Sample records for numerically matched input-output

  1. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  2. Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners

    NASA Astrophysics Data System (ADS)

    Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan

    2015-03-01

    In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.

  3. Parameterizing by the Number of Numbers

    NASA Astrophysics Data System (ADS)

    Fellows, Michael R.; Gaspers, Serge; Rosamond, Frances A.

    The usefulness of parameterized algorithmics has often depended on what Niedermeier has called "the art of problem parameterization". In this paper we introduce and explore a novel but general form of parameterization: the number of numbers. Several classic numerical problems, such as Subset Sum, Partition, 3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with Target Sums, have multisets of integers as input. We initiate the study of parameterizing these problems by the number of distinct integers in the input. We rely on an FPT result for Integer Linear Programming Feasibility to show that all the above-mentioned problems are fixed-parameter tractable when parameterized in this way. In various applied settings, problem inputs often consist in part of multisets of integers or multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such number-of-numbers parameterized problems often reduce to subproblems about transition systems of various kinds, parameterized by the size of the system description. We consider several core problems of this kind relevant to number-of-numbers parameterization. Our main hardness result considers the problem: given a non-deterministic Mealy machine M (a finite state automaton outputting a letter on each transition), an input word x, and a census requirement c for the output word specifying how many times each letter of the output alphabet should be written, decide whether there exists a computation of M reading x that outputs a word y that meets the requirement c. We show that this problem is hard for W[1]. If the question is whether there exists an input word x such that a computation of M on x outputs a word that meets c, the problem becomes fixed-parameter tractable.

  4. Neural Systems with Numerically Matched Input-Output Statistic: Isotonic Bivariate Statistical Modeling

    PubMed Central

    Fiori, Simone

    2007-01-01

    Bivariate statistical modeling from incomplete data is a useful statistical tool that allows to discover the model underlying two data sets when the data in the two sets do not correspond in size nor in ordering. Such situation may occur when the sizes of the two data sets do not match (i.e., there are “holes” in the data) or when the data sets have been acquired independently. Also, statistical modeling is useful when the amount of available data is enough to show relevant statistical features of the phenomenon underlying the data. We propose to tackle the problem of statistical modeling via a neural (nonlinear) system that is able to match its input-output statistic to the statistic of the available data sets. A key point of the new implementation proposed here is that it is based on look-up-table (LUT) neural systems, which guarantee a computationally advantageous way of implementing neural systems. A number of numerical experiments, performed on both synthetic and real-world data sets, illustrate the features of the proposed modeling procedure. PMID:18566641

  5. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  6. Method and allocation device for allocating pending requests for data packet transmission at a number of inputs to a number of outputs of a packet switching device in successive time slots

    DOEpatents

    Abel, Francois [Rueschlikon, CH; Iliadis, Ilias [Rueschlikon, CH; Minkenberg, Cyriel J. A. [Adliswil, CH

    2009-02-03

    A method for allocating pending requests for data packet transmission at a number of inputs to a number of outputs of a switching system in successive time slots, including a matching method including the steps of providing a first request information in a first time slot indicating data packets at the inputs requesting transmission to the outputs of the switching system, performing a first step in the first time slot depending on the first request information to obtain a first matching information, providing a last request information in a last time slot successive to the first time slot, performing a last step in the last time slot depending on the last request information and depending on the first matching information to obtain a final matching information, and assigning the pending data packets at the number of inputs to the number of outputs based on the final matching information.

  7. Optimizing microwave photodetection: input-output theory

    NASA Astrophysics Data System (ADS)

    Schöndorf, M.; Govia, L. C. G.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K.

    2018-04-01

    High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit quantum electrodynamic architectures for the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency. With this we can derive a general matching condition depending on the different system rates, under which the measurement process is optimal.

  8. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    NASA Astrophysics Data System (ADS)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  9. Quasi-minimal active disturbance rejection control of MIMO perturbed linear systems based on differential neural networks and the attractive ellipsoid method.

    PubMed

    Salgado, Iván; Mera-Hernández, Manuel; Chairez, Isaac

    2017-11-01

    This study addresses the problem of designing an output-based controller to stabilize multi-input multi-output (MIMO) systems in the presence of parametric disturbances as well as uncertainties in the state model and output noise measurements. The controller design includes a linear state transformation which separates uncertainties matched to the control input and the unmatched ones. A differential neural network (DNN) observer produces a nonlinear approximation of the matched perturbation and the unknown states simultaneously in the transformed coordinates. This study proposes the use of the Attractive Ellipsoid Method (AEM) to optimize the gains of the controller and the gain observer in the DNN structure. As a consequence, the obtained control input minimizes the convergence zone for the estimation error. Moreover, the control design uses the estimated disturbance provided by the DNN to obtain a better performance in the stabilization task in comparison with a quasi-minimal output feedback controller based on a Luenberger observer and a sliding mode controller. Numerical results pointed out the advantages obtained by the nonlinear control based on the DNN observer. The first example deals with the stabilization of an academic linear MIMO perturbed system and the second example stabilizes the trajectories of a DC-motor into a predefined operation point. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery A.

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities hasmore » a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.« less

  11. As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation.

    PubMed

    Xie, Shangran; Tani, Francesco; Travers, John C; Uebel, Patrick; Caillaud, Celine; Troles, Johann; Schmidt, Markus A; Russell, Philip St J

    2014-09-01

    A double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 μm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be ∼2  dB at 1550 nm in the case of free-space in-coupling, which is ∼7  dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 μm) is generated at 38 pJ input energy.

  12. Diplexer switch

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.; Parker, T. W.

    1977-01-01

    Switch achieves high isolation and continuous input/output matching by using resonant coupling structure of diplexer. Additionally, dc bias network used to control switch is decoupled from RF input and output lines. Voltage transients in external circuits are thus minimized.

  13. Compact waveguide power divider with multiple isolated outputs

    DOEpatents

    Moeller, Charles P.

    1987-01-01

    A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

  14. Reconstruction of nonlinear wave propagation

    DOEpatents

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  15. Matching optics for Gaussian beams

    NASA Technical Reports Server (NTRS)

    Gunter, William D. (Inventor)

    1991-01-01

    A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.

  16. Similarity Based Semantic Web Service Match

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Niu, Wenjia; Huang, Ronghuai

    Semantic web service discovery aims at returning the most matching advertised services to the service requester by comparing the semantic of the request service with an advertised service. The semantic of a web service are described in terms of inputs, outputs, preconditions and results in Ontology Web Language for Service (OWL-S) which formalized by W3C. In this paper we proposed an algorithm to calculate the semantic similarity of two services by weighted averaging their inputs and outputs similarities. Case study and applications show the effectiveness of our algorithm in service match.

  17. Large-Signal Klystron Simulations Using KLSC

    NASA Astrophysics Data System (ADS)

    Carlsten, B. E.; Ferguson, P.

    1997-05-01

    We describe a new, 2-1/2 dimensional, klystron-simulation code, KLSC. This code has a sophisticated input cavity model for calculating the klystron gain with arbitrary input cavity matching and tuning, and is capable of modeling coupled output cavities. We will discuss the input and output cavity models, and present simulation results from a high-power, S-band design. We will use these results to explore tuning issues with coupled output cavities.

  18. Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda

    PubMed Central

    Andrianakis, Ioannis; Vernon, Ian R.; McCreesh, Nicky; McKinley, Trevelyan J.; Oakley, Jeremy E.; Nsubuga, Rebecca N.; Goldstein, Michael; White, Richard G.

    2015-01-01

    Advances in scientific computing have allowed the development of complex models that are being routinely applied to problems in disease epidemiology, public health and decision making. The utility of these models depends in part on how well they can reproduce empirical data. However, fitting such models to real world data is greatly hindered both by large numbers of input and output parameters, and by long run times, such that many modelling studies lack a formal calibration methodology. We present a novel method that has the potential to improve the calibration of complex infectious disease models (hereafter called simulators). We present this in the form of a tutorial and a case study where we history match a dynamic, event-driven, individual-based stochastic HIV simulator, using extensive demographic, behavioural and epidemiological data available from Uganda. The tutorial describes history matching and emulation. History matching is an iterative procedure that reduces the simulator's input space by identifying and discarding areas that are unlikely to provide a good match to the empirical data. History matching relies on the computational efficiency of a Bayesian representation of the simulator, known as an emulator. Emulators mimic the simulator's behaviour, but are often several orders of magnitude faster to evaluate. In the case study, we use a 22 input simulator, fitting its 18 outputs simultaneously. After 9 iterations of history matching, a non-implausible region of the simulator input space was identified that was times smaller than the original input space. Simulator evaluations made within this region were found to have a 65% probability of fitting all 18 outputs. History matching and emulation are useful additions to the toolbox of infectious disease modellers. Further research is required to explicitly address the stochastic nature of the simulator as well as to account for correlations between outputs. PMID:25569850

  19. Millimeter-wave active probe

    DOEpatents

    Majidi-Ahy, Gholamreza; Bloom, David M.

    1991-01-01

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  20. Design, implementation and investigation of an image guide-based optical flip-flop array

    NASA Technical Reports Server (NTRS)

    Griffith, P. C.

    1987-01-01

    Presented is the design for an image guide-based optical flip-flop array created using a Hughes liquid crystal light valve and a flexible image guide in a feedback loop. This design is used to investigate the application of image guides as a communication mechanism in numerical optical computers. It is shown that image guides can be used successfully in this manner but mismatch match between the input and output fiber arrays is extremely limiting.

  1. Steady flow model user's guide

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.

    1984-07-01

    Sophisticated numerical models that solve the coupled mass and energy transport equations for nonisothermal fluid flow in a porous medium were used to match analytical results and field data for aquifer thermal energy storage (ATES) systems. As an alternative to the ATES problem the Steady Flow Model (SFM), a simplified but fast numerical model was developed. A steady purely radial flow field is prescribed in the aquifer, and incorporated into the heat transport equation which is then solved numerically. While the radial flow assumption limits the range of ATES systems that can be studied using the SFM, it greatly simplifies use of this code. The preparation of input is quite simple compared to that for a sophisticated coupled mass and energy model, and the cost of running the SFM is far cheaper. The simple flow field allows use of a special calculational mesh that eliminates the numerical dispersion usually associated with the numerical solution of convection problems. The problem is defined, the algorithm used to solve it are outllined, and the input and output for the SFM is described.

  2. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  3. Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.

    PubMed

    Andrews, Steven S; Peria, William J; Yu, Richard C; Colman-Lerner, Alejandro; Brent, Roger

    2016-11-23

    Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Versatile current-mode universal biquadratic filter using DO-CCIIs

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Pin

    2013-07-01

    In this article, a new three-input and three-output versatile current-mode universal biquadratic filter is proposed. The circuit employs three dual-output current conveyors (DO-CCIIs) as active elements together with three grounded resistors and two grounded capacitors. The proposed configuration exhibits low-input impedance and high-output impedance which is important for easy cascading in the current-mode operations. It can be used as either a single-input and three-output or three-input and two-output circuit. In the operation of single-input and three-output circuit, the lowpass, bandpass and bandreject can be realised simultaneously, while the highpass filtering response can be easily obtained by connecting appropriated output current directly without using addition stages. In the operation of three-input and two-output circuit, all five generic filtering functions can be easily realised by selecting different three input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no component matching conditions or inverting-type input current signals are imposed. All the passive and active sensitivities are low. HSPICE simulation results based on using TSMC 0.18 µm 1P6M CMOS process technology and supply voltages ±0.9 V to verify the theoretical analysis.

  5. History matching of a complex epidemiological model of human immunodeficiency virus transmission by using variance emulation.

    PubMed

    Andrianakis, I; Vernon, I; McCreesh, N; McKinley, T J; Oakley, J E; Nsubuga, R N; Goldstein, M; White, R G

    2017-08-01

    Complex stochastic models are commonplace in epidemiology, but their utility depends on their calibration to empirical data. History matching is a (pre)calibration method that has been applied successfully to complex deterministic models. In this work, we adapt history matching to stochastic models, by emulating the variance in the model outputs, and therefore accounting for its dependence on the model's input values. The method proposed is applied to a real complex epidemiological model of human immunodeficiency virus in Uganda with 22 inputs and 18 outputs, and is found to increase the efficiency of history matching, requiring 70% of the time and 43% fewer simulator evaluations compared with a previous variant of the method. The insight gained into the structure of the human immunodeficiency virus model, and the constraints placed on it, are then discussed.

  6. Coordination of heterogeneous nonlinear multi-agent systems with prescribed behaviours

    NASA Astrophysics Data System (ADS)

    Tang, Yutao

    2017-10-01

    In this paper, we consider a coordination problem for a class of heterogeneous nonlinear multi-agent systems with a prescribed input-output behaviour which was represented by another input-driven system. In contrast to most existing multi-agent coordination results with an autonomous (virtual) leader, this formulation takes possible control inputs of the leader into consideration. First, the coordination was achieved by utilising a group of distributed observers based on conventional assumptions of model matching problem. Then, a fully distributed adaptive extension was proposed without using the input of this input-output behaviour. An example was given to verify their effectiveness.

  7. Characterization of Inductive loop coupling in a Cyclotron Dee Structure

    NASA Astrophysics Data System (ADS)

    Carroll, Lewis

    Many of today's low to medium-energy cyclotrons apply RF power to the resonator structure (the dees) by inductive loop coupling through a feed-line driven by an RF transmitter employing a triode or tetrode power tube. The transmitter's output network transforms the tube's optimum load line (typically a few thousand ohms) down to Z0, typically 50 ohms. But the load-line is not a physical resistance, so one would not expect to see 50 ohms when looking back toward the transmitter. Moreover, if both the resonator's input and the transmitter's output are matched to Z0, then the coupled or working Q of the resonator is reduced to half that of the uncoupled Q, implying that half the power is being dissipated in the transmitter's output resistance- an inefficient and expensive solution for a high power RF application. More power is available if the transmitter's reverse-impedance is not matched to Z0, but this may result in misalignment between the frequency for correct forward match at the loop, versus the frequency for maximum power in the resonator. The misalignment can be eliminated, and the working Q maximized, by choosing the appropriate length of feed-line between the non-matched transmitter output and the matched resonator's input. In addition, the transmitter's output impedance may be complex, comprising resistance plus reactance, requiring a further process and means of measuring the output impedance so that an additional compensating length of feed-line can be incorporated. But a wrong choice of overall feed-line length- even though correctly load-matched at the resonator's operating frequency- can result in a curious degenerate condition, where the resonator's working Q appears to collapse, and the potential for transmitter overload increases substantially: a condition to be avoided!

  8. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    PubMed Central

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system. PMID:26343662

  9. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    PubMed

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-28

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  10. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  11. Synaptic control of the shape of the motoneuron pool input-output function

    PubMed Central

    Heckman, Charles J.

    2017-01-01

    Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs. PMID:28053245

  12. The Use of Input-Output Control System Analysis for Sustainable Development of Multivariable Environmental Systems

    NASA Astrophysics Data System (ADS)

    Koliopoulos, T. C.; Koliopoulou, G.

    2007-10-01

    We present an input-output solution for simulating the associated behavior and optimized physical needs of an environmental system. The simulations and numerical analysis determined the accurate boundary loads and areas that were required to interact for the proper physical operation of a complicated environmental system. A case study was conducted to simulate the optimum balance of an environmental system based on an artificial intelligent multi-interacting input-output numerical scheme. The numerical results were focused on probable further environmental management techniques, with the objective of minimizing any risks and associated environmental impact to protect the quality of public health and the environment. Our conclusions allowed us to minimize the associated risks, focusing on probable cases in an emergency to protect the surrounded anthropogenic or natural environment. Therefore, the lining magnitude could be determined for any useful associated technical works to support the environmental system under examination, taking into account its particular boundary necessities and constraints.

  13. 24-Way Radial Power Combiner/Divider for 31 to 36 GHz

    NASA Technical Reports Server (NTRS)

    Epp, Larry; Hoppe, Daniel; Khan, Abdur; Kelley, Daniel

    2008-01-01

    The figure shows a prototype radial power-combining waveguide structure, capable of operation at frequencies from 31 to 36 GHz, that features an unusually large number (N = 24) of combining (input) ports. The combination of wide-band operation and large N is achieved by incorporating several enhancements over a basic radial power-combiner design. In addition, the structure can be operated as a power divider by reversing the roles of the input and output ports. In this structure, full-height waveguides at the combining ports are matched in impedance to reduced-height radial waveguides inside the combiner base. This match is effected by impedance-transforming stepped waveguide sections. This matching scheme is essential to achievement of large N because N is limited by the height of the waveguides in the base. Power is coupled from the 24 reduced- height radial waveguides into the TE01 mode of a circular waveguide in the base with the help of a matching post at the bottom of the base. ( TE signifies transverse electric, the first subscript is the azimuthal mode number, and the second subscript is the radial mode number.) More specifically, the matching post matches the reflections from the walls of the 24 reduced-height waveguides and enables the base design to exceed the bandwidth requirement. After propagating along the circular waveguide, the combined power is coupled, via a mode transducer, to a rectangular waveguide output port. The mode transducer is divided into three sections, each sized and shaped as part of an overall design to satisfy the mode-conversion and output-coupling requirements while enabling the circular waveguide to be wide enough for combining the 24 inputs over the frequency range of 31 to 36 GHz. During the design process, it was found that two different rectangular waveguide outputs could be accommodated through modification of only the first section of the mode converter, thereby enabling operation in multiple frequency ranges.

  14. High voltage electrical amplifier having a short rise time

    DOEpatents

    Christie, David J.; Dallum, Gregory E.

    1991-01-01

    A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

  15. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    PubMed Central

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  16. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations.

    PubMed

    Fernandez, Fernando R; Malerba, Paola; White, John A

    2015-04-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.

  17. A high efficiency C-band internally-matched harmonic tuning GaN power amplifier

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Zhao, B. C.; Zheng, J. X.; Zhang, H. S.; Zheng, X. F.; Ma, X. H.; Hao, Y.; Ma, P. J.

    2016-09-01

    In this paper, a high efficiency C-band gallium nitride (GaN) internally-matched power amplifier (PA) is presented. This amplifier consists of 2-chips of self-developed GaN high-electron mobility transistors (HEMTs) with 16 mm total gate width on SiC substrate. New harmonic manipulation circuits are induced both in the input and output matching networks for high efficiency matching at fundamental and 2nd-harmonic frequency, respectively. The developed amplifier has achieved 72.1% power added efficiency (PAE) with 107.4 W output power at 5 GHz. To the best of our knowledge, this amplifier exhibits the highest PAE in C-band GaN HEMT amplifiers with over 100 W output power. Additionally, 1000 hours' aging test reveals high reliability for practical applications.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawisza, I; Yan, H; Yin, F

    Purpose: To assure that tumor motion is within the radiation field during high-dose and high-precision radiosurgery, real-time imaging and surrogate monitoring are employed. These methods are useful in providing real-time tumor/surrogate motion but no future information is available. In order to anticipate future tumor/surrogate motion and track target location precisely, an algorithm is developed and investigated for estimating surrogate motion multiple-steps ahead. Methods: The study utilized a one-dimensional surrogate motion signal divided into three components: (a) training component containing the primary data including the first frame to the beginning of the input subsequence; (b) input subsequence component of the surrogatemore » signal used as input to the prediction algorithm: (c) output subsequence component is the remaining signal used as the known output of the prediction algorithm for validation. The prediction algorithm consists of three major steps: (1) extracting subsequences from training component which best-match the input subsequence according to given criterion; (2) calculating weighting factors from these best-matched subsequence; (3) collecting the proceeding parts of the subsequences and combining them together with assigned weighting factors to form output. The prediction algorithm was examined for several patients, and its performance is assessed based on the correlation between prediction and known output. Results: Respiratory motion data was collected for 20 patients using the RPM system. The output subsequence is the last 50 samples (∼2 seconds) of a surrogate signal, and the input subsequence was 100 (∼3 seconds) frames prior to the output subsequence. Based on the analysis of correlation coefficient between predicted and known output subsequence, the average correlation is 0.9644±0.0394 and 0.9789±0.0239 for equal-weighting and relative-weighting strategies, respectively. Conclusion: Preliminary results indicate that the prediction algorithm is effective in estimating surrogate motion multiple-steps in advance. Relative-weighting method shows better prediction accuracy than equal-weighting method. More parameters of this algorithm are under investigation.« less

  19. Logarithmic current measurement circuit with improved accuracy and temperature stability and associated method

    DOEpatents

    Ericson, M. Nance; Rochelle, James M.

    1994-01-01

    A logarithmic current measurement circuit for operating upon an input electric signal utilizes a quad, dielectrically isolated, well-matched, monolithic bipolar transistor array. One group of circuit components within the circuit cooperate with two transistors of the array to convert the input signal logarithmically to provide a first output signal which is temperature-dependant, and another group of circuit components cooperate with the other two transistors of the array to provide a second output signal which is temperature-dependant. A divider ratios the first and second output signals to provide a resultant output signal which is independent of temperature. The method of the invention includes the operating steps performed by the measurement circuit.

  20. Experimental feedback linearisation of a vibrating system with a non-smooth nonlinearity

    NASA Astrophysics Data System (ADS)

    Lisitano, D.; Jiffri, S.; Bonisoli, E.; Mottershead, J. E.

    2018-03-01

    Input-output partial feedback linearisation is demonstrated experimentally for the first time on a system with non-smooth nonlinearity, a laboratory three degrees of freedom lumped mass system with a piecewise-linear spring. The output degree of freedom is located away from the nonlinearity so that the partial feedback linearisation possesses nonlinear internal dynamics. The dynamic behaviour of the linearised part is specified by eigenvalue assignment and an investigation of the zero dynamics is carried out to confirm stability of the overall system. A tuned numerical model is developed for use in the controller and to produce numerical outputs for comparison with experimental closed-loop results. A new limitation of the feedback linearisation method is discovered in the case of lumped mass systems - that the input and output must share the same degrees of freedom.

  1. A 260-340 GHz Dual Chip Frequency Tripler for THz Frequency Multiplier Chains

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Tripon-Canseliet, Charlotte; Ward, John S.; Gill, John J.; Mehdi, Imran

    2006-01-01

    We designed and fabricated a fix-tuned balanced frequency tripler working in the 260-340 GHz band to be the first stage of a x3x3x3 multiplier chain to 2.7 THz. The design of a dual-chip version of this multiplier featuring an input splitter / output combiner as part of the input / output matching networks of both chips - with no degradation of the expected bandwidth and efficiency- will be presented.

  2. A Ka-Band Wide-Bandgap Solid-State Power Amplifier: Architecture Performance Estimates

    NASA Technical Reports Server (NTRS)

    Epp, L.; Khan, P.; Silva, A.

    2005-01-01

    Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solidstate power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents the results of a study to investigate power-combining technology and SSPA architectures that can enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results of the study indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. The proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This corresponds to MMIC requirements of 5- to 10-W output power and >48 percent PAE. For the three proposed architectures [1], detailed analysis and design of the power combiner are presented. The first architecture studied is based on a 16-way septum combiner that offers low loss and high isolation over the design band of 31 to 36 GHz. Analysis of a 2-way prototype septum combiner had an input match >25 dB, output match >30 dB, insertion loss <0.02 dB, and isolation >30 dB over the design band. A 16-way design, based on cascading this combiner in a binary fashion, is documented. The second architecture is based on a 24-way waveguide radial combiner. A prototype 24-way radial base was analyzed to have an input match >30 dB (under equal excitation of all input ports). The match of the mode transducer that forms the output of a radial combiner was found to be >27 dB. The functional bandwidth of the radial base and mode transducer, which together will form a radial combiner/divider, exceeded the design band. The third architecture employs a 32-way, parallel-plate radial combiner. Simulation results indicated an input match >24 dB, output match >22 dB, insertion loss <0.23 dB, and adjacent port isolation >20 dB over the design band. All three architectures utilize a low-loss MMIC amplifier module based on commercial MMIC packaging and a custom microstrip-to-rectangular-waveguide transition. The insertion loss of the module is expected to be 0.45 dB over the design band.

  3. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    PubMed Central

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  4. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    PubMed

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  5. Complexity and non-commutativity of learning operations on graphs.

    PubMed

    Atmanspacher, Harald; Filk, Thomas

    2006-07-01

    We present results from numerical studies of supervised learning operations in small recurrent networks considered as graphs, leading from a given set of input conditions to predetermined outputs. Graphs that have optimized their output for particular inputs with respect to predetermined outputs are asymptotically stable and can be characterized by attractors, which form a representation space for an associative multiplicative structure of input operations. As the mapping from a series of inputs onto a series of such attractors generally depends on the sequence of inputs, this structure is generally non-commutative. Moreover, the size of the set of attractors, indicating the complexity of learning, is found to behave non-monotonically as learning proceeds. A tentative relation between this complexity and the notion of pragmatic information is indicated.

  6. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  7. OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi

    2017-07-01

    We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.

  8. Point-Wise Phase Matching for Nonlinear Frequency Generation in Dielectric Resonators

    NASA Technical Reports Server (NTRS)

    Yu, Nan (Inventor); Strekalov, Dmitry V. (Inventor); Lin, Guoping (Inventor)

    2016-01-01

    An optical resonator fabricated from a uniaxial birefringent crystal, such as beta barium borate. The crystal is cut with the optical axis not perpendicular to a face of the cut crystal. In some cases the optical axis lies in the plane of the cut crystal face. An incident (input) electromagnetic signal (which can range from the infrared through the visible to the ultraviolet) is applied to the resonator. An output signal is recovered which has a frequency that is an integer multiple of the frequency of the input signal. In some cases a prism is used to evanescently couple the input and the output signals to the resonator.

  9. Blind Deconvolution for Distributed Parameter Systems with Unbounded Input and Output and Determining Blood Alcohol Concentration from Transdermal Biosensor Data.

    PubMed

    Rosen, I G; Luczak, Susan E; Weiss, Jordan

    2014-03-15

    We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.

  10. Negative autoregulation matches production and demand in synthetic transcriptional networks.

    PubMed

    Franco, Elisa; Giordano, Giulia; Forsberg, Per-Ola; Murray, Richard M

    2014-08-15

    We propose a negative feedback architecture that regulates activity of artificial genes, or "genelets", to meet their output downstream demand, achieving robustness with respect to uncertain open-loop output production rates. In particular, we consider the case where the outputs of two genelets interact to form a single assembled product. We show with analysis and experiments that negative autoregulation matches the production and demand of the outputs: the magnitude of the regulatory signal is proportional to the "error" between the circuit output concentration and its actual demand. This two-device system is experimentally implemented using in vitro transcriptional networks, where reactions are systematically designed by optimizing nucleic acid sequences with publicly available software packages. We build a predictive ordinary differential equation (ODE) model that captures the dynamics of the system and can be used to numerically assess the scalability of this architecture to larger sets of interconnected genes. Finally, with numerical simulations we contrast our negative autoregulation scheme with a cross-activation architecture, which is less scalable and results in slower response times.

  11. Fast metabolite identification with Input Output Kernel Regression.

    PubMed

    Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho

    2016-06-15

    An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. celine.brouard@aalto.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  12. Fast metabolite identification with Input Output Kernel Regression

    PubMed Central

    Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho

    2016-01-01

    Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628

  13. Computer program for single input-output, single-loop feedback systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.

  14. Earth observing system. Output data products and input requirements, version 2.0. Volume 1: Instrument data product characteristics

    NASA Technical Reports Server (NTRS)

    Lu, Yun-Chi; Chang, Hyo Duck; Krupp, Brian; Kumar, Ravindra; Swaroop, Anand

    1992-01-01

    Information on Earth Observing System (EOS) output data products and input data requirements that has been compiled by the Science Processing Support Office (SPSO) at GSFC is presented. Since Version 1.0 of the SPSO Report was released in August 1991, there have been significant changes in the EOS program. In anticipation of a likely budget cut for the EOS Project, NASA HQ restructured the EOS program. An initial program consisting of two large platforms was replaced by plans for multiple, smaller platforms, and some EOS instruments were either deselected or descoped. Updated payload information reflecting the restructured EOS program superseding the August 1991 version of the SPSO report is included. This report has been expanded to cover information on non-EOS data products, and consists of three volumes (Volumes 1, 2, and 3). Volume 1 provides information on instrument outputs and input requirements. Volume 2 is devoted to Interdisciplinary Science (IDS) outputs and input requirements, including the 'best' and 'alternative' match analysis. Volume 3 provides information about retrieval algorithms, non-EOS input requirements of instrument teams and IDS investigators, and availability of non-EOS data products at seven primary Distributed Active Archive Centers (DAAC's).

  15. A computer program for automated flutter solution and matched point determination

    NASA Technical Reports Server (NTRS)

    Bhatia, K. G.

    1973-01-01

    The use of a digital computer program (MATCH) for automated determination of the flutter velocity and the matched-point flutter density is described. The program is based on the use of the modified Laguerre iteration formula to converge to a flutter crossing or a matched-point density. A general description of the computer program is included and the purpose of all subroutines used is stated. The input required by the program and various input options are detailed, and the output description is presented. The program can solve flutter equations formulated with up to 12 vibration modes and obtain flutter solutions for up to 10 air densities. The program usage is illustrated by a sample run, and the FORTRAN program listing is included.

  16. Earth observing system. Output data products and input requirements, version 2.0. Volume 2: Analysis of IDS input requirements

    NASA Technical Reports Server (NTRS)

    Lu, Yun-Chi; Chang, Hyo Duck; Krupp, Brian; Kumar, Ravindra; Swaroop, Anand

    1992-01-01

    On 18 Jan. 1991, NASA confirmed 29 Inter-Disciplinary Science (IDS) teams, each involving a group of investigators, to conduct interdisciplinary research using data products from Earth Observing System (EOS) instruments. These studies are multi-disciplinary and require output data products from multiple EOS instruments, including both FI and PI instruments. The purpose of this volume is to provide information on output products expected from IDS investigators, required input data, and retrieval algorithms. Also included in this volume is the revised analysis of the 'best' and 'alternative' match data products for IDS input requirements. The original analysis presented in the August 1991 release of the SPSO Report was revised to incorporate the restructuring of the EOS platform. As a result of the reduced EOS payload, some of EOS instruments were deselected and their data products would not be available for IDS research. Information on these data products is also presented.

  17. The Potential of Elicited Imitation for Oral Output Practice in German L2

    ERIC Educational Resources Information Center

    Cornillie, Frederik; Baten, Kristof; De Hertog, Dirk

    2017-01-01

    This paper reports on the potential of Oral Elicited Imitation (OEI) as a format for output practice, building on an analysis of picture-matching and spoken data collected from 36 university-level learners of German as a second language (L2) in a web-based assessment task inspired by Input Processing (VanPatten, 2004). The design and development…

  18. Reconfigurable RF Systems Using Commercially Available Digital Capacitor Arrays

    DTIC Science & Technology

    2013-03-01

    for changing antenna loading. Note that for the receiver circuitry, the path through the FEM is reversed and the wideband RF engine is given...Network A tunable impedance-matching network is commonly used to match variable antenna impedance to the transmitter output or receiver input [1...2]. There are multiple utilities for this device. In one, the so-called static mode, the antenna can be matched to the rest of the system before

  19. Experimental validation of wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  20. Experimental validation of wireless communication with chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  1. Design of elliptical-core mode-selective photonic lanterns with six modes for MIMO-free mode division multiplexing systems.

    PubMed

    Sai, Xiaowei; Li, Yan; Yang, Chen; Li, Wei; Qiu, Jifang; Hong, Xiaobin; Zuo, Yong; Guo, Hongxiang; Tong, Weijun; Wu, Jian

    2017-11-01

    Elliptical-core few mode fiber (EC-FMF) is used in a mode division multiplexing (MDM) transmission system to release multiple-input-multiple-output (MIMO) digital-signal-processing, which reduces the cost and the complexity of the receiver. However, EC-FMF does not match with conventional multiplexers/de-multiplexers (MUXs/DeMUXs) such as a photonic lantern, leading to extra mode coupling loss and crosstalk. We design elliptical-core mode-selective photonic lanterns (EC-MSPLs) with six modes, which can match well with EC-FMF in MIMO-free MDM systems. Simulation of the EC-MSPL using the beam propagation method was demonstrated employing a combination of either step-index or graded-index fibers with six different sizes of cores, and the taper transition length of 8 cm or 4 cm. Through numerical simulations and optimizations, both types of photonic lanterns can realize low loss transmission and low crosstalk of below -20.0  dB for all modes.

  2. Experimental validation of wireless communication with chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and anmore » integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.« less

  3. Helicopter rotor loads using matched asymptotic expansions: User's manual

    NASA Technical Reports Server (NTRS)

    Pierce, G. A.; Vaidyanathan, A. R.

    1983-01-01

    Computer programs were developed to implement the computational scheme arising from Van Holten's asymptotic method for calculating airloads on a helicopter rotor blade in forward flight, and a similar technique which is based on a discretized version of the method. The basic outlines of the two programs are presented, followed by separate descriptions of the input requirements and output format. Two examples illustrating job entry with appropriate input data and corresponding output are included. Appendices contain a sample table of lift coefficient data for the NACA 0012 air foil and listings of the two programs.

  4. Surrogate modelling for the prediction of spatial fields based on simultaneous dimensionality reduction of high-dimensional input/output spaces.

    PubMed

    Crevillén-García, D

    2018-04-01

    Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.

  5. Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Patera, Anthony

    1993-01-01

    Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.

  6. Replica symmetric evaluation of the information transfer in a two-layer network in the presence of continuous and discrete stimuli.

    PubMed

    Del Prete, Valeria; Treves, Alessandro

    2002-04-01

    In a previous paper we have evaluated analytically the mutual information between the firing rates of N independent units and a set of multidimensional continuous and discrete stimuli, for a finite population size and in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where input units activate output ones via Gaussian weights and a threshold linear transfer function. We evaluate the information carried by a population of M output units, again about continuous and discrete correlates. The mutual information is evaluated solving saddle-point equations under the assumption of replica symmetry, a method that, by taking into account only the term linear in N of the input information, is equivalent to assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the ratio M/N, on the selectivity of the input units and on the level of the output noise. We show analytically, and confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input noise, the output information approaches asymptotically the information carried in input. Finally, we show that the information loss in output does not depend much on the structure of the stimulus, whether purely continuous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between input and output noise.

  7. 28-Bit serial word simulator/monitor

    NASA Technical Reports Server (NTRS)

    Durbin, J. W.

    1979-01-01

    Modular interface unit transfers data at high speeds along four channels. Device expedites variable-word-length communication between computers. Operation eases exchange of bit information by automatically reformatting coded input data and status information to match requirements of output.

  8. Statistics of optimal information flow in ensembles of regulatory motifs

    NASA Astrophysics Data System (ADS)

    Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan

    2018-02-01

    Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.

  9. Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach

    PubMed Central

    Zeng, Xiaozheng; McGough, Robert J.

    2009-01-01

    The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640

  10. Gaussian functional regression for output prediction: Model assimilation and experimental design

    NASA Astrophysics Data System (ADS)

    Nguyen, N. C.; Peraire, J.

    2016-03-01

    In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.

  11. Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.

    PubMed

    Mohan, B M; Sinha, Arpita

    2008-07-01

    This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.

  12. Microwave impedance matching strategies of an applicator supplied by a bi-directional magnetron waveguide launcher.

    PubMed

    Roussy, Georges; Kongmark, Nils

    2003-01-01

    It is shown that a bi-directional waveguide launcher can be used advantageously for reducing the reflection coefficient mismatch of an input impedance of an applicator. In a simple bi-directional waveguide launcher, the magnetron is placed in the waveguide and generates a nominal field distribution with significant output impedance in both directions of the waveguide. If a standing wave is tolerated in the torus, which connects the launcher and the applicator, the power transfer from the magnetron to the applicator can be optimal, without using special matching devices. It is also possible to match the bi-directional launcher with two inductance stubs near the antenna of the magnetron and use them for supplying a two-input applicator without reflection.

  13. Continuous-Time Bilinear System Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2003-01-01

    The objective of this paper is to describe a new method for identification of a continuous-time multi-input and multi-output bilinear system. The approach is to make judicious use of the linear-model properties of the bilinear system when subjected to a constant input. Two steps are required in the identification process. The first step is to use a set of pulse responses resulting from a constant input of one sample period to identify the state matrix, the output matrix, and the direct transmission matrix. The second step is to use another set of pulse responses with the same constant input over multiple sample periods to identify the input matrix and the coefficient matrices associated with the coupling terms between the state and the inputs. Numerical examples are given to illustrate the concept and the computational algorithm for the identification method.

  14. Staging memory for massively parallel processor

    NASA Technical Reports Server (NTRS)

    Batcher, Kenneth E. (Inventor)

    1988-01-01

    The invention herein relates to a computer organization capable of rapidly processing extremely large volumes of data. A staging memory is provided having a main stager portion consisting of a large number of memory banks which are accessed in parallel to receive, store, and transfer data words simultaneous with each other. Substager portions interconnect with the main stager portion to match input and output data formats with the data format of the main stager portion. An address generator is coded for accessing the data banks for receiving or transferring the appropriate words. Input and output permutation networks arrange the lineal order of data into and out of the memory banks.

  15. Removing Visual Bias in Filament Identification: A New Goodness-of-fit Measure

    NASA Astrophysics Data System (ADS)

    Green, C.-E.; Cunningham, M. R.; Dawson, J. R.; Jones, P. A.; Novak, G.; Fissel, L. M.

    2017-05-01

    Different combinations of input parameters to filament identification algorithms, such as disperse and filfinder, produce numerous different output skeletons. The skeletons are a one-pixel-wide representation of the filamentary structure in the original input image. However, these output skeletons may not necessarily be a good representation of that structure. Furthermore, a given skeleton may not be as good of a representation as another. Previously, there has been no mathematical “goodness-of-fit” measure to compare output skeletons to the input image. Thus far this has been assessed visually, introducing visual bias. We propose the application of the mean structural similarity index (MSSIM) as a mathematical goodness-of-fit measure. We describe the use of the MSSIM to find the output skeletons that are the most mathematically similar to the original input image (the optimum, or “best,” skeletons) for a given algorithm, and independently of the algorithm. This measure makes possible systematic parameter studies, aimed at finding the subset of input parameter values returning optimum skeletons. It can also be applied to the output of non-skeleton-based filament identification algorithms, such as the Hessian matrix method. The MSSIM removes the need to visually examine thousands of output skeletons, and eliminates the visual bias, subjectivity, and limited reproducibility inherent in that process, representing a major improvement upon existing techniques. Importantly, it also allows further automation in the post-processing of output skeletons, which is crucial in this era of “big data.”

  16. Approximation of discrete-time LQG compensators for distributed systems with boundary input and unbounded measurement

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.

  17. Simulations of Brady's-Type Fault Undergoing CO2 Push-Pull: Pressure-Transient and Sensitivity Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin; Doughty, Christine

    Input and output files used for fault characterization through numerical simulation using iTOUGH2. The synthetic data for the push period are generated by running a forward simulation (input parameters are provided in iTOUGH2 Brady GF6 Input Parameters.txt [InvExt6i.txt]). In general, the permeability of the fault gouge, damage zone, and matrix are assumed to be unknown. The input and output files are for the inversion scenario where only pressure transients are available at the monitoring well located 200 m above the injection well and only the fault gouge permeability is estimated. The input files are named InvExt6i, INPUT.tpl, FOFT.ins, CO2TAB, andmore » the output files are InvExt6i.out, pest.fof, and pest.sav (names below are display names). The table graphic in the data files below summarizes the inversion results, and indicates the fault gouge permeability can be estimated even if imperfect guesses are used for matrix and damage zone permeabilities, and permeability anisotropy is not taken into account.« less

  18. Unconstrained handwritten numeral recognition based on radial basis competitive and cooperative networks with spatio-temporal feature representation.

    PubMed

    Lee, S; Pan, J J

    1996-01-01

    This paper presents a new approach to representation and recognition of handwritten numerals. The approach first transforms a two-dimensional (2-D) spatial representation of a numeral into a three-dimensional (3-D) spatio-temporal representation by identifying the tracing sequence based on a set of heuristic rules acting as transformation operators. A multiresolution critical-point segmentation method is then proposed to extract local feature points, at varying degrees of scale and coarseness. A new neural network architecture, referred to as radial-basis competitive and cooperative network (RCCN), is presented especially for handwritten numeral recognition. RCCN is a globally competitive and locally cooperative network with the capability of self-organizing hidden units to progressively achieve desired network performance, and functions as a universal approximator of arbitrary input-output mappings. Three types of RCCNs are explored: input-space RCCN (IRCCN), output-space RCCN (ORCCN), and bidirectional RCCN (BRCCN). Experiments against handwritten zip code numerals acquired by the U.S. Postal Service indicated that the proposed method is robust in terms of variations, deformations, transformations, and corruption, achieving about 97% recognition rate.

  19. Growing a hypercubical output space in a self-organizing feature map.

    PubMed

    Bauer, H U; Villmann, T

    1997-01-01

    Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective structure of the data in the input space. We here present a growth algorithm, called the GSOM or growing self-organizing map, which enhances a widespread map self-organization process, Kohonen's self-organizing feature map (SOFM), by an adaptation of the output space grid during learning. The GSOM restricts the output space structure to the shape of a general hypercubical shape, with the overall dimensionality of the grid and its extensions along the different directions being subject of the adaptation. This constraint meets the demands of many larger information processing systems, of which the neural map can be a part. We apply our GSOM-algorithm to three examples, two of which involve real world data. Using recently developed methods for measuring the degree of neighborhood preservation in neural maps, we find the GSOM-algorithm to produce maps which preserve neighborhoods in a nearly optimal fashion.

  20. Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum.

    PubMed

    Wille, M-L; Zapf, M; Ruiter, N V; Gemmeke, H; Langton, C M

    2015-06-21

    The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.

  1. Input-output-controlled nonlinear equation solvers

    NASA Technical Reports Server (NTRS)

    Padovan, Joseph

    1988-01-01

    To upgrade the efficiency and stability of the successive substitution (SS) and Newton-Raphson (NR) schemes, the concept of input-output-controlled solvers (IOCS) is introduced. By employing the formal properties of the constrained version of the SS and NR schemes, the IOCS algorithm can handle indefiniteness of the system Jacobian, can maintain iterate monotonicity, and provide for separate control of load incrementation and iterate excursions, as well as having other features. To illustrate the algorithmic properties, the results for several benchmark examples are presented. These define the associated numerical efficiency and stability of the IOCS.

  2. FEMFLOW3D; a finite-element program for the simulation of three-dimensional aquifers; version 1.0

    USGS Publications Warehouse

    Durbin, Timothy J.; Bond, Linda D.

    1998-01-01

    This document also includes model validation, source code, and example input and output files. Model validation was performed using four test problems. For each test problem, the results of a model simulation with FEMFLOW3D were compared with either an analytic solution or the results of an independent numerical approach. The source code, written in the ANSI x3.9-1978 FORTRAN standard, and the complete input and output of an example problem are listed in the appendixes.

  3. Ultrabroadband beam splitter with matched group-delay dispersion.

    PubMed

    Kim, J; Birge, Jonathan R; Sharma, V; Fujimoto, J G; Kärtner, E X; Scheuer, V; Angelow, G

    2005-06-15

    We present a general design strategy for a broadband thin-film beam splitter with matched group-delay dispersion. By taking the substrate dispersion into account in the coating design, any combination of input and output can show the same dispersion for transmission and reflection. As a specific implementation, an ultrabroadband 50:50 beam splitter from 600 to 1500 nm for femtosecond laser applications was designed, fabricated, and characterized.

  4. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  5. Numerical Function Generators Using LUT Cascades

    DTIC Science & Technology

    2007-06-01

    either algebraically (for example, sinðxÞ) or as a table of input/ output values. The user defines the numerical function by using the syntax of Scilab ...defined function in Scilab or specify it directly. Note that, by changing the parser of our system, any format can be used for the design entry. First...Methods for Multiple-Valued Input Address Generators,” Proc. 36th IEEE Int’l Symp. Multiple-Valued Logic (ISMVL ’06), May 2006. [29] Scilab 3.0, INRIA-ENPC

  6. Transcending binary logic by gating three coupled quantum dots.

    PubMed

    Klein, Michael; Rogge, S; Remacle, F; Levine, R D

    2007-09-01

    Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.

  7. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    PubMed Central

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169

  8. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.

    PubMed

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.

  9. Design and analysis of high gain and low noise figure CMOS low noise amplifier for Q-band nano-sensor application

    NASA Astrophysics Data System (ADS)

    Suganthi, K.; Malarvizhi, S.

    2018-03-01

    A high gain, low power, low Noise figure (NF) and wide band of milli-meter Wave (mmW) circuits design at 50 GHz are used for Radio Frequency (RF) front end. The fundamental necessity of a receiver front-end includes perfect output and input impedance matching and port-to-port isolation with high gain and low noise over the entire band of interest. In this paper, a design of Cascade-Cascode CMOS LNA circuit at 50 GHz for Q-band application is proposed. The design of Low noise amplifier at 50 GHz using Agilent ADS tool with microstrip lines which provides simplicity in fabrication and less chip area. The low off-leakage current Ioff can be maintained with high K-dielectrics CMOS structure. Nano-scale electronics can be achieved with increased robustness. The design has overall gain of 11.091 dB and noise figure of 2.673 dB for the Q-band of 48.3 GHz to 51.3 GHz. Impedance matching is done by T matching network and the obtained input and output reflection coefficients are S11 = <-10 dB and S22 = <-10 dB. Compared to Silicon (Si) material, Wide Band Gap semiconductor materials used attains higher junction temperatures which is well matched to ceramics used in packaging technology, the protection and reliability also can be achieved with the electronic packaging. The reverse transmission coefficient S21 is less than -21 dB has shown that LNA has better isolation between input and output, Stability factor greater than 1 and Power is also optimized in this design. Layout is designed, power gain of 4.6 dB is achieved and area is optimized which is nearly equal to 502 740 μm2. The observed results show that the proposed Cascade-Cascode LNA design can find its suitability in future milli-meter Wave Radar application.

  10. Optical harmonic generator

    DOEpatents

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  11. Optical harmonic generator

    DOEpatents

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  12. Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Ardani, S.; Kaihatu, J. M.

    2012-12-01

    Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques, MCMC

  13. An on-line system for hand-printed input

    NASA Technical Reports Server (NTRS)

    Williams, T. G.; Bebb, J.

    1971-01-01

    The capability of graphic input/output systems is described. Topics considered are a character recognizer and dictionary building program, an initial flow chart element input program, and a system entitled The Assistant Mathematician, which uses ordinary mathematics to specify numeric computation. All three parts are necessary to allow a user to carry on a mathematical dialogue with the computer in the language and notation of his discipline or problem domain.

  14. Two models for identification and predicting behaviour of an induction motor system

    NASA Astrophysics Data System (ADS)

    Kuo, Chien-Hsun

    2018-01-01

    System identification or modelling is the process of building mathematical models of dynamical systems based on the available input and output data from the systems. This paper introduces system identification by using ARX (Auto Regressive with eXogeneous input) and ARMAX (Auto Regressive Moving Average with eXogeneous input) models. Through the identified system model, the predicted output could be compared with the measured one to help prevent the motor faults from developing into a catastrophic machine failure and avoid unnecessary costs and delays caused by the need to carry out unscheduled repairs. The induction motor system is illustrated as an example. Numerical and experimental results are shown for the identified induction motor system.

  15. The Euler’s Graphical User Interface Spreadsheet Calculator for Solving Ordinary Differential Equations by Visual Basic for Application Programming

    NASA Astrophysics Data System (ADS)

    Gaik Tay, Kim; Cheong, Tau Han; Foong Lee, Ming; Kek, Sie Long; Abdul-Kahar, Rosmila

    2017-08-01

    In the previous work on Euler’s spreadsheet calculator for solving an ordinary differential equation, the Visual Basic for Application (VBA) programming was used, however, a graphical user interface was not developed to capture users input. This weakness may make users confuse on the input and output since those input and output are displayed in the same worksheet. Besides, the existing Euler’s spreadsheet calculator is not interactive as there is no prompt message if there is a mistake in inputting the parameters. On top of that, there are no users’ instructions to guide users to input the derivative function. Hence, in this paper, we improved previous limitations by developing a user-friendly and interactive graphical user interface. This improvement is aimed to capture users’ input with users’ instructions and interactive prompt error messages by using VBA programming. This Euler’s graphical user interface spreadsheet calculator is not acted as a black box as users can click on any cells in the worksheet to see the formula used to implement the numerical scheme. In this way, it could enhance self-learning and life-long learning in implementing the numerical scheme in a spreadsheet and later in any programming language.

  16. Cell type-specific long-range connections of basal forebrain circuit.

    PubMed

    Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang

    2016-09-19

    The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.

  17. CITE NLM: Natural-Language Searching in an Online Catalog.

    ERIC Educational Resources Information Center

    Doszkocs, Tamas E.

    1983-01-01

    The National Library of Medicine's Current Information Transfer in English public access online catalog offers unique subject search capabilities--natural-language query input, automatic medical subject headings display, closest match search strategy, ranked document output, dynamic end user feedback for search refinement. References, description…

  18. 47 CFR 80.959 - Radiotelephone transmitter.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... watts into 50 ohms nominal resistance when operated with its rated supply voltage. The transmitter must... capability of the transmitter, measurements of primary supply voltage and transmitter output power must be... voltage measured at the power input terminals to the transmitter terminated in a matching artificial load...

  19. Output control using feedforward and cascade controllers

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    An open-loop solution to the output control problem in SISO (single-input, single-output) systems by means of feedforward and cascade controllers is investigated. A simple characterization of feedforward controllers, which achieve steady-state disturbance rejection, is given in a transfer-function setting. Cascade controllers which cause steady-state command tracking are characterized. Disturbance decoupling and command matching controllers are identified. Conditions for existence of feedforward and cascade controllers are given. For unstable systems, it is shown that a stabilizing feedback controller can be used without affecting the feedforward and cascade controllers used for output control; hence, the three controllers can be designed independently. Output control by a combination of feedforward and feedback is discussed.

  20. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  1. Wrapping Python around MODFLOW/MT3DMS based groundwater models

    NASA Astrophysics Data System (ADS)

    Post, V.

    2008-12-01

    Numerical models that simulate groundwater flow and solute transport require a great amount of input data that is often organized into different files. A large proportion of the input data consists of spatially-distributed model parameters. The model output consists of a variety data such as heads, fluxes and concentrations. Typically all files have different formats. Consequently, preparing input and managing output is a complex and error-prone task. Proprietary software tools are available that facilitate the preparation of input files and analysis of model outcomes. The use of such software may be limited if it does not support all the features of the groundwater model or when the costs of such tools are prohibitive. Therefore a Python library was developed that contains routines to generate input files and process output files of MODFLOW/MT3DMS based models. The library is freely available and has an open structure so that the routines can be customized and linked into other scripts and libraries. The current set of functions supports the generation of input files for MODFLOW and MT3DMS, including the capability to read spatially-distributed input parameters (e.g. hydraulic conductivity) from PNG files. Both ASCII and binary output files can be read efficiently allowing for visualization of, for example, solute concentration patterns in contour plots with superimposed flow vectors using matplotlib. Series of contour plots are then easily saved as an animation. The subroutines can also be used within scripts to calculate derived quantities such as the mass of a solute within a particular region of the model domain. Using Python as a wrapper around groundwater models provides an efficient and flexible way of processing input and output data, which is not constrained by limitations of third-party products.

  2. RCHILD - an R-package for flexible use of the landscape evolution model CHILD

    NASA Astrophysics Data System (ADS)

    Dietze, Michael

    2014-05-01

    Landscape evolution models provide powerful approaches to numerically assess earth surface processes, to quantify rates of landscape change, infer sediment transfer rates, estimate sediment budgets, investigate the consequences of changes in external drivers on a geomorphic system, to provide spatio-temporal interpolations between known landscape states or to test conceptual hypotheses. CHILD (Channel-Hillslope Integrated Landscape Development Model) is one of the most-used models of landscape change in the context of at least tectonic and geomorphologic process interactions. Running CHILD from command line and working with the model output can be a rather awkward task (static model control via text input file, only numeric output in text files). The package RCHILD is a collection of functions for the free statistical software R that help using CHILD in a flexible, dynamic and user-friendly way. The comprised functions allow creating maps, real-time scenes, animations and further thematic plots from model output. The model input files can be modified dynamically and, hence, (feedback-related) changes in external factors can be implemented iteratively. Output files can be written to common formats that can be readily imported to standard GIS software. This contribution presents the basic functionality of the model CHILD as visualised and modified by the package. A rough overview of the available functions is given. Application examples help to illustrate the great potential of numeric modelling of geomorphologic processes.

  3. Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability.

    PubMed

    Dawson, Michael R W; Gupta, Maya

    2017-01-01

    Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent's environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit) learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR) of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned.

  4. Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability

    PubMed Central

    2017-01-01

    Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent’s environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit) learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR) of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned. PMID:28212422

  5. User's manual for three-dimensional analysis of propeller flow fields

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.; Kutler, P.

    1983-01-01

    A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints.

  6. Local Sensitivity of Predicted CO 2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    DOE PAGES

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; ...

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficientmore » (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.« less

  7. Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study.

    PubMed

    Rausch, Annika; Zhang, Wei; Haak, Koen V; Mennes, Maarten; Hermans, Erno J; van Oort, Erik; van Wingen, Guido; Beckmann, Christian F; Buitelaar, Jan K; Groen, Wouter B

    2016-01-01

    Amygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls. We collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions. Between-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei. These results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.

  8. Robust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Ashkan; Haji-Sami, Elham; Omrani, Hashem

    2015-06-01

    Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based upon the discrete robust optimization approaches proposed by Mulvey et al. (1995) that utilizes probable scenarios to capture the effect of ambiguous data in the case study. Our primary concern in this research is evaluating electricity distribution companies under uncertainty about input/output data. To illustrate the ability of proposed model, a numerical example of 38 Iranian electricity distribution companies is investigated. There are a large amount ambiguous data about these companies. Some electricity distribution companies may not report clear and real statistics to the government. Thus, it is needed to utilize a prominent approach to deal with this uncertainty. The results reveal that the RDEA model is suitable and reliable for target setting based on decision makers (DM's) preferences when there are uncertain input/output data.

  9. Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer.

    PubMed

    Yang, Jiashi; Chen, Ziguang; Hu, Yuantai; Jiang, Shunong; Guo, Shaohua

    2007-04-01

    We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps.

  10. Tolerance and UQ4SIM: Nimble Uncertainty Documentation and Analysis Software

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2008-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and variabilities is a necessary first step toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. The basic premise of uncertainty markup is to craft a tolerance and tagging mini-language that offers a natural, unobtrusive presentation and does not depend on parsing each type of input file format. Each file is marked up with tolerances and optionally, associated tags that serve to label the parameters and their uncertainties. The evolution of such a language, often called a Domain Specific Language or DSL, is given in [1], but in final form it parallels tolerances specified on an engineering drawing, e.g., 1 +/- 0.5, 5 +/- 10%, 2 +/- 10 where % signifies percent and o signifies order of magnitude. Tags, necessary for error propagation, can be added by placing a quotation-mark-delimited tag after the tolerance, e.g., 0.7 +/- 20% 'T_effective'. In addition, tolerances might have different underlying distributions, e.g., Uniform, Normal, or Triangular, or the tolerances may merely be intervals due to lack of knowledge (uncertainty). Finally, to address pragmatic considerations such as older models that require specific number-field formats, C-style format specifiers can be appended to the tolerance like so, 1.35 +/- 10U_3.2f. As an example of use, consider figure 1, where a chemical reaction input file is has been marked up to include tolerances and tags per table 1. Not only does the technique provide a natural method of specifying tolerances, but it also servers as in situ documentation of model uncertainties. This tolerance language comes with a utility to strip the tolerances (and tags), to provide a path to the nominal model parameter file. And, as shown in [1], having the ability to quickly mark and identify model parameter uncertainties facilitates error propagation, which in turn yield output uncertainties.

  11. Content-addressable memory based enforcement of configurable policies

    DOEpatents

    Berg, Michael J

    2014-05-06

    A monitoring device for monitoring transactions on a bus includes content-addressable memory ("CAM") and a response policy unit. The CAM includes an input coupled to receive a bus transaction tag based on bus traffic on the bus. The CAM stores data tags associated with rules of a security policy to compare the bus transaction tag to the data tags. The CAM generates an output signal indicating whether one or more matches occurred. The response policy unit is coupled to the CAM to receive the output signal from the CAM and to execute a policy action in response to the output signal.

  12. "Goals" Are Not an Integral Component of Imitation

    ERIC Educational Resources Information Center

    Leighton, Jane; Bird, Geoffrey; Heyes, Cecilia

    2010-01-01

    Several theories suggest that actions are coded for imitation in terms of mentalistic goals, or inferences about the actor's intentions, and that these goals solve the "correspondence problem" by allowing sensory input to be translated into matching motor output. We tested this intention reading hypothesis against general process accounts of…

  13. Distributed encoding of spatial and object categories in primate hippocampal microcircuits

    PubMed Central

    Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473

  14. Ultra-low output impedance RF power amplifier for parallel excitation.

    PubMed

    Chu, Xu; Yang, Xing; Liu, Yunfeng; Sabate, Juan; Zhu, Yudong

    2009-04-01

    Inductive coupling between coil elements of a transmit array is one of the key challenges faced by parallel RF transmission. An ultra-low output impedance RF power amplifier (PA) concept was introduced to address this challenge. In an example implementation, an output-matching network was designed to transform the drain-source impedance of the metallic oxide semiconductor field effect transistor (MOSFET) into a very low value for suppressing interelement coupling effect, and meanwhile, to match the input impedance of the coil to the optimum load of the MOSFET for maximizing the available output power. Two prototype amplifiers with 500-W output rating were developed accordingly, and were further evaluated with a transmit array in phantom experiments. Compared to the conventional 50-Omega sources, the new approach exhibited considerable effectiveness suppressing the effects of interelement coupling. The experiments further indicated that the isolation performance was comparable to that achieved by optimized overlap decoupling. The new approach, benefiting from a distinctive current-source characteristic, also exhibited a superior robustness against load variation. Feasibility of the new approach in high-field MR was demonstrated on a 3T clinical scanner.

  15. Emulation for probabilistic weather forecasting

    NASA Astrophysics Data System (ADS)

    Cornford, Dan; Barillec, Remi

    2010-05-01

    Numerical weather prediction models are typically very expensive to run due to their complexity and resolution. Characterising the sensitivity of the model to its initial condition and/or to its parameters requires numerous runs of the model, which is impractical for all but the simplest models. To produce probabilistic forecasts requires knowledge of the distribution of the model outputs, given the distribution over the inputs, where the inputs include the initial conditions, boundary conditions and model parameters. Such uncertainty analysis for complex weather prediction models seems a long way off, given current computing power, with ensembles providing only a partial answer. One possible way forward that we develop in this work is the use of statistical emulators. Emulators provide an efficient statistical approximation to the model (or simulator) while quantifying the uncertainty introduced. In the emulator framework, a Gaussian process is fitted to the simulator response as a function of the simulator inputs using some training data. The emulator is essentially an interpolator of the simulator output and the response in unobserved areas is dictated by the choice of covariance structure and parameters in the Gaussian process. Suitable parameters are inferred from the data in a maximum likelihood, or Bayesian framework. Once trained, the emulator allows operations such as sensitivity analysis or uncertainty analysis to be performed at a much lower computational cost. The efficiency of emulators can be further improved by exploiting the redundancy in the simulator output through appropriate dimension reduction techniques. We demonstrate this using both Principal Component Analysis on the model output and a new reduced-rank emulator in which an optimal linear projection operator is estimated jointly with other parameters, in the context of simple low order models, such as the Lorenz 40D system. We present the application of emulators to probabilistic weather forecasting, where the construction of the emulator training set replaces the traditional ensemble model runs. Thus the actual forecast distributions are computed using the emulator conditioned on the ‘ensemble runs' which are chosen to explore the plausible input space using relatively crude experimental design methods. One benefit here is that the ensemble does not need to be a sample from the true distribution of the input space, rather it should cover that input space in some sense. The probabilistic forecasts are computed using Monte Carlo methods sampling from the input distribution and using the emulator to produce the output distribution. Finally we discuss the limitations of this approach and briefly mention how we might use similar methods to learn the model error within a framework that incorporates a data assimilation like aspect, using emulators and learning complex model error representations. We suggest future directions for research in the area that will be necessary to apply the method to more realistic numerical weather prediction models.

  16. A control problem for Burgers' equation with bounded input/output

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Kang, Sungkwon

    1990-01-01

    A stabilization problem for Burgers' equation is considered. Using linearization, various controllers are constructed which minimize certain weighted energy functionals. These controllers produce the desired degree of stability for the closed-loop nonlinear system. A numerical scheme for computing the feedback gain functional is developed and several numerical experiments are performed to show the theoretical results.

  17. Versatile and Programmable DNA Logic Gates on Universal and Label-Free Homogeneous Electrochemical Platform.

    PubMed

    Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng

    2016-10-04

    Herein, a novel universal and label-free homogeneous electrochemical platform is demonstrated, on which a complete set of DNA-based two-input Boolean logic gates (OR, NAND, AND, NOR, INHIBIT, IMPLICATION, XOR, and XNOR) is constructed by simply and rationally deploying the designed DNA polymerization/nicking machines without complicated sequence modulation. Single-stranded DNA is employed as the proof-of-concept target/input to initiate or prevent the DNA polymerization/nicking cyclic reactions on these DNA machines to synthesize numerous intact G-quadruplex sequences or binary G-quadruplex subunits as the output. The generated output strands then self-assemble into G-quadruplexes that render remarkable decrease to the diffusion current response of methylene blue and, thus, provide the amplified homogeneous electrochemical readout signal not only for the logic gate operations but also for the ultrasensitive detection of the target/input. This system represents the first example of homogeneous electrochemical logic operation. Importantly, the proposed homogeneous electrochemical logic gates possess the input/output homogeneity and share a constant output threshold value. Moreover, the modular design of DNA polymerization/nicking machines enables the adaptation of these homogeneous electrochemical logic gates to various input and output sequences. The results of this study demonstrate the versatility and universality of the label-free homogeneous electrochemical platform in the design of biomolecular logic gates and provide a potential platform for the further development of large-scale DNA-based biocomputing circuits and advanced biosensors for multiple molecular targets.

  18. A reanalysis of "Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".

    PubMed

    Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred

    2016-01-01

    Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  19. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    PubMed

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  20. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  1. Evolution of Bow-Tie Architectures in Biology

    PubMed Central

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  2. A Comparative Reference Study for the Validation of HLA-Matching Algorithms in the Search for Allogeneic Hematopoietic Stem Cell Donors and Cord Blood Units

    DTIC Science & Technology

    2016-08-15

    HLA ISSN 2059-2302 A comparative reference study for the validation of HLA-matching algorithms in the search for allogeneic hematopoietic stem cell...from different inter- national donor registries by challenging them with simulated input data and subse- quently comparing the output. This experiment...original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Comparative reference validation of HLA

  3. A Multiprocessor Implementation of CSP (Communicating Sequential Processes)

    DTIC Science & Technology

    1988-03-01

    P to check that "valid" communications can take place between P using guard g , and P,, and if so, to attempt to commit to P,. If a commit was...AltList,, gi): INTEGER that scans the remote alternative list AltList, looking for a matching and corn- patible guard g , to the local guard g ,. By...matching we mean gj contains an I/O operation with P. By compatible we mean g , and gj do not both contain input (output) commands. CheckGuard returns j

  4. Design framework for spherical microphone and loudspeaker arrays in a multiple-input multiple-output system.

    PubMed

    Morgenstern, Hai; Rafaely, Boaz; Noisternig, Markus

    2017-03-01

    Spherical microphone arrays (SMAs) and spherical loudspeaker arrays (SLAs) facilitate the study of room acoustics due to the three-dimensional analysis they provide. More recently, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have been proposed due to the added spatial diversity they facilitate. The literature provides frameworks for designing SMAs and SLAs separately, including error analysis from which the operating frequency range (OFR) of an array is defined. However, such a framework does not exist for the joint design of a SMA and a SLA that comprise a MIMO system. This paper develops a design framework for MIMO systems based on a model that addresses errors and highlights the importance of a matched design. Expanding on a free-field assumption, errors are incorporated separately for each array and error bounds are defined, facilitating error analysis for the system. The dependency of the error bounds on the SLA and SMA parameters is studied and it is recommended that parameters should be chosen to assure matched OFRs of the arrays in MIMO system design. A design example is provided, demonstrating the superiority of a matched system over an unmatched system in the synthesis of directional room impulse responses.

  5. How Should Quality of Education Be Re-Defined for Education Achievements in Tanzania? What Are Stakeholders' Opinions?

    ERIC Educational Resources Information Center

    Telli, Godfrey

    2013-01-01

    Quality of education is a complex concept. Numerous studies attribute quality of education as an inclusive term that contains access and input on the one hand and process, output or outcome on the other. Others regard access and input of education as separate but equally important concepts of quality of education. For the latter, quality of…

  6. Compact, Single-Stage MMIC InP HEMT Amplifier

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Fung, King Man; Gaier, Todd; Deal, W. R.; Mei, Gerry; Radisic, Vesna; Lai, Richard

    2008-01-01

    A monolithic micro - wave integrated-circuit (MMIC) singlestage amplifier containing an InP-based high-electron-mobility transistor (HEMT) plus coplanar-waveguide (CPW) transmission lines for impedance matching and input and output coupling, all in a highly miniaturized layout as needed for high performance at operating frequencies of hundreds of gigahertz is described.

  7. Quaternion Based Thermal Condition Monitoring System

    NASA Astrophysics Data System (ADS)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  8. A new interpretation and validation of variance based importance measures for models with correlated inputs

    NASA Astrophysics Data System (ADS)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  9. Validation of the Archived CERES Surface and Atmosphere Radiation Budget (SARB) at SGP

    NASA Technical Reports Server (NTRS)

    Charlock, Thomas P.; Rose, Fred G.; Rutan, David A.

    2003-01-01

    The CERES Surface and Atmosphere Radiation Budget (SARB) product (Charlock et al, 2002) includes the vertical profile of broadband SW, broadband LW, and 8-12 micron window (WN) fluxes; upwelling and downwelling at TOA, 70 hPa, 200 hPa, 500 hPa, and the surface; and for all-sky and clear-sky conditions. We test the archived CERES TRMM record of SARB for January-August 1998 and focus on discrepancies with ground-based measurements at SGP. The CERES SARB is generated by a highly modified Fu-Liou radiative transfer code (Fu and Liou, 1993). The most critical inputs for this application are cloud optical properties (fractional area, optical depth, particle size and phase, height of top, and estimate of geometrical thickness Minnis et al., 2002) from the narrowband VIRS imager. Numerous VIRS pixels (approx. 2km resolution at nadir) are matched to each of the large (approx. 20km) CERES broadband footprints (Wielicki et al, 1996). Other inputs include temperature and humidity from ECMWF (Rabier et al, 1998) , NCEP ozone profiles from SBUV and TOVS (Yang et al, 2001), aerosol optical thickness (AOT) from the Model for Atmospheric Transport and Chemistry (MATCH) aerosol assimilation (Collins et al., 2001) or alternately from the VIRS imager (Ignatov and Stowe, 2000). VIRS AOT is available for clear and partly cloudy ocean footprints during daylight; and only when viewing geometry renders a contribution from sunglint as unlikely. For other footprints, AOT is taken from MATCH. AOT is apportioned into fractions of dust (Tegan and Lacis, 1996), sea salt, sulfate, dust, soluble organic, insoluble organic, and soot (Hess et al., 1996) using the 6-hourly MATCH output. Tuned fluxes are retrieved by adjusting inputs to nudge computed TOA fluxes toward CERES observations (Rose et al, 1997). In clear conditions, the fields of humidity, surface skin temperature, surface albedo and AOT are adjusted to produce a closer match of computed and observed fluxes at TOA. When CERES footprints have clouds, the cloud optical thickness, fractional area within the footprint, and temperature of cloud top are adjusted by the tuning algorithm. Both tuned and untuned fluxes are archived, as are the respective adjustments to any parameters at the surface or within the atmosphere.

  10. Search-based model identification of smart-structure damage

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Macalou, A.

    1991-01-01

    This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.

  11. Smooth function approximation using neural networks.

    PubMed

    Ferrari, Silvia; Stengel, Robert F

    2005-01-01

    An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.

  12. Numerical simulation of intelligent compaction technology for construction quality control.

    DOT National Transportation Integrated Search

    2015-02-01

    For eciently updating models of large-scale structures, the response surface (RS) method based on radial basis : functions (RBFs) is proposed to model the input-output relationship of structures. The key issues for applying : the proposed method a...

  13. Numerical considerations in the development and implementation of constitutive models

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.; Imbrie, P. K.

    1985-01-01

    Several unified constitutive models were tested in uniaxial form by specifying input strain histories and comparing output stress histories. The purpose of the tests was to evaluate several time integration methods with regard to accuracy, stability, and computational economy. The sensitivity of the models to slight changes in input constants was also investigated. Results are presented for In100 at 1350 F and Hastelloy-X at 1800 F.

  14. High-efficiency S-band harmonic tuning GaN amplifier

    NASA Astrophysics Data System (ADS)

    Cao, Meng-Yi; Zhang, Kai; Chen, Yong-He; Zhang, Jin-Cheng; Ma, Xiao-Hua; Hao, Yue

    2014-03-01

    In this paper, we present a high-efficiency S-band gallium nitride (GaN) power amplifier (PA). This amplifier is fabricated based on a self-developed GaN high-electron-mobility transistor (HEMT) with 10 mm gate width on SiC substrate. Harmonic manipulation circuits are presented in the amplifier. The matching networks consist of microstrip lines and discrete components. Open-circuited stub lines in both input and output are used to tune the 2nd harmonic wave and match the GaN HEMT to the highest efficiency condition. The developed amplifier delivers an output power of 48.5 dBm (~70 W) with a power-added efficiency (PAE) of 72.2% at 2 GHz in pulse condition. When operating at 1.8-2.2 GHz (20% relative bandwidth), the amplifier provides an output power higher than 48 dBm (~ 65 W), with a PAE over 70% and a power gain above 15 dB. When operating in continuous-wave (CW) operating conditions, the amplifier gives an output power over 46 dBm (40 W) with PAE beyond 60% over the whole operation frequency range.

  15. The 'CommTech' Methodology: A Demand-Driven Approach to Efficient, Productive and Measurable Technology Transfer

    NASA Technical Reports Server (NTRS)

    Horsham, Gray A. P.

    1998-01-01

    Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in targeted industry sectors. The company-supplied information served as input data to activate or start-up an internal, phased match-making process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations, and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from Lewis support and measurable economic effects represented far-term outputs.

  16. Application of symbolic/numeric matrix solution techniques to the NASTRAN program

    NASA Technical Reports Server (NTRS)

    Buturla, E. M.; Burroughs, S. H.

    1977-01-01

    The matrix solving algorithm of any finite element algorithm is extremely important since solution of the matrix equations requires a large amount of elapse time due to null calculations and excessive input/output operations. An alternate method of solving the matrix equations is presented. A symbolic processing step followed by numeric solution yields the solution very rapidly and is especially useful for nonlinear problems.

  17. Analysis and design of three dimensional supersonic nozzles. Volume 2: Numerical program for analysis of nozzle-exhaust flow fields

    NASA Technical Reports Server (NTRS)

    Kalben, P.

    1972-01-01

    The FORTRAN IV Program developed to analyze the flow field associated with scramjet exhaust systems is presented. The instructions for preparing input and interpreting output are described. The program analyzes steady three dimensional supersonic flow by the reference plane characteristic technique. The governing equations and numerical techniques employed are presented in Volume 1 of this report.

  18. Using Propensity Score Matching to Model Retention of Developmental Math Students in Community Colleges in North Carolina

    ERIC Educational Resources Information Center

    Frye, Bobbie Jean

    2014-01-01

    Traditionally, modeling student retention has been done by deriving student success predictors and measuring the likelihood of success based on several background factors such as age, race, gender, and other pre-college variables, also known as the input-output model. Increasingly, however, researchers have used mediating factors of the student…

  19. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.

    PubMed

    Jackson, B Scott

    2004-10-01

    Many different types of integrate-and-fire models have been designed in order to explain how it is possible for a cortical neuron to integrate over many independent inputs while still producing highly variable spike trains. Within this context, the variability of spike trains has been almost exclusively measured using the coefficient of variation of interspike intervals. However, another important statistical property that has been found in cortical spike trains and is closely associated with their high firing variability is long-range dependence. We investigate the conditions, if any, under which such models produce output spike trains with both interspike-interval variability and long-range dependence similar to those that have previously been measured from actual cortical neurons. We first show analytically that a large class of high-variability integrate-and-fire models is incapable of producing such outputs based on the fact that their output spike trains are always mathematically equivalent to renewal processes. This class of models subsumes a majority of previously published models, including those that use excitation-inhibition balance, correlated inputs, partial reset, or nonlinear leakage to produce outputs with high variability. Next, we study integrate-and-fire models that have (nonPoissonian) renewal point process inputs instead of the Poisson point process inputs used in the preceding class of models. The confluence of our analytical and simulation results implies that the renewal-input model is capable of producing high variability and long-range dependence comparable to that seen in spike trains recorded from cortical neurons, but only if the interspike intervals of the inputs have infinite variance, a physiologically unrealistic condition. Finally, we suggest a new integrate-and-fire model that does not suffer any of the previously mentioned shortcomings. By analyzing simulation results for this model, we show that it is capable of producing output spike trains with interspike-interval variability and long-range dependence that match empirical data from cortical spike trains. This model is similar to the other models in this study, except that its inputs are fractional-gaussian-noise-driven Poisson processes rather than renewal point processes. In addition to this model's success in producing realistic output spike trains, its inputs have long-range dependence similar to that found in most subcortical neurons in sensory pathways, including the inputs to cortex. Analysis of output spike trains from simulations of this model also shows that a tight balance between the amounts of excitation and inhibition at the inputs to cortical neurons is not necessary for high interspike-interval variability at their outputs. Furthermore, in our analysis of this model, we show that the superposition of many fractional-gaussian-noise-driven Poisson processes does not approximate a Poisson process, which challenges the common assumption that the total effect of a large number of inputs on a neuron is well represented by a Poisson process.

  20. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting

    PubMed Central

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-01-01

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from −40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions. PMID:28282910

  1. Parallel inferencing method and apparatus for rule-based expert systems

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M. (Inventor); Moldovan, Dan (Inventor); Kuo, Steve (Inventor)

    1993-01-01

    The invention analyzes areas of conditions with an expert knowledge base of rules using plural separate nodes which fire respective rules of said knowledge base, each of said rules upon being fired altering certain of said conditions predicated upon the existence of other said conditions. The invention operates by constructing a P representation of all pairs of said rules which are input dependent or output dependent; constructing a C representation of all pairs of said rules which are communication dependent or input dependent; determining which of the rules are ready to fire by matching the predicate conditions of each rule with the conditions of said set; enabling said node means to simultaneously fire those of the rules ready to fire which are defined by said P representation as being free of input and output dependencies; and communicating from each node enabled by said enabling step the alteration of conditions by the corresponding rule to other nodes whose rules are defined by said C matrix means as being input or communication dependent upon the rule of said enabled node.

  2. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting.

    PubMed

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-03-09

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

  3. Adaptive model reduction for continuous systems via recursive rational interpolation

    NASA Technical Reports Server (NTRS)

    Lilly, John H.

    1994-01-01

    A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.

  4. Compensator improvement for multivariable control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.

    1977-01-01

    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.

  5. Behavioral Implications of Piezoelectric Stack Actuators for Control of Micromanipulation

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1996-01-01

    A lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and in particular for microrobotic applications requiring accurate position and/or force control. In addition to describing the input-output dynamic behavior, the proposed model explains aspects of non-intuitive behavioral phenomena evinced by piezoelectric actuators, such as the input-output rate-independent hysteresis and the change in mechanical stiffness that results from altering electrical load. The authors incorporate a generalized Maxwell resistive capacitor as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data.

  6. Processing Oscillatory Signals by Incoherent Feedforward Loops

    PubMed Central

    Zhang, Carolyn; You, Lingchong

    2016-01-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs—the ability to process oscillatory signals. Our results indicate that the system’s ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal “counting”. We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. PMID:27623175

  7. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  8. Fast-axial turbulent flow CO2 laser output characteristics and scaling parameters

    NASA Astrophysics Data System (ADS)

    Dembovetsky, V. V.; Zavalova, Valentina Y.; Zavalov, Yuri N.

    1996-04-01

    The paper presents the experimental results of evaluating the output characteristics of TLA- 600 carbon-dioxide laser with axial turbulent gas flow, as well as the results of numerical modeling. The output characteristic and spatial distribution of laser beam were measured with regard to specific energy input, working mixture pressure, active media length and output mirror reflection. The paper presents the results of experimental and theoretical study and design decisions on a succession of similar type industrial carbon-dioxide lasers with fast-axial gas-flow and dc discharge excitation of active medium developed at NICTL RAN. As an illustration, characteristics of the TLA-600 laser are cited.

  9. The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1983-01-01

    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.

  10. Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation.

    PubMed

    Chao, Wan-Tien; Lin, Yuan-Yao; Peng, Jin-Long; Huang, Chen-Bin

    2014-02-15

    Adiabatic soliton spectral compression in a dispersion-increasing fiber (DIF) with a linear dispersion ramp is studied both numerically and experimentally. The anticipated maximum spectral compression ratio (SCR) would be limited by the ratio of the DIF output to the input dispersion values. However, our numerical analyses indicate that SCR greater than the DIF dispersion ratio is feasible, provided the input pulse duration is shorter than a threshold value along with adequate pulse energy control. Experimentally, a SCR of 28.6 is achieved in a 1 km DIF with a dispersion ratio of 22.5.

  11. On the simulation and mitigation of anisoplanatic optical turbulence for long range imaging

    NASA Astrophysics Data System (ADS)

    Hardie, Russell C.; LeMaster, Daniel A.

    2017-05-01

    We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. The simulation tool is also used here to quantitatively evaluate a recently proposed block- matching and Wiener filtering (BMWF) method for turbulence mitigation. In this method block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged and processed with a Wiener filter for restoration. A novel aspect of the proposed BMWF method is that the PSF model used for restoration takes into account the level of geometric correction achieved during image registration. This way, the Wiener filter is able fully exploit the reduced blurring achieved by registration. The BMWF method is relatively simple computationally, and yet, has excellent performance in comparison to state-of-the-art benchmark methods.

  12. Input-output relationships of the dorsal nucleus of the lateral lemniscus: possible substrate for the processing of dynamic spatial cues.

    PubMed

    Shneiderman, A; Stanforth, D A; Henkel, C K; Saint Marie, R L

    1999-07-26

    One organizing principle of the auditory system is the progressive representation of best tuning frequency. Superimposed on this tonotopy are nucleotopic organizations, some of which are related to the processing of different spatial cues. In the present study, we correlated asymmetries in the outputs of the dorsal nucleus of the lateral lemniscus (DNLL) to the two inferior colliculi (ICs), with asymmetries in the inputs to DNLL from the two lateral superior olives (LSOs). The positions of DNLL neurons with crossed and uncrossed projections were plotted from cases with unilateral injections of retrograde tracers in the IC. We found an orderly dorsal-to-ventral progression to the output that recapitulated the tonotopy of DNLL. In addition, we found a nucleotopic organization in the ventral (high-frequency) part of DNLL. Neurons with projections to the ventromedial (high-frequency) part of the contralateral IC were preferentially located ventrolaterally in DNLL; those with projections to the ventromedial part of the ipsilateral IC were preferentially located ventromedially in DNLL. This partial segregation of outputs corresponded with a partial segregation of inputs from the two LSOs in cases which received closely matched bilateral injections of anterograde tracers in LSO. The ventral part of DNLL received a heavy projection medially from the opposite LSO and a heavy projection laterally from the ipsilateral LSO. The findings suggest a direct relationship in the ventral part of the DNLL between inputs from the two LSOs and outputs to the two ICs. Possible roles for this segregation of pathways in DNLL are discussed in relation to the processing of static and dynamic spatial cues.

  13. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    PubMed

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  14. A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.

  15. Research of three level match method about semantic web service based on ontology

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Fang

    2011-10-01

    An important step of Web service Application is the discovery of useful services. Keywords are used in service discovery in traditional technology like UDDI and WSDL, with the disadvantage of user intervention, lack of semantic description and low accuracy. To cope with these problems, OWL-S is introduced and extended with QoS attributes to describe the attribute and functions of Web Services. A three-level service matching algorithm based on ontology and QOS in proposed in this paper. Our algorithm can match web service by utilizing the service profile, QoS parameters together with input and output of the service. Simulation results shows that it greatly enhanced the speed of service matching while high accuracy is also guaranteed.

  16. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  17. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  18. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  19. Optimal reorientation of asymmetric underactuated spacecraft using differential flatness and receding horizon control

    NASA Astrophysics Data System (ADS)

    Cai, Wei-wei; Yang, Le-ping; Zhu, Yan-wei

    2015-01-01

    This paper presents a novel method integrating nominal trajectory optimization and tracking for the reorientation control of an underactuated spacecraft with only two available control torque inputs. By employing a pseudo input along the uncontrolled axis, the flatness property of a general underactuated spacecraft is extended explicitly, by which the reorientation trajectory optimization problem is formulated into the flat output space with all the differential constraints eliminated. Ultimately, the flat output optimization problem is transformed into a nonlinear programming problem via the Chebyshev pseudospectral method, which is improved by the conformal map and barycentric rational interpolation techniques to overcome the side effects of the differential matrix's ill-conditions on numerical accuracy. Treating the trajectory tracking control as a state regulation problem, we develop a robust closed-loop tracking control law using the receding-horizon control method, and compute the feedback control at each control cycle rapidly via the differential transformation method. Numerical simulation results show that the proposed control scheme is feasible and effective for the reorientation maneuver.

  20. Matching tutors and students: effective strategies for information transfer between circuits

    NASA Astrophysics Data System (ADS)

    Tesileanu, Tiberiu; Balasubramanian, Vijay; Olveczky, Bence

    Many neural circuits transfer learned information to downstream circuits: hippocampal-dependent memories are consolidated into long-term memories elsewhere; motor cortex is essential for skill learning but dispensable for execution; anterior forebrain pathway (AFP) in songbirds drives short-term improvements in song that are later consolidated in pre-motor area RA. We show how to match instructive signals from tutor circuits to synaptic plasticity rules in student circuits to achieve effective two-stage learning. We focus on learning sequential patterns where a timebase is transformed into motor commands by connectivity with a `student' area. If the sign of the synaptic change is given by the magnitude of tutor input, a good teaching strategy uses a strong (weak) tutor signal if student output is below (above) its target. If instead timing of tutor input relative to the timebase determines the sign of synaptic modifications, a good instructive signal accumulates the errors in student output as the motor program progresses. We demonstrate song learning in a biologically-plausible model of the songbird circuit given diverse plasticity rules interpolating between those described above. The model also reproduces qualitative firing statistics of RA neurons in juveniles and adults. Also affiliated to CUNY - Graduate Center.

  1. Interval Predictor Models for Data with Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Lacerda, Marcio J.; Crespo, Luis G.

    2017-01-01

    An interval predictor model (IPM) is a computational model that predicts the range of an output variable given input-output data. This paper proposes strategies for constructing IPMs based on semidefinite programming and sum of squares (SOS). The models are optimal in the sense that they yield an interval valued function of minimal spread containing all the observations. Two different scenarios are considered. The first one is applicable to situations where the data is measured precisely whereas the second one is applicable to data subject to known biases and measurement error. In the latter case, the IPMs are designed to fully contain regions in the input-output space where the data is expected to fall. Moreover, we propose a strategy for reducing the computational cost associated with generating IPMs as well as means to simulate them. Numerical examples illustrate the usage and performance of the proposed formulations.

  2. Optimal nonlinear codes for the perception of natural colours.

    PubMed

    von der Twer, T; MacLeod, D I

    2001-08-01

    We discuss how visual nonlinearity can be optimized for the precise representation of environmental inputs. Such optimization leads to neural signals with a compressively nonlinear input-output function the gradient of which is matched to the cube root of the probability density function (PDF) of the environmental input values (and not to the PDF directly as in histogram equalization). Comparisons between theory and psychophysical and electrophysiological data are roughly consistent with the idea that parvocellular (P) cells are optimized for precision representation of colour: their contrast-response functions span a range appropriately matched to the environmental distribution of natural colours along each dimension of colour space. Thus P cell codes for colour may have been selected to minimize error in the perceptual estimation of stimulus parameters for natural colours. But magnocellular (M) cells have a much stronger than expected saturating nonlinearity; this supports the view that the function of M cells is mainly to detect boundaries rather than to specify contrast or lightness.

  3. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

    PubMed Central

    Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori

    2016-01-01

    Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211

  4. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  5. Ku-band field-effect power transistors

    NASA Technical Reports Server (NTRS)

    Taylor, G. C.; Huang, H. C.

    1979-01-01

    A single stage amplifier was developed using an 8 gate, 1200 micrometer width device to give a gain of 3.3 + or - 0.1 dB over the 14.4 to 15.4 GHz band with an output power of 0.48 W and 15% minimum efficiency with 0.255 W of input power. With two 8 gate devices combined and matched on the device carrier, using a lumped element format, a gain of 3 dB was attained over the 14.5 to 15.5 GHz band with a maximum efficiency of 9.9% for an output power of 0.8 W.

  6. Numerical stability in problems of linear algebra.

    NASA Technical Reports Server (NTRS)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  7. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  8. Optical programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2011-11-10

    Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.

  9. Fiber cavities with integrated mode matching optics.

    PubMed

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  10. Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework

    PubMed Central

    2012-01-01

    Background For shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed. Results We present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed. Conclusion The software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources. PMID:23216909

  11. Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework.

    PubMed

    Lewis, Steven; Csordas, Attila; Killcoyne, Sarah; Hermjakob, Henning; Hoopmann, Michael R; Moritz, Robert L; Deutsch, Eric W; Boyle, John

    2012-12-05

    For shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed. We present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed. The software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources.

  12. Monolithically integrated bacteriorhodopsin-GaAs/GaAlAs phototransceiver.

    PubMed

    Shin, Jonghyun; Bhattacharya, Pallab; Xu, Jian; Váró, György

    2004-10-01

    A monolithically integrated bacteriorhodopsin-semiconductor phototransceiver is demonstrated for the first time to the authors' knowledge. In this novel biophotonic optical interconnect, the input photoexcitation is detected by bacteriorhodopsin (bR) that has been selectively deposited onto the gate of a GaAs-based field-effect transistor. The photovoltage developed across the bR is converted by the transistor into an amplified photocurrent, which drives an integrated light-emitting diode with a Ga0.37Al0.63As active region. Advantage is taken of the high-input impedance of the field-effect transistor, which matches the high internal resistance of bR. The input and output wavelengths are 594 and 655 nm, respectively. The transient response of the optoelectronic circuit to modulated input light has also been studied.

  13. A computer program for simulating geohydrologic systems in three dimensions

    USGS Publications Warehouse

    Posson, D.R.; Hearne, G.A.; Tracy, J.V.; Frenzel, P.F.

    1980-01-01

    This document is directed toward individuals who wish to use a computer program to simulate ground-water flow in three dimensions. The strongly implicit procedure (SIP) numerical method is used to solve the set of simultaneous equations. New data processing techniques and program input and output options are emphasized. The quifer system to be modeled may be heterogeneous and anisotropic, and may include both artesian and water-table conditions. Systems which consist of well defined alternating layers of highly permeable and poorly permeable material may be represented by a sequence of equations for two dimensional flow in each of the highly permeable units. Boundaries where head or flux is user-specified may be irregularly shaped. The program also allows the user to represent streams as limited-source boundaries when the streamflow is small in relation to the hydraulic stress on the system. The data-processing techniques relating to ' cube ' input and output, to swapping of layers, to restarting of simulation, to free-format NAMELIST input, to the details of each sub-routine 's logic, and to the overlay program structure are discussed. The program is capable of processing large models that might overflow computer memories with conventional programs. Detailed instructions for selecting program options, for initializing the data arrays, for defining ' cube ' output lists and maps, and for plotting hydrographs of calculated and observed heads and/or drawdowns are provided. Output may be restricted to those nodes of particular interest, thereby reducing the volumes of printout for modelers, which may be critical when working at remote terminals. ' Cube ' input commands allow the modeler to set aquifer parameters and initialize the model with very few input records. Appendixes provide instructions to compile the program, definitions and cross-references for program variables, summary of the FLECS structured FORTRAN programming language, listings of the FLECS and FORTRAN source code, and samples of input and output for example simulations. (USGS)

  14. User's Manual for LINER: FORTRAN Code for the Numerical Simulation of Plane Wave Propagation in a Lined Two-Dimensional Channel

    NASA Technical Reports Server (NTRS)

    Reichert, R, S.; Biringen, S.; Howard, J. E.

    1999-01-01

    LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.

  15. Stimulation at Desert Peak -modeling with the coupled THM code FEHM

    DOE Data Explorer

    kelkar, sharad

    2013-04-30

    Numerical modeling of the 2011 shear stimulation at the Desert Peak well 27-15. This submission contains the FEHM executable code for a 64-bit PC Windows-7 machine, and the input and output files for the results presented in the included paper from ARMA-213 meeting.

  16. Achromatical Optical Correlator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    Signal-to-noise ratio exceeds that of monochromatic correlator. Achromatical optical correlator uses multiple-pinhole diffraction of dispersed white light to form superposed multiple correlations of input and reference images in output plane. Set of matched spatial filters made by multiple-exposure holographic process, each exposure using suitably-scaled input image and suitable angle of reference beam. Recording-aperture mask translated to appropriate horizontal position for each exposure. Noncoherent illumination suitable for applications involving recognition of color and determination of scale. When fully developed achromatical correlators will be useful for recognition of patterns; for example, in industrial inspection and search for selected features in aerial photographs.

  17. Multi-service highly sensitive rectifier for enhanced RF energy scavenging.

    PubMed

    Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran

    2015-05-07

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.

  18. Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging

    PubMed Central

    Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869 MHz) and exhibits favorable impedance matching over a broad input power range (−40 to −10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of −10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  19. Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.

    PubMed

    Rao, Prasada; Hromadka, Theodore V

    2016-01-01

    The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.

  20. Approximate Bayesian evaluations of measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  1. An adaptive tracking observer for failure-detection systems

    NASA Technical Reports Server (NTRS)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  2. Understanding fifth-harmonic generation in CLBO

    NASA Astrophysics Data System (ADS)

    Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.

    2018-02-01

    We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.

  3. Development of the TACOM (Tank Automotive Command) Thermal Imaging Model (TTIM). Volume 1. Technical Guide and User’s Manual.

    DTIC Science & Technology

    1984-12-01

    BLOCK DATA Default values for variables input by menus. LIBR Interface with frame I/O routines. SNSR Interface with sensor routines. ATMOS Interface with...Routines Included in Frame I/O Interface Routine Description LIBR Selects options for input or output to a data library. FRREAD Reads frame from file and/or...Layer", Journal of Applied Meteorology 20, pp. 242-249, March 1981. 15 L.J. Harding, Numerical Analysis and Applications Software Abstracts, Computing

  4. Evaluation of Supply Chain Efficiency Based on a Novel Network of Data Envelopment Analysis Model

    NASA Astrophysics Data System (ADS)

    Fu, Li Fang; Meng, Jun; Liu, Ying

    2015-12-01

    Performance evaluation of supply chain (SC) is a vital topic in SC management and inherently complex problems with multilayered internal linkages and activities of multiple entities. Recently, various Network Data Envelopment Analysis (NDEA) models, which opened the “black box” of conventional DEA, were developed and applied to evaluate the complex SC with a multilayer network structure. However, most of them are input or output oriented models which cannot take into consideration the nonproportional changes of inputs and outputs simultaneously. This paper extends the Slack-based measure (SBM) model to a nonradial, nonoriented network model named as U-NSBM with the presence of undesirable outputs in the SC. A numerical example is presented to demonstrate the applicability of the model in quantifying the efficiency and ranking the supply chain performance. By comparing with the CCR and U-SBM models, it is shown that the proposed model has higher distinguishing ability and gives feasible solution in the presence of undesirable outputs. Meanwhile, it provides more insights for decision makers about the source of inefficiency as well as the guidance to improve the SC performance.

  5. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation

    NASA Astrophysics Data System (ADS)

    Jana, Raghavendra B.; Mohanty, Binayak P.

    2011-03-01

    SummaryUse of remotely sensed data products in the earth science and water resources fields is growing due to increasingly easy availability of the data. Traditionally, pedotransfer functions (PTFs) employed for soil hydraulic parameter estimation from other easily available data have used basic soil texture and structure information as inputs. Inclusion of surrogate/supplementary data such as topography and vegetation information has shown some improvement in the PTF's ability to estimate more accurate soil hydraulic parameters. Artificial neural networks (ANNs) are a popular tool for PTF development, and are usually applied across matching spatial scales of inputs and outputs. However, different hydrologic, hydro-climatic, and contaminant transport models require input data at different scales, all of which may not be easily available from existing databases. In such a scenario, it becomes necessary to scale the soil hydraulic parameter values estimated by PTFs to suit the model requirements. Also, uncertainties in the predictions need to be quantified to enable users to gauge the suitability of a particular dataset in their applications. Bayesian Neural Networks (BNNs) inherently provide uncertainty estimates for their outputs due to their utilization of Markov Chain Monte Carlo (MCMC) techniques. In this paper, we present a PTF methodology to estimate soil water retention characteristics built on a Bayesian framework for training of neural networks and utilizing several in situ and remotely sensed datasets jointly. The BNN is also applied across spatial scales to provide fine scale outputs when trained with coarse scale data. Our training data inputs include ground/remotely sensed soil texture, bulk density, elevation, and Leaf Area Index (LAI) at 1 km resolutions, while similar properties measured at a point scale are used as fine scale inputs. The methodology was tested at two different hydro-climatic regions. We also tested the effect of varying the support scale of the training data for the BNNs by sequentially aggregating finer resolution training data to coarser resolutions, and the applicability of the technique to upscaling problems. The BNN outputs are corrected for bias using a non-linear CDF-matching technique. Final results show good promise of the suitability of this Bayesian Neural Network approach for soil hydraulic parameter estimation across spatial scales using ground-, air-, or space-based remotely sensed geophysical parameters. Inclusion of remotely sensed data such as elevation and LAI in addition to in situ soil physical properties improved the estimation capabilities of the BNN-based PTF in certain conditions.

  6. Dual control and prevention of the turn-off phenomenon in a class of mimo systems

    NASA Technical Reports Server (NTRS)

    Mookerjee, P.; Bar-Shalom, Y.; Molusis, J. A.

    1985-01-01

    A recently developed methodology of adaptive dual control based upon sensitivity functions is applied here to a multivariable input-output model. The plant has constant but unknown parameters. It represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. The cautious and the new dual controller are examined. In many instances, the cautious controller is seen to turn off. The new dual controller modifies the cautious control design by numerator and denominator correction terms which depend upon the sensitivity functions of the expected future cost and avoids the turn-off and burst phenomena. Monte Carlo simulations and statistical tests of significance indicate the superiority of the dual controller over the cautious and the heuristic certainity equivalence controllers.

  7. GPC-Based Stable Reconfigurable Control

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Shi, Jian-Jun; Kelkar, Atul

    2004-01-01

    This paper presents development of multi-input multi-output (MIMO) Generalized Pre-dictive Control (GPC) law and its application to reconfigurable control design in the event of actuator saturation. A Controlled Auto-Regressive Integrating Moving Average (CARIMA) model is used to describe the plant dynamics. The control law is derived using input-output description of the system and is also related to the state-space form of the model. The stability of the GPC control law without reconfiguration is first established using Riccati-based approach and state-space formulation. A novel reconfiguration strategy is developed for the systems which have actuator redundancy and are faced with actuator saturation type failure. An elegant reconfigurable control design is presented with stability proof. Several numerical examples are presented to demonstrate the application of various results.

  8. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  9. Unexpected matching insensitivity in DTL of GTA accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, V.W.; Gilpatrick, J.D.; Johnson, K.F.

    1995-05-01

    The Intertank Matching Section (IMS) of the Ground Test Accelerator (GTA) contains four variable-field quadrupoles (VFQs) and is designed to match beam exiting the Radio-Frequency Quadrupole to the first tank of the Drift-tube LINAC (DTL-1). By varying the VFQ field strengths to create a range of beam mismatches at the entrance to DTL-1, one can test the sensitivity of the DTL-1 output beam to variations in the DTL-1 input beam. Experimental studies made during commissioning of the GTA indicate an unexpected result: the beam exiting DTL-1 shows little variation for a range of mismatches produced at the entrance. Results ofmore » the experiment and simulation studies are presented.« less

  10. Design of a Wideband 900 GHz Balanced Frequency Tripler for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Tripon-Canseliet, Charlotte; Maestrini, Alain; Mehdi, Imran

    2004-01-01

    We report on the design of a fix-tuned split-block waveguide balanced frequency tripler working nominally at 900GHz. It uses a GaAs Schottky planar diode pair in a balanced configuration. The circuit will be fabricated with JPL membrane technology in order to minimize dielectric loading. The multiplier is bias-less to dramatically ease the mounting and the operating procedure. At room temperature, the expected output power is 50- 130 (micro)W in the band 800-970 GHz when the tripler is pumped with 4mW. By modifying the waveguide input and output matching circuit, the multiplier can be tuned to operate at lower frequencies.

  11. Systematic Biological Filter Design with a Desired I/O Filtering Response Based on Promoter-RBS Libraries.

    PubMed

    Hsu, Chih-Yuan; Pan, Zhen-Ming; Hu, Rei-Hsing; Chang, Chih-Chun; Cheng, Hsiao-Chun; Lin, Che; Chen, Bor-Sen

    2015-01-01

    In this study, robust biological filters with an external control to match a desired input/output (I/O) filtering response are engineered based on the well-characterized promoter-RBS libraries and a cascade gene circuit topology. In the field of synthetic biology, the biological filter system serves as a powerful detector or sensor to sense different molecular signals and produces a specific output response only if the concentration of the input molecular signal is higher or lower than a specified threshold. The proposed systematic design method of robust biological filters is summarized into three steps. Firstly, several well-characterized promoter-RBS libraries are established for biological filter design by identifying and collecting the quantitative and qualitative characteristics of their promoter-RBS components via nonlinear parameter estimation method. Then, the topology of synthetic biological filter is decomposed into three cascade gene regulatory modules, and an appropriate promoter-RBS library is selected for each module to achieve the desired I/O specification of a biological filter. Finally, based on the proposed systematic method, a robust externally tunable biological filter is engineered by searching the promoter-RBS component libraries and a control inducer concentration library to achieve the optimal reference match for the specified I/O filtering response.

  12. From Spiking Neuron Models to Linear-Nonlinear Models

    PubMed Central

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-01

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates. PMID:21283777

  13. From spiking neuron models to linear-nonlinear models.

    PubMed

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-20

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  14. Optical intensity dynamics in a five-emitter semiconductor array laser

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Kutz, J. Nathan

    2009-06-01

    The intensity dynamics of a five-emitter laser array subject to a linearly decreasing injection current are examined numerically. We have matched the results of the numerical model to an experimental AlGaAs quantum-dot array laser and have achieved the same robust oscillatory power output with a nearly π phase shift between emitters that was observed in experiments. Due to the linearly decreasing injection current, the output power of the waveguide decreases as a function of waveguide number. For injection currents ranging from 380 to 500 mA, the oscillatory behavior persists with only a slight change in phase difference. However, the fundamental frequency of oscillation increases with injection current, and higher harmonics as well as some fine structures are produced.

  15. Directional Slack-Based Measure for the Inverse Data Envelopment Analysis

    PubMed Central

    Abu Bakar, Mohd Rizam; Lee, Lai Soon; Jaafar, Azmi B.; Heydar, Maryam

    2014-01-01

    A novel technique has been introduced in this research which lends its basis to the Directional Slack-Based Measure for the inverse Data Envelopment Analysis. In practice, the current research endeavors to elucidate the inverse directional slack-based measure model within a new production possibility set. On one occasion, there is a modification imposed on the output (input) quantities of an efficient decision making unit. In detail, the efficient decision making unit in this method was omitted from the present production possibility set but substituted by the considered efficient decision making unit while its input and output quantities were subsequently modified. The efficiency score of the entire DMUs will be retained in this approach. Also, there would be an improvement in the efficiency score. The proposed approach was investigated in this study with reference to a resource allocation problem. It is possible to simultaneously consider any upsurges (declines) of certain outputs associated with the efficient decision making unit. The significance of the represented model is accentuated by presenting numerical examples. PMID:24883350

  16. Compact millijoule diode-seeded two-stage fiber master oscillator power amplifier using a multipass and forward pumping scheme.

    PubMed

    Lai, Po-Yen; Chang, Chun-Lin; Huang, Sheng-Lung; Chen, Shih-Hung

    2018-05-01

    The multipass scheme for a diode-seeded fiber master oscillator power amplifier with a nanojoule-to-millijoule output energy level at a repetition rate of <100  kHz is numerically analyzed for comparison to an experimental benchmark. For a 6/125 single-mode preamplifier with a small input energy (<1  nJ), there is a significant improvement in the output energy from 0.7% to 80% and 95% of the maximum extractable energy using the double-pass and four-pass schemes, respectively. For a 30/250 large-mode-area power amplifier using the double-pass and forward pumping scheme, the required input energy is decreased from 100 μJ to 18 μJ for millijoule energy extraction with accompanying Stokes waves of less than 10% of the total energy. The system based on the full master oscillator power amplifier configuration with an output energy exceeding millijoule level can be optimally simplified to two stages for commercialization.

  17. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  18. E-beam high voltage switching power supply

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  19. E-beam high voltage switching power supply

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  20. Homeostasis in a feed forward loop gene regulatory motif.

    PubMed

    Antoneli, Fernando; Golubitsky, Martin; Stewart, Ian

    2018-05-14

    The internal state of a cell is affected by inputs from the extra-cellular environment such as external temperature. If some output, such as the concentration of a target protein, remains approximately constant as inputs vary, the system exhibits homeostasis. Special sub-networks called motifs are unusually common in gene regulatory networks (GRNs), suggesting that they may have a significant biological function. Potentially, one such function is homeostasis. In support of this hypothesis, we show that the feed-forward loop GRN produces homeostasis. Here the inputs are subsumed into a single parameter that affects only the first node in the motif, and the output is the concentration of a target protein. The analysis uses the notion of infinitesimal homeostasis, which occurs when the input-output map has a critical point (zero derivative). In model equations such points can be located using implicit differentiation. If the second derivative of the input-output map also vanishes, the critical point is a chair: the output rises roughly linearly, then flattens out (the homeostasis region or plateau), and then starts to rise again. Chair points are a common cause of homeostasis. In more complicated equations or networks, numerical exploration would have to augment analysis. Thus, in terms of finding chairs, this paper presents a proof of concept. We apply this method to a standard family of differential equations modeling the feed-forward loop GRN, and deduce that chair points occur. This function determines the production of a particular mRNA and the resulting chair points are found analytically. The same method can potentially be used to find homeostasis regions in other GRNs. In the discussion and conclusion section, we also discuss why homeostasis in the motif may persist even when the rest of the network is taken into account. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Statistical Properties of Differences between Low and High Resolution CMAQ Runs with Matched Initial and Boundary Conditions

    EPA Science Inventory

    The difficulty in assessing errors in numerical models of air quality is a major obstacle to improving their ability to predict and retrospectively map air quality. In this paper, using simulation outputs from the Community Multi-scale Air Quality Model (CMAQ), the statistic...

  2. Status of GDL - GNU Data Language

    NASA Astrophysics Data System (ADS)

    Coulais, A.; Schellens, M.; Gales, J.; Arabas, S.; Boquien, M.; Chanial, P.; Messmer, P.; Fillmore, D.; Poplawski, O.; Maret, S.; Marchal, G.; Galmiche, N.; Mermet, T.

    2010-12-01

    Gnu Data Language (GDL) is an open-source interpreted language aimed at numerical data analysis and visualisation. It is a free implementation of the Interactive Data Language (IDL) widely used in Astronomy. GDL has a full syntax compatibility with IDL, and includes a large set of library routines targeting advanced matrix manipulation, plotting, time-series and image analysis, mapping, and data input/output including numerous scientific data formats. We will present the current status of the project, the key accomplishments, and the weaknesses - areas where contributions are welcome!

  3. Precision absolute-value amplifier for a precision voltmeter

    DOEpatents

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  4. Precision absolute value amplifier for a precision voltmeter

    DOEpatents

    Hearn, William E.; Rondeau, Donald J.

    1985-01-01

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  5. Single flux quantum voltage amplifiers

    NASA Astrophysics Data System (ADS)

    Golomidov, Vladimir; Kaplunenko, Vsevolod; Khabipov, Marat; Koshelets, Valery; Kaplunenko, Olga

    The novel elements of the Rapid Single Flux Quantum (RSFQ) logic family — a Quasi Digital Voltage Parallel and Series Amplifiers (QDVA) have been computer simulated, designed and experimentally investigated. The Parallel QDVA consists of six stages and provides multiplication of the input voltage with factor five. The output resistance of the QDVA is five times larger than the input so this amplifier seems to be a good matching stage between RSFQL and usual semiconductor electronics. The series QDVA provides a gain factor four and involves two doublers connected by transmission line. The proposed parallel QDVA can be integrated on the same chip with a SQUID sensor.

  6. Bilinearity, Rules, and Prefrontal Cortex

    PubMed Central

    Dayan, Peter

    2007-01-01

    Humans can be instructed verbally to perform computationally complex cognitive tasks; their performance then improves relatively slowly over the course of practice. Many skills underlie these abilities; in this paper, we focus on the particular question of a uniform architecture for the instantiation of habitual performance and the storage, recall, and execution of simple rules. Our account builds on models of gated working memory, and involves a bilinear architecture for representing conditional input-output maps and for matching rules to the state of the input and working memory. We demonstrate the performance of our model on two paradigmatic tasks used to investigate prefrontal and basal ganglia function. PMID:18946523

  7. Influence of tool geometry and processing parameters on welding defects and mechanical properties for friction stir welding of 6061 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Daneji, A.; Ali, M.; Pervaiz, S.

    2018-04-01

    Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.

  8. Approximate Matching as a Key Technique in Organization of Natural and Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Mack, Marilyn; Lapir, Gennadi M.; Berkovich, Simon

    2000-01-01

    The basic property of an intelligent system, natural or artificial, is "understanding". We consider the following formalization of the idea of "understanding" among information systems. When system I issues a request to system 2, it expects a certain kind of desirable reaction. If such a reaction occurs, system I assumes that its request was "understood". In application to simple, "push-button" systems the situation is trivial because in a small system the required relationship between input requests and desired outputs could be specified exactly. As systems grow, the situation becomes more complex and matching between requests and actions becomes approximate.

  9. An alternative way to increase the power gain of resonant rings

    NASA Astrophysics Data System (ADS)

    Zhuang, Dehao; Liu, Yunqi; Wang, Fang; Lin, Lin; Feng, Liwen; Quan, Shengwen; Liu, Kexin

    2018-03-01

    Resonant rings which can amplify RF power through the coupling of waves are used for high power breakdown tests, unidirectional filters, or pulse-shaping techniques. Usually, the RF output terminal of a resonant ring is connected to a matched load. For the resonant ring at Peking University, the matched load has been replaced by a waveguide shorting plate to obtain higher conditioning power for the 1.3 GHz capacitive type power couplers. The power gain is increased significantly with this short termination with the same input RF power. Working mechanism analysis, experiments, and results of this modified resonant ring will be presented.

  10. Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex.

    PubMed

    Graupner, Michael; Reyes, Alex D

    2013-09-18

    Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.

  11. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    PubMed Central

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-01-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393

  12. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection.

    PubMed

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-12-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.

  13. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.

  14. Sensory processing in the vestibular nuclei during active head movements

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; Boyle, R.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    2000-01-01

    Many secondary vestibular neurons are sensitive to head on trunk rotation during reflex-induced and voluntary head movements. During passive whole body rotation the interaction of head on trunk signals related to the vestibulo-collic reflex with vestibular signals increases the rotational gain of many secondary vestibular neurons, including many that project to the spinal cord. In some units, the sensitivity to head on trunk and vestibular input is matched and the resulting interaction produces an output that is related to the trunk velocity in space. In other units the head on trunk inputs are stronger and the resulting interaction produces an output that is larger during the reflex. During voluntary head movements, inputs related to head on trunk movement combine destructively with vestibular signals, and often cancel the sensory reafferent consequences of self-generated movements. Cancellation of sensory vestibular signals was observed in all of the antidromically identified secondary vestibulospinal units, even though many of these units were not significantly affected by reflexive head on trunk movements. The results imply that the inputs to vestibular neurons related to head on trunk rotation during reflexive and voluntary movements arise from different sources. We suggest that the relative strength of reflexive head on trunk input to different vestibular neurons might reflect the different functional roles they have in controlling the posture of the neck and body.

  15. A Computer Solution of the Parking Lot Problem.

    ERIC Educational Resources Information Center

    Rumble, Richard T.

    A computer program has been developed that will accept as inputs the physical description of a portion of land, and the parking design standards to be followed. The program will then give as outputs the numerical and graphical descriptions of the maximum-density parking lot for that portion of land. The problem has been treated as a standard…

  16. The incorporation of plotting capability into the Unified Subsonic Supersonic Aerodynamic Analysis program, version B

    NASA Technical Reports Server (NTRS)

    Winter, O. A.

    1980-01-01

    The B01 version of the United Subsonic Supersonic Aerodynamic Analysis program is the result of numerous modifications and additions made to the B00 version. These modifications and additions affect the program input, its computational options, the code readability, and the overlay structure. The following are described: (1) the revised input; (2) the plotting overlay programs which were also modified, and their associated subroutines, (3) the auxillary files used by the program, the revised output data; and (4) the program overlay structure.

  17. Satellite Image Mosaic Engine

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2006-01-01

    A computer program automatically builds large, full-resolution mosaics of multispectral images of Earth landmasses from images acquired by Landsat 7, complete with matching of colors and blending between adjacent scenes. While the code has been used extensively for Landsat, it could also be used for other data sources. A single mosaic of as many as 8,000 scenes, represented by more than 5 terabytes of data and the largest set produced in this work, demonstrated what the code could do to provide global coverage. The program first statistically analyzes input images to determine areas of coverage and data-value distributions. It then transforms the input images from their original universal transverse Mercator coordinates to other geographical coordinates, with scaling. It applies a first-order polynomial brightness correction to each band in each scene. It uses a data-mask image for selecting data and blending of input scenes. Under control by a user, the program can be made to operate on small parts of the output image space, with check-point and restart capabilities. The program runs on SGI IRIX computers. It is capable of parallel processing using shared-memory code, large memories, and tens of central processing units. It can retrieve input data and store output data at locations remote from the processors on which it is executed.

  18. Design of double fuzzy clustering-driven context neural networks.

    PubMed

    Kim, Eun-Hu; Oh, Sung-Kwun; Pedrycz, Witold

    2018-08-01

    In this study, we introduce a novel category of double fuzzy clustering-driven context neural networks (DFCCNNs). The study is focused on the development of advanced design methodologies for redesigning the structure of conventional fuzzy clustering-based neural networks. The conventional fuzzy clustering-based neural networks typically focus on dividing the input space into several local spaces (implied by clusters). In contrast, the proposed DFCCNNs take into account two distinct local spaces called context and cluster spaces, respectively. Cluster space refers to the local space positioned in the input space whereas context space concerns a local space formed in the output space. Through partitioning the output space into several local spaces, each context space is used as the desired (target) local output to construct local models. To complete this, the proposed network includes a new context layer for reasoning about context space in the output space. In this sense, Fuzzy C-Means (FCM) clustering is useful to form local spaces in both input and output spaces. The first one is used in order to form clusters and train weights positioned between the input and hidden layer, whereas the other one is applied to the output space to form context spaces. The key features of the proposed DFCCNNs can be enumerated as follows: (i) the parameters between the input layer and hidden layer are built through FCM clustering. The connections (weights) are specified as constant terms being in fact the centers of the clusters. The membership functions (represented through the partition matrix) produced by the FCM are used as activation functions located at the hidden layer of the "conventional" neural networks. (ii) Following the hidden layer, a context layer is formed to approximate the context space of the output variable and each node in context layer means individual local model. The outputs of the context layer are specified as a combination of both weights formed as linear function and the outputs of the hidden layer. The weights are updated using the least square estimation (LSE)-based method. (iii) At the output layer, the outputs of context layer are decoded to produce the corresponding numeric output. At this time, the weighted average is used and the weights are also adjusted with the use of the LSE scheme. From the viewpoint of performance improvement, the proposed design methodologies are discussed and experimented with the aid of benchmark machine learning datasets. Through the experiments, it is shown that the generalization abilities of the proposed DFCCNNs are better than those of the conventional FCNNs reported in the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  20. Wideband unbalanced waveguide power dividers and combiners

    DOEpatents

    Halligan, Matthew; McDonald, Jacob Jeremiah; Strassner, II, Bernd H.

    2016-05-17

    The various technologies presented herein relate to waveguide dividers and waveguide combiners for application in radar systems, wireless communications, etc. Waveguide dividers-combiners can be manufactured in accordance with custom dimensions, as well as in accordance with waveguide standards such that the input and output ports are of a defined dimension and have a common impedance. Various embodiments are presented which can incorporate one or more septum(s), one or more pairs of septums, an iris, an input matching region, a notch located on the input waveguide arm, waveguide arms having stepped transformer regions, etc. The various divider configurations presented herein can be utilized in high fractional bandwidth applications, e.g., a fractional bandwidth of about 30%, and RF applications in the Ka frequency band (e.g., 26.5-40 GHz).

  1. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using specially designed test hardware enabling measurement of heat transferred through a simulated Stirling cycle. The overall effort and results are discussed.

  2. Sensitivity analysis of radionuclides atmospheric dispersion following the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Girard, Sylvain; Korsakissok, Irène; Mallet, Vivien

    2014-05-01

    Atmospheric dispersion models are used in response to accidental releases with two purposes: - minimising the population exposure during the accident; - complementing field measurements for the assessment of short and long term environmental and sanitary impacts. The predictions of these models are subject to considerable uncertainties of various origins. Notably, input data, such as meteorological fields or estimations of emitted quantities as function of time, are highly uncertain. The case studied here is the atmospheric release of radionuclides following the Fukushima Daiichi disaster. The model used in this study is Polyphemus/Polair3D, from which derives IRSN's operational long distance atmospheric dispersion model ldX. A sensitivity analysis was conducted in order to estimate the relative importance of a set of identified uncertainty sources. The complexity of this task was increased by four characteristics shared by most environmental models: - high dimensional inputs; - correlated inputs or inputs with complex structures; - high dimensional output; - multiplicity of purposes that require sophisticated and non-systematic post-processing of the output. The sensitivities of a set of outputs were estimated with the Morris screening method. The input ranking was highly dependent on the considered output. Yet, a few variables, such as horizontal diffusion coefficient or clouds thickness, were found to have a weak influence on most of them and could be discarded from further studies. The sensitivity analysis procedure was also applied to indicators of the model performance computed on a set of gamma dose rates observations. This original approach is of particular interest since observations could be used later to calibrate the input variables probability distributions. Indeed, only the variables that are influential on performance scores are likely to allow for calibration. An indicator based on emission peaks time matching was elaborated in order to complement classical statistical scores which were dominated by deposit dose rates and almost insensitive to lower atmosphere dose rates. The substantial sensitivity of these performance indicators is auspicious for future calibration attempts and indicates that the simple perturbations used here may be sufficient to represent an essential part of the overall uncertainty.

  3. Control and optimization system

    DOEpatents

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  4. Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Genaro Perez-de; Lamberti, Vincent E.; Seals, Roland D.

    This numerical analysis study entails creating and assessing a model that is capable of simulating molten metal droplets and the production of metal powder during the Gas Atomization (GA) method. The essential goal of this research aims to gather more information on simulating the process of creating metal powder. The model structure and perspective was built through the application of governing equations and aspects that utilized factors such as gas dynamics, droplet dynamics, energy balance, heat transfer, fluid mechanics and thermodynamics that were proposed from previous studies. The model is very simple and can be broken down into having amore » set of inputs to produce outputs. The inputs are the processing parameters such as the initial temperature of the metal alloy, the gas pressure and the size of the droplets. Additional inputs include the selection of the metal alloy and the atomization gas and factoring in their properties. The outputs can be designated by the velocity and thermal profiles of the droplet and gas. These profiles illustrate the speed of both as well as the rate of temperature change or cooling rate of the droplets. Here, the main focus is the temperature change and finding the right parameters to ensure that the metal powder is efficiently produced. Once the model was conceptualized and finalized, it was employed to verify the results of other previous studies.« less

  5. Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception

    DOE PAGES

    Leon, Genaro Perez-de; Lamberti, Vincent E.; Seals, Roland D.; ...

    2016-02-01

    This numerical analysis study entails creating and assessing a model that is capable of simulating molten metal droplets and the production of metal powder during the Gas Atomization (GA) method. The essential goal of this research aims to gather more information on simulating the process of creating metal powder. The model structure and perspective was built through the application of governing equations and aspects that utilized factors such as gas dynamics, droplet dynamics, energy balance, heat transfer, fluid mechanics and thermodynamics that were proposed from previous studies. The model is very simple and can be broken down into having amore » set of inputs to produce outputs. The inputs are the processing parameters such as the initial temperature of the metal alloy, the gas pressure and the size of the droplets. Additional inputs include the selection of the metal alloy and the atomization gas and factoring in their properties. The outputs can be designated by the velocity and thermal profiles of the droplet and gas. These profiles illustrate the speed of both as well as the rate of temperature change or cooling rate of the droplets. Here, the main focus is the temperature change and finding the right parameters to ensure that the metal powder is efficiently produced. Once the model was conceptualized and finalized, it was employed to verify the results of other previous studies.« less

  6. Pattern matching techniques for correcting low-confidence OCR words in a known context

    NASA Astrophysics Data System (ADS)

    Ford, Glenn; Hauser, Susan E.; Le, Daniel X.; Thoma, George R.

    2000-12-01

    A commercial OCR system is a key component of a system developed at the National Library of Medicine for the automated extraction of bibliographic fields from biomedical journals. This 5-engine OCR system, while exhibiting high performance overall, does not reliably convert very small characters, especially those that are in italics. As a result, the 'affiliations' field that typically contains such characters in most journals, is not captured accurately, and requires a disproportionately high manual input. To correct this problem, dictionaries have been created from words occurring in this field (e.g., university, department, street addresses, names of cities, etc.) from 230,000 articles already processed. The OCR output corresponding to the affiliation field is then matched against these dictionary entries by approximate string-matching techniques, and the ranked matches are presented to operators for verification. This paper outlines the techniques employed and the results of a comparative evaluation.

  7. A clocked high-pass-filter-based offset cancellation technique for high-gain biomedical amplifiers

    NASA Astrophysics Data System (ADS)

    Pal, Dipankar; Goswami, Manish

    2010-05-01

    In this article, a simple offset cancellation technique based on a clocked high-pass filter with extremely low output offset is presented. The configuration uses the on-resistance of a complementary metal oxide semiconductor (CMOS) transmission gate (X-gate) and tunes the lower 3-dB cut-off frequency with a matched pair of floating capacitors. The results compare favourably with the more complex auto-zeroing and chopper stabilisation techniques of offset cancellation in terms of power dissipation, component count and bandwidth, while reporting inferior output noise performance. The design is suitable for use in biomedical amplifier systems for applications such as ENG-recording. The system is simulated in Spectre Cadence 5.1.41 using 0.6 μm CMOS technology and the total block gain is ∼83.0 dB while the phase error is <5°. The power consumption is 10.2 mW and the output offset obtained for an input monotone signal of 5 μVpp is 1.28 μV. The input-referred root mean square noise voltage between 1 and 5 kHz is 26.32 nV/√Hz.

  8. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Schifer, Nicholas A.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.

  9. Processing oscillatory signals by incoherent feedforward loops

    NASA Astrophysics Data System (ADS)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  10. Computing the modal mass from the state space model in combined experimental-operational modal analysis

    NASA Astrophysics Data System (ADS)

    Cara, Javier

    2016-05-01

    Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.

  11. When causality does not imply correlation: more spadework at the foundations of scientific psychology.

    PubMed

    Marken, Richard S; Horth, Brittany

    2011-06-01

    Experimental research in psychology is based on an open-loop causal model which assumes that sensory input causes behavioral output. This model was tested in a tracking experiment where participants were asked to control a cursor, keeping it aligned with a target by moving a mouse to compensate for disturbances of differing difficulty. Since cursor movements (inputs) are the only observable cause of mouse movements (outputs), the open-loop model predicts that there will be a correlation between input and output that increases as tracking performance improves. In fact, the correlation between sensory input and motor output is very low regardless of the quality of tracking performance; causality, in terms of the effect of input on output, does not seem to imply correlation in this situation. This surprising result can be explained by a closed-loop model which assumes that input is causing output while output is causing input.

  12. Design of FastQuery: How to Generalize Indexing and Querying System for Scientific Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jerry; Wu, Kesheng

    2011-04-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies such as FastBit are critical for facilitating interactive exploration of large datasets. These technologies rely on adding auxiliary information to existing datasets to accelerate query processing. To use these indices, we need to match the relational data model used by the indexing systems with the array data model used by most scientific data, and to provide an efficient input and output layer for reading and writing the indices. In this work, we present a flexible design that can be easily applied to most scientific datamore » formats. We demonstrate this flexibility by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using simulation data from the particle accelerator and climate simulation communities. To demonstrate the effectiveness of the new design, we also present a detailed performance study using both synthetic and real scientific workloads.« less

  13. A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca M.; Farley, Kenneth A.; Ketcham, Richard A.

    2015-12-01

    Apatite (U-Th)/He and fission-track dates, as well as 4He/3He and fission-track length data, provide rich thermal history information. However, numerous choices and assumptions are required on the long road from raw data and observations to potentially complex geologic interpretations. This paper outlines a conceptual framework for this path, with the aim of promoting a broader understanding of how thermochronologic conclusions are derived. The tiered structure consists of thermal history model inputs at Level 1, thermal history model outputs at Level 2, and geologic interpretations at Level 3. Because inverse thermal history modeling is at the heart of converting thermochronologic data to interpretation, for others to evaluate and reproduce conclusions derived from thermochronologic results it is necessary to publish all data required for modeling, report all model inputs, and clearly and completely depict model outputs. Here we suggest a generalized template for a model input table with which to arrange, report and explain the choice of inputs to thermal history models. Model inputs include the thermochronologic data, additional geologic information, and system- and model-specific parameters. As an example we show how the origin of discrepant thermochronologic interpretations in the Grand Canyon can be better understood by using this disciplined approach.

  14. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.

  15. On the fusion of tuning parameters of fuzzy rules and neural network

    NASA Astrophysics Data System (ADS)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  16. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  17. Compact optical switch based on 2D photonic crystal and magneto-optical cavity.

    PubMed

    Dmitriev, Victor; Kawakatsu, Marcelo N; Portela, Gianni

    2013-04-01

    A compact optical switch based on a 2D photonic crystal (PhC) and a magneto-optical cavity is suggested and analyzed. The cavity is coupled to two parallel and misaligned PC waveguides and operates with dipole mode. When the cavity is nonmagnetized, the dipole mode excited by a signal in the input waveguide has a node in the output waveguide. Therefore, the input signal is reflected from the cavity. This corresponds to the state off of the switch. Normal to the plane of the PhC magnetization by a dc magnetic field produces a rotation of the dipole pattern in the cavity providing equal amplitudes of the electromagnetic fields in the input and the output waveguides. This corresponds to the state on with high transmission of the input signal. Numerical calculations show that at the 1.55 μm wavelength the device has the insertion loss -0.42 dB in the on state, the isolation -19 dB in the off state and the switch off and on ratio P(on)/P(off) about 72. The frequency band at the level of -15 dB of the resonance curve in off state is about 160 GHz.

  18. Tropical Dynamics Process Studies and Numerical Methods

    DTIC Science & Technology

    2011-06-16

    model. Model input and output arc defined in the Table below. Variable Description Ih Latent heat flux (W/ mA2 ) sh Sensible heat flux (W/ mA2 ) lwo...Net longwave flux (W/ mA2 ) swo Net shortwave flux (W/ mA2 ) 11 Wind speed (m/s) us Atmospheric friction velocity tb Bulk temperature (deg C) dtwo Warm

  19. A user's guide to the combined stand prognosis and Douglas-fir tussock moth outbreak model

    Treesearch

    Robert A. Monserud; Nicholas L. Crookston

    1982-01-01

    Documentation is given for using a simulation model combining the Stand Prognosis Model and the Douglas-fir Tussock Moth Outbreak Model. Four major areas are addressed: (1) an overview and discussion of the combined model; (2) description of input options; (3) discussion of model output, and (4) numerous examples illustrating model behavior and sensitivity.

  20. Theoretical modeling of a thickness-shear mode circular cylinder piezoelectric transformer.

    PubMed

    Yang, Jiashi; Chen, Ziguang; Hu, Yuantai

    2007-03-01

    We propose a piezoelectric transformer operating with thickness-shear modes of a circular cylinder and perform a theoretical analysis on the transformer. An exact solution from the three-dimensional equations of piezoelectricity is obtained. The output voltage, input admittance, and efficiency of the transformer are determined. The basic behaviors of the transformer are shown by numerical results.

  1. Photon transport in a dissipative chain of nonlinear cavities

    NASA Astrophysics Data System (ADS)

    Biella, Alberto; Mazza, Leonardo; Carusotto, Iacopo; Rossini, Davide; Fazio, Rosario

    2015-05-01

    By means of numerical simulations and the input-output formalism, we study photon transport through a chain of coupled nonlinear optical cavities subject to uniform dissipation. Photons are injected from one end of the chain by means of a coherent source. The propagation through the array of cavities is sensitive to the interplay between the photon hopping strength and the local nonlinearity in each cavity. We characterize photon transport by studying the populations and the photon correlations as a function of the cavity position. When complemented with input-output theory, these quantities provide direct information about photon transmission through the system. The position of single-photon and multiphoton resonances directly reflects the structure of the many-body energy levels. This shows how a study of transport along a coupled cavity array can provide rich information about the strongly correlated (many-body) states of light even in presence of dissipation. The numerical algorithm we use, based on the time-evolving block decimation scheme adapted to mixed states, allows us to simulate large arrays (up to 60 cavities). The scaling of photon transmission with the number of cavities does depend on the structure of the many-body photon states inside the array.

  2. Adjustable repetition-rate multiplication of optical pulses using fractional temporal Talbot effect with preceded binary intensity modulation

    NASA Astrophysics Data System (ADS)

    Xie, Qijie; Zheng, Bofang; Shu, Chester

    2017-05-01

    We demonstrate a simple approach for adjustable multiplication of optical pulses in a fiber using the temporal Talbot effect. Binary electrical patterns are used to control the multiplication factor in our approach. The input 10 GHz picosecond pulses are pedestal-free and are shaped directly from a CW laser. The pulses are then intensity modulated by different sets of binary patterns prior to entering a fiber of fixed dispersion. Tunable repetition-rate multiplication by different factors of 2, 4, and 8 have been achieved and up to 80 GHz pulse train has been experimentally generated. We also evaluate numerically the influence of the extinction ratio of the intensity modulator on the performance of the multiplied pulse train. In addition, the impact of the modulator bias on the uniformity of the output pulses has also been analyzed through simulation and experiment and a good agreement is reached. Last, we perform numerical simulation on the RF spectral characteristics of the output pulses. The insensitivity of the signal-to-subharmonic noise ratio (SSNR) to the laser linewidth shows that our multiplication scheme is highly tolerant to the incoherence of the input optical pulses.

  3. New Scheduling Algorithms for Agile All-Photonic Networks

    NASA Astrophysics Data System (ADS)

    Mehri, Mohammad Saleh; Ghaffarpour Rahbar, Akbar

    2017-12-01

    An optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.

  4. NBS computerized carpool matching system: users' guide. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilsinn, J.F.; Landau, S.

    1974-12-01

    The report includes flowcharts, input/output formats, and program listings for the programs, plus details of the manual process for coordinate coding. The matching program produces, for each person desiring it, a list of others residing within a pre-specified distance of him, and is thus applicable to a single work destination having primarily one work schedule. The system is currently operational on the National Bureau of Standards' UNIVAC 1108 computer and was run in March of 1974, producing lists for about 950 employees in less than four minutes computer time. Subsequent maintenance of the system will be carried out by themore » NBS Management and Organization Division. (GRA)« less

  5. System and methods for reducing harmonic distortion in electrical converters

    DOEpatents

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2013-12-03

    Systems and methods are provided for delivering energy using an energy conversion module. An exemplary method for delivering energy from an input interface to an output interface using an energy converison module coupled between the input interface and the output interface comprises the steps of determining an input voltage reference for the input interface based on a desired output voltage and a measured voltage and the output interface, determining a duty cycle control value based on a ratio of the input voltage reference and the measured voltage, operating one or more switching elements of the energy conversion module to deliver energy from the input interface to the output interface to the output interface with a duty cycle influenced by the dute cycle control value.

  6. Development of a hydraulic model of the human systemic circulation

    NASA Technical Reports Server (NTRS)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  7. Fuzzy logic control and optimization system

    DOEpatents

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  8. Users manual for Streamtube Curvature Analysis: Analytical method for predicting the pressure distribution about a nacelle at transonic speeds, volume 1

    NASA Technical Reports Server (NTRS)

    Keith, J. S.; Ferguson, D. R.; Heck, P. H.

    1972-01-01

    The computer program, Streamtube Curvature Analysis, is described for the engineering user and for the programmer. The user oriented documentation includes a description of the mathematical governing equations, their use in the solution, and the method of solution. The general logical flow of the program is outlined and detailed instructions for program usage and operation are explained. General procedures for program use and the program capabilities and limitations are described. From the standpoint of the grammar, the overlay structure of the program is described. The various storage tables are defined and their uses explained. The input and output are discussed in detail. The program listing includes numerous comments so that the logical flow within the program is easily followed. A test case showing input data and output format is included as well as an error printout description.

  9. Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions

    NASA Astrophysics Data System (ADS)

    Tsaur, Ruey-Chyn

    2015-02-01

    In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.

  10. The queueing perspective of asynchronous network coding in two-way relay network

    NASA Astrophysics Data System (ADS)

    Liang, Yaping; Chang, Qing; Li, Xianxu

    2018-04-01

    Asynchronous network coding (NC) has potential to improve the wireless network performance compared with a routing or the synchronous network coding. Recent researches concentrate on the optimization between throughput/energy consuming and delay with a couple of independent input flow. However, the implementation of NC requires a thorough investigation of its impact on relevant queueing systems where few work focuses on. Moreover, few works study the probability density function (pdf) in network coding scenario. In this paper, the scenario with two independent Poisson input flows and one output flow is considered. The asynchronous NC-based strategy is that a new arrival evicts a head packet holding in its queue when waiting for another packet from the other flow to encode. The pdf for the output flow which contains both coded and uncoded packets is derived. Besides, the statistic characteristics of this strategy are analyzed. These results are verified by numerical simulations.

  11. Model reduction of nonsquare linear MIMO systems using multipoint matrix continued-fraction expansions

    NASA Technical Reports Server (NTRS)

    Guo, Tong-Yi; Hwang, Chyi; Shieh, Leang-San

    1994-01-01

    This paper deals with the multipoint Cauer matrix continued-fraction expansion (MCFE) for model reduction of linear multi-input multi-output (MIMO) systems with various numbers of inputs and outputs. A salient feature of the proposed MCFE approach to model reduction of MIMO systems with square transfer matrices is its equivalence to the matrix Pade approximation approach. The Cauer second form of the ordinary MCFE for a square transfer function matrix is generalized in this paper to a multipoint and nonsquare-matrix version. An interesting connection of the multipoint Cauer MCFE method to the multipoint matrix Pade approximation method is established. Also, algorithms for obtaining the reduced-degree matrix-fraction descriptions and reduced-dimensional state-space models from a transfer function matrix via the multipoint Cauer MCFE algorithm are presented. Practical advantages of using the multipoint Cauer MCFE are discussed and a numerical example is provided to illustrate the algorithms.

  12. Optimal inverse functions created via population-based optimization.

    PubMed

    Jennings, Alan L; Ordóñez, Raúl

    2014-06-01

    Finding optimal inputs for a multiple-input, single-output system is taxing for a system operator. Population-based optimization is used to create sets of functions that produce a locally optimal input based on a desired output. An operator or higher level planner could use one of the functions in real time. For the optimization, each agent in the population uses the cost and output gradients to take steps lowering the cost while maintaining their current output. When an agent reaches an optimal input for its current output, additional agents are generated in the output gradient directions. The new agents then settle to the local optima for the new output values. The set of associated optimal points forms an inverse function, via spline interpolation, from a desired output to an optimal input. In this manner, multiple locally optimal functions can be created. These functions are naturally clustered in input and output spaces allowing for a continuous inverse function. The operator selects the best cluster over the anticipated range of desired outputs and adjusts the set point (desired output) while maintaining optimality. This reduces the demand from controlling multiple inputs, to controlling a single set point with no loss in performance. Results are demonstrated on a sample set of functions and on a robot control problem.

  13. On-chip cell sorting via patterned magnetic traps

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Prikockis, Michael; Chen, Aaron; Miller, Brandon; Chalmers, Jeffrey; Sooryakumar, Ratnasingham

    2015-03-01

    Due to their importance in research for the diagnosis and treatment of cancer, numerous schemes have been developed to sort rare cell populations, e.g., circulating tumor cells (CTCs), from a larger ensemble of cells. Here, we improve upon a previously developed microfluidic device (Lab Chip 13, 1172, (2013)) to increase throughput and sorting purity of magnetically labeled cells. The separation mechanism involves controlling magnetic forces by manipulating the magnetic domain structures of embedded permalloy microdisks with weak external fields. These forces move labeled cells from the input flow stream into an adjacent buffer flow stream. Such magnetically activated transfer separates the magnetic entities from their non-magnetic counterparts as the two flow streams split apart and move toward their respective outputs. Purity of the magnetic output is modulated by the withdrawal rate of the non-magnetic output relative to the inputs. A proof of concept shows that CTCs from metastatic breast cancer patients can be sorted, recovered from the device, and confirmed as CTCs using separate immunofluorescence staining and analysis. With further optimizations, the channel could become a useful device for high purity final sorting of enriched patient cell samples.

  14. A 11 mW 2.4 GHz 0.18 µm CMOS Transceivers for Wireless Sensor Networks.

    PubMed

    Hou, Bing; Chen, Hua; Wang, Zhiyu; Mo, Jiongjiong; Chen, Junli; Yu, Faxin; Wang, Wenbo

    2017-01-24

    In this paper, a low power transceiver for wireless sensor networks (WSN) is proposed. The system is designed with fully functional blocks including a receiver, a fractional-N frequency synthesizer, and a class-E transmitter, and it is optimized with a good balance among output power, sensitivity, power consumption, and silicon area. A transmitter and receiver (TX-RX) shared input-output matching network is used so that only one off-chip inductor is needed in the system. The power and area efficiency-oriented, fully-integrated frequency synthesizer is able to provide programmable output frequencies in the 2.4 GHz range while occupying a small silicon area. Implemented in a standard 0.18 μm RF Complementary Metal Oxide Semiconductor (CMOS) technology, the whole transceiver occupies a chip area of 0.5 mm² (1.2 mm² including bonding pads for a QFN package). Measurement results suggest that the design is able to work at amplitude shift keying (ASK)/on-off-keying (OOK) and FSK modes with up to 500 kbps data rate. With an input sensitivity of -60 dBm and an output power of 3 dBm, the receiver, transmitter and frequency synthesizer consumes 2.3 mW, 4.8 mW, and 3.9 mW from a 1.8 V supply voltage, respectively.

  15. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3- at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3- extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3- transport processes in a statistical framework based on readily mappable GIS input variables.

  16. Undesirable Choice Biases with Small Differences in the Spatial Structure of Chance Stimulus Sequences.

    PubMed

    Herrera, David; Treviño, Mario

    2015-01-01

    In two-alternative discrimination tasks, experimenters usually randomize the location of the rewarded stimulus so that systematic behavior with respect to irrelevant stimuli can only produce chance performance on the learning curves. One way to achieve this is to use random numbers derived from a discrete binomial distribution to create a 'full random training schedule' (FRS). When using FRS, however, sporadic but long laterally-biased training sequences occur by chance and such 'input biases' are thought to promote the generation of laterally-biased choices (i.e., 'output biases'). As an alternative, a 'Gellerman-like training schedule' (GLS) can be used. It removes most input biases by prohibiting the reward from appearing on the same location for more than three consecutive trials. The sequence of past rewards obtained from choosing a particular discriminative stimulus influences the probability of choosing that same stimulus on subsequent trials. Assuming that the long-term average ratio of choices matches the long-term average ratio of reinforcers, we hypothesized that a reduced amount of input biases in GLS compared to FRS should lead to a reduced production of output biases. We compared the choice patterns produced by a 'Rational Decision Maker' (RDM) in response to computer-generated FRS and GLS training sequences. To create a virtual RDM, we implemented an algorithm that generated choices based on past rewards. Our simulations revealed that, although the GLS presented fewer input biases than the FRS, the virtual RDM produced more output biases with GLS than with FRS under a variety of test conditions. Our results reveal that the statistical and temporal properties of training sequences interacted with the RDM to influence the production of output biases. Thus, discrete changes in the training paradigms did not translate linearly into modifications in the pattern of choices generated by a RDM. Virtual RDMs could be further employed to guide the selection of proper training schedules for perceptual decision-making studies.

  17. Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2010-01-01

    The design, simulation, and characterization of a novel Ka-band (32.05 0.25 GHz) rectangular waveguide two-way branch-line hybrid unequal power combiner (with port impedances matched to that of a standard WR-28 waveguide) has been created to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The measured combining efficiency is 92.9 percent at the center frequency of 32.05 GHz. This circuit is efficacious in combining the unequal output power from two Ka-band GaAs pseudomorphic high electron mobility transistor (pHEMT) monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with high efficiency. The component parts include the branch-line hybrid-based power combiner and the MMIC-based PAs. A two-way branch-line hybrid is a four-port device with all ports matched; power entering port 1 is divided in phase, and into the ratio 2:1 between ports 3 and 4. No power is coupled to port 2. MMICs are a type of integrated circuit fabricated on GaAs that operates at microwave frequencies, and performs the function of signal amplification. The power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA's deep space frequency band. The power combiner would have an output return loss better than 20 dB. Isolation between the output port and the isolated port is greater than 25 dB. Isolation between the two input ports is greater than 25 dB. The combining efficiency would be greater than 90 percent when the ratio of the two input power levels is two. The power combiner is machined from aluminum with E-plane split-block arrangement, and has excellent reliability. The flexibility of this design allows the combiner to be customized for combining the power from MMIC PAs with an arbitrary power output ratio. In addition, it allows combining a low-power GaAs MMIC with a high-power GaN MMIC. The arbitrary port impedance allows matching the output impedance of the MMIC PA directly to the waveguide impedance without transitioning first into a transmission line with characteristic impedance of 50 ohms. Thus, by eliminating the losses associated with a transition, the overall SSPA efficiency is enhanced. For reducing the cost and weight when required in very large quantities, such as in the beam-forming networks of phased-array antenna systems, the combiner can be manufactured using metal-plated plastic. Two hybrid unequal power combiners can be cascaded to realize a non-binary combiner (for e.g., a three-way) and can be synergistically optimized for low VSWR (voltage standing wave ratio), low insertion loss, high isolation, and wide bandwidth using commercial off-the-shelf electromagnetic software design tools.

  18. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.

    PubMed

    Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin

    2013-03-01

    In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  20. Assessment of Effectiveness of Geologic Isolation Systems. Variable thickness transient ground-water flow model. Volume 2. Users' manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data filesmore » from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.« less

  1. Design of a 9-loop quasi-exponential waveform generator

    NASA Astrophysics Data System (ADS)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  2. Design of a 9-loop quasi-exponential waveform generator.

    PubMed

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  3. Multi-mode horn

    NASA Technical Reports Server (NTRS)

    Neilson, Jeffrey M. (Inventor)

    2002-01-01

    A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.

  4. Cybernetic group method of data handling (GMDH) statistical learning for hyperspectral remote sensing inverse problems in coastal ocean optics

    NASA Astrophysics Data System (ADS)

    Filippi, Anthony Matthew

    For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables included bottom depth z b, chlorophyll a concentration [chl- a], spectral bottom irradiance reflectance Rb(lambda), and spectral total absorption a(lambda) and spectral total backscattering bb(lambda) coefficients. When applying the cybernetic and neural models to in situ HyperTSRB-derived Rrs, the difference in the means of the absolute error of the inversion estimates for zb was significant (alpha = 0.05). GMDH yielded significantly better zb than the ANN. The ANN model posted a mean absolute error (MAE) of 0.62214 m, compared with 0.55161 m for GMDH.

  5. MEMS Based Acoustic Array

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  6. Scalable Optical-Fiber Communication Networks

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Peterson, John C.

    1993-01-01

    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  7. An offline approach for output-only Bayesian identification of stochastic nonlinear systems using unscented Kalman filtering

    NASA Astrophysics Data System (ADS)

    Erazo, Kalil; Nagarajaiah, Satish

    2017-06-01

    In this paper an offline approach for output-only Bayesian identification of stochastic nonlinear systems is presented. The approach is based on a re-parameterization of the joint posterior distribution of the parameters that define a postulated state-space stochastic model class. In the re-parameterization the state predictive distribution is included, marginalized, and estimated recursively in a state estimation step using an unscented Kalman filter, bypassing state augmentation as required by existing online methods. In applications expectations of functions of the parameters are of interest, which requires the evaluation of potentially high-dimensional integrals; Markov chain Monte Carlo is adopted to sample the posterior distribution and estimate the expectations. The proposed approach is suitable for nonlinear systems subjected to non-stationary inputs whose realization is unknown, and that are modeled as stochastic processes. Numerical verification and experimental validation examples illustrate the effectiveness and advantages of the approach, including: (i) an increased numerical stability with respect to augmented-state unscented Kalman filtering, avoiding divergence of the estimates when the forcing input is unmeasured; (ii) the ability to handle arbitrary prior and posterior distributions. The experimental validation of the approach is conducted using data from a large-scale structure tested on a shake table. It is shown that the approach is robust to inherent modeling errors in the description of the system and forcing input, providing accurate prediction of the dynamic response when the excitation history is unknown.

  8. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    PubMed

    Coyle, Scott M; Lim, Wendell A

    2016-01-14

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.

  9. Design and Performance of a 2.7 THz Waveguide Tripler

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Martin, S.; Bruston, J.; Maestrini, A.; Crawford, T.; Siegel, P. H.

    2001-01-01

    The design and performance of a 0.9 THz to 2.7 THz waveguide tripler are presented. An unusual split block configuration with parallel input and output waveguides accommodates a monolithic membrane diode (MoMeD) circuit. Submicron planar GaAs Schottky diodes in single and antiparallel pairs are implemented with matching filters on a 3-micrometer thick suspended substrate as part of the MoMeD structure. The filters are a combination of short hammerheads and high-low impedance elements. Only a few circuit variations have been measured to date. The best current performance shows an output power of 0.1 microW and an efficiency of 0.002% at the band center frequency of 2.55 THz.

  10. Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Waldstein, Seth W.; Barbosa Kortright, Miguel A.; Simons, Rainee N.

    2017-01-01

    The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitrate (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6, and Drain Efficiency (DE) of 48.9 under continuous wave (CW) operation.

  11. Input-output analysis and the hospital budgeting process.

    PubMed Central

    Cleverly, W O

    1975-01-01

    Two hospitals budget systems, a conventional budget and an input-output budget, are compared to determine how they affect management decisions in pricing, output, planning, and cost control. Analysis of data from a 210-bed not-for-profit hospital indicates that adoption of the input-output budget could cause substantial changes in posted hospital rates in individual departments but probably would have no impact on hospital output determination. The input-output approach promises to be a more accurate system for cost control and planning because, unlike the conventional approach, it generates objective signals for investigating variances of expenses from budgeted levels. PMID:1205865

  12. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    PubMed

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  13. A note on scrap in the 1992 U.S. input-output tables

    USGS Publications Warehouse

    Swisko, George M.

    2000-01-01

    Introduction A key concern of industrial ecology and life cycle analysis is the disposal and recycling of scrap. One might conclude that the U.S. input-output tables are appropriate tools for analyzing scrap flows. Duchin, for instance, has suggested using input-output analysis for industrial ecology, indicating that input-output economics can trace the stocks and flows of energy and other materials from extraction through production and consumption to recycling or disposal. Lave and others use input-output tables to design life cycle assessment models for studying product design, materials use, and recycling strategies, even with the knowledge that these tables suffer from a lack of comprehensive and detailed data that may never be resolved. Although input-output tables can offer general guidance about the interdependence of economic and environmental processes, data reporting by industry and the economic concepts underlying these tables pose problems for rigorous material flow examinations. This is especially true for analyzing the output of scrap and scrap flows in the United States and estimating the amount of scrap that can be recycled. To show how data reporting has affected the values of scrap in recent input-output tables, this paper focuses on metal scrap generated in manufacturing. The paper also briefly discusses scrap that is not included in the input-output tables and some economic concepts that limit the analysis of scrap flows.

  14. A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems

    DOE PAGES

    Kouri, Drew Philip

    2017-12-19

    In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robustmore » optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.« less

  15. Non-blocking crossbar permutation engine with constant routing latency

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    1994-01-01

    The invention is embodied in an N x N crossbar for routing packets from a set of N input ports to a set of N output ports, each packet having a header identifying one of the output ports as its destination, including a plurality of individual links which carry individual packets. Each link has a link input end and a link output end, a plurality of switches. Each of the switches has at least top and bottom switch inputs connected to a corresponding pair of the link output ends and top and bottom switch outputs connected to a corresponding pair of link input ends, whereby each switch is connected to four different links. Each of the switches has an exchange state which routes packets from the top and bottom switch inputs to the bottom and top switch outputs, respectively, and a bypass state which routes packets from the top and bottom switch inputs to the top and bottom switch outputs, respectively. A plurality of individual controller devices governing respective switches for sensing from a header of a packet at each switch input for the identity of the destination output port of the packet and selecting one of the exchange and bypass states in accordance with the identity of the destination output port and with the location of the corresponding switch relative to the destination output port.

  16. Advanced infrared laser modulator development

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.; Wagner, R.; Gilden, M.

    1984-01-01

    A parametric study was conducted to develop an electrooptic waveguide modulator for generating continuous tunable sideband power from an infrared CO2 laser. Parameters included were the waveguide configurations, microstrip dimensions device impedance, and effective dielectric constants. An optimum infrared laser modulator was established and was fabricated. This modulator represents the state-of-the-art integrated optical device, which has a three-dimensional topology to accommodate three lambda/4 step transformers for microwave impedance matching at both the input and output terminals. A flat frequency response of the device over 20 HGz or = 3 dB) was achieved. Maximum single sideband to carrier power greater than 1.2% for 20 W microwave input power at optical carrier wavelength of 10.6 microns was obtained.

  17. Mechanisms of selective attention and space motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.

    1987-01-01

    The neural mismatch theory of space motion sickness asserts that the central and peripheral autonomic sequelae of discordant sensory input arise from central integrative processes falling to reconcile patterns of incoming sensory information with existing memory. Stated differently, perceived novelty reaches a stress level as integrative mechanisms fail to return a sense of control to the individual in the new environment. Based on evidence summarized here, the severity of the neural mismatch may be dependent upon the relative amount of attention selectively afforded to each sensory input competing for control of behavior. Components of the limbic system may play important roles in match-mismatch operations, be therapeutically modulated by antimotion sickness drugs, and be optimally positioned to control autonomic output.

  18. Thalamic inhibition: diverse sources, diverse scales

    PubMed Central

    Halassa, Michael M.; Acsády, László

    2016-01-01

    The thalamus is the major source of cortical inputs shaping sensation, action and cognition. Thalamic circuits are targeted by two major inhibitory systems: the thalamic reticular nucleus (TRN) and extra-thalamic inhibitory (ETI) inputs. A unifying framework of how these systems operate is currently lacking. Here, we propose that TRN circuits are specialized to exert thalamic control at different spatiotemporal scales. Local inhibition of thalamic spike rates prevails during attentional selection whereas global inhibition more likely during sleep. In contrast, the ETI (arising from basal ganglia, zona incerta, anterior pretectum and pontine reticular formation) provides temporally-precise and focal inhibition, impacting spike timing. Together, these inhibitory systems allow graded control of thalamic output, enabling thalamocortical operations to dynamically match ongoing behavioral demands. PMID:27589879

  19. A review of surrogate models and their application to groundwater modeling

    NASA Astrophysics Data System (ADS)

    Asher, M. J.; Croke, B. F. W.; Jakeman, A. J.; Peeters, L. J. M.

    2015-08-01

    The spatially and temporally variable parameters and inputs to complex groundwater models typically result in long runtimes which hinder comprehensive calibration, sensitivity, and uncertainty analysis. Surrogate modeling aims to provide a simpler, and hence faster, model which emulates the specified output of a more complex model in function of its inputs and parameters. In this review paper, we summarize surrogate modeling techniques in three categories: data-driven, projection, and hierarchical-based approaches. Data-driven surrogates approximate a groundwater model through an empirical model that captures the input-output mapping of the original model. Projection-based models reduce the dimensionality of the parameter space by projecting the governing equations onto a basis of orthonormal vectors. In hierarchical or multifidelity methods the surrogate is created by simplifying the representation of the physical system, such as by ignoring certain processes, or reducing the numerical resolution. In discussing the application to groundwater modeling of these methods, we note several imbalances in the existing literature: a large body of work on data-driven approaches seemingly ignores major drawbacks to the methods; only a fraction of the literature focuses on creating surrogates to reproduce outputs of fully distributed groundwater models, despite these being ubiquitous in practice; and a number of the more advanced surrogate modeling methods are yet to be fully applied in a groundwater modeling context.

  20. Correction of I/Q channel errors without calibration

    DOEpatents

    Doerry, Armin W.; Tise, Bertice L.

    2002-01-01

    A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.

  1. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  2. The Role of Input and Output Tasks in Grammar Instruction: Theoretical, Empirical and Pedagogical Considerations

    ERIC Educational Resources Information Center

    Benati, Alessandro

    2017-01-01

    In this paper, a review of the role of input, output and instruction in second language acquisition is provided. Several pedagogical interventions in grammar instruction (e.g., processing instruction, input enhancement, structured output and collaborative output tasks) are presented and their effectiveness reviewed. A final and overall evaluation…

  3. Dendritic Na+ spikes enable cortical input to drive action potential output from hippocampal CA2 pyramidal neurons

    PubMed Central

    Sun, Qian; Srinivas, Kalyan V; Sotayo, Alaba; Siegelbaum, Steven A

    2014-01-01

    Synaptic inputs from different brain areas are often targeted to distinct regions of neuronal dendritic arbors. Inputs to proximal dendrites usually produce large somatic EPSPs that efficiently trigger action potential (AP) output, whereas inputs to distal dendrites are greatly attenuated and may largely modulate AP output. In contrast to most other cortical and hippocampal neurons, hippocampal CA2 pyramidal neurons show unusually strong excitation by their distal dendritic inputs from entorhinal cortex (EC). In this study, we demonstrate that the ability of these EC inputs to drive CA2 AP output requires the firing of local dendritic Na+ spikes. Furthermore, we find that CA2 dendritic geometry contributes to the efficient coupling of dendritic Na+ spikes to AP output. These results provide a striking example of how dendritic spikes enable direct cortical inputs to overcome unfavorable distal synaptic locale to trigger axonal AP output and thereby enable efficient cortico-hippocampal information flow. DOI: http://dx.doi.org/10.7554/eLife.04551.001 PMID:25390033

  4. Logic elements for reactor period meter

    DOEpatents

    McDowell, William P.; Bobis, James P.

    1976-01-01

    Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.

  5. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  6. Simulation of random road microprofile based on specified correlation function

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Vlasov, V. G.; Fedotov, K. V.

    2018-03-01

    The paper aims to develop a numerical simulation method and an algorithm for a random microprofile of special roads based on the specified correlation function. The paper used methods of correlation, spectrum and numerical analysis. It proves that the transfer function of the generating filter for known expressions of spectrum input and output filter characteristics can be calculated using a theorem on nonnegative and fractional rational factorization and integral transformation. The model of the random function equivalent of the real road surface microprofile enables us to assess springing system parameters and identify ranges of variations.

  7. Theory of optimal information transmission in E. coli chemotaxis pathway

    NASA Astrophysics Data System (ADS)

    Micali, Gabriele; Endres, Robert G.

    Bacteria live in complex microenvironments where they need to make critical decisions fast and reliably. These decisions are inherently affected by noise at all levels of the signaling pathway, and cells are often modeled as an input-output device that transmits extracellular stimuli (input) to internal proteins (channel), which determine the final behavior (output). Increasing the amount of transmitted information between input and output allows cells to better infer extracellular stimuli and respond accordingly. However, in contrast to electronic devices, the separation into input, channel, and output is not always clear in biological systems. Output might feed back into the input, and the channel, made by proteins, normally interacts with the input. Furthermore, a biological channel is affected by mutations and can change under evolutionary pressure. Here, we present a novel approach to maximize information transmission: given cell-external and internal noise, we analytically identify both input distributions and input-output relations that optimally transmit information. Using E. coli chemotaxis as an example, we conclude that its pathway is compatible with an optimal information transmission device despite the ultrasensitive rotary motors.

  8. A numerical solution for the diffusion equation in hydrogeologic systems

    USGS Publications Warehouse

    Ishii, A.L.; Healy, R.W.; Striegl, Robert G.

    1989-01-01

    The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)

  9. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position

    NASA Astrophysics Data System (ADS)

    Rahmatalla, Salam; DeShaw, Jonathan

    2011-12-01

    Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.

  10. Environmental Loss Characterization of an Advanced Stirling Convertor (ASC-E2) Insulation Package Using a Mock Heater Head

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a specified electrical power output for a given net heat input. While electrical power output can be precisely quantified, thermal power input to the Stirling cycle cannot be directly measured. In an effort to improve net heat input predictions, the Mock Heater Head was developed with the same relative thermal paths as a convertor using a conducting rod to represent the Stirling cycle and tested to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. The Mock Heater Head also served as the pathfinder for a higher fidelity version of validation test hardware, known as the Thermal Standard. This paper describes how the Mock Heater Head was tested and utilized to validate a process for the Thermal Standard.

  11. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method.

    PubMed

    Zhang, Huaguang; Cui, Lili; Zhang, Xin; Luo, Yanhong

    2011-12-01

    In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.

  12. Stochastic analysis of multiphase flow in porous media: II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.

    1996-08-01

    The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.

  13. Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits.

    PubMed

    Kohn, Jessica R; Heath, Sarah L; Behnia, Rudy

    2018-01-01

    Confronted with an ever-changing visual landscape, animals must be able to detect relevant stimuli and translate this information into behavioral output. A visual scene contains an abundance of information: to interpret the entirety of it would be uneconomical. To optimally perform this task, neural mechanisms exist to enhance the detection of important features of the sensory environment while simultaneously filtering out irrelevant information. This can be accomplished by using a circuit design that implements specific "matched filters" that are tuned to relevant stimuli. Following this rule, the well-characterized visual systems of insects have evolved to streamline feature extraction on both a structural and functional level. Here, we review examples of specialized visual microcircuits for vital behaviors across insect species, including feature detection, escape, and estimation of self-motion. Additionally, we discuss how these microcircuits are modulated to weigh relevant input with respect to different internal and behavioral states.

  14. Optimizing Force Deployment and Force Structure for the Rapid Deployment Force

    DTIC Science & Technology

    1984-03-01

    Analysis . . . . .. .. ... ... 97 Experimental Design . . . . . .. .. .. ... 99 IX. Use of a Flexible Response Surface ........ 10.2 Selection of a...setS . ere designe . arun, programming methodology , where the require: s.stem re..r is input and the model optimizes the num=er. :::pe, cargo. an...to obtain new computer outputs" (Ref 38:23). The methodology can be used with any decision model, linear or nonlinear. Experimental Desion Since the

  15. Optical sensor in planar configuration based on multimode interference

    NASA Astrophysics Data System (ADS)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  16. Structural response synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozisik, H.; Keltie, R.F.

    The open loop control technique of predicting a conditioned input signal based on a specified output response for a second order system has been analyzed both analytically and numerically to gain a firm understanding of the method. Differences between this method of control and digital closed loop control using pole cancellation were investigated as a follow up to previous experimental work. Application of the technique to diamond turning using a fast tool is also discussed.

  17. Evaluation of the ACEC Benchmark Suite for Real-Time Applications

    DTIC Science & Technology

    1990-07-23

    1.0 benchmark suite waSanalyzed with respect to its measuring of Ada real-time features such as tasking, memory management, input/output, scheduling...and delay statement, Chapter 13 features , pragmas, interrupt handling, subprogram overhead, numeric computations etc. For most of the features that...meant for programming real-time systems. The ACEC benchmarks have been analyzed extensively with respect to their measuring of Ada real-time features

  18. On-chip photonic transistor based on the spike synchronization in circuit QED

    NASA Astrophysics Data System (ADS)

    Gül, Yusuf

    2018-03-01

    We consider the single photon transistor in coupled cavity system of resonators interacting with multilevel superconducting artificial atom simultaneously. Effective single mode transformation is used for the diagonalization of the Hamiltonian and impedance matching in terms of the normal modes. Storage and transmission of the incident field are described by the interactions between the cavities controlling the atomic transitions of lowest lying states. Rabi splitting of vacuum-induced multiphoton transitions is considered in input/output relations by the quadrature operators in the absence of the input field. Second-order coherence functions are employed to investigate the photon blockade and delocalization-localization transitions of cavity fields. Spontaneous virtual photon conversion into real photons is investigated in localized and oscillating regimes. Reflection and transmission of cavity output fields are investigated in the presence of the multilevel transitions. Accumulation and firing of the reflected and transmitted fields are used to investigate the synchronization of the bunching spike train of transmitted field and population imbalance of cavity fields. In the presence of single photon gate field, gain enhancement is explained for transmitted regime.

  19. Energy harvesting from low frequency applications using piezoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel, E-mail: zhiqun.deng@pnnl.gov

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and themore » methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.« less

  20. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  1. The Comprehensible Output Hypothesis and Self-directed Learning: A Learner's Perspective.

    ERIC Educational Resources Information Center

    Liming, Yu

    1990-01-01

    Discusses the significance to language acquisition of pushing for comprehensible output. Three issues are examined: (1) comprehensible output and negative input, (2) comprehensible and incomprehensible output, and (3) comprehensible output and comprehensible input. (28 references) (GLR)

  2. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu [Newport News, VA; Zhang, Shukui [Yorktown, VA

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  3. Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2002-01-01

    A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause the voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. The method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.

  4. Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2002-01-01

    A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause tile voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. A method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.

  5. Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.

    PubMed

    Krepkovich, Eileen T; Perreault, Eric J

    2008-01-01

    This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.

  6. A User's Guide for the Differential Reduced Ejector/Mixer Analysis "DREA" Program. 1.0

    NASA Technical Reports Server (NTRS)

    DeChant, Lawrence J.; Nadell, Shari-Beth

    1999-01-01

    A system of analytical and numerical two-dimensional mixer/ejector nozzle models that require minimal empirical input has been developed and programmed for use in conceptual and preliminary design. This report contains a user's guide describing the operation of the computer code, DREA (Differential Reduced Ejector/mixer Analysis), that contains these mathematical models. This program is currently being adopted by the Propulsion Systems Analysis Office at the NASA Glenn Research Center. A brief summary of the DREA method is provided, followed by detailed descriptions of the program input and output files. Sample cases demonstrating the application of the program are presented.

  7. Transform methods for precision continuum and control models of flexible space structures

    NASA Technical Reports Server (NTRS)

    Lupi, Victor D.; Turner, James D.; Chun, Hon M.

    1991-01-01

    An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.

  8. High frequency inductive lamp and power oscillator

    DOEpatents

    Kirkpatrick, Douglas A.; Gitsevich, Aleksandr

    2005-09-27

    An oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and a tuning circuit connected to the input of the amplifier, wherein the tuning circuit is continuously variable and consists of solid state electrical components with no mechanically adjustable devices including a pair of diodes connected to each other at their respective cathodes with a control voltage connected at the junction of the diodes. Another oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and transmission lines connected to the input of the amplifier with an input pad and a perpendicular transmission line extending from the input pad and forming a leg of a resonant "T", and wherein the feedback network is coupled to the leg of the resonant "T".

  9. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-08-12

    A data flow computer and method of computing are disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  10. Active disturbance rejection control based robust output feedback autopilot design for airbreathing hypersonic vehicles.

    PubMed

    Tian, Jiayi; Zhang, Shifeng; Zhang, Yinhui; Li, Tong

    2018-03-01

    Since motion control plant (y (n) =f(⋅)+d) was repeatedly used to exemplify how active disturbance rejection control (ADRC) works when it was proposed, the integral chain system subject to matched disturbances is always regarded as a canonical form and even misconstrued as the only form that ADRC is applicable to. In this paper, a systematic approach is first presented to apply ADRC to a generic nonlinear uncertain system with mismatched disturbances and a robust output feedback autopilot for an airbreathing hypersonic vehicle (AHV) is devised based on that. The key idea is to employ the feedback linearization (FL) and equivalent input disturbance (EID) technique to decouple nonlinear uncertain system into several subsystems in canonical form, thus it would be much easy to directly design classical/improved linear/nonlinear ADRC controller for each subsystem. It is noticed that all disturbances are taken into account when implementing FL rather than just omitting that in previous research, which greatly enhances controllers' robustness against external disturbances. For autopilot design, ADRC strategy enables precise tracking for velocity and altitude reference command in the presence of severe parametric perturbations and atmospheric disturbances only using measurable output information. Bounded-input-bounded-output (BIBO) stable is analyzed for closed-loop system. To illustrate the feasibility and superiority of this novel design, a series of comparative simulations with some prominent and representative methods are carried out on a benchmark longitudinal AHV model. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  12. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  13. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-10-07

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  14. Discharge prediction in the Upper Senegal River using remote sensing data

    NASA Astrophysics Data System (ADS)

    Ceccarini, Iacopo; Raso, Luciano; Steele-Dunne, Susan; Hrachowitz, Markus; Nijzink, Remko; Bodian, Ansoumana; Claps, Pierluigi

    2017-04-01

    The Upper Senegal River, West Africa, is a poorly gauged basin. Nevertheless, discharge predictions are required in this river for the optimal operation of the downstream Manantali reservoir, flood forecasting, development plans for the entire basin and studies for adaptation to climate change. Despite the need for reliable discharge predictions, currently available rainfall-runoff models for this basin provide only poor performances, particularly during extreme regimes, both low-flow and high-flow. In this research we develop a rainfall-runoff model that combines remote-sensing input data and a-priori knowledge on catchment physical characteristics. This semi-distributed model, is based on conceptual numerical descriptions of hydrological processes at the catchment scale. Because of the lack of reliable input data from ground observations, we use the Tropical Rainfall Measuring Mission (TRMM) remote-sensing data for precipitation and the Global Land Evaporation Amsterdam Model (GLEAM) for the terrestrial potential evaporation. The model parameters are selected by a combination of calibration, by match of observed output and considering a large set of hydrological signatures, as well as a-priori knowledge on the catchment. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to choose the most likely range in which the parameter sets belong. Analysis of different experiments enhances our understanding on the added value of distributed remote-sensing data and a-priori information in rainfall-runoff modelling. Results of this research will be used for decision making at different scales, contributing to a rational use of water resources in this river.

  15. Versatile tunable current-mode universal biquadratic filter using MO-DVCCs and MOSFET-based electronic resistors.

    PubMed

    Chen, Hua-Pin

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.

  16. Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    PubMed Central

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963

  17. Evaluation of input output efficiency of oil field considering undesirable output —A case study of sandstone reservoir in Xinjiang oilfield

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Wu, Xuquan; Li, Deshan; Xu, Yadong; Song, Shulin

    2017-06-01

    Based on the input and output data of sandstone reservoir in Xinjiang oilfield, the SBM-Undesirable model is used to study the technical efficiency of each block. Results show that: the model of SBM-undesirable to evaluate its efficiency and to avoid defects caused by traditional DEA model radial angle, improve the accuracy of the efficiency evaluation. by analyzing the projection of the oil blocks, we find that each block is in the negative external effects of input redundancy and output deficiency benefit and undesirable output, and there are greater differences in the production efficiency of each block; the way to improve the input-output efficiency of oilfield is to optimize the allocation of resources, reduce the undesirable output and increase the expected output.

  18. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit.

    PubMed

    Schwarz, Lindsay A; Miyamichi, Kazunari; Gao, Xiaojing J; Beier, Kevin T; Weissbourd, Brandon; DeLoach, Katherine E; Ren, Jing; Ibanes, Sandy; Malenka, Robert C; Kremer, Eric J; Luo, Liqun

    2015-08-06

    Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern.

  19. Thermomechanical conditions and stresses on the friction stir welding tool

    NASA Astrophysics Data System (ADS)

    Atthipalli, Gowtam

    Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.

  20. Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation

    PubMed Central

    Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee

    2018-01-01

    This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964

  1. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  2. Systems and methods for compensating for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M.; Kajouke, Lateef A.

    2013-06-18

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.

  3. FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1995-01-01

    The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.

  4. FPCAS2D user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1994-01-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  5. Dual Brushless Resolver Rate Sensor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor)

    1997-01-01

    A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.

  6. Long period pseudo random number sequence generator

    NASA Technical Reports Server (NTRS)

    Wang, Charles C. (Inventor)

    1989-01-01

    A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).

  7. Inverse analysis of turbidites by machine learning

    NASA Astrophysics Data System (ADS)

    Naruse, H.; Nakao, K.

    2017-12-01

    This study aims to propose a method to estimate paleo-hydraulic conditions of turbidity currents from ancient turbidites by using machine-learning technique. In this method, numerical simulation was repeated under various initial conditions, which produces a data set of characteristic features of turbidites. Then, this data set of turbidites is used for supervised training of a deep-learning neural network (NN). Quantities of characteristic features of turbidites in the training data set are given to input nodes of NN, and output nodes are expected to provide the estimates of initial condition of the turbidity current. The optimization of weight coefficients of NN is then conducted to reduce root-mean-square of the difference between the true conditions and the output values of NN. The empirical relationship with numerical results and the initial conditions is explored in this method, and the discovered relationship is used for inversion of turbidity currents. This machine learning can potentially produce NN that estimates paleo-hydraulic conditions from data of ancient turbidites. We produced a preliminary implementation of this methodology. A forward model based on 1D shallow-water equations with a correction of density-stratification effect was employed. This model calculates a behavior of a surge-like turbidity current transporting mixed-size sediment, and outputs spatial distribution of volume per unit area of each grain-size class on the uniform slope. Grain-size distribution was discretized 3 classes. Numerical simulation was repeated 1000 times, and thus 1000 beds of turbidites were used as the training data for NN that has 21000 input nodes and 5 output nodes with two hidden-layers. After the machine learning finished, independent simulations were conducted 200 times in order to evaluate the performance of NN. As a result of this test, the initial conditions of validation data were successfully reconstructed by NN. The estimated values show very small deviation from the true parameters. Comparing to previous inverse modeling of turbidity currents, our methodology is superior especially in the efficiency of computation. Also, our methodology has advantage in extensibility and applicability to various sediment transport processes such as pyroclastic flows or debris flows.

  8. Design and numerical evaluation of full-authority flight control systems for conventional and thruster-augmented helicopters employed in NOE operations

    NASA Technical Reports Server (NTRS)

    Perri, Todd A.; Mckillip, R. M., Jr.; Curtiss, H. C., Jr.

    1987-01-01

    The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design.

  9. Transported Geothermal Energy Technoeconomic Screening Tool - Calculation Engine

    DOE Data Explorer

    Liu, Xiaobing

    2016-09-21

    This calculation engine estimates technoeconomic feasibility for transported geothermal energy projects. The TGE screening tool (geotool.exe) takes input from input file (input.txt), and list results into output file (output.txt). Both the input and ouput files are in the same folder as the geotool.exe. To use the tool, the input file containing adequate information of the case should be prepared in the format explained below, and the input file should be put into the same folder as geotool.exe. Then the geotool.exe can be executed, which will generate a output.txt file in the same folder containing all key calculation results. The format and content of the output file is explained below as well.

  10. Closed-loop spontaneous baroreflex transfer function is inappropriate for system identification of neural arc but partly accurate for peripheral arc: predictability analysis

    PubMed Central

    Kamiya, Atsunori; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2011-01-01

    Abstract Although the dynamic characteristics of the baroreflex system have been described by baroreflex transfer functions obtained from open-loop analysis, the predictability of time-series output dynamics from input signals, which should confirm the accuracy of system identification, remains to be elucidated. Moreover, despite theoretical concerns over closed-loop system identification, the accuracy and the predictability of the closed-loop spontaneous baroreflex transfer function have not been evaluated compared with the open-loop transfer function. Using urethane and α-chloralose anaesthetized, vagotomized and aortic-denervated rabbits (n = 10), we identified open-loop baroreflex transfer functions by recording renal sympathetic nerve activity (SNA) while varying the vascularly isolated intracarotid sinus pressure (CSP) according to a binary random (white-noise) sequence (operating pressure ± 20 mmHg), and using a simplified equation to calculate closed-loop-spontaneous baroreflex transfer function while matching CSP with systemic arterial pressure (AP). Our results showed that the open-loop baroreflex transfer functions for the neural and peripheral arcs predicted the time-series SNA and AP outputs from measured CSP and SNA inputs, with r2 of 0.8 ± 0.1 and 0.8 ± 0.1, respectively. In contrast, the closed-loop-spontaneous baroreflex transfer function for the neural arc was markedly different from the open-loop transfer function (enhanced gain increase and a phase lead), and did not predict the time-series SNA dynamics (r2; 0.1 ± 0.1). However, the closed-loop-spontaneous baroreflex transfer function of the peripheral arc partially matched the open-loop transfer function in gain and phase functions, and had limited but reasonable predictability of the time-series AP dynamics (r2, 0.7 ± 0.1). A numerical simulation suggested that a noise predominantly in the neural arc under resting conditions might be a possible mechanism responsible for our findings. Furthermore, the predictabilities of the neural arc transfer functions obtained in open-loop and closed-loop conditions were validated by closed-loop pharmacological (phenylephrine and nitroprusside infusions) pressure interventions. Time-series SNA responses to drug-induced AP changes predicted by the open-loop transfer function matched closely the measured responses (r2, 0.9 ± 0.1), whereas SNA responses predicted by closed-loop-spontaneous transfer function deviated greatly and were the inverse of measured responses (r, −0.8 ± 0.2). These results indicate that although the spontaneous baroreflex transfer function obtained by closed-loop analysis has been believed to represent the neural arc function, it is inappropriate for system identification of the neural arc but is essentially appropriate for the peripheral arc under resting conditions, when compared with open-loop analysis. PMID:21486839

  11. Automatic insulation resistance testing apparatus

    DOEpatents

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  12. L1 Adaptive Control Augmentation System with Application to the X-29 Lateral/Directional Dynamics: A Multi-Input Multi-Output Approach

    NASA Technical Reports Server (NTRS)

    Griffin, Brian Joseph; Burken, John J.; Xargay, Enric

    2010-01-01

    This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.

  13. Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chia, A.; Wiseman, H. M.

    2011-07-15

    Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensivemore » use of vector-operator algebra.« less

  14. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  15. A numerical model on thermodynamic analysis of free piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.

  16. The Effectiveness of Structured Input and Structured Output on the Acquisition of Japanese Comparative Sentences

    ERIC Educational Resources Information Center

    Yamashita, Taichi; Iizuka, Takehiro

    2017-01-01

    Discussion of the roles of input and output has been attracting a number of researchers in second language acquisition (e.g., DeKeyser, 2007; Doughty, 1991; Krashen, 1982; Long, 1983; Norris & Ortega, 2000; Swain, 2000), and VanPatten (2004) advocated that both structured input and structured output allow learners to process input properly.…

  17. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  18. Multiband Reconfigurable Harmonically Tuned Gallium Nitride (GaN) Solid-State Power Amplifier (SSPA) for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Waldstein, Seth W.; Kortright, Barbosa Miguel A.; Simons, Rainee N.

    2017-01-01

    The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitride (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse Class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6 percent, and Drain Efficiency (DE) of 48.9 percent under continuous wave (CW) operation.

  19. Evaluation of a Postdischarge Call System Using the Logic Model.

    PubMed

    Frye, Timothy C; Poe, Terri L; Wilson, Marisa L; Milligan, Gary

    2018-02-01

    This mixed-method study was conducted to evaluate a postdischarge call program for congestive heart failure patients at a major teaching hospital in the southeastern United States. The program was implemented based on the premise that it would improve patient outcomes and overall quality of life, but it had never been evaluated for effectiveness. The Logic Model was used to evaluate the input of key staff members to determine whether the outputs and results of the program matched the expectations of the organization. Interviews, online surveys, reviews of existing patient outcome data, and reviews of publicly available program marketing materials were used to ascertain current program output. After analyzing both qualitative and quantitative data from the evaluation, recommendations were made to the organization to improve the effectiveness of the program.

  20. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

    PubMed Central

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565

  1. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    USGS Publications Warehouse

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3− at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3− extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3− transport processes in a statistical framework based on readily mappable GIS input variables.

  2. Dynamics of the mental health workforce: investigating the composition of physicians and other health providers.

    PubMed

    Stefos, Theodore; Burgess, James F; Cohen, Jeffrey P; Lehner, Laura; Moran, Eileen

    2012-12-01

    We evaluate how changes to mental health workforce levels, composition, and degree of labor substitution, may impact typical practice output. Using a generalized Leontief production function and data from 134 U.S. Department of Veterans Affairs (VA) mental health practices, we estimate the q-complementarity/q-substitutability of mental health workers. We look at the entire spectrum of mental health services rather than just outpatient or physician office services. We also examine more labor types, including residents, than previous studies. The marginal patient care output contribution is estimated for each labor type as well as the degree to which physicians and other mental health workers may be substitutes or complements. Results indicate that numerous channels exist through which input substitution can improve productivity. Seven of eight labor and capital inputs have positive estimated marginal products. Most factor inputs exhibit diminishing marginal productivity. Of 28 unique labor-capital pairs, 17 are q-complements and 11 are q-substitutes. Complementarity among several labor types provides evidence of a team approach to mental health service provision. Our approach may serve to better inform healthcare providers regarding more productive mental health workforce composition both in and outside of VA.

  3. Wavefront shaping with disorder-engineered metasurfaces

    NASA Astrophysics Data System (ADS)

    Jang, Mooseok; Horie, Yu; Shibukawa, Atsushi; Brake, Joshua; Liu, Yan; Kamali, Seyedeh Mahsa; Arbabi, Amir; Ruan, Haowen; Faraon, Andrei; Yang, Changhuei

    2018-02-01

    Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input-output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input-output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated 2.2 × 108 addressable points in an 8 mm field of view.

  4. Logic gates based all-optical binary half adder using triple core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Uthayakumar, T.; Vasantha Jayakantha Raja, R.

    2018-06-01

    This study presents the implementation of an all-optical binary logic half adder by employing a triple core photonic crystal fiber (TPCF). The noteworthy feature of the present investigation is that an identical set of TPCF schemes, which demonstrated all-optical logic functions in our previous report, has revealed the ability to demonstrate the successful half adder operation. The control signal (CS) power defining the extinction ratios of the output ports for the considered symmetric planar and triangular TPCFs is evaluated through a numerical algorithm. Through suitable CS power and input combinations, the logic outputs are generated from extinction ratios to demonstrate the half adder operation. The results obtained display the significant influence of the input conditions on the delivery of half adder operation for different TPCF schemes considered. Furthermore, chloroform filled TPCF structures demonstrated the efficient low power half adder operation with a significant figure of merit, compared to that of the silica counterpart.

  5. Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Hu, Haiyan; Zhao, Yonghui

    2013-10-01

    In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.

  6. Joint Channel and Phase Noise Estimation in MIMO-OFDM Systems

    NASA Astrophysics Data System (ADS)

    Ngebani, I. M.; Chuma, J. M.; Zibani, I.; Matlotse, E.; Tsamaase, K.

    2017-05-01

    The combination of multiple-input multiple-output (MIMO) techniques with orthogonal frequency division multiplexing (OFDM), MIMO-OFDM, is a promising way of achieving high spectral efficiency in wireless communication systems. However, the performance of MIMO-ODFM systems is highly degraded by radio frequency (RF) impairments such as phase noise. Similar to the single-input single-output (SISO) case, phase noise in MIMO-OFDM systems results in a common phase error (CPE) and inter carrier interference (ICI). In this paper the problem of joint channel and phase noise estimation in a system with multiple transmit and receive antennas where each antenna is equipped with its own independent oscillator is tackled. The technique employed makes use of a novel placement of pilot carriers in the preamble and data portion of the MIMO-OFDM frame. Numerical results using a 16 and 64 quadrature amplitude modulation QAM schemes are provided to illustrate the effectiveness of the proposed scheme for MIMO-OFDM systems.

  7. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.

    PubMed

    Florescu, Dorian; Coca, Daniel

    2018-03-01

    Inferring mathematical models of sensory processing systems directly from input-output observations, while making the fewest assumptions about the model equations and the types of measurements available, is still a major issue in computational neuroscience. This letter introduces two new approaches for identifying sensory circuit models consisting of linear and nonlinear filters in series with spiking neuron models, based only on the sampled analog input to the filter and the recorded spike train output of the spiking neuron. For an ideal integrate-and-fire neuron model, the first algorithm can identify the spiking neuron parameters as well as the structure and parameters of an arbitrary nonlinear filter connected to it. The second algorithm can identify the parameters of the more general leaky integrate-and-fire spiking neuron model, as well as the parameters of an arbitrary linear filter connected to it. Numerical studies involving simulated and real experimental recordings are used to demonstrate the applicability and evaluate the performance of the proposed algorithms.

  8. Development of metamodels for predicting aerosol dispersion in ventilated spaces

    NASA Astrophysics Data System (ADS)

    Hoque, Shamia; Farouk, Bakhtier; Haas, Charles N.

    2011-04-01

    Artificial neural network (ANN) based metamodels were developed to describe the relationship between the design variables and their effects on the dispersion of aerosols in a ventilated space. A Hammersley sequence sampling (HSS) technique was employed to efficiently explore the multi-parameter design space and to build numerical simulation scenarios. A detailed computational fluid dynamics (CFD) model was applied to simulate these scenarios. The results derived from the CFD simulations were used to train and test the metamodels. Feed forward ANN's were developed to map the relationship between the inputs and the outputs. The predictive ability of the neural network based metamodels was compared to linear and quadratic metamodels also derived from the same CFD simulation results. The ANN based metamodel performed well in predicting the independent data sets including data generated at the boundaries. Sensitivity analysis showed that particle tracking time to residence time and the location of input and output with relation to the height of the room had more impact than the other dimensionless groups on particle behavior.

  9. Tracing the source of numerical climate model uncertainties in precipitation simulations using a feature-oriented statistical model

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Jones, A. D.; Rhoades, A.

    2017-12-01

    Precipitation is a key component in hydrologic cycles, and changing precipitation regimes contribute to more intense and frequent drought and flood events around the world. Numerical climate modeling is a powerful tool to study climatology and to predict future changes. Despite the continuous improvement in numerical models, long-term precipitation prediction remains a challenge especially at regional scales. To improve numerical simulations of precipitation, it is important to find out where the uncertainty in precipitation simulations comes from. There are two types of uncertainty in numerical model predictions. One is related to uncertainty in the input data, such as model's boundary and initial conditions. These uncertainties would propagate to the final model outcomes even if the numerical model has exactly replicated the true world. But a numerical model cannot exactly replicate the true world. Therefore, the other type of model uncertainty is related the errors in the model physics, such as the parameterization of sub-grid scale processes, i.e., given precise input conditions, how much error could be generated by the in-precise model. Here, we build two statistical models based on a neural network algorithm to predict long-term variation of precipitation over California: one uses "true world" information derived from observations, and the other uses "modeled world" information using model inputs and outputs from the North America Coordinated Regional Downscaling Project (NA CORDEX). We derive multiple climate feature metrics as the predictors for the statistical model to represent the impact of global climate on local hydrology, and include topography as a predictor to represent the local control. We first compare the predictors between the true world and the modeled world to determine the errors contained in the input data. By perturbing the predictors in the statistical model, we estimate how much uncertainty in the model's final outcomes is accounted for by each predictor. By comparing the statistical model derived from true world information and modeled world information, we assess the errors lying in the physics of the numerical models. This work provides a unique insight to assess the performance of numerical climate models, and can be used to guide improvement of precipitation prediction.

  10. Reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Donohoe, Gregory (Inventor)

    2005-01-01

    A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.

  11. Output Control Using Feedforward And Cascade Controllers

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.

  12. Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion.

    PubMed

    Dai, Yitang; Li, Jilong; Zhang, Ziping; Yin, Feifei; Li, Wangzhe; Xu, Kun

    2017-07-10

    Traditional photonics-assisted real-time Fourier transform (RTFT) usually suffers from limited chromatic dispersion, huge volume, or large time delay and attendant loss. In this paper we propose frequency-to-time mapping (FTM) by spectrally-discrete dispersion to increase frequency sensitivity greatly. The novel media has periodic ON/OFF intensity frequency response while quadratic phase distribution along disconnected channels, which de-chirps matched optical input to repeated Fourier-transform-limited output. Real-time FTM is then obtained within each period. Since only discrete phase retardation rather than continuously-changed true time delay is required, huge equivalent dispersion is then available by compact device. Such FTM is theoretically analyzed, and implementation by cascaded optical ring resonators is proposed. After a numerical example, our theory is demonstrated by a proof-of-concept experiment, where a single loop containing 0.5-meters-long fiber is used. FTM under 400-MHz unambiguous bandwidth and 25-MHz resolution is reported. Highly-sensitive and linear mapping is achieved with 6.25 ps/MHz, equivalent to ~4.6 × 10 4 -km standard single mode fiber. Extended instantaneous bandwidth is expected by ring cascading. Our proposal may provide a promising method for real-time, low-latency Fourier transform.

  13. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  14. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  15. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1992-01-01

    The goal of this project is to develop an Application Specific Integrated Circuit (ASIC) for use in the control electronics of the Spacecraft Optical Disk Recorder (SODR). Specifically, this project is to design an extendable memory buffer controller ASIC for rate matching between a system Input/Output port and the SODR's device interface. The aforementioned goal can be partitioned into the following sub-goals: (1) completion of ASIC design and simulation (on-going via ASEE fellowship); (2) ASIC Fabrication (at ASIC manufacturer); and (3) ASIC Testing (NASA/LaRC, Christopher Newport University).

  16. A Shared Memory Algorithm and Proof for the Generalized Alternative Construct in CSP (Communicating Sequential Processes)

    DTIC Science & Technology

    1987-06-01

    shared variables. This will be discussed later. One procedure merits special attention. CheckAndCommit(m, g ,): INTEGER is called by process P, (I...denotes the local process) to check that "valid" communications can take place between P, using guard g , and Pm (m denotes the remote process). If so, P...local guard gi. By matching we mean gj contains an 1/O operation with P. By compatible we mean g , and gj do not both contain input (output) commands

  17. Fuzzy Neuron: Method and Hardware Realization

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Prokop, Norman F.

    2014-01-01

    This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.

  18. Multichoice minority game.

    PubMed

    Ein-Dor, L; Metzler, R; Kanter, I; Kinzel, W

    2001-06-01

    The generalization of the problem of adaptive competition, known as the minority game, to the case of K possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and output units of a type of K-state Potts spins. An optimal solution of this minority game, as well as the dynamic evolution of the adaptive strategies of the players, are solved analytically for a general K and compared with numerical simulations.

  19. Gating-signal propagation by a feed-forward neural motif

    NASA Astrophysics Data System (ADS)

    Liang, Xiaoming; Yanchuk, Serhiy; Zhao, Liang

    2013-07-01

    We study the signal propagation in a feed-forward motif consisting of three bistable neurons: Two input neurons receive input signals and the third output neuron generates the output. We find that a weak input signal can be propagated from the input neurons to the output neuron without amplitude attenuation. We further reveal that the initial states of the input neurons and the coupling strength act as signal gates and determine whether the propagation is enhanced or not. We also investigate the effect of the input signal frequency on enhanced signal propagation.

  20. Fingerprint separation: an application of ICA

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Singh, Deepak Kumar; Kalra, Prem Kumar

    2008-04-01

    Among all existing biometric techniques, fingerprint-based identification is the oldest method, which has been successfully used in numerous applications. Fingerprint-based identification is the most recognized tool in biometrics because of its reliability and accuracy. Fingerprint identification is done by matching questioned and known friction skin ridge impressions from fingers, palms, and toes to determine if the impressions are from the same finger (or palm, toe, etc.). There are many fingerprint matching algorithms which automate and facilitate the job of fingerprint matching, but for any of these algorithms matching can be difficult if the fingerprints are overlapped or mixed. In this paper, we have proposed a new algorithm for separating overlapped or mixed fingerprints so that the performance of the matching algorithms will improve when they are fed with these inputs. Independent Component Analysis (ICA) has been used as a tool to separate the overlapped or mixed fingerprints.

  1. Programmable remapper for image processing

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor); Sampsell, Jeffrey B. (Inventor)

    1991-01-01

    A video-rate coordinate remapper includes a memory for storing a plurality of transformations on look-up tables for remapping input images from one coordinate system to another. Such transformations are operator selectable. The remapper includes a collective processor by which certain input pixels of an input image are transformed to a portion of the output image in a many-to-one relationship. The remapper includes an interpolative processor by which the remaining input pixels of the input image are transformed to another portion of the output image in a one-to-many relationship. The invention includes certain specific transforms for creating output images useful for certain defects of visually impaired people. The invention also includes means for shifting input pixels and means for scrolling the output matrix.

  2. Understanding virtual water flows: A multiregion input-output case study of Victoria

    NASA Astrophysics Data System (ADS)

    Lenzen, Manfred

    2009-09-01

    This article explains and interprets virtual water flows from the well-established perspective of input-output analysis. Using a case study of the Australian state of Victoria, it demonstrates that input-output analysis can enumerate virtual water flows without systematic and unknown truncation errors, an issue which has been largely absent from the virtual water literature. Whereas a simplified flow analysis from a producer perspective would portray Victoria as a net virtual water importer, enumerating the water embodiments across the full supply chain using input-output analysis shows Victoria as a significant net virtual water exporter. This study has succeeded in informing government policy in Australia, which is an encouraging sign that input-output analysis will be able to contribute much value to other national and international applications.

  3. Proceedings of the Technical Forum (3rd) on the F-16 MIL-STD-1750A Microprocessor and the F-16 MIL-STD-1589B Compiler Held at Wright-Patterson AFB, OH on May 5-6, 1982. Volume 2. Specifications,

    DTIC Science & Technology

    1982-05-06

    access 99 6.3.2 Input/output interrupt code 99 register (IOIC) 6.3.2.1 Read input/output interrupt 100 code, level 1 (OAOOOH) 6.3.2.2 Read input...output interrupt 100 code, level 2 (OA001H) 6.3.3 Console input/output 100 6.3.3.1 Clear console (4001H) 100 6.3.3.2 Console output (4000H) 100 6.3.3.3...Console input (COOOH) 100 6.3.3.4 Read console status (C0O01H) 100 6.3.4 Memory fault status register (MFSR) 100 6.3.4.1 Read memory fault register

  4. Passivity of Directed and Undirected Complex Dynamical Networks With Adaptive Coupling Weights.

    PubMed

    Wang, Jin-Liang; Wu, Huai-Ning; Huang, Tingwen; Ren, Shun-Yan; Wu, Jigang

    2017-08-01

    A complex dynamical network consisting of N identical neural networks with reaction-diffusion terms is considered in this paper. First, several passivity definitions for the systems with different dimensions of input and output are given. By utilizing some inequality techniques, several criteria are presented, ensuring the passivity of the complex dynamical network under the designed adaptive law. Then, we discuss the relationship between the synchronization and output strict passivity of the proposed network model. Furthermore, these results are extended to the case when the topological structure of the network is undirected. Finally, two examples with numerical simulations are provided to illustrate the correctness and effectiveness of the proposed results.

  5. Chalcogenide molded freeform optics for mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Alvarez, Oseas; Yi, Allen

    2017-05-01

    High-precision chalcogenide molded micro-lenses were produced to collimate mid-infrared Quantum Cascade Lasers (QCLs). Molded cylindrical micro-lens prototypes with aspheric contour (acylindrical), high numerical aperture (NA 0.8) and small focal length (f<2 mm) were fabricated to collimate the QCL fast-axis beam. Another innovative freeform micro-lens has an input acylindrical surface to collimate the fast axis and an orthogonal output acylindrical surface to collimate the slow axis. The thickness of the freeform lens is such that the output fast- and slow-axis beams are circular. This paper presents results on the chalcogenide molded freeform micro-lens designed to collimate and circularize QCL at 4.6 microns.

  6. Method and apparatus for loss of control inhibitor systems

    NASA Technical Reports Server (NTRS)

    A'Harrah, Ralph C. (Inventor)

    2007-01-01

    Active and adaptive systems and methods to prevent loss of control incidents by providing tactile feedback to a vehicle operator are disclosed. According to the present invention, an operator gives a control input to an inceptor. An inceptor sensor measures an inceptor input value of the control input. The inceptor input is used as an input to a Steady-State Inceptor Input/Effector Output Model that models the vehicle control system design. A desired effector output from the inceptor input is generated from the model. The desired effector output is compared to an actual effector output to get a distortion metric. A feedback force is generated as a function of the distortion metric. The feedback force is used as an input to a feedback force generator which generates a loss of control inhibitor system (LOCIS) force back to the inceptor. The LOCIS force is felt by the operator through the inceptor.

  7. Motion video compression system with neural network having winner-take-all function

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi (Inventor); Sheu, Bing J. (Inventor)

    1997-01-01

    A motion video data system includes a compression system, including an image compressor, an image decompressor correlative to the image compressor having an input connected to an output of the image compressor, a feedback summing node having one input connected to an output of the image decompressor, a picture memory having an input connected to an output of the feedback summing node, apparatus for comparing an image stored in the picture memory with a received input image and deducing therefrom pixels having differences between the stored image and the received image and for retrieving from the picture memory a partial image including the pixels only and applying the partial image to another input of the feedback summing node, whereby to produce at the output of the feedback summing node an updated decompressed image, a subtraction node having one input connected to received the received image and another input connected to receive the partial image so as to generate a difference image, the image compressor having an input connected to receive the difference image whereby to produce a compressed difference image at the output of the image compressor.

  8. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    PubMed

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. UCODE, a computer code for universal inverse modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1999-01-01

    This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating system: it consists of algorithms programmed in perl, a freeware language designed for text manipulation and Fortran90, which efficiently performs numerical calculations.

  10. Performance of biometric quality measures.

    PubMed

    Grother, Patrick; Tabassi, Elham

    2007-04-01

    We document methods for the quantitative evaluation of systems that produce a scalar summary of a biometric sample's quality. We are motivated by a need to test claims that quality measures are predictive of matching performance. We regard a quality measurement algorithm as a black box that converts an input sample to an output scalar. We evaluate it by quantifying the association between those values and observed matching results. We advance detection error trade-off and error versus reject characteristics as metrics for the comparative evaluation of sample quality measurement algorithms. We proceed this with a definition of sample quality, a description of the operational use of quality measures. We emphasize the performance goal by including a procedure for annotating the samples of a reference corpus with quality values derived from empirical recognition scores.

  11. A VRML-Based Data Portal: Hydrology of the Hubbard Brook Experimental Forest and Mirror Lake Sub-Basin

    NASA Astrophysics Data System (ADS)

    Becker, M. W.; Bursik, M. I.; Schuetz, J. W.

    2001-05-01

    The Hubbard Brook Experimental Forest (HBEF) of Central New Hampshire has been a focal point for collaborative hydrologic research for over 40 years. A tremendous amount of data from this area is available through the internet and other sources, but is not organized in a manner that facilitates teaching of hydrologic concepts. The Mirror Lake Watershed Interactive Teaching Database is making hydrologic data from the HBEF and associated interactive problem sets available to upper-level and post-graduate university students through a web-based resource. Hydrologic data are offered via a three-dimensional VRML (Virtual Reality Modeling Language) interface, that facilitates viewing and retrieval in a spatially meaningful manner. Available data are mapped onto a topographic base, and hot spots representing data collection points (e.g. weirs) lead to time-series displays (e.g. hydrographs) that provide a temporal link to the spatially organized data. Associated instructional exercises are designed to increase understanding of both hydrologic data and hydrologic methods. A pedagogical module concerning numerical ground-water modeling will be presented as an example. Numerical modeling of ground-water flow involves choosing the combination of hydrogeologic parameters (e.g. hydraulic conductivity, recharge) that cause model-predicted heads to best match measured heads in the aquifer. Choosing the right combination of parameters requires careful judgment based upon knowledge of the hydrogeologic system and the physics of ground-water flow. Unfortunately, students often get caught up in the technical aspects and lose sight of the fundamentals when working with real ground-water software. This module provides exercises in which a student chooses model parameters and immediately sees the predicted results as a 3-D VRML object. VRML objects are based upon actual Modflow model results corresponding to the range of model input parameters available to the student. This way, the student can have a hands-on experience with a numerical model without getting bogged down in the details. Connecting model input directly to 3-D model output better allows students to test their intuition about ground-water behavior in an interactive and entertaining way.

  12. The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1983-01-01

    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.

  13. First order comparison of numerical calculation and two different turtle input schemes to represent a SLC defocusing magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, J.

    1983-07-14

    Correcting the dispersion function in the SLC north arc it turned out that backleg-windings (BLW) acting horizontally as well as BLW acting vertically have to be used. In the latter case the question arose what is the best representation of a defocusing magnet with excited BLW acting in the vertical plane for the computer code TURTLE. Two different schemes, the 14.-scheme and the 20.-scheme were studied and the TURTLE output for one ray through such a magnet compared with the numerical solution of the equation of motion; only terms of first order have been taken into account.

  14. A floating-point/multiple-precision processor for airborne applications

    NASA Technical Reports Server (NTRS)

    Yee, R.

    1982-01-01

    A compact input output (I/O) numerical processor capable of performing floating-point, multiple precision and other arithmetic functions at execution times which are at least 100 times faster than comparable software emulation is described. The I/O device is a microcomputer system containing a 16 bit microprocessor, a numerical coprocessor with eight 80 bit registers running at a 5 MHz clock rate, 18K random access memory (RAM) and 16K electrically programmable read only memory (EPROM). The processor acts as an intelligent slave to the host computer and can be programmed in high order languages such as FORTRAN and PL/M-86.

  15. The dynamic behaviour of data-driven Δ-M and ΔΣ-M in sliding mode control

    NASA Astrophysics Data System (ADS)

    Almakhles, Dhafer; Swain, Akshya K.; Nasiri, Alireza

    2017-11-01

    In recent years, delta (Δ-M) and delta-sigma modulators (ΔΣ-M) are increasingly being used as efficient data converters due to numerous advantages they offer. This paper investigates various dynamical features of these modulators/systems (both in continuous and discrete time domain) and derives their stability conditions using the theory of sliding mode. The upper bound of the hitting time (step) has been estimated. The equivalent mode conditions, i.e. where the outputs of the modulators are equivalent to the inputs, are established. The results of the analysis are validated through simulations considering a numerical example.

  16. A neuro-fuzzy architecture for real-time applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song

    1992-01-01

    Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.

  17. Design and reliability of a MEMS thermal rotary actuator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Michael Sean; Corwin, Alex David

    2007-09-01

    A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called the Thermal Rotary Actuator (ThRA), is conceptually much simpler than the TRA and consists of a gear on a hub that is turned by a linear thermal actuator [2] positioned outside of the gear. As seen in Figure 1, the gear is turned through a ratcheting pawl, with anti-reverse pawls positioned around themore » gear for unidirectional motion (see Figure 1). A primary consideration in the design of the ThRA was the device reliability and in particular, the required one-to-one relationship between the ratcheting output motion and the electrical input signal. The electrostatic TRA design has been shown to both over-drive and under-drive relative to the number of input pulses [3]. Two different ThRA designs were cycle tested to measure the skip rate. This was done in an automated test setup by using pattern matching to measure the angle of rotation of the output gear after a defined number of actuation pulses. By measuring this gear angle over time, the number of skips can be determined. Figure 2 shows a picture of the ThRA during testing, with the pattern-matching features highlighted. In the first design tested, it was found that creep in the thermal actuator limited the number of skip-free cycles, as the rest position of the actuator would creep forward enough to prevent the counter-rotation pawls from fully engaging (Figure 3). Even with this limitation, devices were measured with up to 100 million cycles with no skipping. A design modification was made to reduce the operating temperature of the thermal actuator which has been shown in a previous study [2] to reduce the creep rate. In addition, changes were made to the drive ratchet design and actuation direction to increase the available output force. This new design was tested and shown to operate in one case out to greater than 360 million cycles without any skipping, after which the test was stopped without failure. The output force was also measured as a function of input voltage (Figure 4), and shown to be higher than the previous design. The maximum force shown in the figure is a limit of the gauge used, not the actuator itself. Continued work for this design will focus on understanding the actuator performance while driving a load, as all current tests were performed with no load on the output gear.« less

  18. Microcomputer Simulation of a Fourier Approach to Optical Wave Propagation

    DTIC Science & Technology

    1992-06-01

    and transformed input in transform domain). 44 Figure 21. SHFTOUTPUT1 ( inverse transform of product of Bessel filter and transformed input). . . . 44...Figure 22. SHFT OUTPUT2 ( inverse transform of product of ,derivative filter and transformed input).. 45 Figure 23. •tIFT OUTPUT (sum of SHFTOUTPUT1...52 Figure 33. SHFT OUTPUT1 at time slice 1 ( inverse transform of product of Bessel filter and transformed input) .... ............. ... 53

  19. A Cellular Neural Networks Based DiffServ Switch for Satellite Communication Systems

    NASA Astrophysics Data System (ADS)

    Tarchi, Daniele; Fantacci, Romano; Gubellini, Roberto; Pecorella, Tommaso

    2003-07-01

    Recent developments of Internet services and advanced compression methods has revived interest on IP based multimedia satellite communication systems. However a main problem arising here is to guarantee specific Quality of Service (QoS) constraints in order to have good performance for each traffic class.Among various QoS approach used in Internet, recently the DiffServ technique has became the most promising so- lution, mainly for its simplicity with respect to different alternatives. Moreover, in satellite communication systems, DiffServ policy computational capabilities are placed at the edge points (end-to-end philosophy); this is very important for a network constituted by one satellite link because it allows to reduce the implementation complexity of the satellite on-board equipments.The satellite switch under consideration makes use of the Multiple Input Queuing approach. Packets arrived at a switch input are stored in a shared buffer but they are logically ordered in individual queues, one for each possible output link. According to the DiffServ policy, within a same logical queue, packets are reordered in individual sub-queues according to the priority. A suitable implementation of the DiffServ policy based on a Cellular Neural Network (CNN) is proposed in the paper in order to achieve QoS requirements.The CNNs are a set of linear and nonlinear circuits connected among them that allow parallel and asynchronous computation. CNNs are a class of neural networks similar to Hopfield Neural Networks (HNN), but more flexible and suitable for solving the output contention problem, inherent of switching systems, for VLSI implementation.In this paper a CNN has been designed in order to maximize a cost functional, related to the on-board switch through- put and QoS constraints. The initial state for each neural cell is obtained looking at the presence of at least one packet from a certain input logical queue to a specific output line. The input value for each neural cell is a function of priority and length of each input logical queue. The versatility of neural network make feasible to take the best decision for the packet to be delivered to each output satellite beam, in order to meet specific QoS constraints. Numerical results for CNN approach highlights that Neural network convergence within a time slot is guaranteed, and an optimal, or at least near-optimal, solution in terms of cost function is achieved.The proposed system is based on the IETF (Internet Engineering Task Force) recommendations; this means that traffic entering the switching fabric could be marked as Expedited Forward (EF) or Assured Forward (AF), otherwise handled as Best Effort (BE). Two Assured Forward classes with different emission priority have been implemented, taking into account time spent inside the logical queue and its length. Expedited Forward traffic is typical of services to be delivered with the maximum priority, as streaming or interactive services. The packets, belonging to services that need a certain level of priority with low packet loss, are marked as Assured Forward. Best Effort traffic is related to e-mail or file transfer, or other that have not particular QoS requirements. The CNN used to solve conflict situations act as an arbiter for all the output links. Differently from other Multiple Input Queuing approach, where one arbiter for each output line is present, in proposed approach there exist only one arbiter that make the best decision. The selected rule has been defined in order to give priority to packets, according to opportunely defined functionals characteristic of each traffic class, under the constraint that no more than one packet can be delivered to the same output line. The functionals depend on queue length and time spent inside the queue by front packet.The performance of the proposed DiffServ switch has been derived in terms of delay and jitter; buffer occupancy has been analyzed for different configuration, such as a unique common buffer, one buffer for each input line, one buffer for each input line and each priority class.The obtained results highlight an high flexibility of satellite switch with CNN, taking into account that functional used to calculate priority of each queue could be easily changed, without any complexity gain nor change in CNN structure, in order to consider different traffic characteristic. Numerical results show that proposed algorithm outperform the switches based on Multiple Input Queuing, that use strictly priority methods, in terms of delay and jitter. Different buffer size have been also considered in order to analyze packet loss for CNN switch algorithm, comparing different configuration described above.The good behavior of the proposed DiffServ switch has been verified in the case of traffic with pareto distribution for packet length and a geometrical distribution for packet interarrival time, highlighting good performance in terms of delay and jitter. Numerical results also demonstrate the stability of this method for heavy load traffic; in particular maximum permitted load is higher for higher priority classes.

  20. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting.

    PubMed

    Hu, Youfan; Yang, Jin; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2014-07-22

    The recently introduced triboelectric nanogenerator (TENG) and the traditional electromagnetic induction generator (EMIG) are coherently integrated in one structure for energy harvesting and vibration sensing/isolation. The suspended structure is based on two oppositely oriented magnets that are enclosed by hollow cubes surrounded with coils, which oscillates in response to external disturbance and harvests mechanical energy simultaneously from triboelectrification and electromagnetic induction. It extends the previous definition of hybrid cell to harvest the same type of energy with multiple approaches. Both the sliding-mode TENG and contact-mode TENG can be achieved in the same structure. In order to make the TENG and EMIG work together, transformers are used to match the output impedance between these two power sources with very different characteristics. The maximum output power of 7.7 and 1.9 mW on the same load of 5 kΩ was obtained for the TENG and EMIG, respectively, after impedance matching. Benefiting from the rational design, the output signal from the TENG and the EMIG are in phase. They can be added up directly to get an output voltage of 4.6 V and an output current of 2.2 mA in parallel connection. A power management circuit was connected to the hybrid cell, and a regulated voltage of 3.3 V with constant current was achieved. For the first time, a logic operation was carried out on a half-adder circuit by using the hybrid cell working as both the power source and the input digit signals. We also demonstrated that the hybrid cell can serve as a vibration isolator. Further applications as vibration dampers, triggers, and sensors are all promising.

  1. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    NASA Technical Reports Server (NTRS)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  2. Method and apparatus for measuring response time

    DOEpatents

    Johanson, Edward W.; August, Charles

    1985-01-01

    A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.

  3. Method and apparatus for measuring response time

    DOEpatents

    Johanson, E.W.; August, C.

    1983-08-11

    A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.

  4. Reproducibility and Transparency in Ocean-Climate Modeling

    NASA Astrophysics Data System (ADS)

    Hannah, N.; Adcroft, A.; Hallberg, R.; Griffies, S. M.

    2015-12-01

    Reproducibility is a cornerstone of the scientific method. Within geophysical modeling and simulation achieving reproducibility can be difficult, especially given the complexity of numerical codes, enormous and disparate data sets, and variety of supercomputing technology. We have made progress on this problem in the context of a large project - the development of new ocean and sea ice models, MOM6 and SIS2. Here we present useful techniques and experience.We use version control not only for code but the entire experiment working directory, including configuration (run-time parameters, component versions), input data and checksums on experiment output. This allows us to document when the solutions to experiments change, whether due to code updates or changes in input data. To avoid distributing large input datasets we provide the tools for generating these from the sources, rather than provide raw input data.Bugs can be a source of non-determinism and hence irreproducibility, e.g. reading from or branching on uninitialized memory. To expose these we routinely run system tests, using a memory debugger, multiple compilers and different machines. Additional confidence in the code comes from specialised tests, for example automated dimensional analysis and domain transformations. This has entailed adopting a code style where we deliberately restrict what a compiler can do when re-arranging mathematical expressions.In the spirit of open science, all development is in the public domain. This leads to a positive feedback, where increased transparency and reproducibility makes using the model easier for external collaborators, who in turn provide valuable contributions. To facilitate users installing and running the model we provide (version controlled) digital notebooks that illustrate and record analysis of output. This has the dual role of providing a gross, platform-independent, testing capability and a means to documents model output and analysis.

  5. Current Source Logic Gate

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2017-01-01

    A current source logic gate with depletion mode field effect transistor ("FET") transistors and resistors may include a current source, a current steering switch input stage, and a resistor divider level shifting output stage. The current source may include a transistor and a current source resistor. The current steering switch input stage may include a transistor to steer current to set an output stage bias point depending on an input logic signal state. The resistor divider level shifting output stage may include a first resistor and a second resistor to set the output stage point and produce valid output logic signal states. The transistor of the current steering switch input stage may function as a switch to provide at least two operating points.

  6. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  7. 40 CFR 1065.210 - Work input and output sensors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...

  8. 40 CFR 1065.210 - Work input and output sensors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...

  9. 40 CFR 1065.210 - Work input and output sensors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...

  10. Transforming the Way We Teach Function Transformations

    ERIC Educational Resources Information Center

    Faulkenberry, Eileen Durand; Faulkenberry, Thomas J.

    2010-01-01

    In this article, the authors discuss "function," a well-defined rule that relates inputs to outputs. They have found that by using the input-output definition of "function," they can examine transformations of functions simply by looking at changes to input or output and the respective changes to the graph. Applying transformations to the input…

  11. A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis.

    PubMed

    Hawkins, Troy; Hendrickson, Chris; Higgins, Cortney; Matthews, H Scott; Suh, Sangwon

    2007-02-01

    Materials flow analysis models have traditionally been used to track the production, use, and consumption of materials. Economic input-output modeling has been used for environmental systems analysis, with a primary benefit being the capability to estimate direct and indirect economic and environmental impacts across the entire supply chain of production in an economy. We combine these two types of models to create a mixed-unit input-output model that is able to bettertrack economic transactions and material flows throughout the economy associated with changes in production. A 13 by 13 economic input-output direct requirements matrix developed by the U.S. Bureau of Economic Analysis is augmented with material flow data derived from those published by the U.S. Geological Survey in the formulation of illustrative mixed-unit input-output models for lead and cadmium. The resulting model provides the capabilities of both material flow and input-output models, with detailed material tracking through entire supply chains in response to any monetary or material demand. Examples of these models are provided along with a discussion of uncertainty and extensions to these models.

  12. Study of dual radio frequency capacitively coupled plasma: an analytical treatment matched to an experiment

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Wyndham, E.; Maze, J.; Schulze, J.

    2018-01-01

    The behavior of a dual frequency capacitively coupled plasma (2f CCP) driven by 2.26 and 13.56 MHz radio frequency (rf) source is investigated using an approach that integrates a theoretical model and experimental data. The basis of the theoretical analysis is a time dependent dual frequency analytical sheath model that casts the relation between the instantaneous sheath potential and plasma parameters. The parameters used in the model are obtained by operating the 2f CCP experiment (2.26 MHz + 13.56 MHz) in argon at a working pressure of 50 mTorr. Experimentally measured plasma parameters such as the electron density, electron temperature, as well as the rf current density ratios are the inputs of the theoretical model. Subsequently, a convenient analytical solution for the output sheath potential and sheath thickness was derived. A comparison of the present numerical results is done with the results obtained in another 2f CCP experiment conducted by Semmler et al (2007 Plasma Sources Sci. Technol. 16 839). A good quantitative correspondence is obtained. The numerical solution shows the variation of sheath potential with the low and high frequency (HF) rf powers. In the low pressure plasma, the sheath potential is a qualitative measure of DC self-bias which in turn determines the ion energy. Thus, using this analytical model, the measured values of the DC self-bias as a function of low and HF rf powers are explained in detail.

  13. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Qiao, Zijian; Xu, Xuefang; Lin, Jing; Niu, Shantao

    2017-09-01

    Most traditional overdamped monostable, bistable and even tristable stochastic resonance (SR) methods have three shortcomings in weak characteristic extraction: (1) their potential structures characterized by single stable-state type are insufficient to match with the complicated and diverse mechanical vibration signals; (2) they vulnerably suffer the interference from multiscale noise and largely depend on the help of highpass filters whose parameters are selected subjectively, probably resulting in false detection; and (3) their rescaling factors are fixed as constants generally, thereby ignoring the synergistic effect among vibration signals, potential structures and rescaling factors. These three shortcomings have limited the enhancement ability of SR. To explore the SR potential, this paper initially investigates the SR in a multistable system by calculating its output spectral amplification, further analyzes its output frequency response numerically, then examines the effect of both damping and rescaling factors on output responses and finally presents a promising underdamped SR method with stable-state matching for incipient bearing fault diagnosis. This method has three advantages: (1) the diversity of stable-state types in a multistable potential makes it easy to match with various vibration signals; (2) the underdamped multistable SR, equivalent to a moving nonlinear bandpass filter that is dependent on the rescaling factors, is able to suppress the multiscale noise; and (3) the synergistic effect among vibration signals, potential structures and rescaling and damping factors is achieved using quantum genetic algorithms whose fitness functions are new weighted signal-to-noise ratio (WSNR) instead of SNR. Therefore, the proposed method is expected to possess good enhancement ability. Simulated and experimental data of rolling element bearings demonstrate its effectiveness. The comparison results show that the proposed method is able to obtain higher amplitude at target frequency and larger output WSNR, and performs better than traditional SR methods.

  14. Tailored Excitation for Multivariable Stability-Margin Measurement Applied to the X-31A Nonlinear Simulation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Burken, John J.

    1997-01-01

    Safety and productivity of the initial flight test phase of a new vehicle have been enhanced by developing the ability to measure the stability margins of the combined control system and vehicle in flight. One shortcoming of performing this analysis is the long duration of the excitation signal required to provide results over a wide frequency range. For flight regimes such as high angle of attack or hypersonic flight, the ability to maintain flight condition for this time duration is difficult. Significantly reducing the required duration of the excitation input is possible by tailoring the input to excite only the frequency range where the lowest stability margin is expected. For a multiple-input/multiple-output system, the inputs can be simultaneously applied to the control effectors by creating each excitation input with a unique set of frequency components. Chirp-Z transformation algorithms can be used to match the analysis of the results to the specific frequencies used in the excitation input. This report discusses the application of a tailored excitation input to a high-fidelity X-31A linear model and nonlinear simulation. Depending on the frequency range, the results indicate the potential to significantly reduce the time required for stability measurement.

  15. Regenerative braking device with rotationally mounted energy storage means

    DOEpatents

    Hoppie, Lyle O.

    1982-03-16

    A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

  16. Dual side control for inductive power transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT systemmore » to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.« less

  17. Optimization Under Uncertainty for Electronics Cooling Design

    NASA Astrophysics Data System (ADS)

    Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.

    Optimization under uncertainty is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, produces output uncertainties, helping the designer choose input parameters that would result in satisfactory thermal solutions. Apart from providing basic statistical information such as mean and standard deviation in the output quantities, auxiliary data from an uncertainty based optimization, such as local and global sensitivities, help the designer decide the input parameter(s) to which the output quantity of interest is most sensitive. This helps the design of experiments based on the most sensitive input parameter(s). A further crucial output of such a methodology is the solution to the inverse problem - finding the allowable uncertainty range in the input parameter(s), given an acceptable uncertainty range in the output quantity of interest...

  18. TESSIM: a simulator for the Athena-X-IFU

    NASA Astrophysics Data System (ADS)

    Wilms, J.; Smith, S. J.; Peille, P.; Ceballos, M. T.; Cobo, B.; Dauser, T.; Brand, T.; den Hartog, R. H.; Bandler, S. R.; de Plaa, J.; den Herder, J.-W. A.

    2016-07-01

    We present the design of tessim, a simulator for the physics of transition edge sensors developed in the framework of the Athena end to end simulation effort. Designed to represent the general behavior of transition edge sensors and to provide input for engineering and science studies for Athena, tessim implements a numerical solution of the linearized equations describing these devices. The simulation includes a model for the relevant noise sources and several implementations of possible trigger algorithms. Input and output of the software are standard FITS- files which can be visualized and processed using standard X-ray astronomical tool packages. Tessim is freely available as part of the SIXTE package (http://www.sternwarte.uni-erlangen.de/research/sixte/).

  19. TESSIM: A Simulator for the Athena-X-IFU

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Smith, S. J.; Peille, P.; Ceballos, M. T.; Cobo, B.; Dauser, T.; Brand, T.; Den Hartog, R. H.; Bandler, S. R.; De Plaa, J.; hide

    2016-01-01

    We present the design of tessim, a simulator for the physics of transition edge sensors developed in the framework of the Athena end to end simulation effort. Designed to represent the general behavior of transition edge sensors and to provide input for engineering and science studies for Athena, tessim implements a numerical solution of the linearized equations describing these devices. The simulation includes a model for the relevant noise sources and several implementations of possible trigger algorithms. Input and output of the software are standard FITS-les which can be visualized and processed using standard X-ray astronomical tool packages. Tessim is freely available as part of the SIXTE package (http:www.sternwarte.uni-erlangen.deresearchsixte).

  20. String resistance detector

    NASA Technical Reports Server (NTRS)

    Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)

    2007-01-01

    Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.

  1. Laminated piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  2. Forecasting hotspots using predictive visual analytics approach

    DOEpatents

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  3. Possible effects of depolarizing GABAA conductance on the neuronal input-output relationship: a modeling study.

    PubMed

    Morita, Kenji; Tsumoto, Kunichika; Aihara, Kazuyuki

    2005-06-01

    Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input-output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo-like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input-output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.

  4. A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.

    PubMed

    Son, Hyunwoo; Cho, Hwasuk; Koo, Jahyun; Ji, Youngwoo; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon

    2017-06-01

    This paper presents an amplifier-less and digital-intensive current-to-digital converter for ion-sensitive FET sensors. Capacitance on the input node is utilized as a residue accumulator, and a clocked comparator is followed for quantization. Without any continuous-time feedback circuit, the converter performs a first-order noise shaping of the quantization error. In order to minimize static power consumption, the proposed circuit employs a single-ended current-steering digital-to-analog converter which flows only the same current as the input. By adopting a switching noise averaging algorithm, our dynamic element matching not only mitigates mismatch of current sources in the current-steering DAC, but also makes the effect of dynamic switching noise become an input-independent constant. The implemented circuit in 0.35 μm CMOS converts the current input with a range of 2.8 μ A to 15 b digital output in about 4 ms, showing a DNL of +0.24/-0.25 LSB and an INL of + 1.98/-1.98 LSB while consuming 16.8 μW.

  5. Four-Quadrant Analog Multipliers Using G4-FETs

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Blalock, Benjamin; Christoloveanu, Sorin; Chen, Suheng; Akarvardar, Kerem

    2006-01-01

    Theoretical analysis and some experiments have shown that the silicon-on-insulator (SOI) 4-gate transistors known as G4-FETs can be used as building blocks of four-quadrant analog voltage multiplier circuits. Whereas a typical prior analog voltage multiplier contains between six and 10 transistors, it is possible to construct a superior voltage multiplier using only four G4-FETs. A G4-FET is a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET). It can be regarded as a single transistor having four gates, which are parts of a structure that affords high functionality by enabling the utilization of independently biased multiple inputs. The structure of a G4-FET of the type of interest here (see Figure 1) is that of a partially-depleted SOI MOSFET with two independent body contacts, one on each side of the channel. The drain current comprises of majority charge carriers flowing from one body contact to the other that is, what would otherwise be the side body contacts of the SOI MOSFET are used here as the end contacts [the drain (D) and the source (S)] of the G4-FET. What would otherwise be the source and drain of the SOI MOSFET serve, in the G4-FET, as two junction-based extra gates (JG1 and JG2), which are used to squeeze the channel via reverse-biased junctions as in a JFET. The G4-FET also includes a polysilicon top gate (G1), which plays the same role as does the gate in an accumulation-mode MOSFET. The substrate emulates a fourth MOS gate (G2). By making proper choices of G4-FET device parameters in conjunction with bias voltages and currents, one can design a circuit in which two input gate voltages (Vin1,Vin2) control the conduction characteristics of G4-FETs such that the output voltage (Vout) closely approximates a value proportional to the product of the input voltages. Figure 2 depicts two such analog multiplier circuits. In each circuit, there is the following: The input and output voltages are differential, The multiplier core consists of four G4- FETs (M1 through M4) biased by a constant current sink (Ibias), and The G4-FETs in two pairs are loaded by two identical resistors (RL), which convert a differential output current to a differential output voltage. The difference between the two circuits stems from their input and bias configurations. In each case, provided that the input voltages remain within their design ranges as determined by considerations of bias, saturation, and cutoff, then the output voltage is nominally given by Vout = kVin1Vin2, where k is a constant gain factor that depends on the design parameters and is different for the two circuits. In experimental versions of these circuits constructed using discrete G4- FETs and resistors, multiplication of voltages in all four quadrants (that is, in all four combinations of input polarities) was demonstrated, and deviations of the output voltages from linear dependence on the input voltages were found to amount to no more than a few percent. It is anticipated that in fully integrated versions of these circuits, the deviations from linearity will be made considerably smaller through better matching of devices.

  6. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  7. On the Use of Machine Learning Techniques for the Mechanical Characterization of Soft Biological Tissues.

    PubMed

    Cilla, M; Pérez-Rey, I; Martínez, M A; Peña, Estefania; Martínez, Javier

    2018-06-23

    Motivated by the search for new strategies for fitting a material model, a new approach is explored in the present work. The use of numerical and complex algorithms based on machine learning techniques such as support vector machines for regression, bagged decision trees and artificial neural networks is proposed for solving the parameter identification of constitutive laws for soft biological tissues. First, the mathematical tools were trained with analytical uniaxial data (circumferential and longitudinal directions) as inputs, and their corresponding material parameters of the Gasser, Ogden and Holzapfel strain energy function as outputs. The train and test errors show great efficiency during the training process in finding correlations between inputs and outputs; besides, the correlation coefficients were very close to 1. Second, the tool was validated with unseen observations of analytical circumferential and longitudinal uniaxial data. The results show an excellent agreement between the prediction of the material parameters of the SEF and the analytical curves. Finally, data from real circumferential and longitudinal uniaxial tests on different cardiovascular tissues were fitted, thus the material model of these tissues was predicted. We found that the method was able to consistently identify model parameters, and we believe that the use of these numerical tools could lead to an improvement in the characterization of soft biological tissues. This article is protected by copyright. All rights reserved.

  8. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  9. U.S. Geological Survey Near Real-Time Dst Index

    USGS Publications Warehouse

    Gannon, J.L.; Love, J.J.; Friberg, P.A.; Stewart, D.C.; Lisowski, S.W.

    2011-01-01

    The operational version of the United States Geological Survey one-minute Dst index (a global geomagnetic disturbance-intensity index for scientific studies and definition of space-weather effects) uses either four- or three-station input (including Honolulu, Hawaii; San Juan, Puerto Rico; Hermanus, South Africa; and Kakioka, Japan; or Honolulu, San Juan and Guam) and a method based on the U.S. Geological Survey definitive Dst index, in which Dst is more rigorously calculated. The method uses a combination of time-domain techniques and frequency-space filtering to produce the disturbance time series at an individual observatory. The operational output is compared to the U.S. Geological Survey one-minute Dst index (definitive version) and to the Kyoto (Japan) Final Dst to show that the U.S. Geological Survey operational output matches both definitive indices well.

  10. Simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach-Zehnder interferometer with the effect of amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Kotb, Amer

    2015-05-01

    The performance of an all-optical NOR gate is numerically simulated and investigated. The NOR Boolean function is realized by using a semiconductor optical amplifier (SOA) incorporated in Mach-Zehnder interferometer (MZI) arms and exploiting the nonlinear effect of two-photon absorption (TPA). If the input pulse intensities is adjusting to be high enough, the TPA-induced phase change can be larger than the regular gain-induced phase change and hence support ultrafast operation in the dual rail switching mode. The numerical study is carried out by taking into account the effect of the amplified spontaneous emission (ASE). The dependence of the output quality factor ( Q-factor) on critical data signals and SOAs parameters is examined and assessed. The obtained results confirm that the NOR gate implemented with the proposed scheme is capable of operating at a data rate of 250 Gb/s with logical correctness and high output Q-factor.

  11. Signal Processing Equipment and Techniques for Use in Measuring Ocean Acoustic Multipath Structures

    DTIC Science & Technology

    1983-12-01

    Demodulator 3.4 Digital Demodulator 3.4.1 Number of Bits in the Input A/D Converter Quantization Effects The Demodulator Output Filter Effects of... power caused by ignoring cross spectral term a) First order Butterworth filter b) Second order Butterworth filter 48 3.4 Ordering of e...spectrum 59 3.7 Multiplying D/A Converter input and output spectra a) Input b) Output 60 3.8 Demodulator output spectrum prior to filtering 63

  12. The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus

    PubMed Central

    Ito, Tetsufumi; Oliver, Douglas L.

    2012-01-01

    The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671

  13. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  14. Scaling of global input-output networks

    NASA Astrophysics Data System (ADS)

    Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming

    2016-06-01

    Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.

  15. Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives

    NASA Technical Reports Server (NTRS)

    Putko, Michele M.; Newman, Perry A.; Taylor, Arthur C., III; Green, Lawrence L.

    2001-01-01

    This paper presents an implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for a quasi 1-D Euler CFD (computational fluid dynamics) code. Given uncertainties in statistically independent, random, normally distributed input variables, a first- and second-order statistical moment matching procedure is performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, the moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.

  16. Reservoir property grids improve with geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, J.

    1993-09-01

    Visualization software, reservoir simulators and many other E and P software applications need reservoir property grids as input. Using geostatistics, as compared to other gridding methods, to produce these grids leads to the best output from the software programs. For the purpose stated herein, geostatistics is simply two types of gridding methods. Mathematically, these methods are based on minimizing or duplicating certain statistical properties of the input data. One geostatical method, called kriging, is used when the highest possible point-by-point accuracy is desired. The other method, called conditional simulation, is used when one wants statistics and texture of the resultingmore » grid to be the same as for the input data. In the following discussion, each method is explained, compared to other gridding methods, and illustrated through example applications. Proper use of geostatistical data in flow simulations, use of geostatistical data for history matching, and situations where geostatistics has no significant advantage over other methods, also will be covered.« less

  17. Dynamic adjustment in agricultural practices to economic incentives aiming to decrease fertilizer application.

    PubMed

    Sun, Shanxia; Delgado, Michael S; Sesmero, Juan P

    2016-07-15

    Input- and output-based economic policies designed to reduce water pollution from fertilizer runoff by adjusting management practices are theoretically justified and well-understood. Yet, in practice, adjustment in fertilizer application or land allocation may be sluggish. We provide practical guidance for policymakers regarding the relative magnitude and speed of adjustment of input- and output-based policies. Through a dynamic dual model of corn production that takes fertilizer as one of several production inputs, we measure the short- and long-term effects of policies that affect the relative prices of inputs and outputs through the short- and long-term price elasticities of fertilizer application, and also the total time required for different policies to affect fertilizer application through the adjustment rates of capital and land. These estimates allow us to compare input- and output-based policies based on their relative cost-effectiveness. Using data from Indiana and Illinois, we find that input-based policies are more cost-effective than their output-based counterparts in achieving a target reduction in fertilizer application. We show that input- and output-based policies yield adjustment in fertilizer application at the same speed, and that most of the adjustment takes place in the short-term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ren; Lu, Shih-Chuan; Tsai, Chun-Pu; Li, Wei-Chang

    2018-06-01

    This paper presents a micromechanical clamped–clamped beam (CC-beam) displacement amplifier based on a CMOS-MEMS fabrication process platform. In particular, a 2.0 MHz resonant displacement amplifier composed of two identical CC-beams coupled by a mechanical beam at locations where the two beams have mismatched velocities exhibits a larger displacement, up to 9.96×, on one beam than that of the other. The displacement amplification prevents unwanted input impacting—the structure switches only to the output but not the input—required by resonant switch-based mechanical circuits (Kim et al 2009 22nd IEEE Int. Conf. on Micro Electro Mechanical Systems; Lin et al 2009 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’09) Li et al 2013 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’13)). Compared to a single CC-beam displacement amplifier, theory predicts that the displacement amplifying CC-beam array yields a larger overall output displacement for displacement gain beyond 1.13 thanks to the preserved input driving force. A complete analytical model predicts the resultant stiffness and displacement gain of the coupled CC-beam displacement amplifier that match well with finite element analysis (FEA) prediction and measured results.

  19. Detection of Electrocardiogram by Electrodes with Fabrics Using Capacitive Coupling

    NASA Astrophysics Data System (ADS)

    Ueno, Akinori; Furusawa, Yoichi; Hoshino, Hiroshi; Ishiyama, Yoji

    This article reports on a novel technique for detecting electrocardiogram (ECG) at a condition where thin cloth is interpolated between sensing electrodes and the skin to which the electrodes are attached. The technique is based upon capacitive coupling composed of the electrode, the cloth and the skin, so that the electrode can lead alternating electrocardiographic current through capacitance of the coupling. The technique is also founded on impedance transforming circuit that has extremely high input impedance around 1000GΩ and low output impedance, so as to match high output impedance of the electrode to low input impedance required by subsequent circuitry. A pilot ECG measuring device was manufactured using the technique and experiments showed (1) ECG recordings using the device with silk of 240μm thickness or with cotton of 564μm thickness were quite similar to ECGs recorded from the skin using conventional system, (2) stable ECGs were observed with the silk below 600μm thickness or with the cotton below 1128μm thickness, (3) effects of long-term measurement and perspiration on ECG waveform were negligible. These results prove feasibility of the proposed technique for detecting ECG by electrodes with fabrics.

  20. A Comparison of Metamodeling Techniques via Numerical Experiments

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2016-01-01

    This paper presents a comparative analysis of a few metamodeling techniques using numerical experiments for the single input-single output case. These experiments enable comparing the models' predictions with the phenomenon they are aiming to describe as more data is made available. These techniques include (i) prediction intervals associated with a least squares parameter estimate, (ii) Bayesian credible intervals, (iii) Gaussian process models, and (iv) interval predictor models. Aspects being compared are computational complexity, accuracy (i.e., the degree to which the resulting prediction conforms to the actual Data Generating Mechanism), reliability (i.e., the probability that new observations will fall inside the predicted interval), sensitivity to outliers, extrapolation properties, ease of use, and asymptotic behavior. The numerical experiments describe typical application scenarios that challenge the underlying assumptions supporting most metamodeling techniques.

  1. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOEpatents

    Bittner, J.W.; Biscardi, R.W.

    1991-03-19

    An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.

  2. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOEpatents

    Bittner, John W.; Biscardi, Richard W.

    1991-01-01

    An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.

  3. Waveform design for detection of weapons based on signature exploitation

    NASA Astrophysics Data System (ADS)

    Ahmad, Fauzia; Amin, Moeness G.; Dogaru, Traian

    2010-04-01

    We present waveform design based on signature exploitation techniques for improved detection of weapons in urban sensing applications. A single-antenna monostatic radar system is considered. Under the assumption of exact knowledge of the target orientation and, hence, known impulse response, matched illumination approach is used for optimal target detection. For the case of unknown target orientation, we analyze the target signatures as random processes and perform signal-to-noise-ratio based waveform optimization. Numerical electromagnetic modeling is used to provide the impulse responses of an AK-47 assault rifle for various target aspect angles relative to the radar. Simulation results depict an improvement in the signal-to-noise-ratio at the output of the matched filter receiver for both matched illumination and stochastic waveforms as compared to a chirp waveform of the same duration and energy.

  4. Localized direction selective responses in the dendrites of visual interneurons of the fly

    PubMed Central

    2010-01-01

    Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983

  5. Optimal Control-Based Adaptive NN Design for a Class of Nonlinear Discrete-Time Block-Triangular Systems.

    PubMed

    Liu, Yan-Jun; Tong, Shaocheng

    2016-11-01

    In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.

  6. Terminal Area Simulation System User's Guide - Version 10.0

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2014-01-01

    The Terminal Area Simulation System (TASS) is a three-dimensional, time-dependent, large eddy simulation model that has been developed for studies of wake vortex and weather hazards to aviation, along with other atmospheric turbulence, and cloud-scale weather phenomenology. This document describes the source code for TASS version 10.0 and provides users with needed documentation to run the model. The source code is programed in Fortran language and is formulated to take advantage of vector and efficient multi-processor scaling for execution on massively-parallel supercomputer clusters. The code contains different initialization modules allowing the study of aircraft wake vortex interaction with the atmosphere and ground, atmospheric turbulence, atmospheric boundary layers, precipitating convective clouds, hail storms, gust fronts, microburst windshear, supercell and mesoscale convective systems, tornadic storms, and ring vortices. The model is able to operate in either two- or three-dimensions with equations numerically formulated on a Cartesian grid. The primary output from the TASS is time-dependent domain fields generated by the prognostic equations and diagnosed variables. This document will enable a user to understand the general logic of TASS, and will show how to configure and initialize the model domain. Also described are the formats of the input and output files, as well as the parameters that control the input and output.

  7. History matching through dynamic decision-making

    PubMed Central

    Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson

    2017-01-01

    History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413

  8. Linear and quadratic models of point process systems: contributions of patterned input to output.

    PubMed

    Lindsay, K A; Rosenberg, J R

    2012-08-01

    In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Design of Robust Controllers for a Multiple Input-Multiple Output Control System with Uncertain Parameters Application to the Lateral and Longitudinal Modes of the KC-135 Transport Aircraft

    DTIC Science & Technology

    1984-12-01

    input/output relationship. These are obtained from the design specifications (10:68i-684). Note that the first digit of the subscript of bkj refers...to the output and the second digit to the input. Thus, bkj is.a function of the response requirements on the output, Yk’ due to the input, r.. 169 . A...NXPMAX pNYPMAX, IPLOT) C C C* LIBARY OF PLOT SUBR(OUTINES PSNTCT NLIEPRINTER ONLY~ C* C C C SUP’ LPLOTS C C C DIMENSION IXY(101,71)918UF(100) COMMON /HOPY

  10. WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER

    DOEpatents

    Laine, E.F.

    1959-11-17

    A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.

  11. The Series Connected Buck Boost Regulator Concept for High Efficiency Light Weight DC Voltage Regulation

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2003-01-01

    Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.

  12. Depth map generation using a single image sensor with phase masks.

    PubMed

    Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki

    2016-06-13

    Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.

  13. A direct approach to the design of linear multivariable systems

    NASA Technical Reports Server (NTRS)

    Agrawal, B. L.

    1974-01-01

    Design of multivariable systems is considered and design procedures are formulated in the light of the most recent work on model matching. The word model matching is used exclusively to mean matching the input-output behavior of two systems. The term is used in the frequency domain to indicate the comparison of two transfer matrices containing transfer functions as elements. Design methods where non-interaction is not used as a criteria were studied. Two design methods are considered. The first method of design is based solely upon the specification of generalized error coefficients for each individual transfer function of the overall system transfer matrix. The second design method is called the pole fixing method because all the system poles are fixed at preassigned positions. The zeros of terms either above or below the diagonal are partially fixed via steady state error coefficients. The advantages and disadvantages of each method are discussed and an example is worked to demonstrate their uses. The special cases of triangular decoupling and minimum constraints are discussed.

  14. Stereo Sound Field Controller Design Using Partial Model Matching on the Frequency Domain

    NASA Astrophysics Data System (ADS)

    Kumon, Makoto; Miike, Katsuhiro; Eguchi, Kazuki; Mizumoto, Ikuro; Iwai, Zenta

    The objective of sound field control is to make the acoustic characteristics of a listening room close to those of the desired system. Conventional methods apply feedforward controllers, such as digital filters, to achieve this objective. However, feedback controllers are also necessary in order to attenuate noise or to compensate the uncertainty of the acoustic characteristics of the listening room. Since acoustic characteristics are well modeled on the frequency domain, it is efficient to design controllers with respect to frequency responses, but it is difficult to design a multi input multi output (MIMO) control system on a wide frequency domain. In the present study, a partial model matching method on the frequency domain was adopted because this method requires only sampled data, rather than complex mathematical models of the plant, in order to design controllers for MIMO systems. The partial model matching method was applied to design two-degree-of-freedom controllers for acoustic equalization and noise reduction. Experiments demonstrated effectiveness of the proposed method.

  15. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  16. CAVE: A computer code for two-dimensional transient heating analysis of conceptual thermal protection systems for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.

    1977-01-01

    A digital computer code CAVE (Conduction Analysis Via Eigenvalues), which finds application in the analysis of two dimensional transient heating of hypersonic vehicles is described. The CAVE is written in FORTRAN 4 and is operational on both IBM 360-67 and CDC 6600 computers. The method of solution is a hybrid analytical numerical technique that is inherently stable permitting large time steps even with the best of conductors having the finest of mesh size. The aerodynamic heating boundary conditions are calculated by the code based on the input flight trajectory or can optionally be calculated external to the code and then entered as input data. The code computes the network conduction and convection links, as well as capacitance values, given basic geometrical and mesh sizes, for four generations (leading edges, cooled panels, X-24C structure and slabs). Input and output formats are presented and explained. Sample problems are included. A brief summary of the hybrid analytical-numerical technique, which utilizes eigenvalues (thermal frequencies) and eigenvectors (thermal mode vectors) is given along with aerodynamic heating equations that have been incorporated in the code and flow charts.

  17. SENS-5D trajectory and wind-sensitivity calculations for unguided rockets

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Huang, L. C. P.; Cook, R. A.

    1975-01-01

    A computational procedure is described which numerically integrates the equations of motion of an unguided rocket. Three translational and two angular (roll discarded) degrees of freedom are integrated through the final burnout; and then, through impact, only three translational motions are considered. Input to the routine is: initial time, altitude and velocity, vehicle characteristics, and other defined options. Input format has a wide range of flexibility for special calculations. Output is geared mainly to the wind-weighting procedure, and includes summary of trajectory at burnout, apogee and impact, summary of spent-stage trajectories, detailed position and vehicle data, unit-wind effects for head, tail and cross winds, coriolis deflections, range derivative, and the sensitivity curves (the so called F(Z) and DF(Z) curves). The numerical integration procedure is a fourth-order, modified Adams-Bashforth Predictor-Corrector method. This method is supplemented by a fourth-order Runge-Kutta method to start the integration at t=0 and whenever error criteria demand a change in step size.

  18. Numerical modeling of surface wave development under the action of wind

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry

    2018-06-01

    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.

  19. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  20. Wireless, relative-motion computer input device

    DOEpatents

    Holzrichter, John F.; Rosenbury, Erwin T.

    2004-05-18

    The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.

  1. Investigation on efficiency declines due to spectral overlap between LDAs pump and laser medium in high power double face pumped slab laser

    NASA Astrophysics Data System (ADS)

    Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei

    2018-03-01

    In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.

  2. Automotive Gas Turbine Power System-Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1997-01-01

    An open cycle gas turbine numerical modelling code suitable for thermodynamic performance analysis (i.e. thermal efficiency, specific fuel consumption, cycle state points, working fluid flowrates etc.) of automotive and aircraft powerplant applications has been generated at the NASA Lewis Research Center's Power Technology Division. The use this code can be made available to automotive gas turbine preliminary design efforts, either in its present version, or, assuming that resources can be obtained to incorporate empirical models for component weight and packaging volume, in later version that includes the weight-volume estimator feature. The paper contains a brief discussion of the capabilities of the presently operational version of the code, including a listing of input and output parameters and actual sample output listings.

  3. Automated Knowledge Discovery from Simulators

    NASA Technical Reports Server (NTRS)

    Burl, Michael C.; DeCoste, D.; Enke, B. L.; Mazzoni, D.; Merline, W. J.; Scharenbroich, L.

    2006-01-01

    In this paper, we explore one aspect of knowledge discovery from simulators, the landscape characterization problem, where the aim is to identify regions in the input/ parameter/model space that lead to a particular output behavior. Large-scale numerical simulators are in widespread use by scientists and engineers across a range of government agencies, academia, and industry; in many cases, simulators provide the only means to examine processes that are infeasible or impossible to study otherwise. However, the cost of simulation studies can be quite high, both in terms of the time and computational resources required to conduct the trials and the manpower needed to sift through the resulting output. Thus, there is strong motivation to develop automated methods that enable more efficient knowledge extraction.

  4. Measuring efficiency of university-industry Ph.D. projects using best worst method.

    PubMed

    Salimi, Negin; Rezaei, Jafar

    A collaborative Ph.D. project, carried out by a doctoral candidate, is a type of collaboration between university and industry. Due to the importance of such projects, researchers have considered different ways to evaluate the success, with a focus on the outputs of these projects. However, what has been neglected is the other side of the coin-the inputs. The main aim of this study is to incorporate both the inputs and outputs of these projects into a more meaningful measure called efficiency. A ratio of the weighted sum of outputs over the weighted sum of inputs identifies the efficiency of a Ph.D. The weights of the inputs and outputs can be identified using a multi-criteria decision-making (MCDM) method. Data on inputs and outputs are collected from 51 Ph.D. candidates who graduated from Eindhoven University of Technology. The weights are identified using a new MCDM method called Best Worst Method (BWM). Because there may be differences in the opinion of Ph.D. candidates and supervisors on weighing the inputs and outputs, data for BWM are collected from both groups. It is interesting to see that there are differences in the level of efficiency from the two perspectives, because of the weight differences. Moreover, a comparison between the efficiency scores of these projects and their success scores reveals differences that may have significant implications. A sensitivity analysis divulges the most contributing inputs and outputs.

  5. On-line Gibbs learning. II. Application to perceptron and multilayer networks

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Sompolinsky, H.

    1998-08-01

    In the preceding paper (``On-line Gibbs Learning. I. General Theory'') we have presented the on-line Gibbs algorithm (OLGA) and studied analytically its asymptotic convergence. In this paper we apply OLGA to on-line supervised learning in several network architectures: a single-layer perceptron, two-layer committee machine, and a winner-takes-all (WTA) classifier. The behavior of OLGA for a single-layer perceptron is studied both analytically and numerically for a variety of rules: a realizable perceptron rule, a perceptron rule corrupted by output and input noise, and a rule generated by a committee machine. The two-layer committee machine is studied numerically for the cases of learning a realizable rule as well as a rule that is corrupted by output noise. The WTA network is studied numerically for the case of a realizable rule. The asymptotic results reported in this paper agree with the predictions of the general theory of OLGA presented in paper I. In all the studied cases, OLGA converges to a set of weights that minimizes the generalization error. When the learning rate is chosen as a power law with an optimal power, OLGA converges with a power law that is the same as that of batch learning.

  6. Compensation for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCsmore » convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.« less

  8. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  9. User interface for ground-water modeling: Arcview extension

    USGS Publications Warehouse

    Tsou, Ming‐shu; Whittemore, Donald O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  10. Application of fuzzy system theory in addressing the presence of uncertainties

    NASA Astrophysics Data System (ADS)

    Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.; Ariffin, A. K.

    2015-02-01

    In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statistical approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.

  11. Human factors aspects of control room design

    NASA Technical Reports Server (NTRS)

    Jenkins, J. P.

    1983-01-01

    A plan for the design and analysis of a multistation control room is reviewed. It is found that acceptance of the computer based information system by the uses in the control room is mandatory for mission and system success. Criteria to improve computer/user interface include: match of system input/output with user; reliability, compatibility and maintainability; easy to learn and little training needed; self descriptive system; system under user control; transparent language, format and organization; corresponds to user expectations; adaptable to user experience level; fault tolerant; dialog capability user communications needs reflected in flexibility, complexity, power and information load; integrated system; and documentation.

  12. Hydromechanical transmission with hydrodynamic drive

    DOEpatents

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.

  13. Entanglement enhancement in multimode integrated circuits

    NASA Astrophysics Data System (ADS)

    Léger, Zacharie M.; Brodutch, Aharon; Helmy, Amr S.

    2018-06-01

    The faithful distribution of entanglement in continuous-variable systems is essential to many quantum information protocols. As such, entanglement distillation and enhancement schemes are a cornerstone of many applications. The photon subtraction scheme offers enhancement with a relatively simple setup and has been studied in various scenarios. Motivated by recent advances in integrated optics, particularly the ability to build stable multimode interferometers with squeezed input states, a multimodal extension to the enhancement via photon subtraction protocol is studied. States generated with multiple squeezed input states, rather than a single input source, are shown to be more sensitive to the enhancement protocol, leading to increased entanglement at the output. Numerical results show the gain in entanglement is not monotonic with the number of modes or the degree of squeezing in the additional modes. Consequently, the advantage due to having multiple squeezed input states can be maximized when the number of modes is still relatively small (e.g., four). The requirement for additional squeezing is within the current realm of implementation, making this scheme achievable with present technologies.

  14. CIRMIS Data system. Volume 2. Program listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required.The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the second of four volumes of the description of the CIRMIS Data System.« less

  15. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 4. Driller's logs, stratigraphic cross section and utility routines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System.« less

  16. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  17. Wide bandgap matrix switcher, amplifier and oscillator

    DOEpatents

    Sampayan, Stephen

    2016-08-16

    An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.

  18. Rhomboid prism pair for rotating the plane of parallel light beams

    NASA Technical Reports Server (NTRS)

    Orloff, K. L. (Inventor); Yanagita, H.

    1982-01-01

    An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.

  19. Input-output characterization of an ultrasonic testing system by digital signal analysis

    NASA Technical Reports Server (NTRS)

    Karaguelle, H.; Lee, S. S.; Williams, J., Jr.

    1984-01-01

    The input/output characteristics of an ultrasonic testing system used for stress wave factor measurements were studied. The fundamentals of digital signal processing are summarized. The inputs and outputs are digitized and processed in a microcomputer using digital signal processing techniques. The entire ultrasonic test system, including transducers and all electronic components, is modeled as a discrete-time linear shift-invariant system. Then the impulse response and frequency response of the continuous time ultrasonic test system are estimated by interpolating the defining points in the unit sample response and frequency response of the discrete time system. It is found that the ultrasonic test system behaves as a linear phase bandpass filter. Good results were obtained for rectangular pulse inputs of various amplitudes and durations and for tone burst inputs whose center frequencies are within the passband of the test system and for single cycle inputs of various amplitudes. The input/output limits on the linearity of the system are determined.

  20. Nonlinear interferometry approach to photonic sequential logic

    NASA Astrophysics Data System (ADS)

    Mabuchi, Hideo

    2011-10-01

    Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

  1. Parallel-vector out-of-core equation solver for computational mechanics

    NASA Technical Reports Server (NTRS)

    Qin, J.; Agarwal, T. K.; Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.

    1993-01-01

    A parallel/vector out-of-core equation solver is developed for shared-memory computers, such as the Cray Y-MP machine. The input/ output (I/O) time is reduced by using the a synchronous BUFFER IN and BUFFER OUT, which can be executed simultaneously with the CPU instructions. The parallel and vector capability provided by the supercomputers is also exploited to enhance the performance. Numerical applications in large-scale structural analysis are given to demonstrate the efficiency of the present out-of-core solver.

  2. Implementation of a decoupled controller for a magnetic suspension system using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Groom, N. J.

    1994-01-01

    An implementation of a decoupled, single-input/single-output control approach for a large angle magnetic suspension test fixture is described. Numerical and experimental results are presented. The experimental system is a laboratory model large gap magnetic suspension system which provides five degree-of-freedom control of a cylindrical suspended element. The suspended element contains a core composed of permanent magnet material and is levitated above five electromagnets mounted in a planar array.

  3. M-MRAC Backstepping for Systems with Unknown Virtual Control Coefficients

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2015-01-01

    The paper presents an over-parametrization free certainty equivalence state feedback backstepping adaptive control design method for systems of any relative degree with unmatched uncertainties and unknown virtual control coefficients. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The benefits of the approach are demonstrated in numerical simulations.

  4. Hetero-association for pattern translation

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Lu, Thomas T.; Yang, Xiangyang

    1991-09-01

    A hetero-association neural network using an interpattern association algorithm is presented. By using simple logical rules, hetero-association memory can be constructed based on the association between the input-output reference patterns. For optical implementation, a compact size liquid crystal television neural network is used. Translations between the English letters and the Chinese characters as well as Arabic and Chinese numerics are demonstrated. The authors have shown that the hetero-association model can perform more effectively in comparison to the Hopfield model in retrieving large numbers of similar patterns.

  5. Computer model of one-dimensional equilibrium controlled sorption processes

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1984-01-01

    A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)

  6. Three dimensional flow computations in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Ghantous, C. A.

    1982-01-01

    The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.

  7. Active Vibration damping of Smart composite beams based on system identification technique

    NASA Astrophysics Data System (ADS)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  8. A Spreadsheet Simulation Tool for Terrestrial and Planetary Balloon Design

    NASA Technical Reports Server (NTRS)

    Raquea, Steven M.

    1999-01-01

    During the early stages of new balloon design and development, it is necessary to conduct many trade studies. These trade studies are required to determine the design space, and aid significantly in determining overall feasibility. Numerous point designs then need to be generated as details of payloads, materials, mission, and manufacturing are determined. To accomplish these numerous designs, transient models are both unnecessary and time intensive. A steady state model that uses appropriate design inputs to generate system-level descriptive parameters can be very flexible and fast. Just such a steady state model has been developed and has been used during both the MABS 2001 Mars balloon study and the Ultra Long Duration Balloon Project. Using Microsoft Excel's built-in iteration routine, a model was built. Separate sheets were used for performance, structural design, materials, and thermal analysis as well as input and output sheets. As can be seen from figure 1, the model takes basic performance requirements, weight estimates, design parameters, and environmental conditions and generates a system level balloon design. Figure 2 shows a sample output of the model. By changing the inputs and a few of the equations in the model, balloons on earth or other planets can be modeled. There are currently several variations of the model for terrestrial and Mars balloons, as well there are versions of the model that perform crude material design based on strength and weight requirements. To perform trade studies, the Visual Basic language built into Excel was used to create an automated matrix of designs. This trade study module allows a three dimensional trade surface to be generated by using a series of values for any two design variables. Once the fixed and variable inputs are defined, the model automatically steps through the input matrix and fills a spreadsheet with the resulting point designs. The proposed paper will describe the model in detail, including current variations. The assumptions, governing equations, and capabilities will be addressed. Detailed examples of the model in practice will also be used.

  9. Through-the-earth radio

    DOEpatents

    Reagor, David [Los Alamos, NM; Vasquez-Dominguez, Jose [Los Alamos, NM

    2006-05-09

    A method and apparatus for effective through-the-earth communication involves a signal input device connected to a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth, and having an analog to digital converter receiving the signal input and passing the signal input to a data compression circuit that is connected to an encoding processor, the encoding processor output being provided to a digital to analog converter. An amplifier receives the analog output from the digital to analog converter for amplifying said analog output and outputting said analog output to an antenna. A receiver having an antenna receives the analog output passes the analog signal to a band pass filter whose output is connected to an analog to digital converter that provides a digital signal to a decoding processor whose output is connected to an data decompressor, the data decompressor providing a decompressed digital signal to a digital to analog converter. An audio output device receives the analog output form the digital to analog converter for producing audible output.

  10. Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum of Drosophila melanogaster.

    PubMed

    Yasuyama, Kouji; Meinertzhagen, Ian A

    2010-02-01

    Recent studies in Drosophila melanogaster indicate that the neuropeptide pigment-dispersing factor (PDF) is an important output signal from a set of major clock neurons, s-LN(v)s (small ventral lateral neurons), which transmit the circadian phase to subsets of other clock neurons, DNs (dorsal neurons). Both s-LN(v)s and DNs have fiber projections to the dorsal protocerebrum of the brain, so that this area is a conspicuous locus for coupling between different subsets of clock neurons. To unravel the neural circuits underlying the fly's circadian rhythms, we examined the detailed subcellular morphology of the PDF-positive fibers of the s-LN(v)s in the dorsal protocerebrum, focusing on their synaptic connections, using preembedding immunoelectron microscopy. To examine the distribution of synapses, we also reconstructed the three-dimensional morphology of PDF-positive varicosities from fiber profiles in the dorsal protocerebrum. The varicosities contained large dense-core vesicles (DCVs), and also numerous small clear vesicles, forming divergent output synapses onto unlabeled neurites. The DCVs apparently dock at nonsynaptic sites, suggesting their nonsynaptic release. In addition, a 3D reconstruction revealed the presence of input synapses onto the PDF-positive fibers. These were detected less frequently than output sites. These observations suggest that the PDF-positive clock neurons receive neural inputs directly through synaptic connections in the dorsal protocerebrum, in addition to supplying dual outputs, either synaptic or via paracrine release of the DCV contents, to unidentified target neurons.

  11. A radiation model for calculating atmospheric corrections to remotely sensed infrared measurements, version 2

    NASA Technical Reports Server (NTRS)

    Boudreau, R. D.

    1973-01-01

    A numerical model is developed which calculates the atmospheric corrections to infrared radiometric measurements due to absorption and emission by water vapor, carbon dioxide, and ozone. The corrections due to aerosols are not accounted for. The transmissions functions for water vapor, carbon dioxide, and water are given. The model requires as input the vertical distribution of temperature and water vapor as determined by a standard radiosonde. The vertical distribution of carbon dioxide is assumed to be constant. The vertical distribution of ozone is an average of observed values. The model also requires as input the spectral response function of the radiometer and the nadir angle at which the measurements were made. A listing of the FORTRAN program is given with details for its use and examples of input and output listings. Calculations for four model atmospheres are presented.

  12. Analysis of Discontinuity Induced Bifurcations in a Dual Input DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Giaouris, Damian; Banerjee, Soumitro; Mandal, Kuntal; Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; El Aroudi, Abdelali

    DC-DC power converters with multiple inputs and a single output are used in numerous applications where multiple sources, e.g. two or more renewable energy sources and/or a battery, feed a single load. In this work, a classical boost converter topology with two input branches connected to two different sources is chosen, with each branch independently being controlled by a separate peak current mode controller. We demonstrate for the first time that even though this converter is similar to other well known topologies that have been studied before, it exhibits many complex nonlinear behaviors that are not found in any other standard PWM controlled power converter. The system undergoes period incrementing cascade as a parameter is varied, with discontinuous hard transitions between consecutive periodicities. We show that the system can be described by a discontinuous map, which explains the observed bifurcation phenomena. The results have been experimentally validated.

  13. Does player unavailability affect football teams' match physical outputs? A two-season study of the UEFA champions league.

    PubMed

    Windt, Johann; Ekstrand, Jan; Khan, Karim M; McCall, Alan; Zumbo, Bruno D

    2018-05-01

    Player unavailability negatively affects team performance in elite football. However, whether player unavailability and its concomitant performance decrement is mediated by any changes in teams' match physical outputs is unknown. We examined whether the number of players injured (i.e. unavailable for match selection) was associated with any changes in teams' physical outputs. Prospective cohort study. Between-team variation was calculated by correlating average team availability with average physical outputs. Within-team variation was quantified using linear mixed modelling, using physical outputs - total distance, sprint count (efforts over 20km/h), and percent of distance covered at high speeds (>14km/h) - as outcome variables, and player unavailability as the independent variable of interest. To control for other factors that may influence match physical outputs, stage (group stage/knockout), venue (home/away), score differential, ball possession (%), team ranking (UEFA Club Coefficient), and average team age were all included as covariates. Teams' average player unavailability was positively associated with the average number of sprints they performed in matches across two seasons. Multilevel models similarly demonstrated that having 4 unavailable players was associated with 20.8 more sprints during matches in 2015/2016, and with an estimated 0.60-0.77% increase in the proportion of total distance run above 14km/h in both seasons. Player unavailability had a possibly positive and likely positive association with total match distances in the two respective seasons. Having more players injured and unavailable for match selection was associated with an increase in teams' match physical outputs. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Multi-diversity combining and selection for relay-assisted mixed RF/FSO system

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Weidong

    2017-12-01

    We propose and analyze multi-diversity combining and selection to enhance the performance of relay-assisted mixed radio frequency/free-space optics (RF/FSO) system. We focus on a practical scenario for cellular network where a single-antenna source is communicating to a multi-apertures destination through a relay equipped with multiple receive antennas and multiple transmit apertures. The RF single input multiple output (SIMO) links employ either maximal-ratio combining (MRC) or receive antenna selection (RAS), and the FSO multiple input multiple output (MIMO) links adopt either repetition coding (RC) or transmit laser selection (TLS). The performance is evaluated via an outage probability analysis over Rayleigh fading RF links and Gamma-Gamma atmospheric turbulence FSO links with pointing errors where channel state information (CSI) assisted amplify-and-forward (AF) scheme is considered. Asymptotic closed-form expressions at high signal-to-noise ratio (SNR) are also derived. Coding gain and diversity order for different combining and selection schemes are further discussed. Numerical results are provided to verify and illustrate the analytical results.

  15. Input-output relationship in social communications characterized by spike train analysis

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Takaguchi, Taro; Kobayashi, Ryota; Lambiotte, Renaud

    2016-10-01

    We study the dynamical properties of human communication through different channels, i.e., short messages, phone calls, and emails, adopting techniques from neuronal spike train analysis in order to characterize the temporal fluctuations of successive interevent times. We first measure the so-called local variation (LV) of incoming and outgoing event sequences of users and find that these in- and out-LV values are positively correlated for short messages and uncorrelated for phone calls and emails. Second, we analyze the response-time distribution after receiving a message to focus on the input-output relationship in each of these channels. We find that the time scales and amplitudes of response differ between the three channels. To understand the effects of the response-time distribution on the correlations between the LV values, we develop a point process model whose activity rate is modulated by incoming and outgoing events. Numerical simulations of the model indicate that a quick response to incoming events and a refractory effect after outgoing events are key factors to reproduce the positive LV correlations.

  16. Computer programs for pressurization (RAMP) and pressurized expulsion from a cryogenic liquid propellant tank

    NASA Technical Reports Server (NTRS)

    Masters, P. A.

    1974-01-01

    An analysis to predict the pressurant gas requirements for the discharge of cryogenic liquid propellants from storage tanks is presented, along with an algorithm and two computer programs. One program deals with the pressurization (ramp) phase of bringing the propellant tank up to its operating pressure. The method of analysis involves a numerical solution of the temperature and velocity functions for the tank ullage at a discrete set of points in time and space. The input requirements of the program are the initial ullage conditions, the initial temperature and pressure of the pressurant gas, and the time for the expulsion or the ramp. Computations are performed which determine the heat transfer between the ullage gas and the tank wall. Heat transfer to the liquid interface and to the hardware components may be included in the analysis. The program output includes predictions of mass of pressurant required, total energy transfer, and wall and ullage temperatures. The analysis, the algorithm, a complete description of input and output, and the FORTRAN 4 program listings are presented. Sample cases are included to illustrate use of the programs.

  17. A comparison of river discharge calculated by using a regional climate model output with different reanalysis datasets in 1980s and 1990s

    NASA Astrophysics Data System (ADS)

    Ma, X.; Yoshikane, T.; Hara, M.; Adachi, S. A.; Wakazuki, Y.; Kawase, H.; Kimura, F.

    2014-12-01

    To check the influence of boundary input data on a modeling result, we had a numerical investigation of river discharge by using runoff data derived by a regional climate model with a 4.5-km resolution as input data to a hydrological model. A hindcast experiment, which to reproduce the current climate was carried out for the two decades, 1980s and 1990s. We used the Advanced Research WRF (ARW) (ver. 3.2.1) with a two-way nesting technique and the WRF single-moment 6-class microphysics scheme. Noah-LSM is adopted to simulate the land surface process. The NCEP/NCAR and ERA-Interim 6-hourly reanalysis datasets were used as the lateral boundary condition for the runs, respectively. The output variables used for river discharge simulation from the WRF model were underground runoff and surface runoff. Four rivers (Mogami, Agano, Jinzu and Tone) were selected in this study. The results showed that the characteristic of river discharge in seasonal variation could be represented and there were overestimated compared with measured one.

  18. Exploiting active subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet

    NASA Astrophysics Data System (ADS)

    Constantine, P. G.; Emory, M.; Larsson, J.; Iaccarino, G.

    2015-12-01

    We present a computational analysis of the reactive flow in a hypersonic scramjet engine with focus on effects of uncertainties in the operating conditions. We employ a novel methodology based on active subspaces to characterize the effects of the input uncertainty on the scramjet performance. The active subspace identifies one-dimensional structure in the map from simulation inputs to quantity of interest that allows us to reparameterize the operating conditions; instead of seven physical parameters, we can use a single derived active variable. This dimension reduction enables otherwise infeasible uncertainty quantification, considering the simulation cost of roughly 9500 CPU-hours per run. For two values of the fuel injection rate, we use a total of 68 simulations to (i) identify the parameters that contribute the most to the variation in the output quantity of interest, (ii) estimate upper and lower bounds on the quantity of interest, (iii) classify sets of operating conditions as safe or unsafe corresponding to a threshold on the output quantity of interest, and (iv) estimate a cumulative distribution function for the quantity of interest.

  19. Sensitivity of control-augmented structure obtained by a system decomposition method

    NASA Technical Reports Server (NTRS)

    Sobieszczanskisobieski, Jaroslaw; Bloebaum, Christina L.; Hajela, Prabhat

    1988-01-01

    The verification of a method for computing sensitivity derivatives of a coupled system is presented. The method deals with a system whose analysis can be partitioned into subsets that correspond to disciplines and/or physical subsystems that exchange input-output data with each other. The method uses the partial sensitivity derivatives of the output with respect to input obtained for each subset separately to assemble a set of linear, simultaneous, algebraic equations that are solved for the derivatives of the coupled system response. This sensitivity analysis is verified using an example of a cantilever beam augmented with an active control system to limit the beam's dynamic displacements under an excitation force. The verification shows good agreement of the method with reference data obtained by a finite difference technique involving entire system analysis. The usefulness of a system sensitivity method in optimization applications by employing a piecewise-linear approach to the same numerical example is demonstrated. The method's principal merits are its intrinsically superior accuracy in comparison with the finite difference technique, and its compatibility with the traditional division of work in complex engineering tasks among specialty groups.

  20. An Asynchronous Recurrent Network of Cellular Automaton-Based Neurons and Its Reproduction of Spiking Neural Network Activities.

    PubMed

    Matsubara, Takashi; Torikai, Hiroyuki

    2016-04-01

    Modeling and implementation approaches for the reproduction of input-output relationships in biological nervous tissues contribute to the development of engineering and clinical applications. However, because of high nonlinearity, the traditional modeling and implementation approaches encounter difficulties in terms of generalization ability (i.e., performance when reproducing an unknown data set) and computational resources (i.e., computation time and circuit elements). To overcome these difficulties, asynchronous cellular automaton-based neuron (ACAN) models, which are described as special kinds of cellular automata that can be implemented as small asynchronous sequential logic circuits have been proposed. This paper presents a novel type of such ACAN and a theoretical analysis of its excitability. This paper also presents a novel network of such neurons, which can mimic input-output relationships of biological and nonlinear ordinary differential equation model neural networks. Numerical analyses confirm that the presented network has a higher generalization ability than other major modeling and implementation approaches. In addition, Field-Programmable Gate Array-implementations confirm that the presented network requires lower computational resources.

  1. Nonlinear system identification of smart structures under high impact loads

    NASA Astrophysics Data System (ADS)

    Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon

    2013-05-01

    The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.

  2. Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

    NASA Astrophysics Data System (ADS)

    Al Shamaileh, Khair A.

    The ever-growing demand toward designing microwave front-end components with enhanced access to the radio spectrum (e.g., multi-/wideband functionality) and improved physical features (e.g., miniaturized circuitry, ease and cost of fabrication) is becoming more paramount than ever before. This dissertation proposes new design methodologies, simulations, and experimental validations of passive front-ends (i.e., antennas, couplers, dividers) at microwave frequencies. The presented design concepts optimize both electrical and physical characteristics without degrading the intended performance. The developed designs are essential to the upcoming wireless technologies. The first proposed component is a compact ultra-wideband (UWB) Wilkinson power divider (WPD). The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional single-frequency divider with impedance-varying profiles governed by a truncated Fourier series. While such non-uniform transmission lines (NTLs) are obtained through the even-mode analysis, three isolation resistors are optimized in the odd-mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. The proposed design methodology is systematic, and results in single-layered and compact structures. For verification purposes, an equal split WPD is designed, simulated, and measured. The obtained results show that the input and output ports matching as well as the isolation between the output ports are below --10 dB; whereas the transmission parameters vary between --3.2 dB and --5 dB across the 3.1--10.6 GHz band. The designed divider is expected to find applications in UWB antenna diversity, multiple-input-multiple-output (MIMO) schemes, and antenna arrays feeding networks. The second proposed component is a wideband multi-way Bagley power divider (BPD). Wideband functionality is achieved by replacing the single-frequency matching uniform microstrip lines in the conventional design with NTLs of wideband matching nature. To bring this concept into practice, the equivalent transmission line model is used for profiling impedance variations. The proposed technique leads to flexible spectrum allocation and matching level. Moreover, the resulting structures are compact and planar. First, the analytical results of three 3-way BPDs of different fractional bandwidths are presented and discussed to validate the proposed approach. Then, two examples of 3- and 5-way BPDs with bandwidths of 4--10 GHz and 5--9 GHz, respectively, are simulated, fabricated, and measured. Simulated and measured results show an acceptable input port matching of below --15 dB and --12.5 dB for the 3- and 5-way dividers, respectively, over the bands of interest. The resulting transmission parameters of the 3- and 5-way dividers are --4.77+/-;1 dB and --7+/-1 dB, respectively, over the design bands; which are in close proximity to their theoretical values. The proposed wideband BPD dividers find many applications in microwave front-end circuitry, especially in only-transmitting antenna subsystems, such as multi-/broad-cast communications, where neither output ports matching nor isolation is a necessity. The third proposed component is a 90° hybrid branch-line coupler (BLC) with multi-/wideband frequency matching. To obtain a multi-frequency operation, NTLs of lengths equal to those in the conventional design are incorporated through the even- and odd-mode analysis. The proposed structure is relatively simple and is fabricated on a single-layered substrate. Two design examples of dual-/triple-frequency BLCs suitable for GSM, WLAN, and Wi-Fi applications are designed, fabricated and evaluated experimentally to validate the proposed methodology. The same concept is extended to realize a broadband BLC with arbitrary coupling levels. Based on how impedances are profiled, the fractional bandwidth of a single-section 90° 3-dB BLC is extended to 57%, and the realization of broadband BLCs with predefined coupling levels is also achieved. Furthermore, higher-order harmonics are suppressed by enforcing BLC S-parameters to match design requirements only at a given frequency range. Three examples of 3-dB, 6-dB, and 9-dB BLCs are demonstrated at 3 GHz center frequency. The obtained analytical response, EM simulations, and measurements justify the design concept. The fourth proposed component is an UWB antipodal Vivaldi antenna (AVA) with high-Q stopband characteristics based on compact electromagnetic bandgap (EBG) structures. First, an AVA is designed and optimized to operate over an UWB spectrum. Then, two pairs of EBG cells are introduced along the antenna feed-line to suppress the frequency components at 3.6--3.9 and 5.6--5.8 GHz (i.e., WiMAX and ISM bands, respectively). Simulated and measured voltage standing wave ratio (VSWR) are below 2 for the entire 3.1--10.6 GHz band with high attenuation at the two selected sub-bands. This simple yet effective approach eliminates the need to deform the antenna radiators with slots/parasitic elements or comprise multilayer substrates.

  3. Using quantum theory to simplify input-output processes

    NASA Astrophysics Data System (ADS)

    Thompson, Jayne; Garner, Andrew J. P.; Vedral, Vlatko; Gu, Mile

    2017-02-01

    All natural things process and transform information. They receive environmental information as input, and transform it into appropriate output responses. Much of science is dedicated to building models of such systems-algorithmic abstractions of their input-output behavior that allow us to simulate how such systems can behave in the future, conditioned on what has transpired in the past. Here, we show that classical models cannot avoid inefficiency-storing past information that is unnecessary for correct future simulation. We construct quantum models that mitigate this waste, whenever it is physically possible to do so. This suggests that the complexity of general input-output processes depends fundamentally on what sort of information theory we use to describe them.

  4. F77NNS - A FORTRAN-77 NEURAL NETWORK SIMULATOR

    NASA Technical Reports Server (NTRS)

    Mitchell, P. H.

    1994-01-01

    F77NNS (A FORTRAN-77 Neural Network Simulator) simulates the popular back error propagation neural network. F77NNS is an ANSI-77 FORTRAN program designed to take advantage of vectorization when run on machines having this capability, but it will run on any computer with an ANSI-77 FORTRAN Compiler. Artificial neural networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to biological nerve cells. Problems which involve pattern matching or system modeling readily fit the class of problems which F77NNS is designed to solve. The program's formulation trains a neural network using Rumelhart's back-propagation algorithm. Typically the nodes of a network are grouped together into clumps called layers. A network will generally have an input layer through which the various environmental stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. The back-propagation training algorithm can require massive computational resources to implement a large network such as a network capable of learning text-to-phoneme pronunciation rules as in the famous Sehnowski experiment. The Sehnowski neural network learns to pronounce 1000 common English words. The standard input data defines the specific inputs that control the type of run to be made, and input files define the NN in terms of the layers and nodes, as well as the input/output (I/O) pairs. The program has a restart capability so that a neural network can be solved in stages suitable to the user's resources and desires. F77NNS allows the user to customize the patterns of connections between layers of a network. The size of the neural network to be solved is limited only by the amount of random access memory (RAM) available to the user. The program has a memory requirement of about 900K. The standard distribution medium for this package is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. F77NNS was developed in 1989.

  5. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  6. The UK waste input-output table: Linking waste generation to the UK economy.

    PubMed

    Salemdeeb, Ramy; Al-Tabbaa, Abir; Reynolds, Christian

    2016-10-01

    In order to achieve a circular economy, there must be a greater understanding of the links between economic activity and waste generation. This study introduces the first version of the UK waste input-output table that could be used to quantify both direct and indirect waste arisings across the supply chain. The proposed waste input-output table features 21 industrial sectors and 34 waste types and is for the 2010 time-period. Using the waste input-output table, the study results quantitatively confirm that sectors with a long supply chain (i.e. manufacturing and services sectors) have higher indirect waste generation rates compared with industrial primary sectors (e.g. mining and quarrying) and sectors with a shorter supply chain (e.g. construction). Results also reveal that the construction, mining and quarrying sectors have the highest waste generation rates, 742 and 694 tonne per £1m of final demand, respectively. Owing to the aggregated format of the first version of the waste input-output, the model does not address the relationship between waste generation and recycling activities. Therefore, an updated version of the waste input-output table is expected be developed considering this issue. Consequently, the expanded model would lead to a better understanding of waste and resource flows in the supply chain. © The Author(s) 2016.

  7. Pandemic recovery analysis using the dynamic inoperability input-output model.

    PubMed

    Santos, Joost R; Orsi, Mark J; Bond, Erik J

    2009-12-01

    Economists have long conceptualized and modeled the inherent interdependent relationships among different sectors of the economy. This concept paved the way for input-output modeling, a methodology that accounts for sector interdependencies governing the magnitude and extent of ripple effects due to changes in the economic structure of a region or nation. Recent extensions to input-output modeling have enhanced the model's capabilities to account for the impact of an economic perturbation; two such examples are the inoperability input-output model((1,2)) and the dynamic inoperability input-output model (DIIM).((3)) These models introduced sector inoperability, or the inability to satisfy as-planned production levels, into input-output modeling. While these models provide insights for understanding the impacts of inoperability, there are several aspects of the current formulation that do not account for complexities associated with certain disasters, such as a pandemic. This article proposes further enhancements to the DIIM to account for economic productivity losses resulting primarily from workforce disruptions. A pandemic is a unique disaster because the majority of its direct impacts are workforce related. The article develops a modeling framework to account for workforce inoperability and recovery factors. The proposed workforce-explicit enhancements to the DIIM are demonstrated in a case study to simulate a pandemic scenario in the Commonwealth of Virginia.

  8. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  9. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  10. Microwave Power Combiner/Switch Utilizing a Faraday Rotator

    NASA Technical Reports Server (NTRS)

    Perez, Raul

    2008-01-01

    A proposed device for combining or switching electromagnetic beams would have three ports, would not contain any moving parts, and would be switchable among three operating states: Two of the ports would be for input; the remaining port would be for output. In one operating state, the signals at both input ports would be coupled through to the output port. In each of the other two operating states, the signal at only one input port would be coupled to the output port. The input port would be selected through choice of the operating state.

  11. Silicon photonics thermal phase shifter with reduced temperature range

    DOEpatents

    Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R

    2013-12-17

    Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.

  12. A multi-purpose readout electronics for CdTe and CZT detectors for x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Yue, X. B.; Deng, Z.; Xing, Y. X.; Liu, Y. N.

    2017-09-01

    A multi-purpose readout electronics based on the DPLMS digital filter has been developed for CdTe and CZT detectors for X-ray imaging applications. Different filter coefficients can be synthesized optimized either for high energy resolution at relatively low counting rate or for high rate photon-counting with reduced energy resolution. The effects of signal width constraints, sampling rate and length were numerical studied by Mento Carlo simulation with simple CRRC shaper input signals. The signal width constraint had minor effect and the ENC was only increased by 6.5% when the signal width was shortened down to 2 τc. The sampling rate and length depended on the characteristic time constants of both input and output signals. For simple CR-RC input signals, the minimum number of the filter coefficients was 12 with 10% increase in ENC when the output time constant was close to the input shaping time. A prototype readout electronics was developed for demonstration, using a previously designed analog front ASIC and a commercial ADC card. Two different DPLMS filters were successfully synthesized and applied for high resolution and high counting rate applications respectively. The readout electronics was also tested with a linear array CdTe detector. The energy resolutions of Am-241 59.5 keV peak were measured to be 6.41% in FWHM for the high resolution filter and to be 13.58% in FWHM for the high counting rate filter with 160 ns signal width constraint.

  13. Modeling and Analysis of CNC Milling Process Parameters on Al3030 based Composite

    NASA Astrophysics Data System (ADS)

    Gupta, Anand; Soni, P. K.; Krishna, C. M.

    2018-04-01

    The machining of Al3030 based composites on Computer Numerical Control (CNC) high speed milling machine have assumed importance because of their wide application in aerospace industries, marine industries and automotive industries etc. Industries mainly focus on surface irregularities; material removal rate (MRR) and tool wear rate (TWR) which usually depends on input process parameters namely cutting speed, feed in mm/min, depth of cut and step over ratio. Many researchers have carried out researches in this area but very few have taken step over ratio or radial depth of cut also as one of the input variables. In this research work, the study of characteristics of Al3030 is carried out at high speed CNC milling machine over the speed range of 3000 to 5000 r.p.m. Step over ratio, depth of cut and feed rate are other input variables taken into consideration in this research work. A total nine experiments are conducted according to Taguchi L9 orthogonal array. The machining is carried out on high speed CNC milling machine using flat end mill of diameter 10mm. Flatness, MRR and TWR are taken as output parameters. Flatness has been measured using portable Coordinate Measuring Machine (CMM). Linear regression models have been developed using Minitab 18 software and result are validated by conducting selected additional set of experiments. Selection of input process parameters in order to get best machining outputs is the key contributions of this research work.

  14. Note: High-power piezoelectric transformer fabricated with ternary relaxor ferroelectric Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3 single crystal.

    PubMed

    Wang, Qing; Ma, Chuanguo; Wang, Feifei; Liu, Bao; Chen, Jianwei; Luo, Haosu; Wang, Tao; Shi, Wangzhou

    2016-03-01

    A plate-shaped piezoelectric transformer was designed and fabricated using ternary relaxor ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3. Both the input and output sections utilized the transverse-extensional vibration mode. The frequency and load dependences of the electrical properties for the proposed transformer were systematically studied. Results indicated that under a matching load resistance of 14.9 kΩ, a maximum output power of 2.56 W was obtained with the temperature rise less than 5 °C. The corresponding power density reached up to 50 W/cm(3). This ternary single-crystal transformer had potential applications in compact-size converters requiring high power density.

  15. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... output terminal(s) of the device terminated by a resistance equal to the rated output impedance. The... ohms) matching the rated output impedance of the TV interface device, shall not exceed the following... during maximum amplitude peaks across a resistance (R in ohms) matching the rated output impedance of the...

  16. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... output terminal(s) of the device terminated by a resistance equal to the rated output impedance. The... ohms) matching the rated output impedance of the TV interface device, shall not exceed the following... during maximum amplitude peaks across a resistance (R in ohms) matching the rated output impedance of the...

  17. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms.Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (M{O/Y}D04). The M{O/Y}D04 product is of course normally produced from M{O/Y}D021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a M{O/Y}D021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source.We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.

  18. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to operational remote-sensing algorithms. Specifically, the MCARS-computed radiances are input into the processing chain used to produce the MODIS Data Collection 6 aerosol product (MOYD04). TheMOYD04 product is of course normally produced from MOYD021KM MODIS Level-1B radiance product directly acquired by the MODIS instrument. MCARS matches the format and metadata of a MOYD021KM product. The resulting MCARS output can be directly provided to MODAPS (MODIS Adaptive Processing System) as input to various operational atmospheric retrieval algorithms. Thus the operational algorithms can be tested directly without needing to make any software changes to accommodate an alternative input source. We show direct application of this synthetic product in analysis of the performance of the MOD04 operational algorithm. We use biomass-burning case studies over Amazonia employed in a recent Working Group on Numerical Experimentation (WGNE)-sponsored study of aerosol impacts on numerical weather prediction (Freitas et al., 2015). We demonstrate that a known low bias in retrieved MODIS aerosol optical depth appears to be due to a disconnect between actual column relative humidity and the value assumed by the MODIS aerosol product.

  19. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  20. Digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Cliff, R. A. (Inventor)

    1975-01-01

    An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.

Top