A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION
Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...
NASA Astrophysics Data System (ADS)
Zabihi, F.; Saffarian, M.
2016-07-01
The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Uenal, A.
1981-01-01
Two dimensional Fredholm integral equations with logarithmic potential kernels are numerically solved. The explicit consequence of these solutions to their true solutions is demonstrated. The results are based on a previous work in which numerical solutions were obtained for Fredholm integral equations of the second kind with continuous kernels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moridis, G.
1992-03-01
The Laplace Transform Boundary Element (LTBE) method is a recently introduced numerical method, and has been used for the solution of diffusion-type PDEs. It completely eliminates the time dependency of the problem and the need for time discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE solutions are obtained in the Laplace spare, and are then inverted numerically to yield the solution in time. The Stehfest and the DeHoog formulations of LTBE, based on two different inversion algorithms, are investigated. Both formulations produce comparable, extremely accurate solutions.
Numerical solution of potential flow about arbitrary 2-dimensional multiple bodies
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Thames, F. C.
1982-01-01
A procedure for the finite-difference numerical solution of the lifting potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordinate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations is illustrated.
Modeling flow and solute transport in irrigation furrows
USDA-ARS?s Scientific Manuscript database
This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...
Algebraic Construction of Exact Difference Equations from Symmetry of Equations
NASA Astrophysics Data System (ADS)
Itoh, Toshiaki
2009-09-01
Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.
Numerical Problems and Agent-Based Models for a Mass Transfer Course
ERIC Educational Resources Information Center
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.
2009-01-01
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
A numerical study of transient heat and mass transfer in crystal growth
NASA Technical Reports Server (NTRS)
Han, Samuel Bang-Moo
1987-01-01
A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.
Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets
NASA Technical Reports Server (NTRS)
Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.
2016-01-01
In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.
Analytical and numerical solution for wave reflection from a porous wave absorber
NASA Astrophysics Data System (ADS)
Magdalena, Ikha; Roque, Marian P.
2018-03-01
In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.
Numerical solution of 2D-vector tomography problem using the method of approximate inverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna
2016-08-10
We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.
NASA Astrophysics Data System (ADS)
Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.
2017-09-01
Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.
NASA Astrophysics Data System (ADS)
Yao, Lingxing; Mori, Yoichiro
2017-12-01
Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.
NASA Astrophysics Data System (ADS)
Nguyen, S. T.; Vu, M.-H.; Vu, M. N.; Tang, A. M.
2017-05-01
The present work aims to modeling the thermal conductivity of fractured materials using homogenization-based analytical and pattern-based numerical methods. These materials are considered as a network of cracks distributed inside a solid matrix. Heat flow through such media is perturbed by the crack system. The problem of heat flow across a single crack is firstly investigated. The classical Eshelby's solution, extended to the thermal conduction problem of an ellipsoidal inclusion embedding in an infinite homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-conducting penny-shaped crack. This solution is then validated by the numerical simulation based on the finite elements method. The numerical simulation allows analyzing the effect of crack conductivity. The problem of a single crack is then extended to a medium containing multiple cracks. Analytical estimations for effective thermal conductivity, that take into account the interaction between cracks and their spatial distribution, are developed for the case of non-conducting cracks. Pattern-based numerical method is then employed for both cases non-conducting and conducting cracks. In the case of non-conducting cracks, numerical and analytical methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of conducting cracks, the numerical analyzing of crack conductivity effect shows that highly conducting cracks weakly affect heat flow and the effective thermal conductivity of fractured media.
Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...
Numerical solutions for Helmholtz equations using Bernoulli polynomials
NASA Astrophysics Data System (ADS)
Bicer, Kubra Erdem; Yalcinbas, Salih
2017-07-01
This paper reports a new numerical method based on Bernoulli polynomials for the solution of Helmholtz equations. The method uses matrix forms of Bernoulli polynomials and their derivatives by means of collocation points. Aim of this paper is to solve Helmholtz equations using this matrix relations.
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
NASA Astrophysics Data System (ADS)
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
NASA Astrophysics Data System (ADS)
Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong
2017-10-01
In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.
Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.
Budak, Vladimir P; Kaloshin, Gennady A; Shagalov, Oleg V; Zheltov, Victor S
2015-07-27
In this paper we propose the fast, but the accurate algorithm for numerical modeling of light fields in the turbid media slab. For the numerical solution of the radiative transfer equation (RTE) it is required its discretization based on the elimination of the solution anisotropic part and the replacement of the scattering integral by a finite sum. The solution regular part is determined numerically. A good choice of the method of the solution anisotropic part elimination determines the high convergence of the algorithm in the mean square metric. The method of synthetic iterations can be used to improve the convergence in the uniform metric. A significant increase in the solution accuracy with the use of synthetic iterations allows applying the two-stream approximation for the regular part determination. This approach permits to generalize the proposed method in the case of an arbitrary 3D geometry of the medium.
Constructing exact symmetric informationally complete measurements from numerical solutions
NASA Astrophysics Data System (ADS)
Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne
2018-04-01
Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.
NASA Astrophysics Data System (ADS)
Chang, Chueh-Hsin; Yu, Ching-Hao; Sheu, Tony Wen-Hann
2016-10-01
In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut - uxxt + 2ux + 3uux = 2uxuxx + uuxxx. The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones.
NASA Technical Reports Server (NTRS)
Hah, Chunill; Reid, Lonnie
1991-01-01
A numerical study based on the 3D Reynolds-averaged Navier-Stokes equation has been conducted to investigate the detailed flow physics inside a transonic compressor. 3D shock structure, shock-boundary layer interaction, flow separation, radial mixing, and wake development are all investigated at design and off-design conditions. Experimental data based on laser anemometer measurements are used to assess the overall quality of the numerical solution. An additional experimental study to investigate end-wall flow with a hot-film was conducted, and these results are compared with the numerical results. Detailed comparison with experimental data indicates that the overall features of the 3D shock structure, the shock-boundary layer interaction, and the wake development are all calculated very well in the numerical solution. The numerical results are further analyzed to examine the radial mixing phenomena in the transonic compressor. A thin sheet of particles is injected in the numerical solution upstream of the compressor. The movement of particles is traced with a 3D plotting package. This numerical survey of tracer concentration reveals the fundamental mechanisms of radial transport in this transonic compressor.
Numerical Algorithms Based on Biorthogonal Wavelets
NASA Technical Reports Server (NTRS)
Ponenti, Pj.; Liandrat, J.
1996-01-01
Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.
Purely numerical approach for analyzing flow to a well intercepting a vertical fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narasimhan, T.N.; Palen, W.A.
1979-03-01
A numerical method, based on an Integral Finite Difference approach, is presented to investigate wells intercepting fractures in general and vertical fractures in particular. Such features as finite conductivity, wellbore storage, damage, and fracture deformability and its influence as permeability are easily handled. The advantage of the numerical approach is that it is based on fewer assumptions than analytic solutions and hence has greater generality. Illustrative examples are given to validate the method against known solutions. New results are presenteed to demonstrate the applicability of the method to problems not apparently considered in the literature so far.
Calculating corner singularities by boundary integral equations.
Shi, Hualiang; Lu, Ya Yan; Du, Qiang
2017-06-01
Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.
Computational Efficiency of the Simplex Embedding Method in Convex Nondifferentiable Optimization
NASA Astrophysics Data System (ADS)
Kolosnitsyn, A. V.
2018-02-01
The simplex embedding method for solving convex nondifferentiable optimization problems is considered. A description of modifications of this method based on a shift of the cutting plane intended for cutting off the maximum number of simplex vertices is given. These modification speed up the problem solution. A numerical comparison of the efficiency of the proposed modifications based on the numerical solution of benchmark convex nondifferentiable optimization problems is presented.
NASA Astrophysics Data System (ADS)
Amerian, Z.; Salem, M. K.; Salar Elahi, A.; Ghoranneviss, M.
2017-03-01
Equilibrium reconstruction consists of identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. Numerous methods exist to solve the Grad-Shafranov equation, describing the equilibrium of plasma confined by an axisymmetric magnetic field. In this paper, we have proposed a new numerical solution to the Grad-Shafranov equation (an axisymmetric, magnetic field transformed in cylindrical coordinates solved with the Chebyshev collocation method) when the source term (current density function) on the right-hand side is linear. The Chebyshev collocation method is a method for computing highly accurate numerical solutions of differential equations. We describe a circular cross-section of the tokamak and present numerical result of magnetic surfaces on the IR-T1 tokamak and then compare the results with an analytical solution.
An approach of traffic signal control based on NLRSQP algorithm
NASA Astrophysics Data System (ADS)
Zou, Yuan-Yang; Hu, Yu
2017-11-01
This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.
NASA Technical Reports Server (NTRS)
Felici, Helene M.; Drela, Mark
1993-01-01
A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.
A moving mesh finite difference method for equilibrium radiation diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less
Methods in the study of discrete upper hybrid waves
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.
2007-11-01
Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.
A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation
NASA Astrophysics Data System (ADS)
Oruç, Ömer
2018-04-01
In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L2 and L∞ error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method.
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
A block-based algorithm for the solution of compressible flows in rotor-stator combinations
NASA Technical Reports Server (NTRS)
Akay, H. U.; Ecer, A.; Beskok, A.
1990-01-01
A block-based solution algorithm is developed for the solution of compressible flows in rotor-stator combinations. The method allows concurrent solution of multiple solution blocks in parallel machines. It also allows a time averaged interaction at the stator-rotor interfaces. Numerical results are presented to illustrate the performance of the algorithm. The effect of the interaction between the stator and rotor is evaluated.
NASA Astrophysics Data System (ADS)
Kahnert, Michael
2016-07-01
Numerical solution methods for electromagnetic scattering by non-spherical particles comprise a variety of different techniques, which can be traced back to different assumptions and solution strategies applied to the macroscopic Maxwell equations. One can distinguish between time- and frequency-domain methods; further, one can divide numerical techniques into finite-difference methods (which are based on approximating the differential operators), separation-of-variables methods (which are based on expanding the solution in a complete set of functions, thus approximating the fields), and volume integral-equation methods (which are usually solved by discretisation of the target volume and invoking the long-wave approximation in each volume cell). While existing reviews of the topic often tend to have a target audience of program developers and expert users, this tutorial review is intended to accommodate the needs of practitioners as well as novices to the field. The required conciseness is achieved by limiting the presentation to a selection of illustrative methods, and by omitting many technical details that are not essential at a first exposure to the subject. On the other hand, the theoretical basis of numerical methods is explained with little compromises in mathematical rigour; the rationale is that a good grasp of numerical light scattering methods is best achieved by understanding their foundation in Maxwell's theory.
A collocation-shooting method for solving fractional boundary value problems
NASA Astrophysics Data System (ADS)
Al-Mdallal, Qasem M.; Syam, Muhammed I.; Anwar, M. N.
2010-12-01
In this paper, we discuss the numerical solution of special class of fractional boundary value problems of order 2. The method of solution is based on a conjugating collocation and spline analysis combined with shooting method. A theoretical analysis about the existence and uniqueness of exact solution for the present class is proven. Two examples involving Bagley-Torvik equation subject to boundary conditions are also presented; numerical results illustrate the accuracy of the present scheme.
USDA-ARS?s Scientific Manuscript database
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Stuebner, Michael; Haider, Mansoor A
2010-06-18
A new and efficient method for numerical solution of the continuous spectrum biphasic poroviscoelastic (BPVE) model of articular cartilage is presented. Development of the method is based on a composite Gauss-Legendre quadrature approximation of the continuous spectrum relaxation function that leads to an exponential series representation. The separability property of the exponential terms in the series is exploited to develop a numerical scheme that can be reduced to an update rule requiring retention of the strain history at only the previous time step. The cost of the resulting temporal discretization scheme is O(N) for N time steps. Application and calibration of the method is illustrated in the context of a finite difference solution of the one-dimensional confined compression BPVE stress-relaxation problem. Accuracy of the numerical method is demonstrated by comparison to a theoretical Laplace transform solution for a range of viscoelastic relaxation times that are representative of articular cartilage. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
An Efficient Numerical Approach for Nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin; Vedula, Prakash
2009-03-01
Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.
2005-09-01
We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.
NASA Astrophysics Data System (ADS)
Ismail, Nurul Syuhada; Arifin, Norihan Md.; Bachok, Norfifah; Mahiddin, Norhasimah
2017-01-01
A numerical study is performed to evaluate the problem of stagnation - point flow towards a shrinking sheet with homogeneous - heterogeneous reaction effects. By using non-similar transformation, the governing equations be able to reduced to an ordinary differential equation. Then, results of the equations can be obtained numerically by shooting method with maple implementation. Based on the numerical results obtained, the velocity ratio parameter λ< 0, the dual solutions do exist. Then, the stability analysis is carried out to determine which solution is more stable between both of the solutions by bvp4c solver in Matlab.
NASA Astrophysics Data System (ADS)
Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.
2015-12-01
Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.
NASA Astrophysics Data System (ADS)
Marras, Simone; Kopera, Michal A.; Constantinescu, Emil M.; Suckale, Jenny; Giraldo, Francis X.
2018-04-01
The high-order numerical solution of the non-linear shallow water equations is susceptible to Gibbs oscillations in the proximity of strong gradients. In this paper, we tackle this issue by presenting a shock capturing model based on the numerical residual of the solution. Via numerical tests, we demonstrate that the model removes the spurious oscillations in the proximity of strong wave fronts while preserving their strength. Furthermore, for coarse grids, it prevents energy from building up at small wave-numbers. When applied to the continuity equation to stabilize the water surface, the addition of the shock capturing scheme does not affect mass conservation. We found that our model improves the continuous and discontinuous Galerkin solutions alike in the proximity of sharp fronts propagating on wet surfaces. In the presence of wet/dry interfaces, however, the model needs to be enhanced with the addition of an inundation scheme which, however, we do not address in this paper.
NASA Astrophysics Data System (ADS)
Pandey, Rishi Kumar; Mishra, Hradyesh Kumar
2017-11-01
In this paper, the semi-analytic numerical technique for the solution of time-space fractional telegraph equation is applied. This numerical technique is based on coupling of the homotopy analysis method and sumudu transform. It shows the clear advantage with mess methods like finite difference method and also with polynomial methods similar to perturbation and Adomian decomposition methods. It is easily transform the complex fractional order derivatives in simple time domain and interpret the results in same meaning.
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
NASA Astrophysics Data System (ADS)
Valášek, J.; Sváček, P.; Horáček, J.
2016-03-01
The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.
Willis, Catherine; Rubin, Jacob
1987-01-01
A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.
Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang
2004-05-01
We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.
A split finite element algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1979-01-01
An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.
On the implementation of an accurate and efficient solver for convection-diffusion equations
NASA Astrophysics Data System (ADS)
Wu, Chin-Tien
In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from the finite element solution.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.
2015-07-01
In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.
Fluid dynamic modeling of nano-thermite reactions
NASA Astrophysics Data System (ADS)
Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki
2014-03-01
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.
Fluid dynamic modeling of nano-thermite reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.
2014-03-14
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less
A solution to the Navier-Stokes equations based upon the Newton Kantorovich method
NASA Technical Reports Server (NTRS)
Davis, J. E.; Gabrielsen, R. E.; Mehta, U. B.
1977-01-01
An implicit finite difference scheme based on the Newton-Kantorovich technique was developed for the numerical solution of the nonsteady, incompressible, two-dimensional Navier-Stokes equations in conservation-law form. The algorithm was second-order-time accurate, noniterative with regard to the nonlinear terms in the vorticity transport equation except at the earliest few time steps, and spatially factored. Numerical results were obtained with the technique for a circular cylinder at Reynolds number 15. Results indicate that the technique is in excellent agreement with other numerical techniques for all geometries and Reynolds numbers investigated, and indicates a potential for significant reduction in computation time over current iterative techniques.
Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Colella, Phillip
2007-11-01
We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.
Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity
NASA Technical Reports Server (NTRS)
Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.
2002-01-01
Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.
Reducing microwave absorption with fast frequency modulation.
Qin, Juehang; Hubler, A
2017-05-01
We study the response of a two-level quantum system to a chirp signal, using both numerical and analytical methods. The numerical method is based on numerical solutions of the Schrödinger solution of the two-level system, while the analytical method is based on an approximate solution of the same equations. We find that when two-level systems are perturbed by a chirp signal, the peak population of the initially unpopulated state exhibits a high sensitivity to frequency modulation rate. We also find that the aforementioned sensitivity depends on the strength of the forcing, and weaker forcings result in a higher sensitivity, where the frequency modulation rate required to produce the same reduction in peak population would be lower. We discuss potential applications of this result in the field of microwave power transmission, as it shows applying fast frequency modulation to transmitted microwaves used for power transmission could decrease unintended absorption of microwaves by organic tissue.
Random element method for numerical modeling of diffusional processes
NASA Technical Reports Server (NTRS)
Ghoniem, A. F.; Oppenheim, A. K.
1982-01-01
The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.
Entropy-Based Approach To Nonlinear Stability
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1991-01-01
NASA technical memorandum suggests schemes for numerical solution of differential equations of flow made more accurate and robust by invoking second law of thermodynamics. Proposes instead of using artificial viscosity to suppress such unphysical solutions as spurious numerical oscillations and nonlinear instabilities, one should formulate equations so that rate of production of entropy within each cell of computational grid be nonnegative, as required by second law.
Magnetic Field in a Screw Flow with Fluctuations
NASA Astrophysics Data System (ADS)
Titov, V. V.; Stepanov, R. A.; Sokoloff, D. D.
2018-04-01
We consider the influence of fluctuations in a screw flow of a conducting liquid on the effect of magnetic field self-excitation; the solution of this problem is important for experimental realization of a turbulent dynamo. We propose a theoretical approach based on the solution of averaged equations obtained in the limit of a short correlation time. The applicability of this approach is confirmed by direct numerical simulation of the initial equations. We demonstrate the influence of the correlation of fluctuations on the dynamo effect threshold. It is shown that the solution of the mean-field equations differs from the solution based on direct numerical simulation for a finite correlation time. The advantages and disadvantages of the two approaches are estimates, as well as the importance of the discovered difference in the context of problems of magnetic field self-excitation. The influence of helicity and intermittency on the type of the solution is considered.
Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.
2016-07-01
We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.
Numerical Hydrodynamics in General Relativity.
Font, José A
2000-01-01
The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented. Supplementary material is available for this article at 10.12942/lrr-2000-2.
A modified dynamical model of drying process of polymer blend solution coated on a flat substrate
NASA Astrophysics Data System (ADS)
Kagami, Hiroyuki
2008-05-01
We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.
NASA Astrophysics Data System (ADS)
Barucq, H.; Bendali, A.; Fares, M.; Mattesi, V.; Tordeux, S.
2017-02-01
A general symmetric Trefftz Discontinuous Galerkin method is built for solving the Helmholtz equation with piecewise constant coefficients. The construction of the corresponding local solutions to the Helmholtz equation is based on a boundary element method. A series of numerical experiments displays an excellent stability of the method relatively to the penalty parameters, and more importantly its outstanding ability to reduce the instabilities known as the "pollution effect" in the literature on numerical simulations of long-range wave propagation.
Numerical Modelling of Foundation Slabs with use of Schur Complement Method
NASA Astrophysics Data System (ADS)
Koktan, Jiří; Brožovský, Jiří
2017-10-01
The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
A numerical study on the non-Boussinesq effect in the natural convection in horizontal annulus
NASA Astrophysics Data System (ADS)
Zhang, Yu; Cao, Yuhui
2018-04-01
In the present study, the non-Boussinesq effect in the thermal convection in an air-filled horizontal concentric annulus is studied numerically by using the variable property-based lattice Boltzmann flux solver (VPLBFS), with the radial temperature difference ratio of 1.0, the radius ratio of 2.0, and the Rayleigh number in the range 104 ≤ Ra ≤ 106. Several solutions are obtained by using the standard form or simplified versions of the VPLBFS, including the real solution with the total variation in fluid properties considered, named as the variable property solution (VPS), the constant property solution (CPS) based on the Boussinesq approximation, the solution with variable dynamic viscosity (VVS), the solution based on the partial Boussinesq approximation (PBAS), the solution with variable thermal conductivity (VCS) and the solution with variable fluid density (VDS). The discrepancy between these solutions is analyzed to illuminate the influence of the non-Boussinesq effects induced by partial or total variation in fluid properties on flow instability behaviors and heat transfer characteristics. The present study reveals the complicated flow instability behavior under non-Boussinesq conditions and its tight association with heat transfer characteristics. Also, it demonstrates the necessity of considering the integral effect of the total variation in fluid properties and highlights the essential role of the fluid density variation.
Analytical approximation and numerical simulations for periodic travelling water waves
NASA Astrophysics Data System (ADS)
Kalimeris, Konstantinos
2017-12-01
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.
NASA Astrophysics Data System (ADS)
Gotovac, Hrvoje; Srzic, Veljko
2014-05-01
Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large linear system on adaptive grid because each Fup coefficient is obtained by predefined formulas equalizing Fup expansion around corresponding collocation point and particular collocation operator based on few surrounding solution values. Furthermore, each Fup coefficient can be obtained independently which is perfectly suited for parallel processing. Adaptive grid in each time step is obtained from solution of the last time step or initial conditions and advective Lagrangian step in the current time step according to the velocity field and continuous streamlines. On the other side, we implement explicit stabilized routine SERK2 for dispersive Eulerian part of solution in the current time step on obtained spatial adaptive grid. Overall adaptive concept does not require the solving of large linear systems for the spatial and temporal approximation of conservative transport. Also, this new Eulerian-Lagrangian-Collocation scheme resolves all mentioned numerical problems due to its adaptive nature and ability to control numerical errors in space and time. Proposed method solves advection in Lagrangian way eliminating problems in Eulerian methods, while optimal collocation grid efficiently describes solution and boundary conditions eliminating usage of large number of particles and other problems in Lagrangian methods. Finally, numerical tests show that this approach enables not only accurate velocity field, but also conservative transport even in highly heterogeneous porous media resolving all spatial and temporal scales of concentration field.
Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics
NASA Astrophysics Data System (ADS)
d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.
2018-05-01
Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Warsta, L.; Karvonen, T.
2017-12-01
There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the governing equations in computational grids and included computationally intensive and in some cases unstable iterative solutions. The YMPYRÄ framework is being developed by WaterHope, Gain Oy, and SITO Oy consulting companies and funded by FDF.
A mathematical solution for the parameters of three interfering resonances
NASA Astrophysics Data System (ADS)
Han, X.; Shen, C. P.
2018-04-01
The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)
Advanced numerical methods for three dimensional two-phase flow calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less
NASA Astrophysics Data System (ADS)
Marusak, Piotr M.; Kuntanapreeda, Suwat
2018-01-01
The paper considers application of a neural network based implementation of a model predictive control (MPC) control algorithm to electromechanical plants. Properties of such control plants implicate that a relatively short sampling time should be used. However, in such a case, finding the control value numerically may be too time-consuming. Therefore, the current paper tests the solution based on transforming the MPC optimization problem into a set of differential equations whose solution is the same as that of the original optimization problem. This set of differential equations can be interpreted as a dynamic neural network. In such an approach, the constraints can be introduced into the optimization problem with relative ease. Moreover, the solution of the optimization problem can be obtained faster than when the standard numerical quadratic programming routine is used. However, a very careful tuning of the algorithm is needed to achieve this. A DC motor and an electrohydraulic actuator are taken as illustrative examples. The feasibility and effectiveness of the proposed approach are demonstrated through numerical simulations.
NASA Technical Reports Server (NTRS)
Shih, T. I. P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
NASA Astrophysics Data System (ADS)
Simoni, L.; Secchi, S.; Schrefler, B. A.
2008-12-01
This paper analyses the numerical difficulties commonly encountered in solving fully coupled numerical models and proposes a numerical strategy apt to overcome them. The proposed procedure is based on space refinement and time adaptivity. The latter, which in mainly studied here, is based on the use of a finite element approach in the space domain and a Discontinuous Galerkin approximation within each time span. Error measures are defined for the jump of the solution at each time station. These constitute the parameters allowing for the time adaptivity. Some care is however, needed for a useful definition of the jump measures. Numerical tests are presented firstly to demonstrate the advantages and shortcomings of the method over the more traditional use of finite differences in time, then to assess the efficiency of the proposed procedure for adapting the time step. The proposed method reveals its efficiency and simplicity to adapt the time step in the solution of coupled field problems.
NASA Technical Reports Server (NTRS)
Shih, T. I-P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers
NASA Astrophysics Data System (ADS)
Lin, Chao-Chih; Chang, Ya-Chi; Yeh, Hund-Der
2018-04-01
Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).
A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance
NASA Astrophysics Data System (ADS)
Witte, J. H.; Reisinger, C.
2010-09-01
We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.
A new shock-capturing numerical scheme for ideal hydrodynamics
NASA Astrophysics Data System (ADS)
Fecková, Z.; Tomášik, B.
2015-05-01
We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.
1994-02-01
numerical treatment. An explicit numerical procedure based on Runqe-Kutta time stepping for cell-centered, hexahedral finite volumes is...An explicit numerical procedure based on Runge-Kutta time stepping for cell-centered, hexahedral finite volumes is outlined for the approximate...Discretization 16 3.1 Cell-Centered Finite -Volume Discretization in Space 16 3.2 Artificial Dissipation 17 3.3 Time Integration 21 3.4 Convergence
NASA Technical Reports Server (NTRS)
Sidi, A.; Israeli, M.
1986-01-01
High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.
NASA Astrophysics Data System (ADS)
Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.
2018-01-01
Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2017-10-01
Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.
hp-Adaptive time integration based on the BDF for viscous flows
NASA Astrophysics Data System (ADS)
Hay, A.; Etienne, S.; Pelletier, D.; Garon, A.
2015-06-01
This paper presents a procedure based on the Backward Differentiation Formulas of order 1 to 5 to obtain efficient time integration of the incompressible Navier-Stokes equations. The adaptive algorithm performs both stepsize and order selections to control respectively the solution accuracy and the computational efficiency of the time integration process. The stepsize selection (h-adaptivity) is based on a local error estimate and an error controller to guarantee that the numerical solution accuracy is within a user prescribed tolerance. The order selection (p-adaptivity) relies on the idea that low-accuracy solutions can be computed efficiently by low order time integrators while accurate solutions require high order time integrators to keep computational time low. The selection is based on a stability test that detects growing numerical noise and deems a method of order p stable if there is no method of lower order that delivers the same solution accuracy for a larger stepsize. Hence, it guarantees both that (1) the used method of integration operates inside of its stability region and (2) the time integration procedure is computationally efficient. The proposed time integration procedure also features a time-step rejection and quarantine mechanisms, a modified Newton method with a predictor and dense output techniques to compute solution at off-step points.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
Essentially nonoscillatory postprocessing filtering methods
NASA Technical Reports Server (NTRS)
Lafon, F.; Osher, S.
1992-01-01
High order accurate centered flux approximations used in the computation of numerical solutions to nonlinear partial differential equations produce large oscillations in regions of sharp transitions. Here, we present a new class of filtering methods denoted by Essentially Nonoscillatory Least Squares (ENOLS), which constructs an upgraded filtered solution that is close to the physically correct weak solution of the original evolution equation. Our method relies on the evaluation of a least squares polynomial approximation to oscillatory data using a set of points which is determined via the ENO network. Numerical results are given in one and two space dimensions for both scalar and systems of hyperbolic conservation laws. Computational running time, efficiency, and robustness of method are illustrated in various examples such as Riemann initial data for both Burgers' and Euler's equations of gas dynamics. In all standard cases, the filtered solution appears to converge numerically to the correct solution of the original problem. Some interesting results based on nonstandard central difference schemes, which exactly preserve entropy, and have been recently shown generally not to be weakly convergent to a solution of the conservation law, are also obtained using our filters.
Revealing Numerical Solutions of a Differential Equation
ERIC Educational Resources Information Center
Glaister, P.
2006-01-01
In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…
A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.
1996-01-01
In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodumov, Ilya; Kropotin, Nikolai
2016-08-10
We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less
A comparative analysis of numerical approaches to the mechanics of elastic sheets
NASA Astrophysics Data System (ADS)
Taylor, Michael; Davidovitch, Benny; Qiu, Zhanlong; Bertoldi, Katia
2015-06-01
Numerically simulating deformations in thin elastic sheets is a challenging problem in computational mechanics due to destabilizing compressive stresses that result in wrinkling. Determining the location, structure, and evolution of wrinkles in these problems has important implications in design and is an area of increasing interest in the fields of physics and engineering. In this work, several numerical approaches previously proposed to model equilibrium deformations in thin elastic sheets are compared. These include standard finite element-based static post-buckling approaches as well as a recently proposed method based on dynamic relaxation, which are applied to the problem of an annular sheet with opposed tractions where wrinkling is a key feature. Numerical solutions are compared to analytic predictions of the ground state, enabling a quantitative evaluation of the predictive power of the various methods. Results indicate that static finite element approaches produce local minima that are highly sensitive to initial imperfections, relying on a priori knowledge of the equilibrium wrinkling pattern to generate optimal results. In contrast, dynamic relaxation is much less sensitive to initial imperfections and can generate low-energy solutions for a wide variety of loading conditions without requiring knowledge of the equilibrium solution beforehand.
NASA Astrophysics Data System (ADS)
Gallezot, M.; Treyssède, F.; Laguerre, L.
2018-03-01
This paper investigates the computation of the forced response of elastic open waveguides with a numerical modal approach based on perfectly matched layers (PML). With a PML of infinite thickness, the solution can theoretically be expanded as a discrete sum of trapped modes, a discrete sum of leaky modes and a continuous sum of radiation modes related to the PML branch cuts. Yet with numerical methods (e.g. finite elements), the waveguide cross-section is discretized and the PML must be truncated to a finite thickness. This truncation transforms the continuous sum into a discrete set of PML modes. To guarantee the uniqueness of the numerical solution of the forced response problem, an orthogonality relationship is proposed. This relationship is applicable to any type of modes (trapped, leaky and PML modes) and hence allows the numerical solution to be expanded on a discrete sum in a convenient manner. This also leads to an expression for the modal excitability valid for leaky modes. The physical relevance of each type of mode for the solution is clarified through two numerical test cases, a homogeneous medium and a circular bar waveguide example, excited by a point source. The former is favourably compared to a transient analytical solution, showing that PML modes reassemble the bulk wave contribution in a homogeneous medium. The latter shows that the PML mode contribution yields the long-term diffraction phenomenon whereas the leaky mode contribution prevails closer to the source. The leaky mode contribution is shown to remain accurate even with a relatively small PML thickness, hence reducing the computational cost. This is of particular interest for solving three-dimensional waveguide problems, involving two-dimensional cross-sections of arbitrary shapes. Such a problem is handled in a third numerical example by considering a buried square bar.
Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.
1980-07-01
Reynolds equation. Two finite - difference algorithms were used to solve the equation. Numerical results - the predicted load and pitch angle - from the two...that should be used. The majority of the numerical solution are still based on the finite difference approximation of the governing equation. But in... finite difference method. Reddi and Chu [26) also noted that it is very difficult to compare the two techniques on the same level since the solution
Spectral methods for the spin-2 equation near the cylinder at spatial infinity
NASA Astrophysics Data System (ADS)
Macedo, Rodrigo P.; Valiente Kroon, Juan A.
2018-06-01
We solve, numerically, the massless spin-2 equations, written in terms of a gauge based on the properties of conformal geodesics, in a neighbourhood of spatial infinity using spectral methods in both space and time. This strategy allows us to compute the solutions to these equations up to the critical sets where null infinity intersects with spatial infinity. Moreover, we use the convergence rates of the numerical solutions to read-off their regularity properties.
NASA Astrophysics Data System (ADS)
Phanikumar, Mantha S.; McGuire, Jennifer T.
2010-08-01
Push-pull tests are a popular technique to investigate various aquifer properties and microbial reaction kinetics in situ. Most previous studies have interpreted push-pull test data using approximate analytical solutions to estimate (generally first-order) reaction rate coefficients. Though useful, these analytical solutions may not be able to describe important complexities in rate data. This paper reports the development of a multi-species, radial coordinate numerical model (PPTEST) that includes the effects of sorption, reaction lag time and arbitrary reaction order kinetics to estimate rates in the presence of mixing interfaces such as those created between injected "push" water and native aquifer water. The model has the ability to describe an arbitrary number of species and user-defined reaction rate expressions including Monod/Michelis-Menten kinetics. The FORTRAN code uses a finite-difference numerical model based on the advection-dispersion-reaction equation and was developed to describe the radial flow and transport during a push-pull test. The accuracy of the numerical solutions was assessed by comparing numerical results with analytical solutions and field data available in the literature. The model described the observed breakthrough data for tracers (chloride and iodide-131) and reactive components (sulfate and strontium-85) well and was found to be useful for testing hypotheses related to the complex set of processes operating near mixing interfaces.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi N. (Technical Monitor)
2002-01-01
This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.
2005-01-01
This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Numerical solutions of a control problem governed by functional differential equations
NASA Technical Reports Server (NTRS)
Banks, H. T.; Thrift, P. R.; Burns, J. A.; Cliff, E. M.
1978-01-01
A numerical procedure is proposed for solving optimal control problems governed by linear retarded functional differential equations. The procedure is based on the idea of 'averaging approximations', due to Banks and Burns (1975). For illustration, numerical results generated on an IBM 370/158 computer, which demonstrate the rapid convergence of the method are presented.
The origin of spurious solutions in computational electromagnetics
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Wu, Jie; Povinelli, L. A.
1995-01-01
The origin of spurious solutions in computational electromagnetics, which violate the divergence equations, is deeply rooted in a misconception about the first-order Maxwell's equations and in an incorrect derivation and use of the curl-curl equations. The divergence equations must be always included in the first-order Maxwell's equations to maintain the ellipticity of the system in the space domain and to guarantee the uniqueness of the solution and/or the accuracy of the numerical solutions. The div-curl method and the least-squares method provide rigorous derivation of the equivalent second-order Maxwell's equations and their boundary conditions. The node-based least-squares finite element method (LSFEM) is recommended for solving the first-order full Maxwell equations directly. Examples of the numerical solutions by LSFEM for time-harmonic problems are given to demonstrate that the LSFEM is free of spurious solutions.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok
2012-01-01
This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalashnikova, Irina
2012-05-01
A numerical study aimed to evaluate different preconditioners within the Trilinos Ifpack and ML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson problem implemented within the Albany code base and posed on the Ottawa Flat 270 design geometry is performed. This study led to some new development of Albany that allows the user to select an ML preconditioner with Zoltan repartitioning based on nodal coordinates, which is summarized. Convergence of the numerical solutions computed within the QCAD computational suite with successive mesh refinement is examined in two metrics, the mean value of the solution (an L{sup 1} norm)more » and the field integral of the solution (L{sup 2} norm).« less
Numerical solution of quadratic matrix equations for free vibration analysis of structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
Numerical Asymptotic Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
NASA Technical Reports Server (NTRS)
Crook, Andrew J.; Delaney, Robert A.
1992-01-01
The purpose of this study is the development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates and the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The procedure was also modified to allow coarse parallelization of the solution algorithm. This document is a final report outlining the development and techniques used in the procedure. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Numerical dissipation is used to gain solution stability but is reduced in viscous dominated flow regions. Local time stepping and implicit residual smoothing are used to increase the rate of convergence. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes being generated by the system (TIGG3D) developed earlier under this contract. The grid generation scheme meets the average-passage requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. Pure internal flow solutions were obtained as well as solutions with flow about the cowl/nacelle and various engine core flow conditions. The efficiency of the solution procedure was shown to be the same as the original analysis.
An Investigation into Solution Verification for CFD-DEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fullmer, William D.; Musser, Jordan
This report presents the study of the convergence behavior of the computational fluid dynamicsdiscrete element method (CFD-DEM) method, specifically National Energy Technology Laboratory’s (NETL) open source MFiX code (MFiX-DEM) with a diffusion based particle-tocontinuum filtering scheme. In particular, this study focused on determining if the numerical method had a solution in the high-resolution limit where the grid size is smaller than the particle size. To address this uncertainty, fixed particle beds of two primary configurations were studied: i) fictitious beds where the particles are seeded with a random particle generator, and ii) instantaneous snapshots from a transient simulation of anmore » experimentally relevant problem. Both problems considered a uniform inlet boundary and a pressure outflow. The CFD grid was refined from a few particle diameters down to 1/6 th of a particle diameter. The pressure drop between two vertical elevations, averaged across the bed cross-section was considered as the system response quantity of interest. A least-squares regression method was used to extrapolate the grid-dependent results to an approximate “grid-free” solution in the limit of infinite resolution. The results show that the diffusion based scheme does yield a converging solution. However, the convergence is more complicated than encountered in simpler, single-phase flow problems showing strong oscillations and, at times, oscillations superimposed on top of globally non-monotonic behavior. The challenging convergence behavior highlights the importance of using at least four grid resolutions in solution verification problems so that (over-determined) regression-based extrapolation methods may be applied to approximate the grid-free solution. The grid-free solution is very important in solution verification and VVUQ exercise in general as the difference between it and the reference solution largely determines the numerical uncertainty. By testing different randomized particle configurations of the same general problem (for the fictitious case) or different instances of freezing a transient simulation, the numerical uncertainties appeared to be on the same order of magnitude as ensemble or time averaging uncertainties. By testing different drag laws, almost all cases studied show that model form uncertainty in this one, very important closure relation was larger than the numerical uncertainty, at least with a reasonable CFD grid, roughly five particle diameters. In this study, the diffusion width (filtering length scale) was mostly set at a constant of six particle diameters. A few exploratory tests were performed to show that similar convergence behavior was observed for diffusion widths greater than approximately two particle diameters. However, this subject was not investigated in great detail because determining an appropriate filter size is really a validation question which must be determined by comparison to experimental or highly accurate numerical data. Future studies are being considered targeting solution verification of transient simulations as well as validation of the filter size with direct numerical simulation data.« less
Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...
2015-07-10
Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less
Numerical Simulation of the Flow over a Segment-Conical Body on the Basis of Reynolds Equations
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.; Palchekovskaya, N. V.
2018-01-01
Numerical simulation was used to study the 3D supersonic flow over a segment-conical body similar in shape to the ExoMars space vehicle. The nonmonotone behavior of the normal force acting on the body placed in a supersonic gas flow was analyzed depending on the angle of attack. The simulation was based on the numerical solution of the unsteady Reynolds-averaged Navier-Stokes equations with a two-parameter differential turbulence model. The solution of the problem was obtained using the in-house solver HSFlow with an efficient parallel algorithm intended for multiprocessor super computers.
Spatiotemporal Airy Ince-Gaussian wave packets in strongly nonlocal nonlinear media.
Peng, Xi; Zhuang, Jingli; Peng, Yulian; Li, DongDong; Zhang, Liping; Chen, Xingyu; Zhao, Fang; Deng, Dongmei
2018-03-08
The self-accelerating Airy Ince-Gaussian (AiIG) and Airy helical Ince-Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented. Typical examples of the obtained solutions are based on the ratio between the input power and the critical power, the ellipticity and the strong nonlocality parameter. The comparisons of analytical solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons show that the numerical results agree well with the analytical solutions in the case of strong nonlocality.
NASA Astrophysics Data System (ADS)
Řidký, V.; Šidlof, P.; Vlček, V.
2013-04-01
The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.
Navier-Stokes computation of compressible turbulent flows with a second order closure
NASA Technical Reports Server (NTRS)
Dingus, C.; Kollmann, W.
1991-01-01
The objective was the development of a complete second order closure for wall bounded flows, including all components of the dissipation rate tensor and a numerical solution procedure for the resulting system of equations. The main topics discussed are the closure of the pressure correlations and the viscous destruction terms in the dissipation rate equations and the numerical solution scheme based on a block-tridiagonal solver for the nine equations required for the prediction of plane or axisymmetric flows.
Numerical solution of fluid flow and heat tranfer problems with surface radiation
NASA Technical Reports Server (NTRS)
Ahuja, S.; Bhatia, K.
1995-01-01
This paper presents a numerical scheme, based on the finite element method, to solve strongly coupled fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The overall solution strategy is verified by comparing the available results with those obtained using this approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is clearly explained.
Mansour, M M; Spink, A E F
2013-01-01
Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.
Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M
2011-09-24
Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
NASA Astrophysics Data System (ADS)
Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur
2018-03-01
Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.
NASA Astrophysics Data System (ADS)
D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice
2018-05-01
In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.
NASA Astrophysics Data System (ADS)
Kanaun, S.; Markov, A.
2017-06-01
An efficient numerical method for solution of static problems of elasticity for an infinite homogeneous medium containing inhomogeneities (cracks and inclusions) is developed. Finite number of heterogeneous inclusions and planar parallel cracks of arbitrary shapes is considered. The problem is reduced to a system of surface integral equations for crack opening vectors and volume integral equations for stress tensors inside the inclusions. For the numerical solution of these equations, a class of Gaussian approximating functions is used. The method based on these functions is mesh free. For such functions, the elements of the matrix of the discretized system are combinations of explicit analytical functions and five standard 1D-integrals that can be tabulated. Thus, the numerical integration is excluded from the construction of the matrix of the discretized problem. For regular node grids, the matrix of the discretized system has Toeplitz's properties, and Fast Fourier Transform technique can be used for calculation matrix-vector products of such matrices.
NASA Technical Reports Server (NTRS)
Davy, W. C.; Green, M. J.; Lombard, C. K.
1981-01-01
The factored-implicit, gas-dynamic algorithm has been adapted to the numerical simulation of equilibrium reactive flows. Changes required in the perfect gas version of the algorithm are developed, and the method of coupling gas-dynamic and chemistry variables is discussed. A flow-field solution that approximates a Jovian entry case was obtained by this method and compared with the same solution obtained by HYVIS, a computer program much used for the study of planetary entry. Comparison of surface pressure distribution and stagnation line shock-layer profiles indicates that the two solutions agree well.
On critical behaviour in generalized Kadomtsev-Petviashvili equations
NASA Astrophysics Data System (ADS)
Dubrovin, B.; Grava, T.; Klein, C.
2016-10-01
An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev-Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the dispersive shock waves.
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
The exact solution of the monoenergetic transport equation for critical cylinders
NASA Technical Reports Server (NTRS)
Westfall, R. M.; Metcalf, D. R.
1972-01-01
An analytic solution for the critical, monoenergetic, bare, infinite cylinder is presented. The solution is obtained by modifying a previous development based on a neutron density transform and Case's singular eigenfunction method. Numerical results for critical radii and the neutron density as a function of position are included and compared with the results of other methods.
Chaudhry, Jehanzeb Hameed; Estep, Don; Tavener, Simon; Carey, Varis; Sandelin, Jeff
2016-01-01
We consider numerical methods for initial value problems that employ a two stage approach consisting of solution on a relatively coarse discretization followed by solution on a relatively fine discretization. Examples include adaptive error control, parallel-in-time solution schemes, and efficient solution of adjoint problems for computing a posteriori error estimates. We describe a general formulation of two stage computations then perform a general a posteriori error analysis based on computable residuals and solution of an adjoint problem. The analysis accommodates various variations in the two stage computation and in formulation of the adjoint problems. We apply the analysis to compute "dual-weighted" a posteriori error estimates, to develop novel algorithms for efficient solution that take into account cancellation of error, and to the Parareal Algorithm. We test the various results using several numerical examples.
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
The stability of freak waves with regard to external impact and perturbation of initial data
NASA Astrophysics Data System (ADS)
Smirnova, Anna; Shamin, Roman
2014-05-01
We investigate solutions of the equations, describing freak waves, in perspective of stability with regard to external impact and perturbation of initial data. The modeling of freak waves is based on numerical solution of equations describing a non-stationary potential flow of the ideal fluid with a free surface. We consider the two-dimensional infinitely deep flow. For waves modeling we use the equations in conformal variables. The variant of these equations is offered in [1]. Mathematical correctness of these equations was discussed in [2]. These works establish the uniqueness of solutions, offer the effective numerical solution calculation methods, prove the numerical convergence of these methods. The important aspect of numerical modeling of freak waves is the stability of solutions, describing these waves. In this work we study the questions of stability with regards to external impact and perturbation of initial data. We showed the stability of freak waves numerical model, corresponding to the external impact. We performed series of computational experiments with various freak wave initial data and random external impact. This impact means the power density on free surface. In each experiment examine two waves: the wave that was formed by external impact and without one. In all the experiments we see the stability of equation`s solutions. The random external impact practically does not change the time of freak wave formation and its form. Later our work progresses to the investigation of solution's stability under perturbations of initial data. We take the initial data that provide a freak wave and get the numerical solution. In common we take the numerical solution of equation with perturbation of initial data. The computing experiments showed that the freak waves equations solutions are stable under perturbations of initial data.So we can make a conclusion that freak waves are stable relatively external perturbation and perturbation of initial data both. 1. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface// Eur. J.~Mech. B Fluids. 2002. V. 21. P. 283-291. 2. R.V. Shamin. Dynamics of an Ideal Liquid with a Free Surface in Conformal Variables // Journal of Mathematical Sciences, Vol. 160, No. 5, 2009. P. 537-678. 3. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y
Global Properties of Fully Convective Accretion Disks from Local Simulations
NASA Astrophysics Data System (ADS)
Bodo, G.; Cattaneo, F.; Mignone, A.; Ponzo, F.; Rossi, P.
2015-08-01
We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction is analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.
Numerical solution of modified differential equations based on symmetry preservation.
Ozbenli, Ersin; Vedula, Prakash
2017-12-01
In this paper, we propose a method to construct invariant finite-difference schemes for solution of partial differential equations (PDEs) via consideration of modified forms of the underlying PDEs. The invariant schemes, which preserve Lie symmetries, are obtained based on the method of equivariant moving frames. While it is often difficult to construct invariant numerical schemes for PDEs due to complicated symmetry groups associated with cumbersome discrete variable transformations, we note that symmetries associated with more convenient transformations can often be obtained by appropriately modifying the original PDEs. In some cases, modifications to the original PDEs are also found to be useful in order to avoid trivial solutions that might arise from particular selections of moving frames. In our proposed method, modified forms of PDEs can be obtained either by addition of perturbation terms to the original PDEs or through defect correction procedures. These additional terms, whose primary purpose is to enable symmetries with more convenient transformations, are then removed from the system by considering moving frames for which these specific terms go to zero. Further, we explore selection of appropriate moving frames that result in improvement in accuracy of invariant numerical schemes based on modified PDEs. The proposed method is tested using the linear advection equation (in one- and two-dimensions) and the inviscid Burgers' equation. Results obtained for these tests cases indicate that numerical schemes derived from the proposed method perform significantly better than existing schemes not only by virtue of improvement in numerical accuracy but also due to preservation of qualitative properties or symmetries of the underlying differential equations.
NASA Technical Reports Server (NTRS)
Carter, J. E.
1972-01-01
Numerical solutions have been obtained for the supersonic, laminar flow over a two-dimensional compression corner. These solutions were obtained as steady-state solutions to the unsteady Navier-Stokes equations using the finite difference method of Brailovskaya, which has second-order accuracy in the spatial coordinates. Good agreement was obtained between the computed results and wall pressure distributions measured experimentally for Mach numbers of 4 and 6.06, and respective Reynolds numbers, based on free-stream conditions and the distance from the leading edge to the corner. In those calculations, as well as in others, sufficient resolution was obtained to show the streamline pattern in the separation bubble. Upstream boundary conditions to the compression corner flow were provided by numerically solving the unsteady Navier-Stokes equations for the flat plate flow field, beginning at the leading edge. The compression corner flow field was enclosed by a computational boundary with the unknown boundary conditions supplied by extrapolation from internally computed points.
NASA Astrophysics Data System (ADS)
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
Steering particles by breaking symmetries
NASA Astrophysics Data System (ADS)
Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René
2018-06-01
We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.
Localized solutions of Lugiato-Lefever equations with focused pump.
Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A
2017-12-04
Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.
NASA Astrophysics Data System (ADS)
Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.
2018-02-01
This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less
Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
NASA Astrophysics Data System (ADS)
Al Noufaey, K. S.
2018-06-01
This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.
NASA Astrophysics Data System (ADS)
Ming, Mei-Jun; Xu, Long-Kun; Wang, Fan; Bi, Ting-Jun; Li, Xiang-Yuan
2017-07-01
In this work, a matrix form of numerical algorithm for spectral shift is presented based on the novel nonequilibrium solvation model that is established by introducing the constrained equilibrium manipulation. This form is convenient for the development of codes for numerical solution. By means of the integral equation formulation polarizable continuum model (IEF-PCM), a subroutine has been implemented to compute spectral shift numerically. Here, the spectral shifts of absorption spectra for several popular chromophores, N,N-diethyl-p-nitroaniline (DEPNA), methylenecyclopropene (MCP), acrolein (ACL) and p-nitroaniline (PNA) were investigated in different solvents with various polarities. The computed spectral shifts can explain the available experimental findings reasonably. Discussions were made on the contributions of solute geometry distortion, electrostatic polarization and other non-electrostatic interactions to spectral shift.
NASA Astrophysics Data System (ADS)
Le Bars, Michael; Worster, M. Grae
2006-07-01
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification.
Numerical schemes for anomalous diffusion of single-phase fluids in porous media
NASA Astrophysics Data System (ADS)
Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine
2016-10-01
Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.
NASA Astrophysics Data System (ADS)
Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.
2012-01-01
This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.
Analytical Solutions for the Surface States of Bi1-xSbx (0 ≤ x ≲ 0.1)
NASA Astrophysics Data System (ADS)
Fuseya, Yuki; Fukuyama, Hidetoshi
2018-04-01
Analytical solutions for the surface state (SS) of an extended Wolff Hamiltonian, which is a common Hamiltonian for strongly spin-orbit coupled systems, are obtained both for semi-infinite and finite-thickness boundary conditions. For the semi-infinite system, there are two types of SS solutions: (I-a) linearly crossing SSs in the direct bulk band gap, and (I-b) SSs with linear dispersions entering the bulk conduction or valence bands away from the band edge. For the finite-thickness system, a gap opens in the SS of solution I-a. Numerical solutions for the SS are also obtained based on the tight-binding model of Liu and Allen [
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
NASA Astrophysics Data System (ADS)
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
NASA Astrophysics Data System (ADS)
Reuter, Bryan; Oliver, Todd; Lee, M. K.; Moser, Robert
2017-11-01
We present an algorithm for a Direct Numerical Simulation of the variable-density Navier-Stokes equations based on the velocity-vorticity approach introduced by Kim, Moin, and Moser (1987). In the current work, a Helmholtz decomposition of the momentum is performed. Evolution equations for the curl and the Laplacian of the divergence-free portion are formulated by manipulation of the momentum equations and the curl-free portion is reconstructed by enforcing continuity. The solution is expanded in Fourier bases in the homogeneous directions and B-Spline bases in the inhomogeneous directions. Discrete equations are obtained through a mixed Fourier-Galerkin and collocation weighted residual method. The scheme is designed such that the numerical solution conserves mass locally and globally by ensuring the discrete divergence projection is exact through the use of higher order splines in the inhomogeneous directions. The formulation is tested on multiple variable-density flow problems.
Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
NASA Astrophysics Data System (ADS)
Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos
2017-05-01
This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.
Solution of quadratic matrix equations for free vibration analysis of structures.
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1973-01-01
An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.
Magnetic Susceptibility Effects and Lorentz Damping in Diamagnetic Fluids
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Leslie, Fred W.
2000-01-01
A great number of crystals (semi-conductor and protein) grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity and g-jitter. Both static and dynamic (rotating or travelling wave) magnetic fields can be used to reduce the effects of convection in materials processing. In semi-conductor melts, due to their relatively high electrical conductivity, the induced Lorentz force can be effectively used to curtail convective effects. In melts/solutions with reduced electrical conductivity, such as aqueous solutions used in solution crystal growth, protein crystal growth and/or model fluid experiments for simulating melt growth, however, the variation of the magnetic susceptibility with temperature and/or concentration can be utilized to better damp fluid convection than the Lorentz force method. This paper presents a comprehensive, comparative numerical study of the relative damping effects using static magnetic fields and gradients in a simple geometry subjected to a thermal gradient. The governing equations are formulated in general terms and then simplified for the numerical calculations. Operational regimes, based on the best damping technique for different melts/solutions are identified based on fluid properties. Comparisons are provided between the numerical results and available results from experiments in surveyed literature.
NASA Technical Reports Server (NTRS)
Yee, Helen M. C.; Kotov, D. V.; Wang, Wei; Shu, Chi-Wang
2013-01-01
The goal of this paper is to relate numerical dissipations that are inherited in high order shock-capturing schemes with the onset of wrong propagation speed of discontinuities. For pointwise evaluation of the source term, previous studies indicated that the phenomenon of wrong propagation speed of discontinuities is connected with the smearing of the discontinuity caused by the discretization of the advection term. The smearing introduces a nonequilibrium state into the calculation. Thus as soon as a nonequilibrium value is introduced in this manner, the source term turns on and immediately restores equilibrium, while at the same time shifting the discontinuity to a cell boundary. The present study is to show that the degree of wrong propagation speed of discontinuities is highly dependent on the accuracy of the numerical method. The manner in which the smearing of discontinuities is contained by the numerical method and the overall amount of numerical dissipation being employed play major roles. Moreover, employing finite time steps and grid spacings that are below the standard Courant-Friedrich-Levy (CFL) limit on shockcapturing methods for compressible Euler and Navier-Stokes equations containing stiff reacting source terms and discontinuities reveals surprising counter-intuitive results. Unlike non-reacting flows, for stiff reactions with discontinuities, employing a time step and grid spacing that are below the CFL limit (based on the homogeneous part or non-reacting part of the governing equations) does not guarantee a correct solution of the chosen governing equations. Instead, depending on the numerical method, time step and grid spacing, the numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent solution, (c) a wrong propagation speed of discontinuities solution or (d) other spurious solutions that are solutions of the discretized counterparts but are not solutions of the governing equations. The present investigation for three very different stiff system cases confirms some of the findings of Lafon & Yee (1996) and LeVeque & Yee (1990) for a model scalar PDE. The findings might shed some light on the reported difficulties in numerical combustion and problems with stiff nonlinear (homogeneous) source terms and discontinuities in general.
Existence of periodic solutions in a model of respiratory syncytial virus RSV
NASA Astrophysics Data System (ADS)
Arenas, Abraham J.; González, Gilberto; Jódar, Lucas
2008-08-01
In this paper we study the existence of a positive periodic solutions for nested models of respiratory syncytial virus RSV, by using a continuation theorem based on coincidence degree theory. Conditions for the existence of periodic solutions in the model are given. Numerical simulations related to the transmission of respiratory syncytial virus in Madrid and Rio Janeiro are included.
The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com
2015-08-15
We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalousmore » diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.« less
NASA Astrophysics Data System (ADS)
Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng
2017-07-01
Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.
ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations
NASA Astrophysics Data System (ADS)
Merkel, M.; Niyonzima, I.; Schöps, S.
2017-12-01
Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into subintervals and computes the solution on each subinterval in parallel. The overall solution is decomposed into a particular solution defined on each subinterval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied to the initial conditions. The efficiency of the method depends on fast approximations of this matrix exponential based on recent results from numerical linear algebra. This paper deals with the application of ParaExp in combination with Leapfrog to electromagnetic wave problems in time domain. Numerical tests are carried out for a simple toy problem and a realistic spiral inductor model discretized by the Finite Integration Technique.
Four-center bubbled BPS solutions with a Gibbons-Hawking base
NASA Astrophysics Data System (ADS)
Heidmann, Pierre
2017-10-01
We construct four-center bubbled BPS solutions with a Gibbons-Hawking base space. We give a systematic procedure to build scaling solutions: starting from three-supertube configurations and using generalized spectral flows and gauge transformations to extend to solutions with four Gibbons-Hawking centers. This allows us to construct very large families of smooth horizonless solutions that have the same charges and angular momentum as supersymmetric black holes with a macroscopically large horizon area. Our construction reveals that all scaling solutions with four Gibbons Hawking centers have an angular momentum at around 99% of the cosmic censorship bound. We give both an analytical and a numerical explanation for this unexpected feature.
NASA Astrophysics Data System (ADS)
Ardalan, A. A.; Safari, A.
2004-09-01
An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical direction, it can be concluded that a method for terrain correction (or local gravity field modeling) based on closed-form solution of the Newton integral in terms of Cartesian coordinates of a multi-cylindrical equal-area map projection of the reference ellipsoid has been developed which has the accuracy of terrain correction (or local gravity field modeling) based on the Newton integral in terms of ellipsoidal coordinates.
Time-periodic solutions of the Benjamin-Ono equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose , D.M.; Wilkening, Jon
2008-04-01
We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one ofmore » the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.« less
Kinetic theory analysis of rarefied gas flow through finite length slots
NASA Technical Reports Server (NTRS)
Raghuraman, P.
1972-01-01
An analytic study is made of the flow a rarefied monatomic gas through a two dimensional slot. The parameters of the problem are the ratios of downstream to upstream pressures, the Knudsen number at the high pressure end (based on slot half width) and the length to slot half width ratio. A moment method of solution is used by assuming a discontinuous distribution function consisting of four Maxwellians split equally in angular space. Numerical solutions are obtained for the resulting equations. The characteristics of the transition regime are portrayed. The solutions in the free molecule limit are systematically lower than the results obtained in that limit by more accurate numerical methods.
A note on the accuracy of spectral method applied to nonlinear conservation laws
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang; Wong, Peter S.
1994-01-01
Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H.
2013-10-01
In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane-Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.
Supercomputer modeling of flow past hypersonic flight vehicles
NASA Astrophysics Data System (ADS)
Ermakov, M. K.; Kryukov, I. A.
2017-02-01
A software platform for MPI-based parallel solution of the Navier-Stokes (Euler) equations for viscous heat-conductive compressible perfect gas on 3-D unstructured meshes is developed. The discretization and solution of the Navier-Stokes equations are constructed on generalized S.K. Godunov’s method and the second order approximation in space and time. Developed software platform allows to carry out effectively flow past hypersonic flight vehicles simulations for the Mach numbers 6 and higher, and numerical meshes with up to 1 billion numerical cells and with up to 128 processors.
NASA Astrophysics Data System (ADS)
Dutykh, Denys; Hoefer, Mark; Mitsotakis, Dimitrios
2018-04-01
Some effects of surface tension on fully nonlinear, long, surface water waves are studied by numerical means. The differences between various solitary waves and their interactions in subcritical and supercritical surface tension regimes are presented. Analytical expressions for new peaked traveling wave solutions are presented in the dispersionless case of critical surface tension. Numerical experiments are performed using a high-accurate finite element method based on smooth cubic splines and the four-stage, classical, explicit Runge-Kutta method of order 4.
Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model
NASA Astrophysics Data System (ADS)
Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.
2017-10-01
We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.
Satellite recovery - Attitude dynamics of the targets
NASA Technical Reports Server (NTRS)
Cochran, J. E., Jr.; Lahr, B. S.
1986-01-01
The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.
1984-01-01
A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.
Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model.
Picotti, Stefano; Carcione, José M
2017-07-01
The acoustic behavior of porous media can be simulated more realistically using a stress-strain relation based on the Cole-Cole model. In particular, seismic velocity dispersion and attenuation in porous rocks is well described by mesoscopic-loss models. Using the Zener model to simulate wave propagation is a rough approximation, while the Cole-Cole model provides an optimal description of the physics. Here, a time-domain algorithm is proposed based on the Grünwald-Letnikov numerical approximation of the fractional derivative involved in the time-domain representation of the Cole-Cole model, while the spatial derivatives are computed with the Fourier pseudospectral method. The numerical solution is successfully tested against an analytical solution. The methodology is applied to a model of saline aquifer, where carbon dioxide (CO 2 ) is injected. To follow the migration of the gas and detect possible leakages, seismic monitoring surveys should be carried out periodically. To this aim, the sensitivity of the seismic method must be carefully assessed for the specific case. The simulated test considers a possible leakage in the overburden, above the caprock, where the sandstone is partially saturated with gas and brine. The numerical examples illustrate the implementation of the theory.
Evaluation of Proteus as a Tool for the Rapid Development of Models of Hydrologic Systems
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Farthing, M. W.; Kees, C. E.; Miller, C. T.
2013-12-01
Models of modern hydrologic systems can be complex and involve a variety of operators with varying character. The goal is to implement approximations of such models that are both efficient for the developer and computationally efficient, which is a set of naturally competing objectives. Proteus is a Python-based toolbox that supports prototyping of model formulations as well as a wide variety of modern numerical methods and parallel computing. We used Proteus to develop numerical approximations for three models: Richards' equation, a brine flow model derived using the Thermodynamically Constrained Averaging Theory (TCAT), and a multiphase TCAT-based tumor growth model. For Richards' equation, we investigated discontinuous Galerkin solutions with higher order time integration based on the backward difference formulas. The TCAT brine flow model was implemented using Proteus and a variety of numerical methods were compared to hand coded solutions. Finally, an existing tumor growth model was implemented in Proteus to introduce more advanced numerics and allow the code to be run in parallel. From these three example models, Proteus was found to be an attractive open-source option for rapidly developing high quality code for solving existing and evolving computational science models.
Numerical solution of the stochastic parabolic equation with the dependent operator coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashyralyev, Allaberen; Department of Mathematics, ITTU, Ashgabat; Okur, Ulker
2015-09-18
In the present paper, a single step implicit difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is presented. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, this abstract result permits us to obtain the convergence estimates for the solution of difference schemes for the numerical solution of initial boundary value problems for parabolic equations. The theoretical statements for the solution of this difference scheme are supported by the results of numerical experiments.
2011-01-01
Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oterkus, Selda; Madenci, Erdogan, E-mail: madenci@email.arizona.edu; Agwai, Abigail
This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.
Sedimentary Geothermal Feasibility Study: October 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad; Zerpa, Luis
The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less
Accurate ω-ψ Spectral Solution of the Singular Driven Cavity Problem
NASA Astrophysics Data System (ADS)
Auteri, F.; Quartapelle, L.; Vigevano, L.
2002-08-01
This article provides accurate spectral solutions of the driven cavity problem, calculated in the vorticity-stream function representation without smoothing the corner singularities—a prima facie impossible task. As in a recent benchmark spectral calculation by primitive variables of Botella and Peyret, closed-form contributions of the singular solution for both zero and finite Reynolds numbers are subtracted from the unknown of the problem tackled here numerically in biharmonic form. The method employed is based on a split approach to the vorticity and stream function equations, a Galerkin-Legendre approximation of the problem for the perturbation, and an evaluation of the nonlinear terms by Gauss-Legendre numerical integration. Results computed for Re=0, 100, and 1000 compare well with the benchmark steady solutions provided by the aforementioned collocation-Chebyshev projection method. The validity of the proposed singularity subtraction scheme for computing time-dependent solutions is also established.
An analytically iterative method for solving problems of cosmic-ray modulation
NASA Astrophysics Data System (ADS)
Kolesnyk, Yuriy L.; Bobik, Pavol; Shakhov, Boris A.; Putis, Marian
2017-09-01
The development of an analytically iterative method for solving steady-state as well as unsteady-state problems of cosmic-ray (CR) modulation is proposed. Iterations for obtaining the solutions are constructed for the spherically symmetric form of the CR propagation equation. The main solution of the considered problem consists of the zero-order solution that is obtained during the initial iteration and amendments that may be obtained by subsequent iterations. The finding of the zero-order solution is based on the CR isotropy during propagation in the space, whereas the anisotropy is taken into account when finding the next amendments. To begin with, the method is applied to solve the problem of CR modulation where the diffusion coefficient κ and the solar wind speed u are constants with an Local Interstellar Spectra (LIS) spectrum. The solution obtained with two iterations was compared with an analytical solution and with numerical solutions. Finally, solutions that have only one iteration for two problems of CR modulation with u = constant and the same form of LIS spectrum were obtained and tested against numerical solutions. For the first problem, κ is proportional to the momentum of the particle p, so it has the form κ = k0η, where η =p/m_0c. For the second problem, the diffusion coefficient is given in the form κ = k0βη, where β =v/c is the particle speed relative to the speed of light. There was a good matching of the obtained solutions with the numerical solutions as well as with the analytical solution for the problem where κ = constant.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
Guo, Jianqiang; Wang, Wansheng
2014-01-01
This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is efficient and reliable. PMID:24895653
Guo, Jianqiang; Wang, Wansheng
2014-01-01
This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is efficient and reliable.
Numerical integration of asymptotic solutions of ordinary differential equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Numerical Hydrodynamics in General Relativity.
Font, José A
2003-01-01
The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them. Supplementary material is available for this article at 10.12942/lrr-2003-4.
NASA Astrophysics Data System (ADS)
Markou, A. A.; Manolis, G. D.
2018-03-01
Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.
GLOBAL PROPERTIES OF FULLY CONVECTIVE ACCRETION DISKS FROM LOCAL SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodo, G.; Ponzo, F.; Rossi, P.
2015-08-01
We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction ismore » analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.« less
NASA Astrophysics Data System (ADS)
Chen, Zuojing; Polizzi, Eric
2010-11-01
Effective modeling and numerical spectral-based propagation schemes are proposed for addressing the challenges in time-dependent quantum simulations of systems ranging from atoms, molecules, and nanostructures to emerging nanoelectronic devices. While time-dependent Hamiltonian problems can be formally solved by propagating the solutions along tiny simulation time steps, a direct numerical treatment is often considered too computationally demanding. In this paper, however, we propose to go beyond these limitations by introducing high-performance numerical propagation schemes to compute the solution of the time-ordered evolution operator. In addition to the direct Hamiltonian diagonalizations that can be efficiently performed using the new eigenvalue solver FEAST, we have designed a Gaussian propagation scheme and a basis-transformed propagation scheme (BTPS) which allow to reduce considerably the simulation times needed by time intervals. It is outlined that BTPS offers the best computational efficiency allowing new perspectives in time-dependent simulations. Finally, these numerical schemes are applied to study the ac response of a (5,5) carbon nanotube within a three-dimensional real-space mesh framework.
Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.
1983-12-01
numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for
NASA Astrophysics Data System (ADS)
Vasco, D. W.
2018-04-01
Following an approach used in quantum dynamics, an exponential representation of the hydraulic head transforms the diffusion equation governing pressure propagation into an equivalent set of ordinary differential equations. Using a reservoir simulator to determine one set of dependent variables leaves a reduced set of equations for the path of a pressure transient. Unlike the current approach for computing the path of a transient, based on a high-frequency asymptotic solution, the trajectories resulting from this new formulation are valid for arbitrary spatial variations in aquifer properties. For a medium containing interfaces and layers with sharp boundaries, the trajectory mechanics approach produces paths that are compatible with travel time fields produced by a numerical simulator, while the asymptotic solution produces paths that bend too strongly into high permeability regions. The breakdown of the conventional asymptotic solution, due to the presence of sharp boundaries, has implications for model parameter sensitivity calculations and the solution of the inverse problem. For example, near an abrupt boundary, trajectories based on the asymptotic approach deviate significantly from regions of high sensitivity observed in numerical computations. In contrast, paths based on the new trajectory mechanics approach coincide with regions of maximum sensitivity to permeability changes.
A model for managing sources of groundwater pollution
Gorelick, Steven M.
1982-01-01
The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.
Li, Hongfei; Jiang, Haijun; Hu, Cheng
2016-03-01
In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ju, E-mail: jliu@ices.utexas.edu; Gomez, Hector; Evans, John A.
2013-09-01
We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionallymore » stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.« less
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
NASA Astrophysics Data System (ADS)
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Chemical Transport in a Fissured Rock: Verification of a Numerical Model
NASA Astrophysics Data System (ADS)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.
Electro-magneto interaction in fractional Green-Naghdi thermoelastic solid with a cylindrical cavity
NASA Astrophysics Data System (ADS)
Ezzat, M. A.; El-Bary, A. A.
2018-01-01
A unified mathematical model of Green-Naghdi's thermoelasticty theories (GN), based on fractional time-derivative of heat transfer is constructed. The model is applied to solve a one-dimensional problem of a perfect conducting unbounded body with a cylindrical cavity subjected to sinusoidal pulse heating in the presence of an axial uniform magnetic field. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Comparisons are made with the results predicted by the two theories. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.
Spurious Numerical Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
NASA Astrophysics Data System (ADS)
Gerstmayr, Johannes; Irschik, Hans
2008-12-01
In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.
Numerical Algorithms for Acoustic Integrals - The Devil is in the Details
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1996-01-01
The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2017-01-01
In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2002-01-01
A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.
Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach.
Geng, Xiaolong; Boufadel, Michel C; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L; Miller, Richard S
2014-09-01
A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Two Novel Methods and Multi-Mode Periodic Solutions for the Fermi-Pasta-Ulam Model
NASA Astrophysics Data System (ADS)
Arioli, Gianni; Koch, Hans; Terracini, Susanna
2005-04-01
We introduce two novel methods for studying periodic solutions of the FPU β-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Hancox, Cindy; Phillips, David; Walsworth, Ron
2007-06-01
Of relevance to compact atomic frequency standards, we investigate a model of the N+CPT joint optical resonance. We compare analytical solutions of a 4-state theory, as well as numerical solutions of the optical Bloch equations, to experimental investigations of N+CPT resonances in 87Rb. Our results inform the optimization of N+CPT based frequency standards.
Dispersive models describing mosquitoes’ population dynamics
NASA Astrophysics Data System (ADS)
Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.
2016-08-01
The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
Fourth order scheme for wavelet based solution of Black-Scholes equation
NASA Astrophysics Data System (ADS)
Finěk, Václav
2017-12-01
The present paper is devoted to the numerical solution of the Black-Scholes equation for pricing European options. We apply the Crank-Nicolson scheme with Richardson extrapolation for time discretization and Hermite cubic spline wavelets with four vanishing moments for space discretization. This scheme is the fourth order accurate both in time and in space. Computational results indicate that the Crank-Nicolson scheme with Richardson extrapolation significantly decreases the amount of computational work. We also numerically show that optimal convergence rate for the used scheme is obtained without using startup procedure despite the data irregularities in the model.
NASA Astrophysics Data System (ADS)
Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.
2018-04-01
In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm
An iterative solver for the 3D Helmholtz equation
NASA Astrophysics Data System (ADS)
Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir
2017-09-01
We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.
Hierarchical semi-numeric method for pairwise fuzzy group decision making.
Marimin, M; Umano, M; Hatono, I; Tamura, H
2002-01-01
Gradual improvements to a single-level semi-numeric method, i.e., linguistic labels preference representation by fuzzy sets computation for pairwise fuzzy group decision making are summarized. The method is extended to solve multiple criteria hierarchical structure pairwise fuzzy group decision-making problems. The problems are hierarchically structured into focus, criteria, and alternatives. Decision makers express their evaluations of criteria and alternatives based on each criterion by using linguistic labels. The labels are converted into and processed in triangular fuzzy numbers (TFNs). Evaluations of criteria yield relative criteria weights. Evaluations of the alternatives, based on each criterion, yield a degree of preference for each alternative or a degree of satisfaction for each preference value. By using a neat ordered weighted average (OWA) or a fuzzy weighted average operator, solutions obtained based on each criterion are aggregated into final solutions. The hierarchical semi-numeric method is suitable for solving a larger and more complex pairwise fuzzy group decision-making problem. The proposed method has been verified and applied to solve some real cases and is compared to Saaty's (1996) analytic hierarchy process (AHP) method.
Two-dimensional solitary waves and periodic waves on coupled nonlinear electrical transmission lines
NASA Astrophysics Data System (ADS)
Wang, Heng; Zheng, Shuhua
2017-06-01
By using the dynamical system approach, the exact travelling wave solutions for a system of coupled nonlinear electrical transmission lines are studied. Based on this method, the bifurcations of phase portraits of a dynamical system are given. The two-dimensional solitary wave solutions and periodic wave solutions on coupled nonlinear transmission lines are obtained. With the aid of Maple, the numerical simulations are conducted for solitary wave solutions and periodic wave solutions to the model equation. The results presented in this paper improve upon previous studies.
Prediction of discretization error using the error transport equation
NASA Astrophysics Data System (ADS)
Celik, Ismail B.; Parsons, Don Roscoe
2017-06-01
This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.
NASA Astrophysics Data System (ADS)
Konor, Celal S.; Randall, David A.
2018-05-01
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.
Numerical Analyses of Subsoil-structure Interaction in Original Non-commercial Software based on FEM
NASA Astrophysics Data System (ADS)
Cajka, R.; Vaskova, J.; Vasek, J.
2018-04-01
For decades attention has been paid to interaction of foundation structures and subsoil and development of interaction models. Given that analytical solutions of subsoil-structure interaction could be deduced only for some simple shapes of load, analytical solutions are increasingly being replaced by numerical solutions (eg. FEM – Finite element method). Numerical analyses provides greater possibilities for taking into account the real factors involved in the subsoil-structure interaction and was also used in this article. This makes it possible to design the foundation structures more efficiently and still reliably and securely. Currently there are several software that, can deal with the interaction of foundations and subsoil. It has been demonstrated that non-commercial software called MKPINTER (created by Cajka) provides appropriately results close to actual measured values. In MKPINTER software stress-strain analysis of elastic half-space by means of Gauss numerical integration and Jacobean of transformation is done. Input data for numerical analysis were observed by experimental loading test of concrete slab. The loading was performed using unique experimental equipment which was constructed in the area Faculty of Civil Engineering, VŠB-TU Ostrava. The purpose of this paper is to compare resulting deformation of the slab with values observed during experimental loading test.
The consistency of positive fully fuzzy linear system
NASA Astrophysics Data System (ADS)
Malkawi, Ghassan O.; Alfifi, Hassan Y.
2017-11-01
In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.
NASA Astrophysics Data System (ADS)
Ford, Neville J.; Connolly, Joseph A.
2009-07-01
We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.
Porru, Marcella; Özkan, Leyla
2017-05-24
This paper develops a new simulation model for crystal size distribution dynamics in industrial batch crystallization. The work is motivated by the necessity of accurate prediction models for online monitoring purposes. The proposed numerical scheme is able to handle growth, nucleation, and agglomeration kinetics by means of the population balance equation and the method of characteristics. The former offers a detailed description of the solid phase evolution, while the latter provides an accurate and efficient numerical solution. In particular, the accuracy of the prediction of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process. Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch duration, it is suitable for online applications such as process monitoring tools based on state estimators.
2017-01-01
This paper develops a new simulation model for crystal size distribution dynamics in industrial batch crystallization. The work is motivated by the necessity of accurate prediction models for online monitoring purposes. The proposed numerical scheme is able to handle growth, nucleation, and agglomeration kinetics by means of the population balance equation and the method of characteristics. The former offers a detailed description of the solid phase evolution, while the latter provides an accurate and efficient numerical solution. In particular, the accuracy of the prediction of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process. Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch duration, it is suitable for online applications such as process monitoring tools based on state estimators. PMID:28603342
NASA Astrophysics Data System (ADS)
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
NASA Technical Reports Server (NTRS)
Sreenivas, Kidambi; Whitfield, David L.
1995-01-01
Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.
Hierarchical matrices implemented into the boundary integral approaches for gravity field modelling
NASA Astrophysics Data System (ADS)
Čunderlík, Róbert; Vipiana, Francesca
2017-04-01
Boundary integral approaches applied for gravity field modelling have been recently developed to solve the geodetic boundary value problems numerically, or to process satellite observations, e.g. from the GOCE satellite mission. In order to obtain numerical solutions of "cm-level" accuracy, such approaches require very refined level of the disretization or resolution. This leads to enormous memory requirements that need to be reduced. An implementation of the Hierarchical Matrices (H-matrices) can significantly reduce a numerical complexity of these approaches. A main idea of the H-matrices is based on an approximation of the entire system matrix that is split into a family of submatrices. Large submatrices are stored in factorized representation, while small submatrices are stored in standard representation. This allows reducing memory requirements significantly while improving the efficiency. The poster presents our preliminary results of implementations of the H-matrices into the existing boundary integral approaches based on the boundary element method or the method of fundamental solution.
Torsional vibration of a cracked rod by variational formulation and numerical analysis
NASA Astrophysics Data System (ADS)
Chondros, T. G.; Labeas, G. N.
2007-04-01
The torsional vibration of a circumferentially cracked cylindrical shaft is studied through an "exact" analytical solution and a numerical finite element (FE) analysis. The Hu-Washizu-Barr variational formulation is used to develop the differential equation and the boundary conditions of the cracked rod. The equations of motion for a uniform cracked rod in torsional vibration are derived and solved, and the Rayleigh quotient is used to further approximate the natural frequencies of the cracked rod. Results for the problem of the torsional vibration of a cylindrical shaft with a peripheral crack are provided through an analytical solution based on variational formulation to derive the equation of motion and a numerical analysis utilizing a parametric three-dimensional (3D) solid FE model of the cracked rod. The crack is modelled as a continuous flexibility based on fracture mechanics principles. The variational formulation results are compared with the FE alternative. The sensitivity of the FE discretization with respect to the analytical results is assessed.
A methodology for the rigorous verification of plasma simulation codes
NASA Astrophysics Data System (ADS)
Riva, Fabio
2016-10-01
The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.
A numerical study of the 3-periodic wave solutions to KdV-type equations
NASA Astrophysics Data System (ADS)
Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing
2018-02-01
In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.
Numerical Algorithm for Delta of Asian Option
Zhang, Boxiang; Yu, Yang; Wang, Weiguo
2015-01-01
We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271
Five-equation and robust three-equation methods for solution verification of large eddy simulation
NASA Astrophysics Data System (ADS)
Dutta, Rabijit; Xing, Tao
2018-02-01
This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.
Numerical simulation of steady cavitating flow of viscous fluid in a Francis hydroturbine
NASA Astrophysics Data System (ADS)
Panov, L. V.; Chirkov, D. V.; Cherny, S. G.; Pylev, I. M.; Sotnikov, A. A.
2012-09-01
Numerical technique was developed for simulation of cavitating flows through the flow passage of a hydraulic turbine. The technique is based on solution of steady 3D Navier—Stokes equations with a liquid phase transfer equation. The approch for setting boundary conditions meeting the requirements of cavitation testing standard was suggested. Four different models of evaporation and condensation were compared. Numerical simulations for turbines of different specific speed were compared with experiment.
A Level-set based framework for viscous simulation of particle-laden supersonic flows
NASA Astrophysics Data System (ADS)
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-06-01
Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.
NASA Astrophysics Data System (ADS)
Woldegiorgis, Befekadu Taddesse; van Griensven, Ann; Pereira, Fernando; Bauwens, Willy
2017-06-01
Most common numerical solutions used in CSTR-based in-stream water quality simulators are susceptible to instabilities and/or solution inconsistencies. Usually, they cope with instability problems by adopting computationally expensive small time steps. However, some simulators use fixed computation time steps and hence do not have the flexibility to do so. This paper presents a novel quasi-analytical solution for CSTR-based water quality simulators of an unsteady system. The robustness of the new method is compared with the commonly used fourth-order Runge-Kutta methods, the Euler method and three versions of the SWAT model (SWAT2012, SWAT-TCEQ, and ESWAT). The performance of each method is tested for different hypothetical experiments. Besides the hypothetical data, a real case study is used for comparison. The growth factors we derived as stability measures for the different methods and the R-factor—considered as a consistency measure—turned out to be very useful for determining the most robust method. The new method outperformed all the numerical methods used in the hypothetical comparisons. The application for the Zenne River (Belgium) shows that the new method provides stable and consistent BOD simulations whereas the SWAT2012 model is shown to be unstable for the standard daily computation time step. The new method unconditionally simulates robust solutions. Therefore, it is a reliable scheme for CSTR-based water quality simulators that use first-order reaction formulations.
Numerical simulation of KdV equation by finite difference method
NASA Astrophysics Data System (ADS)
Yokus, A.; Bulut, H.
2018-05-01
In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.
Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow
NASA Technical Reports Server (NTRS)
Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.
1981-01-01
Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.
Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N
2013-07-01
The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.
NASA Astrophysics Data System (ADS)
Bakar, Shahirah Abu; Arifin, Norihan Md; Ali, Fadzilah Md; Bachok, Norfifah; Nazar, Roslinda
2017-08-01
The stagnation-point flow over a shrinking sheet in Darcy-Forchheimer porous medium is numerically studied. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, and then solved numerically by using shooting technique method with Maple implementation. Dual solutions are observed in a certain range of the shrinking parameter. Regarding on numerical solutions, we prepared stability analysis to identify which solution is stable between non-unique solutions by bvp4c solver in Matlab. Further we obtain numerical results or each solution, which enable us to discuss the features of the respective solutions.
A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations
Thalhammer, Mechthild; Abhau, Jochen
2012-01-01
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0<ε≪1, especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross–Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively, complement the numerical study. PMID:25550676
A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
Thalhammer, Mechthild; Abhau, Jochen
2012-08-15
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross-Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively, complement the numerical study.
WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method
NASA Astrophysics Data System (ADS)
Crevoisier, David; Voltz, Marc
2013-04-01
To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute fluxes - where Hydrus simulations may fail to converge - no numerical problem appears, and ii) accuracy of simulations even for loose spatial domain discretisations, which can only be obtained by Hydrus with fine discretisations.
Complexity of the laminar-turbulent boundary in pipe flow
NASA Astrophysics Data System (ADS)
Budanur, Nazmi Burak; Hof, Björn
2018-05-01
Over the past decade, the edge of chaos has proven to be a fruitful starting point for investigations of shear flows when the laminar base flow is linearly stable. Numerous computational studies of shear flows demonstrated the existence of states that separate laminar and turbulent regions of the state space. In addition, some studies determined invariant solutions that reside on this edge. In this paper, we study the unstable manifold of one such solution with the aid of continuous symmetry reduction, which we formulate here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our investigation of the unstable manifold, we discover a previously unknown traveling-wave solution on the laminar-turbulent boundary with a relatively complex structure. By means of low-dimensional projections, we visualize different dynamical paths that connect these solutions to the turbulence. Our numerical experiments demonstrate that the laminar-turbulent boundary exhibits qualitatively different regions whose properties are influenced by the nearby invariant solutions.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems. PMID:25811858
Numerical simulation of crevice corrosion of titanium: Effect of the bold surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evitts, R.W.; Postlethwaite, J.; Watson, M.K.
1996-12-01
A rigorous crevice corrosion model has been developed that accounts for the bold metal surfaces exterior to the crevice. The model predicts the time change in concentration of all specified chemical species in the crevice and bulk solution, and has the ability to predict active corrosion. It is applied to the crevice corrosion of a small titanium crevice in both oxygenated and anaerobic sodium chloride solutions. The numerical predictions confirm that oxygen is the driving force for crevice corrosion. During the simulations where oxygen is initially present in both the crevice and bulk solution an acidic chloride solution is developed;more » this is the precursor required for crevice corrosion. The anaerobic case displays no tendency to form such a solution. It is also confirmed that those areas in the crevice that are deoxygenated become anodic and the bold metal surface becomes cathodic. As expected, active corrosion is not attained as the simulations are based on electrochemical and chemical parameters at 25 C.« less
Differential geometry based solvation model I: Eulerian formulation
NASA Astrophysics Data System (ADS)
Chen, Zhan; Baker, Nathan A.; Wei, G. W.
2010-11-01
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the solvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By optimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second-order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature.
Differential geometry based solvation model I: Eulerian formulation
Chen, Zhan; Baker, Nathan A.; Wei, G. W.
2010-01-01
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the salvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By minimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature. PMID:20938489
NASA Astrophysics Data System (ADS)
Marras, Simone; Suckale, Jenny; Giraldo, Francis X.; Constantinescu, Emil
2016-04-01
We present the solution of the viscous shallow water equations where viscosity is built as a residual-based subgrid scale model originally designed for large eddy simulation of compressible [1] and stratified flows [2]. The necessity of viscosity for a shallow water model not only finds motivation from mathematical analysis [3], but is supported by physical reasoning as can be seen by an analysis of the energetics of the solution. We simulated the flow of an idealized wave as it hits a set of obstacles. The kinetic energy spectrum of this flow shows that, although the inviscid Galerkin solutions -by spectral elements and discontinuous Galerkin [4]- preserve numerical stability in spite of the spurious oscillations in the proximity of the wave fronts, the slope of the energy cascade deviates from the theoretically expected values. We show that only a sufficiently small amount of dynamically adaptive viscosity removes the unwanted high-frequency modes while preserving the overall sharpness of the solution. In addition, it yields a physically plausible energy decay. This work is motivated by a larger interest in the application of a shallow water model to the solution of tsunami triggered coastal flows. In particular, coastal flows in regions around the world where coastal parks made of mitigation hills of different sizes and configurations are considered as a means to deviate the power of the incoming wave. References [1] M. Nazarov and J. Hoffman (2013) "Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods" Int. J. Numer. Methods Fluids, 71:339-357 [2] S. Marras, M. Nazarov, F. X. Giraldo (2015) "Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES" J. Comput. Phys. 301:77-101 [3] J. F. Gerbeau and B. Perthame (2001) "Derivation of the viscous Saint-Venant system for laminar shallow water; numerical validation" Discrete Contin. Dyn. Syst. Ser. B, 1:89?102 [4] F. X. Giraldo and M. Restelli (2010) "High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids, 63:1077-1102
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-03-01
As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
ERIC Educational Resources Information Center
De Corte, Erik; Verschaffel, Lieven
Design and results of an investigation attempting to analyze and improve children's solution processes in elementary addition and subtraction problems are described. As background for the study, a conceptual model was developed based on previous research. One dimension of the model relates to the characteristics of the tasks (numerical versus word…
Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method
NASA Technical Reports Server (NTRS)
Smith, James P.
1996-01-01
A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.
NASA Astrophysics Data System (ADS)
Mohebbi, Akbar
2018-02-01
In this paper we propose two fast and accurate numerical methods for the solution of multidimensional space fractional Ginzburg-Landau equation (FGLE). In the presented methods, to avoid solving a nonlinear system of algebraic equations and to increase the accuracy and efficiency of method, we split the complex problem into simpler sub-problems using the split-step idea. For a homogeneous FGLE, we propose a method which has fourth-order of accuracy in time component and spectral accuracy in space variable and for nonhomogeneous one, we introduce another scheme based on the Crank-Nicolson approach which has second-order of accuracy in time variable. Due to using the Fourier spectral method for fractional Laplacian operator, the resulting schemes are fully diagonal and easy to code. Numerical results are reported in terms of accuracy, computational order and CPU time to demonstrate the accuracy and efficiency of the proposed methods and to compare the results with the analytical solutions. The results show that the present methods are accurate and require low CPU time. It is illustrated that the numerical results are in good agreement with the theoretical ones.
Fully- and weakly-nonlinear biperiodic traveling waves in shallow water
NASA Astrophysics Data System (ADS)
Hirakawa, Tomoaki; Okamura, Makoto
2018-04-01
We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.
Transient well flow in layered aquifer systems: the uniform well-face drawdown solution
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1999-11-01
Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.
Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prinja, Anil K.
The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset aremore » amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a multigroup transport setting, and (ii) two unique families of discontinuous finite element schemes, one linear and the other nonlinear.« less
Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling
NASA Astrophysics Data System (ADS)
Rastigejev, Y.
2011-12-01
Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems including numerical simulation of transpacific traveling pollution plumes. The generated pollution plumes are diluted due to turbulent mixing as they are advected downwind. Despite this dilution, it was recently discovered that pollution plumes in the remote troposphere can preserve their identity as well-defined structures for two weeks or more as they circle the globe. Present Global Chemical Transport Models (CTMs) implemented for quasi-uniform grids are completely incapable of reproducing these layered structures due to high numerical plume dilution caused by numerical diffusion combined with non-uniformity of atmospheric flow. It is shown that WAMR algorithm solutions of comparable accuracy as conventional numerical techniques are obtained with more than an order of magnitude reduction in number of grid points, therefore the adaptive algorithm is capable to produce accurate results at a relatively low computational cost. The numerical simulations demonstrate that WAMR algorithm applied the traveling plume problem accurately reproduces the plume dynamics unlike conventional numerical methods that utilizes quasi-uniform numerical grids.
Numerically stable formulas for a particle-based explicit exponential integrator
NASA Astrophysics Data System (ADS)
Nadukandi, Prashanth
2015-05-01
Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the particle finite element method. Algebraically, this scheme involves two steps: (1) the solution of tangent curves for piecewise linear vector fields defined on simplicial meshes and (2) the solution of line integrals of piecewise linear vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general applicability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential functions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients in these expressions are defined in a piecewise manner, i.e. in a prescribed neighbourhood of removable singularities their series approximations are computed. An optimal series approximation of divided differences is presented which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.
A Multiuser Detector Based on Artificial Bee Colony Algorithm for DS-UWB Systems
Liu, Xiaohui
2013-01-01
Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638
Numerical analysis of the asymptotic two-point boundary value solution for N-body trajectories.
NASA Technical Reports Server (NTRS)
Lancaster, J. E.; Allemann, R. A.
1972-01-01
Previously published asymptotic solutions for lunar and interplanetary trajectories have been modified and combined to formulate a general analytical boundary value solution applicable to a broad class of trajectory problems. In addition, the earlier first-order solutions have been extended to second-order to determine if improved accuracy is possible. Comparisons between the asymptotic solution and numerical integration for several lunar and interplanetary trajectories show that the asymptotic solution is generally quite accurate. Also, since no iterations are required, a solution to the boundary value problem is obtained in a fraction of the time required for numerically integrated solutions.
NASA Technical Reports Server (NTRS)
Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.
1992-01-01
The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.
Interface modeling in incompressible media using level sets in Escript
NASA Astrophysics Data System (ADS)
Gross, L.; Bourgouin, L.; Hale, A. J.; Mühlhaus, H.-B.
2007-08-01
We use a finite element (FEM) formulation of the level set method to model geological fluid flow problems involving interface propagation. Interface problems are ubiquitous in geophysics. Here we focus on a Rayleigh-Taylor instability, namely mantel plumes evolution, and the growth of lava domes. Both problems require the accurate description of the propagation of an interface between heavy and light materials (plume) or between high viscous lava and low viscous air (lava dome), respectively. The implementation of the models is based on Escript which is a Python module for the solution of partial differential equations (PDEs) using spatial discretization techniques such as FEM. It is designed to describe numerical models in the language of PDEs while using computational components implemented in C and C++ to achieve high performance for time-intensive, numerical calculations. A critical step in the solution geological flow problems is the solution of the velocity-pressure problem. We describe how the Escript module can be used for a high-level implementation of an efficient variant of the well-known Uzawa scheme. We begin with a brief outline of the Escript modules and then present illustrations of its usage for the numerical solutions of the problems mentioned above.
Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Loh, Ching Y.
2004-01-01
The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.
Novel approach for dam break flow modeling using computational intelligence
NASA Astrophysics Data System (ADS)
Seyedashraf, Omid; Mehrabi, Mohammad; Akhtari, Ali Akbar
2018-04-01
A new methodology based on the computational intelligence (CI) system is proposed and tested for modeling the classic 1D dam-break flow problem. The reason to seek for a new solution lies in the shortcomings of the existing analytical and numerical models. This includes the difficulty of using the exact solutions and the unwanted fluctuations, which arise in the numerical results. In this research, the application of the radial-basis-function (RBF) and multi-layer-perceptron (MLP) systems is detailed for the solution of twenty-nine dam-break scenarios. The models are developed using seven variables, i.e. the length of the channel, the depths of the up-and downstream sections, time, and distance as the inputs. Moreover, the depths and velocities of each computational node in the flow domain are considered as the model outputs. The models are validated against the analytical, and Lax-Wendroff and MacCormack FDM schemes. The findings indicate that the employed CI models are able to replicate the overall shape of the shock- and rarefaction-waves. Furthermore, the MLP system outperforms RBF and the tested numerical schemes. A new monolithic equation is proposed based on the best fitting model, which can be used as an efficient alternative to the existing piecewise analytic equations.
On concentrated solute sources in faulted aquifers
NASA Astrophysics Data System (ADS)
Robinson, N. I.; Werner, A. D.
2017-06-01
Finite aperture faults and fractures within aquifers (collectively called 'faults' hereafter) theoretically enable flowing water to move through them but with refractive displacement, both on entry and exit. When a 2D or 3D point source of solute concentration is located upstream of the fault, the plume emanating from the source relative to one in a fault-free aquifer is affected by the fault, both before it and after it. Previous attempts to analyze this situation using numerical methods faced challenges in overcoming computational constraints that accompany requisite fine mesh resolutions. To address these, an analytical solution of this problem is developed and interrogated using statistical evaluation of solute distributions. The method of solution is based on novel spatial integral representations of the source with axes rotated from the direction of uniform water flow and aligning with fault faces and normals. Numerical exemplification is given to the case of a 2D steady state source, using various parameter combinations. Statistical attributes of solute plumes show the relative impact of parameters, the most important being, fault rotation, aperture and conductivity ratio. New general observations of fault-affected solution plumes are offered, including: (a) the plume's mode (i.e. peak concentration) on the downstream face of the fault is less displaced than the refracted groundwater flowline, but at some distance downstream of the fault, these realign; (b) porosities have no influence in steady state calculations; (c) previous numerical modeling results of barrier faults show significant boundary effects. The current solution adds to available benchmark problems involving fractures, faults and layered aquifers, in which grid resolution effects are often barriers to accurate simulation.
Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell.
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-01-01
Thanks to recent developments in additive manufacturing techniques, it is now possible to fabricate porous biomaterials with arbitrarily complex micro-architectures. Micro-architectures of such biomaterials determine their physical and biological properties, meaning that one could potentially improve the performance of such biomaterials through rational design of micro-architecture. The relationship between the micro-architecture of porous biomaterials and their physical and biological properties has therefore received increasing attention recently. In this paper, we studied the mechanical properties of porous biomaterials made from a relatively unexplored unit cell, namely rhombicuboctahedron. We derived analytical relationships that relate the micro-architecture of such porous biomaterials, i.e. the dimensions of the rhombicuboctahedron unit cell, to their elastic modulus, Poisson's ratio, and yield stress. Finite element models were also developed to validate the analytical solutions. Analytical and numerical results were compared with experimental data from one of our recent studies. It was found that analytical solutions and numerical results show a very good agreement particularly for smaller values of apparent density. The elastic moduli predicted by analytical and numerical models were in very good agreement with experimental observations too. While in excellent agreement with each other, analytical and numerical models somewhat over-predicted the yield stress of the porous structures as compared to experimental data. As the ratio of the vertical struts to the inclined struts, α, approaches zero and infinity, the rhombicuboctahedron unit cell respectively approaches the octahedron (or truncated cube) and cube unit cells. For those limits, the analytical solutions presented here were found to approach the analytic solutions obtained for the octahedron, truncated cube, and cube unit cells, meaning that the presented solutions are generalizations of the analytical solutions obtained for several other types of porous biomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-12-22
Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less
Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less
NASA Astrophysics Data System (ADS)
Ortleb, Sigrun; Seidel, Christian
2017-07-01
In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.
NASA Astrophysics Data System (ADS)
Gencoglu, Muharrem Tuncay; Baskonus, Haci Mehmet; Bulut, Hasan
2017-01-01
The main aim of this manuscript is to obtain numerical solutions for the nonlinear model of interpersonal relationships with time fractional derivative. The variational iteration method is theoretically implemented and numerically conducted only to yield the desired solutions. Numerical simulations of desired solutions are plotted by using Wolfram Mathematica 9. The authors would like to thank the reviewers for their comments that help improve the manuscript.
NASA Astrophysics Data System (ADS)
Ge, Yongbin; Cao, Fujun
2011-05-01
In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33-53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.
Atmospheric guidance law for planar skip trajectories
NASA Technical Reports Server (NTRS)
Mease, K. D.; Mccreary, F. A.
1985-01-01
The applicability of an approximate, closed-form, analytical solution to the equations of motion, as a basis for a deterministic guidance law for controlling the in-plane motion during a skip trajectory, is investigated. The derivation of the solution by the method of matched asymptotic expansions is discussed. Specific issues that arise in the application of the solution to skip trajectories are addressed. Based on the solution, an explicit formula for the approximate energy loss due to an atmospheric pass is derived. A guidance strategy is proposed that illustrates the use of the approximate solution. A numerical example shows encouraging performance.
NASA Astrophysics Data System (ADS)
Gao, Zhiwen; Zhou, Youhe
2015-04-01
Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.
Numerical Modeling in Geodynamics: Success, Failure and Perspective
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2005-12-01
A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.
Life insurance risk assessment using a fuzzy logic expert system
NASA Technical Reports Server (NTRS)
Carreno, Luis A.; Steel, Roy A.
1992-01-01
In this paper, we present a knowledge based system that combines fuzzy processing with rule-based processing to form an improved decision aid for evaluating risk for life insurance. This application illustrates the use of FuzzyCLIPS to build a knowledge based decision support system possessing fuzzy components to improve user interactions and KBS performance. The results employing FuzzyCLIPS are compared with the results obtained from the solution of the problem using traditional numerical equations. The design of the fuzzy solution consists of a CLIPS rule-based system for some factors combined with fuzzy logic rules for others. This paper describes the problem, proposes a solution, presents the results, and provides a sample output of the software product.
Hierarchic plate and shell models based on p-extension
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Sahrmann, Glenn J.
1988-01-01
Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest.
Finding all solutions of nonlinear equations using the dual simplex method
NASA Astrophysics Data System (ADS)
Yamamura, Kiyotaka; Fujioka, Tsuyoshi
2003-03-01
Recently, an efficient algorithm has been proposed for finding all solutions of systems of nonlinear equations using linear programming. This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations using the dual simplex method. In this letter, an improved version of the LP test algorithm is proposed. By numerical examples, it is shown that the proposed algorithm could find all solutions of a system of 300 nonlinear equations in practical computation time.
NASA Astrophysics Data System (ADS)
Lezina, Natalya; Agoshkov, Valery
2017-04-01
Domain decomposition method (DDM) allows one to present a domain with complex geometry as a set of essentially simpler subdomains. This method is particularly applied for the hydrodynamics of oceans and seas. In each subdomain the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations is solved. The problem of obtaining solution in the whole domain is that it is necessary to combine solutions in subdomains. For this purposes iterative algorithm is created and numerical experiments are conducted to investigate an effectiveness of developed algorithm using DDM. For symmetric operators in DDM, Poincare-Steklov's operators [1] are used, but for the problems of the hydrodynamics, it is not suitable. In this case for the problem, adjoint equation method [2] and inverse problem theory are used. In addition, it is possible to create algorithms for the parallel calculations using DDM on multiprocessor computer system. DDM for the model of the Baltic Sea dynamics is numerically studied. The results of numerical experiments using DDM are compared with the solution of the system of hydrodynamic equations in the whole domain. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments). [1] V.I. Agoshkov, Domain Decompositions Methods in the Mathematical Physics Problem // Numerical processes and systems, No 8, Moscow, 1991 (in Russian). [2] V.I. Agoshkov, Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problem, Institute of Numerical Mathematics, RAS, Moscow, 2003 (in Russian).
NASA Astrophysics Data System (ADS)
Alard, Robert; Gustafsson, Martin; Nienhaus, Jörg
The management of buyer-supplier relations is a major topic for many enterprises today. Modern Information and Communication Technologies (ICT) offer interesting perspectives on opportunities and implementation approaches. Today, logistics and procurement departments of numerous enterprises are evaluating the possibilities and opportunities of new ICT solutions and especially of internet-based electronic procurement solutions for the optimisation and re-engineering of their buyer-supplier relationships. Due to the highly innovative character of the new ICT solutions and the scarcely available operational examples in the industry, only little guidance exists to support responsible managers during the evaluation, planning and designing of internet-based electronic procurement solutions. This paper describes a framework for the strategic evaluation and planning of the deployment of internet-based procurement solutions for direct materials. The presented approach supports enterprises in the analysis of procurement objects and procurement structuring, in the definition and management of buyer-supplier-relationships, in the requirements analysis of ICT solutions as well as the assessment of the potential to support procurement with innovative ICT and internet-based electronic procurement solutions.
An MPI-based MoSST core dynamics model
NASA Astrophysics Data System (ADS)
Jiang, Weiyuan; Kuang, Weijia
2008-09-01
Distributed systems are among the main cost-effective and expandable platforms for high-end scientific computing. Therefore scalable numerical models are important for effective use of such systems. In this paper, we present an MPI-based numerical core dynamics model for simulation of geodynamo and planetary dynamos, and for simulation of core-mantle interactions. The model is developed based on MPI libraries. Two algorithms are used for node-node communication: a "master-slave" architecture and a "divide-and-conquer" architecture. The former is easy to implement but not scalable in communication. The latter is scalable in both computation and communication. The model scalability is tested on Linux PC clusters with up to 128 nodes. This model is also benchmarked with a published numerical dynamo model solution.
An integral equation-based numerical solver for Taylor states in toroidal geometries
NASA Astrophysics Data System (ADS)
O'Neil, Michael; Cerfon, Antoine J.
2018-04-01
We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.
Theory of precipitation effects on dead cylindrical fuels
Michael A. Fosberg
1972-01-01
Numerical and analytical solutions of the Fickian diffusion equation were used to determine the effects of precipitation on dead cylindrical forest fuels. The analytical solution provided a physical framework. The numerical solutions were then used to refine the analytical solution through a similarity argument. The theoretical solutions predicted realistic rates of...
Chemical transport in a fissured rock: Verification of a numerical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decaymore » and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. work in this direction is in progress.« less
Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.
Bednarik, Michal; Cervenka, Milan
2014-03-01
This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.
Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer.
Yang, Jiashi; Chen, Ziguang; Hu, Yuantai; Jiang, Shunong; Guo, Shaohua
2007-04-01
We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps.
NASA Technical Reports Server (NTRS)
Crook, Andrew J.; Delaney, Robert A.
1992-01-01
The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.
Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals
NASA Astrophysics Data System (ADS)
Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.
2011-08-01
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. The first part of the paper derives the fundamental equations for BHE systems and their finite element representations, where the thermal exchange between the borehole components is modeled via thermal transfer relations. For this purpose improved relationships for thermal resistances and capacities of BHE are introduced. Pipe-to-grout thermal transfer possesses multiple grout points for double U-shape and single U-shape BHE to attain a more accurate modeling. The numerical solution of the final 3D problems is performed via a widely non-sequential (essentially non-iterative) coupling strategy for the BHE and porous medium discretization. Four types of vertical BHE are supported: double U-shape (2U) pipe, single U-shape (1U) pipe, coaxial pipe with annular (CXA) and centred (CXC) inlet. Two computational strategies are used: (1) The analytical BHE method based on Eskilson and Claesson's (1988) solution, (2) numerical BHE method based on Al-Khoury et al.'s (2005) solution. The second part of the paper focusses on BHE meshing aspects, the validation of BHE solutions and practical applications for borehole thermal energy store systems.
Upwind schemes and bifurcating solutions in real gas computations
NASA Technical Reports Server (NTRS)
Suresh, Ambady; Liou, Meng-Sing
1992-01-01
The area of high speed flow is seeing a renewed interest due to advanced propulsion concepts such as the National Aerospace Plane (NASP), Space Shuttle, and future civil transport concepts. Upwind schemes to solve such flows have become increasingly popular in the last decade due to their excellent shock capturing properties. In the first part of this paper the authors present the extension of the Osher scheme to equilibrium and non-equilibrium gases. For simplicity, the source terms are treated explicitly. Computations based on the above scheme are presented to demonstrate the feasibility, accuracy and efficiency of the proposed scheme. One of the test problems is a Chapman-Jouguet detonation problem for which numerical solutions have been known to bifurcate into spurious weak detonation solutions on coarse grids. Results indicate that the numerical solution obtained depends both on the upwinding scheme used and the limiter employed to obtain second order accuracy. For example, the Osher scheme gives the correct CJ solution when the super-bee limiter is used, but gives the spurious solution when the Van Leer limiter is used. With the Roe scheme the spurious solution is obtained for all limiters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konor, Celal S.; Randall, David A.
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
Analytical and numerical analysis of frictional damage in quasi brittle materials
NASA Astrophysics Data System (ADS)
Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.
2016-07-01
Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.
Konor, Celal S.; Randall, David A.
2018-05-08
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
NASA Astrophysics Data System (ADS)
Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah
2018-04-01
This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual artifact banding phenomenon unlike the proposed method and USRM. In all, the proposed permeability and porosity fields generation coupled with the numerical simulator developed will aid in developing efficient mobility control schemes to improve on poor volumetric sweep efficiency in porous media.
NASA Astrophysics Data System (ADS)
Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul
2016-08-01
Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.
A numerical spectral approach to solve the dislocation density transport equation
NASA Astrophysics Data System (ADS)
Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.
2015-09-01
A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.
Fast numerics for the spin orbit equation with realistic tidal dissipation and constant eccentricity
NASA Astrophysics Data System (ADS)
Bartuccelli, Michele; Deane, Jonathan; Gentile, Guido
2017-08-01
We present an algorithm for the rapid numerical integration of a time-periodic ODE with a small dissipation term that is C^1 in the velocity. Such an ODE arises as a model of spin-orbit coupling in a star/planet system, and the motivation for devising a fast algorithm for its solution comes from the desire to estimate probability of capture in various solutions, via Monte Carlo simulation: the integration times are very long, since we are interested in phenomena occurring on timescales of the order of 10^6-10^7 years. The proposed algorithm is based on the high-order Euler method which was described in Bartuccelli et al. (Celest Mech Dyn Astron 121(3):233-260, 2015), and it requires computer algebra to set up the code for its implementation. The payoff is an overall increase in speed by a factor of about 7.5 compared to standard numerical methods. Means for accelerating the purely numerical computation are also discussed.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles
NASA Astrophysics Data System (ADS)
Tzirtzilakis, E. E.
2015-06-01
In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.
Aplanatic Three-Mirror Objective for High-Magnification Soft X-Ray Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyoda, M.; Jinno, T.; Yanagihara, M.
2011-09-09
An innovative solution for high-magnification microscopy, based on attaching afocal optics for focal length reduction, is proposed. The solution, consisting of three spherical mirrors, allows one to enhance a magnification of a laboratory based soft x-ray microscope over 1000x, where movies with diffraction-limited resolution can be observed with an x-ray CCD. The design example, having a numerical aperture of 0.25, was successfully demonstrated both a high magnification and a large field of view.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashyralyev, Allaberen; Okur, Ulker
In the present paper, the Crank-Nicolson difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is considered. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, convergence estimates for the solution of difference schemes for the numerical solution of three mixed problems for parabolic equations are obtained. The numerical results are given.
A 2D flood inundation model based on cellular automata approach
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Todini, Ezio
2010-05-01
In the past years, the cellular automata approach has been successfully applied in two-dimensional modelling of flood events. When used in experimental applications, models based on such approach have provided good results, comparable to those obtained with more complex 2D models; moreover, CA models have proven significantly faster and easier to apply than most of existing models, and these features make them a valuable tool for flood analysis especially when dealing with large areas. However, to date the real degree of accuracy of such models has not been demonstrated, since they have been mainly used in experimental applications, while very few comparisons with theoretical solutions have been made. Also, the use of an explicit scheme of solution, which is inherent in cellular automata models, forces them to work only with small time steps, thus reducing model computation speed. The present work describes a cellular automata model based on the continuity and diffusive wave equations. Several model versions based on different solution schemes have been realized and tested in a number of numerical cases, both 1D and 2D, comparing the results with theoretical and numerical solutions. In all cases, the model performed well compared to the reference solutions, and proved to be both stable and accurate. Finally, the version providing the best results in terms of stability was tested in a real flood event and compared with different hydraulic models. Again, the cellular automata model provided very good results, both in term of computational speed and reproduction of the simulated event.
NASA Astrophysics Data System (ADS)
Khataybeh, S. N.; Hashim, I.
2018-04-01
In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.
NASA Astrophysics Data System (ADS)
Navas-Montilla, A.; Murillo, J.
2017-07-01
When designing a numerical scheme for the resolution of conservation laws, the selection of a particular source term discretization (STD) may seem irrelevant whenever it ensures convergence with mesh refinement, but it has a decisive impact on the solution. In the framework of the Shallow Water Equations (SWE), well-balanced STD based on quiescent equilibrium are unable to converge to physically based solutions, which can be constructed considering energy arguments. Energy based discretizations can be designed assuming dissipation or conservation, but in any case, the STD procedure required should not be merely based on ad hoc approximations. The STD proposed in this work is derived from the Generalized Hugoniot Locus obtained from the Generalized Rankine Hugoniot conditions and the Integral Curve across the contact wave associated to the bed step. In any case, the STD must allow energy-dissipative solutions: steady and unsteady hydraulic jumps, for which some numerical anomalies have been documented in the literature. These anomalies are the incorrect positioning of steady jumps and the presence of a spurious spike of discharge inside the cell containing the jump. The former issue can be addressed by proposing a modification of the energy-conservative STD that ensures a correct dissipation rate across the hydraulic jump, whereas the latter is of greater complexity and cannot be fixed by simply choosing a suitable STD, as there are more variables involved. The problem concerning the spike of discharge is a well-known problem in the scientific community, also known as slowly-moving shock anomaly, it is produced by a nonlinearity of the Hugoniot locus connecting the states at both sides of the jump. However, it seems that this issue is more a feature than a problem when considering steady solutions of the SWE containing hydraulic jumps. The presence of the spurious spike in the discharge has been taken for granted and has become a feature of the solution. Even though it does not disturb the rest of the solution in steady cases, when considering transient cases it produces a very undesirable shedding of spurious oscillations downstream that should be circumvented. Based on spike-reducing techniques (originally designed for homogeneous Euler equations) that propose the construction of interpolated fluxes in the untrustworthy regions, we design a novel Roe-type scheme for the SWE with discontinuous topography that reduces the presence of the aforementioned spurious spike. The resulting spike-reducing method in combination with the proposed STD ensures an accurate positioning of steady jumps, provides convergence with mesh refinement, which was not possible for previous methods that cannot avoid the spike.
Validation of the enthalpy method by means of analytical solution
NASA Astrophysics Data System (ADS)
Kleiner, Thomas; Rückamp, Martin; Bondzio, Johannes; Humbert, Angelika
2014-05-01
Numerical simulations moved in the recent year(s) from describing the cold-temperate transition surface (CTS) towards an enthalpy description, which allows avoiding incorporating a singular surface inside the model (Aschwanden et al., 2012). In Enthalpy methods the CTS is represented as a level set of the enthalpy state variable. This method has several numerical and practical advantages (e.g. representation of the full energy by one scalar field, no restriction to topology and shape of the CTS). The proposed method is rather new in glaciology and to our knowledge not verified and validated against analytical solutions. Unfortunately we are still lacking analytical solutions for sufficiently complex thermo-mechanically coupled polythermal ice flow. However, we present two experiments to test the implementation of the enthalpy equation and corresponding boundary conditions. The first experiment tests particularly the functionality of the boundary condition scheme and the corresponding basal melt rate calculation. Dependent on the different thermal situations that occur at the base, the numerical code may have to switch to another boundary type (from Neuman to Dirichlet or vice versa). The main idea of this set-up is to test the reversibility during transients. A former cold ice body that run through a warmer period with an associated built up of a liquid water layer at the base must be able to return to its initial steady state. Since we impose several assumptions on the experiment design analytical solutions can be formulated for different quantities during distinct stages of the simulation. The second experiment tests the positioning of the internal CTS in a parallel-sided polythermal slab. We compare our simulation results to the analytical solution proposed by Greve and Blatter (2009). Results from three different ice flow-models (COMIce, ISSM, TIMFD3) are presented.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
A cubic spline based Galerkin-like method is developed for the identification of a class of hybrid systems which describe the transverse vibration to flexible beams with attached tip bodies. The identification problem is formulated as a least squares fit to data subject to the system dynamics given by a coupled system of ordnary and partial differential equations recast as an abstract evolution equation (AEE) in an appropriate infinite dimensional Hilbert space. Projecting the AEE into spline-based subspaces leads naturally to a sequence of approximating finite dimensional identification problems. The solutions to these problems are shown to exist, are relatively easily computed, and are shown to, in some sense, converge to solutions to the original identification problem. Numerical results for a variety of examples are discussed.
Design and simulation of a cable-pulley-based transmission for artificial ankle joints
NASA Astrophysics Data System (ADS)
Liu, Huaxin; Ceccarelli, Marco; Huang, Qiang
2016-06-01
In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed for proper biomimetic inspiration in designing an accurate, efficient, and robust motion control of artificial ankle joint devices. The design procedure is presented through the inclusion of conceptual considerations and design details for an interactive solution of the transmission system. A mechanical design is elaborated for the ankle joint angular with pitch motion. A multi-body dynamic simulation model is elaborated accordingly and evaluated numerically in the ADAMS environment. Results of the numerical simulations are discussed to evaluate the dynamic performance of the proposed design solution and to investigate the feasibility of the proposed design in future applications for humanoid robots.
NASA Technical Reports Server (NTRS)
Hafez, M.; Ahmad, J.; Kuruvila, G.; Salas, M. D.
1987-01-01
In this paper, steady, axisymmetric inviscid, and viscous (laminar) swirling flows representing vortex breakdown phenomena are simulated using a stream function-vorticity-circulation formulation and two numerical methods. The first is based on an inverse iteration, where a norm of the solution is prescribed and the swirling parameter is calculated as a part of the output. The second is based on direct Newton iterations, where the linearized equations, for all the unknowns, are solved simultaneously by an efficient banded Gaussian elimination procedure. Several numerical solutions for inviscid and viscous flows are demonstrated, followed by a discussion of the results. Some improvements on previous work have been achieved: first order upwind differences are replaced by second order schemes, line relaxation procedure (with linear convergence rate) is replaced by Newton's iterations (which converge quadratically), and Reynolds numbers are extended from 200 up to 1000.
Oran, Omer Faruk; Ider, Yusuf Ziya
2012-08-21
Most algorithms for magnetic resonance electrical impedance tomography (MREIT) concentrate on reconstructing the internal conductivity distribution of a conductive object from the Laplacian of only one component of the magnetic flux density (∇²B(z)) generated by the internal current distribution. In this study, a new algorithm is proposed to solve this ∇²B(z)-based MREIT problem which is mathematically formulated as the steady-state scalar pure convection equation. Numerical methods developed for the solution of the more general convection-diffusion equation are utilized. It is known that the solution of the pure convection equation is numerically unstable if sharp variations of the field variable (in this case conductivity) exist or if there are inconsistent boundary conditions. Various stabilization techniques, based on introducing artificial diffusion, are developed to handle such cases and in this study the streamline upwind Petrov-Galerkin (SUPG) stabilization method is incorporated into the Galerkin weighted residual finite element method (FEM) to numerically solve the MREIT problem. The proposed algorithm is tested with simulated and also experimental data from phantoms. Successful conductivity reconstructions are obtained by solving the related convection equation using the Galerkin weighted residual FEM when there are no sharp variations in the actual conductivity distribution. However, when there is noise in the magnetic flux density data or when there are sharp variations in conductivity, it is found that SUPG stabilization is beneficial.
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.
1982-01-01
A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.
Modelling technological process of ion-exchange filtration of fluids in porous media
NASA Astrophysics Data System (ADS)
Ravshanov, N.; Saidov, U. M.
2018-05-01
Solution of an actual problem related to the process of filtration and dehydration of liquid and ionic solutions from gel particles and heavy ionic compounds is considered in the paper. This technological process is realized during the preparation and cleaning of chemical solutions, drinking water, pharmaceuticals, liquid fuels, products for public use, etc. For the analysis, research, determination of the main parameters of the technological process and operating modes of filter units and for support in managerial decision-making, a mathematical model is developed. Using the developed model, a series of computational experiments on a computer is carried out. The results of numerical calculations are illustrated in the form of graphs. Based on the analysis of numerical experiments, the conclusions are formulated that serve as the basis for making appropriate managerial decisions.
Iterative discrete ordinates solution of the equation for surface-reflected radiance
NASA Astrophysics Data System (ADS)
Radkevich, Alexander
2017-11-01
This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.
A comparison of solute-transport solution techniques based on inverse modelling results
Mehl, S.; Hill, M.C.
2000-01-01
Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.
Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui
2018-06-01
Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.
Hydromagnetic flow of a Cu-water nanofluid past a moving wedge with viscous dissipation
NASA Astrophysics Data System (ADS)
M. Salem, A.; Galal, Ismail; Rania, Fathy
2014-04-01
A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter λ, solid volume fraction φ, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.
Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law
NASA Astrophysics Data System (ADS)
Ahokposi, D. P.; Atangana, Abdon; Vermeulen, D. P.
2017-04-01
Modelling the flow of groundwater within a network of fractures is perhaps one of the most difficult exercises within the field of geohydrology. This physical problem has attracted the attention of several scientists across the globe. Already two different types of differentiations have been used to attempt modelling this problem including the classical and the fractional differentiation. In this paper, we employed the most recent concept of differentiation based on the non-local and non-singular kernel called the generalized Mittag-Leffler function, to reshape the model of groundwater fractal flow. We presented the existence of positive solution of the new model. Using the fixed-point approach, we established the uniqueness of the positive solution. We solve the new model with three different numerical schemes including implicit, explicit and Crank-Nicholson numerical methods. Experimental data collected from four constant discharge tests conducted in a typical fractured crystalline rock aquifer of the Northern Limb (Bushveld Complex) in the Limpopo Province (South Africa) are compared with the numerical solutions. It is worth noting that the four boreholes (BPAC1, BPAC2, BPAC3, and BPAC4) are located on Faults.
Evidence for a scaling solution in cosmic-string evolution
NASA Technical Reports Server (NTRS)
Bennett, David P.; Bouchet, Francois R.
1988-01-01
Numerical simulations are used to study the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. Strong evidence is found that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation is based. The main conclusion coincides with that of Albrecht and Turok (1985) but the results are not consistent with theirs. In fact, the results indicate that the details of string evolution are very different from the standard dogma.
NASA Technical Reports Server (NTRS)
Rosenfeld, Moshe
1990-01-01
The main goals are the development, validation, and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems. A solution method that combines a finite volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.
NASA Astrophysics Data System (ADS)
Matyushov, Dmitry V.
2010-02-01
A theory of radiation absorption by dielectric mixtures is presented. The coarse-grained formulation is based on the wave-vector-dependent correlation functions of molecular dipoles of the host polar liquid and a density structure factor of the solutes. A nonlinear dependence of the dielectric absorption coefficient on the solute concentration is predicted and originates from the mutual polarization of the liquid surrounding the solutes by the collective field of the solute dipoles aligned along the radiation field. The theory is applied to terahertz absorption of hydrated saccharides and proteins. While the theory gives an excellent account of the observations for saccharides, without additional assumptions and fitting parameters, experimental absorption coefficient of protein solutions significantly exceeds theoretical calculations with dipole moment of the bare protein assigned to the solute and shows a peak against the protein concentration. A substantial polarization of protein’s hydration shell, resulting in a net dipole moment, is required to explain the disagreement between theory and experiment. When the correlation function of the total dipole moment of the protein with its hydration shell from numerical simulations is used in the analytical model, an absorption peak, qualitatively similar to that seen in experiment, is obtained. The existence and position of the peak are sensitive to the specifics of the protein-protein interactions. Numerical testing of the theory requires the combination of dielectric and small-angle scattering measurements. The calculations confirm that “elastic ferroelectric bag” of water shells observed in previous numerical simulations is required to explain terahertz dielectric measurements.
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.
2018-03-01
In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.
Comparison of NACA 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Langer, S.
2016-01-01
In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years, such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 × 106 grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions.
Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach
NASA Astrophysics Data System (ADS)
Antón, Luis; Zanotti, Olindo; Miralles, Juan A.; Martí, José M.; Ibáñez, José M.; Font, José A.; Pons, José A.
2006-01-01
We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodynamics (Banyuls et al. 1997) where magnetic fields were not considered. The GRMHD equations are written in conservative form to exploit their hyperbolic character in the solution procedure. All theoretical ingredients necessary to build up high-resolution shock-capturing schemes based on the solution of local Riemann problems (i.e., Godunov-type schemes) are described. In particular, we use a renormalized set of regular eigenvectors of the flux Jacobians of the relativistic MHD equations. In addition, the paper describes a procedure based on the equivalence principle of general relativity that allows the use of Riemann solvers designed for special relativistic MHD in GRMHD. Our formulation and numerical methodology are assessed by performing various test simulations recently considered by different authors. These include magnetized shock tubes, spherical accretion onto a Schwarzschild black hole, equatorial accretion onto a Kerr black hole, and magnetized thick disks accreting onto a black hole and subject to the magnetorotational instability.
Large calculation of the flow over a hypersonic vehicle using a GPU
NASA Astrophysics Data System (ADS)
Elsen, Erich; LeGresley, Patrick; Darve, Eric
2008-12-01
Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.
NASA Astrophysics Data System (ADS)
Scala, Antonio; Festa, Gaetano; Vilotte, Jean-Pierre
2017-04-01
Earthquake ruptures often develop along faults separating materials with dissimilar elastic properties. Due to the broken symmetry, the propagation of the rupture along the bimaterial interface is driven by the coupling between interfacial sliding and normal traction perturbations. We numerically investigate in-plane rupture growth along a planar interface, under slip weakening friction, separating two dissimilar isotropic linearly elastic half-spaces. We perform a parametric study of the classical Prakash-Clifton regularisation for different material contrasts. In particular mesh-dependence and regularisation-dependence of the numerical solutions are analysed in this parameter space. When regularisation involves a slip-rate dependent relaxation time, a characteristic sliding distance is identified below which numerical solutions no longer depend on the regularisation parameter, i.e. they are consistent solutions of the same physical problem. Such regularisation provides an adaptive high-frequency filter of the slip-induced normal traction perturbations, following the dynamic shrinking of the dissipation zone during the acceleration phase. In contrast, regularisation involving a constant relaxation time leads to numerical solutions that always depend on the regularisation parameter since it fails adapting to the shrinking of the process zone. Dynamic regularisation is further investigated using a non-local regularisation based on a relaxation time that depends on the dynamic length of the dissipation zone. Such reformulation is shown to provide similar results as the dynamic time scale regularisation proposed by Prakash-Clifton when slip rate is replaced by the maximum slip rate along the sliding interface. This leads to the identification of a dissipative length scale associated with the coupling between interfacial sliding and normal traction perturbations, together with a scaling law between the maximum slip rate and the dynamic size of the process zone during the rupture propagation. Dynamic time scale regularisation is show to provide mesh-independent and physically well-posed numerical solutions during the acceleration phase toward an asymptotic speed. When generalised Rayleigh wave does not exist, numerical solutions are shown to tend toward an asymptotic velocity higher than the slowest shear wave speed. When generalised Rayleigh wave speed exists, as numerical solutions tend toward this velocity, increasing spurious oscillations develop and solutions become unstable. In this regime regularisation dependent and unstable finite-size pulses may be generated. This instability is associated with the singular behaviour of the slip-induced normal traction perturbations, and of the slip rate at the rupture front, in relation with complete shrinking of the dissipation zone. This phase requires to be modelled either by more complex interface constitutive laws involving velocity-strengthening effects that may stabilize short wavelength interfacial propagating modes or by considering non-ideal interfaces that introduce a new length scale in the problem that may promote selection and stabilization of the slip pulses.
Numerical and experimental study of electron-beam coatings with modifying particles FeB and FeTi
NASA Astrophysics Data System (ADS)
Kryukova, Olga; Kolesnikova, Kseniya; Gal'chenko, Nina
2016-07-01
An experimental study of wear-resistant composite coatings based on titanium borides synthesized in the process of electron-beam welding of components thermo-reacting powders are composed of boron-containing mixture. A model of the process of electron beam coating with modifying particles of boron and titanium based on physical-chemical transformations is supposed. The dissolution process is described on the basis of formal kinetic approach. The result of numerical solution is the phase and chemical composition of the coating under nonequilibrium conditions, which is one of the important characteristics of the coating forming during electron beam processing. Qualitative agreement numerical calculations with experimental data was shown.
NASA Astrophysics Data System (ADS)
Chew, J. V. L.; Sulaiman, J.
2017-09-01
Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.
Satellite attitude motion models for capture and retrieval investigations
NASA Technical Reports Server (NTRS)
Cochran, John E., Jr.; Lahr, Brian S.
1986-01-01
The primary purpose of this research is to provide mathematical models which may be used in the investigation of various aspects of the remote capture and retrieval of uncontrolled satellites. Emphasis has been placed on analytical models; however, to verify analytical solutions, numerical integration must be used. Also, for satellites of certain types, numerical integration may be the only practical or perhaps the only possible method of solution. First, to provide a basis for analytical and numerical work, uncontrolled satellites were categorized using criteria based on: (1) orbital motions, (2) external angular momenta, (3) internal angular momenta, (4) physical characteristics, and (5) the stability of their equilibrium states. Several analytical solutions for the attitude motions of satellite models were compiled, checked, corrected in some minor respects and their short-term prediction capabilities were investigated. Single-rigid-body, dual-spin and multi-rotor configurations are treated. To verify the analytical models and to see how the true motion of a satellite which is acted upon by environmental torques differs from its corresponding torque-free motion, a numerical simulation code was developed. This code contains a relatively general satellite model and models for gravity-gradient and aerodynamic torques. The spacecraft physical model for the code and the equations of motion are given. The two environmental torque models are described.
NASA Astrophysics Data System (ADS)
Heuzé, Thomas
2017-10-01
We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.
Water and solute transport parameterization form a soil of semi-arid region of northeast of Brazil
NASA Astrophysics Data System (ADS)
Netto, A. M.; Antonino, A. C. D.; Lima, L. J. S.; Angulo-Jaramillo, R.; Montenegro, S. M. G.
2003-04-01
Water and solute transfer modeling needs the transport parameters as input data. Classical theory, Fickian advection-dispersion, is not successfully applied to account for solute transport along with preferential flow pathways. This transport may be operating at scales smaller than spatial discretization used in a field scale numerical model. An axisymetric infiltration using a single ring infiltrometer along with a conservative tracer (Cl^-) is an efficient and easy method to use in fields tools. Two experiments were accomplished on a Yellow Oxissol in a 4,0 ha area in Centro de Ciências Agrárias, UFPB, Areia City, Paraíba State, Brazil (6^o 58'S, 35o 41'W and 645 m), in a 50 × 50 m grid (16 points): a) cultivated with beans (Vigna Unguinculata (L.) Walp.), and b) bare soil after harvest. The unsaturated hydraulic conductivity K and sorptivity S were estimated from short time or long time analysis of cumulative three dimensional infiltration. Single tracer technique was used for the calculation of mobile water fraction f by measuring the solute concentration underneath the ring infiltrometer, at the end of infiltration. A solute transfer numerical model, based on the mobile-immobile water concept, was used for the determination of the solute transport parameters. The mobile water fraction f, the dispersion coefficient D, and the mass transfer coefficient α, were estimated from both the measured infiltration depth and concentration profile underneath the ring infiltrometer. The presence of preferential flow was due to the soil nature (aggregated soil, macropores, flux instabilities and heterogeneity). The lateral solute transfer is not only diffusive but also convective. The parameters deduced from the numerical model associated to the solute profile concentration are representative of this phenomenon.
One-dimensional model and solutions for creeping gas flows in the approximation of uniform pressure
NASA Astrophysics Data System (ADS)
Vedernikov, A.; Balapanov, D.
2016-11-01
A model, along with analytical and numerical solutions, is presented to describe a wide variety of one-dimensional slow flows of compressible heat-conductive fluids. The model is based on the approximation of uniform pressure valid for the flows, in which the sound propagation time is much shorter than the duration of any meaningful density variation in the system. The energy balance is described by the heat equation that is solved independently. This approach enables the explicit solution for the fluid velocity to be obtained. Interfacial and volumetric heat and mass sources as well as boundary motion are considered as possible sources of density variation in the fluid. A set of particular tasks is analyzed for different motion sources in planar, axial, and central symmetries in the quasistationary limit of heat conduction (i.e., for large Fourier number). The analytical solutions are in excellent agreement with corresponding numerical solutions of the whole system of the Navier-Stokes equations. This work deals with the ideal gas. The approach is also valid for other equations of state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Din, Alif
2016-08-15
The theory of positive-ion collection by a probe immersed in a low-pressure plasma was reviewed and extended by Allen et al. [Proc. Phys. Soc. 70, 297 (1957)]. The numerical computations for cylindrical and spherical probes in a sheath region were presented by F. F. Chen [J. Nucl. Energy C 7, 41 (1965)]. Here, in this paper, the sheath and presheath solutions for a cylindrical probe are matched through a numerical matching procedure to yield “matched” potential profile or “M solution.” The solution based on the Bohm criterion approach “B solution” is discussed for this particular problem. The comparison of cylindricalmore » probe characteristics obtained from the correct potential profile (M solution) and the approximated Bohm-criterion approach are different. This raises questions about the correctness of cylindrical probe theories relying only on the Bohm-criterion approach. Also the comparison between theoretical and experimental ion current characteristics shows that in an argon plasma the ions motion towards the probe is almost radial.« less
Shahbazi, Mohammad; Saranlı, Uluç; Babuška, Robert; Lopes, Gabriel A D
2016-12-05
This paper introduces approximate time-domain solutions to the otherwise non-integrable double-stance dynamics of the 'bipedal' spring-loaded inverted pendulum (B-SLIP) in the presence of non-negligible damping. We first introduce an auxiliary system whose behavior under certain conditions is approximately equivalent to the B-SLIP in double-stance. Then, we derive approximate solutions to the dynamics of the new system following two different methods: (i) updated-momentum approach that can deal with both the lossy and lossless B-SLIP models, and (ii) perturbation-based approach following which we only derive a solution to the lossless case. The prediction performance of each method is characterized via a comprehensive numerical analysis. The derived representations are computationally very efficient compared to numerical integrations, and, hence, are suitable for online planning, increasing the autonomy of walking robots. Two application examples of walking gait control are presented. The proposed solutions can serve as instrumental tools in various fields such as control in legged robotics and human motion understanding in biomechanics.
Tachyon constant-roll inflation
NASA Astrophysics Data System (ADS)
Mohammadi, A.; Saaidi, Kh.; Golanbari, T.
2018-04-01
The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.
Comparison of Artificial Compressibility Methods
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Housman, Jeffrey; Kwak, Dochan
2004-01-01
Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.
NASA Astrophysics Data System (ADS)
Trauth, N.; Schmidt, C.; Munz, M.
2016-12-01
Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.
Design Tool Using a New Optimization Method Based on a Stochastic Process
NASA Astrophysics Data System (ADS)
Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio
Conventional optimization methods are based on a deterministic approach since their purpose is to find out an exact solution. However, such methods have initial condition dependence and the risk of falling into local solution. In this paper, we propose a new optimization method based on the concept of path integrals used in quantum mechanics. The method obtains a solution as an expected value (stochastic average) using a stochastic process. The advantages of this method are that it is not affected by initial conditions and does not require techniques based on experiences. We applied the new optimization method to a hang glider design. In this problem, both the hang glider design and its flight trajectory were optimized. The numerical calculation results prove that performance of the method is sufficient for practical use.
GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING
Liu, Hongcheng; Yao, Tao; Li, Runze
2015-01-01
This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126
ERIC Educational Resources Information Center
Ling, Gan We; Ghazali, Munirah
2007-01-01
This descriptive study was aimed at looking into how Primary 5 pupils solve pre-algebra problems concerning patterns and unknown quantities. Specifically, objectives of this study were to describe Primary 5 pupils' solution strategies, modes of representations and justifications in: (a) discovering, describing and using numerical and geometrical…
Numerical method based on the lattice Boltzmann model for the Fisher equation.
Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng
2008-06-01
In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.
Equilibrium paths analysis of materials with rheological properties by using the chaos theory
NASA Astrophysics Data System (ADS)
Bednarek, Paweł; Rządkowski, Jan
2018-01-01
The numerical equilibrium path analysis of the material with random rheological properties by using standard procedures and specialist computer programs was not successful. The proper solution for the analysed heuristic model of the material was obtained on the base of chaos theory elements and neural networks. The paper deals with mathematical reasons of used computer programs and also are elaborated the properties of the attractor used in analysis. There are presented results of conducted numerical analysis both in a numerical and in graphical form for the used procedures.
A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics
ERIC Educational Resources Information Center
Liang, Jiajuan; Pan, William S. Y.
2009-01-01
MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…
ERIC Educational Resources Information Center
Zhao, Weiyi
2011-01-01
Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…
Conditions for a steady ice sheet ice shelf junction
NASA Astrophysics Data System (ADS)
Nowicki, S. M. J.; Wingham, D. J.
2008-01-01
This paper investigates the conditions under which a marine ice sheet may adopt a steady profile. The ice is treated as a linear viscous fluid caused to flow from a rigid base to and over water, treated as a denser but inviscid fluid. The solutions in the region around the point of flotation, or 'transition' zone, are calculated numerically. In-flow and out-flow conditions appropriate to ice sheet and ice shelf flow are applied at the ends of the transition zone and the rigid base is specified; the flow and steady free surfaces are determined as part of the solutions. The basal stress upstream, and the basal deflection downstream, of the flotation point are examined to determine which of these steady solutions satisfy 'contact' conditions that would prevent (i) the steady downstream basal deflection contacting the downstream base, and (ii) the upstream ice commencing to float in the event it was melted at the base. In the case that the upstream bed is allowed to slide, we find only one mass flux that satisfies the contact conditions. When no sliding is allowed at the bed, however, we find a range of mass fluxes satisfy the contact conditions. The effect of 'backpressure' on the solutions is investigated, and is found to have no affect on the qualitative behaviour of the junctions. To the extent that the numerical, linearly viscous treatment may be applied to the case of ice flowing out over the ocean, we conclude that when sliding is present, Weertman's 'instability' hypothesis holds.
Corner wetting during the vapor-liquid-solid growth of faceted nanowires
NASA Astrophysics Data System (ADS)
Spencer, Brian; Davis, Stephen
2016-11-01
We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.
An adaptive finite element method for the inequality-constrained Reynolds equation
NASA Astrophysics Data System (ADS)
Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha
2018-07-01
We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.
Numerical solution for weight reduction model due to health campaigns in Spain
NASA Astrophysics Data System (ADS)
Mohammed, Maha A.; Noor, Noor Fadiya Mohd; Siri, Zailan; Ibrahim, Adriana Irawati Nur
2015-10-01
Transition model between three subpopulations based on Body Mass Index of Valencia community in Spain is considered. No changes in population nutritional habits and public health strategies on weight reduction until 2030 are assumed. The system of ordinary differential equations is solved using Runge-Kutta method of higher order. The numerical results obtained are compared with the predicted values of subpopulation proportion based on statistical estimation in 2013, 2015 and 2030. Relative approximate error is calculated. The consistency of the Runge-Kutta method in solving the model is discussed.
Computational methods for aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Peeters, M. F.
1983-01-01
Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Bárdossy, A.; Sudicky, E. A.
2017-09-01
This paper demonstrates quantitative reasoning to separate the dataset of spatially distributed variables into different entities and subsequently characterize their geostatistical properties, properly. The main contribution of the paper is a statistical based algorithm that matches the manual distinction results. This algorithm is based on measured data and is generally applicable. In this paper, it is successfully applied at two datasets of saturated hydraulic conductivity (K) measured at the Borden (Canada) and the Lauswiesen (Germany) aquifers. The boundary layer was successfully delineated at Borden despite its only mild heterogeneity and only small statistical differences between the divided units. The methods are verified with the more heterogeneous Lauswiesen aquifer K data-set, where a boundary layer has previously been delineated. The effects of the macro- and the microstructure on solute transport behaviour are evaluated using numerical solute tracer experiments. Within the microscale structure, both Gaussian and non-Gaussian models of spatial dependence of K are evaluated. The effects of heterogeneity both on the macro- and the microscale are analysed using numerical tracer experiments based on four scenarios: including or not including the macroscale structures and optimally fitting a Gaussian or a non-Gaussian model for the spatial dependence in the micro-structure. The paper shows that both micro- and macro-scale structures are important, as in each of the four possible geostatistical scenarios solute transport behaviour differs meaningfully.
Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint
NASA Astrophysics Data System (ADS)
Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter
2017-12-01
The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.
Friction-term response to boundary-condition type in flow models
Schaffranek, R.W.; Lai, C.
1996-01-01
The friction-slope term in the unsteady open-channel flow equations is examined using two numerical models based on different formulations of the governing equations and employing different solution methods. The purposes of the study are to analyze, evaluate, and demonstrate the behavior of the term in a set of controlled numerical experiments using varied types and combinations of boundary conditions. Results of numerical experiments illustrate that a given model can respond inconsistently for the identical resistance-coefficient value under different types and combinations of boundary conditions. Findings also demonstrate that two models employing different dependent variables and solution methods can respond similarly for the identical resistance-coefficient value under similar types and combinations of boundary conditions. Discussion of qualitative considerations and quantitative experimental results provides insight into the proper treatment, evaluation, and significance of the friction-slope term, thereby offering practical guidelines for model implementation and calibration.
Path suppression of strongly collapsing bubbles at finite and low Reynolds numbers.
Rechiman, Ludmila M; Dellavale, Damián; Bonetto, Fabián J
2013-06-01
We study, numerically and experimentally, three different methods to suppress the trajectories of strongly collapsing and sonoluminescent bubbles in a highly viscous sulfuric acid solution. A new numerical scheme based on the window method is proposed to account for the history force acting on a spherical bubble with variable radius. We could quantify the history force, which is not negligible in comparison with the primary Bjerknes force in this type of problem, and results are in agreement with the classical primary Bjerknes force trapping threshold analysis. Moreover, the present numerical implementation reproduces the spatial behavior associated with the positional and path instability of sonoluminescent argon bubbles in strongly gassed and highly degassed sulfuric acid solutions. Finally, the model allows us to demonstrate that spatially stationary bubbles driven by biharmonic excitation could be obtained with a different mode from the one used in previous reported experiments.
NASA Astrophysics Data System (ADS)
Tseng, Snow H.; Chang, Shih-Hui
2018-04-01
Here we present a numerical simulation to analyze the effect of scattering on focusing light into closely-spaced twin peaks. The pseudospectral time-domain (PSTD) is implemented to model continuous-wave (CW) light propagation through a scattering medium. Simulations show that CW light can propagate through a scattering medium and focus into closely-spaced twin peaks. CW light of various wavelengths focusing into twin peaks with sub-diffraction spacing is simulated. In advance, light propagation through scattering media of various number densities is simulated to decipher the dependence of CW light focusing phenomenon on the scattering medium. The reported simulations demonstrate the feasibility of focusing CW light into twin peaks with sub-diffraction dimensions. More importantly, based upon numerical solutions of Maxwell’s equations, research findings show that the sub-diffraction focusing phenomenon can be achieved with scarce or densely-packed scattering media.
Flow in curved ducts of varying cross-section
NASA Astrophysics Data System (ADS)
Sotiropoulos, F.; Patel, V. C.
1992-07-01
Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.
NASA Astrophysics Data System (ADS)
Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath
2018-07-01
One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.
Fulian; Gooch; Fisher; Stevens; Compton
2000-08-01
The development and application of a new electrochemical device using a computer-aided design strategy is reported. This novel design is based on the flow of electrolyte solution past a microwire electrode situated centrally within a large duct. In the design stage, finite element simulations were employed to evaluate feasible working geometries and mass transport rates. The computer-optimized designs were then exploited to construct experimental devices. Steady-state voltammetric measurements were performed for a reversible one-electron-transfer reaction to establish the experimental relationship between electrolysis current and solution velocity. The experimental results are compared to those predicted numerically, and good agreement is found. The numerical studies are also used to establish an empirical relationship between the mass transport limited current and the volume flow rate, providing a simple and quantitative alternative for workers who would prefer to exploit this device without the need to develop the numerical aspects.
Solar Corona Simulation Model With Positivity-preserving Property
NASA Astrophysics Data System (ADS)
Feng, X. S.
2015-12-01
Positivity-preserving is one of crucial problems in solar corona simulation. In such numerical simulation of low plasma β region, keeping density and pressure is a first of all matter to obtain physical sound solution. In the present paper, we utilize the maximum-principle-preserving flux limiting technique to develop a class of second order positivity-preserving Godunov finite volume HLL methods for the solar wind plasma MHD equations. Based on the underlying first order building block of positivity preserving Lax-Friedrichs, our schemes, under the constrained transport (CT) and generalized Lagrange multiplier (GLM) framework, can achieve high order accuracy, a discrete divergence-free condition and positivity of the numerical solution simultaneously without extra CFL constraints. Numerical results in four Carrington rotation during the declining, rising, minimum and maximum solar activity phases are provided to demonstrate the performance of modeling small plasma beta with positivity-preserving property of the proposed method.
NASA Astrophysics Data System (ADS)
Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M.
2004-12-01
We assess the suitability of a recent high-resolution central scheme developed by \\cite{kurganov} for the solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straightforwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known, or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally, we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other high-resolution central schemes which have recently been reported in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir
An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less
NASA Astrophysics Data System (ADS)
Li, Xiangzheng
2018-06-01
A counterexample is given to show that the product rule of the Caputo fractional derivatives does not hold except on a special point. The function-expansion method of separation variable proposed by Rui[Commun Nonlinear Sci Numer Simulat 47 (2017) 253-266] based on the product rule must be modified.
2007-12-21
of hydrodynamics and the physical characteristics of the polymers. The physics models include both analytical models and numerical simulations ...the experimental observations. The numerical simulations also succeed in replicating some experimental measurements. However, there is still no...become quite significant. 4.5 Documentation The complete model is coded in MatLab . In the model, all units are cgs, so distances are in
Tensor-product preconditioners for a space-time discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2014-10-01
A space-time discontinuous Galerkin spectral element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is presented. A diagonalized alternating direction implicit preconditioner is extended to a space-time formulation using entropy variables. The effectiveness of this technique is demonstrated for the direct numerical simulation of turbulent flow in a channel.
Unsteady Flow Simulation: A Numerical Challenge
2003-03-01
drive to convergence the numerical unsteady term. The time marching procedure is based on the approximate implicit Newton method for systems of non...computed through analytical derivatives of S. The linear system stemming from equation (3) is solved at each integration step by the same iterative method...significant reduction of memory usage, thanks to the reduced dimensions of the linear system matrix during the implicit marching of the solution. The
Solutions of interval type-2 fuzzy polynomials using a new ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
NASA Astrophysics Data System (ADS)
Başhan, Ali; Uçar, Yusuf; Murat Yağmurlu, N.; Esen, Alaattin
2018-01-01
In the present paper, a Crank-Nicolson-differential quadrature method (CN-DQM) based on utilizing quintic B-splines as a tool has been carried out to obtain the numerical solutions for the nonlinear Schrödinger (NLS) equation. For this purpose, first of all, the Schrödinger equation has been converted into coupled real value differential equations and then they have been discretized using both the forward difference formula and the Crank-Nicolson method. After that, Rubin and Graves linearization techniques have been utilized and the differential quadrature method has been applied to obtain an algebraic equation system. Next, in order to be able to test the efficiency of the newly applied method, the error norms, L2 and L_{∞}, as well as the two lowest invariants, I1 and I2, have been computed. Besides those, the relative changes in those invariants have been presented. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. This comparison clearly indicates that the currently utilized method, namely CN-DQM, is an effective and efficient numerical scheme and allows us to propose to solve a wide range of nonlinear equations.
Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity
NASA Astrophysics Data System (ADS)
Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.
2013-07-01
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.
NASA Technical Reports Server (NTRS)
Rosenfeld, Moshe
1990-01-01
The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.
Numerical Investigation of Hot Gas Ingestion by STOVL Aircraft
NASA Technical Reports Server (NTRS)
Vanka, S. P.
1998-01-01
This report compiles the various research activities conducted under the auspices of the NASA Grant NAG3-1026, "Numerical Investigation of Hot Gas Ingestion by STOVL Aircraft" during the period of April 1989 to April 1994. The effort involved the development of multigrid based algorithms and computer programs for the calculation of the flow and temperature fields generated by Short Take-off and Vertical Landing (STOVL) aircraft, while hovering in ground proximity. Of particular importance has been the interaction of the exhaust jets with the head wind which gives rise to the hot gas ingestion process. The objective of new STOVL designs to reduce the temperature of the gases ingested into the engine. The present work describes a solution algorithm for the multi-dimensional elliptic partial-differential equations governing fluid flow and heat transfer in general curvilinear coordinates. The solution algorithm is based on the multigrid technique which obtains rapid convergence of the iterative numerical procedure for the discrete equations. Initial efforts were concerned with the solution of the Cartesian form of the equations. This algorithm was applied to a simulated STOVL configuration in rectangular coordinates. In the next phase of the work, a computer code for general curvilinear coordinates was constructed. This was applied to model STOVL geometries on curvilinear grids. The code was also validated in model problems. In all these efforts, the standard k-Epsilon model was used.
Analysis of composite ablators using massively parallel computation
NASA Technical Reports Server (NTRS)
Shia, David
1995-01-01
In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.
Liu, Yun-Feng; Fan, Ying-Ying; Dong, Hui-Yue; Zhang, Jian-Xing
2017-12-01
The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.
Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie
2002-10-01
A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
NASA Astrophysics Data System (ADS)
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
Optimization-based additive decomposition of weakly coercive problems with applications
Bochev, Pavel B.; Ridzal, Denis
2016-01-27
In this study, we present an abstract mathematical framework for an optimization-based additive decomposition of a large class of variational problems into a collection of concurrent subproblems. The framework replaces a given monolithic problem by an equivalent constrained optimization formulation in which the subproblems define the optimization constraints and the objective is to minimize the mismatch between their solutions. The significance of this reformulation stems from the fact that one can solve the resulting optimality system by an iterative process involving only solutions of the subproblems. Consequently, assuming that stable numerical methods and efficient solvers are available for every subproblem,more » our reformulation leads to robust and efficient numerical algorithms for a given monolithic problem by breaking it into subproblems that can be handled more easily. An application of the framework to the Oseen equations illustrates its potential.« less
A Computational Study of Shear Layer Receptivity
NASA Astrophysics Data System (ADS)
Barone, Matthew; Lele, Sanjiva
2002-11-01
The receptivity of two-dimensional, compressible shear layers to local and external excitation sources is examined using a computational approach. The family of base flows considered consists of a laminar supersonic stream separated from nearly quiescent fluid by a thin, rigid splitter plate with a rounded trailing edge. The linearized Euler and linearized Navier-Stokes equations are solved numerically in the frequency domain. The flow solver is based on a high order finite difference scheme, coupled with an overset mesh technique developed for computational aeroacoustics applications. Solutions are obtained for acoustic plane wave forcing near the most unstable shear layer frequency, and are compared to the existing low frequency theory. An adjoint formulation to the present problem is developed, and adjoint equation calculations are performed using the same numerical methods as for the regular equation sets. Solutions to the adjoint equations are used to shed light on the mechanisms which control the receptivity of finite-width compressible shear layers.
An equilibrium method for prediction of transverse shear stresses in a thick laminated plate
NASA Technical Reports Server (NTRS)
Chaudhuri, R. Z.
1986-01-01
First two equations of equilibrium are utilized to compute the transverse shear stress variation through thickness of a thick laminated plate after in-plane stresses have been computed using an assumed quadratic displacement triangular element based on transverse inextensibility and layerwise constant shear angle theory (LCST). Centroid of the triangle is the point of exceptional accuracy for transverse shear stresses. Numerical results indicate close agreement with elasticity theory. An interesting comparison between the present theory and that based on assumed stress hybrid finite element approach suggests that the latter does not satisfy the condition of free normal traction at the edge. Comparison with numerical results obtained by using constant shear angle theory suggests that LCST is close to the elasticity solution while the CST is closer to classical (CLT) solution. It is also demonstrated that the reduced integration gives faster convergence when the present theory is applied to a thin plate.
Spectral methods in general relativity and large Randall-Sundrum II black holes
NASA Astrophysics Data System (ADS)
Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; \\\\; Yaghoobpour-Tari, Shima
2013-06-01
Using a novel numerical spectral method, we have found solutions for large static Randall-Sundrum II (RSII) black holes by perturbing a numerical AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. We used a numerical spectral method independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman for a similar numerical solution. We have compared our black-hole solution to the one Figueras and Wiseman have derived by perturbing their numerical AdS5-CFT4 solution, showing that our solution agrees closely with theirs. We have obtained a closed-form approximation to the metric of the black hole on the brane. We have also deduced the new results that to first order in 1/(-ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7/(-Λ).
NASA Technical Reports Server (NTRS)
Chang, S. C.; Wang, X. Y.; Chow, C. Y.; Himansu, A.
1995-01-01
The method of space-time conservation element and solution element is a nontraditional numerical method designed from a physicist's perspective, i.e., its development is based more on physics than numerics. It uses only the simplest approximation techniques and yet is capable of generating nearly perfect solutions for a 2-D shock reflection problem used by Helen Yee and others. In addition to providing an overall view of the new method, we introduce a new concept in the design of implicit schemes, and use it to construct a highly accurate solver for a convection-diffusion equation. It is shown that, in the inviscid case, this new scheme becomes explicit and its amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, its principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.
ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.
Hromadka, T.V.; ,
1985-01-01
Besides providing an exact solution for steady-state heat conduction processes (Laplace Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximative boundary generation. This error evaluation can be used to develop highly accurate CVBEM models of the heat transport process, and the resulting model can be used as a test case for evaluating the precision of domain models based on finite elements or finite differences.
Solution procedure of dynamical contact problems with friction
NASA Astrophysics Data System (ADS)
Abdelhakim, Lotfi
2017-07-01
Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan
2001-01-01
Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier-Stokes equations. The performance of the two method are compared by obtaining unsteady solutions for the evolution of twin vortices behind a at plate. Calculated results are compared with experimental and other numerical results. For an un- steady ow which requires small physical time step, pressure projection method was found to be computationally efficient since it does not require any subiterations procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in our computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive.
Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage
Ji, Youjun; Zhang, Linzhi; Yue, Jiannan
2014-01-01
Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199
On recent advances and future research directions for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Soliman, M. O.; Manhardt, P. D.
1986-01-01
This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.
Transient well flow in vertically heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1999-11-01
A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with partially penetrating wells may be estimated without the need to construct transient numerical models. A computer program based on the hybrid analytical-numerical technique is available from the author.
NASA Astrophysics Data System (ADS)
Benettin, Paolo; Bertuzzo, Enrico
2018-04-01
This paper presents the tran-SAS
package, which includes a set of codes to model solute transport and water residence times through a hydrological system. The model is based on a catchment-scale approach that aims at reproducing the integrated response of the system at one of its outlets. The codes are implemented in MATLAB and are meant to be easy to edit, so that users with minimal programming knowledge can adapt them to the desired application. The problem of large-scale solute transport has both theoretical and practical implications. On the one side, the ability to represent the ensemble of water flow trajectories through a heterogeneous system helps unraveling streamflow generation processes and allows us to make inferences on plant-water interactions. On the other side, transport models are a practical tool that can be used to estimate the persistence of solutes in the environment. The core of the package is based on the implementation of an age master equation (ME), which is solved using general StorAge Selection (SAS) functions. The age ME is first converted into a set of ordinary differential equations, each addressing the transport of an individual precipitation input through the catchment, and then it is discretized using an explicit numerical scheme. Results show that the implementation is efficient and allows the model to run in short times. The numerical accuracy is critically evaluated and it is shown to be satisfactory in most cases of hydrologic interest. Additionally, a higher-order implementation is provided within the package to evaluate and, if necessary, to improve the numerical accuracy of the results. The codes can be used to model streamflow age and solute concentration, but a number of additional outputs can be obtained by editing the codes to further advance the ability to understand and model catchment transport processes.
NASA Astrophysics Data System (ADS)
Zhang, K.; Gasiewski, A. J.
2017-12-01
A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model based upon a nonspherical hydrometeor scattering model is being developed at the University of Colorado at Boulder to facilitate forward radiative simulations for 3-dimensionally inhomogeneous clouds in severe weather. The HI-UMRT 3-D analytical solution is based on incorporating a planar-stratified 1-D UMRT algorithm within a horizontally inhomogeneous iterative perturbation scheme. Single-scattering parameters are computed using the Discrete Dipole Scattering (DDSCAT v7.3) program for hundreds of carefully selected nonspherical complex frozen hydrometeors from the NASA/GSFC DDSCAT database. The required analytic factorization symmetry of transition matrix in a normalized RT equation was analytically proved and validated numerically using the DDSCAT-based full Stokes matrix of randomly oriented hydrometeors. The HI-UMRT model thus inherits the properties of unconditional numerical stability, efficiency, and accuracy from the UMRT algorithm and provides a practical 3-D two-Stokes parameter radiance solution with Jacobian to be used within microwave retrievals and data assimilation schemes. In addition, a fast forward radar reflectivity operator with Jacobian based on DDSCAT backscatter efficiency computed for large hydrometeors is incorporated into the HI-UMRT model to provide applicability to active radar sensors. The HI-UMRT will be validated strategically at two levels: 1) intercomparison of brightness temperature (Tb) results with those of several 1-D and 3-D RT models, including UMRT, CRTM and Monte Carlo models, 2) intercomparison of Tb with observed data from combined passive and active spaceborne sensors (e.g. GPM GMI and DPR). The precise expression for determining the required number of 3-D iterations to achieve an error bound on the perturbation solution will be developed to facilitate the numerical verification of the HI-UMRT code complexity and computation performance.
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.
Hall, A J; Minchin, P E H
2013-12-01
A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.
Multiresolution representation and numerical algorithms: A brief review
NASA Technical Reports Server (NTRS)
Harten, Amiram
1994-01-01
In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.
Stable Numerical Approach for Fractional Delay Differential Equations
NASA Astrophysics Data System (ADS)
Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.
2017-12-01
In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.
Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations
NASA Astrophysics Data System (ADS)
Ferrari, Marcello do Areal Souto
Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.
NASA Technical Reports Server (NTRS)
Koenig, Keith
1986-01-01
The theoretical and numerical bases of a program for the solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations are explained. The emphasis is upon the logic behind the equation development. The program is fully detailed so that the user can quickly become familiar with its operation.
Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S
2014-09-01
Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.
NASA Astrophysics Data System (ADS)
Unni, Vineet; Sankara Narayanan, E. M.
2017-04-01
This is the first report on the numerical analysis of the performance of nanoscale vertical superjunction structures based on impurity doping and an innovative approach that utilizes the polarisation properties inherent in III-V nitride semiconductors. Such nanoscale vertical polarisation super junction structures can be realized by employing a combination of epitaxial growth along the non-polar crystallographic axes of Wurtzite GaN and nanolithography-based processing techniques. Detailed numerical simulations clearly highlight the limitations of a doping based approach and the advantages of the proposed solution for breaking the unipolar one-dimensional material limits of GaN by orders of magnitude.
Efficient simulation of press hardening process through integrated structural and CFD analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek
Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less
Solution of second order quasi-linear boundary value problems by a wavelet method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Zhou, Youhe; Wang, Jizeng, E-mail: jzwang@lzu.edu.cn
2015-03-10
A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can evenmore » reach orders of 5.8.« less
Flow and Heat Transfer Analysis of an Eyring-Powell Fluid in a Pipe
NASA Astrophysics Data System (ADS)
Ali, N.; Nazeer, F.; Nazeer, Mubbashar
2018-02-01
The steady non-isothermal flow of an Eyring-Powell fluid in a pipe is investigated using both perturbation and numerical methods. The results are presented for two viscosity models, namely the Reynolds model and the Vogel model. The shooting method is employed to compute the numerical solution. Criteria for validity of perturbation solution are developed. When these criteria are met, it is shown that the perturbation solution is in good agreement with the numerical solution. The influence of various emerging parameters on the velocity and temperature field is also shown.
A 1D radiative transfer benchmark with polarization via doubling and adding
NASA Astrophysics Data System (ADS)
Ganapol, B. D.
2017-11-01
Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.
Energy loss in spark gap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru; Lavrinovich, I. V.; National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk
2014-04-15
The paper reports on numerical study of the energy loss in spark gap switches. The operation of the switches is analyzed using the Braginsky model which allows calculation of the time dependence of the spark channel resistance. The Braginsky equation is solved simultaneously with generator circuit equations for different load types. Based on the numerical solutions, expressions which determine both the energy released in a spark gap switch and the switching time are derived.
3D numerical simulation of transient processes in hydraulic turbines
NASA Astrophysics Data System (ADS)
Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.
2010-08-01
An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.
NASA Astrophysics Data System (ADS)
Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio
The conventional optimization methods were based on a deterministic approach, since their purpose is to find out an exact solution. However, these methods have initial condition dependence and risk of falling into local solution. In this paper, we propose a new optimization method based on a concept of path integral method used in quantum mechanics. The method obtains a solutions as an expected value (stochastic average) using a stochastic process. The advantages of this method are not to be affected by initial conditions and not to need techniques based on experiences. We applied the new optimization method to a design of the hang glider. In this problem, not only the hang glider design but also its flight trajectory were optimized. The numerical calculation results showed that the method has a sufficient performance.
Ratowsky, R P; Fleck, J A; Feit, M D
1992-01-01
The numerical scheme for solving the Helmholtz equation, based on the Lanczos orthogonalization scheme, is generalized so that it can be applied to media with space-dependent absorption or gain profiles.
NASA Astrophysics Data System (ADS)
Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.
2015-10-01
We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.
Reck, Kasper; Thomsen, Erik V; Hansen, Ole
2011-01-31
The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution.
NASA Astrophysics Data System (ADS)
Bulovich, S. V.; Smirnov, E. M.
2018-05-01
The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.
NASA Astrophysics Data System (ADS)
Mamehrashi, K.; Yousefi, S. A.
2017-02-01
This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.
NASA Astrophysics Data System (ADS)
Bremer, James
2018-05-01
We describe a method for the numerical evaluation of normalized versions of the associated Legendre functions Pν- μ and Qν- μ of degrees 0 ≤ ν ≤ 1, 000, 000 and orders - ν ≤ μ ≤ ν for arguments in the interval (- 1 , 1). Our algorithm, which runs in time independent of ν and μ, is based on the fact that while the associated Legendre functions themselves are extremely expensive to represent via polynomial expansions, the logarithms of certain solutions of the differential equation defining them are not. We exploit this by numerically precomputing the logarithms of carefully chosen solutions of the associated Legendre differential equation and representing them via piecewise trivariate Chebyshev expansions. These precomputed expansions, which allow for the rapid evaluation of the associated Legendre functions over a large swath of parameter domain mentioned above, are supplemented with asymptotic and series expansions in order to cover it entirely. The results of numerical experiments demonstrating the efficacy of our approach are presented, and our code for evaluating the associated Legendre functions is publicly available.
Planet-disc interactions with Discontinuous Galerkin Methods using GPUs
NASA Astrophysics Data System (ADS)
Velasco Romero, David A.; Veiga, Maria Han; Teyssier, Romain; Masset, Frédéric S.
2018-05-01
We present a two-dimensional Cartesian code based on high order discontinuous Galerkin methods, implemented to run in parallel over multiple GPUs. A simple planet-disc setup is used to compare the behaviour of our code against the behaviour found using the FARGO3D code with a polar mesh. We make use of the time dependence of the torque exerted by the disc on the planet as a mean to quantify the numerical viscosity of the code. We find that the numerical viscosity of the Keplerian flow can be as low as a few 10-8r2Ω, r and Ω being respectively the local orbital radius and frequency, for fifth order schemes and resolution of ˜10-2r. Although for a single disc problem a solution of low numerical viscosity can be obtained at lower computational cost with FARGO3D (which is nearly an order of magnitude faster than a fifth order method), discontinuous Galerkin methods appear promising to obtain solutions of low numerical viscosity in more complex situations where the flow cannot be captured on a polar or spherical mesh concentric with the disc.
Recovery of time-dependent volatility in option pricing model
NASA Astrophysics Data System (ADS)
Deng, Zui-Cha; Hon, Y. C.; Isakov, V.
2016-11-01
In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).
NASA Astrophysics Data System (ADS)
Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.
2016-06-01
A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.
NASA Astrophysics Data System (ADS)
Voloshinov, V. V.
2018-03-01
In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.
An adaptive time-stepping strategy for solving the phase field crystal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk
2013-09-15
In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less
Numerical study of MHD supersonic flow control
NASA Astrophysics Data System (ADS)
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos
2017-11-09
Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos
Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less
NASA Astrophysics Data System (ADS)
Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.
2018-07-01
The study of the electrodynamics of static, axisymmetric, and force-free Kerr magnetospheres relies vastly on solutions of the so-called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give a detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established set-ups (split-monopole, paraboloidal, BH disc, uniform).
NASA Astrophysics Data System (ADS)
Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.
2018-04-01
The study of the electrodynamics of static, axisymmetric and force-free Kerr magnetospheres relies vastly on solutions of the so called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established setups (split-monopole, paraboloidal, BH-disk, uniform).
Hage, Ilige S; Hamade, Ramsey F
2017-09-01
Microscale lacunar-canalicular (L-C) porosity is a major contributor to intracortical bone stiffness variability. In this work, such variability is investigated experimentally using micro hardness indentation tests and numerically using a homogenization scheme. Cross sectional rings of cortical bones are cut from the middle tubular part of bovine femur long bone at mid-diaphysis. A series of light microscopy images are taken along a line emanating from the cross-section center starting from the ring's interior (endosteum) ring surface toward the ring's exterior (periosteum) ring surface. For each image in the line, computer vision analysis of porosity is conducted employing an image segmentation methodology based on pulse coupled neural networks (PCNN) recently developed by the authors. Determined are size and shape of each of the lacunar-canalicular (L-C) cortical micro constituents: lacunae, canaliculi, and Haversian canals. Consequently, it was possible to segment and quantify the geometrical attributes of all individual segmented pores leading to accurate determination of derived geometrical measures such as L-C cortical pores' total porosity (pore volume fraction), (elliptical) aspect ratio, orientation, location, and number of pores in secondary and primary osteons. Porosity was found to be unevenly (but linearly) distributed along the interior and exterior regions of the intracortical bone. The segmented L-C porosity data is passed to a numerical microscale-based homogenization scheme, also recently developed by the authors, that analyses a composite made up of lamella matrix punctuated by multi-inclusions and returns corresponding values for longitudinal and transverse Young's modulus (matrix stiffness) for these micro-sized spatial locations. Hence, intracortical stiffness variability is numerically quantified using a combination of computer vision program and numerical homogenization code. These numerically found stiffness values of the homogenization solution are corroborated experimentally using microhardness indentation measurements taken at the same points that the digital images were taken along a radial distance emanating from the interior (endosteum) surface toward the bone's exterior (periosteum) surface. Good agreement was found between numerically calculated and indentation measured stiffness of Intracortical lamellae. Both indentation measurements and numerical solutions of matrix stiffness showed increasing linear trend of compressive longitudinal modulus (E11) values vs. radial position for both interior and exterior regions. In the interior (exterior) region of cortical bone, stiffness modulus values were found to range from 18.5 to 23.4 GPa (23 to 26.0 GPa) with the aggregate stiffness of the cortical lamella in the exterior region being 12% stiffer than that in the interior region. In order to further validate these findings, experimental and FEM simulation of a mid-diaphysis bone ring under compression is employed. The FEM numerical deflections employed nine concentric regions across the thickness with graded stiffness values based on the digital segmentation and homogenization scheme. Bone ring deflections are found to agree well with measured deformations of the compression bone ring.
Numerical algorithms for cold-relativistic plasma models in the presence of discontinuties
NASA Astrophysics Data System (ADS)
Hakim, Ammar; Cary, John; Bruhwiler, David; Geddes, Cameron; Leemans, Wim; Esarey, Eric
2006-10-01
A numerical algorithm is presented to solve cold-relativistic electron fluid equations in the presence of sharp gradients and discontinuities. The intended application is to laser wake-field accelerator simulations in which the laser induces accelerating fields thousands of times those achievable in conventional RF accelerators. The relativistic cold-fluid equations are formulated as non-classical system of hyperbolic balance laws. It is shown that the flux Jacobian for this system can not be diagonalized which causes numerical difficulties when developing shock-capturing algorithms. Further, the system is shown to admit generalized delta-shock solutions, first discovered in the context of sticky-particle dynamics (Bouchut, Ser. Adv. Math App. Sci., 22 (1994) pp. 171--190). A new approach, based on relaxation schemes proposed by Jin and Xin (Comm. Pure Appl. Math. 48 (1995) pp. 235--276) and LeVeque and Pelanti (J. Comput. Phys. 172 (2001) pp. 572--591) is developed to solve this system of equations. The method consists of finding an exact solution to a Riemann problem at each cell interface and coupling these to advance the solution in time. Applications to an intense laser propagating in an under-dense plasma are presented.
Formal Solutions for Polarized Radiative Transfer. I. The DELO Family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janett, Gioele; Carlin, Edgar S.; Steiner, Oskar
The discussion regarding the numerical integration of the polarized radiative transfer equation is still open and the comparison between the different numerical schemes proposed by different authors in the past is not fully clear. Aiming at facilitating the comprehension of the advantages and drawbacks of the different formal solvers, this work presents a reference paradigm for their characterization based on the concepts of order of accuracy , stability , and computational cost . Special attention is paid to understand the numerical methods belonging to the Diagonal Element Lambda Operator family, in an attempt to highlight their specificities.
NASA Astrophysics Data System (ADS)
Wang, Dongling; Xiao, Aiguo; Li, Xueyang
2013-02-01
Based on W-transformation, some parametric symplectic partitioned Runge-Kutta (PRK) methods depending on a real parameter α are developed. For α=0, the corresponding methods become the usual PRK methods, including Radau IA-IA¯ and Lobatto IIIA-IIIB methods as examples. For any α≠0, the corresponding methods are symplectic and there exists a value α∗ such that energy is preserved in the numerical solution at each step. The existence of the parameter and the order of the numerical methods are discussed. Some numerical examples are presented to illustrate these results.
Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code
NASA Astrophysics Data System (ADS)
Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.
NASA Astrophysics Data System (ADS)
Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em
2017-12-01
Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.
A Numerical Investigation of the Burnett Equations Based on the Second Law
NASA Technical Reports Server (NTRS)
Comeaux, Keith A.; Chapman, Dean R.; MacCormack, Robert W.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The Burnett equations have been shown to potentially violate the second law of thermodynamics. The objective of this investigation is to correlate the numerical problems experienced by the Burnett equations to the negative production of entropy. The equations have had a long history of numerical instability to small wavelength disturbances. Recently, Zhong corrected the instability problem and made solutions attainable for one dimensional shock waves and hypersonic blunt bodies. Difficulties still exist when attempting to solve hypersonic flat plate boundary layers and blunt body wake flows, however. Numerical experiments will include one-dimensional shock waves, quasi-one dimensional nozzles, and expanding Prandlt-Meyer flows and specifically examine the entropy production for these cases.
Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.
2013-10-01
In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.
NASA Astrophysics Data System (ADS)
Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.
2017-07-01
Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
NASA Astrophysics Data System (ADS)
Kabanov, Dmitry I.; Kasimov, Aslan R.
2018-03-01
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
NASA Astrophysics Data System (ADS)
Zhang, Cuihua; Xing, Peng
2015-08-01
In recent years, Chinese service industry is developing rapidly. Compared with developed countries, service quality should be the bottleneck for Chinese service industry. On the background of three major telecommunications service providers in China, the functions of customer perceived utilities are established. With the goal of consumer's perceived utility maximization, the classic Nash equilibrium solution and quantum equilibrium solution are obtained. Then a numerical example is studied and the changing trend of service quality and customer perceived utility is further analyzed by the influence of the entanglement operator. Finally, it is proved that quantum game solution is better than Nash equilibrium solution.
Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy.
D'Amico, Francesco; Cammisuli, Francesca; Addobbati, Riccardo; Rizzardi, Clara; Gessini, Alessandro; Masciovecchio, Claudio; Rossi, Barbara; Pascolo, Lorella
2015-03-07
We report on the use of the UV Raman technique to monitor the oxidative damage of deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP) and DNA (plasmid vector) solutions. Nucleotide and DNA aqueous solutions were exposed to hydrogen peroxide (H2O2) and iron containing carbon nanotubes (CNTs) to produce Fenton's reaction and induce oxidative damage. UV Raman spectroscopy is shown to be maximally efficient to reveal changes in the nitrogenous bases during the oxidative mechanisms occurring on these molecules. The analysis of Raman spectra, supported by numerical computations, revealed that the Fenton's reaction causes an oxidation of the nitrogenous bases in dATP, dGTP and dCTP solutions leading to the production of 2-hydroxyadenine, 8-hydroxyguanine and 5-hydroxycytosine. No thymine change was revealed in the dTTP solution under the same conditions. Compared to single nucleotide solutions, plasmid DNA oxidation has resulted in more radical damage that causes the breaking of the adenine and guanine aromatic rings. Our study demonstrates the advantage of using UV Raman spectroscopy for rapidly monitoring the oxidation changes in DNA aqueous solutions that can be assigned to specific nitrogenous bases.
Opto-mechatronics issues in solid immersion lens based near-field recording
NASA Astrophysics Data System (ADS)
Park, No-Cheol; Yoon, Yong-Joong; Lee, Yong-Hyun; Kim, Joong-Gon; Kim, Wan-Chin; Choi, Hyun; Lim, Seungho; Yang, Tae-Man; Choi, Moon-Ho; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil
2007-06-01
We analyzed the effects of an external shock on a collision problem in a solid immersion lens (SIL) based near-field recording (NFR) through a shock response analysis and proposed a possible solution to this problem with adopting a protector and safety mode. With this proposed method the collision between SIL and media can be avoided. We showed possible solution for contamination problem in SIL based NFR through a numerical air flow analysis. We also introduced possible solid immersion lens designs to increase the fabrication and assembly tolerances of an optical head with replicated lens. Potentially, these research results could advance NFR technology for commercial product.
NASA Technical Reports Server (NTRS)
Hall, E. J.; Topp, D. A.; Delaney, R. A.
1996-01-01
The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields. The current version of the computer code resulting from this study is referred to as ADPAC (Advanced Ducted Propfan Analysis Codes-Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code developed under Tasks 6 and 7 of the NASA Contract. The ADPAC program is based on a flexible multiple- block grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. An iterative implicit algorithm is available for rapid time-dependent flow calculations, and an advanced two equation turbulence model is incorporated to predict complex turbulent flows. The consolidated code generated during this study is capable of executing in either a serial or parallel computing mode from a single source code. Numerous examples are given in the form of test cases to demonstrate the utility of this approach for predicting the aerodynamics of modem turbomachinery configurations.
NASA Technical Reports Server (NTRS)
Buglia, J. J.
1982-01-01
A simple tutorial method, based on a photon tracking procedure, is described to determine the spherical albedo for a thin atmosphere overlying a reflecting surface. This procedure is used to provide a physical structure with which to interpret the more detailed but highly mathematical analyses presented. The final equations are shown to be in good numerical agreement with more exact solutions for thin atmospheres.
New trends in Taylor series based applications
NASA Astrophysics Data System (ADS)
Kocina, Filip; Šátek, Václav; Veigend, Petr; Nečasová, Gabriela; Valenta, Václav; Kunovský, Jiří
2016-06-01
The paper deals with the solution of large system of linear ODEs when minimal comunication among parallel processors is required. The Modern Taylor Series Method (MTSM) is used. The MTSM allows using a higher order during the computation that means a larger integration step size while keeping desired accuracy. As an example of complex systems we can take the Telegraph Equation Model. Symbolic and numeric solutions are compared when harmonic input signal is used.
An improved conjugate gradient scheme to the solution of least squares SVM.
Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya
2005-03-01
The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Mark Christopher; Holmes, Mark; Sailor, William C
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
An explicit closed-form analytical solution for European options under the CGMY model
NASA Astrophysics Data System (ADS)
Chen, Wenting; Du, Meiyu; Xu, Xiang
2017-01-01
In this paper, we consider the analytical pricing of European path-independent options under the CGMY model, which is a particular type of pure jump Le´vy process, and agrees well with many observed properties of the real market data by allowing the diffusions and jumps to have both finite and infinite activity and variation. It is shown that, under this model, the option price is governed by a fractional partial differential equation (FPDE) with both the left-side and right-side spatial-fractional derivatives. In comparison to derivatives of integer order, fractional derivatives at a point not only involve properties of the function at that particular point, but also the information of the function in a certain subset of the entire domain of definition. This ;globalness; of the fractional derivatives has added an additional degree of difficulty when either analytical methods or numerical solutions are attempted. Albeit difficult, we still have managed to derive an explicit closed-form analytical solution for European options under the CGMY model. Based on our solution, the asymptotic behaviors of the option price and the put-call parity under the CGMY model are further discussed. Practically, a reliable numerical evaluation technique for the current formula is proposed. With the numerical results, some analyses of impacts of four key parameters of the CGMY model on European option prices are also provided.
Complete Numerical Solution of the Diffusion Equation of Random Genetic Drift
Zhao, Lei; Yue, Xingye; Waxman, David
2013-01-01
A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size. PMID:23749318
Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations
NASA Astrophysics Data System (ADS)
Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran
2018-06-01
This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.
NASA Astrophysics Data System (ADS)
Levchenya, A. M.; Smirnov, E. M.; Zhukovskaya, V. D.
2018-05-01
The present contribution covers RANS-based simulation of 3D flow near a cylinder introduced into turbulent vertical-plate free-convection boundary layer. Numerical solutions were obtained with a finite-volume Navier-Stokes code of second-order accuracy using refined grids. Peculiarities of the flow disturbed by the obstacle are analyzed. Cylinder-diameter effect on the horseshoe vortex size and its position is evaluated.
Numerical Simulation of Interaction of Human Vocal Folds and Fluid Flow
NASA Astrophysics Data System (ADS)
Kosík, A.; Feistauer, M.; Horáček, J.; Sváček, P.
Our goal is to simulate airflow in human vocal folds and their flow-induced vibrations. We consider two-dimensional viscous incompressible flow in a time-dependent domain. The fluid flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation. The flow problem is coupled with the elastic behaviour of the solid bodies. The developed solution of the coupled problem based on the finite element method is demonstrated by numerical experiments.
The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method
NASA Astrophysics Data System (ADS)
Voronina, T. A.; Romanenko, A. A.
2016-12-01
Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.
Lewis, F.M.; Voss, C.I.; Rubin, Jacob
1986-01-01
A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1980-01-01
A theoretical analysis is presented yielding sets of partial differential equations for determination of turbulent aerodynamic flowfields in the vicinity of an airfoil trailing edge. A four phase interaction algorithm is derived to complete the analysis. Following input, the first computational phase is an elementary viscous corrected two dimensional potential flow solution yielding an estimate of the inviscid-flow induced pressure distribution. Phase C involves solution of the turbulent two dimensional boundary layer equations over the trailing edge, with transition to a two dimensional parabolic Navier-Stokes equation system describing the near-wake merging of the upper and lower surface boundary layers. An iteration provides refinement of the potential flow induced pressure coupling to the viscous flow solutions. The final phase is a complete two dimensional Navier-Stokes analysis of the wake flow in the vicinity of a blunt-bases airfoil. A finite element numerical algorithm is presented which is applicable to solution of all partial differential equation sets of inviscid-viscous aerodynamic interaction algorithm. Numerical results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.
2014-09-01
We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while themore » second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X ⊥ /X ∥ becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L 2 ∥/X1L 2 ⊥ → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Rolf, E-mail: rsidler@gmail.com; Carcione, José M.; Holliger, Klaus
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in themore » radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.« less
NASA Astrophysics Data System (ADS)
Zlotnik, Sergio
2017-04-01
Information provided by visualisation environments can be largely increased if the data shown is combined with some relevant physical processes and the used is allowed to interact with those processes. This is particularly interesting in VR environments where the user has a deep interplay with the data. For example, a geological seismic line in a 3D "cave" shows information of the geological structure of the subsoil. The available information could be enhanced with the thermal state of the region under study, with water-flow patterns in porous rocks or with rock displacements under some stress conditions. The information added by the physical processes is usually the output of some numerical technique applied to solve a Partial Differential Equation (PDE) that describes the underlying physics. Many techniques are available to obtain numerical solutions of PDE (e.g. Finite Elements, Finite Volumes, Finite Differences, etc). Although, all these traditional techniques require very large computational resources (particularly in 3D), making them useless in a real time visualization environment -such as VR- because the time required to compute a solution is measured in minutes or even in hours. We present here a novel alternative for the resolution of PDE-based problems that is able to provide a 3D solutions for a very large family of problems in real time. That is, the solution is evaluated in a one thousands of a second, making the solver ideal to be embedded into VR environments. Based on Model Order Reduction ideas, the proposed technique divides the computational work in to a computationally intensive "offline" phase, that is run only once in a life time, and an "online" phase that allow the real time evaluation of any solution within a family of problems. Preliminary examples of real time solutions of complex PDE-based problems will be presented, including thermal problems, flow problems, wave problems and some simple coupled problems.
Wave propagation in predator-prey systems
NASA Astrophysics Data System (ADS)
Fu, Sheng-Chen; Tsai, Je-Chiang
2015-12-01
In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).
NASA Technical Reports Server (NTRS)
Jiang, Yi-Tsann
1993-01-01
A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
NASA Technical Reports Server (NTRS)
Jiang, Yi-Tsann; Usab, William J., Jr.
1993-01-01
A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.
An iterative method for the Helmholtz equation
NASA Technical Reports Server (NTRS)
Bayliss, A.; Goldstein, C. I.; Turkel, E.
1983-01-01
An iterative algorithm for the solution of the Helmholtz equation is developed. The algorithm is based on a preconditioned conjugate gradient iteration for the normal equations. The preconditioning is based on an SSOR sweep for the discrete Laplacian. Numerical results are presented for a wide variety of problems of physical interest and demonstrate the effectiveness of the algorithm.
NASA Technical Reports Server (NTRS)
Deavours, Daniel D.; Qureshi, M. Akber; Sanders, William H.
1997-01-01
Modeling tools and technologies are important for aerospace development. At the University of Illinois, we have worked on advancing the state of the art in modeling by Markov reward models in two important areas: reducing the memory necessary to numerically solve systems represented as stochastic activity networks and other stochastic Petri net extensions while still obtaining solutions in a reasonable amount of time, and finding numerically stable and memory-efficient methods to solve for the reward accumulated during a finite mission time. A long standing problem when modeling with high level formalisms such as stochastic activity networks is the so-called state space explosion, where the number of states increases exponentially with size of the high level model. Thus, the corresponding Markov model becomes prohibitively large and solution is constrained by the the size of primary memory. To reduce the memory necessary to numerically solve complex systems, we propose new methods that can tolerate such large state spaces that do not require any special structure in the model (as many other techniques do). First, we develop methods that generate row and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new iterative solution method, called modified adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-matrix, permitting us to cache portions of the matrix and hence reduce the solution time. Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel based solvers that avoids the need for generating rows of A in order to solve Ax = b. This is a significant performance improvement for on-the-fly methods as well as other recent solution techniques based on Kronecker operators. Taken together, these new results show that one can solve very large models without any special structure.
A conservative fully implicit algorithm for predicting slug flows
NASA Astrophysics Data System (ADS)
Krasnopolsky, Boris I.; Lukyanov, Alexander A.
2018-02-01
An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.
An integral formulation for wave propagation on weakly non-uniform potential flows
NASA Astrophysics Data System (ADS)
Mancini, Simone; Astley, R. Jeremy; Sinayoko, Samuel; Gabard, Gwénaël; Tournour, Michel
2016-12-01
An integral formulation for acoustic radiation in moving flows is presented. It is based on a potential formulation for acoustic radiation on weakly non-uniform subsonic mean flows. This work is motivated by the absence of suitable kernels for wave propagation on non-uniform flow. The integral solution is formulated using a Green's function obtained by combining the Taylor and Lorentz transformations. Although most conventional approaches based on either transform solve the Helmholtz problem in a transformed domain, the current Green's function and associated integral equation are derived in the physical space. A dimensional error analysis is developed to identify the limitations of the current formulation. Numerical applications are performed to assess the accuracy of the integral solution. It is tested as a means of extrapolating a numerical solution available on the outer boundary of a domain to the far field, and as a means of solving scattering problems by rigid surfaces in non-uniform flows. The results show that the error associated with the physical model deteriorates with increasing frequency and mean flow Mach number. However, the error is generated only in the domain where mean flow non-uniformities are significant and is constant in regions where the flow is uniform.
Documentation for the MODFLOW 6 framework
Hughes, Joseph D.; Langevin, Christian D.; Banta, Edward R.
2017-08-10
MODFLOW is a popular open-source groundwater flow model distributed by the U.S. Geological Survey. Growing interest in surface and groundwater interactions, local refinement with nested and unstructured grids, karst groundwater flow, solute transport, and saltwater intrusion, has led to the development of numerous MODFLOW versions. Often times, there are incompatibilities between these different MODFLOW versions. The report describes a new MODFLOW framework called MODFLOW 6 that is designed to support multiple models and multiple types of models. The framework is written in Fortran using a modular object-oriented design. The primary framework components include the simulation (or main program), Timing Module, Solutions, Models, Exchanges, and Utilities. The first version of the framework focuses on numerical solutions, numerical models, and numerical exchanges. This focus on numerical models allows multiple numerical models to be tightly coupled at the matrix level.
NASA Astrophysics Data System (ADS)
Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok
We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.
Nonlinear analysis for dual-frequency concurrent energy harvesting
NASA Astrophysics Data System (ADS)
Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu
2018-05-01
The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.
Competent Reasoning with Rational Numbers.
ERIC Educational Resources Information Center
Smith, John P. III
1995-01-01
Analyzed students' reasoning with fractions. Found that skilled students applied strategies specifically tailored to restricted classes of fractions and produced reliable solutions with a minimum of computation effort. Results suggest that competent reasoning depends on a knowledge base that includes numerically specific and invented strategies,…
Efficient modeling of phase jitter in dispersion-managed soliton systems.
McKinstrie, C J; Xie, C; Lakoba, T I
2002-11-01
The variational method is used to derive correlation equations that model phase jitter in dispersion-managed soliton systems. The predictions of these correlation equations are consistent with numerical solutions of the nonlinear Schrödinger equation on which they are based.
Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods
NASA Technical Reports Server (NTRS)
Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon
2010-01-01
A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.
NASA Astrophysics Data System (ADS)
Prigozhin, Leonid; Sokolovsky, Vladimir
2018-05-01
We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.
Application of symbolic/numeric matrix solution techniques to the NASTRAN program
NASA Technical Reports Server (NTRS)
Buturla, E. M.; Burroughs, S. H.
1977-01-01
The matrix solving algorithm of any finite element algorithm is extremely important since solution of the matrix equations requires a large amount of elapse time due to null calculations and excessive input/output operations. An alternate method of solving the matrix equations is presented. A symbolic processing step followed by numeric solution yields the solution very rapidly and is especially useful for nonlinear problems.
Viscoelastic flow in rotating curved pipes
NASA Astrophysics Data System (ADS)
Chen, Yitung; Chen, Huajun; Zhang, Jinsuo; Zhang, Benzhao
2006-08-01
Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean's approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For the counter-rotation, there is a critical rotational number RΩ', which can make the effect of rotation counteract the effect of curvature and elasticity. Complicated flow behaviors are found at this value. For the relative creeping flow, RΩ' can be estimated according to the expression RΩ'=-4Weδ. Effects of curvature and elasticity at different rotational numbers on both relative creeping flow and inertial flow are also analyzed and discussed.
NASA Astrophysics Data System (ADS)
Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.
2017-02-01
In this paper, the boundary layer flow and heat transfer of unsteady flow over a porous accelerating stretching surface in the presence of the velocity slip and temperature jump effects are investigated numerically. A new effective collocation method based on rational Bernstein functions is applied to solve the governing system of nonlinear ordinary differential equations. This method solves the problem on the semi-infinite domain without truncating or transforming it to a finite domain. In addition, the presented method reduces the solution of the problem to the solution of a system of algebraic equations. Graphical and tabular results are presented to investigate the influence of the unsteadiness parameter A , Prandtl number Pr, suction parameter fw, velocity slip parameter γ and thermal slip parameter φ on the velocity and temperature profiles of the fluid. The numerical experiments are reported to show the accuracy and efficiency of the novel proposed computational procedure. Comparisons of present results are made with those obtained by previous works and show excellent agreement.
Steady state numerical solutions for determining the location of MEMS on projectile
NASA Astrophysics Data System (ADS)
Abiprayu, K.; Abdigusna, M. F. F.; Gunawan, P. H.
2018-03-01
This paper is devoted to compare the numerical solutions for the steady and unsteady state heat distribution model on projectile. Here, the best location for installing of the MEMS on the projectile based on the surface temperature is investigated. Numerical iteration methods, Jacobi and Gauss-Seidel have been elaborated to solve the steady state heat distribution model on projectile. The results using Jacobi and Gauss-Seidel are shown identical but the discrepancy iteration cost for each methods is gained. Using Jacobi’s method, the iteration cost is 350 iterations. Meanwhile, using Gauss-Seidel 188 iterations are obtained, faster than the Jacobi’s method. The comparison of the simulation by steady state model and the unsteady state model by a reference is shown satisfying. Moreover, the best candidate for installing MEMS on projectile is observed at pointT(10, 0) which has the lowest temperature for the other points. The temperature using Jacobi and Gauss-Seidel for scenario 1 and 2 atT(10, 0) are 307 and 309 Kelvin respectively.
The scaling of oblique plasma double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1983-01-01
Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.
Numerical solution of a coupled pair of elliptic equations from solid state electronics
NASA Technical Reports Server (NTRS)
Phillips, T. N.
1983-01-01
Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.
NASA Technical Reports Server (NTRS)
Baumgarten, J.; Ostermeyer, G. P.
1986-01-01
The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics.
NASA Technical Reports Server (NTRS)
Pittman, C. M.; Howser, L. M.
1972-01-01
The differential equations governing the transient response of the char layer of an ablating axisymmetric body, internal pyrolysis gas flow effects being considered, have been derived. These equations have been expanded into finite difference form and programed for numerical solution on a digital computer. Numerical results compare favorably with simplified exact solutions. The complete numerical analysis was used to obtain solutions for two representative body shapes subjected to a typical entry heating environment. Pronounced effects of the lateral flow of pyrolysis gases on the mass flow field within the char layer and the associated surface and pyrolysis interface recession rates are shown.
NASA Technical Reports Server (NTRS)
Stricklin, J. A.; Haisler, W. E.; Von Riesemann, W. A.
1972-01-01
This paper presents an assessment of the solution procedures available for the analysis of inelastic and/or large deflection structural behavior. A literature survey is given which summarized the contribution of other researchers in the analysis of structural problems exhibiting material nonlinearities and combined geometric-material nonlinearities. Attention is focused at evaluating the available computation and solution techniques. Each of the solution techniques is developed from a common equation of equilibrium in terms of pseudo forces. The solution procedures are applied to circular plates and shells of revolution in an attempt to compare and evaluate each with respect to computational accuracy, economy, and efficiency. Based on the numerical studies, observations and comments are made with regard to the accuracy and economy of each solution technique.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2014-01-01
Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
NASA Astrophysics Data System (ADS)
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
Embedding methods for the steady Euler equations
NASA Technical Reports Server (NTRS)
Chang, S. H.; Johnson, G. M.
1983-01-01
An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.
NASA Astrophysics Data System (ADS)
Duan, Xueyang
The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with or without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational efficiency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.
Constrained orbital intercept-evasion
NASA Astrophysics Data System (ADS)
Zatezalo, Aleksandar; Stipanovic, Dusan M.; Mehra, Raman K.; Pham, Khanh
2014-06-01
An effective characterization of intercept-evasion confrontations in various space environments and a derivation of corresponding solutions considering a variety of real-world constraints are daunting theoretical and practical challenges. Current and future space-based platforms have to simultaneously operate as components of satellite formations and/or systems and at the same time, have a capability to evade potential collisions with other maneuver constrained space objects. In this article, we formulate and numerically approximate solutions of a Low Earth Orbit (LEO) intercept-maneuver problem in terms of game-theoretic capture-evasion guaranteed strategies. The space intercept-evasion approach is based on Liapunov methodology that has been successfully implemented in a number of air and ground based multi-player multi-goal game/control applications. The corresponding numerical algorithms are derived using computationally efficient and orbital propagator independent methods that are previously developed for Space Situational Awareness (SSA). This game theoretical but at the same time robust and practical approach is demonstrated on a realistic LEO scenario using existing Two Line Element (TLE) sets and Simplified General Perturbation-4 (SGP-4) propagator.
Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation
NASA Astrophysics Data System (ADS)
Terasaki, J.; Smetana, A.; Šimkovic, F.; Krivoruchenko, M. I.
2017-10-01
It is shown that the random-phase approximation (RPA) method with its nonlinear higher generalization, which was previously considered as approximation except for a very limited case, reproduces the exact solutions of the Lipkin model. The nonlinear higher RPA is based on an equation nonlinear on eigenvectors and includes many-particle-many-hole components in the creation operator of the excited states. We demonstrate the exact character of solutions analytically for the particle number N = 2 and numerically for N = 8. This finding indicates that the nonlinear higher RPA is equivalent to the exact Schrödinger equation.
Validation of OpenFoam for heavy gas dispersion applications.
Mack, A; Spruijt, M P N
2013-11-15
In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarıaydın, Selin; Yıldırım, Ahmet
2010-05-01
In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation utt -uxx-uyy-(u2)xx-uxxxx = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation uxt -6ux 2 +6uuxx -uxxxx -uyy -uzz = 0. By using this method, an explicit numerical solution is calculated in the form of a convergent power series with easily computable components. To illustrate the application of this method numerical results are derived by using the calculated components of the homotopy perturbation series. The numerical solutions are compared with the known analytical solutions. Results derived from our method are shown graphically.
Almost periodic cellular neural networks with neutral-type proportional delays
NASA Astrophysics Data System (ADS)
Xiao, Songlin
2018-03-01
This paper presents a new result on the existence, uniqueness and generalised exponential stability of almost periodic solutions for cellular neural networks with neutral-type proportional delays and D operator. Based on some novel differential inequality techniques, a testable condition is derived to ensure that all the state trajectories of the system converge to an almost periodic solution with a positive exponential convergence rate. The effectiveness of the obtained result is illustrated by a numerical example.
Solution of elastic-plastic stress analysis problems by the p-version of the finite element method
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Actis, Ricardo L.; Holzer, Stefan M.
1993-01-01
The solution of small strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus. Numerical examples which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors are presented.
Calculation of Moment Matrix Elements for Bilinear Quadrilaterals and Higher-Order Basis Functions
2016-01-06
methods are known as boundary integral equation (BIE) methods and the present study falls into this category. The numerical solution of the BIE is...iterated integrals. The inner integral involves the product of the free-space Green’s function for the Helmholtz equation multiplied by an appropriate...Website: http://www.wipl-d.com/ 5. Y. Zhang and T. K. Sarkar, Parallel Solution of Integral Equation -Based EM Problems in the Frequency Domain. New
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C.
2001-01-01
As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.
NASA Astrophysics Data System (ADS)
Tayebi, A.; Shekari, Y.; Heydari, M. H.
2017-07-01
Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.
NASA Astrophysics Data System (ADS)
Raju, C. S. K.; Sekhar, K. R.; Ibrahim, S. M.; Lorenzini, G.; Viswanatha Reddy, G.; Lorenzini, E.
2017-05-01
In this study, we proposed a theoretical investigation on the temperature-dependent viscosity effect on magnetohydrodynamic dissipative nanofluid over a truncated cone with heat source/sink. The involving set of nonlinear partial differential equations is transforming to set of nonlinear ordinary differential equations by using self-similarity solutions. The transformed governing equations are solved numerically using Runge-Kutta-based Newton's technique. The effects of various dimensionless parameters on the skin friction coefficient and the local Nusselt number profiles are discussed and presented with the support of graphs. We also obtained the validation of the current solutions with existing solution under some special cases. The water-based titanium alloy has a lesser friction factor coefficient as compared with kerosene-based titanium alloy, whereas the rate of heat transfer is higher in water-based titanium alloy compared with kerosene-based titanium alloy. From this we can highlight that depending on the industrial needs cooling/heating chooses the water- or kerosene-based titanium alloys.
Food applications of natural antimicrobial compounds.
Lucera, Annalisa; Costa, Cristina; Conte, Amalia; Del Nobile, Matteo A
2012-01-01
In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application.
Food applications of natural antimicrobial compounds
Lucera, Annalisa; Costa, Cristina; Conte, Amalia; Del Nobile, Matteo A.
2012-01-01
In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application. PMID:23060862
NASA Astrophysics Data System (ADS)
Cai, Jiaxiang; Liang, Hua; Zhang, Chun
2018-06-01
Based on the multi-symplectic Hamiltonian formula of the generalized Rosenau-type equation, a multi-symplectic scheme and an energy-preserving scheme are proposed. To improve the accuracy of the solution, we apply the composition technique to the obtained schemes to develop high-order schemes which are also multi-symplectic and energy-preserving respectively. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results verify that all the proposed schemes have satisfactory performance in providing accurate solution and preserving the discrete mass and energy invariants. Numerical results also show that although each basic time step is divided into several composition steps, the computational efficiency of the composition schemes is much higher than that of the non-composite schemes.
Multiple crack detection in 3D using a stable XFEM and global optimization
NASA Astrophysics Data System (ADS)
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.
2018-02-01
A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.
NASA Astrophysics Data System (ADS)
Berntsen, Jarle; Alendal, Guttorm; Avlesen, Helge; Thiem, Øyvind
2018-05-01
The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a substantial artificial blocking effect when using no-slip.
Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations
NASA Astrophysics Data System (ADS)
Husa, Sascha; Hinder, Ian; Lechner, Christiane
2006-06-01
We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus
NASA Astrophysics Data System (ADS)
Raju, R. Srinivasa; Reddy, B. Mahesh; Reddy, G. Jithender
2017-09-01
The aim of this research work is to study the influence of thermal radiation on steady magnetohydrodynamic-free convective Casson fluid flow of an optically thick fluid over an inclined vertical plate with heat and mass transfer. Combined phenomenon of heat and mass transfer is considered. Numerical solutions in general form are obtained by using the finite element method. The sum of thermal and mechanical parts is expressed as velocity of fluid. Corresponding limiting solutions are also reduced from the general solutions. It is found that the obtained numerical solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. Numerical results for the controlling flow parameters are drawn graphically and discussed in detail. In some special cases, the obtained numerical results are compared and found to be in good agreement with the previously published results which are available in literature. Applications of this study includes laminar magneto-aerodynamics, materials processing and magnetohydrodynamic propulsion thermo-fluid dynamics, etc.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sheloput, Tatiana; Agoshkov, Valery
2017-04-01
The problem of modeling water areas with `liquid' (open) lateral boundaries is discussed. There are different known methods dealing with open boundaries in limited-area models, and one of the most efficient is data assimilation. Although this method is popular, there are not so many articles concerning its implementation for recovering boundary functions. However, the problem of specifying boundary conditions at the open boundary of a limited area is still actual and important. The mathematical model of the Baltic Sea circulation, developed in INM RAS, is considered. It is based on the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations. The splitting method that is used for time approximation in the model allows to consider the data assimilation problem as a sequence of linear problems. One of such `simple' temperature (salinity) assimilation problem is investigated in the study. Using well known techniques of study and solution of inverse problems and optimal control problems [1], we propose an iterative solution algorithm and we obtain conditions for existence of the solution, for unique and dense solvability of the problem and for convergence of the iterative algorithm. The investigation shows that if observations satisfy certain conditions, the proposed algorithm converges to the solution of the boundary control problem. Particularly, it converges when observational data are given on the `liquid' boundary [2]. Theoretical results are confirmed by the results of numerical experiments. The numerical algorithm was implemented to water area of the Baltic Sea. Two numerical experiments were carried out in the Gulf of Finland: one with the application of the assimilation procedure and the other without. The analyses have shown that the surface temperature field in the first experiment is close to the observed one, while the result of the second experiment misfits. Number of iterations depends on the regularisation parameter, but generally the algorithm converges after 10 iterations. The results of the numerical experiments show that the usage of the proposed method makes sense. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments) and by the Russian Foundation for Basic Research (project 16-01-00548, the formulation of the problem and its study). [1] Agoshkov V. I. Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian). [2] Agoshkov V.I., Sheloput T.O. The study and numerical solution of the problem of heat and salinity transfer assuming 'liquid' boundaries // Russ. J. Numer. Anal. Math. Modelling. 2016. Vol. 31, No. 2. P. 71-80.
On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the hyperbolicity of the Euler equation system and the first principle of plane (simple) wave propagation. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in ID, 2D and 3D space are illustrated to demonstrate its robustness in practical computations.
Simultaneous computation of jet turbulence and noise
NASA Technical Reports Server (NTRS)
Berman, C. H.; Ramos, J. I.
1989-01-01
The existing flow computation methods, wave computation techniques, and theories based on noise source models are reviewed in order to assess the capabilities of numerical techniques to compute jet turbulence noise and understand the physical mechanisms governing it over a range of subsonic and supersonic nozzle exit conditions. In particular, attention is given to (1) methods for extrapolating near field information, obtained from flow computations, to the acoustic far field and (2) the numerical solution of the time-dependent Lilley equation.
Inverse problems and optimal experiment design in unsteady heat transfer processes identification
NASA Technical Reports Server (NTRS)
Artyukhin, Eugene A.
1991-01-01
Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.
On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the first principle of non-reflecting, plane wave propagation and the hyperbolicity of the Euler equation system. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in 1D, 2D, and 3D space are illustrated to demonstrate its robustness in practical computations.
Numerical realization of the variational method for generating self-trapped beams
NASA Astrophysics Data System (ADS)
Duque, Erick I.; Lopez-Aguayo, Servando; Malomed, Boris A.
2018-03-01
We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schr\\"odinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.
NASA Astrophysics Data System (ADS)
Liu, L. H.; Tan, J. Y.
2007-02-01
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.
NASA Astrophysics Data System (ADS)
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong
2018-03-01
We investigate three-wave resonant interactions through both the generalized Darboux transformation method and numerical simulations. Firstly, we derive a simple multi-dark-dark-dark-soliton formula through the generalized Darboux transformation. Secondly, we use the matrix analysis method to avoid the singularity of transformed potential functions and to find the general nonsingular breather solutions. Moreover, through a limit process, we deduce the general rogue wave solutions and give a classification by their dynamics including bright, dark, four-petals, and two-peaks rogue waves. Ever since the coexistence of dark soliton and rogue wave in non-zero background, their interactions naturally become a quite appealing topic. Based on the N-fold Darboux transformation, we can derive the explicit solutions to depict their interactions. Finally, by performing extensive numerical simulations we can predict whether these dark solitons and rogue waves are stable enough to propagate. These results can be available for several physical subjects such as fluid dynamics, nonlinear optics, solid state physics, and plasma physics.
Plane Poiseuille flow of a rarefied gas in the presence of strong gravitation.
Doi, Toshiyuki
2011-02-01
Plane Poiseuille flow of a rarefied gas, which flows horizontally in the presence of strong gravitation, is studied based on the Boltzmann equation. Applying the asymptotic analysis for a small variation in the flow direction [Y. Sone, Molecular Gas Dynamics (Birkhäuser, 2007)], the two-dimensional problem is reduced to a one-dimensional problem, as in the case of a Poiseuille flow in the absence of gravitation, and the solution is obtained in a semianalytical form. The reduced one-dimensional problem is solved numerically for a hard sphere molecular gas over a wide range of the gas-rarefaction degree and the gravitational strength. The presence of gravitation reduces the mass flow rate, and the effect of gravitation is significant for large Knudsen numbers. To verify the validity of the asymptotic solution, a two-dimensional problem of a flow through a long channel is directly solved numerically, and the validity of the asymptotic solution is confirmed. ©2011 American Physical Society
NASA Astrophysics Data System (ADS)
Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru
2018-02-01
The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.
Experimental and numerical investigation of a packed-bed thermal energy storage device
NASA Astrophysics Data System (ADS)
Yang, Bei; Wang, Yan; Bai, Fengwu; Wang, Zhifeng
2017-06-01
This paper presents a pilot-scale setup built to study a packed bed thermal energy storage device based on ceramic balls randomly poured into a cylindrical tank while using air as heat transfer fluid. Temperature distribution of ceramic balls throughout the packed bed is investigated both experimentally and numerically. Method of characteristic is adopted to improve the numerical computing efficiency, and mesh independence is verified to guarantee the accuracy of numerical solutions and the economy of computing time cost at the same time. Temperature in tests is as high as over 600 °C, and modeling prediction shows good agreements with experimental results under various testing conditions when heat loss is included and thermal properties of air are considered as temperature dependent.
Hiruta, Yoshiki; Toh, Sadayoshi
2015-12-01
Two-dimensional Kolmogorov flow in wide periodic boxes is numerically investigated. It is shown that the total flow rate in the direction perpendicular to the force controls the characteristics of the flow, especially the existence of spatially localized solitary solutions such as traveling waves, periodic solutions, and chaotic solutions, which can behave as elementary components of the flow. We propose a procedure to construct approximate solutions consisting of solitary solutions. It is confirmed by direct numerical simulations that these solutions are stable and represent interactions between elementary components such as collisions, coexistence, and collapse of chaos.
Class and Home Problems. The Lambert W Function in Ultrafiltration and Diafiltration
ERIC Educational Resources Information Center
Foley, Greg
2016-01-01
Novel analytical solutions based on the Lambert W function for two problems in ultrafiltration and diafiltration are described. Example problems, suitable for incorporation into an introductory module in unit operations, membrane processing, or numerical methods are provided in each case.
The article reports the development of a new method of calculating electrical conditions in wire-duct electrostatic precipitation devices. The method, based on a numerical solution to the governing differential equations under a suitable choice of boundary conditions, accounts fo...
Optimal time-domain technique for pulse width modulation in power electronics
NASA Astrophysics Data System (ADS)
Mayergoyz, I.; Tyagi, S.
2018-05-01
Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
Computational attributes of the integral form of the equation of transfer
NASA Technical Reports Server (NTRS)
Frankel, J. I.
1991-01-01
Difficulties can arise in radiative and neutron transport calculations when a highly anisotropic scattering phase function is present. In the presence of anisotropy, currently used numerical solutions are based on the integro-differential form of the linearized Boltzmann transport equation. This paper, departs from classical thought and presents an alternative numerical approach based on application of the integral form of the transport equation. Use of the integral formalism facilitates the following steps: a reduction in dimensionality of the system prior to discretization, the use of symbolic manipulation to augment the computational procedure, and the direct determination of key physical quantities which are derivable through the various Legendre moments of the intensity. The approach is developed in the context of radiative heat transfer in a plane-parallel geometry, and results are presented and compared with existing benchmark solutions. Encouraging results are presented to illustrate the potential of the integral formalism for computation. The integral formalism appears to possess several computational attributes which are well-suited to radiative and neutron transport calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace
A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. Itmore » is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.« less
On the Solution of Elliptic Partial Differential Equations on Regions with Corners
2015-07-09
In this report we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations . We observe...that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of...efficient numerical algorithms. The results are illustrated by a number of numerical examples. On the solution of elliptic partial differential equations on
A numerical solution of Duffing's equations including the prediction of jump phenomena
NASA Technical Reports Server (NTRS)
Moyer, E. T., Jr.; Ghasghai-Abdi, E.
1987-01-01
Numerical methodology for the solution of Duffing's differential equation is presented. Algorithms for the prediction of multiple equilibrium solutions and jump phenomena are developed. In addition, a filtering algorithm for producing steady state solutions is presented. The problem of a rigidly clamped circular plate subjected to cosinusoidal pressure loading is solved using the developed algorithms (the plate is assumed to be in the geometrically nonlinear range). The results accurately predict regions of solution multiplicity and jump phenomena.