, the concentration field and the trajectory of nanoparticles as a function of the Reynolds number were obtained. The good qualitative and quantitative agreement between numerical simulation and experiments was shown.
Multi-scale imaging and elastic simulation of carbonates
NASA Astrophysics Data System (ADS)
Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed
2016-05-01
Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1998-01-01
The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.
NASA Astrophysics Data System (ADS)
Conti, Roberto; Meli, Enrico; Pugi, Luca; Malvezzi, Monica; Bartolini, Fabio; Allotta, Benedetto; Rindi, Andrea; Toni, Paolo
2012-05-01
Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel-roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel-rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel-roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.
Development of a Nonlinear Acoustic Phased Array and its Interaction with Thin Plates
NASA Astrophysics Data System (ADS)
Anzel, Paul; Donahue, Carly; Daraio, Chiara
2015-03-01
Numerous technologies are based on the principle of focusing acoustic energy. We propose a new device to focus sound waves which exploits highly nonlinear dynamics. The advantages of this device are the capability of generating very highly powerful acoustic pulses and potential operation in high-temperature environments where traditional piezoelectrics may fail. This device is composed of rows of ball bearings placed in contact with a medium of interest and with an actuator on the top. Elastic spherical particles have a contact force that grows with their relative displacement to the three-halves power (Hertzian contact). When several spheres are placed in a row, the particles support the propagation of ``solitary waves''--strong, compact stress-wave pulses whose tendency to disperse is counteracted by the nonlinearity of the sphere's contact force. We present results regarding the experimental operation of the device and its comparison to theory and numerical simulations. We will show how well this system is capable of focusing energy at various locations in the medium, and the limits imposed by pre-compression. Finally, the effects of timing error on energy focusing will be demonstrated. This research has been supported by a NASA Space Technology Research Fellowship.
Experiments and Dynamic Finite Element Analysis of a Wire-Rope Rockfall Protective Fence
NASA Astrophysics Data System (ADS)
Tran, Phuc Van; Maegawa, Koji; Fukada, Saiji
2013-09-01
The imperative need to protect structures in mountainous areas against rockfall has led to the development of various protection methods. This study introduces a new type of rockfall protection fence made of posts, wire ropes, wire netting and energy absorbers. The performance of this rock fence was verified in both experiments and dynamic finite element analysis. In collision tests, a reinforced-concrete block rolled down a natural slope and struck the rock fence at the end of the slope. A specialized system of measuring instruments was employed to accurately measure the acceleration of the block without cable connection. In particular, the performance of two energy absorbers, which contribute also to preventing wire ropes from breaking, was investigated to determine the best energy absorber. In numerical simulation, a commercial finite element code having explicit dynamic capabilities was employed to create models of the two full-scale tests. To facilitate simulation, certain simplifying assumptions for mechanical data of each individual component of the rock fence and geometrical data of the model were adopted. Good agreement between numerical simulation and experimental data validated the numerical simulation. Furthermore, the results of numerical simulation helped highlight limitations of the testing method. The results of numerical simulation thus provide a deeper understanding of the structural behavior of individual components of the rock fence during rockfall impact. More importantly, numerical simulations can be used not only as supplements to or substitutes for full-scale tests but also in parametric study and design.
NASA Astrophysics Data System (ADS)
Pu, Z.; Zhang, L.
2010-12-01
The impact of data assimilation on the predictability of tropical cyclones is examined with the cases from recent field programs and real-time hurricane forecast experiments. Mesoscale numerical simulations are performed to simulate major typhoons during the T-PARC/TCS08 field campaign with the assimilation of satellite, radar and in-situ observations. Results confirmed that data assimilation has indeed resulted in improved numerical simulations of tropical cyclones. However, positive impacts from the satellite and radar data are strongly depend on the quality of these data. Specifically, it is found that the overall impacts of assimilating AIRS retrieved atmospheric temperature and moisture profiles on numerical simulations of tropical cyclones are very sensitive to the bias corrections of the data.For instance, the dry biases of moisture profiles can cause the decay of tropical cyclones in the numerical simulations.In addition, the quality of airborne Doppler radar data has strong influence on numerical simulations of tropical cyclones in terms of their track, intensity and precipitation structures. Outcomes from assimilating radar data with various quality thresholds suggest that a trade-off between the quality and area coverage of the radar data is necessary in the practice. Some of those experiences obtained from the field case studies are applied to the near-real time experimental hurricane forecasts during the 2010 hurricane season. Results and issues raised from the case studies and real-time experiments will be discussed.
NASA Astrophysics Data System (ADS)
Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.
2018-01-01
The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.
An Introduction to Computational Physics
NASA Astrophysics Data System (ADS)
Pang, Tao
2010-07-01
Preface to first edition; Preface; Acknowledgements; 1. Introduction; 2. Approximation of a function; 3. Numerical calculus; 4. Ordinary differential equations; 5. Numerical methods for matrices; 6. Spectral analysis; 7. Partial differential equations; 8. Molecular dynamics simulations; 9. Modeling continuous systems; 10. Monte Carlo simulations; 11. Genetic algorithm and programming; 12. Numerical renormalization; References; Index.
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part III
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this third and final lecture, we present applications of the results of numerical relativity simulations to gravitational wave detection and astrophysics.
Simulations of nearly extremal binary black holes
NASA Astrophysics Data System (ADS)
Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration
2015-04-01
Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.
Shot Peening Numerical Simulation of Aircraft Aluminum Alloy Structure
NASA Astrophysics Data System (ADS)
Liu, Yong; Lv, Sheng-Li; Zhang, Wei
2018-03-01
After shot peening, the 7050 aluminum alloy has good anti-fatigue and anti-stress corrosion properties. In the shot peening process, the pellet collides with target material randomly, and generated residual stress distribution on the target material surface, which has great significance to improve material property. In this paper, a simplified numerical simulation model of shot peening was established. The influence of pellet collision velocity, pellet collision position and pellet collision time interval on the residual stress of shot peening was studied, which is simulated by the ANSYS/LS-DYNA software. The analysis results show that different velocity, different positions and different time intervals have great influence on the residual stress after shot peening. Comparing with the numerical simulation results based on Kriging model, the accuracy of the simulation results in this paper was verified. This study provides a reference for the optimization of the shot peening process, and makes an effective exploration for the precise shot peening numerical simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A., E-mail: kaurov@uchicago.edu
The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emergedmore » from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large-scale statistical properties. These mock catalogs are particularly useful for cosmic microwave background polarization and 21 cm experiments, where large volumes are required to simulate the observed signal.« less
Oh, Sukhoon; Ryu, Yeun-Chul; Carluccio, Giuseppe; Sica, Christopher T.; Collins, Christopher M.
2013-01-01
Purpose Compare numerically-simulated and experimentally-measured temperature increase due to Specific energy Absorption Rate (SAR) from radiofrequency fields. Methods Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of Magnetic Resonance (MR) thermography. The phantom and forearm were also modeled from MR image data, and both SAR and temperature change as induced by the same coil were simulated numerically. Results The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. Conclusion Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in MR imaging. PMID:23804188
Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi, Ahmad
The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less
Building Blocks for Reliable Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi N. (Technical Monitor)
2002-01-01
This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.
2005-01-01
This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Validated numerical simulation model of a dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.
2013-04-01
Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.
NASA Astrophysics Data System (ADS)
Juanes, R.; Jha, B.
2014-12-01
The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around subsurface technologies that tap into water and energy resources. Here we present a new computational approach to model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that illustrate the onset and evolution of earthquakes from fluid injection and withdrawal. We also present the application of the coupled flow-geomechanics simulation technology to the post mortem analysis of the Mw=5.1, May 2011 Lorca earthquake in south-east Spain, and assess the potential that the earthquake was induced by groundwater extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; Wang, Cong; Winterfeld, Philip
An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less
Numerical Weather Predictions Evaluation Using Spatial Verification Methods
NASA Astrophysics Data System (ADS)
Tegoulias, I.; Pytharoulis, I.; Kotsopoulos, S.; Kartsios, S.; Bampzelis, D.; Karacostas, T.
2014-12-01
During the last years high-resolution numerical weather prediction simulations have been used to examine meteorological events with increased convective activity. Traditional verification methods do not provide the desired level of information to evaluate those high-resolution simulations. To assess those limitations new spatial verification methods have been proposed. In the present study an attempt is made to estimate the ability of the WRF model (WRF -ARW ver3.5.1) to reproduce selected days with high convective activity during the year 2010 using those feature-based verification methods. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. By alternating microphysics (Ferrier, WSM6, Goddard), boundary layer (YSU, MYJ) and cumulus convection (Kain--Fritsch, BMJ) schemes, a set of twelve model setups is obtained. The results of those simulations are evaluated against data obtained using a C-Band (5cm) radar located at the centre of the innermost domain. Spatial characteristics are well captured but with a variable time lag between simulation results and radar data. Acknowledgements: This research is cofinanced by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007--2013).
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; Werth, Charles J.; Valocchi, Albert J.
2016-07-01
Characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydrogeophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with "big data" processing and numerous large-scale numerical simulations. To tackle such difficulties, the principal component geostatistical approach (PCGA) has been proposed as a "Jacobian-free" inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed in the traditional inversion methods. PCGA can be conveniently linked to any multiphysics simulation software with independent parallel executions. In this paper, we extend PCGA to handle a large number of measurements (e.g., 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data were compressed by the zeroth temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Only about 2000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method.
Numerical simulation of the casting process of titanium tooth crowns and bridges.
Wu, M; Augthun, M; Wagner, I; Sahm, P R; Spiekermann, H
2001-06-01
The objectives of this paper were to simulate the casting process of titanium tooth crowns and bridges; to predict and control porosity defect. A casting simulation software, MAGMASOFT, was used. The geometry of the crowns with fine details of the occlusal surface were digitized by means of laser measuring technique, then converted and read in the simulation software. Both mold filling and solidification were simulated, the shrinkage porosity was predicted by a "feeding criterion", and the gas pore sensitivity was studied based on the mold filling and solidification simulations. Two types of dental prostheses (a single-crown casting and a three-unit-bridge) with various sprue designs were numerically "poured", and only one optimal design for each prosthesis was recommended for real casting trial. With the numerically optimized design, real titanium dental prostheses (five replicas for each) were made on a centrifugal casting machine. All the castings endured radiographic examination, and no porosity was detected in the cast prostheses. It indicates that the numerical simulation is an efficient tool for dental casting design and porosity control. Copyright 2001 Kluwer Academic Publishers
A Full-Featured User Friendly CO 2-EOR and Sequestration Planning Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Bill
A Full-Featured, User Friendly CO 2-EOR and Sequestration Planning Software This project addressed the development of an integrated software solution that includes a graphical user interface, numerical simulation, visualization tools and optimization processes for reservoir simulation modeling of CO 2-EOR. The objective was to assist the industry in the development of domestic energy resources by expanding the application of CO 2-EOR technologies, and ultimately to maximize the CO 2} sequestration capacity of the U.S. The software resulted in a field-ready application for the industry to address the current CO 2-EOR technologies. The software has been made available to the publicmore » without restrictions and with user friendly operating documentation and tutorials. The software (executable only) can be downloaded from NITEC’s website at www.nitecllc.com. This integrated solution enables the design, optimization and operation of CO 2-EOR processes for small and mid-sized operators, who currently cannot afford the expensive, time intensive solutions that the major oil companies enjoy. Based on one estimate, small oil fields comprise 30% of the of total economic resource potential for the application of CO 2-EOR processes in the U.S. This corresponds to 21.7 billion barrels of incremental, technically recoverable oil using the current “best practices”, and 31.9 billion barrels using “next-generation” CO 2-EOR techniques. The project included a Case Study of a prospective CO 2-EOR candidate field in Wyoming by a small independent, Linc Energy Petroleum Wyoming, Inc. NITEC LLC has an established track record of developing innovative and user friendly software. The Principle Investigator is an experienced manager and engineer with expertise in software development, numerical techniques, and GUI applications. Unique, presently-proprietary NITEC technologies have been integrated into this application to further its ease of use and technical functionality.« less
Particle yields from numerical simulations
NASA Astrophysics Data System (ADS)
Homor, Marietta M.; Jakovác, Antal
2018-04-01
In this paper we use numerical field theoretical simulations to calculate particle yields. We demonstrate that in the model of local particle creation the deviation from the pure exponential distribution is natural even in equilibrium, and an approximate Tsallis-Pareto-like distribution function can be well fitted to the calculated yields, in accordance with the experimental observations. We present numerical simulations in the classical Φ4 model as well as in the SU(3) quantum Yang-Mills theory to clarify this issue.