Sample records for nutrient balances based

  1. Uncovering the Nutritional Landscape of Food

    PubMed Central

    Kim, Seunghyeon; Sung, Jaeyun; Foo, Mathias; Jin, Yong-Su; Kim, Pan-Jun

    2015-01-01

    Recent progresses in data-driven analysis methods, including network-based approaches, are revolutionizing many classical disciplines. These techniques can also be applied to food and nutrition, which must be studied to design healthy diets. Using nutritional information from over 1,000 raw foods, we systematically evaluated the nutrient composition of each food in regards to satisfying daily nutritional requirements. The nutrient balance of a food was quantified and termed nutritional fitness; this measure was based on the food’s frequency of occurrence in nutritionally adequate food combinations. Nutritional fitness offers a way to prioritize recommendable foods within a global network of foods, in which foods are connected based on the similarities of their nutrient compositions. We identified a number of key nutrients, such as choline and α-linolenic acid, whose levels in foods can critically affect the nutritional fitness of the foods. Analogously, pairs of nutrients can have the same effect. In fact, two nutrients can synergistically affect the nutritional fitness, although the individual nutrients alone may not have an impact. This result, involving the tendency among nutrients to exhibit correlations in their abundances across foods, implies a hidden layer of complexity when exploring for foods whose balance of nutrients within pairs holistically helps meet nutritional requirements. Interestingly, foods with high nutritional fitness successfully maintain this nutrient balance. This effect expands our scope to a diverse repertoire of nutrient-nutrient correlations, which are integrated under a common network framework that yields unexpected yet coherent associations between nutrients. Our nutrient-profiling approach combined with a network-based analysis provides a more unbiased, global view of the relationships between foods and nutrients, and can be extended towards nutritional policies, food marketing, and personalized nutrition. PMID:25768022

  2. Effects of supplemental organic cobalt on nutrient digestion and nitrogen balance in lambs fed forage-based diets

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effects of supplemental organic cobalt on nutrient digestion and nitrogen balance in lambs fed forage-based diets. Sixteen wether lambs (avg initial BW = 28.6 ± 1.3 kg) were used in a 2 × 2 Latin square and randomly allotted to one of two treatments b...

  3. The Nutrient Balance Concept: A New Quality Metric for Composite Meals and Diets

    PubMed Central

    Fern, Edward B; Watzke, Heribert; Barclay, Denis V.; Roulin, Anne; Drewnowski, Adam

    2015-01-01

    Background Combinations of foods that provide suitable levels of nutrients and energy are required for optimum health. Currently, however, it is difficult to define numerically what are ‘suitable levels’. Objective To develop new metrics based on energy considerations—the Nutrient Balance Concept (NBC)—for assessing overall nutrition quality when combining foods and meals. Method The NBC was developed using the USDA Food Composition Database (Release 27) and illustrated with their MyPlate 7-day sample menus for a 2000 calorie food pattern. The NBC concept is centered on three specific metrics for a given food, meal or diet—a Qualifying Index (QI), a Disqualifying Index (DI) and a Nutrient Balance (NB). The QI and DI were determined, respectively, from the content of 27 essential nutrients and 6 nutrients associated with negative health outcomes. The third metric, the Nutrient Balance (NB), was derived from the Qualifying Index (QI) and provided key information on the relative content of qualifying nutrients in the food. Because the Qualifying and Disqualifying Indices (QI and DI) were standardized to energy content, both become constants for a given food/meal/diet and a particular consumer age group, making it possible to develop algorithms for predicting nutrition quality when combining different foods. Results Combining different foods into composite meals and daily diets led to improved nutrition quality as seen by QI values closer to unity (indicating nutrient density was better equilibrated with energy density), DI values below 1.0 (denoting an acceptable level of consumption of disqualifying nutrients) and increased NB values (signifying complementarity of foods and better provision of qualifying nutrients). Conclusion The Nutrient Balance Concept (NBC) represents a new approach to nutrient profiling and the first step in the progression from the nutrient evaluation of individual foods to that of multiple foods in the context of meals and total diets. PMID:26176770

  4. The Plant Ionome Revisited by the Nutrient Balance Concept

    PubMed Central

    Parent, Serge-Étienne; Parent, Léon Etienne; Egozcue, Juan José; Rozane, Danilo-Eduardo; Hernandes, Amanda; Lapointe, Line; Hébert-Gentile, Valérie; Naess, Kristine; Marchand, Sébastien; Lafond, Jean; Mattos, Dirceu; Barlow, Philip; Natale, William

    2013-01-01

    Tissue analysis is commonly used in ecology and agronomy to portray plant nutrient signatures. Nutrient concentration data, or ionomes, belong to the compositional data class, i.e., multivariate data that are proportions of some whole, hence carrying important numerical properties. Statistics computed across raw or ordinary log-transformed nutrient data are intrinsically biased, hence possibly leading to wrong inferences. Our objective was to present a sound and robust approach based on a novel nutrient balance concept to classify plant ionomes. We analyzed leaf N, P, K, Ca, and Mg of two wild and six domesticated fruit species from Canada, Brazil, and New Zealand sampled during reproductive stages. Nutrient concentrations were (1) analyzed without transformation, (2) ordinary log-transformed as commonly but incorrectly applied in practice, (3) additive log-ratio (alr) transformed as surrogate to stoichiometric rules, and (4) converted to isometric log-ratios (ilr) arranged as sound nutrient balance variables. Raw concentration and ordinary log transformation both led to biased multivariate analysis due to redundancy between interacting nutrients. The alr- and ilr-transformed data provided unbiased discriminant analyses of plant ionomes, where wild and domesticated species formed distinct groups and the ionomes of species and cultivars were differentiated without numerical bias. The ilr nutrient balance concept is preferable to alr, because the ilr technique projects the most important interactions between nutrients into a convenient Euclidean space. This novel numerical approach allows rectifying historical biases and supervising phenotypic plasticity in plant nutrition studies. PMID:23526060

  5. Computer model of hydroponics nutrient solution pH control using ammonium.

    PubMed

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  6. Productivity, fertilizer responses and nutrient balances of farming systems in central Tigray, Ethiopia: a multi-perspective view in relation to degradation.

    NASA Astrophysics Data System (ADS)

    Kraaijvanger, Richard; Veldkamp, Tom; Nyssen, Jan

    2014-05-01

    In many rural livelihoods in sub-Saharan Africa, crop productivity plays an important role since it links with food insecurity, which again is a major constraining factor in livelihood development. Sustainable livelihood development and land degradation are closely connected: lacking sustainability often results in land degradation, whereas the incidence of land degradation frequently frustrates sustainable development. Important forms of land degradation are soil erosion and nutrient depletion, both often being attributed to exhaustive land use practices and both having a direct and major impact on crop productivity. Application of nutrients is an important way to increase productivity. In our study area, central Tigray, development agents recommend the application of fertilizers at high rates in order to boost productivity and to deal with nutrient depletion. In the discussion about the use of fertilizers different perspectives can be taken, in which especially responses and nutrient balances are important issues, linking respectively with socio-economic and agro-ecological livelihood aspects. Ethiopian soils for example are, based on large scale nutrient balances, considered to be depleted, at field scale fertilizer responses are frequently disappointing and achieving sustainable nutrient balances at farm level seems difficult. At a temporal scale however, agricultural systems remained almost unchanged for over 2500 years, suggesting at least some degree of sustainability. With respect to productivity data resulting from on-farm experimentation with natural and artificial fertilizers in 26 sites, we took four perspectives, different in ownership and scale, on nutrient related land degradation and its assumed impact on crop productivity. Taking a farmer perspective we found no significant difference between responses to recommended and current farmer based practices. Taking a more scientific perspective highlighted that, based on the positive correlation between response and soil-P, phosphorus was limiting. A relatively short term farm-level perspective made clear that closing nutrient balances to achieve sustainability is difficult, only the use of manure seemed somewhat satisfactory in this. In case a long term perspective is taken, apparent historical sustainability seems to relate to the combination of relatively low yield levels and mixed farming. Depending on the perspective taken different interventions can be forwarded, all four perspectives however indicate that strengthening the existing mixed farming system provides a promising alternative, allowing the improvement of agro-ecological as well as socio-economic sustainability of involved livelihoods.

  7. [Inventory of regional surface nutrient balance and policy recommendations in China].

    PubMed

    Chen, Min-Peng; Chen, Ji-Ning

    2007-06-01

    By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.

  8. Nutrient requirements and low-cost balanced diets, based on seasonally available local feedstuffs, for local pigs on smallholder farms in Western Kenya.

    PubMed

    Carter, Natalie Ann; Dewey, Catherine Elizabeth; Thomas, Lian Francesca; Lukuyu, Ben; Grace, Delia; de Lange, Cornelis

    2016-02-01

    Growth performance of pigs on smallholder farms in the tropics is low. Lack of feedstuffs, seasonal feed shortages, and feeding nutritionally unbalanced diets contribute to slow growth. Low-cost balanced diets are needed to improve pig performance. In this study, we estimated the nutrient requirements of local pigs on smallholder farms in Kenya and developed balanced low-cost diets using seasonally available local feedstuffs. Diets were formulated to provide pigs with 80 % of the nutrient density in corn and soybean meal-based (reference) diets to minimize the cost per unit of energy and other nutrients. Estimated requirements for starting and growing pigs (8 to 35 kg body weight) were as follows: digestible energy (DE) 2960 kcal/kg of dry matter (DM), standardized ileal digestibility (SID) lysine 5.8 g/kg of DM, calcium 2.8 g/kg of DM, standardized total tract digestible (STTD) phosphorous 1.4 g/kg of DM, and crude protein 85 g/kg of DM. Nutrient requirements of local pigs on smallholder farms in Kenya were lower than those of exotic breed pigs raised in commercial settings. Seasonally available local feedstuffs were used to develop low-cost balanced diets. Twenty-two diets are presented based on season, cost, and feedstuff availability. This study has broad applicability as a case study of an approach that could be applied in other tropical regions in which smallholder pig keeping is practiced and where local feedstuffs for pigs are available seasonally.

  9. Liming Influences Growth and Nutrient Balances in Sugar Maple (Acer saccharum) Seedlings on an Acidic Forest Soil

    Treesearch

    Dudley J. Raynal

    1998-01-01

    Forests in the northeastern US have been limed to mitigate soil acidification and the acidity of surface waters and to improve soil base cation status. Much of the area considered for liming is within the range of sugar maple (Acer saccharum), but there is a poor understanding of how liming influences growth and nutrient balance of this species on...

  10. Including spatial data in nutrient balance modelling on dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.

  11. Balancing the Phosphorus Budget of a Swine Farm: A Case Study

    ERIC Educational Resources Information Center

    Nelson, Nathan O.; Mikkelsen, Robert L.

    2005-01-01

    Trends in animal production have moved the industry toward large confined animal feeding operations (CAFOs). These CAFOs concentrate large amounts of manure-based nutrients in relatively small areas, which increases the risk of nutrient loss to the surrounding environment. In response to water quality concerns, P-based manure application…

  12. Budgeting of major nutrients and the mitigation options for nutrient mining in semi-arid tropical agro-ecosystem of Tamil Nadu, India using NUTMON model.

    PubMed

    Surendran, U; Rama Subramoniam, S; Raja, P; Kumar, V; Murugappan, V

    2016-04-01

    Mining of nutrients from soil is a major problem in developing countries causing soil degradation and threaten long-term food production. The present study attempts to apply NUTrient MONitoring (NUTMON) model for carrying out nutrient budgeting to assess the stocks and flows of nitrogen (N), phosphorus (P), and potassium (K) in defined geographical unit based on the inputs, viz., mineral fertilizers, manures, atmospheric deposition, and sedimentation, and outputs, viz., harvested crop produces, residues, leaching, denitrification, and erosion losses. The study area covers Coimbatore and Erode Districts, which are potential agricultural areas in western agro-ecological zone of Tamil Nadu, India. The calculated nutrient balances for both the districts at district scale, using NUTMON methodology, were negative for nitrogen (N -3.3 and -10.1 kg ha(-1)) and potassium (K -58.6 and -9.8 kg ha(-1)) and positive for phosphorus (P +14.5 and 20.5 kg ha(-1)). Soil nutrient pool has to adjust the negative balance of N and K; there will be an expected mining of nutrient from the soil reserve. A strategy was attempted for deriving the fertilizer recommendation using Decision Support System for Integrated Fertilizer Recommendation (DSSIFER) to offset the mining in selected farms. The results showed that when DSSIFER recommended fertilizers are applied to crops, the nutrient balance was positive. NUTMON-Toolbox with DSSIFER would serve the purpose on enhancing soil fertility, productivity, and sustainability. The management options to mitigate nutrient mining with an integrated system approach are also discussed.

  13. Guava Waste to Sustain Guava (Psidium guajava) Agroecosystem: Nutrient "Balance" Concepts.

    PubMed

    Souza, Henrique A; Parent, Serge-Étienne; Rozane, Danilo E; Amorim, Daniel A; Modesto, Viviane C; Natale, William; Parent, Leon E

    2016-01-01

    The Brazilian guava processing industry generates 5.5 M Mg guava waste year(-1) that could be recycled sustainably in guava agro-ecosystems as slow-release fertilizer. Our objectives were to elaborate nutrient budgets and to diagnose soil, foliar, and fruit nutrient balances in guava orchards fertilized with guava waste. We hypothesized that (1) guava waste are balanced fertilizer sources that can sustain crop yield and soil nutrient stocks, and (2) guava agroecosystems remain productive within narrow ranges of nutrient balances. A 6-year experiment was conducted in 8-year old guava orchard applying 0-9-18-27-36 Mg ha(-1) guava waste (dry mass basis) and the locally recommended mineral fertilization. Nutrient budgets were compiled as balance sheets. Foliar and fruit nutrient balances were computed as isometric log ratios to avoid data redundancy or resonance due to nutrient interactions and the closure to measurement unit. The N, P, and several other nutrients were applied in excess of crop removal while K was in deficit whatever the guava waste treatment. The foliar diagnostic accuracy reached 93% using isometric log ratios and knn classification, generating reliable foliar nutrient and concentration ranges at high yield level. The plant mined the soil K reserves without any significant effect on fruit yield and foliar nutrient balances involving K. High guava productivity can be reached at lower soil test K and P values than thought before. Parsimonious dosage of fresh guava waste should be supplemented with mineral K fertilizers to recycle guava waste sustainably in guava agroecosystems. Brazilian growers can benefit from this research by lowering soil test P and K threshold values to avoid over-fertilization and using fresh guava waste supplemented with mineral fertilizers, especially K. Because yield was negatively correlated with fruit acidity and Brix index, balanced plant nutrition and fertilization diagnosis will have to consider not only fruit yield targets but also fruit quality to meet requirements for guava processing.

  14. Building beef cow nutritional programs with the 1996 NRC beef cattle requirements model.

    PubMed

    Lardy, G P; Adams, D C; Klopfenstein, T J; Patterson, H H

    2004-01-01

    Designing a sound cow-calf nutritional program requires knowledge of nutrient requirements, diet quality, and intake. Effectively using the NRC (1996) beef cattle requirements model (1996NRC) also requires knowledge of dietary degradable intake protein (DIP) and microbial efficiency. Objectives of this paper are to 1) describe a framework in which 1996NRC-applicable data can be generated, 2) describe seasonal changes in nutrients on native range, 3) use the 1996NRC to predict nutrient balance for cattle grazing these forages, and 4) make recommendations for using the 1996NRC for forage-fed cattle. Extrusa samples were collected over 2 yr on native upland range and subirrigated meadow in the Nebraska Sandhills. Samples were analyzed for CP, in vitro OM digestibility (IVOMD), and DIP. Regression equations to predict nutrients were developed from these data. The 1996NRC was used to predict nutrient balances based on the dietary nutrient analyses. Recommendations for model users were also developed. On subirrigated meadow, CP and IVOMD increased rapidly during March and April. On native range, CP and IVOMD increased from April through June but decreased rapidly from August through September. Degradable intake protein (DM basis) followed trends similar to CP for both native range and subirrigated meadow. Predicted nutrient balances for spring- and summer-calving cows agreed with reported values in the literature, provided that IVOMD values were converted to DE before use in the model (1.07 x IVOMD - 8.13). When the IVOMD-to-DE conversion was not used, the model gave unrealistically high NE(m) balances. To effectively use the 1996NRC to estimate protein requirements, users should focus on three key estimates: DIP, microbial efficiency, and TDN intake. Consequently, efforts should be focused on adequately describing seasonal changes in forage nutrient content. In order to increase use of the 1996NRC, research is needed in the following areas: 1) cost-effective and accurate commercial laboratory procedures to estimate DIP, 2) reliable estimates or indicators of microbial efficiency for various forage types and qualities, 3) improved estimates of dietary TDN for forage-based diets, 4) validation work to improve estimates of DIP and MP requirements, and 5) incorporation of nitrogen recycling estimates.

  15. Carbon and nutrients recycling when leaves falling off: mycorrhizal association matters

    NASA Astrophysics Data System (ADS)

    Zhang, H., II; Lü, X. T.; Hartmann, H.; Han, X.; Trumbore, S.

    2016-12-01

    Root-associated mycorrhizal fungi is being increasingly recognized for their roles in influencing soil carbon (C) storage, plant growth and nutrient cycling, whereas mycorrhizae-mediated C dynamics and nutrient acquisition strategy strongly different. Because of a reinforcing feedback from belowground, how different mycorrhizal plants differ in aboveground nutrient status and recycle from senesced to green leaves remains unknown. Based on a global database of C and nutrients concentrations in plant green and senesced leaves, we further identified plant mycorrhizal types (here focus on arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) plants) for woody species and tested whether mycorrhizal types showing consistent effects in plant nutrient status and recycle. Generally, nutrient resorptions from senesced to green leaves for ECM plants are more conservative, balanced and sensitive to climate compare to AM plants. Specifically, we first found lower nutrients concentrations in green and senesced leaves whereas greater nutrient resorption efficiency (NuR) for ECM vs. AM plants. However, C concentration in green and senesced leaves were significant greater while NuR was lower for ECM plants. Second, compare to that for AM plants, we found a general balanced N:P resorption ratio ( 1) for ECM plants, indicating ECM plants had greater ability to balance their N and P resorption simultaneously. Third, we found NuR in N, P and K (potassium) for ECM plants were sensitive to the variation of MAT and MAP while these for AM plants showed no clear trend. Our results suggested that accounting for the influence of mycorrhizae on C and nutrient dynamics in vegetation models will be critical for predicting ecosystem responses and feedbacks to climate change.

  16. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations usingmore » LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.« less

  17. Guava Waste to Sustain Guava (Psidium guajava) Agroecosystem: Nutrient “Balance” Concepts

    PubMed Central

    Souza, Henrique A.; Parent, Serge-Étienne; Rozane, Danilo E.; Amorim, Daniel A.; Modesto, Viviane C.; Natale, William; Parent, Leon E.

    2016-01-01

    The Brazilian guava processing industry generates 5.5 M Mg guava waste year−1 that could be recycled sustainably in guava agro-ecosystems as slow-release fertilizer. Our objectives were to elaborate nutrient budgets and to diagnose soil, foliar, and fruit nutrient balances in guava orchards fertilized with guava waste. We hypothesized that (1) guava waste are balanced fertilizer sources that can sustain crop yield and soil nutrient stocks, and (2) guava agroecosystems remain productive within narrow ranges of nutrient balances. A 6-year experiment was conducted in 8-year old guava orchard applying 0–9–18–27–36 Mg ha−1 guava waste (dry mass basis) and the locally recommended mineral fertilization. Nutrient budgets were compiled as balance sheets. Foliar and fruit nutrient balances were computed as isometric log ratios to avoid data redundancy or resonance due to nutrient interactions and the closure to measurement unit. The N, P, and several other nutrients were applied in excess of crop removal while K was in deficit whatever the guava waste treatment. The foliar diagnostic accuracy reached 93% using isometric log ratios and knn classification, generating reliable foliar nutrient and concentration ranges at high yield level. The plant mined the soil K reserves without any significant effect on fruit yield and foliar nutrient balances involving K. High guava productivity can be reached at lower soil test K and P values than thought before. Parsimonious dosage of fresh guava waste should be supplemented with mineral K fertilizers to recycle guava waste sustainably in guava agroecosystems. Brazilian growers can benefit from this research by lowering soil test P and K threshold values to avoid over-fertilization and using fresh guava waste supplemented with mineral fertilizers, especially K. Because yield was negatively correlated with fruit acidity and Brix index, balanced plant nutrition and fertilization diagnosis will have to consider not only fruit yield targets but also fruit quality to meet requirements for guava processing. PMID:27621735

  18. Water as an essential nutrient: the physiological basis of hydration.

    PubMed

    Jéquier, E; Constant, F

    2010-02-01

    How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.

  19. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.

    PubMed

    Camarillo, Mary Kay; Stringfellow, William T; Spier, Chelsea L; Hanlon, Jeremy S; Domen, Jeremy K

    2013-10-15

    Anaerobic digestion of manure and other agricultural waste streams with subsequent energy production can result in more sustainable dairy operations; however, importation of digester feedstocks onto dairy farms alters previously established carbon, nutrient, and salinity mass balances. Salt and nutrient mass balance must be maintained to avoid groundwater contamination and salination. To better understand salt and nutrient contributions of imported methane-producing substrates, a mass balance for a full-scale dairy biomass energy project was developed for solids, carbon, nitrogen, sulfur, phosphorus, chloride, and potassium. Digester feedstocks, consisting of thickened manure flush-water slurry, screened manure solids, sudan grass silage, and feed-waste, were tracked separately in the mass balance. The error in mass balance closure for most elements was less than 5%. Manure contributed 69.2% of influent dry matter while contributing 77.7% of nitrogen, 90.9% of sulfur, and 73.4% of phosphorus. Sudan grass silage contributed high quantities of chloride and potassium, 33.3% and 43.4%, respectively, relative to the dry matter contribution of 22.3%. Five potential off-site co-digestates (egg waste, grape pomace, milk waste, pasta waste, whey wastewater) were evaluated for anaerobic digestion based on salt and nutrient content in addition to bio-methane potential. Egg waste and wine grape pomace appeared the most promising co-digestates due to their high methane potentials relative to bulk volume. Increasing power production from the current rate of 369 kW to the design value of 710 kW would require co-digestion with either 26800 L d(-1) egg waste or 60900 kg d(-1) grape pomace. However, importation of egg waste would more than double nitrogen loading, resulting in an increase of 172% above the baseline while co-digestion with grape pomace would increase potassium by 279%. Careful selection of imported co-digestates and management of digester effluent is required to manage salt and nutrient mass loadings and reduce groundwater impacts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Nutrient balance affects foraging behaviour of a trap-building predator

    PubMed Central

    Mayntz, David; Toft, Søren; Vollrath, Fritz

    2009-01-01

    Predator foraging may be affected by previous prey capture, but it is unknown how nutrient balance affects foraging behaviour. Here, we use a trap-building predator to test whether nutrients from previous prey captures affect foraging behaviour. We fed orb-weaving spiders (Zygiella x-notata) prey flies of different nutrient composition and in different amounts during their first instar and measured the subsequent frequency of web building and aspects of web architecture. We found that both the likelihood of web building and the number of radii in the web were affected by prey nutrient composition while prey availability affected capture area and mesh height. Our results show that both the balance of nutrients in captured prey and the previous capture rate may affect future foraging behaviour of predators. PMID:19640870

  1. [Ensure - complete and balanced nutrition, convenient on work].

    PubMed

    Kurenkov, A V; Iuriatin, A A

    2013-01-01

    The work conditions often may compromise a company ability to supply their employees with adequate, hot meals. For heavy labor workers and some office employees it is important to restore energy and nutrients with food, balanced in nutrients. The lack of adequate nutritive support can give a negative impact on different organs functions. One of the main principles of healthy nutrition is - diet must be balanced in nutrients. Which is easy to say, but difficult to implement, especially on some industries. Complete and balanced liquid and ready-to-use nutrition is new trend in nutrition of healthy people who cannot consume optimal diet, and in people with the risk of nutrient deficiencies. One-two packs of Ensure daily can significantly improve a worker ration. 2 and more packs could serve as a real complete and balanced lunch (>or=780 kcal). Also Ensure is easy to store and to deliver in distant places of work and can be recommended for use as a convenient, complete and balanced nutrition on work.

  2. Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense.

    PubMed

    Massad, Tara Joy; Dyer, Lee A; Vega C, Gerardo

    2012-01-01

    One of the goals of chemical ecology is to assess costs of plant defenses. Intraspecific trade-offs between growth and defense are traditionally viewed in the context of the carbon-nutrient balance hypothesis (CNBH) and the growth-differentiation balance hypothesis (GDBH). Broadly, these hypotheses suggest that growth is limited by deficiencies in carbon or nitrogen while rates of photosynthesis remain unchanged, and the subsequent reduced growth results in the more abundant resource being invested in increased defense (mass-balance based allocation). The GDBH further predicts trade-offs in growth and defense should only be observed when resources are abundant. Most support for these hypotheses comes from work with phenolics. We examined trade-offs related to production of two classes of defenses, saponins (triterpenoids) and flavans (phenolics), in Pentaclethra macroloba (Fabaceae), an abundant tree in Costa Rican wet forests. We quantified physiological costs of plant defenses by measuring photosynthetic parameters (which are often assumed to be stable) in addition to biomass. Pentaclethra macroloba were grown in full sunlight or shade under three levels of nitrogen alone or with conspecific neighbors that could potentially alter nutrient availability via competition or facilitation. Biomass and photosynthesis were not affected by nitrogen or competition for seedlings in full sunlight, but they responded positively to nitrogen in shade-grown plants. The trade-off predicted by the GDBH between growth and metabolite production was only present between flavans and biomass in sun-grown plants (abundant resource conditions). Support was also only partial for the CNBH as flavans declined with nitrogen but saponins increased. This suggests saponin production should be considered in terms of detailed biosynthetic pathway models while phenolic production fits mass-balance based allocation models (such as the CNBH). Contrary to expectations based on the two defense hypotheses, trade-offs were found between defenses and photosynthesis, indicating that studies of plant defenses should include direct measures of physiological responses.

  3. Development of a nutritionally balanced pizza as a functional meal designed to meet published dietary guidelines.

    PubMed

    Combet, Emilie; Jarlot, Amandine; Aidoo, Kofi E; Lean, Michael E J

    2014-11-01

    To develop a worked example of product reformulation of a very popular 'junk food' to meet nutritional guidelines for public health in a ready meal. Indicative survey of popular Margherita pizzas, followed by product reformulation, applying dietary guidelines to generate a single-item pizza meal containing 30 % daily amounts of energy and all nutrients. An iterative process was used; first to optimize nutrient balance by adjusting the proportions of bread base, tomato-based sauce and mozzarella topping, then adding ingredients to provide specific nutrients and consumer tasting. Urban areas of contrasting socio-economic status. Untrained unselected adults (n 49) and children (n 63), assessing pizza at tasting stations. Most commercial pizzas provide insufficient information to assess all nutrients and traditional Margherita pizza ingredients provide insufficient Fe, Zn, iodine, and vitamins C and B12. Energy content of the portions currently sold as standard range from 837 to 2351 kJ (200 to 562 kcal), and most exceed 30 % Guideline Daily Amounts for saturated fat and Na when a 2510 kJ (600 kcal) notional meal is considered. The 'nutritionally balanced pizza' provides the required energy for a single-item meal (2510 kJ/600 kcal), with all nutrients within recommended ranges: Na (473 mg, ∼45 % below recommended level), saturated fat (<11 % energy) and dietary fibre (13·7 g). Most adults (77 %) and children (81 %) rated it 'as good as' or 'better than' their usual choice. Nutritional guidelines to reduce chronic diseases can be applied to reformulate 'junk food' ready meals, to improve public health through a health-by-stealth approach without requiring change in eating habits.

  4. Effects of feeding monensin to bred heifers fed in a drylot on nutrient and energy balance

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine if feeding monensin would improve diet digestion, energy and nitrogen balance in bred heifers receiving a limit-fed corn stalk-based diet. Sixteen pregnant Meat Animal Research Center (MARC) III composite heifers were used in a 161 d completely randomized...

  5. Relationship of Consumption of Meals Including Grain, Fish and Meat, and Vegetable Dishes to the Prevention of Nutrient Deficiency: The INTERMAP Toyama Study.

    PubMed

    Koyama, Tatsuya; Yoshita, Katsushi; Sakurai, Masaru; Miura, Katsuyuki; Naruse, Yuchi; Okuda, Nagako; Okayama, Akira; Stamler, Jeremiah; Ueshima, Hirotsugu; Nakagawa, Hideaki

    2016-01-01

    A Japanese-style diet consists of meals that include grain (shushoku), fish and meat (shusai), and vegetable dishes (fukusai). Little is known about the association of such meals (designated well-balanced meals hereafter) with nutrient intake. We therefore examined the frequency of well-balanced meals required to prevent nutrient deficiency. Participants were Japanese people, ages 40 to 59 y, from Toyama, recruited for INTERMAP, in an international population-based study. Each person provided 4 in-depth 24-h dietary recalls (149 men, 150 women). The prevalence of risk ratios of not meeting the Dietary Reference Intakes for Japanese (2015) was calculated. Well-balanced diets were assessed by the Japanese Food Guide Spinning Top. We counted the frequencies of meals in which participants consumed 1.0 or more servings of all 3 dishes categories. We divided the frequency of consumption of well-balanced meals into the following 4 groups: <1.00 time/d, 1.00-1.49 times/d, 1.50-1.74 times/d, and ≥1.75 times/d. Compared with participants in the highest frequency group for well-balanced meals, those who consumed well-balanced meals less than once a day had a higher risk of not meeting the adequate intake for potassium and the recommended dietary allowance for vitamin A. Those who consumed well-balanced meals on average less than 1.50 times per day had a higher risk of not meeting the recommended dietary allowance for calcium and vitamin C. Our results suggest that individuals should on average consume well-balanced meals more than 1.5 times per day to prevent calcium and vitamin C deficiencies.

  6. Nutrient density score of typical Indonesian foods and dietary formulation using linear programming.

    PubMed

    Jati, Ignasius Radix A P; Vadivel, Vellingiri; Nöhr, Donatus; Biesalski, Hans Konrad

    2012-12-01

    The present research aimed to analyse the nutrient density (ND), nutrient adequacy score (NAS) and energy density (ED) of Indonesian foods and to formulate a balanced diet using linear programming. Data on typical Indonesian diets were obtained from the Indonesian Socio-Economic Survey 2008. ND was investigated for 122 Indonesian foods. NAS was calculated for single nutrients such as Fe, Zn and vitamin A. Correlation analysis was performed between ND and ED, as well as between monthly expenditure class and food consumption pattern in Indonesia. Linear programming calculations were performed using the software POM-QM for Windows version 3. Republic of Indonesia, 2008. Public households (n 68 800). Vegetables had the highest ND of the food groups, followed by animal-based foods, fruits and staple foods. Based on NAS, the top ten food items for each food group were identified. Most of the staple foods had high ED and contributed towards daily energy fulfillment, followed by animal-based foods, vegetables and fruits. Commodities with high ND tended to have low ED. Linear programming could be used to formulate a balanced diet. In contrast to staple foods, purchases of fruit, vegetables and animal-based foods increased with the rise of monthly expenditure. People should select food items based on ND and NAS to alleviate micronutrient deficiencies in Indonesia. Dietary formulation calculated using linear programming to achieve RDA levels for micronutrients could be recommended for different age groups of the Indonesian population.

  7. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and P balance. N and P surplus are calculated by difference between input and output in a paddy field. As to nutrient balance in 2015 surplus shows minus value between input as fertilizer and output as rice product. However, by taking account of input via irrigation water as nutrient source, N and P input and output balance with errors by 9% and 14%. Results of long term continuous survey suggest that irrigation water is one of nutrient sources in rice cultivation.

  8. Effects of prey of different nutrient quality on elemental nutrient budgets in Noctiluca scintillans.

    PubMed

    Zhang, Shuwen; Liu, Hongbin; Glibert, Patricia M; Guo, Cui; Ke, Ying

    2017-08-08

    Noctiluca scintillans (Noctiluca) is a cosmopolitan red tide forming heterotrophic dinoflagellate. In this study, we investigated its ingestion, elemental growth yield and excretion when supplied with different quality food (nutrient-balanced, N-limited and P-limited). Total cellular elemental ratios of Noctiluca were nearly homeostatic, but the ratio of its intracellular NH 4 + and PO 4 3- was weakly regulated. Noctiluca thus seems able to differentially allocate N and P to organic and inorganic pools to maintain overall homeostasis, and it regulated its internal N more strongly and efficiently than P. The latter was substantiated by its comparatively stable C:N ratio and compensatory feeding on N-limited prey. Using both starvation experiments and mass balance models, it was found that excretion of C, N, and P by Noctiluca is highly affected by prey nutritional quality. However, based on modeling results, nutrients seem efficiently retained in actively feeding Noctiluca for reproduction rather than directly released as was shown experimentally in starved cells. Moreover, actively feeding Noctiluca tend to retain P and preferentially release N, highlighting its susceptible to P-limitation. Recycling of N and P by Noctiluca may supply substantial nutrients for phytoplankton growth, especially following bloom senescence.

  9. Investigation of nutrient feeding strategies in a countercurrent mixed-acid multi-staged fermentation: development of segregated-nitrogen model.

    PubMed

    Smith, Aaron D; Holtzapple, Mark T

    2010-12-01

    The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Plant-Based Diets: A Physician’s Guide

    PubMed Central

    Hever, Julieanna

    2016-01-01

    Because of the ever-increasing body of evidence in support of the health advantages of plant-based nutrition, there is a need for guidance on implementing its practice. This article provides physicians and other health care practitioners an overview of the myriad benefits of a plant-based diet as well as details on how best to achieve a well-balanced, nutrient-dense meal plan. It also defines notable nutrient sources, describes how to get started, and offers suggestions on how health care practitioners can encourage their patients to achieve goals, adhere to the plan, and experience success. PMID:27400178

  11. Effect of feeding a by-product feed-based silage on nutrients intake, apparent digestibility, and nitrogen balance in sheep.

    PubMed

    Seok, J S; Kim, Y I; Lee, Y H; Choi, D Y; Kwak, W S

    2016-01-01

    Literature is lacking on the effects of feeding by-product feed (BF)-based silage on rumen fermentation parameters, nutrient digestion and nitrogen (N) retention in sheep. Therefore, this study was conducted to determine the effect of replacing rye straw with BF-based silage as a roughage source on ruminal parameters, total-tract apparent nutrient digestibility, and N balance in sheep. The by-product feed silage was composed of spent mushroom substrate (SMS) (45 %), recycled poultry bedding (RPB) (21 %), rye straw (11 %), rice bran (10.8 %), corn taffy residue (10 %), protected fat (1.0 %), bentonite (0.6 %), and mixed microbial additive (0.6 %). Six sheep were assigned randomly to either the control (concentrate mix + rye straw) or a treatment diet (concentrate mix + BF-based silage). Compared with the control diet, feeding a BF-based silage diet resulted in similar ruminal characteristics (pH, acetate, propionate, and butyrate concentrations, and acetate: propionate ratio), higher (p < 0.05) ruminal NH3-N, higher (p < 0.05) ether extract digestibility, similar crude protein digestibility, lower (p < 0.05) dry matter, fiber, and crude ash digestibilities, and higher (p < 0.05) N retention (g/d). The BF-based silage showed similar energy value, higher protein metabolism and utilization, and lower fiber digestion in sheep compared to the control diet containing rye straw.

  12. Economic effect of reducing nitrogen and phosphorus mass balance on Wisconsin and Québec dairy farms.

    PubMed

    Pellerin, D; Charbonneau, E; Fadul-Pacheco, L; Soucy, O; Wattiaux, M A

    2017-10-01

    Our objective was to explore the trade-offs between economic performance (farm net income, FNI) and environmental outcomes (whole-farm P and N balances) of dairy farms in Wisconsin (WI; United States) and Québec (QC; Canada). An Excel-based linear program model (N-CyCLES; nutrient cycling: crops, livestock, environment, and soil) was developed to optimize feeding, cropping, and manure management as a single unit of management. In addition to FNI, P and N balances model outputs included (1) the mix of up to 9 home-grown and 17 purchased feeds for up to 5 animal groups, (2) the mix of up to 5 crop rotations in up to 5 land units and c) the mix of up to 7 fertilizers (solid and liquid manure and 5 commercial fertilizers) to allocate in each land unit. The model was parameterized with NRC nutritional guidelines and regional nutrient management planning rules. Simulations were conducted on a typical WI farm of 107 cows and 151 ha of cropland and, a Southern QC farm of 87 cows and 142 ha of cropland and all results were expressed per kg of fat- and protein-corrected milk (FPCM). In absence of constraints on P and N balances, maximum FNI was 0.12 and 0.11 $/kg of FPCM for WI and QC, respectively, with P and N balances of 1.05 and 14.29 g/kg of FPCM in WI but 0.60 and 15.70 g/kg of FPCM in QC. The achievable reduction (balance at maximum FNI minus balance when the simulation objective was to minimize P or N balance) was 0.31 and 0.54 g of P/kg of FPCM (29 and 89% reduction), but 2.37 and 3.31 g of N/kg of FPCM (17 and 24% reduction) in WI and QC, respectively. Among other factors, differences in animal unit per hectare and reliance on biological N fixation may have contributed to lower achievable reductions of whole-farm balances in WI compared with QC. Subsequent simulations to maximize FNI under increasing constraints on nutrient balances revealed that it was possible to reduce P balance, N balance, and both together by up to 33% without a substantial effect on FNI. Partial reduction in P balance reduced N balance (synergetic effect) in WI, but increased N balance (antagonistic effect) in QC. In contrast, reducing N balance increased P balance in both regions, albeit in different magnitudes. The regional comparison highlighted the importance of site-specific conditions on modeling outcomes. This study demonstrated that even when recommended guidelines are followed for herd nutrition and crop fertilization, the optimization of herd feeding, cropping, and manure spreading as a single unit of management may help identify management options that preserve FNI, while substantially reducing whole-farm nutrient balance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effect of crop rotation on soil nutrient balance and weediness in soddy podzolic organic farming fields

    NASA Astrophysics Data System (ADS)

    Zarina, Livija; Zarina, Liga

    2017-04-01

    The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.

  14. Amoeboid organism solves complex nutritional challenges

    PubMed Central

    Dussutour, Audrey; Latty, Tanya; Beekman, Madeleine; Simpson, Stephen J.

    2010-01-01

    A fundamental question in nutritional biology is how distributed systems maintain an optimal supply of multiple nutrients essential for life and reproduction. In the case of animals, the nutritional requirements of the cells within the body are coordinated by the brain in neural and chemical dialogue with sensory systems and peripheral organs. At the level of an insect society, the requirements for the entire colony are met by the foraging efforts of a minority of workers responding to cues emanating from the brood. Both examples involve components specialized to deal with nutrient supply and demand (brains and peripheral organs, foragers and brood). However, some of the most species-rich, largest, and ecologically significant heterotrophic organisms on earth, such as the vast mycelial networks of fungi, comprise distributed networks without specialized centers: How do these organisms coordinate the search for multiple nutrients? We address this question in the acellular slime mold Physarum polycephalum and show that this extraordinary organism can make complex nutritional decisions, despite lacking a coordination center and comprising only a single vast multinucleate cell. We show that a single slime mold is able to grow to contact patches of different nutrient quality in the precise proportions necessary to compose an optimal diet. That such organisms have the capacity to maintain the balance of carbon- and nitrogen-based nutrients by selective foraging has considerable implications not only for our understanding of nutrient balancing in distributed systems but for the functional ecology of soils, nutrient cycling, and carbon sequestration. PMID:20142479

  15. The Nutritional Geometry of Resource Scarcity: Effects of Lean Seasons and Habitat Disturbance on Nutrient Intakes and Balancing in Wild Sifakas

    PubMed Central

    Irwin, Mitchell T.; Raharison, Jean-Luc; Raubenheimer, David R.; Chapman, Colin A.; Rothman, Jessica M.

    2015-01-01

    Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements) and proportions (nutrient balancing). Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema) at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups’ diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1) lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2) abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3) primates’ within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons. PMID:26061401

  16. Nutrient balances as indicators for sustainability of broiler production systems.

    PubMed

    Kratz, S; Halle, I; Rogasik, J; Schnug, E

    2004-04-01

    1. Flock balances of nitrogen, phosphorus, zinc and copper (N, P, Zn, Cu) were calculated in order to evaluate environmental effects of three different broiler production systems (intensive indoor, free range and organic). 2. Nutrient gain in birds per unit nutrient intake (retention) in intensive indoor production was higher than in free range and organic production. 3. Nutrient surplus relative to nutrient retention was higher in organic production than in free range and intensive indoor production. 4. The main reasons for differences in nutrient efficiency between intensive indoor, free range and organic production were duration of growth period, strain of broilers and feeding strategy. 5. The calculation of whole farm indicators (livestock density, N and P excretions per hectare of farmland) demonstrates how defining system boundaries affects the outcome of an evaluation: organic farms had the smallest livestock densities and the lowest N and P excretions per hectare of farmland. 6. In the efforts to reach a more holistic evaluation of agricultural production systems, the definition of adequate system boundaries must be discussed. In addition to nutrient balances, further indicators of sustainability, such as human and ecological toxicity, should be considered.

  17. Regulation of protein metabolism by glutamine: implications for nutrition and health.

    PubMed

    Xi, Pengbin; Jiang, Zongyong; Zheng, Chuntian; Lin, Yingcai; Wu, Guoyao

    2011-01-01

    Glutamine is the most abundant free alpha-amino acid in plasma and skeletal muscle. This nutrient plays an important role in regulating gene expression, protein turnover, anti-oxidative function, nutrient metabolism, immunity, and acid-base balance. Interestingly, intracellular and extracellular concentrations of glutamine exhibit marked reductions in response to infection, sepsis, severe burn, cancer, and other pathological factors. This raised an important question of whether glutamine may be a key mediator of muscle loss and negative nitrogen balance in critically ill and injured patients. Therefore, since the initial reports in late 1980s that glutamine could stimulate protein synthesis and inhibit proteolysis in rat skeletal muscle, there has been growing interest in the use of this functional amino acid to improve protein balance under various physiological and disease conditions. Although inconsistent results have appeared in the literature regarding a therapeutic role of glutamine in clinical medicine, a majority of studies indicate that supplementing appropriate doses of glutamine to enteral diets or parenteral solutions is beneficial for improving nitrogen balance in animals or humans with glutamine deficiency.

  18. Processes in ranking nutrients of foods in a food data base.

    PubMed

    Khan, A S

    1996-01-01

    Depending on the type of user, it is possible that there are many purposes for retrieval of foods from a computerised nutrient data base. A Dietitian on one occasion may need to come up with a qualified assessment of foods in the process of diet construction so that the process of balancing nutrients for the diet takes less time. On another occasion the dietitian may want to recommend a food for a client which requires knowledge of the standing of that food with respect to one or more of its contents of nutrients. A dietitian is not able to memorise all the foods and their nutrient content. Moreover if the number of foods is many then the dietitian's ability to refer foods according to their standing may become impossible. Ranking foods with respect to their nutrient contents within a reasonable number could be very useful for dietetic purposes. This paper discusses the processes of ranking of foods as high, medium and low only, and proposes guidelines which can be referred to for rejecting inappropriate ranking schemes of foods. The proposed guidelines are based on the results of experiments which are included in this paper.

  19. Changes in nutrient mass balances over time and related drivers for 54 New York State dairy farms.

    PubMed

    Soberon, Melanie A; Cela, Sebastian; Ketterings, Quirine M; Rasmussen, Caroline N; Czymmek, Karl J

    2015-08-01

    Whole-farm nutrient mass balances (NMB) can assist producers in evaluation and monitoring the nutrient status of dairy farms over time. Most of the previous studies that report NMB for dairy farms were conducted over 1 to 3 yr. In this study, annual N, P, and K mass balances were assessed on 54 dairy farms in New York State for 4 to 6 yr between 2005 and 2010 with the objectives to (1) document changes in NMB over time and drivers for change, and (2) identify nutrient use efficiency parameters that predicted the potential for improvement in NMB. The study farms varied in size (42 small, 12 medium and large) and management practices. Phosphorus, K, and 2 N balances (N1 without N2 fixation, and N2 including N2 fixation) were calculated. In general, farms with high initial NMB levels reduced them over time whereas farms with negative NMB tended to increase their NMB, demonstrating a tendency across all farms to move toward more optimal NMB levels over time. Sixty-three to 76% of farms (depending on the nutrient) reduced their NMB per hectare over the 4 to 6 yr, and 55 to 61% of these farms were able to do so while increasing milk production per cow. Across all farms, the overall reduction in NMB per hectare averaged -22kg of N/ha for N1 (29% reduction), -16kg of N/ha for N2 (15% reduction), -4kg of P/ha (36% reduction), and -10kg of K/ha (29% reduction). Change in feed imports was the most important driver for change in N and P balances across farms, whereas adjustments in both feed and fertilizer imports affected the K balances. Key predictors of potential areas for improvement in NMB over time include total nutrient imports, feed imports, animal density, percentage of farm-produced feed and nutrients, and feed nutrient use efficiency. Overall, this study highlights the opportunities of an adaptive management approach that includes NMB assessments to evaluate and monitor changes in nutrient use efficiency and cost-efficiency over time. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Sustainable smallholder intensification through improved water management requires adjusted fertilizer recommendation

    NASA Astrophysics Data System (ADS)

    Gedfew, Muluye; Schmitter, Petra; Nakawuka, Prossie; Tilahun, Seifu A.; Steenhuis, Tammo; Langan, Simon

    2017-04-01

    In Sub-Saharan Africa small scale irrigation is developing rapidly. Whilst emphasis is mainly placed on water resource availability and access for irrigation, less attention is paid to the interaction of water management on nutrient balances. The quality and quantity of irrigation water delivered to the field not only controls the nutrient flow dynamic system in the soil media but also affects production and uptake. The objective of this study is to evaluate the effect of different water management methods on partial nutrient balances in irrigated fields of the Ethiopian highlands. The study was conducted during the dry season of 2016 where farmers cultivated consecutively tomato and pepper. Farmers were grouped into three water management treatments: irrigation based on Time Domain reflect meter (TDR), on the standard crop water requirements (CWR) and the traditional farmers practice (FARM). The average water consumption for tomato in the CWR, TDR and FARM groups were 590 mm, 476 mm and 575 mm, respectively. The comparison of the water use at different stages showed that traditional farmer practice used less water at the initial stage and more water at the maturity stage which influenced the crop yield and the nutrient dynamics of NPK. For pepper, the linkage to the supplemental irrigation was slightly different due to the onset of the rainy season. The average tomato yield obtained in the farmer practice plots was 20.8 Mg ha-1 which was significantly lower than those obtained in the TDR (31.67 Mg ha-1) and the CWR (33.2 Mg ha-1) plots. The average partial nitrogen (N) depletion balance obtained for tomato in the TDR, CWR and FARM treatment were -91 kg ha-1, -151 kg ha-1 and 19 kg ha-1 respectively. For phosphorus (P) the calculated depletion balance was -0.6 kg ha-1, -0.5 kg ha-1, and - 0.2 kg ha-1, respectively whereas for potassium (K) the balances were largely negative (i.e. -284 kg ha-1, -270 kg ha-1 and -97 kg ha-1, respectively). Similar observations were found for pepper. The N and K balances were less negative when farmers used organic fertilizers aside from inorganic fertilizers compared to those farmers who only applied Urea and Di-Ammonium Phosphate (DAP). Furthermore, the largest negative nutrient balances were obtained for the water management leading to the highest crop and water productivity (i.e. CWR). Hence, introducing sustainable water management practices in irrigation requires associated fertilizer recommendations to compensate for the increased yields obtained, avoiding land degradation in the long term.

  1. Effect of feeding sorghum straw based complete rations with different roughage to concentrate ratio on dry matter intake, nutrient utilization, and nitrogen balance in Nellore ram lambs.

    PubMed

    Malisetty, Venkateswarlu; Yerradoddi, Ramana Reddy; Devanaboina, Nagalakshmi; Mallam, Mahender; Mitta, Pavani

    2014-06-01

    An experiment was conducted by feeding sorghum straw (Sorghum bicolor) based complete rations at roughage concentrate ratio 70:30 (CR-I), 60:40 (CR-II), 50:50 (CR-III), and 40:60 (CR-IV) for 180 days to find out suitable ratio of sorghum straw in the complete ration (mash form) on nutrient utilization and nitrogen balance in Nellore ram lambs. The DMI (g/day) increased significantly (P < 0.05) as level of concentrate increased in complete rations. No significant difference was found in digestibilities of proximate nutrients. However, CP digestibility was higher either significantly or nonsignificantly by 2.12, 5.50, and 9.36 %, respectively, in lambs fed with CR-II (P > 0.05), CR-III (P > 0.05), and CR-IV (P < 0.05) rations in comparison to lambs fed with CR-I ration. Furthermore, CP digestibility was higher by 7.09 and 3.66 % in lambs fed with CR-IV ration than those fed with CR-II (P < 0.05) and CR-III (P > 0.05) ration. The average CWC digestibility coefficients were comparable among four rations. The N intake (g/day) was significantly (P < 0.01) different and progressively increased by 31.46, 48.69, and 82.86 % in ram lambs fed with CR-II, CR-III, and CR-IV rations, respectively, in comparison to CR-I ration. The N balance (g/day) was higher either significantly or nonsignificantly by 34.46 (P > 0.05), 133.46 (P < 0.01), and 198.87 % (P < 0.01) with CR-II, CR-III, and CR-IV rations, respectively, in comparison to CR-I ration. Based on results, it is inferred that the level of sorghum straw in complete ration had no effect on digestibility of nutrients barring crude protein in Nellore ram lambs.

  2. The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis

    PubMed Central

    Zheng, Zhi-Liang

    2008-01-01

    The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants. PMID:18167546

  3. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China

    NASA Astrophysics Data System (ADS)

    Wang, Xuejing; Li, Hailong; Zheng, Chunmiao; Yang, Jinzhong; Zhang, Yan; Zhang, Meng; Qi, Zhanhui; Xiao, Kai; Zhang, Xiaolang

    2018-03-01

    As an important nutrient source for coastal waters, submarine groundwater discharge (SGD) has long been largely ignored in Daya Bay, China. In this study, we estimate the fluxes of SGD and associated nutrients into this region using a 224Ra mass balance model and assess the contribution/importance of nutrients by SGD, benthic sediments, local rivers, and atmospheric deposition. The results of 224Ra mass balance show that the estimated SGD ranges from (2.76 ± 1.43) × 106 m3/d to (1.03 ± 0.53) × 107 m3/d with an average of (6.32 ± 2.42) × 106 m3/d, about 16 times the total discharge rate of local rivers. The nutrient loading from SGD is estimated to be (1.05-1.99) × 105 mol/d for NO3-N, (4.04-12.16) × 103 mol/d for DIP, and (3.54-11.35) × 105 mol/d for Si. Among these considered nutrient sources, we find that SGD is the primary source for Si and NO3-N, contributing 68% and 42% of all considered sources, respectively. The atmospheric NO3-N flux is comparable to that from SGD. The local rivers are the most important source for DIP, contributing 75% of all considered sources. SGD with high N:P ratio (NO3-N/DIP) of 37.0 delivers not only a large quantity of nutrients, but also changes nutrient structure in coastal water. Based on a DIP budget, primary productivity is evaluated to be 54-73 mg C/m2 d, in which SGD accounts for approximately 30% of total production. This study indicates that SGD is a key source of nutrients to coastal waters and may cause an obvious change of primary production and nutrient structure in Daya Bay.

  4. [Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation].

    PubMed

    Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua

    2015-09-01

    Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss.

  5. Interannual variability in dissolved inorganic nutrients in northern San Francisco Bay estuary

    USGS Publications Warehouse

    Peterson, D.H.; Smith, R.E.; Hager, S.W.; Harmon, D.D.; Herndon, R.E.; Schemel, L.E.

    1985-01-01

    Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960-1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976-1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores. The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow. ?? 1985 Dr W. Junk Publishers.

  6. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress.

    PubMed

    Liu, Hongyue; Ren, Xiaoqian; Zhu, Jiuzheng; Wu, Xi; Liang, Chanjuan

    2018-05-31

    Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H + -ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H + -ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.

  7. C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yueyang; Rocha, Adrian; Rastetter, Edward

    2016-01-01

    As climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.

  8. Does infection tilt the scales? Disease effects on the mass balance of an invertebrate nutrient recycler.

    PubMed

    Narr, Charlotte F; Frost, Paul C

    2015-12-01

    While parasites are increasingly recognized as important components of ecosystems, we currently know little about how they alter ecosystem nutrient availability via host-mediated nutrient cycling. We examined whether infection alters the flow of nutrients through hosts and whether such effects depend upon host diet quality. To do so, we compared the mass specific nutrient (i.e., nitrogen and phosphorus) release rates, ingestion rates, and elemental composition of uninfected Daphnia to those infected with a bacterial parasite, P. ramosa. N and P release rates were increased by infection when Daphnia were fed P-poor diets, but we found no effect of infection on the nutrient release of individuals fed P-rich diets. Calculations based on the first law of thermodynamics indicated that infection should increase the nutrient release rates of Daphnia by decreasing nutrient accumulation rates in host tissues. Although we found reduced nutrient accumulation rates in infected Daphnia fed all diets, this reduction did not increase the nutrient release rates of Daphnia fed the P-rich diet because infected Daphnia fed this diet ingested nutrients more slowly than uninfected hosts. Our results thus indicate that parasites can significantly alter the nutrient use of animal consumers, which could affect the availability of nutrients in heavily parasitized environments.

  9. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    PubMed

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae).

    PubMed

    Rho, Myung Suk; Lee, Kwang Pum

    2014-12-01

    Geometric analysis of the nutritional regulatory responses was performed on an omnivorous mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) to test whether this beetle had the capacity to balance the intake of protein and carbohydrate. We also identified the pattern of ingestive trade-off employed when the insect was forced to balance the costs of over- and under-ingesting macronutrients. When allowed to mix their diet from two nutritionally imbalanced but complementary foods (protein-biased food: p35:c7 or p28:c5.6; carbohydrate-biased food: p7:c35 or p5.6:c28), beetles of both sexes actively regulated their intake of protein and carbohydrate to a ratio of 1:1. When confined to one of seven nutritionally imbalanced foods (p0:c42, p7:c35, p14:c28, p21:c21, p28:c14, p35:c7 or p42:c0), beetles over-ingested the excessive nutrient from these foods to such an extent that all the points of protein-carbohydrate intake aligned linearly in the nutrient space, a pattern that is characteristic of generalist feeders and omnivores. Under the restricted feeding conditions, males ate more nutrients but were less efficient at retaining their body lipids than females. Body lipid content was higher on carbohydrate-rich foods and was positively correlated with starvation resistance. Our results are consistent with the prediction based on the nutritional heterogeneity hypothesis, which links the nutritional regulatory responses of insects to their diet breadth and feeding ecology. Copyright © 2014. Published by Elsevier Ltd.

  11. Comparison of the nutrient-based standards for school lunches among South Korea, Japan, and Taiwan.

    PubMed

    Kim, Meeyoung; Abe, Satoko; Zhang, Chengyu; Kim, Soyoung; Choi, Jiyu; Hernandez, Emely; Nozue, Miho; Yoon, Jihyun

    2017-01-01

    Nutritional standards are important guidelines for providing students with nutritionally-balanced school meals. This study compared nutrient-based school lunch standards regulated by South Korea, Japan, and Taiwan. The data were collected from relevant literature and websites of each country during September 2014. The number of classification groups of target students was 8, 5, and 5 for South Korea, Japan, and Taiwan, respectively. Gender was considered across all age groups in South Korea but only for high school students in Taiwan. Gender was not considered in Japan. Along with energy, the number of nutrients included in the standards for South Korea, Japan and Taiwan was 9, 12, and 4, respectively. The standards for all three countries included protein and fat among macronutrients. The standards for South Korea and Japan included vitamin A, B-1, B-2, and C, while the standards for Taiwan did not include any vitamins. Calcium was the only mineral commonly included in the three standards. The proportions of recommended daily intakes as reference values for each nutrient differed among the countries. Japan differentiated the proportions among 33%, 40%, or 50%, reflecting the target students' intake status of the respective nutrients. Taiwan differentiated either two-fifths or one-third of the recommended daily intakes. South Korea applied the proportion of recommended daily intake as one-third for all selected nutrients. This study could be valuable information for countries in developing nutrient-based standards for school lunches and for South Korea, Japan, and Taiwan in the process of reforming nutrient-based standards.

  12. Organic Biochar Based Fertilization

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans-Peter; Pandit, Bishnu Hari; Cornelissen, Gerard; Kammann, Claudia

    2017-04-01

    Biochar produced in cost-efficient flame curtain kilns (Kon-Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar-based fertilizers containing between 60-100 kg N, 5-60 kg P2O5 and 60-100 kg K2O, respectively, per ton of biochar. In 21 field trials nutrient-enriched biochars were applied at rates of 0.5 to 2 t ha-1 into the root zone of 13 different annual and perennial crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained the same amounts of nutrients but without biochar. All nutrient-enriched biochar substrates improved yields compared to their respective no-biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5.1% (N=4) higher yields than standard NPK fertilization without biochar. Cow urine-enriched biochar blended with compost resulted on average in 123% ± 76.7% (N=13) higher yields compared to the organic farmer practice with cow urine-blended compost and outcompeted NPK-enriched biochar (same nutrient dose) by 103% ± 12.4% (N=4) on average. 21 field trials robustly revealed that low-dosage root zone application of organic biochar-based fertilizers caused substantial yield increases in rather fertile silt loam soils compared to traditional organic fertilization and to mineral NPK- or NPK-biochar fertilization. This can likely be explained by the nutrient carrier effect of biochar causing a slow nutrient release behavior, more balanced nutrient fluxes and reduced nutrient losses especially when liquid organic nutrients are used for the biochar enrichment. The results promise new pathways for optimizing organic farming and improving on-farm nutrient cycling.

  13. Research on the degradation of tropical arable land soil: Part II. The distribution of soil nutrients in eastern part of Hainan Island

    NASA Astrophysics Data System (ADS)

    Wang, Dengfeng; Wei, Zhiyuan; Qi, Zhiping

    Research on the temporal and spatial distribution of soil nutrients in tropical arable land is very important to promote the tropical sustainable agriculture development. Take the Eastern part of Hainan as research area, applying GIS spatial analysis technique, analyzing the temporal and spatial variation of soil N, P and K contents in arable land. The results indicate that the contents of soil N, P and K were 0.28%, 0.20% and 1.75% respectively in 2005. The concentrations of total N and P in arable land soil increased significantly from 1980s to 2005. The variances in contents of soil nutrients were closely related to the application of chemical fertilizers in recent years, and the uneven distribution of soil nutrient contents was a reflection of fertilizer application in research area. Fertilization can be planned based on the distribution of soil nutrients and the spatial analysis techniques, so as to sustain balance of soil nutrients contents.

  14. Adaptive collective foraging in groups with conflicting nutritional needs

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Charleston, Michael A.; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms. PMID:27152206

  15. Environmental indicators in effluent assessment of rainbow trout (Oncorhynchus mykiss) reared in raceway system through phosphorus and nitrogen.

    PubMed

    Moraes, M A B; Carmo, C F; Tabata, Y A; Vaz-Dos-Santos, A M; Mercante, C T J

    2016-01-01

    The phosphorus and nitrogen discharge via effluent of intensive trout farming system was quantified through the use of environmental indicators. The nutrient loads, the mass balance, the estimated amount of nutrients in feed and the amount of nutrients converted in fish biomass were calculated based on the concentrations of phosphorus (P) and nitrogen (N) in the feed and in the water. Of the offered feed, 24.75 kg were available as P and 99.00 kg as N, of these, 9.32 kg P (38%) and 29.12 kg N (25%) were converted into fish biomass and 15.43 kg P (62%) and 69.88 kg N (75%) were exported via effluent. The loads and the mass balance show the excessive discharge of nutrients via effluent, corroborated by the feed conversion ratio (2.12:1) due to the low efficiency of feed utilization, therefore, it is proposed the use of this zootechnical parameter as environmental indicator. In addition, feed management practices are not adequate, highlighting the low frequency of feeding during the day, excessive amount and low quality of feed offered. These results demonstrate the need for adequate feed management and the need for careful monitoring of effluent.

  16. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance.

    PubMed

    Yang, Jia; Xu, Ming; Zhang, Xuezhi; Hu, Qiang; Sommerfeld, Milton; Chen, Yongsheng

    2011-01-01

    This research examines the life-cycle water and nutrients usage of microalgae-based biodiesel production. The influence of water types, operation with and without recycling, algal species, geographic distributions are analyzed. The results confirm the competitiveness of microalgae-based biofuels and highlight the necessity of recycling harvested water and using sea/wastewater as water source. To generate 1 kg biodiesel, 3726 kg water, 0.33 kg nitrogen, and 0.71 kg phosphate are required if freshwater used without recycling. Recycling harvest water reduces the water and nutrients usage by 84% and 55%. Using sea/wastewater decreases 90% water requirement and eliminates the need of all the nutrients except phosphate. The variation in microalgae species and geographic distribution are analyzed to reflect microalgae biofuel development in the US. The impacts of current federal and state renewable energy programs are also discussed to suggest suitable microalgae biofuel implementation pathways and identify potential bottlenecks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion.

    PubMed

    Xu, Rong; Zhang, Kai; Liu, Pu; Khan, Aman; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2018-01-01

    Anaerobic co-digestion generally results in a higher yield of biogas than mono-digestion, hence co-digestion has become a topic of general interest in recent studies of anaerobic digestion. Compared with mono-digestion, co-digestion utilizes multiple substrates. The balance of substrate nutrient in co-digestion comprises better adjustments of C/N ratio, pH, moisture, trace elements, and dilution of toxic substances. All of these changes could result in positive shifts in microbial community structure and function in the digestion processes and consequent augmentation of biogas production. Nevertheless, there have been few reviews on the interaction of nutrient and microbial community in co-digestions. The objective of this review is to investigate recent achievements and perspectives on the interaction of substrate nutrient balance and microbial community structure and function. This may provide valuable information on the optimization of combinations of substrates and prediction of bioreactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Natural selection for costly nutrient recycling in simulated microbial metacommunities.

    PubMed

    Boyle, Richard A; Williams, Hywel T P; Lenton, Timothy M

    2012-11-07

    Recycling of essential nutrients occurs at scales from microbial communities to global biogeochemical cycles, often in association with ecological interactions in which two or more species utilise each others' metabolic by-products. However, recycling loops may be unstable; sequences of reactions leading to net recycling may be parasitised by side-reactions causing nutrient loss, while some reactions in any closed recycling loop are likely to be costly to participants. Here we examine the stability of nutrient recycling loops in an individual-based ecosystem model based on microbial functional types that differ in their metabolism. A supplied nutrient is utilised by a "source" functional type, generating a secondary nutrient that is subsequently used by two other types-a "mutualist" that regenerates the initial nutrient at a growth rate cost, and a "parasite" that produces a refractory waste product but does not incur any additional cost. The three functional types are distributed across a metacommunity in which separate patches are linked by a stochastic diffusive migration process. Regions of high mutualist abundance feature high levels of nutrient recycling and increased local population density leading to greater export of individuals, allowing the source-mutualist recycling loop to spread across the system. Individual-level selection favouring parasites is balanced by patch-level selection for high productivity, indirectly favouring mutualists due to the synergistic productivity benefits of the recycling loop they support. This suggests that multi-level selection may promote nutrient cycling and thereby help to explain the apparent ubiquity and stability of nutrient recycling in nature.

  19. Whole Farm Nutrient Balance Calculator for New York Dairy Farms

    ERIC Educational Resources Information Center

    Soberon, Melanie A.; Ketterings, Quirine M.; Rasmussen, Caroline N.; Czymmek, Karl J.

    2013-01-01

    Nutrient loss and accumulation as well as associated environmental degradation have been a concern for animal agriculture for many decades. Federal and New York (NY) regulations apply to Concentrated Animal Feeding Operations and a comprehensive nutrient management plan (CNMP) is required for regulated farms. The whole farm nutrient mass balance…

  20. Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition

    USGS Publications Warehouse

    van Huysen, Tiff L.; Perakis, Steven; Harmon, Mark E.

    2016-01-01

    We conclude that litter P concentrations and to some extent soil P may influence litter nutrient dynamics during decomposition, resulting in a convergence of element ratios that reflect the balance of substrate decomposition and microbial nutrient stoichiometry.

  1. Engineering solutions of environmental problems in organic waste handling

    NASA Astrophysics Data System (ADS)

    Briukhanov, A. Y.; Vasilev, E. V.; Shalavina, E. V.; Kucheruk, O. N.

    2017-10-01

    This study shows the urgent need to consider modernization of agricultural production in terms of sustainable development, which takes into account environmental implications of intensive technologies in livestock farming. Some science-based approaches are offered to address related environmental challenges. High-end technologies of organic livestock waste processing were substantiated by the feasibility study and nutrient balance calculation. The technologies were assessed on the basis of best available techniques criteria, including measures such as specific capital and operational costs associated with nutrient conservation and their delivery to the plants.

  2. A hydrolase of trehalose dimycolate induces nutrient influx and stress sensitivity to balance intracellular growth of Mycobacterium tuberculosis

    PubMed Central

    Yang, Yong; Kulka, Kathleen; Montelaro, Ronald C.; Reinhart, Todd A.; Sissons, James; Aderem, Alan; Ojha, Anil K.

    2014-01-01

    Summary Chronic tuberculosis in an immunocompetent host is a consequence of the delicately balanced growth of Mycobacterium tuberculosis (Mtb) in the face of host defense mechanisms. We identify an Mtb enzyme (TdmhMtb) that hydrolyzes the mycobacterial glycolipid trehalose dimycolate and plays a critical role in balancing the intracellular growth of the pathogen. TdmhMtb is induced under nutrient limiting conditions and remodels the Mtb envelope to increase nutrient influx, but concomitantly sensitizes Mtb to stresses encountered in the host. Consistent with this, a ΔtdmhMtb mutant is more resilient to stress and grows to higher levels than wild-type in immunocompetent mice. By contrast, mutant growth is retarded in MyD88−/− mice indicating that TdmhMtb provides a growth advantage to intracellular Mtb in an immunocompromised host. Thus, the effects and counter-effects of TdmhMtb play an important role in balancing intracellular growth of Mtb in a manner that is directly responsive to host innate immunity. PMID:24528862

  3. School lunches v. packed lunches: a comparison of secondary schools in England following the introduction of compulsory school food standards.

    PubMed

    Stevens, Lesley; Nicholas, Jo; Wood, Lesley; Nelson, Michael

    2013-06-01

    To compare food choices and nutrient intakes of pupils taking a school lunch or a packed lunch in eighty secondary schools in England, following the introduction of the food-based and nutrient-based standards for school food. Cross-sectional data collected between October 2010 and April 2011. Pupils' lunchtime food choices were recorded over five consecutive days. Secondary schools, England. A random selection of 5925 pupils having school lunches and 1805 pupils having a packed lunch in a nationally representative sample of eighty secondary schools in England. The differences in the specific types of food and drink consumed by the two groups of pupils are typical of differences between a hot and cold meal. On average, school lunches as eaten contained significantly more energy, carbohydrate, protein, fibre, vitamin A, folate, Fe and Zn than packed lunches, and 8 % less Na. Although neither school lunches nor packed lunches provided the balance of nutrients required to meet the nutrient-based standards (based on about one-third of daily energy and nutrient requirements), school lunches generally had a healthier nutrient profile, with lower Na and percentage of energy from fat, and higher fibre and micronutrient content. These differences were greater than those reported prior to the introduction of compulsory standards for school lunches. In order to ensure more pupils have a healthy lunch, schools could introduce and enforce a packed lunch policy or make school meals the only option at lunchtime.

  4. Ra Tracer-Based Study of Submarine Groundwater Discharge and Associated Nutrient Fluxes into the Bohai Sea, China: A Highly Human-Affected Marginal Sea

    NASA Astrophysics Data System (ADS)

    Liu, Jianan; Du, Jinzhou; Yi, Lixin

    2017-11-01

    Nutrient concentrations in coastal bays and estuaries are strongly influenced by not only riverine input but also submarine groundwater discharge (SGD). Here we estimate the SGD and the fluxes of the associated dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicon (DSi) into the Bohai Sea based on a 226Ra and 228Ra mass balance model. This procedure shows that in the Bohai Sea the average radium activities (dpm 100 L-1) are 42.8 ± 6.3 (226Ra) and 212 ± 41.7 (228Ra) for the surface water and 43.0 ± 6.1 (226Ra) and 216 ± 38.4 (228Ra) for the near-bottom water. According to the 228Ra/226Ra age model, the residence time in the Bohai Sea is calculated to be 1.7 ± 0.8 yrs. The mass balance of 226Ra and 228Ra suggests that the yearly SGD flux into the whole Bohai Sea is (2.0 ± 1.3) × 1011 m3 yr-1, of which the percentage of submarine fresh groundwater discharge (SFGD) to the total SGD is approximately (5.1 ± 4.1)%. However, the DIN and DSi fluxes from SFGD constitute 29% and 10%, respectively, of the total fluxes from the SGD. Moreover, nutrient loads, which exhibit high DIN/DIP from SGD, especially the SFGD, may substantially contribute to the nutrient supplies, resulting in the occurrence of red tide in the Bohai Sea.

  5. The effects of wastewater discharges on the functioning of a small temporarily open/closed estuary

    NASA Astrophysics Data System (ADS)

    Lawrie, Robynne A.; Stretch, Derek D.; Perissinotto, Renzo

    2010-04-01

    Wastewater discharges affect the functioning of small temporarily open/closed estuaries (TOCEs) through two main mechanisms: (1) they can significantly change the water balance by altering the quantity of water inflows, and (2) they can significantly change the nutrient balance and hence the water quality. This study investigated the bio-physical responses of a typical, small TOCE on the east coast of South Africa, the Mhlanga Estuary. This estuary receives significant inflows of treated effluent from upstream wastewater treatment works. Water and nutrient budgets were used together with biological sampling to investigate changes in the functioning of the system. The increase in inflows due to the effluent discharges has significantly increased the mouth breaching frequency. Furthermore, when the mouth closes, the accumulation of nutrients leads to eutrophication and algal blooms. A grey water index, namely the proportion of effluent in the estuary and an indicator of the additional nutrient inputs into the estuary, reached high values (≳50%) during low flow regimes and when the mouth was closed. In these hyper-eutrophic conditions (DIN and DIP concentrations up to 457 μM and 100 μM respectively), field measurements showed that algal blooms occurred within about 14 days following closure of the mouth (chlorophyll-a concentrations up to 375 mg chl-a m -3). Water and nutrient balance simulations for alternative scenarios suggest that further increases in wastewater discharges would result in more frequent breaching events and longer open mouth conditions, but the occurrence of hyper-eutrophic conditions would initially intensify despite more frequent openings. The study indicates how water and nutrient balance simulations can be used in the planning and impact assessment of wastewater treatment facilities.

  6. Nutrient intake and balancing among female Colobus angolensis palliatus inhabiting structurally distinct forest areas: Effects of group, season, and reproductive state.

    PubMed

    Dunham, Noah T; Rodriguez-Saona, Luis E

    2018-06-08

    Understanding intraspecific behavioral and dietary variation is critical for assessing primate populations' abilities to persist in habitats characterized by increasing anthropogenic disturbances. While it is evident that some species exhibit considerable dietary flexibility (in terms of species-specific plant parts) in relation to habitat disturbance, it is unclear if primates are characterized by similar variation and flexibility regarding nutrient intake. This study examined the effects of group, season, and reproductive state on nutrient intake and balancing in adult female Colobus angolensis palliatus in the Diani Forest, Kenya. During July 2014 to December 2015, estimates of nutrient intake were recorded for eight females from three groups inhabiting structurally and ecologically distinct forest areas differing in tree species composition and density. There were differences in metabolizable energy (ME) and macronutrient intakes among groups, seasons, and reproductive states. Most notably, females inhabiting one of the more disturbed forest areas consumed less ME and macronutrients compared to females in the more intact forest area. Contrary to prediction, females in early lactation consumed significantly less ME and macronutrients compared to non-lactating and late lactation females. Despite differences in macronutrient intake, the relative contribution of macronutrients to ME were generally more conservative among groups, seasons, and reproductive states. Average daily intake ratios of non-protein energy to available protein ranged from approximately 3.5:1-4.3:1 among groups. These results indicate that female C. a. palliatus demonstrate a consistent nutrient balancing strategy despite significant intergroup differences in consumption of species-specific plant parts. Data from additional colobine species inhabiting different forest types are required to assess the extent to which nutrient balancing is constrained by phylogeny or is more flexible to local ecological conditions. © 2018 Wiley Periodicals, Inc.

  7. Adaptive dynamics of competition for nutritionally complementary resources: character convergence, displacement, and parallelism.

    PubMed

    Vasseur, David A; Fox, Jeremy W

    2011-10-01

    Consumers acquire essential nutrients by ingesting the tissues of resource species. When these tissues contain essential nutrients in a suboptimal ratio, consumers may benefit from ingesting a mixture of nutritionally complementary resource species. We investigate the joint ecological and evolutionary consequences of competition for complementary resources, using an adaptive dynamics model of two consumers and two resources that differ in their relative content of two essential nutrients. In the absence of competition, a nutritionally balanced diet rarely maximizes fitness because of the dynamic feedbacks between uptake rate and resource density, whereas in sympatry, nutritionally balanced diets maximize fitness because competing consumers with different nutritional requirements tend to equalize the relative abundances of the two resources. Adaptation from allopatric to sympatric fitness optima can generate character convergence, divergence, and parallel shifts, depending not on the degree of diet overlap but on the match between resource nutrient content and consumer nutrient requirements. Contrary to previous verbal arguments that suggest that character convergence leads to neutral stability, coadaptation of competing consumers always leads to stable coexistence. Furthermore, we show that incorporating costs of consuming or excreting excess nonlimiting nutrients selects for nutritionally balanced diets and so promotes character convergence. This article demonstrates that resource-use overlap has little bearing on coexistence when resources are nutritionally complementary, and it highlights the importance of using mathematical models to infer the stability of ecoevolutionary dynamics.

  8. Fertilizer Nitrogen Use, Nitrogen Balance Assessment, and Management Education in the U.S

    NASA Astrophysics Data System (ADS)

    Snyder, C.; Fixen, P.; Bruulsema, T. W.

    2011-12-01

    Farm fertilizer nitrogen (N) consumption has increased since the 1960s in response to demand for food, feed, fiber, and biofuels by the global human family. In the U.S., fertilizer N consumption increased from about 9.1 million metric tons in 1987 to 11.6 million metric tons in 2007. The International Plant Nutrition Institute has recently developed a nutrient geographic information system (NuGIS) to assess the balance of N and other major plant food nutrients in the U.S. on a county and 8-digit hydrologic unit scale. An evaluation of partial N balances across hydrologic regions was made for the five agricultural census years from 1987 to 2007 and showed positive N balances in all regions. General patterns of slightly lower net positive N balances in the principal cropping regions of the Midwest were observed, and varied but positive partial N balances in the lower Mississippi River Ba¬sin and in many other parts of the country were also reflected. It is recognized that highly positive N balances may pose increased risks for N loss to the environment via leaching to groundwater, runoff/drainage to surface waters and coastal areas, and gaseous emissions of N forms such as nitrous oxide (N2O). Greater farmer and practitioner knowledge is needed to allow more intensive and efficient N management of fertilizer and manure N resources on existing agricultural lands. A 4R Nutrient Stewardship approach has been initiated within the industry and the agricultural community in the U.S., and also globally, to help advance and enhance the concept of ecologically intensive nutrient management. A better understanding of partial N balances and crop N use efficiency improvements are necessary to meet societal food, feed, fiber, and biofuel production requirements, while also protecting and preserving natural areas.

  9. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    PubMed

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Slow-Release Fertilizer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research), ZeoponiX, Inc., introduced ZeoPro. This product is used as a fertilizer/soil amendment for golf courses, ball fields, greenhouse and horticultural uses. A combination of superior growth medium and soil conditioner allow for nutrient supplementation and high efficiency delivery of nutrients throughout the plant. ZeoPro provides a balanced nutrient system for major, minor, and trace nutrients.

  11. Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources.

    PubMed

    Tong, Yindong; Bu, Xiaoge; Chen, Junyue; Zhou, Feng; Chen, Long; Liu, Maodian; Tan, Xin; Yu, Tao; Zhang, Wei; Mi, Zhaorong; Ma, Lekuan; Wang, Xuejun; Ni, Jing

    2017-01-05

    Based on a time-series dataset and the mass balance method, the contributions of various sources to the nutrient discharges from the Yangtze River to the East China Sea are identified. The results indicate that the nutrient concentrations vary considerably among different sections of the Yangtze River. Non-point sources are an important source of nutrients to the Yangtze River, contributing about 36% and 63% of the nitrogen and phosphorus discharged into the East China Sea, respectively. Nutrient inputs from non-point sources vary among the sections of the Yangtze River, and the contributions of non-point sources increase from upstream to downstream. Considering the rice growing patterns in the Yangtze River Basin, the synchrony of rice tillering and the wet seasons might be an important cause of the high nutrient discharge from the non-point sources. Based on our calculations, a reduction of 0.99Tg per year in total nitrogen discharges from the Yangtze River would be needed to limit the occurrences of harmful algal blooms in the East China Sea to 15 times per year. The extensive construction of sewage treatment plants in urban areas may have only a limited effect on reducing the occurrences of harmful algal blooms in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nutrient balancing for phytoremediation enhancement of urea manufacturing raw wastewater.

    PubMed

    Yavari, Sara; Malakahmad, Amirhossein; Sapari, Nasiman B; Yavari, Saba; Khan, Eakalak

    2017-11-01

    Application of urea manufacturing wastewater to teak (Tectona grandis) trees, a fast growing tropical timber plants, is an environmentally-friendly and cost-effective alternative for treatment of nitrogen-rich wastewater. However, the plant growth is strongly limited by lack of phosphorus (P) and potassium (K) elements when the plants are irrigated with wastewater containing high concentration of nitrogen (N). A greenhouse experiment was conducted to optimize the efficiency of teak-based remediation systems in terms of nutrient balance. Twelve test solutions consisted of 4 levels of P (95, 190, 570, 1140 mgL -1 ) and 3 levels of K (95, 190, 570 mgL -1 ) with a constant level of N (190 mgL -1 ) were applied to teak seedlings every four days during the study period. Evapotranspiration rate, nutrient removal percentage, leaf surface area, dry weight and nutrient contents of experimental plants were determined and compared with those grown in control solution containing only N (N:P:K = 1:0:0). Teak seedlings grown in units with 1:0.5:1 N:P:K ratio were highly effective at nutrient removal upto 47%, 48% and 49% for N, P and K, respectively. Removal efficiency of teak plants grown in other experimental units decreased with increasing P and K concentrations in test solutions. The lowest nutrient removal and plant growth were recorded in units with 1:6:0.5 N:P:K ratio which received the highest ratio of P to K. The findings indicated that teak seedlings functioned effectively as phytoremediation plants for N-rich wastewater treatment when they were being supplied with proper concentrations of P and K. Copyright © 2017. Published by Elsevier Ltd.

  13. Influence of Mesoscale Eddies on New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    McGillicuddy, D. J., Jr.; Robinson, A. R.; Siegel, D. A.; Jannasch, H. W.; Johnson, R.; Dickey, T. D.; McNeil, J.; Michaels, A. F.; Knap, A. H.

    1998-01-01

    It is problematic that geochemical estimates of new production, that fraction of total primary production in surface waters fueled by externally supplied nutrients, in oligotrophic waters of the open ocean surpass that which can be sustained by the traditionally accepted mechanisms of nutrient supply. In the cam of the Sargasso Sea, for example, these mechanisms account for less than half of the annual nutrient requirement indicated by new production estimates based on three independent transient-tracer techniques. Specifically, approximately one-quarter to one-third of the annual nutrient requirement can be supplied by entrainment into the mixed layer during wintertime convection, with minor contributions from mixing in the thermocline and wind-driven transport (the potentially important role of nitrogen fixation- for which estimates vary by an order of magnitude in this region- is excluded from this budget). Here we present four lines of evidence-eddy-resolving model simulations, high-resolution observations from moored instrumentation, shipboard surveys and satellite data-which suggest that the vertical flux of nutrients induced by the dynamics of mesoscale eddies is sufficient to balance the nutrient budget in the Sargasso Sea.

  14. Estimating nutrient uptake requirements for soybean using QUEFTS model in China

    PubMed Central

    Yang, Fuqiang; Xu, Xinpeng; Wang, Wei; Ma, Jinchuan; Wei, Dan; He, Ping; Pampolino, Mirasol F.; Johnston, Adrian M.

    2017-01-01

    Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear–parabolic–plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha−1 and the linear part was continuing until the yield reached about 60–70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean. PMID:28498839

  15. Effects of dry-rolled or high-moisture corn with twenty-five or forty-five percent wet distillers' grains with solubles on energy metabolism, nutrient digestibility, and macromineral balance in finishing beef steers

    USDA-ARS?s Scientific Manuscript database

    The effects of feeding dry-rolled corn (DRC) or high-moisture corn (HMC) with 25% and 45% wet distillers grains with solubles (WDGS) on energy metabolism, and nutrient and mineral balance were evaluated in 8 finishing beef steers using a replicated Latin square design. The model included the fixed ...

  16. Nutritional analysis and microbiological evaluation of commercially available enteral diets for cats.

    PubMed

    Prantil, Lori R; Markovich, Jessica E; Heinze, Cailin R; Linder, Deborah E; Tams, Todd R; Freeman, Lisa M

    2016-01-01

    To determine the prevalence of nutrients less than or greater than accepted standards in commercially available enteral diets for cats, and to identify contamination incidence in enteral diets for cats. Prospective cross-sectional study. University teaching hospital. Seven commercial enteral diets for cats. Labels were evaluated to determine if diets were intended to be nutritionally complete and balanced. One diet under storage techniques partially representative of clinical conditions was sampled on days 0, 1, 3, 5, and 7 of storage for aerobic bacterial culture. All 7 diets were analyzed for key nutrients and results were compared to Association of American Feed Control Officials (AAFCO) Nutrient Profiles for Adult Cats for maintenance and National Research Council recommended allowance (NRC-RA). From label information, 4 diets were classified as complete and balanced and 3 diets were classified as not complete and balanced. All 7 diets had at least 1 nutrient less than the AAFCO minimums and the NRC-RA. The total number of nutrients less than AAFCO minimums ranged from 3 to 9 (median = 4), with iron, potassium, and manganese being the most common. Concentrations of some nutrients were undetectable. None of the samples tested had a positive aerobic culture at baseline (day 0) or on subsequent samples from days 1, 3, 5, and 7 under any storage condition. None of the diets analyzed met all of the minimum nutrient concentrations. While short-term feeding may not be of concern for an individual patient, clinicians should be aware of potential nutritional limitations when feeding enteral diets to ill or injured cats. © Veterinary Emergency and Critical Care Society 2015.

  17. Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects.

    PubMed

    Schnell, Ronnie W; Vietor, Donald M; Provin, Tony L; Munster, Clyde L; Capareda, Sergio

    2012-01-01

    Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets.

    PubMed

    Luo, Guobin; Xu, Wenbin; Yang, Jinshan; Li, Yang; Zhang, Liyang; Wang, Yizhen; Lin, Cong; Zhang, Yonggen

    2017-05-01

    This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

  19. Inter-individual variation in nutrient balancing in the honeybee (Apis mellifera).

    PubMed

    Reade, Abbie J; Naug, Dhruba

    2016-12-01

    The Geometric Framework approach in nutritional ecology postulates that animals attempt to balance the consumption of different nutrients rather than simply maximizing energetic gain. The intake target with respect to each nutrient maximizes fitness in a specific dimension and any difference between individuals in intake target therefore represents alternative behavioral and fitness maximization strategies. Nutritional interactions are a central component of all social groups and any inter-individual variation in intake target should therefore have a significant influence on social dynamics. Using the honeybee colony as an experimental model, we quantified differences in the carbohydrate intake target of individual foragers using a capillary feeder (CAFE) assay. Our results show that the bees did not simply maximize their net energetic gain, but combined sugar and water in their diet in a way that brought them to an intake target equivalent to a 33% sucrose solution. Although the mean intake target with respect to the nutrients sucrose and water was the same under different food choice regimens, there was significant inter-individual variation in intake target and the manner in which individuals reached this target, a variation which suggests different levels of tolerance to nutrient imbalance. We discuss our results in the context of how colony performance may be influenced by the different nutrient balancing strategies of individual members and how such nutritional constraints could have contributed to the evolution of sociality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    ERIC Educational Resources Information Center

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  1. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. © 2014 American Society for Nutrition.

  2. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be formulated to mitigate DWPA from farm to policy levels.

  3. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning

    PubMed Central

    Joly-Amado, Aurélie; Denis, Raphaël G P; Castel, Julien; Lacombe, Amélie; Cansell, Céline; Rouch, Claude; Kassis, Nadim; Dairou, Julien; Cani, Patrice D; Ventura-Clapier, Renée; Prola, Alexandre; Flamment, Melissa; Foufelle, Fabienne; Magnan, Christophe; Luquet, Serge

    2012-01-01

    Obesity-related diseases such as diabetes and dyslipidemia result from metabolic alterations including the defective conversion, storage and utilization of nutrients, but the central mechanisms that regulate this process of nutrient partitioning remain elusive. As positive regulators of feeding behaviour, agouti-related protein (AgRP) producing neurons are indispensible for the hypothalamic integration of energy balance. Here, we demonstrate a role for AgRP-neurons in the control of nutrient partitioning. We report that ablation of AgRP-neurons leads to a change in autonomic output onto liver, muscle and pancreas affecting the relative balance between lipids and carbohydrates metabolism. As a consequence, mice lacking AgRP-neurons become obese and hyperinsulinemic on regular chow but display reduced body weight gain and paradoxical improvement in glucose tolerance on high-fat diet. These results provide a direct demonstration of a role for AgRP-neurons in the coordination of efferent organ activity and nutrient partitioning, providing a mechanistic link between obesity and obesity-related disorders. PMID:22990237

  4. An integrated decision support system for wastewater nutrient recovery and recycling to agriculture

    NASA Astrophysics Data System (ADS)

    Roy, E. D.; Bomeisl, L.; Cornbrooks, P.; Mo, W.

    2017-12-01

    Nutrient recovery and recycling has become a key research topic within the wastewater engineering and nutrient management communities. Several technologies now exist that can effectively capture nutrients from wastewater, and innovation in this area continues to be an important research pursuit. However, practical nutrient recycling solutions require more than capable nutrient capture technologies. We also need to understand the role that wastewater nutrient recovery and recycling can play within broader nutrient management schemes at the landscape level, including important interactions at the nexus of food, energy, and water. We are developing an integrated decision support system that combines wastewater treatment data, agricultural data, spatial nutrient balance modeling, life cycle assessment, stakeholder knowledge, and multi-criteria decision making. Our goals are to: (1) help guide design decisions related to the implementation of sustainable nutrient recovery technology, (2) support innovations in watershed nutrient management that operate at the interface of the built environment and agriculture, and (3) aid efforts to protect aquatic ecosystems while supporting human welfare in a circular nutrient economy. These goals will be realized partly through the assessment of plausible alternative scenarios for the future. In this presentation, we will describe the tool and focus on nutrient balance results for the New England region. These results illustrate that both centralized and decentralized wastewater nutrient recovery schemes have potential to transform nutrient flows in many New England watersheds, diverting wastewater N and P away from aquatic ecosystems and toward local or regional agricultural soils where they can offset a substantial percentage of imported fertilizer. We will also highlight feasibility criteria and next steps to integrate stakeholder knowledge, economics, and life cycle assessment into the tool.

  5. Diet and nutrient balance of red panda in Nepal.

    PubMed

    Panthi, Saroj; Coogan, Sean C P; Aryal, Achyut; Raubenheimer, David

    2015-10-01

    We identified the winter plant species consumed by red panda in the Dhorpatan Hunting Reserve of eastern Nepal and compared this to the early-summer diet which was determined previously by Panthi et al. (2012). In addition, we estimated the proximate nutritional content of the leaves identified in red panda diet for both seasons, and we used nutritional geometry to explore macronutrient balance of leaves from the two different sampling periods. We identified six different plants in winter scats, which were the same as found in the previously determined early-summer diet. Arundinaria spp. bamboos were the main species found (82.1 % relative frequency), followed by Acer spp. (6.3 %), Betula utilis (4.6 %), Quercus semicarpifolia (3.7 %), Berberis spp. (1.3 %), and lichens (1.0 %), leaving 2.0 % unidentified. Geometric analysis suggested that the macronutrient balance of seasonal diets were similar in nutrient balance to the most frequently consumed Arundinaria spp. Differences in macronutrient balance may indicate seasonal nutrient preferences, such as increased carbohydrate intake in winter for thermogenesis, and increased protein and lipid intake in early summer to support reproduction and lactation; however, these differences may also indicate differences in resource availability. Habitat conserved for red panda in the region should include sufficient Arundinaria spp. as well as lesser consumed plants which may serve as complimentary foods.

  6. Diet and nutrient balance of red panda in Nepal

    NASA Astrophysics Data System (ADS)

    Panthi, Saroj; Coogan, Sean C. P.; Aryal, Achyut; Raubenheimer, David

    2015-10-01

    We identified the winter plant species consumed by red panda in the Dhorpatan Hunting Reserve of eastern Nepal and compared this to the early-summer diet which was determined previously by Panthi et al. (2012). In addition, we estimated the proximate nutritional content of the leaves identified in red panda diet for both seasons, and we used nutritional geometry to explore macronutrient balance of leaves from the two different sampling periods. We identified six different plants in winter scats, which were the same as found in the previously determined early-summer diet. Arundinaria spp. bamboos were the main species found (82.1 % relative frequency), followed by Acer spp. (6.3 %), Betula utilis (4.6 %), Quercus semicarpifolia (3.7 %), Berberis spp. (1.3 %), and lichens (1.0 %), leaving 2.0 % unidentified. Geometric analysis suggested that the macronutrient balance of seasonal diets were similar in nutrient balance to the most frequently consumed Arundinaria spp. Differences in macronutrient balance may indicate seasonal nutrient preferences, such as increased carbohydrate intake in winter for thermogenesis, and increased protein and lipid intake in early summer to support reproduction and lactation; however, these differences may also indicate differences in resource availability. Habitat conserved for red panda in the region should include sufficient Arundinaria spp. as well as lesser consumed plants which may serve as complimentary foods.

  7. Landscape-Scale water balance of cotton fields

    USDA-ARS?s Scientific Manuscript database

    Information on the temporal and spatial distribution of the components of the water balance of a production field is necessary to manage agronomic inputs. Furthermore, factors that determine crop yield require knowledge of the energy, water, nutrient and carbon balance and their interaction. The in...

  8. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    PubMed

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and that these pathways will in turn interface with other well-known nutrient-responsive mechanisms of energy control. © 2017 S. Karger AG, Basel.

  9. Model development for nutrient loading estimates from paddy rice fields in Korea.

    PubMed

    Jeon, Ji-Hong; Yoon, Chun G; Ham, Jong-Hwa; Jung, Kwang-Wook

    2004-01-01

    A field experiment was performed to evaluate water and nutrient balances in paddy rice culture operations during 2001-2002. The water balance analysis indicated that about half (50-60%) of the total outflow was lost by surface drainage, with the remainder occurring by evapotranspiration (490-530 mm). The surface drainage from paddy fields was mainly caused by rainfall and forced-drainage, and in particular, the runoff during early rice culture periods depends more on the forced-drainage due to fertilization practices. Most of the total phosphorus (T-P) inflow was supplied by fertilization at transplanting, while the total nitrogen (T-N) inflow was supplied by the three fertilizations, precipitation. and from the upper paddy field, which comprised 13-33% of the total inflow. Although most of the nutrient outflow was attributed to plant uptake. nutrient loss by surface drainage was substantial, comprising 20% for T-N and 10% for T-P. Water and nutrient balances indicate that reduction of surface drainage from paddy rice fields is imperative for nonpoint source pollution control. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient (T-N and T-P) behavior in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and convenient planning model that could be used to evaluate BMPs of paddy rice fields alone or in combination with other complex watershed models. Application of the PADDIMOD to other paddy rice fields with different agricultural environments might require further calibration and validation.

  10. Plant Nutrient Testing and Analysis in Forest and Conservation Nurseries

    Treesearch

    Thomas D. Landis; Diane L. Haase; R. Kasten Dumroese

    2005-01-01

    Supplying mineral nutrients at the proper rate and in the proper balance has a major effect on seedling growth rate but, more importantly, on seedling quality. In addition, mounting concerns about fertilizer pollution are increasing awareness of the benefits of precision fertilization. Because they reflect actual mineral nutrient uptake, plant tissue tests are the best...

  11. The Nutritional Balancing Act of a Large Herbivore: An Experiment with Captive Moose (Alces alces L)

    PubMed Central

    Felton, Annika M.; Felton, Adam; Raubenheimer, David; Simpson, Stephen J.; Krizsan, Sophie J.; Hedwall, Per-Ola; Stolter, Caroline

    2016-01-01

    The nutrient balancing hypothesis proposes that, when sufficient food is available, the primary goal of animal diet selection is to obtain a nutritionally balanced diet. This hypothesis can be tested using the Geometric Framework for nutrition (GF). The GF enables researchers to study patterns of nutrient intake (e.g. macronutrients; protein, carbohydrates, fat), interactions between the different nutrients, and how an animal resolves the potential conflict between over-eating one or more nutrients and under-eating others during periods of dietary imbalance. Using the moose (Alces alces L.), a model species in the development of herbivore foraging theory, we conducted a feeding experiment guided by the GF, combining continuous observations of six captive moose with analysis of the macronutritional composition of foods. We identified the moose’s self-selected macronutrient target by allowing them to compose a diet by mixing two nutritionally complementary pellet types plus limited access to Salix browse. Such periods of free choice were intermixed with periods when they were restricted to one of the two pellet types plus Salix browse. Our observations of food intake by moose given free choice lend support to the nutrient balancing hypothesis, as the moose combined the foods in specific proportions that provided a particular ratio and amount of macronutrients. When restricted to either of two diets comprising a single pellet type, the moose i) maintained a relatively stable intake of non-protein energy while allowing protein intakes to vary with food composition, and ii) increased their intake of the food item that most closely resembled the self-selected macronutrient intake from the free choice periods, namely Salix browse. We place our results in the context of the nutritional strategy of the moose, ruminant physiology and the categorization of food quality. PMID:26986618

  12. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    PubMed

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  13. Influence of Mesoscale Eddies on New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    McGillicuddy , Dennis J., Jr.; Robinson, A. R.; Siegel, D. A.; Jannasch, H. W.; Johnson, R.; Dickey, T. D.; McNeil, J.; Michaels, A. F.; Knap, A. H.

    1998-01-01

    It is problematic that geochemical estimates of new production - that fraction of total primary production in surface waters fueled by externally supplied nutrients - in oligotrophic waters of the open ocean surpass that which can be sustained by the traditionally accepted mechanisms of nutrient supply. In the case of the Sargasso Sea, for example, these mechanisms account for less than half of the annual nutrient requirement indicated by new production estimates based on three independent transient-tracer techniques. Specifically, approximately one-quarter to one-third of the annual nutrient requirement can be supplied by entrainment into the mixed layer during wintertime convection, with minor contributions from mixing in the thermocline and wind-driven transport (the potentially important role of nitrogen fixation - for which estimates vary by an order of magnitude in this region - is excluded from this budget). Here we present four lines of evidence - eddy-resolving model simulations, high-resolution observations from moored instrumentation, shipboard surveys, and satellite data - which suggest that the vertical flux of nutrients induced by the dynamics of mesoscale eddies is sufficient to balance the nutrient budget in the Sargasso Sea. Additional information is contained in the original extended abstract.

  14. Evaluation of Nutrient Balances as an Indicator for the Impact of Agriculture on Environment - A comparison of Case Studies from the U.S. and Poland

    USDA-ARS?s Scientific Manuscript database

    Efficient nutrient use is critical to ensure economically and environmentally sound food production while minimizing the impacts of nutrients on ground water, the risk of eutrophication in surface waters, and the emission of trace gases. Increasing concerns for future sustainability have led to deve...

  15. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    NASA Astrophysics Data System (ADS)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower straw in B-S, the symbiotic nitrogen from the vetch crops and the green manure in B-Vm. In the conventional system, fertilization consisted on barley straw and chemical fertilizers at a rate of 80-60-30 kg N-P-K ha-1. Before the organic management, the whole plot was subjected to conventional practices. The highest total yields (and therefore the nutrients extractions) were obtained in B-Vh, followed in this order by B-B, B-S, B-F, B-Vm, B-C and b-b. The crop rotations with the highest yields favoured the microbial activity and the organic residues mineralization, although this caused, eventually, a small decrease in the soil organic matter content. Since the eighth year, this parameter remained more stable until the end of the study period. The highest decrease of soil organic matter took place in B-F and B-S, while the lowest ones happened in B-B, where the great amounts of barley straw incorporated into the soil compensated the organic matter losses. The conversion from conventional to organic management with the incorporation of the straw to the soil implies a re-adaptation process with a decrease of the soil phosphorus level by the increasing soil microbial biomass. A decrease of phosphorus during the first six years of the experiment and a posterior recovery and stabilization of this ratio by the solubilisation of the fixed phosphorus was observed. B-F and B-S presented the lowest soluble phosphorus losses, while B-C the highest ones. In the same way, the potassium level decreased during the first eight years and after that remained constant. The highest decreases took place in the rotations with the biggest amounts of barley straw; this decrease could be explained by the nutrient immobilization caused by the microbial biomass.

  16. Biological potential of extraterrestrial materials. 2. Microbial and plant responses to nutrients in the Murchison carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Mautner, M. N.; Conner, A. J.; Killham, K.; Deamer, D. W.

    1997-01-01

    Meteoritic materials are investigated as potential early planetary nutrients. Aqueous extracts of the Murchison C2 carbonaceous meteorite are utilized as a sole carbon source by microorganisms, as demonstrated by the genetically modified Pseudomonas fluorescence equipped with the lux gene. Nutrient effects are observed also with the soil microorganisms Nocardia asteroides and Arthrobacter pascens that reach populations up to 5 x 10(7) CFU/ml in meteorite extracts, similar to populations in terrestrial soil extracts. Plant tissue cultures of Asparagus officinalis and Solanum tuberosum (potato) exhibit enhanced pigmentation and some enhanced growth when meteorite extracts are added to partial nutrient media, but inhibited growth when added to full nutrient solution. The meteorite extracts lead to large increases in S, Ca, Mg, and Fe plant tissue contents as shown by X-ray fluorescence, while P, K, and Cl contents show mixed effects. In both microbiological and plant tissue experiments, the nutrient and inhibitory effects appear to be best balanced for growth at about 1:20 (extracted solid : H2O) ratios. The results suggest that solutions in cavities in meteorites can provide efficient concentrated biogenic and early nutrient environments, including high phosphate levels, which may be the limiting nutrient. The results also suggest that carbonaceous asteroid resources can sustain soil microbial activity and provide essential macronutrients for future space-based ecosystems.

  17. Effect of ambient temperature on nutrient digestibility and nitrogen balance in sheep fed brown-midrib maize silage.

    PubMed

    Gorniak, Tobias; Meyer, Ulrich; Südekum, Karl-Heinz; Dänicke, Sven

    2014-01-01

    The aim of the experiment was to determine the impact of heat stress on nutrient digestibility and nitrogen balance in sheep fed silages differing in fibre quality. The digestibility trial was conducted at three different ambient temperatures (15°C, 25°C and 35°C for 24 h/d). The tested brown-midrib maize (Bm) silage had a higher nutrient digestibility, except for ether extract (EE) and a higher metabolisable energy (ME) content than the control maize (Con) silage. Nitrogen (N) excretion with faeces was higher but N excretion with urine was lower for sheep fed Bm silage, subsequently N balance did not differ between the two silages. Temperature had no effect on nutrient digestibility, except for crude protein (CP), but N excretion with urine was lower at elevated temperatures. A diet by temperature interaction was found for dry matter (DM) and organic matter (OM) digestibility. When the ambient temperature increased from 15°C to 25°C, the DM and OM digestibility increased in animals fed Con silage, but decreased in animals fed Bm silage. Concomitantly, ME estimated from digestible nutrients was higher for Bm than for Con at 15°C, but no differences were found at 25°C and 35°C. Effects of diet by temperature interaction, furthermore, were observed for EE and CP digestibility. Therefore, forage quality has to be considered when feeding heat-stressed animals.

  18. Mass balance of nitrogen and potassium in urban groundwater in Central Africa, Yaounde/Cameroon.

    PubMed

    Kringel, R; Rechenburg, A; Kuitcha, D; Fouépé, A; Bellenberg, S; Kengne, I M; Fomo, M A

    2016-03-15

    Mass flow of nutrients from innumerous latrines and septic tanks was assessed to best describe the groundwater quality situation in the urban environment of Yaounde. 37 groundwater samples were taken at the end of dry season 2012 and analysed for nutrient related (NO3(-), NH4(+), NO2(-), K(+), Cl(-), HPO4(2-) and TOC) and physico-chemical ambient parameters. A survey on waste water discharge close to water points constrained point sources from sanitation. The results showed that the median of nitrate concentration exceeds the WHO limit. We realized that EC increases from the geogenic background to very high levels in the urban area within short distance, suggesting anthropogenic input. Dug wells showed nitrate and ammonium in equivalent concentrations, indicating incomplete nitrification and mandating their inclusion into water type classification. The mass turnover of nutrients in urban groundwater scales high in comparison to national statistical figures on fertilizer import for 2012. A mass N,K balance for infiltration water overestimates observed concentrations by a factor of 4.5. The marked balance gap is attributed to dynamic non-equilibrium between input and output. Unresolved questions like a) urban sanitation, b) hygiene & health and c) environmental protection urgently call for closing the nutrient cycle. In the light of Cameroonian strategies on rural development, tackling the groundwater nutrient, urban agriculture, food--NEXUS might partially restore urban and periurban ecosystem services under economical constraints and thus improve living conditions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila

    PubMed Central

    Hentze, Julie L.; Carlsson, Mikael A.; Kondo, Shu; Nässel, Dick R.; Rewitz, Kim F.

    2015-01-01

    Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in Drosophila, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both the insulin and AKH producing cells. Silencing of Dar-2 in these cells results in changes in gene expression and physiology associated with reduced DILP and AKH signaling and animals lacking AstA accumulate high lipid levels. This suggests that AstA is regulating the balance between DILP and AKH, believed to be important for the maintenance of nutrient homeostasis in response to changing ratios of dietary sugar and protein. Furthermore, AstA and Dar-2 are regulated differentially by dietary carbohydrates and protein and AstA-neuronal activity modulates feeding choices between these types of nutrients. Our results suggest that AstA is involved in assigning value to these nutrients to coordinate metabolic and feeding decisions, responses that are important to balance food intake according to metabolic needs. PMID:26123697

  20. Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda.

    PubMed

    Ebanyat, Peter; de Ridder, Nico; de Jager, Andre; Delve, Robert J; Bekunda, Mateete A; Giller, Ken E

    2010-07-01

    Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems' sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise the diversity and heterogeneity between farms to ensure efficient use of these external inputs.

  1. Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda

    PubMed Central

    de Ridder, Nico; de Jager, Andre; Delve, Robert J.; Bekunda, Mateete A.; Giller, Ken E.

    2010-01-01

    Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems’ sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise the diversity and heterogeneity between farms to ensure efficient use of these external inputs. PMID:20628448

  2. A method to quantify and value floodplain sediment and nutrient retention ecosystem services

    USGS Publications Warehouse

    Hopkins, Kristina G.; Noe, Gregory; Franco, Fabiano; Pindilli, Emily J.; Gordon, Stephanie; Metes, Marina J.; Claggett, Peter; Gellis, Allen; Hupp, Cliff R.; Hogan, Dianna

    2018-01-01

    Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were −10,439 Mg yr−1 (net export), 57,300 kg-N yr−1(net trapping), and 98 kg-P yr−1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and TP). Using a conservative cost estimate of $12.69 (USD) per kilogram of nitrogen, derived from wastewater treatment costs, the estimated annual value for sediment and nutrient retention on Difficult Run floodplains was $727,226 ± 194,220 USD/yr. Values and differences in floodplain nitrogen retention among stream reaches can be used to target areas for floodplain conservation and stream restoration. The methods presented are scalable and transferable to other areas if appropriate datasets are available for validation.

  3. Reconciling opposing soil processes in row-crop agroecosystems via soil functional zone management

    USDA-ARS?s Scientific Manuscript database

    Sustaining soil productivity in agroecosystems presents a fundamental ecological challenge: nutrient provisioning depends upon aggregate turnover and microbial decomposition of organic matter (SOM); yet to prevent soil depletion these processes must be balanced by those that restore nutrients and SO...

  4. Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China.

    PubMed

    Wu, Hailong; Huo, Yuanzi; Han, Fang; Liu, Yuanyuan; He, Peimin

    2015-02-15

    A cage experiment using the red alga Gracilaria chouae co-cultured with the black seabream Sparus macrocephalus in Xiangshan Bay, China was conducted to measure the nutrient flux of the integrated multi-trophic aquaculture (IMTA) system. Results showed that trash fish were the main nutrient input contributor and adult fish were the main nutrient output contributor in the system. Contents of N and P in adult fish accounted for 54.45% and 59.48% of N and P in trash fish and fry, which suggests that 45.55% of N and 40.52% of P generated by fish farming were released into to the water. G. chouae proved to be an efficient bioremediation species in this IMTA system. To balance the excess nutrients generated by the system, 231.09 kg of seedlings should be cultured and 5315.07 kg of adult seaweed should be harvested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size

    PubMed Central

    Peter, Kalista Higini; Sommer, Ulrich

    2015-01-01

    Cell size is one of the ecologically most important traits of phytoplankton. The cell size variation is frequently related to temperature and nutrient limitation. In order to disentangle the role of both factors, an experiment was conducted to determine the possible interactions of these factors. Baltic Sea water containing the natural plankton community was used. We performed a factorial combined experiment of temperature, type of nutrient limitation (N vs. P), and strength of nutrient limitation. The type of nutrient limitation was manipulated by altering the N:P ratio of the medium (balanced, N and P limitation) and strength by the dilution rate (0% and 50%) of the semicontinuous cultures. The negative effect of temperature on cell size was strongest under N limitation, intermediate under P limitation, and weakest when N and P were supplied at balanced ratios. However, temperature also influenced the intensity of nutrient imitation, because at higher temperature there was a tendency for dissolved nutrient concentrations to be lower, while the C:N or C:P ratio being higher…higher at identical dilution rates and medium composition. Analyzing the response of cell size to C:N ratios (as index of N limitation) and C:P ratios (as index of P limitation) indicated a clear dominance of the nutrient effect over the direct temperature effect, although the temperature effect was also significant. PMID:25798219

  6. Specific Roles for 17ß-Estradiol versus Gonad Development in Nutrient Partitioning and Regulation of Nutrient- and Growth-Related Mechanisms During Sexual Maturation in Rainbow Trout

    USDA-ARS?s Scientific Manuscript database

    The contribution of sex steroids to nutrient partitioning and energy balance during gonad development was studied in rainbow trout (Oncorhynchus mykiss). Nineteen month old triploid (3N) female rainbow trout were fed a diet supplemented with 17ß-estradiol (E2) at 30 mg steroid/kg diet for a 1 month...

  7. Yield and Nutrient Removal by Whole-Tree Harvest of a Young Bottomland Hardwood Stand

    Treesearch

    John K. Francis

    1984-01-01

    The yield and nutrient withdrawal by whole-tree harvest of young bottomland hardwoods has heretofore been unknown. In this study of intensive harvest, samples of chipped whole trees and soil from 16 test plots were analyzed for nutrient content. Eighty-two percent of the stems and 59 percent of the dry weight were green ash. The balance was divided among a number of...

  8. Identifying external nutrient reduction requirements and potential in the hypereutrophic Lake Taihu Basin, China.

    PubMed

    Peng, Jiao-Ting; Zhu, Xiao-Dong; Sun, Xiang; Song, Xiao-Wei

    2018-04-01

    Reducing external nutrient loads is the first step for controlling eutrophication. Here, we identified external nutrient reduction requirements and potential of strategies for achieving reductions to remediate a eutrophic water body, Lake Taihu, China. A mass balance approach based on the entire lake was used to identify nutrient reduction requirements; an empirical export coefficient approach was introduced to estimate the nutrient reduction potential of the overall program on integrated regulation of Taihu Lake Basin (hereafter referred to as the "Guideline"). Reduction requirements included external total nitrogen (TN) and total phosphorus (TP) loads, which should be reduced by 41-55 and 25-50%, respectively, to prevent nutrient accumulation in Lake Taihu and to meet the planned water quality targets. In 2010, which is the most seriously polluted calendar year during the 2008-2014 period, the nutrient reduction requirements were estimated to be 36,819 tons of N and 2442 tons of P, and the potential nutrient reduction strategies would reduce approximately 25,821 tons of N and 3024 tons of P. Since there is a net N remaining in the reduction requirements, it should be the focus and deserves more attention in identifying external nutrient reduction strategies. Moreover, abatement measures outlined in the Guideline with high P reduction potential required large monetary investments. Achieving TP reduction requirement using the cost-effective strategy costs about 80.24 million USD. The design of nutrient reduction strategies should be enacted according to regional and sectoral differences and the cost-effectiveness of abatement measures.

  9. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems.

    PubMed

    Kjerstadius, H; Haghighatafshar, S; Davidsson, Å

    2015-01-01

    In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.

  10. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.

    PubMed

    Jiang, Yueyang; Rastetter, Edward B; Shaver, Gaius R; Rocha, Adrian V; Zhuang, Qianlai; Kwiatkowski, Bonnie L

    2017-01-01

    To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO 2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO 2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation. © 2016 by the Ecological Society of America.

  11. Context-dependency in the effects of nutrient loading and consumers on the availability of space in marine rocky environments.

    PubMed

    Bulleri, Fabio; Russell, Bayden D; Connell, Sean D

    2012-01-01

    Enhanced nutrient loading and depletion of consumer populations interact to alter the structure of aquatic plant communities. Nonetheless, variation between adjacent habitats in the relative strength of bottom-up (i.e. nutrients) versus top-down (i.e. grazing) forces as determinants of community structure across broad spatial scales remains unexplored. We experimentally assessed the importance of grazing pressure and nutrient availability on the development of macroalgal assemblages and the maintenance of unoccupied space in habitats differing in physical conditions (i.e. intertidal versus subtidal), across regions of contrasting productivity (oligotrophic coasts of South Australia versus the more productive coasts of Eastern Australia). In Eastern Australia, grazers were effective in maintaining space free of macroalgae in both intertidal and subtidal habitats, irrespective of nutrient levels. Conversely, in South Australia, grazers could not prevent colonization of space by turf-forming macroalgae in subtidal habitats regardless of nutrients levels, yet in intertidal habitats removal of grazers reduced unoccupied space when nutrients were elevated. Assessing the effects of eutrophication in coastal waters requires balancing our understanding between local consumer pressure and background oceanographic conditions that affect productivity. This broader-based understanding may assist in reconciling disproportionately large local-scale variation, a characteristic of ecology, with regional scale processes that are often of greater relevance to policy making and tractability to management.

  12. Is "processed" a four-letter word? The role of processed foods in achieving dietary guidelines and nutrient recommendations.

    PubMed

    Dwyer, Johanna T; Fulgoni, Victor L; Clemens, Roger A; Schmidt, David B; Freedman, Marjorie R

    2012-07-01

    This paper, based on the symposium "Is 'Processed' a Four-Letter Word? The Role of Processed Foods in Achieving Dietary Guidelines and Nutrient Recommendations in the U.S." describes ongoing efforts and challenges at the nutrition-food science interface and public health; addresses misinformation about processed foods by showing that processed fruits and vegetables made important dietary contributions (e.g., fiber, folate, potassium, vitamins A and C) to nutrient intake among NHANES 2003-2006 participants, that major sources of vitamins (except vitamin K) were provided by enrichment and fortification and that enrichment and fortification helped decrease the percentage of the population below the Estimated Average Requirement for vitamin A, thiamin, folate, and iron; describes how negative consumer perceptions and consumer confusion about processed foods led to the development of science-based information on food processing and technology that aligns with health objectives; and examines challenges and opportunities faced by food scientists who must balance consumer preferences, federal regulations, and issues surrounding food safety, cost, unintended consequences, and sustainability when developing healthful foods that align with dietary guidelines.

  13. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Brd2 gene disruption causes ‘metabolically healthy’ obesity: Epigenetic and chromatin-based mechanisms that uncouple obesity from Type 2 diabetes

    PubMed Central

    Wang, Fangnian; Deeney, Jude T.; Denis, Gerald V.

    2014-01-01

    Disturbed body energy balance can lead to obesity and obesity-driven diseases such as Type 2 diabetes, which have reached an epidemic level. Evidence indicates that obesity induced inflammation is a major cause of insulin resistance and Type 2 diabetes. Environmental factors, such as nutrients, affect body energy balance through epigenetic or chromatin-based mechanisms. As a bromodomain and external domain family transcription regulator, Brd2 regulates expression of many genes through interpretation of chromatin codes, and participates in the regulation of body energy balance and immune function. In the severely obese state, Brd2 knockdown in mice prevented obesity-induced inflammatory responses, protected animals from Type 2 diabetes, and thus uncoupled obesity from diabetes. Brd2 provides an important model for investigation of the function of transcription regulators and the development of obesity and diabetes; it also provides a possible target to treat obesity and diabetes through modulation of the function of a chromatin code reader. PMID:23374712

  15. Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells

    PubMed Central

    Roth, Therese M.; Chiang, C.-Y. Ason; Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Roth, Caitlin E.; Yamashita, Yukiko M.

    2012-01-01

    Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions. PMID:22357619

  16. Evaluation of phosphorus and nitrogen balances as an indicator for the impact of agriculture on environment a comparison of case studies from Poland and the Mississippi US

    USDA-ARS?s Scientific Manuscript database

    The objective of the research was to quantify the changes of nitrogen (N) and phosphorus (P) balances in Poland and Mississippi (MS). Nutrient balances were calculated as difference between input and output in the agricultural system according to Organisation for Economic Cooperation and Development...

  17. Meat-based enteral nutrition

    NASA Astrophysics Data System (ADS)

    Derevitskay, O. K.; Dydykin, A. S.

    2017-09-01

    Enteral nutrition is widely used in hospitals as a means of nutritional support and therapy for different diseases. Enteral nutrition must fulfil the energy needs of the body, be balanced by the nutrient composition and meet patient’s nutritional needs. Meat is a source of full-value animal protein, vitamins and minerals. On the basis of this research, recipes and technology for a meat-based enteral nutrition product were developed. The product is a ready-to-eat sterilised mixture in the form of a liquid homogeneous mass, which is of full value in terms of composition and enriched with vitamins and minerals, consists of particles with a size of not more than 0.3 mm and has the modified fat composition and rheological characteristics that are necessary for passage through enteral feeding tubes. The study presents experimental data on the content of the main macro- and micro-nutrients in the developed product. The new product is characterised by a balanced fatty acid composition, which plays an important role in correction of lipid metabolism disorders and protein-energy deficiency, and it is capable of satisfying patients’ daily requirements for vitamins and the main macro- and microelements when consuming 1500-2000 ml. Meat-based enteral nutrition can be used in diets as a standard mixture for effective correction of the energy and anabolic requirements of the body and support of the nutritional status of patients, including those with operated stomach syndrome.

  18. On-field study of anaerobic digestion full-scale plants (part I): an on-field methodology to determine mass, carbon and nutrients balance.

    PubMed

    Schievano, Andrea; D'Imporzano, Giuliana; Salati, Silvia; Adani, Fabrizio

    2011-09-01

    The mass balance (input/output mass flows) of full-scale anaerobic digestion (AD) processes should be known for a series of purposes, e.g. to understand carbon and nutrients balances, to evaluate the contribution of AD processes to elemental cycles, especially when digestates are applied to agricultural land and to measure the biodegradation yields and the process efficiency. In this paper, three alternative methods were studied, to determine the mass balance in full-scale processes, discussing their reliability and applicability. Through a 1-year survey on three full-scale AD plants and through 38 laboratory-scale batch digesters, the congruency of the considered methods was demonstrated and a linear equation was provided that allows calculating the wet weight losses (WL) from the methane produced (MP) by the plant (WL=41.949*MP+20.853, R(2)=0.950, p<0.01). Additionally, this new tool was used to calculate carbon, nitrogen, phosphorous and potassium balances of the three observed AD plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. T...

  20. Developing a year-round objective measure of Colorado rangeland nutrient composition

    USDA-ARS?s Scientific Manuscript database

    A goal for any rangeland grazing operation is to attain an appropriate balance among available forage resources where forage nutrient composition and supplementation (i.e. if needed) meets daily nutritional demands of livestock. To accomplish this on a short-term basis, the producer needs to have in...

  1. Evolving nutritional strategies in the presence of competition: a geometric agent-based model.

    PubMed

    Senior, Alistair M; Charleston, Michael A; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2015-03-01

    Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term 'nutritional latitude'; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts.

  2. Nitrogen isotope and mass balance approach in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin

    2017-04-01

    The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.

  3. Effect of L-carnitine supplementation on growth performance, nutrient utilization, and nitrogen balance of broilers fed with animal fat.

    PubMed

    Murali, P; George, S K; Ally, K; Dipu, M T

    2015-04-01

    This experiment was conducted to evaluate the effect of L-carnitine supplementation on growth performance, nutrient utilization and nitrogen balance in broilers fed with animal fat. 80 day-old Cobb commercial broiler chicks were randomly assigned into two dietary treatment groups with four replicates of ten chicks each. The diets were isonitrogenous and isocaloric. The birds in both the control (T1) and treatment group (T2) were fed with a diet having 5% animal fat, while the treatment group (T2) was supplemented with 900 mg of L-carnitine. The birds were fed with standard broiler starter ration up to 4 weeks of age and finisher ration up to 6 weeks of age. The average body weight (g), cumulative feed intake (g) and cumulative feed conversion ratio belonging to groups T1 and T2 at 6(th) week of age were 2091.25 and 2151.11, 3976.49 and 4171.68, 1.97 and 1.96 respectively. The percentage availability of the nutrients of two experimental rations T1 and T2 was 68.23 and 68.00 for dry matter, 58.72 and 55.98 for crude protein, 73.85 and 71.35 for ether extract, 34.19 and 33.86 for crude fiber, 79.18 and 79.59 for nitrogen free extract, 70.24 and 70.03 for energy efficiency and nitrogen balance (g/day) were 2.35 and 2.39, respectively. This study suggests that the supplementation of 900 mg L-carnitine in diet with added animal fat had no effect on growth performance, nutrient utilization, and nitrogen balance of broilers.

  4. Sequential nutrient uptake as a potential mechanism for phytoplankton to maintain high primary productivity and balanced nutrient stoichiometry

    NASA Astrophysics Data System (ADS)

    Yin, Kedong; Liu, Hao; Harrison, Paul J.

    2017-05-01

    We hypothesize that phytoplankton have the sequential nutrient uptake strategy to maintain nutrient stoichiometry and high primary productivity in the water column. According to this hypothesis, phytoplankton take up the most limiting nutrient first until depletion, continue to draw down non-limiting nutrients and then take up the most limiting nutrient rapidly when it is available. These processes would result in the variation of ambient nutrient ratios in the water column around the Redfield ratio. We used high-resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient NO3- was depleted with excess PO43- and SiO4- remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0. 45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover PO43- continued to be removed, resulting in additional phosphorus storage by phytoplankton. The N : P ratios at the nutricline in vertical profiles responded differently to mixing events. Field incubation of seawater samples also demonstrated the sequential uptake of NO3- (the most limiting nutrient) and then PO43- and SiO4- (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of NO3- (or pulsed regenerated NH4). Thus, phytoplankton are able to maintain high productivity and balance nutrient stoichiometry by taking advantage of vigorous mixing regimes with the capacity of the stoichiometric plasticity. To our knowledge, this is the first study to show the in situ dynamics of continuous vertical profiles of N : P and N : Si ratios, which can provide insight into the in situ dynamics of nutrient stoichiometry in the water column and the inference of the transient status of phytoplankton nutrient stoichiometry in the coastal ocean.

  5. LINKING GREAT WATERSHEDS WITH LAKE MICHIGAN: THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance Study -- which is focusing on atrazine, PCBs, nutrients, suspended solids, trans-nonachlor, and mercury. The relative contribution of contaminants to Lake Michigan will be examined for all major watersheds in the basin. - - - Further ...

  6. LAKE MICHIGAN MASS BALANCE STUDY: PROGNOSIS FOR PCBS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study was conducted to measure and model nutrients, atrazine, PCBs, trans-nonachlor, and mercury to gain a better understanding of the transport and fate of these substances within the system and to aid managers in the environmental decision-making ...

  7. N-P-K balance in a milk production system on a C. nlemfuensis grassland and a biomass bank of P. purpureum CT-115 clone

    NASA Astrophysics Data System (ADS)

    Crespo, G.; Rodriguez, I.; Martinez, O.

    2009-04-01

    In very intensive milk production systems in Europe and America with the use of high amounts of chemical fertilizers, the nutrient recycling models consider the losses by leaching and N volatilization, as well as the hydro physical characteristics of the soil affecting the performance of this element (10; 6). However, in more extensive milk production systems, low input agriculture forming the natural cycle occurring within each farm, is of vital importance to potentate nutrient recycling for a stable animal production. The objective is the determination of the values of N, P and K inputs and outputs in a dairy farm with a sward composed by 60% of C. nlemfuensis and 40% of P. purpureum CT-115, associated with legumes in 28% of the area and the balance of these nutrients in the system using the "Recycling" software proposed by Crespo et al (2007). The grassland covered an area of 53.4 ha, composed by C. nlemfuensis (60%), P. purpureum CT-115 (40%) and L. leucocephala and C. cajan legumes intercropped in 28% of the area. The dairy herd consisted of 114 cows, 35 replacement heifers and 24 calves. There was a milk yield of 100 000 litters and the animals consumed 825 t DM from pastures and 75.1 t DM from other supplementary feeds. Nutrients extracted by pastures, nutrients intake by animals from pastures, symbiotically N fixation by legumes and N, P and K determinations outside the system due to animal production were determined (3-11). Volatilized ammonia, nutrient input and litter accumulated in the paddocks were measured once each season of the year. In the whole system the balance indicates negative values of N, P and K. Out of the total amount of nutrients consumed, animals used only 16 kg N, 5 Kg P and 4 Kg K for milk production, LW gain and calf production, the remainder returned to the system through excretions. Hence, more than 90% of the N and K, and approximately 81% of the P consumed by the animals were recycled to the system through the excretions. These results agree with those reported by Jarvis (1993) and Cadish et al (1994). However, 40% of the excretions occurred in the shade buildings and milking parlours ant thus these nutrients did not recycle in the system. An important internal recycling mechanism, especially for nitrogen and potassium, is their remobilization by the rejected pasture to re-use them for the regrowth activity. This is of particular interest in CT-115 Bank, since stems of CT-115 plants left after grazing remobilize an important amount of these nutrients, guarantee a favourable pasture regrowth (Martinez 1996). The return of all the excretion to the grassland is recommended as well as increasing the area of legumes to attain a satisfactory balance of N, P and K in the system. Further studies must consider maintenance fertilization, nutrient losses due to leaching and denitrification, as well as variation of the stable OM in the soil and the influence of hydro physical properties in the recycling process. The "Recycling" software was effective to determine the balance of nutrients in the dairy farm. Cadish, G., Schunke, R.N & Giller, K.E. 1994. Nitrogen cycling in a pure grass pasture and a grass-legume mixture on a red latosol in Brazil. Tropical Grasslands 28:43. Crespo G. y Rodríguez, I. 2006. Contribución al conocimiento del reciclaje de los nutrientes en el sistema suelo-pasto-animal. Instituto de Ciencia Animal, Editorial EDICA, La Habana, Cuba, 94 pp. Hirata, M., Sugimoto, Y.G & Ueno, M.1991. Use of a mathematical model to evaluate the effects of dung from grazing animals on pasture production. J. Japan Grassld. Sci. 37:303.

  8. Biogeochemical mass balances in a turbid tropical reservoir. Field data and modelling approach

    NASA Astrophysics Data System (ADS)

    Phuong Doan, Thuy Kim; Némery, Julien; Gratiot, Nicolas; Schmid, Martin

    2014-05-01

    The turbid tropical Cointzio reservoir, located in the Trans Mexican Volcanic Belt (TMVB), behaves as a warm monomictic water body (area = 6 km2, capacity 66 Mm3, residence time ~ 1 year). It is strategic for the drinking water supply of the city of Morelia, capital of the state of Michoacán, and for downstream irrigation during the dry season. This reservoir is a perfect example of a human-impacted system since its watershed is mainly composed of degraded volcanic soils and is subjected to high erosion processes and agricultural loss. The reservoir is threatened by sediment accumulation and nutrients originating from untreated waters in the upstream watershed. The high content of very fine clay particles and the lack of water treatment plants lead to serious episodes of eutrophication (up to 70 μg chl. a L-1), high levels of turbidity (Secchi depth < 30 cm) and a long period of anoxia (from May to October). Based on intensive field measurements in 2009 (deposited sediment, benthic chamber, water vertical profiles, reservoir inflow and outflow) we determined suspended sediment (SS), carbon (C), nitrogen (N) and phosphorus (P) mass balances. Watershed SS yields were estimated at 35 t km2 y-1 of which 89-92 % were trapped in the Cointzio reservoir. As a consequence the reservoir has already lost 25 % of its initial storage capacity since its construction in 1940. Nutrient mass balances showed that 50 % and 46 % of incoming P and N were retained by sedimentation, and mainly eliminated through denitrification respectively. Removal of C by 30 % was also observed both by sedimentation and through gas emission. To complete field data analyses we examined the ability of vertical one dimensional (1DV) numerical models (Aquasim biogeochemical model coupled with k-ɛ mixing model) to reproduce the main biogeochemical cycles in the Cointzio reservoir. The model can describe all the mineralization processes both in the water column and in the sediment. The values of the entire mass balance of nutrients and of the mineralization rates (denitrification and aerobic benthic mineralization) calculated from the model fitted well to the field measurements. Furthermore, this analysis indicates that the benthic mineralizations are the dominant processes involved in the nutrients release. This is the first implementation of a biogeochemical model applied to a highly productive reservoir in the TMVB in order to estimate nutrients release from sediments. It could be used for scenarios of reduction of eutrophication in the reservoir. This study provides a good example of the behavior of a small tropical reservoir under intense human pressure and it will help stakeholders to adopt appropriate strategies for the management of turbid tropical reservoirs.

  9. Effects of water addition to total mixed ration on water intake, nutrient digestibility, wool cortisol and blood indices in Corriedale ewes.

    PubMed

    Nejad, Jalil Ghassemi; Kim, Byong-Wan; Lee, Bae-Hun; Kim, Ji-Yung; Sung, Kyung-Il

    2017-10-01

    The objective of this study was to determine the effect of adding water to total mixed ration (TMR) on fresh water intake, nutrient digestibility, wool cortisol, and blood indices in Corriedale ewes under hot and humid conditions. Nine non-pregnant Corriedale ewes (ave. body weight = 41±3.5 kg) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned to three treatment groups according to a triplicate 3×3 Latin Square design for 3 periods of 21 days duration each (9 ewes per treatment, 27 replications). Treatments were TMR (crude protein [CP] = 16.1, total digestible nutrients = 69.1%) moisture levels for 40%, 50%, and 60%. No differences were found in body weight gain among all treatment groups (p>0.05). Nitrogen balance including digestible N, retained N, and urinary and fecal N showed no change among the treatment groups (p>0.05). Fresh water intake was the lower in 50% TMR moisture group than in the other groups (p<0.05). Other than ether extract which was higher in 60% TMR moisture group (p<0.05) the differences among nutrient digestibilities including CP, organic matter, dry matter, neutral detergent fiber, acid detergent fiber, and non-fiber carbohydrate were not significant (p>0.05). No significant difference was observed for serum protein, blood urea nitrogen, glucose, and triglyceride among the treatment groups (p>0.05). Wool and blood cortisol were not different among the treatment groups (p>0.05). Blood hematology including red blood cell, white blood cells, hemoglobin, hematocrit, basophils, and eosinophils were not different among the treatment groups (p>0.05). It is concluded that TMR moisture at 40%, 50%, and 60% had no effects on N balance parameters, and nutrient digestibilities except for the ether extract under hot and humid conditions. Additionally there were no effects on stress conditions include wool cortisol, as well as blood cortisol levels of ewes.

  10. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity

    PubMed Central

    Tang, Lieqi; Cheng, Catherine Y.; Sun, Xiangrong; Pedicone, Alexandra J.; Mohamadzadeh, Mansour; Cheng, Sam X.

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be developed to help in conditioning the gut microenvironment and in maintaining digestive health. PMID:27458380

  11. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity.

    PubMed

    Tang, Lieqi; Cheng, Catherine Y; Sun, Xiangrong; Pedicone, Alexandra J; Mohamadzadeh, Mansour; Cheng, Sam X

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be developed to help in conditioning the gut microenvironment and in maintaining digestive health.

  12. [The role of balanced low-protein diet in inhibition of predialysis chronic kidney disease progression in patients with systemic diseases].

    PubMed

    Milovanov, Iu S; Lysenko, L V; Milovanova, L Iu; Dobrosmyslov, I A

    2009-01-01

    To evaluate the effects of low-protein diet (LPD) balanced by addition of highly energetic mix and essential keto/amino acids on inhibition of renal failure in patients with systemic diseases with predialysis stages of chronic disease of the kidney (CDK). Forty six patients with stage III--IV of CDK in systemic diseases (33 SLE patients and 13 with systemic vasculitis) were randomized into three groups. Group 1 consisted of 18 patients with CDK (10 with stage III and 8 with stage IV). They received LPD (0.6 g/kg/day) with addition of essential keto/amino acids for 24-48 months. Group 2 of 18 CDK patients with the same stages received the same diet but greater amount of vegetable protein (highly purified soya protein) to 0.3 g/kg/day in highly energetic nutrient mixture. Group 3--10 CDK patients (7 with stage III and 3 with stage IV) received free diet. Group 1 and 2 patients received LPD irrespective of the nutrient status assessed basing on anthropometric and other data. Protein consumption and caloric value were estimated by 3-day food diary. Before diet therapy, out of 46 examinees nutrient status was abnormal in 45.7% patients. Both variants of LPD were well tolerated and nutrient status was corrected while the rate of nutritive disorders in group 3 increased 1.5-fold (from 40 to 60%) with progression of renal failure. Intake of LPD diet for at least a year reduced glomerular filtration rate inhibition, especially in addition of highly energetic mixture. Early (predialysis) restriction of diet protein (0.6 g/kg/day) with addition of highly energetic mixture and essential keto/amino acids improves a nutritive status of CDK patients and inhibits GFR decline.

  13. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, Jianan; Du, Jinzhou; Wu, Ying; Liu, Sumei

    2018-04-01

    In this study, we used a 224Ra mass balance model to evaluate the importance of submarine groundwater discharge (SGD) for the budgets of biogenic elements in two major Chinese estuaries: the Pearl River Estuary (PRE) and the Changjiang River Estuary (CRE). The apparent water age in the PRE was estimated to be 4.8 ± 1.1 days in the dry season and 1.8 ± 0.6 days in the wet season using a physical model based on the tidal prism. In the dry season, the water age in the CRE was estimated to be 11.7 ± 3.0 days using the 224Ra/223Ra activities ratios apparent age model. By applying the 224Ra mass balance model, we obtained calculations of the SGD flow in the PRE of (4.5-10) × 108 m3 d-1 (0.23-0.50 m3 m-2 d-1) and (1.2-2.7) × 108 m3 d-1 (0.06-0.14 m3 m-2 d-1) in the dry season and wet season, respectively, and the estimated SGD flux was (4.6-11) × 109 m3 d-1 (0.18-0.45 m3 m-2 d-1) in the dry season of the CRE. In comparison with the nutrient fluxes from the rivers, the SGD-derived nutrient fluxes may play a vital role in controlling the nutrient budgets and stoichiometry in the study areas. The large amount of dissolved inorganic nitrogen and phosphorus fluxes together with high N: P ratios into the PRE and CRE would potentially contribute to eutrophication and the occurrence of red tides along the adjacent waters.

  14. Exploring problems in following the hemodialysis diet, and their relation to energy and nutrient intakes: The Balance Wise Study

    PubMed Central

    St-Jules, DE.; Woolf, K.; Pompeii, M.; Sevick, MA.

    2015-01-01

    Objective To identify the problems experienced by hemodialysis (HD) patients in attempting to follow the HD diet, and their relation to energy and nutrient intakes. Design Cross-sectional analysis of baseline data from the BalanceWise Study. Setting Community-dwelling adults recruited from outpatient HD centers. Subjects After excluding participants with incomplete dietary analyses (n = 50), 140 community-dwelling African American and white (40/60%) men and women (52/48%) on chronic intermittent HD for at least three months (median three years) were included. Intervention Participant responses, on a 5-point Likert scale ranging from “not at all a problem” to “a very important problem for me”, to 34 questions pertaining to potential barriers to following the HD diet in the previous two months were classified as either a problem (1) or not a problem (2–5). Main Outcome Measure Energy and nutrient intakes determined using the Nutrition Data System for Research® based on three, non-consecutive, unscheduled, two-pass 24-hour dietary recalls collected on one dialysis and one non-dialysis weekday, and one non-dialysis weekend day. Results More than half of participants reported having problems related to specific behavioral factors (e.g., feeling deprived), technical difficulties (e.g., tracking nutrients) and physical condition (e.g., appetite), but issues of time and food preparation, and behavioral factors tended to be most deterministic of reported dietary intakes. Longer duration of HD was associated with lower intakes of protein, potassium, and phosphorus (p <0.05). Conclusion Registered dietitian nutritionists should consider issues of time and food preparation, and behavioral factors in their nutrition assessment of HD patients, and should continually monitor HD patients for changes in protein intake that may occur over time. PMID:26586249

  15. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- andmore » intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.« less

  16. Great Lakes water quality scenario models: Operational feasibility -Lake Michigan Mass Balance models

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance models were provided (eutrophication/nutrients, atrazine, mercury, and PCBs) with emphasis on the PCB model post-audit and forecast for Lake Trout. Provided were modeling construct, model description, and primary results. An assessm...

  17. EFFECTS OF AMMONIUM AND NITRATE ON NUTRIENT UPTAKE AND ACTIVITY OF NITROGEN ASSIMILATING ENZYMES IN WESTERN HEMLOCK

    EPA Science Inventory

    Western hemlock seedlings were grown in nutrient solutions with ammonium, nitrate or ammonium plus nitrate as nitrogen sources. he objectives were to examine (1) possible selectivity for ammonium or nitrate as an N source, (2) the maintenance of charge balance during ammonium and...

  18. Enhancing nitrogen use efficiency of cereal crops by optimizing temperature, moisture, balanced nutrients, and oxygen bioavailability

    USDA-ARS?s Scientific Manuscript database

    Enhancement of nutrient use efficiency is imperative for increasing economic returns and reduction of environmental pollution caused by fertilization in crop production systems. In this paper, we have demonstrated at a given soil temperature and nitrogen (N) rate, N loss via ammonia (NH3) emission f...

  19. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes

    USDA-ARS?s Scientific Manuscript database

    Hydroponic production systems grow plants without soil, relying on a circulating solution to provide the necessary nutrients. Maintaining an optimum nutrient balance in this solution is important for maximizing crop growth and yield. Particularly in closed hydroponic systems it is important to monit...

  20. Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters.

    PubMed

    Zheng, Hongli; Liu, Mingzhi; Lu, Qian; Wu, Xiaodan; Ma, Yiwei; Cheng, Yanling; Addy, Min; Liu, Yuhuan; Ruan, Roger

    2018-02-01

    To improve nutrients removal from wastewaters and enhance algal biomass production, piggery wastewater was mixed with brewery wastewaters. The results showed that it was a promising way to cultivate microalga in piggery and brewery wastewaters by balancing the carbon/nitrogen ratio. The optimal treatment condition for the mixed piggery-brewery wastewater using microalga was piggery wastewater mixed with brewery packaging wastewater by 1:5 at pH 7.0, resulting in carbon/nitrogen ratio of 7.9, with the biomass concentration of 2.85 g L -1 , and the removal of 100% ammonia, 96% of total nitrogen, 90% of total phosphorus, and 93% of chemical oxygen demand. The application of the established strategies can enhance nutrient removal efficiency of the wastewaters while reducing microalgal biomass production costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biological growth in bodies with incoherent interfaces

    NASA Astrophysics Data System (ADS)

    Swain, Digendranath; Gupta, Anurag

    2018-01-01

    A general theory of thermodynamically consistent biomechanical-biochemical growth in a body, considering mass addition in the bulk and at an incoherent interface, is developed. The incoherency arises due to incompatibility of growth and elastic distortion tensors at the interface. The incoherent interface therefore acts as an additional source of internal stress besides allowing for rich growth kinematics. All the biochemicals in the model are essentially represented in terms of nutrient concentration fields, in the bulk and at the interface. A nutrient balance law is postulated which, combined with mechanical balances and kinetic laws, yields an initial-boundary-value problem coupling the evolution of bulk and interfacial growth, on the one hand, and the evolution of growth and nutrient concentration on the other. The problem is solved, and discussed in detail, for two distinct examples: annual ring formation during tree growth and healing of cutaneous wounds in animals.

  2. Increased fluxes of shelf-derived materials to the central Arctic Ocean

    PubMed Central

    Kipp, Lauren E.; Charette, Matthew A.; Moore, Willard S.; Henderson, Paul B.; Rigor, Ignatius G.

    2018-01-01

    Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters. PMID:29326980

  3. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    PubMed

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate. 2009 Elsevier Ltd. All rights reserved.

  4. Subterranean Groundwater Nutrient Input to Coastal Oceans and Coral Reef Sustainability

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Street, J. H.

    2003-12-01

    Coral reefs are often referred to as the tropical rain forests of the oceans because of their high productivity and biodiversity. Recent observations in coral reefs worldwide have shown clear degradation in water quality and coral reef health and diversity. The implications of this are severe, including tremendous economic losses mostly though fishing and tourism. Nutrient loading has been implicated as one possible cause for the ecosystem decline. A previously unappreciated potential source of nutrient loading is submarine ground water discharge (SGW). Ground water in many cases has high nutrient content from sewage pollution and fertilizer application for agriculture and landscaping. To better understand the effect of this potential source of nutrient input and degrading water quality, we are exploring the contribution of SGW to the nutrient levels in coral reefs. A key to this approach is determining the amount and source of SGW that flows into the coast as well as its nutrient concentrations. The SGW flux and associated input of chemical dissolved load (nutrient, DOC, trace elements and other contaminants) is quantified using naturally occurring Ra isotopes. Radium isotopes have been shown to be excellent tracers for SGW inputs into estuaries and coastal areas (Moore, 1996; Hussain et al., 1999; Kerst et al., 2000). Measurements of Ra activity within the coral reef, the lagoons and the open waters adjacent to the reef provide valuable information regarding the input of Ra as well as nutrients and possibly pollutant from groundwater discharge. Through this analysis the effect of SGD on the delicate carbon and nutrient balance of the fragile coral reef ecosystem could be evaluated. In addition to quantifying the contribution of freshwater to the nutrient mass balance in the reef, information regarding the length of time a water parcel has remained in the near-shore region over the reef can be estimated using the Ra isotope quartet.

  5. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.

    PubMed

    Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D

    2017-04-03

    The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

  6. Recent advances in primate nutritional ecology.

    PubMed

    Righini, Nicoletta

    2017-04-01

    Nutritional ecology seeks to explain, in an ecological and evolutionary context, how individuals choose, acquire, and process food to satisfy their nutritional requirements. Historically, studies of primate feeding ecology have focused on characterizing diets in terms of the botanical composition of the plants consumed. Further, dietary studies have demonstrated how patch and food choice in relation to time spent foraging and feeding are influenced by the spatial and temporal distribution of resources and by social factors such as feeding competition, dominance, or partner preferences. From a nutritional perspective, several theories including energy and protein-to-fiber maximization, nutrient mixing, and toxin avoidance, have been proposed to explain the food choices of non-human primates. However, more recently, analytical frameworks such as nutritional geometry have been incorporated into primatology to explore, using a multivariate approach, the synergistic effects of multiple nutrients, secondary metabolites, and energy requirements on primate food choice. Dietary strategies associated with nutrient balancing highlight the tradeoffs that primates face in bypassing or selecting particular feeding sites and food items. In this Special Issue, the authors bring together a set of studies focusing on the nutritional ecology of a diverse set of primate taxa characterized by marked differences in dietary emphasis. The authors present, compare, and discuss the diversity of strategies used by primates in diet selection, and how species differences in ecology, physiology, anatomy, and phylogeny can affect patterns of nutrient choice and nutrient balancing. The use of a nutritionally explicit analytical framework is fundamental to identify the nutritional requirements of different individuals of a given species, and through its application, direct conservation efforts can be applied to regenerate and protect specific foods and food patches that offer the opportunity of a nutritionally balanced diet. © 2017 Wiley Periodicals, Inc.

  7. The Effects of Acidification of Drinking Water on Selected Biological Phenomena in Mice.

    DTIC Science & Technology

    1979-05-01

    reduced below 1.8 metabolic acidosis, reduced weight gain, bone resorption, and death occurred in rats and broiler chickens (1, 22, 24, 25, 33, 36). 3...optimum activity, are not affected would further suggest that inhibition of nutrient uptake through suppression of enzymatic digestion is not responsible...and Murphy, F. Effects of Dietary Mineral Acids on Voluntary Food Intake, Digestion , Mineral Metabolism and Acid-Base Balance of Sheep. British

  8. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms

    USGS Publications Warehouse

    Smith, Christopher G.; Swarzenski, Peter W.

    2012-01-01

    A cross-shelf, water-column mass balance of radon-222 (222Rn) provided estimates of submarine groundwater discharge (SGD), which were then used to quantify benthic nutrient fluxes. Surface water and groundwater were collected along a shore-normal transect that extended from Tampa Bay, Florida, across the Pinellas County peninsula, to the 10-m isobath in the Gulf of Mexico. Samples were analyzed for 222Rn and radium-223,224,226 (223,224,226Ra) activities as well as inorganic and organic nutrients. Cross-shore gradients of 222Rn and 223,224,226Ra activities indicate a nearshore source for these isotopes, which mixes with water characterized by low activities offshore. Radon-based SGD rates vary between 2.5 and 15 cm d-1 proximal to the shoreline and decrease offshore. The source of SGD is largely shallow exchange between surface and pore waters, although deeper groundwater cycling may also be important. Enrichment of total dissolved nitrogen and soluble reactive phosphorus in pore water combined with SGD rates results in specific nutrient fluxes comparable to or greater than estuarine fluxes from Tampa Bay. The significance of these fluxes to nearshore blooms of Karenia brevis is highlighted by comparison with prescribed nutrient demands for bloom maintenance and growth. Whereas our flux estimates do not indicate SGD and benthic fluxes as the dominant nutrient source to the harmful algal blooms, SGD-derived loads do narrow the deficit between documented nutrient supplies and bloom demands.

  9. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano

    NASA Astrophysics Data System (ADS)

    McMahon, Ashly; Santos, Isaac R.

    2017-09-01

    While the influence of river inputs on coral reef biogeochemistry has been investigated, there is limited information on nutrient fluxes related to submarine groundwater discharge (SGD). Here, we investigate whether significant saline groundwater-derived nutrient inputs from bird guano drive coral reef photosynthesis and calcification off Heron Island (Great Barrier Reef, Australia). We used multiple experimental approaches including groundwater sampling, beach face transects, and detailed time series observations to assess the dynamics and speciation of groundwater nutrients as they travel across the island and discharge into the coral reef lagoon. Nitrogen speciation shifted from nitrate-dominated groundwater (>90% of total dissolved nitrogen) to a coral reef lagoon dominated by dissolved organic nitrogen (DON; ˜86%). There was a minimum input of nitrate of 2.1 mmol m-2 d-1 into the lagoon from tidally driven submarine groundwater discharge estimated from a radon mass balance model. An independent approach based on the enrichment of dissolved nutrients during isolation at low tide implied nitrate fluxes of 5.4 mmol m-2 d-1. A correlation was observed between nitrate and daytime net ecosystem production and calcification. We suggest that groundwater nutrients derived from bird guano may offer a significant addition to oligotrophic coral reef lagoons and fuel ecosystem productivity and the coastal carbon cycle near Heron Island. The large input of groundwater nutrients in Heron Island may serve as a natural ecological analogue to other coral reefs subject to large nutrient inputs from anthropogenic sources.

  10. New Tools for Managing Agricultural P

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Baker, L. A.; Peterson, H. M.; Ulrich, J.

    2014-12-01

    Best management practices (BMPs) generally focus on retaining nutrients (especially P) after they enter the watershed. This approach is expensive, unsustainable, and has not led to reductions of P pollution at large scales (e.g., Mississippi River). Although source reduction, which results in reducing inputs of nutrients to a watershed, has long been cited as a preferred approach, we have not had tools to guide source reduction efforts at the watershed level. To augment conventional TMDL tools, we developed an "actionable" watershed P balance approach, based largely on watershed-specific information, yet simple enough to be utilized as a practical tool. Interviews with farmers were used to obtain detailed farm management data, data from livestock permits were adjusted based on site visits, stream P fluxes were calculated from 3 years of monitoring data, and expert knowledge was used to model P fluxes through animal operations. The overall P use efficiency. Puse was calculated as the sum of deliberate exports (P in animals, milk, eggs, and crops) divided by deliberate inputs (P inputs of fertilizer, feed, and nursery animals x 100. The crop P use efficiency was 1.7, meaning that more P was exported as products that was deliberately imported; we estimate that this mining would have resulted in a loss of 6 mg P/kg across the watershed. Despite the negative P balance, the equivalent of 5% of watershed input was lost via stream export. Tile drainage, the presence of buffer strips, and relatively flat topography result in dominance of P loads by ortho-P (66%) and low particulate P. This, together with geochemical analysis (ongoing) suggest that biological processes may be at least as important as sediment transport in controlling P loads. We have developed a P balance calculator tool to enable watershed management organizations to develop watershed P balances and identify opportunities for improving the efficiency of P utilization.

  11. Computational Investigation of Environment-Noise Interaction in Single-Cell Organisms: The Merit of Expression Stochasticity Depends on the Quality of Environmental Fluctuations.

    PubMed

    Lück, Anja; Klimmasch, Lukas; Großmann, Peter; Germerodt, Sebastian; Kaleta, Christoph

    2018-01-10

    Organisms need to adapt to changing environments and they do so by using a broad spectrum of strategies. These strategies include finding the right balance between expressing genes before or when they are needed, and adjusting the degree of noise inherent in gene expression. We investigated the interplay between different nutritional environments and the inhabiting organisms' metabolic and genetic adaptations by applying an evolutionary algorithm to an agent-based model of a concise bacterial metabolism. Our results show that constant environments and rapidly fluctuating environments produce similar adaptations in the organisms, making the predictability of the environment a major factor in determining optimal adaptation. We show that exploitation of expression noise occurs only in some types of fluctuating environment and is strongly dependent on the quality and availability of nutrients: stochasticity is generally detrimental in fluctuating environments and beneficial only at equal periods of nutrient availability and above a threshold environmental richness. Moreover, depending on the availability and nutritional value of nutrients, nutrient-dependent and stochastic expression are both strategies used to deal with environmental changes. Overall, we comprehensively characterize the interplay between the quality and periodicity of an environment and the resulting optimal deterministic and stochastic regulation strategies of nutrient-catabolizing pathways.

  12. Carbon balance of a fertile forestry-drained peatland in southern Finland

    NASA Astrophysics Data System (ADS)

    Lohila, Annalea; Korkiakoski, Mika; Tuovinen, Juha-Pekka; Minkkinen, Kari; Penttilä, Timo; Ojanen, Paavo; Launiainen, Samuli; Laurila, Tuomas

    2016-04-01

    Forestry on peatlands is a significant land use form and has been economically important during the last decades particularly in the Nordic countries. While nutrient-poor forests are generally able to maintain their carbon sink status even after drainage, the peat soil at the fertile sites is typically considered as a large carbon dioxide (CO2) source. This means that despite of high timber production capacity, the fertile peatland forests gradually lose their peat carbon store. In addition, many of the nutrient-rich sites emit considerable amount of nitrous oxide (N2O) into the atmosphere. While the current estimates of the greenhouse gas (GHG) balance of forestry-drained peatlands are largely based on soil inventories or on data combining soil GHG fluxes and tree growth litter input measurements and modelling, only few studies have utilized the high-resolution, continuous eddy covariance (EC) data to address the short-term dynamics of the net CO2 fluxes covering both the soil, forest floor vegetation and the trees. Hence, little is known about the factors which control the year-to-year variation in fluxes. Here we present a 5-year dataset of CO2 fluxes measured with the EC method above a nutrient-rich forestry-drained peatland in southern Finland. The site, drained in the beginning of 1970's, is a well growing pine forest with some spruces and birches, the tree volume and carbon fixation rate equaling 8.0 kg C m-2 and 0.273 kg C m-2 yr-1, respectively. The average summer-time water level depth is -50 cm. By combining the gap-filled half-hourly net ecosystem exchange (NEE) data, the tree growth measurements, and the measurements on dissolved organic carbon (DOC) losses and soil methane (CH4) exchange, we will in this presentation estimate the total annual loss of peat carbon of this fertile peatland forest. In addition, using the N2O flux data we will estimate the contribution of different gases to the total GHG balance. Factors controlling the carbon balance and its seasonal and inter-annual variation are discussed.

  13. An optimality framework to predict decomposer carbon-use efficiency trends along stoichiometric gradients

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Capek, P.; Mooshammer, M.; Lindahl, B.; Richter, A.; Santruckova, H.

    2016-12-01

    Litter and soil organic matter decomposers feed on substrates with much wider C:N and C:P ratios then their own cellular composition, raising the question as to how they can adapt their metabolism to such a chronic stoichiometric imbalance. Here we propose an optimality framework to address this question, based on the hypothesis that carbon-use efficiency (CUE) can be optimally adjusted to maximize the decomposer growth rate. When nutrients are abundant, increasing CUE improves decomposer growth rate, at the expense of higher nutrient demand. However, when nutrients are scarce, increased nutrient demand driven by high CUE can trigger nutrient limitation and inhibit growth. An intermediate, `optimal' CUE ensures balanced growth at the verge of nutrient limitation. We derive a simple analytical equation that links this optimal CUE to organic substrate and decomposer biomass C:N and C:P ratios, and to the rate of inorganic nutrient supply (e.g., fertilization). This equation allows formulating two specific hypotheses: i) decomposer CUE should increase with widening organic substrate C:N and C:P ratios with a scaling exponent between 0 (with abundant inorganic nutrients) and -1 (scarce inorganic nutrients), and ii) CUE should increase with increasing inorganic nutrient supply, for a given organic substrate stoichiometry. These hypotheses are tested using a new database encompassing nearly 2000 estimates of CUE from about 160 studies, spanning aquatic and terrestrial decomposers of litter and more stabilized organic matter. The theoretical predictions are largely confirmed by our data analysis, except for the lack of fertilization effects on terrestrial decomposer CUE. While stoichiometric drivers constrain the general trends in CUE, the relatively large variability in CUE estimates suggests that other factors could be at play as well. For example, temperature is often cited as a potential driver of CUE, but we only found limited evidence of temperature effects, although in some subsets of data, temperature and substrate stoichiometry appeared to interact. Based on our results, the optimality principle can provide a solid (but still incomplete) framework to develop CUE models for large-scale applications.

  14. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  15. External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies.

    PubMed

    Bryhn, Andreas C; Dimberg, Peter H; Bergström, Lena; Fredriksson, Ronny E; Mattila, Johanna; Bergström, Ulf

    2017-01-30

    Identifying the main sources of nutrient loading is a key factor for efficient mitigation of eutrophication. This study has investigated the pathways of external nutrient loading to 656 coastal water bodies along the entire Swedish coastline. The studied water bodies have been delineated to meet requirements in the European Union's Water Framework Directive, and recent status assessments have shown that 57% of them fail to attain good or high ecological status with respect to nutrients. The analysis in the study was performed on data from mass-balance based nutrient budgets computed using the modelling framework Vattenwebb. The external nutrient contribution from the sea to the water bodies was highly variable, ranging from about 1% to nearly 100%, but the median contribution was >99% of the total external loading regarding both nitrogen and phosphorus. External loading from the atmosphere and local catchment area played a minor role in general. However, 45 coastal water bodies received >25% of the external nitrogen and phosphorus from their catchments. Loading from land typically peaked in April following ice-break and snow melting and was comparatively low during summer. The results indicate that for many eutrophicated Swedish coastal water bodies, nutrient abatement is likely to be optimally effective when potential measures in all of the catchment area of the concerned sea basin are considered. Local-scale mitigation in single water bodies will likely be locally effective only in the small proportion of areas where water and thereby also nutrient input from the catchment is high compared to the influx from the sea. Future studies should include nutrient reduction scenarios in order to refine these conclusions and to identify relevant spatial scales for coastal eutrophication mitigation measures from a water body perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of nutrients. The experiment required a specific geometry for the acquisition of ERT data using the heat-pulse water-content sensor's steel needles as electrodes. ERT data were analyzed using the sensed water contents and deriving pore-water resistivities using Archie's law. This design should provide a more optimal root-zone environment by maintaining a more uniform water content and on-demand supply of water than designs with one particle size at all column heights. The monitoring capability offers an effective means to describe the relationship between root-system performance and plant growth.

  17. Evolving Nutritional Strategies in the Presence of Competition: A Geometric Agent-Based Model

    PubMed Central

    Senior, Alistair M.; Charleston, Michael A.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2015-01-01

    Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term ‘nutritional latitude’; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts. PMID:25815976

  18. Carbon and nutrient use efficiencies optimally balance stoichiometric imbalances

    NASA Astrophysics Data System (ADS)

    Manzoni, Stefano; Čapek, Petr; Lindahl, Björn; Mooshammer, Maria; Richter, Andreas; Šantrůčková, Hana

    2016-04-01

    Decomposer organisms face large stoichiometric imbalances because their food is generally poor in nutrients compared to the decomposer cellular composition. The presence of excess carbon (C) requires adaptations to utilize nutrients effectively while disposing of or investing excess C. As food composition changes, these adaptations lead to variable C- and nutrient-use efficiencies (defined as the ratios of C and nutrients used for growth over the amounts consumed). For organisms to be ecologically competitive, these changes in efficiencies with resource stoichiometry have to balance advantages and disadvantages in an optimal way. We hypothesize that efficiencies are varied so that community growth rate is optimized along stoichiometric gradients of their resources. Building from previous theories, we predict that maximum growth is achieved when C and nutrients are co-limiting, so that the maximum C-use efficiency is reached, and nutrient release is minimized. This optimality principle is expected to be applicable across terrestrial-aquatic borders, to various elements, and at different trophic levels. While the growth rate maximization hypothesis has been evaluated for consumers and predators, in this contribution we test it for terrestrial and aquatic decomposers degrading resources across wide stoichiometry gradients. The optimality hypothesis predicts constant efficiencies at low substrate C:N and C:P, whereas above a stoichiometric threshold, C-use efficiency declines and nitrogen- and phosphorus-use efficiencies increase up to one. Thus, high resource C:N and C:P lead to low C-use efficiency, but effective retention of nitrogen and phosphorus. Predictions are broadly consistent with efficiency trends in decomposer communities across terrestrial and aquatic ecosystems.

  19. Open-labelled observations of language dysfunction in old ischemic stroke patients with aphasia when given plant and marine-based nutrient supplements for 12 weeks.

    PubMed

    Lin, Guan-Yu; Chan, Hsiu-Yu; Cheng, Chun-An; Lin, Lan-Ping; Peng, Giia-Sheun; Hsiao, Pei-Min; Lin, Chun-Chieh; Lin, Chun-Chih; Lee, Jiunn-Tay

    2016-01-01

    This study aimed to explore the effect of functional foods on aphasia related to a previous ischemic stroke. When stroke-related neurological deficits result in physical dependency and poor selfcare that persists longer than 6 months, full recovery is almost impossible and the patient often requires long-term care. The functional foods, EASE123 and BioBalance#6, include numerous plant and marine-based nutrient supplements that could prove beneficial for such patients. This open-labelled study included 10 patients diagnosed with prior ischemic stroke and aphasia lasting longer than 6 months. Each patient was administered 6 tablets of EASE123 at 10:30 AM and at 90 minutes before sleeping, and 3 tablets of BioBalance# 6 at 2:30 PM. After a treatment period of 12 weeks, the patients were followed during a 4-week withdrawal period. Functional improvement was assessed by scores and subscores on the Concise Chinese Aphasia Test (CCAT) at weeks 4, 8, 12, and 16. Average total CCAT scores and matching ability improved significantly at weeks 4, 8, 12, and 16 (p<0.05). Simple response scores improved significantly at weeks 8 and 12 (p<0.05). Auditory comprehension improved significantly at weeks 4 and 12 (p<0.05), and reading comprehension, at week 12 (p<0.05). Repetition ability improved significantly at weeks 8, 12, and 16 (p<0.05), and spontaneous writing, at weeks 4, 12, and 16 (p<0.05). Matching, repetition, and average total CCAT scores improved over the course of the study. Therefore, 6 months after ischemic stroke, EASE123 and BioBalance# 6 administration may improve stroke-related aphasia.

  20. The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export

    NASA Astrophysics Data System (ADS)

    Painter, Stuart C.; Hartman, Susan E.; Kivimäe, Caroline; Salt, Lesley A.; Clargo, Nicola M.; Daniels, Chris J.; Bozec, Yann; Daniels, Lucie; Allen, Stephanie; Hemsley, Victoria S.; Moschonas, Grigorios; Davidson, Keith

    2017-12-01

    A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented which reveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in the elemental stoichiometry of those pools. Such gradients have implications for carbon and nutrient export from coastal waters to the open ocean. The mixed layer inorganic nutrient stoichiometry shifted from balanced N:P in winter, to elevated N:P in spring and to depleted N:P in summer, relative to the Redfield ratio. This pattern suggests increased likelihood of P limitation of fast growing phytoplankton species in spring and of N limitation of slower growing species in summer. However, as only silicate concentrations were below potentially limiting concentrations during summer and autumn the stoichiometric shifts in inorganic nutrient N:P are considered due to phytoplankton nutrient preference patterns rather than nutrient exhaustion. Elevated particulate stoichiometries corroborate non-Redfield optima underlying organic matter synthesis and nutrient uptake. Seasonal variation in the stoichiometry of the inorganic and organic nutrient pools has the potential to influence the efficiency of nutrient export. In summer, when organic nutrient concentrations were at their highest and inorganic nutrient concentrations were at their lowest, the organic nutrient pool was comparatively C poor whilst the inorganic nutrient pool was comparatively C rich. The cross-shelf export of these pools at this time would be associated with different efficiencies regardless of the total magnitude of exchange. In autumn the elemental stoichiometries increased with depth in all pools revealing widespread carbon enrichment of shelf bottom waters with P more intensely recycled than N, N more intensely recycled than C, and Si weakly remineralized relative to C. Offshelf carbon fluxes were most efficient via the inorganic nutrient pool, intermediate for the organic nutrient pool and least efficient for the particulate pool. N loss from the shelf however was most efficient via the dissolved organic nutrient pool. Mass balance calculations suggest that 28% of PO43-, 34% of NO3- and 73% of Si drawdown from the mixed layer fails to reappear in the benthic water column thereby indicating the proportion of the nutrient pools that must be resupplied from the ocean each year to maintain shelf wide productivity. Loss to the neighbouring ocean, the sediments, transference to the dissolved organic nutrient pool and higher trophic levels are considered the most likely fate for these missing nutrients.

  1. Is “Processed” a Four-Letter Word? The Role of Processed Foods in Achieving Dietary Guidelines and Nutrient Recommendations123

    PubMed Central

    Dwyer, Johanna T.; Fulgoni, Victor L.; Clemens, Roger A.; Schmidt, David B.

    2012-01-01

    This paper, based on the symposium “Is ‘Processed’ a Four-Letter Word? The Role of Processed Foods in Achieving Dietary Guidelines and Nutrient Recommendations in the U.S.” describes ongoing efforts and challenges at the nutrition–food science interface and public health; addresses misinformation about processed foods by showing that processed fruits and vegetables made important dietary contributions (e.g., fiber, folate, potassium, vitamins A and C) to nutrient intake among NHANES 2003–2006 participants, that major sources of vitamins (except vitamin K) were provided by enrichment and fortification and that enrichment and fortification helped decrease the percentage of the population below the Estimated Average Requirement for vitamin A, thiamin, folate, and iron; describes how negative consumer perceptions and consumer confusion about processed foods led to the development of science-based information on food processing and technology that aligns with health objectives; and examines challenges and opportunities faced by food scientists who must balance consumer preferences, federal regulations, and issues surrounding food safety, cost, unintended consequences, and sustainability when developing healthful foods that align with dietary guidelines. PMID:22797990

  2. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds

    PubMed Central

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming. PMID:26525070

  3. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  4. Balanced Diet: "Eater's Digest". Health and the Consumer.

    ERIC Educational Resources Information Center

    Osceola County School District, Kissimmee, FL.

    This consumer education learning activity package is one of a series of six Project SCAT (Skills for Consumer Applied Today) units. It teaches secondary level students about the importance of a balanced diet and what nutrients are most important to good health. The package includes instructions for the teacher, suggestions for activities, lists of…

  5. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    USGS Publications Warehouse

    White, Art F.; Schulz, Marjorie S.; Vivit, Davison V.; Bullen, Tomas D.; Fitzpatrick, John A.

    2012-01-01

    The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes Fj,plants = qj,plants/(qj,plants + qj,discharge) with average values for K and Ca (FK,plants = 0.99; FCa,plants = 0.93) much higher than for Mg and Na (FMg,plants 0.64; FNa,plants = 0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (KSr/Ca = 0.86; KRb/K = 0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. KRb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from rainfall and mineral weathering. KSr/Ca and K44Ca/40Ca fractionation factors fall outside these envelopes indicating that Ca nutrient cycling is closed to these external inputs. Small net positive K and Ca fluxes (6–14 mol m-2 yr-1), based on annual mass balances, indicate that the soils are accumulating mineral nutrients, probably as a result of long-term environmental disequilibrium.

  6. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    PubMed

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-12-01

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL -1 with the maximum biomass productivity of 460mgL -1 d -1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL -1 waste glycerol addition, the average biomass production of 16.7gm -2 d -1 , lipid content of 23.6%, and the removal of 2.4gm -2 d -1 NH 4 + -N, 2.7gm -2 d -1 total nitrogen, 3.0gm -2 d -1 total phosphorous, and 103.0gm -2 d -1 of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effects of plant nutritional chemistry on food selection of Mexican black howler monkeys (Alouatta pigra): The role of lipids.

    PubMed

    Righini, Nicoletta; Garber, Paul A; Rothman, Jessica M

    2017-04-01

    Understanding the nutritional basis of food selection is fundamental to evaluate dietary patterns and foraging strategies in primates. This research describes the phytochemical composition of the foods consumed by two groups of Mexican black howler monkeys (Alouatta pigra) during a 15-month field study, and examines how plant nutritional chemistry affected food choice. Based on indices of selectivity that reflected seasonal changes in the amount of different phenophases of the most consumed plant species and their availability in the environment, we found that, in general, howlers did not preferentially select food items based on their concentrations of protein, sugar, energy, or their protein-to-fiber ratio. During only one season of the year, the nortes (October-January), there was evidence for selectivity. During this period, selectivity indices correlated positively with the lipid content of foods ingested. However, a strategy of selecting fruits high in lipids (21-41% dry matter) coincided with the consumption of a leaf-based diet (based on estimates of the dry weight of food ingested), suggesting that during this season howlers interchanged lipids with sugars to obtain energy and possibly to balance the higher protein intake obtained by the increased leaf consumption. Overall, these data did not support the prediction that food choice in this howler population was strongly correlated with particular nutrients, and suggest that balancing a suite of nutrients by consuming plants that vary widely in their composition may be an important strategy for howler monkeys. Am. J. Primatol. 79:e22524, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95

    USGS Publications Warehouse

    Litke, D.W.

    1996-01-01

    The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to

  9. Small-seeded Hakea species tolerate cotyledon loss better than large-seeded congeners

    PubMed Central

    El-Amhir, Sh-hoob; Lamont, Byron B.; He, Tianhua; Yan, George

    2017-01-01

    Six Hakea species varying greatly in seed size were selected for cotyledon damage experiments. The growth of seedlings with cotyledons partially or completely removed was monitored over 90 days. All seedlings perished by the fifth week when both cotyledons were removed irrespective of seed size. Partial removal of cotyledons caused a significant delay in the emergence of the first leaf, and reduction in root and shoot growth of the large-seeded species. The growth of seedlings of small-seeded species was less impacted by cotyledon damage. The rate of survival, root and shoot lengths and dry biomass of the seedlings were determined after 90 days. When seedlings were treated with balanced nutrient solutions following removal of the cotyledons, survival was 95–98%, but 0% when supplied with nutrient solutions lacking N or P or with water only. The addition of a balanced nutrient solution failed to restore complete growth of any species, but the rate of root elongation for the small-seeded species was maintained. Cotyledons provide nutrients to support early growth of Hakea seedlings, but other physiological roles for the cotyledons are also implicated. In conclusion, small-seeded Hakea species can tolerate cotyledons loss better than large-seeded species. PMID:28139668

  10. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  11. Climate and soil-age constraints on nutrient uplift and retention by plants.

    PubMed

    Porder, Stephen; Chadwick, Oliver A

    2009-03-01

    Plants and soils represent coevolving components of ecosystems, and while the effects of soils (e.g., nutrient availability) on plants have been extensively documented, the effect of plants on soils has received less attention. Furthermore there has been no systematic investigation of how plant effects vary across important ecological gradients in climate or soil age, which leaves a substantial gap in our understanding of how plant-soil systems develop. In this context, we analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 35 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (ages 10, 170, and 350 kyr) each of which crosses a precipitation gradient from approximately 500 to 2500 mm/yr. By comparing the loss of nutrient (potassium, phosphorus) and non-nutrient (e.g., sodium) rock-derived elements, we identify a climatic zone at intermediate rainfall where the retention of plant nutrients in the upper soil is most pronounced. We further show that there are several abiotic constraints on plant-driven retention of nutrients. At the dry sites (< or = 750 mm/yr on all three flows), plants slow the loss of nutrients, but the effect (as measured by the difference between K and Na losses) is small, perhaps because of low plant cover and productivity. At intermediate rainfall (750-1400 mm/yr) but negative water balance, plants substantially enrich both nutrient cations and P relative to Na in the surface horizons, an effect that remains strong even after 350 kyr of soil development. In contrast, at high rainfall (> or = 1500 mm/yr) and positive water balance, the effect of plants on nutrient distributions diminishes with soil age as leaching losses overwhelm the uplift and retention of nutrients by plants after 350 kyr of soil development. The effect of plants on soil nutrient distributions can also be mediated by the movement of iron (Fe), and substantial Fe losses at high rainfall on the older flows are highly correlated with P losses. Thus redox-driven redistribution of Fe may place a further abiotic constraint on nutrient retention by plants. In combination, these data indicate that the effects of soil aging on plant uplift and retention of nutrients differ markedly with precipitation, and we view this as a potentially fruitful area for future research.

  12. Fortification and health: challenges and opportunities.

    PubMed

    Dwyer, Johanna T; Wiemer, Kathryn L; Dary, Omar; Keen, Carl L; King, Janet C; Miller, Kevin B; Philbert, Martin A; Tarasuk, Valerie; Taylor, Christine L; Gaine, P Courtney; Jarvis, Ashley B; Bailey, Regan L

    2015-01-01

    Fortification is the process of adding nutrients or non-nutrient bioactive components to edible products (e.g., food, food constituents, or supplements). Fortification can be used to correct or prevent widespread nutrient intake shortfalls and associated deficiencies, to balance the total nutrient profile of a diet, to restore nutrients lost in processing, or to appeal to consumers looking to supplement their diet. Food fortification could be considered as a public health strategy to enhance nutrient intakes of a population. Over the past century, fortification has been effective at reducing the risk of nutrient deficiency diseases such as beriberi, goiter, pellagra, and rickets. However, the world today is very different from when fortification emerged in the 1920s. Although early fortification programs were designed to eliminate deficiency diseases, current fortification programs are based on low dietary intakes rather than a diagnosable condition. Moving forward, we must be diligent in our approach to achieving effective and responsible fortification practices and policies, including responsible marketing of fortified products. Fortification must be applied prudently, its effects monitored diligently, and the public informed effectively about its benefits through consumer education efforts. Clear lines of authority for establishing fortification guidelines should be developed and should take into account changing population demographics, changes in the food supply, and advances in technology. This article is a summary of a symposium presented at the ASN Scientific Sessions and Annual Meeting at Experimental Biology 2014 on current issues involving fortification focusing primarily on the United States and Canada and recommendations for the development of responsible fortification practices to ensure their safety and effectiveness. © 2015 American Society for Nutrition.

  13. Phosphorus bioavailability, growth performance, and nutrient balance in pigs fed high available phosphorus corn and phytase.

    PubMed

    Sands, J S; Ragland, D; Baxter, C; Joern, B C; Sauber, T E; Adeola, O

    2001-08-01

    Three experiments were conducted to evaluate P bioavailability, growth performance, and nutrient balance in pigs fed high available P (HAP) corn with or without phytase. The bioavailability of P in normal and HAP corn relative to monosodiumphosphate (MSP) for pigs was assessed in Exp. 1. In a randomized complete block design, 96 pigs (average initial BW 9.75 kg) were fed eight diets for 28 d. The reference and test diets were formulated by adding P as MSP, HAP, or normal corn at 0, 0.75, or 1.5 g/kg to a corn-starch-soybean meal basal diet (2.5 g/kg P) at the expense of cornstarch. Plasma inorganic P concentration responded linearly (P < 0.05) to supplemental P intake. Estimates of P bioavailability from HAP andnormal corn when plasma P was regressed on supplemental P intake were 46 and 33%, respectively. In Exp. 2 and 3, pigs were fed corn-soybean meal-based diets containing HAP corn or normal corn and 0 or 600 units of phytase per kilogram in a 2 x 2 factorial arrangement (two corn sources and two levels of phytase). In Exp. 2, 48 crossbred pigs (barrow:gilt, 1:1) averaging 9.25 kg were used to evaluate growth performance. There were no detectable interactions between corn source and phytase for any of the performance criteria measured. Pigs receiving normal corn had the lowest (P < 0.05) BW and rate of gain. Feed efficiency was lower (P < 0.05) in pigs fed normal compared with those fed the HAP corn phytase-supplemented diet. In Exp. 3, 24 crossbred barrows averaging 14.0 kg were used to evaluate nutrient digestibility. There were no detectable interactions between corn and phytase for any of the N and Ca balance criteria. Nitrogen and Ca retention were improved in pigs receiving HAP corn with phytase (P < 0.05). Retention and digestibility of P was lowest (P < 0.01) for pigs on normal corn diet without phytase. The percentage of P digested and retained was improved and fecal P excretion lowered (P < 0.05) by feeding HAP corn. The results of this study indicate that the bioavailability and balance of P in HAP corn is superior to that of normal corn. The addition of 600 phytase units (Natuphos 600, BASF) to HAP corn-based diets further improved P digestibility and reduced P excretion in pigs.

  14. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport

    NASA Astrophysics Data System (ADS)

    Letscher, Robert T.; Primeau, François; Moore, J. Keith

    2016-11-01

    Ocean circulation replenishes surface nutrients depleted by biological production and export. Vertical processes are thought to dominate, but estimated vertical nutrient fluxes are insufficient to explain observed net productivity in the subtropical ocean gyres. Lateral inputs help balance the North Atlantic nutrient budget, but their importance for other gyres has not been demonstrated. Here we use an ocean model that couples circulation and ecosystem dynamics to show that lateral transport and biological uptake of inorganic and organic forms of nitrogen and phosphorus from the gyre margins exceeds the vertical delivery of nutrients, supplying 24-36% of the nitrogen and 44-67% of the phosphorus required to close gyre nutrient budgets. At the Bermuda and Hawaii time-series sites, nearly half of the annual lateral supply by lateral transport occurs during the summer-to-fall stratified period, helping explain seasonal patterns of inorganic carbon drawdown and nitrogen fixation. Our study confirms the importance of upper-ocean lateral nutrient transport for understanding the biological cycles of carbon and nutrients in the ocean's largest biome.

  15. Design of an elemental analysis system for CELSS research

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1987-01-01

    The results of experiments conducted with higher plants in tightly sealed growth chambers provide definite evidence that the physical closure of a chamber has significant effects on many aspects of a plant's biology. One of these effects is seen in the change in rates of uptake, distribution, and re-release or nutrient elements by the plant (mass balance). Experimental data indicates that these rates are different from those recorded for plants grown in open field agriculture, or in open growth chambers. Since higher plants are a crucial component of a controlled ecological life support system (CELSS), it is important that the consequences of these rate differences be understood with regard to the growth and yield of the plants. A description of a system for elemental analysis which can be used to monitor the mass balance of nutrient elements in CELSS experiments is given. Additionally, data on the uptake of nutrient elements by higher plants grown in a growth chamber is presented.

  16. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in growth similar to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  17. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients

    PubMed Central

    Golden, Christopher D.; Mozaffarian, Dariush

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model—the Global Expanded Nutrient Supply (GENuS) model—to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961–2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent estimates by the USDA for historical US nutrition and find very good agreement for 21 of 23 nutrients, though sodium and dietary fiber will require further improvement. PMID:26807571

  18. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients.

    PubMed

    Smith, Matthew R; Micha, Renata; Golden, Christopher D; Mozaffarian, Dariush; Myers, Samuel S

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model--the Global Expanded Nutrient Supply (GENuS) model--to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961-2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent estimates by the USDA for historical US nutrition and find very good agreement for 21 of 23 nutrients, though sodium and dietary fiber will require further improvement.

  19. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.

    PubMed

    Johnson, Kenneth S; Riser, Stephen C; Karl, David M

    2010-06-24

    Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (<10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.

  20. Development, calibration, and sensitivity analyses of a high-resolution dissolved oxygen mass balance model for the northern Gulf of Mexico

    EPA Science Inventory

    A high-resolution dissolved oxygen mass balance model was developed for the Louisiana coastal shelf in the northern Gulf of Mexico. GoMDOM (Gulf of Mexico Dissolved Oxygen Model) was developed to assist in evaluating the impacts of nutrient loading on hypoxia development and exte...

  1. Manipulating early lactation energy and protein balances using canola meal as a protein source

    USDA-ARS?s Scientific Manuscript database

    Negative energy and protein balances during the immediate postpartum period in a dairy cow pose opportunities to improve the cow’s health and production. The inability of the cow to consume an adequate supply of nutrients mobilizes its body reserves to serve as energy and protein required for milk p...

  2. Neuronal regulation of homeostasis by nutrient sensing.

    PubMed

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  3. [Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China].

    PubMed

    Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming

    2017-11-01

    A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack of P, would not benefit the sustainable use of nutrients in yellow soil.

  4. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    PubMed

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin at POMC or NPY neurons may depend on appropriate nutrient-sensing in these neurons and we hypothesize carnitine metabolism is critical in the integrative processing. Future research is required to examine the neuron-specific effects of carnitine metabolism on concurrent nutrient- and hormonal-sensing in AgRP and POMC neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    PubMed

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  6. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China.

    PubMed

    Ouyang, Wei; Wei, Xinfeng; Hao, Fanghua

    2013-04-15

    There are two kinds of land policies, the smallholding land policy (SLP) and the farmland policy (FLP) in China. The farmland nutrient dynamics under the two land policies were analysed with the soil system budget method. The averaged nitrogen (N) input of the SLP and the FLP over sixteen years increased about 23.9% and 33.3%, respectively and the phosphorus (P) input climbed about 39.1% and 42.3%, respectively. The statistical analysis showed that the land policies had significant impacts on N and P input from fertilizer and manure, but did not obviously affect the N input from seeds and biological N fixation. The efficiency percentage of N of the SLP and the FLP climbed about 54.5% and 59.4%, respectively, and the P efficiency improved by 52.7% and 82.6%, respectively. About the nutrient output, the F-test analysis indicated that the land polices had remarkable impacts on N output by crop uptake, ammonia volatilisation, denitrification, leaching and runoff, and P output by uptake, runoff, and leach. The balance showed that the absolute loss of N from land deceased about 43.6% and 46.0%, respectively, in the SLP and the FLP, and P discharge reduced about 34.2% and 75.2%, respectively. The F-test analysis of N and P efficiency and balance of between two polices both indicated that the FLP had significant impact on nutrient dynamic. With the Mitscherlich model, the correlations between nutrient input and crop uptake, usage efficiency and loss were analysed and showed that was a threshold value for the optimal nutrient input with the highest efficiency rate. For the optimal nutrient efficiency, the space for extra P addition was bigger than the N input. The FLP have more advantage than the SLP on the crop yield, nutrient efficiency and environmental discharge. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem

    Treesearch

    Scott W. Bailey; Donald C. Buso; Gene E. Likens

    2003-01-01

    Disturbance of forest ecosystems, such as that caused by harvesting or acid deposition, is thought to alter the ability of the ecosystem to retain nutrients. Although many watershed studies have suggested depletion of available calcium (Ca) pools, interpretation of ecosystem Ca mass balance has been limited by the difficulty in obtaining mineral weathering flux...

  8. Exploring Problems in Following the Hemodialysis Diet and Their Relation to Energy and Nutrient Intakes: The BalanceWise Study.

    PubMed

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Sevick, Mary Ann

    2016-03-01

    To identify the problems experienced by hemodialysis (HD) patients in attempting to follow the HD diet and their relation to energy and nutrient intakes. Cross-sectional analysis of baseline data from the BalanceWise Study. Participants included community-dwelling adults recruited from outpatient HD centers. After excluding participants with incomplete dietary analyses (n = 50), 140 African American and white (40/60%) men and women (52/48%) on chronic intermittent HD for at least 3 months (median 3 years) were included. Participant responses, on a 5-point Likert scale ranging from "not at all a problem" to "a very important problem for me," to 34 questions pertaining to potential barriers to following the HD diet in the previous 2 months were classified as either a problem (1) or not a problem (2-5). Energy and nutrient intakes determined using the Nutrition Data System for Research® based on 3, non-consecutive, unscheduled, 2-pass 24-hour dietary recalls collected on 1 dialysis and 1 non-dialysis weekday, and 1 non-dialysis weekend day. More than half of participants reported having problems related to specific behavioral factors (e.g., feeling deprived), technical difficulties (e.g., tracking nutrients), and physical condition (e.g., appetite), but issues of time and food preparation and behavioral factors tended to be most deterministic of reported dietary intakes. Longer duration of HD was associated with lower intakes of protein, potassium, and phosphorus (P < .05). Registered dietitian nutritionists should consider issues of time and food preparation, and behavioral factors in their nutrition assessment of HD patients and should continually monitor HD patients for changes in protein intake that may occur over time. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  9. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    PubMed

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators may decelerate, rather than accelerate, the speed of N cycling by suppressing N turnover by prey. © 2018 by the Ecological Society of America.

  10. Empirical prediction of net splanchnic release of ketogenic nutrients, acetate, butyrate and β-hydroxybutyrate in ruminants: a meta-analysis.

    PubMed

    Loncke, C; Nozière, P; Bahloul, L; Vernet, J; Lapierre, H; Sauvant, D; Ortigues-Marty, I

    2015-03-01

    For energy feeding systems for ruminants to evolve towards a nutrient-based system, dietary energy supply has to be determined in terms of amount and nature of nutrients. The objective of this study was to establish response equations of the net hepatic flux and net splanchnic release of acetate, butyrate and β-hydroxybutyrate to changes in diet and animal profiles. A meta-analysis was applied on published data compiled from the FLuxes of nutrients across Organs and tissues in Ruminant Animals database, which pools the results from international publications on net splanchnic nutrient fluxes measured in multi-catheterized ruminants. Prediction variables were identified from current knowledge on digestion, hepatic and other tissue metabolism. Subsequently, physiological and other, more integrative, predictors were obtained. Models were established for intakes up to 41 g dry matter per kg BW per day and diets containing up to 70 g concentrate per 100 g dry matter. Models predicted the net hepatic fluxes or net splanchnic release of each nutrient from its net portal appearance and the animal profile. Corrections were applied to account for incomplete hepatic recovery of the blood flow marker, para-aminohippuric acid. Changes in net splanchnic release (mmol/kg BW per hour) could then be predicted by combining the previously published net portal appearance models and the present net hepatic fluxes models. The net splanchnic release of acetate and butyrate were thus predicted from the intake of ruminally fermented organic matter (RfOM) and the nature of RfOM (acetate: residual mean square error (RMSE)=0.18; butyrate: RMSE=0.01). The net splanchnic release of β-hydroxybutyrate was predicted from RfOM intake and the energy balance of the animals (RMSE=0.035), or from the net portal appearance of butyrate and the energy balance of the animals (RMSE=0.050). Models obtained were independent of ruminant species, and presented low interfering factors on the residuals, least square means or individual slopes. The model equations highlighted the importance of considering the physiological state of animals when predicting splanchnic metabolism. This work showed that it is possible to use simple predictors to accurately predict the amount and nature of ketogenic nutrients released towards peripheral tissues in both sheep and cattle at different physiological status. These results provide deeper insight into biological processes and will contribute to the development of improved tools for dietary formulation.

  11. Microbial nutrient niches in the gut

    PubMed Central

    Pereira, Fátima C.

    2017-01-01

    Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations. PMID:28035742

  12. The Southern Ocean biogeochemical divide.

    PubMed

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  13. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    NASA Astrophysics Data System (ADS)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  14. Innovations in Food Chemistry and Processing to Enhance the Nutrient Profile of the White Potato in All Forms12

    PubMed Central

    Decker, Eric A.; Ferruzzi, Mario G.

    2013-01-01

    Potatoes can be an important part of a balanced diet because they are an excellent source of many nutrients, including nutrients that are commonly underconsumed (dietary fiber and potassium). Despite the existence of many positive nutrients in potatoes, the popular press has recently aligned potatoes, and particularly fried potatoes, with an unhealthy diet. This article examines the nutritional content of potatoes and how these nutrients are affected by cooking and other food-processing operations. In addition, it examines how the nutritional content of potatoes is altered by cooking methods and how fried potatoes can have wide variations in fat content depending on the cooking method. Finally, the potential of new food-processing technologies to improve the nutritional content of cooked potatoes is evaluated. PMID:23674803

  15. Short communication: Identifying challenges and opportunities for improved nutrient management through the USDA's Dairy Agroecosystem Working Group.

    PubMed

    Holly, M A; Kleinman, P J; Bryant, R B; Bjorneberg, D L; Rotz, C A; Baker, J M; Boggess, M V; Brauer, D K; Chintala, R; Feyereisen, G W; Gamble, J D; Leytem, A B; Reed, K F; Vadas, P A; Waldrip, H M

    2018-04-25

    Nutrient management on US dairy farms must balance an array of priorities, some of which conflict. To illustrate nutrient management challenges and opportunities across the US dairy industry, the USDA Agricultural Research Service Dairy Agroecosystems Working Group (DAWG) modeled 8 confinement and 2 grazing operations in the 7 largest US dairy-producing states using the Integrated Farm System Model (IFSM). Opportunities existed across all of the dairies studied to increase on-farm feed production and lower purchased feed bills, most notably on large dairies (>1,000 cows) with the highest herd densities. Purchased feed accounted for 18 to 44% of large dairies' total operating costs compared with 7 to 14% on small dairies (<300 milk cows) due to lower stocking rates. For dairies with larger land bases, in addition to a reduction in environmental impact, financial incentives exist to promote prudent nutrient management practices by substituting manure nutrients or legume nutrients for purchased fertilizers. Environmental priorities varied regionally and were principally tied to facility management for dry-lot dairies of the semi-arid western United States (ammonia-N emissions), to manure handling and application for humid midwestern and eastern US dairies (nitrate-N leaching and P runoff), and pasture management for dairies with significant grazing components (nitrous oxide emissions). Many of the nutrient management challenges identified by DAWG are beyond slight modifications in management and require coordinated solutions to ensure an environmentally and economically sustainable US dairy industry. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  16. Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition

    USGS Publications Warehouse

    Elser, J.J.; Kyle, M.; Steuer, L.; Nydick, K.R.; Baron, Jill S.

    2009-01-01

    Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented, We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N??ha-1??yr-1) or low (<2 kg N??ha-1??yr-1) levels of atmospheric N deposition. Highdeposition lakes had higher NO3-N and total N concentrations and higher total N : total P ratios. Concentrations of chlorophyll and seston carbon (C) were 2-2.5 times higher in highdeposition relative to low-deposition lakes, while high-deposition lakes also had higher seston C:N and C:P (but not N:P) ratios. Short-term enrichment bioassays indicated a qualitative shift in the nature of phytoplankton nutrient limitation due to N deposition, as highdeposition lakes had an increased frequency of primary P limitation and a decreased frequency and magnitude of response to N and to combined N and P enrichment. Thus elevated atmospheric N deposition appears to have shifted nutrient supply from a relatively balanced but predominantly N-deficient regime to a more consistently P-limited regime in Colorado alpine lakes. This adds to accumulating evidence that sustained N deposition may have important effects on lake phytoplankton communities and plankton-based food webs by shifting the quantitative and qualitative nature of nutrient limitation. ?? 2009 by the Ecological Society of America.

  17. Nutrient dynamics and budget with the surface water-groundwater interaction in the tidal river in Japan

    NASA Astrophysics Data System (ADS)

    Onodera, S.; Saito, M.; Maruyama, Y.; Jin, G.; Miyaoka, K.; Shimizu, Y.

    2013-12-01

    In coastal megacities, sever groundwater depression and water pollution occurred. These impacts affected to river environment change. Especially, the river mouth area has been deposited the polluted matters. These areas have characteristics of water level fluctuation which causes river water-groundwater interaction and the associated change in dynamics of nutrients. However, these effects on the nutrient transport in tidal reaches and nutrient load to the sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nutrient transport with the river water-groundwater interaction in the tidal river of Osaka metropolitan city. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction of groundwater in the urban area. The result also implies the seawater intrusion would accelerate the salinization of groundwater. The spatial and temporal variations in nutrient concentrations indicate that nitrate-nitrogen (NO3-N) concentrations changed temporally and it negative correlated with dissolved organic nitrogen (DON) concentrations. Inorganic phosphorous (PO4-P) concentrations showed the increasing trend with the increase of the river water level. Based on the mass balance, nutrient reproduction from the river bed was suggested in tidal reach. That was estimated to be 10 % of total nitrogen and 3% of phosphorus loads from the upstream.

  18. Breastfeeding

    MedlinePlus

    Breastfeeding offers many benefits to your baby. Breast milk contains the right balance of nutrients to help ... should breastfeed. If you are having problems with breastfeeding, contact a lactation consultant. NIH: National Institute of ...

  19. Nitrogenase and Alkaline Phosphatase Activity in Wetland Metaphyton: Implications for Primary Production and CNP Composition

    NASA Astrophysics Data System (ADS)

    Scott, T.; Doyle, R.

    2005-05-01

    Longitudinal gradients of nutrient availability often occur along the flow path of water in freshwater wetlands. Differential removal efficiencies of water column nitrogen (N) and phosphorus (P) may increase the severity of nutrient deficiency and possibly change the nutrient that limits primary production. A previous study demonstrated that periphyton in the Lake Waco Wetlands (LWW), near Waco, Texas, USA, are generally more P limited near the inflow and become increasingly N limited as distance from the inflow increases. Therefore, spatial heterogeneity in nutrient availability likely influences both the structure and function of periphyton assemblages within this system. In this ongoing study, we are evaluating the relationships between metaphyton primary production, nitrogenase activity, alkaline phosphatase activity, and CNP stoichiometry in areas of differing nutrient limitation within the LWW. As expected, primary production is generally greatest in areas where nitrogenase and alkaline phosphatase activities are minimal. However, expected increases in C:N ratios in areas of greatest nutrient deficiency have not been frequently observed. Decreased primary production and increased enzyme mediated nutrient uptake appear to balance metaphyton nutrient content in these areas.

  20. The placenta. Not just a conduit for maternal fuels.

    PubMed

    Hay, W W

    1991-12-01

    The placenta is a specialized organ of exchange that provides nutrients to and excretes waste products from the fetus. The exchange of nutrients between placenta and fetus involves three major mechanisms: 1) direct transfer of nutrients from the maternal to the fetal plasma, 2) placental consumption of nutrients, and 3) placental conversion of nutrients to alternate substrate forms. Although direct transfer has been considered the primary means by which placental-fetal exchange controls the supply of nutrients to the fetus and thereby fetal metabolism and growth, the considerable metabolic activity of the placenta provides a large and fundamentally important contribution to both the quality and quantity of nutrient substrates supplied to the fetus; e.g., placental O2 and glucose consumption rates approach or even exceed those of brain and tumor tissue. Other placental metabolic activities include glycolysis, gluconeogenesis, glycogenesis, oxidation, protein synthesis, amino acid interconversion, triglyceride synthesis, and chain lengthening or shortening of individual fatty acids. Thus, consideration of the metabolism of the placenta is essential for a more complete understanding of how the placenta regulates nutrient transfer to the fetus, fetal energy balance, and fetal growth.

  1. Lipopolysaccharide immune stimulation but not β-mannanase supplementation affects maintenance energy requirements in young weaned pigs.

    PubMed

    Huntley, Nichole F; Nyachoti, C Martin; Patience, John F

    2018-01-01

    Pathogen or diet-induced immune activation can partition energy and nutrients away from growth, but clear relationships between immune responses and the direction and magnitude of energy partitioning responses have yet to be elucidated. The objectives were to determine how β-mannanase supplementation and lipopolysaccharide (LPS) immune stimulation affect maintenance energy requirements (MEm) and to characterize immune parameters, digestibility, growth performance, and energy balance. In a randomized complete block design, 30 young weaned pigs were assigned to either the control treatment (CON; basal corn, soybean meal and soybean hulls diet), the enzyme treatment (ENZ; basal diet + 0.056% β-mannanase), or the immune system stimulation treatment (ISS; basal diet + 0.056% β-mannanase, challenged with repeated increasing doses of Escherichia coli LPS). The experiment consisted of a 10-d adaptation period, 5-d digestibility and nitrogen balance measurement, 22 h of heat production (HP) measurements, and 12 h of fasting HP measurements in indirect calorimetry chambers. The immune challenge consisted of 4 injections of either LPS (ISS) or sterile saline (CON and ENZ), one every 48 h beginning on d 10. Blood was collected pre- and post-challenge for complete blood counts with differential, haptoglobin and mannan binding lectin, 12 cytokines, and glucose and insulin concentrations. Beta-mannanase supplementation did not affect immune status, nutrient digestibility, growth performance, energy balance, or ME m . The ISS treatment induced fever, elevated proinflammatory cytokines and decreased leukocyte concentrations ( P  < 0.05). The ISS treatment did not impact nitrogen balance or nutrient digestibility ( P  > 0.10), but increased total HP (21%) and ME m (23%), resulting in decreased lipid deposition (-30%) and average daily gain (-18%) ( P  < 0.05). This experiment provides novel data on β-mannanase supplementation effects on immune parameters and energy balance in pigs and is the first to directly relate decreased ADG to increased ME m independent of changes in feed intake in immune challenged pigs. Immune stimulation increased energy partitioning to the immune system by 23% which limited lipid deposition and weight gain. Understanding energy and nutrient partitioning in immune-stressed pigs may provide insight into more effective feeding and management strategies.

  2. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production.

    PubMed

    Benchaar, C; Hassanat, F; Martineau, R; Gervais, R

    2015-11-01

    The objective of this study was to examine the effect of linseed oil (LO) supplementation to red clover silage (RCS)- or corn silage (CS)-based diets on enteric CH4 emissions, ruminal fermentation characteristics, nutrient digestibility, N balance, and milk production. Twelve rumen-cannulated lactating cows were used in a replicated 4×4 Latin square design (35-d periods) with a 2×2 factorial arrangement of treatments. Cows were fed (ad libitum) RCS- or CS-based diets [forage:concentrate ratio 60:40; dry matter (DM) basis] without or with LO (4% of DM). Supplementation of LO to the RCS-based diet reduced enteric CH4 production (-9%) and CH4 energy losses (-11%) with no adverse effects on DM intake, digestion, ruminal fermentation characteristics, protozoa numbers, or milk production. The addition of LO to the CS-based diet caused a greater decrease in CH4 production (-26%) and CH4 energy losses (-23%) but was associated with a reduction in DM intake, total-tract fiber digestibility, protozoa numbers, acetate:propionate ratio, and energy-corrected milk yield. Urinary N excretion (g/d) decreased with LO supplementation to RCS- and CS-based diets, suggesting reduced potential of N2O emissions. Results from this study show that the depressive effect of LO supplementation on enteric CH4 production is more pronounced with the CS- than with the RCS-based diet. However, because of reduced digestibility with the CS-based diet, the reduction in enteric CH4 production may be offset by higher CH4 emissions from manure storage. Thus, the type of forage of the basal diet should be taken into consideration when using fat supplementation as a dietary strategy to reduce enteric CH4 production from dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China

    NASA Astrophysics Data System (ADS)

    Wang, Xuejing; Li, Hailong; Yang, Jinzhong; Zheng, Chunmiao; Zhang, Yan; An, An; Zhang, Meng; Xiao, Kai

    2017-08-01

    Daya Bay, a semi-closed bay of the South China Sea, is famous for its aquaculture, agriculture and tourism. Although routine environmental investigations in the bay have been conducted since the early 1980s, evaluations of submarine groundwater discharge (SGD), an important process in exchange between groundwater and coastal seawater, and its environmental impacts have never been reported. In this study, naturally occurring radon isotope (222Rn) was measured continuously at two sites (north-west and middle-east sites) and used as a tracer to estimate SGD and associated nutrient inputs into the bay. The SGD rates estimated based on the 222Rn mass balance model were, on average, 28.2 cm/d at north-west site and 30.9 cm/d at middle-east site. The large SGD rate at middle-east site may be due to the large tidal amplitude and the sandy component with high permeability in sediments. The SGD-driven nutrient fluxes, which were calculated as the product of SGD flux and the difference of nutrient concentrations between coastal groundwater and seawater, were 3.28 × 105 mol/d for dissolved nitrates (NO3-N), 5.84 × 103 mol/d for dissolved inorganic phosphorous (DIP), and 8.97 × 105 mol/d for reactive silicate (Si). These nutrient inputs are comparable to or even higher than those supplied by local rivers. In addition, these SGD-driven nutrients have a nitrogen-phosphorous ratio as high as ∼43, which may significantly affect the ecology of coastal waters and lead to frequent occurrence of harmful algal blooms.

  4. The Consequences of Precipitation Seasonality for Mediterranean-Ecosystem Vegetation of South Africa.

    PubMed

    Cramer, Michael D; Hoffman, M Timm

    2015-01-01

    Globally, mediterranean-climate ecosystem vegetation has converged on an evergreen, sclerophyllous and shrubby growth form. The particular aspects of mediterranean-climate regions that contribute to this convergence include summer droughts and relatively nutrient-poor soils. We hypothesised that winter-precipitation implies stressful summer droughts and leaches soils due to greater water availability (i.e. balance between precipitation and potential evapotranspiration; P-PET) during cold periods. We conducted a comparative analysis of normalised difference vegetation indices (NDVI) and edaphic and climate properties across the biomes of South Africa. NDVI was strongly correlated with both precipitation and P-PET (r2 = 0.8). There was no evidence, however, that winter-precipitation reduces NDVI in comparison to similar amounts of summer-precipitation. Base saturation (BS), a measure of soil leaching was, however, negatively related to P-PET (r2 = 0.64). This led to an interaction between P-PET and BS in determining NDVI, indicating the existence of a trade-off between water availability and soil nutrients that enables NDVI to increase with precipitation, despite negative consequences for soil nutrient availability. The mechanism of this trade-off is suggested to be that water increases nutrient accessibility. This implies that along with nutrient-depauperate geologies and long periods of time since glaciation, the winter-precipitation may have contributed to the highly leached status of the soils. Since many of the ecophysiological characteristics of mediterranean-ecosystem flora are associated with low nutrient availabilities (e.g. evergreen foliage, sclerophylly, cluster roots), we conclude that mediterranean-climates promote convergence of growth-forms in these regions through high leaching capacity.

  5. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines.

    PubMed

    Holmer, Marianne; Marbá, Núria; Terrados, Jorge; Duarte, Carlos M; Fortes, Mike D

    2002-07-01

    Sediment oxygen consumption, TCO2 production and nutrient fluxes across the sediment-water interface were measured in sediments within and along a transect from four fish pens with production of milkfish (Chanos chanos) in the Bolinao area, The Philippines. The four fish pens were each representing a specific period in the production cycling. There was a positive linear relationship between the rates of sedimentation inside the fish pens and the sediment oxygen consumption indicating that the benthic processes were controlled by the input of organic matter from fish production. The nutrient fluxes were generally higher inside the fish pens, and nitrate was taken up (1.7-5.8 mmol m(-2) d(-1)) whereas ammonium (1-22 mmol m(-2) d(-1)) and phosphate (0.2-4.7 mmol m(-2) d(-1)) were released from the sediments. The sediments were enriched in organic matter with up to a factor 4 compared to outside. A mass balance for one crop of milkfish was constructed based on production data and on measured fluxes of nutrients in the fish pens to assess the loss of carbon and nutrients to the environment. There was a loss to the surroundings of carbon and nitrogen of 51-68% of the total input, whereas phosphorus was buried in the sediments inside the fish pens which acted as net sinks of phosphorus. The results obtained suggest that fish pen culture as practiced in the Bolinao area, leads to even greater impacts on benthic carbon and nutrient cycling than those found in suspended cage cultures.

  6. The Consequences of Precipitation Seasonality for Mediterranean-Ecosystem Vegetation of South Africa

    PubMed Central

    2015-01-01

    Globally, mediterranean-climate ecosystem vegetation has converged on an evergreen, sclerophyllous and shrubby growth form. The particular aspects of mediterranean-climate regions that contribute to this convergence include summer droughts and relatively nutrient-poor soils. We hypothesised that winter-precipitation implies stressful summer droughts and leaches soils due to greater water availability (i.e. balance between precipitation and potential evapotranspiration; P–PET) during cold periods. We conducted a comparative analysis of normalised difference vegetation indices (NDVI) and edaphic and climate properties across the biomes of South Africa. NDVI was strongly correlated with both precipitation and P–PET (r2 = 0.8). There was no evidence, however, that winter-precipitation reduces NDVI in comparison to similar amounts of summer-precipitation. Base saturation (BS), a measure of soil leaching was, however, negatively related to P–PET (r2 = 0.64). This led to an interaction between P–PET and BS in determining NDVI, indicating the existence of a trade-off between water availability and soil nutrients that enables NDVI to increase with precipitation, despite negative consequences for soil nutrient availability. The mechanism of this trade-off is suggested to be that water increases nutrient accessibility. This implies that along with nutrient-depauperate geologies and long periods of time since glaciation, the winter-precipitation may have contributed to the highly leached status of the soils. Since many of the ecophysiological characteristics of mediterranean-ecosystem flora are associated with low nutrient availabilities (e.g. evergreen foliage, sclerophylly, cluster roots), we conclude that mediterranean-climates promote convergence of growth-forms in these regions through high leaching capacity. PMID:26650081

  7. Nutrients affecting gastric barrier.

    PubMed

    Gasbarrini, Antonio; D'Aversa, Francesca; Di Rienzo, Teresa; Franceschi, Francesco

    2014-01-01

    The gastric barrier could be considered an active tissue involved in many synthetic and metabolic functions, as the immunological defense, by activating mucosal immune system. Barrier integrity results from a balance between protective and aggressive endogenous factors and from their interaction with exogenous factors (steroidal or nonsteroidal anti-inflammatory drugs, dietary nitrates, nitrites and/or NaCl, stress, Helicobacter pylori infection, food allergens and contaminants, metals, chemicals, radiation, smoking and alcohol intake). Nutrients represent the most important exogenous factors affecting gastric barrier because of the impact on people's everyday life. We report evidence from the literature about nutrients affecting gastric barrier and we investigate the possible effect that nutrients can play to determining or maintaining a gastric barrier dysfunction. © 2014 S. Karger AG, Basel.

  8. Nutrition Education in the Elementary School

    ERIC Educational Resources Information Center

    Eisenhauer, John E.; Bell, Paul E.

    1976-01-01

    The involvement of seven elementary teachers in a summer nutrition workshop expanded into a complete nutrition education program on nutrients, caloric balance, junk foods, food selection, preparation, and storage. (MB)

  9. The determination of nutritional requirements for Safe Haven Food Supply System (emergency/survival foods)

    NASA Technical Reports Server (NTRS)

    Ahmed, Selina

    1987-01-01

    The Space Station Safe Haven Food System must sustain 8 crew members under emergency conditions for 45 days. Emergency Survival Foods are defined as a nutritionally balanced collection of high density food and beverages selected to provide for the survival of Space Station flight crews in contingency situations. Since storage volume is limited, the foods should be highly concentrated. A careful study of different research findings regarding starvation and calorie restricted diets indicates that a minimum nutritional need close to RDA is an important factor for sustaining an individual's life in a stressful environment. Fat, protein, and carbohydrates are 3 energy producing nutrients which play a vital role in the growth and maintenance process of human life. A lower intake of protein can minimize the water intake, but it causes a negative nitrogen balance and a lower performance level. Other macro and micro nutrients are also required for nutritional interrelationships to metabolize the other 3 nutrients to their optimum level. The various options for longer duration than 45 days are under investigation.

  10. Rates of biotite weathering, and clay mineral transformation and neoformation, determined from watershed geochemical mass-balance methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA

    Treesearch

    Jason R. Price; Michael A. Velbel

    2013-01-01

    Biotite is a common constituent of silicate bedrock. Its weathering releases plant nutrients and consumes atmospheric CO2. Because of its stoichiometric relationship with its transformational weathering product and sensitivity to botanical activity, calculating biotite weathering rates using watershed mass-balance methods has proven challenging....

  11. Optimal Plant Carbon Allocation Implies a Biological Control on Nitrogen Availability

    NASA Astrophysics Data System (ADS)

    Prentice, I. C.; Stocker, B. D.

    2015-12-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C exudation into the soil (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. Thus, N availability is under biological control, but incurs a C cost. In spite of clear observational support, this concept is left unaccounted for in Earth system models. We develop a model for the coupled cycles of C and N in terrestrial ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We assume that Cex is proportional to root mass, and that the ratio of N uptake (Nup) to Cex is proportional to inorganic N concentration in the soil solution. We further assume that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. Our analysis thereby accounts for the feedbacks between ecosystem C and N cycling and stoichiometry. We address the question of how the plant C economy will adjust under rising atmospheric CO2 and what this implies for the ecosystem C balance and the degree of N limitation.

  12. Nutrition in Space: Benefits on Earth

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2006-01-01

    History has often proven the criticality for adequate nutrition to ensure expedition success. Space exploration will be no different, with the exception of the certainty that food will not be found along the journey. Ensuring the health and safety of astronauts is critical and nutrition will serve several functions to that end. Nutritional assessment of International Space Station (ISS) crewmembers not only serves to evaluate the nutritional health of individuals, but also allows a better understanding of how space flight affects nutritional requirements, and how nutrition can serve in mitigating the negative effects of weightlessness on the human. Available data suggest that the nutritional status of astronauts is compromised during and after flight. Inadequate dietary intake and subsequent weight loss are often considered hallmarks of space flight, although exceptions to this do exist, and provide hope. However, beyond energy intake, specific nutrient issues also exist. Several vitamins, including D and folate, are affected in space travelers. Hematological and antioxidant defense systems are impacted, with increased iron storage, and increased markers of oxidative damage. Bone loss during space flight remains a critical challenge. Ground-based studies have proven that nutrition is a potent modulator of the bone response to simulated weightlessness. Protein and sodium are two nutrients which tend to exacerbate bone resorption and loss, likely mediated through acid base balance. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health. Both flight and ground-based research provide a unique situation, one where healthy individuals are put in a unique and challenging environment. A full understanding of the role of nutrition during space flight will not only enhance crew health and safety during flight, but will also expand our understanding of the role of nutrition in health of those remaining on Earth.

  13. Are dietary supplements necessary for a healthy person?

    PubMed

    Schwab, Ursula; Pihlajamäki, Jussi

    A dietary supplement differs from conventional foods in its appearance or way of using. The formulation of a dietary supplement often resembles that of medicines. Research evidence of the benefits of dietary supplements for healthy people is insufficient. A balanced, health-promoting diet will secure adequate intake of nutrients and, based on studies, is beneficial for the prevention of numerous diseases. The use of dietary supplements is justified, if giving variety to a diet that is inadequate in its nutritive content is not possible or successful. The use should be based on careful examination of the diet as well as on reliable biochemical assays.

  14. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Treesearch

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  15. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas.

    PubMed

    Villareal, Tracy A; Pilskaln, Cynthia H; Montoya, Joseph P; Dennett, Mark

    2014-01-01

    In oceanic subtropical gyres, primary producers are numerically dominated by small (1-5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80-100 m) into the surface layer (∼0-40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (10(2)-10(3) µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m(-2) d(-1)) equivalent to eddy nitrate injections (242 µmol NO3 (-) m(-2) d(-1)). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea.

  16. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas

    PubMed Central

    Pilskaln, Cynthia H.; Montoya, Joseph P.; Dennett, Mark

    2014-01-01

    In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m) into the surface layer (∼0–40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m-2 d-1) equivalent to eddy nitrate injections (242 µmol NO3− m-2 d-1). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea. PMID:24688877

  17. Fungal fermentation on anaerobic digestate for lipid-based biofuel production.

    PubMed

    Zhong, Yuan; Liu, Zhiguo; Isaguirre, Christine; Liu, Yan; Liao, Wei

    2016-01-01

    Anaerobic digestate is the effluent from anaerobic digestion of organic wastes. It contains a significant amount of nutrients and lignocellulosic materials, even though anaerobic digestion consumed a large portion of organic matters in the wastes. Utilizing the nutrients and lignocellulosic materials in the digestate is critical to significantly improve efficiency of anaerobic digestion technology and generate value-added chemical and fuel products from the organic wastes. Therefore, this study focused on developing an integrated process that uses biogas energy to power fungal fermentation and converts remaining carbon sources, nutrients, and water in the digestate into biofuel precursor-lipid. The process contains two unit operations of anaerobic digestion and digestate utilization. The digestate utilization includes alkali treatment of the mixture feed of solid and liquid digestates, enzymatic hydrolysis for mono-sugar release, overliming detoxification, and fungal fermentation for lipid accumulation. The experimental results conclude that 5 h and 30 °C were the preferred conditions for the overliming detoxification regarding lipid accumulation of the following fungal cultivation. The repeated-batch fungal fermentation enhanced lipid accumulation, which led to a final lipid concentration of 3.16 g/L on the digestate with 10% dry matter. The mass and energy balance analysis further indicates that the digestate had enough water for the process uses and the biogas energy was able to balance the needs of individual unit operations. A fresh-water-free and energy-positive process of lipid production from anaerobic digestate was achieved by integrating anaerobic digestion and fungal fermentation. The integration addresses the issues that both biofuel industry and waste management encounter-high water and energy demand of biofuel precursor production and few digestate utilization approaches of organic waste treatment.

  18. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    USGS Publications Warehouse

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  19. Microbial nutrient niches in the gut.

    PubMed

    Pereira, Fátima C; Berry, David

    2017-04-01

    The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Next-generation non-starch polysaccharide-degrading, multi-carbohydrase complex rich in xylanase and arabinofuranosidase to enhance broiler feed digestibility.

    PubMed

    Cozannet, Pierre; Kidd, Michael T; Montanhini Neto, Roberto; Geraert, Pierre-André

    2017-08-01

    This study was carried out to evaluate the effect of a multi-carbohydrase complex (MCC) rich in xylanase (Xyl) and arabinofuranosidase (Abf) on overall broiler feed digestibility in broilers. Energy utilization and digestibility of dry matter (DM), organic matter (OM), protein, starch, fat, and insoluble and soluble fibers were measured using the mass-balance method. The experiment was carried out on 120 broilers (3-week-old chickens). Broilers were distributed over 8 treatments to evaluate the effect of the dietary arabinoxylan content and nutrient density with and without MCC (Rovabio® Advance). The graded content of arabinoxylan (AX) was obtained using different raw materials (wheat, rye, barley, and dried distillers' wheat). Diet-energy density was modified with added fat. Measurements indicated that nutrient density and AX content had a significant effect on most digestibility parameters. Apparent metabolizable energy (AME) was significantly increased (265 kcal kg-1) by MCC. The addition of MCC also resulted in significant improvement in the digestibility of all evaluated nutrients, with average improvements of 3.0, 3.3, 3.2, 3.0, 6.2, 2.9, 5.8, and 3.8% units for DM, OM, protein, starch, fat, insoluble and soluble fibers, and energy utilization, respectively. The interaction between MCC and diet composition was significant for the digestibility of OM, fat, protein, and energy. Nutrient digestibility and diet AME were negatively correlated with AX content (P < 0.001). However, the addition of MCC resulted in a reduction of this negative effect (P < 0.001). The AME of diets with and without the addition of MCC were successfully predicted by the diet digestible nutrient (i.e., starch, protein, fat, insoluble and soluble fibers) content with and without MCC (R2 = 0.87; RSD = 78 kcal kg-1). This study confirms that the presence of AX in wheat-based diets and wheat-based diets with other cereals and cereal by-products reduces nutrient digestibility in broiler chickens. Furthermore, the dietary addition of MCC, which is rich in Xyn and Abf, reduced deleterious effect of fiber and improved overall nutrient digestibility in broiler diets. © 2017 Poultry Science Association Inc.

  1. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    NASA Astrophysics Data System (ADS)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  2. Harmonization of nutrient intake values.

    PubMed

    King, Janet C; Garza, Cutberto

    2007-03-01

    The conceptual framework for the various NIVs is depicted in figure 1 along with the methodological approaches and applications. The NIVs consist of two values derived from a statistical evaluation of data on nutrient requirements, the average nutrient requirement (ANR), or nutrient toxicities, the upper nutrient level (UNL). The individual nutrient levelx (INLx) is derived from the distribution of average nutrient requirements. The percentile chosen is often 98%, which is equivalent to 2 SD above the mean requirement. Concepts underlying the NIVs include criteria for establishing a nutrient requirement, e.g., ferritin stores, nitrogen balance, or serum vitamin C. Once the requirement for the absorbed nutrient is determined, it may be necessary to adjust the value for food sources, i.e., bioavailability, or host factors, such as the effect of infection on nutrient utilization. Other concepts that committees may want to consider when establishing NIVs include the effects of genetic variation on nutrient requirements and the role of the nutrient in preventing long-term disease. Two fundamental uses of NIVs are for assessing the adequacy of nutrient intakes and for planning diets for individuals and populations. Establishing the NIV using the statistical framework proposed in this report improves the efficacy of the values for identifying risks of nutrient deficiency or excess among individuals and populations. NIVs also are applied to a number of aspects of food and nutrition policy. Some examples include regulatory issues and trade, labeling, planning programs for alleviating public health nutrition problems, food fortification, and dietary guidance.

  3. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach.

    PubMed

    Lancelot, Christiane; Thieu, Vincent; Polard, Audrey; Garnier, Josette; Billen, Gilles; Hecq, Walter; Gypens, Nathalie

    2011-05-01

    Nutrient reduction measures have been already taken by wealthier countries to decrease nutrient loads to coastal waters, in most cases however, prior to having properly assessed their ecological effectiveness and their economic costs. In this paper we describe an original integrated impact assessment methodology to estimate the direct cost and the ecological performance of realistic nutrient reduction options to be applied in the Southern North Sea watershed to decrease eutrophication, visible as Phaeocystis blooms and foam deposits on the beaches. The mathematical tool couples the idealized biogeochemical GIS-based model of the river system (SENEQUE-RIVERSTRAHLER) implemented in the Eastern Channel/Southern North Sea watershed to the biogeochemical MIRO model describing Phaeocystis blooms in the marine domain. Model simulations explore how nutrient reduction options regarding diffuse and/or point sources in the watershed would affect the Phaeocystis colony spreading in the coastal area. The reference and prospective simulations are performed for the year 2000 characterized by mean meteorological conditions, and nutrient reduction scenarios include and compare upgrading of wastewater treatment plants and changes in agricultural practices including an idealized shift towards organic farming. A direct cost assessment is performed for each realistic nutrient reduction scenario. Further the reduction obtained for Phaeocystis blooms is assessed by comparison with ecological indicators (bloom magnitude and duration) and the cost for reducing foam events on the beaches is estimated. Uncertainty brought by the added effect of meteorological conditions (rainfall) on coastal eutrophication is discussed. It is concluded that the reduction obtained by implementing realistic environmental measures on the short-term is costly and insufficient to restore well-balanced nutrient conditions in the coastal area while the replacement of conventional agriculture by organic farming might be an option to consider in the nearby future. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Effects of dietary glycerin inclusion at 0, 5, 10, and 15 percent of dry matter on energy metabolism and nutrient balance in finishing beef steers

    USDA-ARS?s Scientific Manuscript database

    Expansion of the biodiesel industry has increased the glycerin (GLY) supply. Glycerin is an energy-dense feed that can be used in ruminant species; however, the energy value of GLY is not known. Therefore, the effects of GLY inclusion at 0%, 5%, 10%, and 15% on energy balance in finishing cattle d...

  5. Definitions of Health Terms: Nutrition

    MedlinePlus

    ... and balanced diet. Food and drink provide the energy and nutrients you need to be healthy. Understanding ... in the blood and the main source of energy for your body. Source : NIH MedlinePlus Calories A ...

  6. Nutritional studies

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Smith, M. C., Jr.; Wheeler, H. O.

    1975-01-01

    Detailed metabolic studies were conducted of the Apollo 16 and Apollo 17 flight crews, and the results are presented in tabular form. Intake and absorption data are also included. Apollo nutrient intakes were found to be characteristically hypocaloric. Estimates of body composition changes from metabolic balance data, from preflight and postflight weights and volumes, and from total body water and potassium provide no evidence for diminished caloric requirements during a flight. As observed during the Gemini Program and during periods of bed rest, measurements of bone density and metabolic balance confirm a tendency toward loss of skeletal tissue in weightlessness. No evidence exists that any inflight metabolic anomaly, including hypokalemia, was induced by marginal or deficient nutrient intakes. In general, the Apollo crewmen were well nourished and exhibited normal gastroenterological functions, although appetite was somewhat diminished and the organoleptic response to food was somewhat modified during flight.

  7. Nutritional sustainability of pet foods.

    PubMed

    Swanson, Kelly S; Carter, Rebecca A; Yount, Tracy P; Aretz, Jan; Buff, Preston R

    2013-03-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system.

  8. Nutritional Sustainability of Pet Foods12

    PubMed Central

    Swanson, Kelly S.; Carter, Rebecca A.; Yount, Tracy P.; Aretz, Jan; Buff, Preston R.

    2013-01-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system. PMID:23493530

  9. Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production

    PubMed Central

    Moreira-Ascarrunz, Sergio Daniel; Larsson, Hans; Prieto-Linde, Maria Luisa; Johansson, Eva

    2016-01-01

    The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha−1). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated “balanced genotypes” for the four minerals and for the aforementioned characteristics. Selection and breeding of such “balanced genotypes” may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population. PMID:28231184

  10. Contributions of processed foods to dietary intake in the US from 2003-2008: a report of the Food and Nutrition Science Solutions Joint Task Force of the Academy of Nutrition and Dietetics, American Society for Nutrition, Institute of Food Technologists, and International Food Information Council.

    PubMed

    Eicher-Miller, Heather A; Fulgoni, Victor L; Keast, Debra R

    2012-11-01

    Processed foods are an integral part of American diets, but a comparison of the nutrient contribution of foods by level of processing with the recommendations of the Dietary Guidelines for Americans regarding nutrients to encourage or to reduce has not been documented. The mean reported daily dietary intakes of these nutrients and other components were examined among 25,351 participants ≥2 y of age in the 2003-2008 NHANES to determine the contribution of processed food to total intakes. Also examined was the percent contribution of each nutrient to the total reported daily nutrient intake for each of the 5 categories of food that were defined by the level of processing. All processing levels contributed to nutrient intakes, and none of the levels contributed solely to nutrients to be encouraged or solely to food components to be reduced. The processing level was a minor determinant of individual foods' nutrient contribution to the diet and, therefore, should not be a primary factor when selecting a balanced diet.

  11. Applying the food multimix concept for sustainable and nutritious diets.

    PubMed

    Zotor, F B; Ellahi, B; Amuna, P

    2015-11-01

    Despite a rich and diverse ecosystem, and biodiversity, worldwide, more than 2 billion people suffer from micronutrient malnutrition or hidden hunger. Of major concern are a degradation of our ecosystems and agricultural systems which are thought to be unsustainable thereby posing a challenge for the future food and nutrition security. Despite these challenges, nutrition security and ensuring well balanced diets depend on sound knowledge and appropriate food choices in a complex world of plenty and want. We have previously reported on how the food multimix (FMM) concept, a food-based and dietary diversification approach can be applied to meet energy and micronutrient needs of vulnerable groups through an empirical process. Our objective in this paper is to examine how the concept can be applied to improve nutrition in a sustainable way in otherwise poor and hard-to-reach communities. We have reviewed over 100 FMM food recipes formulated from combinations of commonly consumed traditional candidate food ingredients; on average five per recipe, and packaged as per 100 g powders from different countries including Ghana, Kenya, Botswana, Zimbabawe and Southern Africa, India, Mexico, Malaysia and the UK; and for different age groups and conditions such as older infants and young children, pregnant women, HIV patients, diabetes and for nutrition rehabilitation. Candidate foods were examined for their nutrient strengths and nutrient content and nutrient density of recipes per 100 g were compared with reference nutrient intakes for the different population groups. We report on the nutrient profiles from our analysis of the pooled and age-matched data as well as sensory analysis and conclude that locally produced FMM foods can complement local diets and contribute significantly to meet nutrient needs among vulnerable groups in food-insecure environments.

  12. Designing the eatwell week: the application of eatwell plate advice to weekly food intake.

    PubMed

    Leslie, Wilma S; Comrie, Fiona; Lean, Michael E J; Hankey, Catherine R

    2013-05-01

    To develop a menu and resource to illustrate to consumers and health professionals what a healthy balanced diet looks like over the course of a week. Development and analysis of an illustrative 7 d 'eatwell week' menu to meet current UK recommendations for nutrients with a Dietary Reference Value, with a daily energy base of 8368 kJ (2000 kcal). Foods were selected using market research data on meals and snacks commonly consumed by UK adults. Analysis used the food composition data set from year 1 (2008) of the UK National Diet and Nutrition Survey rolling programme. The eatwell week menu was developed using an iterative process of nutritional analysis with adjustments made to portion sizes and the inclusion/exclusion of foods in order to achieve the target macronutrient composition. Three main meals and two snacks were presented as interchangeable within the weekdays and two weekend days to achieve adult food and nutrient recommendations. Main meals were based on potatoes, rice or pasta with fish (two meals; one oily), red meat (two meals), poultry or vegetarian accompaniments. The 5-a-day target for fruit and vegetables (range 5-6·7 portions) was achieved daily. Mean salt content was below recommended maximum levels (<6 g/d). All key macro- and micronutrient values were achieved. Affordable foods, and those widely consumed by British adults, can be incorporated within a 7 d healthy balanced menu. Future research should investigate the effect of using the eatwell week on adults' dietary habits and health-related outcomes.

  13. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth.

    PubMed

    Feller, Chrystel; Favre, Patrick; Janka, Ales; Zeeman, Samuel C; Gabriel, Jean-Pierre; Reinhardt, Didier

    2015-01-01

    Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.

  14. A screening-level modeling approach to estimate nitrogen ...

    EPA Pesticide Factsheets

    This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explore best management practice (BMP) implementation to reduce loading. The modeling framework uses a hybrid statistical and process based approach to estimate source of pollutants, their transport and decay in the terrestrial and aquatic parts of watersheds. The framework is developed in the ArcGIS environment and is based on the total maximum daily load (TMDL) balance model. Nitrogen (N) is currently addressed in the framework, referred to as WQM-TMDL-N. Loading for each catchment includes non-point sources (NPS) and point sources (PS). NPS loading is estimated using export coefficient or event mean concentration methods depending on the temporal scales, i.e., annual or daily. Loading from atmospheric deposition is also included. The probability of a nutrient load to exceed a target load is evaluated using probabilistic risk assessment, by including the uncertainty associated with export coefficients of various land uses. The computed risk data can be visualized as spatial maps which show the load exceedance probability for all stream segments. In an application of this modeling approach to the Tippecanoe River watershed in Indiana, USA, total nitrogen (TN) loading and risk of standard exce

  15. Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST.

    PubMed

    Futter, M N; Whitehead, P G; Sarkar, S; Rodda, H; Crossman, J

    2015-06-01

    There are ongoing discussions about the appropriate level of complexity and sources of uncertainty in rainfall runoff models. Simulations for operational hydrology, flood forecasting or nutrient transport all warrant different levels of complexity in the modelling approach. More complex model structures are appropriate for simulations of land-cover dependent nutrient transport while more parsimonious model structures may be adequate for runoff simulation. The appropriate level of complexity is also dependent on data availability. Here, we use PERSiST; a simple, semi-distributed dynamic rainfall-runoff modelling toolkit to simulate flows in the Upper Ganges and Brahmaputra rivers. We present two sets of simulations driven by single time series of daily precipitation and temperature using simple (A) and complex (B) model structures based on uniform and hydrochemically relevant land covers respectively. Models were compared based on ensembles of Bayesian Information Criterion (BIC) statistics. Equifinality was observed for parameters but not for model structures. Model performance was better for the more complex (B) structural representations than for parsimonious model structures. The results show that structural uncertainty is more important than parameter uncertainty. The ensembles of BIC statistics suggested that neither structural representation was preferable in a statistical sense. Simulations presented here confirm that relatively simple models with limited data requirements can be used to credibly simulate flows and water balance components needed for nutrient flux modelling in large, data-poor basins.

  16. Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment.

    PubMed

    Horie, Ichiro; Abiru, Norio; Hongo, Ryoko; Nakamura, Takeshi; Ito, Ayako; Haraguchi, Ai; Natsuda, Shoko; Sagara, Ikuko; Ando, Takao; Kawakami, Atsushi

    2018-01-01

    Sodium-glucose cotransporter 2 inhibitors (SGLT2i) cause substantially less weight loss than would be expected based on their caloric deficits, probably due to enhanced appetite regulation known as "compensatory hyperphagia," which occurs to offset the negative energy balance caused by increased glycosuria. We examined whether any specific nutrients contributed to the compensatory hyperphagia in diabetic patients taking SGLT2i. Sixteen patients with type 2 diabetes were newly administered dapagliflozin 5 mg daily as the experimental SGLT2i group. Sixteen age-, sex- and BMI-matched type 2 diabetes patients not receiving dapagliflozin served as controls. A brief-type self-administered diet history questionnaire (BDHQ) was undertaken just before and 3 months after study initiation to evaluate changes of energy and nutrient intakes in each group. At 3 months, daily intakes of total calories and the proportions of the three major nutrients were not significantly increased in either group. However, daily sucrose intake was significantly increased after treatment versus the baseline value in the SGLT2i group (p = .003), but not in controls. The calculated intakes of all other nutrients were not significantly changed in either group. Dapagliflozin treatment specifically increased sucrose intake, which might be an ideal target for nutritional approaches to attenuate compensatory hyperphagia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Relationship between nutrients and plankton biomass in the turbidity maximum zone of the Pearl River Estuary.

    PubMed

    Shi, Zhen; Xu, Jie; Huang, Xiaoping; Zhang, Xia; Jiang, Zhijian; Ye, Feng; Liang, Ximei

    2017-07-01

    Nutrients, dissolved and particulate organic carbon and plankton (bacterio-, phyto- and zoo-) were compared in the turbidity maximum zone (TMZ) and adjacent areas (non-TMZ) in the Pearl River estuary. Our results showed that high levels of suspended substances had marked effect on dynamics of nutrients and plankton in the TMZ. Based on the cluster analysis of total suspended solids (TSS) concentrations, all stations were divided into two groups, TMZ with average TSS of 171mg/L and non-TMZ of 45mg/L. Suspended substances adsorbed PO 4 3- and dissolved organic carbon, resulting in higher particulate phosphorus and organic carbon (POC) and lower PO 4 3- and DOC in the TMZ, compared to the non-TMZ. However, suspended substances had limited effect on nitrogenous nutrients. Phytoplankton growth was light-limited due to high concentrations of suspended substances in the TMZ and a peak of phytoplankton abundance appeared in the non-TMZ. In contrast, the highest bacterial abundance occurred in the TMZ, which was likely partly responsible for low DOC levels. Two peaks of zooplankton abundance observed in the TMZ and non-TMZ in the Pearl River estuary were primarily supported by bacteria and phytoplankton, respectively. Our finding implied that high levels of suspended solids in the TMZ affect the trophic balance. Copyright © 2016. Published by Elsevier B.V.

  18. Tolerance for Nutrient Imbalance in an Intermittently Feeding Herbivorous Cricket, the Wellington Tree Weta

    PubMed Central

    Wehi, Priscilla M.; Raubenheimer, David; Morgan-Richards, Mary

    2013-01-01

    Organisms that regulate nutrient intake have an advantage over those that do not, given that the nutrient composition of any one resource rarely matches optimal nutrient requirements. We used nutritional geometry to model protein and carbohydrate intake and identify an intake target for a sexually dimorphic species, the Wellington tree weta (Hemideina crassidens). Despite pronounced sexual dimorphism in this large generalist herbivorous insect, intake targets did not differ by sex. In a series of laboratory experiments, we then investigated whether tree weta demonstrate compensatory responses for enforced periods of imbalanced nutrient intake. Weta pre-fed high or low carbohydrate: protein diets showed large variation in compensatory nutrient intake over short (<48 h) time periods when provided with a choice. Individuals did not strongly defend nutrient targets, although there was some evidence for weak regulation. Many weta tended to select high and low protein foods in a ratio similar to their previously identified nutrient optimum. These results suggest that weta have a wide tolerance to nutritional imbalance, and that the time scale of weta nutrient balancing could lie outside of the short time span tested here. A wide tolerance to imbalance is consistent with the intermittent feeding displayed in the wild by weta and may be important in understanding weta foraging patterns in New Zealand forests. PMID:24358369

  19. Parasite and nutrient enrichment effects on Daphnia interspecific competition.

    PubMed

    Decaestecker, Ellen; Verreydt, Dino; De Meester, Luc; Declerck, Steven A J

    2015-05-01

    Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their susceptibility for parasites as well as the growth conditions for parasites within the host. Consequently, if not balanced by increased host immuno-competence or life history responses, changes in the magnitude of parasite effects with increasing nutrient availability are expected. If these parasite effects are host-species specific, this may lead to shifts in the host community structure. We here used the Daphnia- parasite model system to study the effect of nutrient enrichment on parasite-mediated competition in experimental mesocosms. In the absence of parasites, D. magna was competitively dominant to D. pulex at both low and high nutrient levels. Introduction of parasites resulted in infections of D. magna, but not of D. pulex and, as such, reversed the competitive hierarchy between these two species. Nutrient addition resulted in an increased prevalence and infection intensity of some of the parasites on D. magna. However, there was no evidence that high nutrient levels enhanced negative effects of parasites on the hosts. Costs associated with parasite infections may have been compensated by better growth conditions for D. magna in the presence of high nutrient levels.

  20. Utilizing Anaerobically Digested Dairy Manure for the Cultivation of Duckweed for Biomass Production, Nutrient Assimilation, and Sugar Production

    NASA Astrophysics Data System (ADS)

    Kruger, Kevin C.

    Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0.122 d-1 of TN, 0.136 d -1 of TKN, 0.145 d-1 of TP, and 0.173d-1 of o-PO4-P. The batch efficiency of cultivation for Landoltia punctata 0128 on dilution ratio 1:27, in terms of nutrient uptake was 38% m/m in relation to the total nitrogen removed. The starch yield was measured at 30% w/w for Landoltia punctata 0128 after the nutrient starvation process. Due to its ability to reduce nutrients from AD dairy manure, accumulate biomass at a rapid growth rate, and accumulate a high yield of starch, Landoltia punctata 0128 has great potential to become a preferred choice for nutrient recovery and biomass and bioethanol production.

  1. Cross-Shelf Circulation and Momentum and Heat Balances Over the Inner Continental Shelf Near Martha’s Vineyard, Massachusetts

    DTIC Science & Technology

    2007-09-01

    transport of nutrients, larvae, harmful algal blooms, and pollutants. The import aiid export between the continental shelf and the open ocean of heat...carbon and other nutrients on both regional and global scales. Estimated annual mean export production is espe- cially high over the continental...shelves, as compared to the rest of Earth’s oceans (Falkowski et al., 1998). The export production in the coastal regions supports most of the world’s

  2. Global dynamics in a stoichiometric food chain model with two limiting nutrients.

    PubMed

    Chen, Ming; Fan, Meng; Kuang, Yang

    2017-07-01

    Ecological stoichiometry studies the balance of energy and multiple chemical elements in ecological interactions to establish how the nutrient content affect food-web dynamics and nutrient cycling in ecosystems. In this study, we formulate a food chain with two limiting nutrients in the form of a stoichiometric population model. A comprehensive global analysis of the rich dynamics of the targeted model is explored both analytically and numerically. Chaotic dynamic is observed in this simple stoichiometric food chain model and is compared with traditional model without stoichiometry. The detailed comparison reveals that stoichiometry can reduce the parameter space for chaotic dynamics. Our findings also show that decreasing producer production efficiency may have only a small effect on the consumer growth but a more profound impact on the top predator growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Gut microbiota and obesity.

    PubMed

    Scarpellini, Emidio; Campanale, Mariachiara; Leone, Diana; Purchiaroni, Flaminia; Vitale, Giovanna; Lauritano, Ernesto Cristiano; Gasbarrini, Antonio

    2010-10-01

    Intestinal epithelium, mucosal immune system, and bacterial flora represent a morpho-functional system on dynamic balance responsible for the intestinal metabolic and trophic functions, and the regulation of mucosal and systemic host's immunity. Obesity is a pathological condition affecting a growing number of people especially in the Western countries resulting from the failure of the organism's energetic balance based on the perfect equality of income, waste, and storage. Recent evidences explain the mechanisms for the microbial regulation of the host's metabolism both in health and disease. In particular, animal studies have explained how quali-/quantitative changes in microflora composition are able to affect the absorption of the nutrients and the energy distribution. Antibiotics, prebiotics, probiotics, and symbiotics are the instruments utilized in the current clinical practice to modulate the intestinal bacterial flora in man both in health and pathologic conditions with promising preliminary results on prevention and therapy of obesity and related metabolic diseases.

  4. Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

    USGS Publications Warehouse

    Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.

    2008-01-01

    Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these field investigations show that ground-water discharge into the Lynch Cove area of Hood Canal is highly dynamic and strongly affected by the large tidal range. In areas with a steep shoreline and steep hydraulic gradient, ground-water discharge is spatially concentrated in or near the intertidal zone, with increased discharge during low tide. Topographically flat areas with weak hydraulic gradients had more spatial variability, including larger areas of seawater recirculation and more widely dispersed discharge. Measured total-dissolved-nitrogen concentrations in ground water ranged from below detection limits to 2.29 milligrams per liter and the total load entering Lynch Cove was estimated to be approximately 98 ? 10.3 metric tons per year (MT/yr). This estimate is based on net freshwater seepage rates from Lee-type seepage meter measurements and can be compared to estimates derived from geochemical tracer mass balance estimates (radon and radium) of 231 to 749 MT/yr, and previous water-mass-balance estimates (14 to 47 MT/ yr). Uncertainty in these loading estimates is introduced by complex biogeochemical cycles of relevant nutrient species, the representativeness of measurement sites, and by energetic dynamics at the coastal aquifer-seawater interface caused by tidal forcing.

  5. Dietary electrolyte balance affects growth performance, amylase activity and metabolic response in the meagre (Argyrosomus regius).

    PubMed

    Magnoni, Leonardo J; Salas-Leiton, Emilio; Peixoto, Maria-João; Pereira, Luis; Silva-Brito, Francisca; Fontinha, Filipa; Gonçalves, José F M; Wilson, Jonathan M; Schrama, Johan W; Ozório, Rodrigo O A

    2017-09-01

    Dietary ion content is known to alter the acid-base balance in freshwater fish. The current study investigated the metabolic impact of acid-base disturbances produced by differences in dietary electrolyte balance (DEB) in the meagre (Argyrosomus regius), an euryhaline species. Changes in fish performance, gastric chyme characteristics, pH and ion concentrations in the bloodstream, digestive enzyme activities and metabolic rates were analyzed in meagre fed ad libitum two experimental diets (DEB 200 or DEB 700mEq/kg) differing in the Na 2 CO 3 content for 69days. Fish fed the DEB 200 diet had 60-66% better growth performance than the DEB 700 group. Meagre consuming the DEB 200 diet were 90-96% more efficient than fish fed the DEB 700 diet at allocating energy from feed into somatic growth. The pH values in blood were significantly lower in the DEB 700 group 2h after feeding when compared to DEB 200, indicating that acid-base balance in meagre was affected by electrolyte balance in diet. Osmolality, and Na + and K + concentrations in plasma did not vary with the dietary treatment. Gastric chyme in the DEB 700 group had higher pH values, dry matter, protein and energy contents, but lower lipid content than in the DEB 200 group. Twenty-four hours after feeding, amylase activity was higher in the gastrointestinal tract of DEB 700 group when compared to the DEB 200 group. DEB 700 group had lower routine metabolic (RMR) and standard metabolic (SMR) rates, indicating a decrease in maintenance energy expenditure 48h after feeding the alkaline diet. The current study demonstrates that feeding meagre with an alkaline diet not only causes acid-base imbalance, but also negatively affects digestion and possibly nutrient assimilation, resulting in decreased growth performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when using land use information (right image, b). Colors represent different ownership.

  7. A Balanced Diet Is Necessary for Proper Entrainment Signals of the Mouse Liver Clock

    PubMed Central

    Hirao, Akiko; Tahara, Yu; Kimura, Ichiro; Shibata, Shigenobu

    2009-01-01

    Background The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. Principal Finding To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3–4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6–0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. Conclusions Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on-board meals served to air travelers and shift workers to reduce jet lag-like symptoms. PMID:19738906

  8. The importance of submarine groundwater discharge to the nearshore nutrient supply in the Gulf of Aqaba (Israel)

    USGS Publications Warehouse

    Shellenbarger, G.G.; Monismith, Stephen G.; Genin, A.; Paytan, A.

    2006-01-01

    We used two short-lived radium isotopes (223Ra, 224Ra) and a mass balance approach applied to the radium activities to determine the nutrient contribution of saline submarine groundwater discharge to the coastal waters of the northern Gulf of Aqaba (Israel). Radium isotope activities were measured along transects during two seasons at a site that lacked any obvious surficial water input. An onshore well and an offshore end member were also sampled. For all samples, nutrients and salinity data were collected. Radium isotope activities generally decreased with distance offshore and exhibited significant tidal variability, which is consistent with a shore-derived tidally influenced source. Submarine groundwater contributes only 1-2% of the water along this coast, but this groundwater provides 8-46% of the nutrients. This saline groundwater is derived predominately from tidally pumped seawater percolating through the unconfined coastal aquifer and leaching radium and nutrients. This process represents a significant source of nutrients to the oligotrophic nearshore reef. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  9. Estimating the designated use attainment decision error rates of US Environmental Protection Agency's proposed numeric total phosphorus criteria for Florida, USA, colored lakes.

    PubMed

    McLaughlin, Douglas B

    2012-01-01

    The utility of numeric nutrient criteria established for certain surface waters is likely to be affected by the uncertainty that exists in the presence of a causal link between nutrient stressor variables and designated use-related biological responses in those waters. This uncertainty can be difficult to characterize, interpret, and communicate to a broad audience of environmental stakeholders. The US Environmental Protection Agency (USEPA) has developed a systematic planning process to support a variety of environmental decisions, but this process is not generally applied to the development of national or state-level numeric nutrient criteria. This article describes a method for implementing such an approach and uses it to evaluate the numeric total P criteria recently proposed by USEPA for colored lakes in Florida, USA. An empirical, log-linear relationship between geometric mean concentrations of total P (a potential stressor variable) and chlorophyll a (a nutrient-related response variable) in these lakes-that is assumed to be causal in nature-forms the basis for the analysis. The use of the geometric mean total P concentration of a lake to correctly indicate designated use status, defined in terms of a 20 µg/L geometric mean chlorophyll a threshold, is evaluated. Rates of decision errors analogous to the Type I and Type II error rates familiar in hypothesis testing, and a 3rd error rate, E(ni) , referred to as the nutrient criterion-based impairment error rate, are estimated. The results show that USEPA's proposed "baseline" and "modified" nutrient criteria approach, in which data on both total P and chlorophyll a may be considered in establishing numeric nutrient criteria for a given lake within a specified range, provides a means for balancing and minimizing designated use attainment decision errors. Copyright © 2011 SETAC.

  10. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen

    2012-08-14

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics.more » Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. Finally, by late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.« less

  11. Tropical organic soils ecosystems in relation to regional water resources in southeast Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentano, T. V.

    1982-01-01

    Tropical organic soils have functioned as natural sinks for carbon, nitrogen, slfur and other nutrients for the past 4000 years or more. Topographic evolution in peat swamp forests towards greater oligotrophy has concentrated storage of the limited nutrient stock in surface soils and biota. Tropical peat systems thus share common ecosystem characteristics with northern peat bogs and certain tropical oligotrophic forests. Organic matter accumulation and high cation-exchange-capacity limit nutrient exports from undisturbed organic soils, although nutrient retention declines with increasing eutrophy and wetland productivity. Peat swamps are subject to irreversible degradation if severely altered because disturbance of vegetation, surface peatsmore » and detritus can disrupt nuttrient cycles and reduce forest recovery capacity. Drainage also greatly increases exports of nitrogen, phosphorus and other nutrients and leads to downstream eutrophication and water quality degradation. Regional planning for clean water supplies must recognize the benefits provided by natural peatlands in balancing water supplies and regulating water chemistry.« less

  12. Ghrelin, the proglucagon-derived peptides and peptide YY in nutrient homeostasis.

    PubMed

    Dong, Charlotte X; Brubaker, Patricia L

    2012-12-01

    Dysregulation of nutrient homeostasis is implicated in the current epidemics of obesity and type 2 diabetes mellitus. The maintenance of homeostasis in the setting of repeated cycles of feeding and fasting occurs through complex interactions between metabolic, hormonal and neural factors. Although pancreatic islets, the liver, muscle, adipocytes and the central nervous system are all key players in this network, the gastrointestinal tract is the first tissue exposed to ingested nutrients and thus has an important role. This Review focuses on several of the endocrine hormones released by the gastrointestinal tract prior to or during nutrient ingestion that have key roles in maintaining energy balance. These hormones include the gastric orexigenic hormone, ghrelin, and the distal L cell anorexigenic and metabolic hormones, glucagon-like peptide (GLP)-1, GLP-2, oxyntomodulin and peptide YY. Each of these hormones exerts a distinct set of biological actions to maintain nutrient homeostasis, the properties of which are currently, or might soon be, exploited in the clinic for the treatment of obesity and type 2 diabetes mellitus.

  13. Comparative nutrient utilization, growth, and rumen enzyme profile of mithun (Bos frontalis) and Tho-tho cattle (Bos indicus) fed on tree-leaves-based ration.

    PubMed

    Das, Krushna Chandra; Haque, Nazrul; Baruah, K K; Rajkhowa, C; Mondal, M

    2011-01-01

    A study was conducted to compare the nutrient utilization, growth, and rumen enzyme profile of mithun (Bos frontalis) and Tho-tho cattle (Bos indicus) reared in the same feeding and managemental conditions. For the purpose, male mithun (n = 8) and male Tho-tho cattle (n = 8) of 1.5 years age, selected from the farm of National Research Centre on Mithun, Nagaland, India, were fed on mixed-tree-leaves-based ration as per the requirement of NRC (2001) for cattle for 12 months. Average daily gain (ADG), average dry matter intake (DMI), and feed conversion ratio (FCR) for all animals were recorded. A metabolic trial was conducted at 6 months of the experiment to assess the digestibility coefficient of different nutrients and nutritive value of ration. At 12 months of the experiment, rumen liquor was collected from all animals and analyzed for rumen enzyme profiles, viz., carboxymethylcellulase, xylanase, α-amylase, β-glucosidase, α-glucosidase, urease, and protease. It was found that ADG (507.8 g vs 392.8 g), DM intake (6.59 vs 5.85 kg/day) and DMI/W(0.75) (98.75 g vs 91.00 g/day), crude protein intake (780 vs 700 g/day), and total digestible nutrient intake (3.65 vs 3.32 kg/day) were higher (p < 0.05) in mithun than cattle. The nitrogen balance was higher and FCR was better (p < 0.05) in mithun compared with cattle. The digestibility coefficient of different nutrients was similar (p > 0.05) between the species. The microbial enzyme profiles of mithun and cattle were not different (p > 0.05). The better growth performance of mithun than cattle as found in the present study clearly indicates that the mithun has higher genetic potential for growth than Tho-tho cattle of north-eastern hilly region of India.

  14. Farmers behavior on using fertilizer in West Java

    NASA Astrophysics Data System (ADS)

    Perdana, Tomy; Renaldy, Eddy; Utami, Hesty Nurul; Sadeli, Agriani Hermita; Mahra Arari, H.; Ginanjar, Tetep; Ajeng Sesy N., P.; Fernianda Rahayu, H.; Sanjaya, Sonny

    2018-02-01

    Fertilizer is one of the important materials in farming system to improve quality and quantity of harvest. Most of farmers in Indonesia using fertilizer, one of substantial fertilizer is NPK that contain of complex nutrient, there are nitrogen, phosphorus and potassium. There are tendency for farmers using NPK based on quality products and speed of decomposition. Nowadays, market size for NPK fertilizer has been dramatically increase and it will impact on intensify of fertilizer use. The potential requirement in marketing does not balanced with consumer behavior analysis. Meanwhile, agricultural sector (include horticulture, floriculture, bio-pharmacy and plantation) have been wieldly increase of the farming system annualy. This research is study case which is analyzed local NPK fertilizer competitive advantage compared to imported NPK fertilizer through consumer point of view towards product quality in four districts in West Java province, i.e., West Bandung, Garut, Bogor and Cianjur District with target respondents are farmers who use NPK fertilizer. NPK fertilizer qualities are based on product attributes, which are; availability, nutrient content, price, basic ingredients, form of fertilizer, speed of decomposition, label, color, type, design and size of packaging. It was analyzed using sematic differential attitude models and multi attribute attitude snake diagram model. The evaluation ranking of consumers interests towards fertilizer attribute characteristics showed that consumer intention before deciding to buy or use a NPK fertilizer will consider nutrient content, speed of decomposition, form of fertilizer and availability of products. Consumer's attitude towards all NPK fertilizer attribute quality illustrated that imported fertilizer is considered to be more positive than local fertilizer. Fertilizer companies or industries should be able to maintain their fertilizer production especially concerning nutrient content and availability of products through a better production which appropriate with consumer's needs. Nutrient contents, form and speed of decomposition of fertilizer should be adapted with current state of farming activities

  15. Evaluation of Water Residence Time, Submarine Groundwater Discharge, and Maximum New Production Supported by Groundwater Borne Nutrients in a Coastal Upwelling Shelf System

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Jiao, Jiu Jimmy; Liu, Yi; Zhang, Xiaolang; Liang, Wenzhao; Tang, Danling

    2018-01-01

    The biogeochemical processes in the continental shelf systems are usually extensively influenced by coastal upwelling and submarine groundwater discharge (SGD). Using eastern Hainan upwelling shelf system as an example, this study fully investigates SGD and coastal upwelling and their effects on the coastal nutrient loadings to the mixing layer of eastern Hainan shelf. Based on the spatial distributions of 223Ra and 228Ra, water residence time is estimated to be 16.9 ± 8.9 days. Based on the mass balance models of 226Ra and 228Ra, the total SGD of the eastern Hainan shelf is estimated to be 0.8 × 108 and 1.4 × 108 m3 d-1, respectively. The groundwater borne dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphate (DIP) are estimated to be up to 1121.8 and 20.4 μM m2 d-1. The coastal upwelling delivers 2741.8 μM m2 d-1 DIN and 217.7 μM m2 d-1 DIP into the mixing layer, which are predominant in all the exogenous nutrient inputs. The groundwater borne DIN will support a maximum new production of 7.5 mM C m2 d-1, about up to 24.0% of the total new production in the study area. SGD-derived nutrient could be significant as a missing DIN to support the new production in the mixing layer of eastern Hainan shelf. The findings contribute to a better understanding of biogeochemical processes under the influences of SGD and coastal upwelling in the study area and other similar coastal upwelling systems.

  16. UNCERTAINTIES IN NITROGEN MASS LOADINGS IN COASTAL WATERSHEDS

    EPA Science Inventory

    With the increasing reduction of nutrients for coastal eutrophication control, the importance of well defined nitrogen mass balance becomes paramount. imited number of attempts have been made to quantify inputs and outputs within major coastal ecosystems including its watersheds....

  17. Brain nuclear receptors and body weight regulation

    USDA-ARS?s Scientific Manuscript database

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essent...

  18. Plant litter decomposition and nutrient release in peatlands

    NASA Astrophysics Data System (ADS)

    Bragazza, Luca; Buttler, Alexandre; Siegenthaler, Andy; Mitchell, Edward A. D.

    Decomposition of plant litter is a crucial process in controlling the carbon balance of peatlands. Indeed, as long as the rate of litter decomposition remains lower than the rate of above- and belowground litter production, a net accumulation of peat and, thus, carbon will take place. In addition, decomposition controls the release of important nutrients such as nitrogen, phosphorus, and potassium, the availability of which affects the structure and the functioning of plant communities. This chapter describes the role of the main drivers in affecting mass loss and nutrient release from recently deposited plant litter. In particular, the rate of mass loss of Sphagnum litter and vascular plant litter is reviewed in relation to regional climatic conditions, aerobic/anaerobic conditions, and litter chemistry. The rate of nutrient release is discussed in relation to the rate of mass loss and associated litter chemistry by means of a specific case study.

  19. Feast and famine: Adipose tissue adaptations for healthy aging.

    PubMed

    Lettieri Barbato, Daniele; Aquilano, Katia

    2016-07-01

    Proper adipose tissue function controls energy balance with favourable effects on metabolic health and longevity. The molecular and metabolic asset of adipose tissue quickly and dynamically readapts in response to nutrient fluctuations. Once delivered into cells, nutrients are managed by mitochondria that represent a key bioenergetics node. A persistent nutrient overload generates mitochondrial exhaustion and uncontrolled reactive oxygen species ((mt)ROS) production. In adipocytes, metabolic/molecular reorganization is triggered culminating in the acquirement of a hypertrophic and hypersecretory phenotype that accelerates aging. Conversely, dietary regimens such as caloric restriction or time-controlled fasting endorse mitochondrial functionality and (mt)ROS-mediated signalling, thus promoting geroprotection. In this perspective view, we argued some important molecular and metabolic aspects related to adipocyte response to nutrient stress. Finally we delineated hypothetical routes by which molecularly and metabolically readapted adipose tissue promotes healthy aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nutrient digestibility and mass balance in laying hens fed a commercial or acidifying diet.

    PubMed

    Wu-Haan, W; Powers, W J; Angel, C R; Hale, C E; Applegate, T J

    2007-04-01

    The objectives of the current study were to evaluate the effect of an acidifying diet (gypsum) combined with zeolite and slightly reduced crude protein (R) vs. a control diet (C) on nutrient retention in laying hens and compare 3 approaches to estimating nutrient excretion from hens: 1) mass balance calculation (feed nutrients - egg nutrient), 2) use of an indigestible marker with analyzed feed and excreta nutrient content, and 3) an environmental chamber that allowed for capturing all excreted and volatilized nutrients. Hens (n = 640) were allocated randomly to 8 environmental chambers for 3-wk periods. Excreta samples were collected at the end of each trial to estimate apparent retention of N, S, P, and Ca. No diet effects on apparent retention of N were observed (53.44%, P > 0.05). Apparent retention of S, P, and Ca decreased in hens fed R diet (18.7, - 11.4, and 22.6%, respectively) compared with hens fed the C diet (40.7, 0.3, and 28.6%, respectively; P < 0.05). Total N excretion from hens fed the C and R diet was not different (1.16 g/hen/d); however, mass of chamber N remaining in excreta following the 3-wk period was less from hens fed the C diet (1.27 kg) than from hens fed the R diet (1.43 kg). Gaseous emissions of NH(3) over the 3-wk period from hens fed the C diet (0.74 kg per chamber) were greater than emissions from hens fed the R diet (0.45 kg). The 3-wk S excretion mass (estimated using the calculation, indigestible marker, and environmental chamber methods, respectively) was greater from hens fed the R diet (1.85, 1.54, and 1.27 kg, respectively) compared with hens fed the C diet (0.24, 0.20, and 0.14 kg, respectively). The 3-wk P excretion was similar between diets (0.68 kg). Results demonstrate that feeding the acidified diet resulted in decreased N emissions, but because of the acidulant fed, greatly increased S excretion and emissions.

  1. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity of nanoparticles and their active interactions with components of a nutrient medium demands development of certain technological solutions for conservation of activity potential of nanoparticles in nutrient mediums. Thus, we have elaborated and created the artificial nutrient medium having balanced structure of components and assuring successful plants cultivation in conditions of spaceflight.

  2. Applications of nutrient profiling: potential role in diet-related chronic disease prevention and the feasibility of a core nutrient-profiling system.

    PubMed

    Sacks, G; Rayner, M; Stockley, L; Scarborough, P; Snowdon, W; Swinburn, B

    2011-03-01

    A number of different nutrient-profiling models have been proposed and several applications of nutrient profiling have been identified. This paper outlines the potential role of nutrient-profiling applications in the prevention of diet-related chronic disease (DRCD), and considers the feasibility of a core nutrient-profiling system, which could be modified for purpose, to underpin the multiple potential applications in a particular country. The 'Four 'P's of Marketing' (Product, Promotion, Place and Price) are used as a framework for identifying and for classifying potential applications of nutrient profiling. A logic pathway is then presented that can be used to gauge the potential impact of nutrient-profiling interventions on changes in behaviour, changes in diet and, ultimately, changes in DRCD outcomes. The feasibility of a core nutrient-profiling system is assessed by examining the implications of different model design decisions and their suitability to different purposes. There is substantial scope to use nutrient profiling as part of the policies for the prevention of DRCD. A core nutrient-profiling system underpinning the various applications is likely to reduce discrepancies and minimise the confusion for regulators, manufacturers and consumers. It seems feasible that common elements, such as a standard scoring method, a core set of nutrients and food components, and defined food categories, could be incorporated as part of a core system, with additional application-specific criteria applying. However, in developing and in implementing such a system, several country-specific contextual and technical factors would need to be balanced.

  3. Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2013-12-01

    The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33°C), and a controlled temperature (33°C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study: (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban wastewater at ambient temperature (OEB=0.19 kW h m(-3)). LCA results reinforce the importance of maximising the recovery of nutrients (environmental impact in eutrophication can be reduced up to 45%) and dissolved methane (positive environmental impact can be obtained) from SAnMBR effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 76 FR 5270 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... deposited on the ground and in the water, changing nutrient and chemical balances. IV. What comments were...). TSP is particulate up to 100 micrometers in diameter. Then in 1987, EPA changed the indicator to...

  5. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium (1988)

    EPA Science Inventory

    Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble met...

  6. URINE SOURCE SEPARATION AND TREATMENT: NUTRIENT RECOVERY USING LOW-COST MATERIALS

    EPA Science Inventory

    Successful completion of this P3 Project will achieve the following expected outputs: identification of low-cost materials that can effectively recover ammonium, phosphate, and potassium from urine; material balance calculations for different urine separation and treatment scheme...

  7. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China

    PubMed Central

    Zheng, Huaiguo; Xu, Xinpeng

    2016-01-01

    In order to make clear the recent status and trend of wheat (Triticum aestivum L.) production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000–2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied) values of N (PFP-N), P (PFP-P) and K (PFP-K) were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied) values of N (AEN), P (AEP) and K (AEK) were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application) values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R’s nutrient management (right time, right rate, right site and right fertilizer) should be adopted widely to improve the yield production and nutrient use efficiency. PMID:27631468

  8. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks.

    PubMed

    Luo, Xin; Jiao, Jiu Jimmy

    2016-10-01

    Multiple tracers, including radium quartet, (222)Rn and silica are used to quantify submarine groundwater discharge (SGD) into Tolo Harbor, Hong Kong in 2005 and 2011. Five geotracer models based on the end member model of (228)Ra and salinity and mass balance models of (226)Ra, (228)Ra, (222)Rn, and silica were established and all the models lead to an estimate of the SGD rate of the same order of magnitude. In 2005 and 2011, respectively, the averaged SGD based on these models is estimated to be ≈ 5.42 cm d(-1) and ≈2.66 cm d(-1), the SGD derived DIN loadings to be 3.5 × 10(5) mol d(-1) and 1.5 × 10(5) mol d(-1), and DIP loadings to be 6.2 × 10(3) mol d(-1) and 1.1 × 10(3) mol d(-1). Groundwater borne nutrients are 1-2 orders of magnitude larger than other nutrient sources and the interannual variation of nutrient concentration in the embayment is more influenced by the SGD derived loadings. Annual DIP concentrations in the harbor water is positively correlated with the precipitation and annual mean tidal range, and negatively correlated with evapotranspiration from 2000 to 2013. Climatologically driven SGD variability alters the SGD derived DIP loadings in this phosphate limited environment and may be the causative factor of interannual variability of red tide outbreaks from 2000 to 2013. Finally, a conceptual model is proposed to characterize the response of red tide outbreaks to climatological factors linked by SGD. The findings from this study shed light on the prediction of red tide outbreaks and coastal management of Tolo Harbor and similar coastal embayments elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tools to improve planning, implementation, monitoring, and evaluation of complementary feeding programmes.

    PubMed

    Untoro, Juliawati; Childs, Rachel; Bose, Indira; Winichagoon, Pattanee; Rudert, Christiane; Hall, Andrew; de Pee, Saskia

    2017-10-01

    Adequate nutrient intake is a prerequisite for achieving good nutrition status. Suboptimal complementary feeding practices are a main risk factor for stunting. The need for systematic and user-friendly tools to guide the planning, implementation, monitoring, and evaluation of dietary interventions for children aged 6-23 months has been recognized. This paper describes five tools, namely, ProPAN, Optifood, Cost of the Diet, Fill the Nutrient Gap, and Monitoring Results for Equity System that can be used in different combinations to improve situation analysis, planning, implementation, monitoring, or evaluation approaches for complementary feeding in a particular context. ProPAN helps with development of strategies and activities designed to change the behaviours of the target population. Optifood provides guidance for developing food-based recommendations. The Cost of the Diet can provide insight on economic barriers to accessing a nutritious and balanced diet. The Fill the Nutrient Gap facilitates formulation of context-specific policies and programmatic approaches to improve nutrient intake, through a multistakeholder process that uses insights from linear programming and secondary data. The Monitoring Results for Equity System helps with analysis of gaps, constraints, and determinants of complementary feeding interventions and adoption of recommended practices especially in the most vulnerable and deprived populations. These tools, and support for their use, are readily available and can be used either alone and/or complementarily throughout the programme cycle to improve infant and young child-feeding programmes at subnational and national levels. © 2017 John Wiley & Sons Ltd.

  10. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth

    PubMed Central

    Feller, Chrystel; Favre, Patrick; Janka, Ales; Zeeman, Samuel C.; Gabriel, Jean-Pierre; Reinhardt, Didier

    2015-01-01

    Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops. PMID:26154262

  11. Saturated fat -a never ending story?

    PubMed

    Svendsen, Karianne; Arnesen, Erik; Retterstøl, Kjetil

    2017-01-01

    Science has no clear message regarding health effects of saturated fats, it seems. Different RCTs, prospective cohort studies and meta-analysis have led to contrasting conclusions. The aim of the present commentary is to discuss some possible reasons for an apparently never-ending fat controversy. They are of a purely scientific nature, which is important to recognize, but unfortunately hard to overcome. First is the placebo problem. In pharmaceutical science, evidence-based medicine is often synonymous with data on verified medical events from long-lasting double-blind randomized placebo controlled trials. In nutritional science the lack of double-blind design and lack of placebo food generate less conclusive data than those achieved in pharmaceutical science. Some scientists may apply the same type of scientific criteria used to evaluate the effects of drugs for foods. This leaves an impression of insufficient data since in this respect the fundamental criteria for evidence based medicine are not present. The next scientific problem is the energy balance equation. In contrast to pharmaceuticals, nutrients contain energy. An increased intake of one nutrient will lead to a decreased intake of another. The effect of change in only one nutrient is then difficult to isolate. Lastly, in nutritional science, generalizability is difficult compared to pharmaceutical science. Food culture interferes with lifestyle and food habits change over time. In conclusion, all available knowledge, from molecular experiments to population studies, must be taken in to account, to convert scientific data into dietary recommendations.

  12. A modeling study examining the impact of nutrient boundaries ...

    EPA Pesticide Factsheets

    A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent

  13. Food selection in larval fruit flies: dynamics and effects on larval development

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Durisko, Zachary; Dukas, Reuven

    2014-01-01

    Selecting food items and attaining a nutritionally balanced diet is an important challenge for all animals including humans. We aimed to establish fruit fly larvae ( Drosophila melanogaster) as a simple yet powerful model system for examining the mechanisms of specific hunger and diet selection. In two lab experiments with artificial diets, we found that larvae deprived of either sucrose or protein later selectively fed on a diet providing the missing nutrient. When allowed to freely move between two adjacent food patches, larvae surprisingly preferred to settle on one patch containing yeast and ignored the patch providing sucrose. Moreover, when allowed to move freely between three patches, which provided either yeast only, sucrose only or a balanced mixture of yeast and sucrose, the majority of larvae settled on the yeast-plus-sucrose patch and about one third chose to feed on the yeast only food. While protein (yeast) is essential for development, we also quantified larval success on diets with or without sucrose and show that larvae develop faster on diets containing sucrose. Our data suggest that fruit fly larvae can quickly assess major nutrients in food and seek a diet providing a missing nutrient. The larvae, however, probably prefer to quickly dig into a single food substrate for enhanced protection over achieving an optimal diet.

  14. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect.

    PubMed

    Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín

    2016-07-12

    Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms.

  15. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect

    PubMed Central

    Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín

    2016-01-01

    Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms. PMID:27406923

  16. An investigation into the potential use of nutrients recovered from urine diversion on a summer housing site: self-sufficiency based on nitrogen balance.

    PubMed

    Allar, Ayse D; Beler Baykal, Bilsen

    2016-01-01

    ECOSAN is a recent domestic wastewater management concept which suggests segregation at the source. One of these streams, yellow water (human urine) has the potential to be used as fertilizer, directly or indirectly, because of its rich content of plant nutrients. One physicochemical method for indirect use is adsorption/ion exchange using clinoptilolite. This paper aims to present the results of a scenario focusing on possible diversion of urine and self-sufficiency of nutrients recovered on site through the use of this process, using actual demographic and territorial information from an existing summer housing site. Specifically, this paper aims to answer the questions: (i) how much nitrogen can be recovered to be used as fertilizer by diverting urine? and (ii) is this sufficient or in surplus within the model housing site? This sets an example of resource-oriented sanitation using stream segregation as a wastewater management strategy in a small community. Nitrogen was taken as the basis of calculations/predictions and the focus was placed on whether nitrogen is self-sufficient or in excess as fertilizer for use within the premises. The results reveal that the proposed application makes sense and that urine coming from the housing site is self-sufficient as fertilizer within the housing site itself.

  17. It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems.

    PubMed

    Paerl, Hans W; Scott, J Thad; McCarthy, Mark J; Newell, Silvia E; Gardner, Wayne S; Havens, Karl E; Hoffman, Daniel K; Wilhelm, Steven W; Wurtsbaugh, Wayne A

    2016-10-06

    Preventing harmful algal blooms (HABs) is needed to protect lakes and downstream ecosystems. Traditionally, reducing phosphorus (P) inputs was the prescribed solution for lakes, based on the assumption that P universally limits HAB formation. Reduction of P inputs has decreased HABs in many lakes, but was not successful in others. Thus, the "P-only" paradigm is overgeneralized. Whole-lake experiments indicate that HABs are often stimulated more by combined P and nitrogen (N) enrichment rather than N or P alone, indicating that the dynamics of both nutrients are important for HAB control. The changing paradigm from P-only to consideration of dual nutrient control is supported by studies indicating that (1) biological N fixation cannot always meet lake ecosystem N needs, and (2) that anthropogenic N and P loading has increased dramatically in recent decades. Sediment P accumulation supports long-term internal loading, while N may escape via denitrification, leading to perpetual N deficits. Hence, controlling both N and P inputs will help control HABs in some lakes and also reduce N export to downstream N-sensitive ecosystems. Managers should consider whether balanced control of N and P will most effectively reduce HABs along the freshwater-marine continuum.

  18. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities

    PubMed Central

    Bergouignan, Audrey; Stein, T Peter; Habold, Caroline; Coxam, Veronique; O’ Gorman, Donal; Blanc, Stéphane

    2016-01-01

    Nutrition has multiple roles during space flight from providing sufficient nutrients to meet the metabolic needs of the body and to maintain good health, to the beneficial psychosocial aspects related to the meals. Nutrition is central to the functioning of the body; poor nutrition compromises all the physiological systems. Nutrition is therefore likely to have a key role in counteracting the negative effects of space flight (e.g., radiation, immune deficits, oxidative stress, and bone and muscle loss). As missions increase in duration, any dietary/nutritional deficiencies will become progressively more detrimental. Moreover, it has been recognized that the human diet contains, in addition to essential macronutrients, a complex array of naturally occurring bioactive micronutrients that may confer significant long-term health benefits. It is therefore critical that astronauts be adequately nourished during missions. Problems of nutritional origin are often treatable by simply providing the appropriate nutrients and adequate recommendations. This review highlights six key issues that have been identified as space research priorities in nutrition field: in-flight energy balance; altered feeding behavior; development of metabolic stress; micronutrient deficiency; alteration of gut microflora; and altered fluid and electrolytes balance. For each of these topics, relevance for space exploration, knowledge gaps and proposed investigations are described. Finally, the nutritional questions related to bioastronautics research are very relevant to multiple ground-based-related health issues. The potential spin-offs are both interesting scientifically and potentially of great clinical importance. PMID:28725737

  19. Nutrients and Chemical Pollutants in Fish and Shellfish. Balancing Health Benefits and Risks of Regular Fish Consumption.

    PubMed

    Domingo, José L

    2016-01-01

    Dietary patterns and lifestyle factors are clearly associated with at least five of the ten leading causes of death, including coronary heart disease, certain types of cancer, stroke, non-insulin insulin-dependent diabetes mellitus, and atherosclerosis. Concerning specifically fish and seafood consumption, its beneficial health effects in humans are clearly supported by an important number of studies performed in the last 30 years. These studies have repeatedly linked fish consumption, especially those species whose contents in omega-3 fatty acids are high, with healthier hearts in the aging population. The nutritional benefits of fish and seafood are also due to the content of high-quality protein, vitamins, as well as other essential nutrients. However, a number of studies, particularly investigations performed in recent years, have shown that the unavoidable presence of environmental contaminants in fish and shellfish can also mean a certain risk for the health of some consumers. While prestigious international associations as the American Heart Association have recommended eating fish at least two times (two servings a week), based on our own experimental results, as well as in results from other laboratories, we cannot be in total agreement with that recommendation. Although a regular consumption of most fish and shellfish species should not mean adverse health effects for the consumers, the specific fish and shellfish species consumed, the frequency of consumption, as well as the meal size, are essential issues for adequately balancing the health benefits and risks of regular fish consumption.

  20. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities.

    PubMed

    Bergouignan, Audrey; Stein, T Peter; Habold, Caroline; Coxam, Veronique; O' Gorman, Donal; Blanc, Stéphane

    2016-01-01

    Nutrition has multiple roles during space flight from providing sufficient nutrients to meet the metabolic needs of the body and to maintain good health, to the beneficial psychosocial aspects related to the meals. Nutrition is central to the functioning of the body; poor nutrition compromises all the physiological systems. Nutrition is therefore likely to have a key role in counteracting the negative effects of space flight (e.g., radiation, immune deficits, oxidative stress, and bone and muscle loss). As missions increase in duration, any dietary/nutritional deficiencies will become progressively more detrimental. Moreover, it has been recognized that the human diet contains, in addition to essential macronutrients, a complex array of naturally occurring bioactive micronutrients that may confer significant long-term health benefits. It is therefore critical that astronauts be adequately nourished during missions. Problems of nutritional origin are often treatable by simply providing the appropriate nutrients and adequate recommendations. This review highlights six key issues that have been identified as space research priorities in nutrition field: in-flight energy balance; altered feeding behavior; development of metabolic stress; micronutrient deficiency; alteration of gut microflora; and altered fluid and electrolytes balance. For each of these topics, relevance for space exploration, knowledge gaps and proposed investigations are described. Finally, the nutritional questions related to bioastronautics research are very relevant to multiple ground-based-related health issues. The potential spin-offs are both interesting scientifically and potentially of great clinical importance.

  1. Total tract nutrient digestion and milk fatty acid profile of dairy cows fed diets containing different levels of whole raw soya beans.

    PubMed

    Venturelli, B C; de Freitas Júnior, J E; Takiya, C S; de Araújo, A P C; Santos, M C B; Calomeni, G D; Gardinal, R; Vendramini, T H A; Rennó, F P

    2015-12-01

    Whole oilseeds such as soya beans have been utilized in dairy rations to supply additional fat and protein. However, antinutritional components contained in soya beans, such as trypsin inhibitors and haemagglutinins (lectins) may alter digestibility of nutrients and consequently affect animal performance. The objective of the present experiment was to quantify the effect of different levels of whole raw soya beans in diets of dairy cows on nutrient intake, total tract digestion, nutrient balances and milk yield and composition. Sixteen mid to late-lactation cows (228 ± 20 days in milk; mean ± SD) were used in four replicated 4 × 4 Latin square design experiment with 21-d periods. Cows were assigned to each square according to milk yield and DIM. The animals were randomly allocated to treatments: control (without soya beans addition; CO), WS9, WS18 and WS27, with addition of 9%, 18% and 27% of whole raw soya bean in diet on a dry matter (DM) basis respectively. All diets contained identical forage and concentrate components and consisted of maize silage and concentrate based on ground corn and soya beans at a ratio of 60:40. There were no differences in OM, CP, NDF and NEL intakes (kg/day and MJ/day) among the treatments (p > 0.05). However, DM and NFC intakes were negatively affected (p = 0.04 and p < 0.01, respectively) and ether extract (EE) intake was positively affected (p < 0.01). Total tract digestion increased linearly with whole raw soya beans for EE (p < 0.01) and NDF (p = 0.01). The excretion (kg/day) of digested soya beans grains increased linearly according to addition of whole raw soya beans. However, the nutritive characteristics of excreted grains were not altered. Milk (kg), milk lactose (kg) and protein (kg) yield decreased linearly (p < 0.01, p < 0.01 and p = 0.04, respectively) milk fat content (%) increased linearly (p < 0.01) with whole raw soya beans inclusion. Increasing addition of whole raw soya beans affected milk fatty acid profile with a linear decrease of cis-9-trans 11CLA and total saturated FA; and linear increase of total unsaturated and C18:3 FA. Energy balance was positively affected (p = 0.03) by whole raw soya beans as well as efficiency of NEL milk/DE intake (p = 0.02). Nitrogen balance and microbial protein synthesis were not affected by whole raw soya beans. Increasing doses of whole raw soya beans decreased dry matter intake and milk yield, however, led to an increase of unsaturated acids in milk and higher milk fat concentration. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  2. Estimating the Global Prevalence of Inadequate Zinc Intake from National Food Balance Sheets: Effects of Methodological Assumptions

    PubMed Central

    Wessells, K. Ryan; Singh, Gitanjali M.; Brown, Kenneth H.

    2012-01-01

    Background The prevalence of inadequate zinc intake in a population can be estimated by comparing the zinc content of the food supply with the population’s theoretical requirement for zinc. However, assumptions regarding the nutrient composition of foods, zinc requirements, and zinc absorption may affect prevalence estimates. These analyses were conducted to: (1) evaluate the effect of varying methodological assumptions on country-specific estimates of the prevalence of dietary zinc inadequacy and (2) generate a model considered to provide the best estimates. Methodology and Principal Findings National food balance data were obtained from the Food and Agriculture Organization of the United Nations. Zinc and phytate contents of these foods were estimated from three nutrient composition databases. Zinc absorption was predicted using a mathematical model (Miller equation). Theoretical mean daily per capita physiological and dietary requirements for zinc were calculated using recommendations from the Food and Nutrition Board of the Institute of Medicine and the International Zinc Nutrition Consultative Group. The estimated global prevalence of inadequate zinc intake varied between 12–66%, depending on which methodological assumptions were applied. However, country-specific rank order of the estimated prevalence of inadequate intake was conserved across all models (r = 0.57–0.99, P<0.01). A “best-estimate” model, comprised of zinc and phytate data from a composite nutrient database and IZiNCG physiological requirements for absorbed zinc, estimated the global prevalence of inadequate zinc intake to be 17.3%. Conclusions and Significance Given the multiple sources of uncertainty in this method, caution must be taken in the interpretation of the estimated prevalence figures. However, the results of all models indicate that inadequate zinc intake may be fairly common globally. Inferences regarding the relative likelihood of zinc deficiency as a public health problem in different countries can be drawn based on the country-specific rank order of estimated prevalence of inadequate zinc intake. PMID:23209781

  3. Energy and nutrient intake and acceptability of nutritionally balanced school meals in Filipino students.

    PubMed

    Angeles-Agdeppa, Imelda; Neufingerl, Nicole; Magsadia, Clarita; Hiemstra, Harry; Patalen, Chona; Eilander, Ans

    2014-09-01

    School meals provide an excellent opportunity to improve children's diet. To investigate dietary intakes and acceptance of nutritionally balanced school meals ("nutrimeals") as compared with regular ("baseline") school meals among Filipino students. The study employed a before-after intervention design with one group. Students 13 to 16 years of age from a public school in Metro Manila (n = 112) consumed baseline school meals for 2 weeks followed by consumption of nutri-meals for 7 weeks. Served meals and plate waste were weighed to calculate food and nutrient intakes. Acceptability of meals was assessed daily in a random subsample using a seven-point hedonic scale. Analysis of covariance corrected for age and sex was conducted to test for differences in nutrient intakes and acceptability between nutri-meals and baseline meals. Feeding nutri-meals resulted in a higher intake of vegetables (95.3 ± 13.8 g), fruit (76.5 ± 6.3 g), and fish (19.1 ± 3.3 g) than baseline meals. Energy and protein intakes significantly increased by 140.7 ± 2.8 kcal and 3.2 ± 0.1 g, respectively. The quality of fat intake improved compared with baseline meals (p < .001). Micronutrient intake from nutri-meals was significantly higher than that from baseline meals (except for zinc), contributing 6% to 79% of recommended daily intakes. Most students (> 90%) liked both baseline and nutrimeals; however, the mean acceptability score for baseline meals was slightly higher (0.2 ± 0.07 points, p = .004). Nutritionally balanced nutri-meals may be a healthier and acceptable alternative to regular Filipino school meals. Further optimization of nutri-meals is required to meet the nutritional needs of adolescents and reduce sodium content.

  4. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soilmore » water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.« less

  5. Nutrient Digestibility and Metabolizable Energy Content of Mucuna pruriens Whole Pods Fed to Growing Pelibuey Lambs.

    PubMed

    Loyra-Tzab, Enrique; Sarmiento-Franco, Luis Armando; Sandoval-Castro, Carlos Alfredo; Santos-Ricalde, Ronald Herve

    2013-07-01

    The nutrient digestibility, nitrogen balance and in vivo metabolizable energy supply of Mucuna pruriens whole pods fed to growing Pelibuey lambs was investigated. Eight Pelibuey sheep housed in metabolic crates were fed increasing levels of Mucuna pruriens pods: 0 (control), 100 (Mucuna100), 200 (Mucuna200) and 300 (Mucuna300) g/kg dry matter. A quadratic (p<0.002) effect was observed for dry matter (DM), neutral detergent fibre (aNDF), nitrogen (N) and gross energy (GE) intakes with higher intakes in the Mucuna100 and Mucuna200 treatments. Increasing M. pruriens in the diets had no effect (p>0.05) on DM and GE apparent digestibility (p<0.05). A linear reduction in N digestibility and N retention was observed with increasing mucuna pod level. This effect was accompanied by a quadratic effect (p<0.05) on fecal-N and N-balance which were higher in the Mucuna100 and Mucuna200 treatments. Urine-N excretion, GE retention and dietary estimated nutrient supply (metabolizable protein and metabolizable energy) were not affected (p>0.05). DM, N and GE apparent digestibility coefficient of M. pruriens whole pods obtained through multiple regression equations were 0.692, 0.457, 0.654 respectively. In vivo DE and ME content of mucuna whole pod were estimated in 11.0 and 9.7 MJ/kg DM. It was concluded that whole pods from M. pruriens did not affect nutrient utilization when included in an mixed diet up to 200 g/kg DM. This is the first in vivo estimation of mucuna whole pod ME value for ruminants.

  6. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality.

    PubMed

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato.

  7. Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality

    PubMed Central

    Xiong, Jing; Tian, Yongqiang; Wang, Jingguo; Liu, Wei; Chen, Qing

    2017-01-01

    Rockwool (RC) and peat are two common substrates used worldwide in horticultural crop production. In recent years environmental and ecological concerns raised the demand for reducing the use of RC and peat. Although coconut coir (CC) has been increasingly used as an alternative to RC and peat, it is still needed to comprehensively evaluate the feasibility of CC before widely used. To meet this need, CC, RC, and peat-vermiculite (PVC) cultivations were used as tomato cultivation substrates to evaluate their effects on EC, pH and mineral ions in root-zone solution and drainage, nutrient uptake by crops, nutrient balance of cultivation system, plant growth and fruit quality. In general, CC significantly increased K and S uptake by crops, photosynthesis, individual fruit weight and total fruit yield compared to RC, and increased P and K uptake by crops and total fruit yield compared to PVC. Moreover, CC significantly increased organic acid of fruit in first truss compared to both RC and PVC. The uncredited nutrient was overally lower under CC than under RC and PVC (the lower, the better). For all substrates, the blossom-end rot (BER) of fruit increased gradually from 3rd to 13th trusses. The BER of fruit was not significantly influenced by CC compared to RC or PVC, but was sginificantly decreased by PVC compared to RC. Our results infer that CC was a potential substrate that could be widely used in tomato production. However, the inhibition of BER was still a challenge when CC was used as cultivation substrate for tomato. PMID:28824665

  8. Genome-scale reconstruction of the metabolic network in Yersinia pestis CO92

    NASA Astrophysics Data System (ADS)

    Navid, Ali; Almaas, Eivind

    2007-03-01

    The gram-negative bacterium Yersinia pestis is the causative agent of bubonic plague. Using publicly available genomic, biochemical and physiological data, we have developed a constraint-based flux balance model of metabolism in the CO92 strain (biovar Orientalis) of this organism. The metabolic reactions were appropriately compartmentalized, and the model accounts for the exchange of metabolites, as well as the import of nutrients and export of waste products. We have characterized the metabolic capabilities and phenotypes of this organism, after comparing the model predictions with available experimental observations to evaluate accuracy and completeness. We have also begun preliminary studies into how cellular metabolism affects virulence.

  9. Assessment and misassessment of potassium, phosphorus, and protein in the hemodialysis diet.

    PubMed

    St-Jules, David E; Goldfarb, David S; Pompeii, Mary Lou; Liebman, Scott E; Sherman, Richard A

    2018-05-29

    Diet is a key determinant of several common and serious disease complications in hemodialysis (HD) patients. The recommended balance and variety of foods in the HD diet is designed to limit high potassium and phosphorus foods while maintaining protein adequacy. In this report, we examine the potassium, phosphorus, and protein content of foods, and identify critical challenges, and potential pitfalls when translating nutrient prescriptions into dietary guidelines. Our findings highlight the importance of individualized counseling based on a comprehensive dietary assessment by trained diet professionals, namely renal dietitians, for managing diet-related complications in HD patients. © 2018 Wiley Periodicals, Inc.

  10. The Coupling of Solution Chemistry to Plant Nutrient Demand in an on Demand Nutrient Delivery System

    NASA Technical Reports Server (NTRS)

    Savage, Wayne

    1998-01-01

    The goal of the proposal will be to determine the suitability of the DASI instrument in providing a signal that can be recognized and be utilized as an indicator of plant stress. The method to be utilized for evaluating stress is the presentation of an every increasing level of nutrient deficiency and salinity stress (addition of salt (NACl) or increasing concentration of balanced nutrient) while simultaneously recording spectral reflectance using the DASI instrument and monitoring the traditional processes of gas exchange and nutrient uptake parameters. In this manner, we will be able to directly compare the DASI measurements with known stresses as determined by the traditional gas exchange and nutrient uptake measures of stress. We anticipate that the DASI will provide a sensitive identifier of plant stress; recording signals of the resulting changes in plant metabolism in real time, far before any visible effects of stress could be observed. Thus, there is a potential for very early management intervention to correct a stress condition before damage could develop. The present response time for the observation of visual symptoms of plant stress is considerable and only provides an indication that a stress is present after it has been present for an extended period of time. Thus, the impact of a plant-based life support function will have already been significant. An additional benefit of this research to regenerative life support will be the characterization of a potential recovery scenario from various degrees of stress. The experimental approach to be employed includes the removal of the stress at various points in the stress gradient and the characterization of plant performance and reflectance spectra during recovery from various degrees of stress. Spectral reflectance imaging techniques have been developed and used to measure the biochemical composition of plants and relate these characteristics to the fluxes of biochemical elements within the ecosystem.

  11. Soil nutrient dynamics in a perennial biomass production system

    USDA-ARS?s Scientific Manuscript database

    In the upper Midwest, economic and social interests in bioenergy and low-carbon fuels are stimulating the conversion of cropland into perennial biomass systems. Landowners are embracing the change by developing diverse whole-farm management systems that can balance economic and environmental risk of...

  12. Encapsulation of new active ingredients.

    PubMed

    Onwulata, C I

    2012-01-01

    The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.

  13. Nutrient removal of effluent from quail farm through cultivation of Wolffia arrhiza.

    PubMed

    Suppadit, T

    2011-08-01

    The objective of this work was to study the nutrient removal using the Wolffiaarrhiza during the treatment of laying quails farm effluent. The relationship between W. arrhiza biomass and treatment time, the change in water qualities, and nitrogen-balance (N-balance) were evaluated. The results showed that a biomass of 12.0g of W. arrhiza per liter of effluent and a treatment period of 30 days were found to provide the best conditions for W. arrhiza's growth and the quality of the treated effluent in terms of biological oxygen demand, suspended solids, total phosphorus, nitrate, total ammonia nitrogen and total Kjeldahl nitrogen. The pH and salinity were similar for each level of biomass. The W. arrhiza biomasses of 4.00-12.0g/l of effluent were suitable for W. arrhiza survival over time. Since W. arrhiza can fix N in the atmosphere, it can grow very well in effluent containing a low level of N. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Do food blogs serve as a source of nutritionally balanced recipes? An analysis of 6 popular food blogs.

    PubMed

    Schneider, Elizabeth P; McGovern, Emily E; Lynch, Colleen L; Brown, Lisa S

    2013-01-01

    To determine whether sampled food blogs provide nutritionally balanced recipes. Two entree recipes per season, per year (2010-2011) were selected from 6 highly ranked food blogs (n = 96). Food Processor Nutrition and Fitness software was used to analyze sodium, saturated fat, and energy content. Analysis was separated by protein type (vegetarian, poultry, red meat, and seafood). Recipes met energy recommendations but were excessive in saturated fat and sodium. Vegetarian and seafood recipes were significantly lower in risk nutrients compared with red meat and poultry recipes. Red meat recipes were not significantly different from poultry recipes for risk nutrients studied; poultry recipes were higher in sodium and energy compared with red meat recipes. The public should be aware of the nutritional limitations of popular food blogs; dietitians could assist in modifying blog recipes for individuals and partner with bloggers to improve the nutritional profile of recipes. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  15. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.

    PubMed

    Bauer, Paige V; Hamr, Sophie C; Duca, Frank A

    2016-02-01

    Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.

  16. Effects on performance of ground wheat with or without insoluble fiber or whole wheat in sequential feeding for laying hens.

    PubMed

    Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P

    2013-09-01

    Sequential feeding (SF) is an innovative system for laying hens consisting of nutrients separating energy, protein, and calcium supplies to fulfill nutrient requirements at the relevant time of day. In previous studies, hens received whole wheat in the morning and a balancer diet (rich in protein and calcium) in the afternoon. To improve SF utilization, the aim was to substitute whole wheat in the morning by an alternative energy supply: ground wheat and ground corn, with or without a proportion of whole wheat and insoluble fiber. The goal was to obtain the advantages observed in previous experiments with whole wheat [bigger gizzard, thinner hens, reduced feed conversion ratio (FCR)]. Four hundred thirty-two ISA Brown hens were housed in collective cages from 20 to 35 wk of age divided into 8 different treatments: a continuous control diet, a sequential diet with whole wheat in the morning, 3 wheat-based diets (ground wheat, ground wheat and 20% whole wheat, and ground wheat with 5% insoluble fiber) and 3 ground corn-based (ground corn, ground corn and 20% whole wheat, and ground corn with 5% insoluble fiber) provided in the morning. All sequential regimens received the same balancer diet rich in protein and calcium in the afternoon. Whole wheat SF gave the best results with an improved FCR compared with continuous control and all other SF diets. Wheat- and corn-based diets showed intermediate results between whole wheat SF and continuous feeding. Gizzard weight was higher and hens were lighter than with conventional continuous feeding, leading to an average FCR improvement of 3.2% compared with a continuous control. Thus, it is possible in SF diets to substitute, at least partially, whole wheat by ground wheat or ground corn with added insoluble fiber or some whole wheat, allowing more flexibility and economic optimization.

  17. Combination of physical activity, nutrition, or other metabolic factors and vaccine response

    PubMed Central

    Hance, Kenneth W.; Rogers, Connie J.; Hursting, Stephen D.; Greiner, John W.

    2010-01-01

    A number of lifestyle factors that reduce cancer risk in the primary prevention setting may be potential new targets for use in combination with cancer vaccines. This review discusses the modulation of energy balance (physical activity, calorie restriction, and obesity prevention), and the supplementation with natural and synthetic analogs of vitamins A and E, as potential interventions for use in combination with cancer vaccines. Additionally, the pharmacologic manipulation of nutrient metabolism in the tumor microenvironment (e.g., arachidonic acid, arginine, tryptophan, and glucose metabolism) is discussed. This review includes a brief overview of the role of each agent in primary cancer prevention; outlines the effects of these agents on immune function, specifically adaptive and/or anti-tumor immune mechanisms, when known; and discusses the potential use of these interventions in combination with therapeutic cancer vaccines. Modulation of energy balance through exercise and strategies targeting nutrient metabolism in the tumor microenvironment represent the most promising interventions to partner with therapeutic cancer vaccines. Additionally, the use of vitamin E succinate and the retinoid X receptor-directed rexinoids in combination with cancer vaccines offer promise. In summary, a number of energy balance- and nutrition-related interventions are viable candidates for further study in combination with cancer vaccines. PMID:17569626

  18. A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker).

    PubMed

    Lee, Kwang Pum; Raubenheimer, David; Behmer, Spencer T; Simpson, Stephen J

    2003-12-01

    In an earlier study, we showed that the ingestive responses of the generalist caterpillar Spodoptera littoralis to foods imbalanced in their protein:carbohydrate content is similar to generalist locusts, but differs from that of specialist-feeding locusts. Here we further pursued the comparison by repeating the experiments using a closely related specialist caterpillar, Spodoptera exempta. First, caterpillars were allowed to self-compose a diet of preferred protein:carbohydrate balance by mixing between nutritionally complementary foods. Then, they were confined to one of five imbalanced foods, in which we measured the trade-off between over- and under-ingesting the two nutrients. On complementary foods, the caterpillars actively regulated their protein and carbohydrate intake. In the no-choice experiment, those fed excess-protein foods ingested small surpluses of protein compared with generalist feeders, thus showing a pattern of nutrient balancing similar to that observed in specialist locusts. Utilisation data indicated that ingested excesses and deficits were to some extent offset by differential utilisation. Evidence also showed that post-ingestive responses of the specialist S. exempta were less flexible than those observed in the generalist S. littoralis, a pattern which is again in accordance with comparisons of acridids differing in their host-plant range.

  19. Balancing the risks and the benefits of local fish consumption in Bermuda.

    PubMed

    Dewailly, E; Rouja, P; Dallaire, R; Pereg, D; Tucker, T; Ward, J; Weber, J P; Maguire, J S; Julien, P

    2008-11-01

    Fish consumption today is widely recognized as highly beneficial since it constitutes a good source of several essential nutrients, such as selenium and polyunsaturated fatty acids (n-3 PUFA). However, fish can also contain contaminants such as mercury, which make the consumer, especially pregnant women, confused about the risk-benefit balance associated with fish consumption. This is particularly true for tropical fish species for which little information is available. We have previously reported that some Bermudian neonates had elevated mercury in their umbilical blood compared with international guidelines. The objective of this study was to give precise and balanced information on the content of mercury, selenium and PUFA in the most consumed fish species in Bermuda. In 2003 and 2006, a total of 307 fish were collected from 43 fish species and 351 samples were analysed (305 flesh samples, 44 liver samples, one roe and one fat sample) by inductively coupled plasma-mass spectrometry (ICP-MS) (metals) and high-resolution gas chromatography (HRGC) (fatty acids). Results show that mercury varies among species from 0.03 to 3.3 microg g(-1) and that it is possible for at-risk groups such as pregnant women to make informed choices concerning fish consumption, e.g. maximizing fish species rich in nutrients and low in mercury.

  20. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study.

    PubMed

    Martínez Steele, Euridice; Popkin, Barry M; Swinburn, Boyd; Monteiro, Carlos A

    2017-02-14

    Recent population dietary studies indicate that diets rich in ultra-processed foods, increasingly frequent worldwide, are grossly nutritionally unbalanced, suggesting that the dietary contribution of these foods largely determines the overall nutritional quality of contemporaneous diets. Yet, these studies have focused on individual nutrients (one at a time) rather than the overall nutritional quality of the diets. Here we investigate the relationship between the energy contribution of ultra-processed foods in the US diet and its content of critical nutrients, individually and overall. We evaluated dietary intakes of 9,317 participants from 2009 to 2010 NHANES aged 1+ years. Food items were classified into unprocessed or minimally processed foods, processed culinary ingredients, processed foods, and ultra-processed foods. First, we examined the average dietary content of macronutrients, micronutrients, and fiber across quintiles of the energy contribution of ultra-processed foods. Then, we used Principal Component Analysis (PCA) to identify a nutrient-balanced dietary pattern to enable the assessment of the overall nutritional quality of the diet. Linear regression was used to explore the association between the dietary share of ultra-processed foods and the balanced-pattern PCA factor score. The scores were thereafter categorized into tertiles, and their distribution was examined across ultra-processed food quintiles. All models incorporated survey sample weights and were adjusted for age, sex, race/ethnicity, family income, and educational attainment. The average content of protein, fiber, vitamins A, C, D, and E, zinc, potassium, phosphorus, magnesium, and calcium in the US diet decreased significantly across quintiles of the energy contribution of ultra-processed foods, while carbohydrate, added sugar, and saturated fat contents increased. An inverse dose-response association was found between ultra-processed food quintiles and overall dietary quality measured through a nutrient-balanced-pattern PCA-derived factor score characterized by being richer in fiber, potassium, magnesium and vitamin C, and having less saturated fat and added sugars. This study suggests that decreasing the dietary share of ultra-processed foods is a rational and effective way to improve the nutritional quality of US diets.

  1. Nutrition Interventions for Obesity.

    PubMed

    Ard, Jamy D; Miller, Gary; Kahan, Scott

    2016-11-01

    Obesity is a common disorder with complex causes. The epidemic has spurred significant advances in the understanding of nutritional approaches to treating obesity. Although the primary challenge is to introduce a dietary intake that creates an energy deficit, clinicians should also consider targeted risk factor modification with manipulation of the nutrient profile of the weight-reducing diet. These strategies produce significant weight loss and improvements in cardiometabolic risk factors. Future research is needed to better understand how to personalize nutrient prescriptions further to promote optimal risk modification and maintenance of long-term energy balance in the weight-reduced state. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Modeling the effects of anadromous fish nitrogen on the carbon balance of riparian forests in central Idaho

    NASA Astrophysics Data System (ADS)

    Noble Stuen, A. J.; Kavanagh, K.; Wheeler, T.

    2010-12-01

    Wild anadromous fish such as Pacific Chinook salmon (Oncorynchus tshawytscha) and steelhead (Oncorhyncus mykiss) were once abundant in Idaho, where they deposited their carcasses, rich in marine-derived nutrients (MDN), in the tributaries of the Columbia River. Anadromous fish are believed to have been a historically important nutrient source to the relatively nutrient-poor inland ecosystems of central Idaho, but no longer reach many inland watersheds due to presence of dams. This study investigates the multi-decadal cumulative effect of presence versus absence of anadromous fish nitrogen on net ecosystem exchange (NEE), or net carbon uptake, of riparian forests along historically salmon-bearing streams in the North Fork Boise River watershed, Idaho, in the context of a changing climate. The ecosystem process model BIOME-BGC is used to develop a representative forest ecosystem and predict the impact of decades of addition and continuing absence of MDN on NEE and net primary production (NPP). The study has 2 objectives: 1) to determine whether BIOME-BGC can reasonably simulate the riparian forests of central Idaho. A potentially confounding factor is the complex terrain of the region, particularly regarding soil water: water accumulation in valley bottoms and their riparian zones may lead to discrepancies in soil moisture and productivity of the riparian forest and of the simulations. The model is parameterized using local ecophysiology and site data and validated using field measurements of leaf area and soil moisture. Objective 2): to determine the effects on forest carbon balance and productivity of the presence or ongoing absence of anadromous-fish derived nitrogen. The forest simulation developed in objective 1 is run under two scenarios into the mid-20th century; one continuing without any supplemental nitrogen and one with nitrogen added in levels consistent with estimates of historical deposition by anadromous fish. Both scenarios incorporate warming due to climate change in order to develop a realistic prediction for the two treatments. Results from objective 1 indicate that Biome-BGC can adequately simulate the study site: measured leaf area index (LAI) is not significantly different from maximum LAI predicted by the model. Results from objective 2 indicate that marine-derived nitrogen may increase NEE by up to eight times relative to no nutrient addition, whereas the continued loss of marine nitrogen may lead to a decrease in NEE relative to historical conditions. MDN may become even more important to maintaining a positive carbon balance under a climate warming scenario: model results show a decline in NEE with climate change, which is mitigated by the presence of the added marine nitrogen. Understanding the long-term impacts of marine-derived nutrients to inland Idaho watersheds will help inform forest management and nutrient-loss mitigation efforts.

  3. A cooperative study on the standardized total-tract digestible phosphorus requirement of twenty-kilogram pigs

    USDA-ARS?s Scientific Manuscript database

    Cooperative studies comprising growth performance, bone mineralization, and nutrient balance experiments were conducted at 11 stations to determine the standardized total-tract digestible (STTD) P requirement of 20-kg pigs using broken-line regression analysis. Monocalcium phosphate and limestone we...

  4. Field-scale modeling of center pivot irrigated cotton: Oullman clay loam series

    USDA-ARS?s Scientific Manuscript database

    Regulatory ground water pumping restrictions continue to be debated in the Southern Ogallala Aquifer region and will eventually result in allocation of irrigation resources becoming more important. Models that address the temporal and spatial variability of water, energy, and nutrient balances at fi...

  5. Methods for estimating litter decomposition. Chapter 8

    Treesearch

    Noah J. Karberg; Neal A. Scott; Christian P. Giardina

    2008-01-01

    Litterfall in terrestrial ecosystems represents the primary pathway for nutrient return to soil. Heterotrophic metabolism, facilitated through comminution by small insects and leaching during precipitation events, results in the release of plant litter carbon as CO2 into the atmosphere. The balance between litter inputs and heterotrophic litter...

  6. Food for Thought.

    ERIC Educational Resources Information Center

    Given, Barbara K.

    1998-01-01

    What and how students eat can profoundly affect their ability to learn. Children require a high-protein breakfast for alertness, and a balanced diet, including complex carbohydrates throughout the day. Chronic stress causes the brain and body to deplete available nutrients. Nutrition is an important issue; better school food equals better school…

  7. Exploring strategies to promote middle school student participation in the school breakfast program

    USDA-ARS?s Scientific Manuscript database

    Providing a school breakfast to students may be a practical intervention that improves energy balance, nutrient intake, and school academic achievement variables. The purpose of this pilot study was to identify the ecological factors influencing middle school student school breakfast participation a...

  8. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality.

    PubMed

    Filipiak, Michał; Kuszewska, Karolina; Asselman, Michel; Denisow, Bożena; Stawiarz, Ernest; Woyciechowski, Michał; Weiner, January

    2017-01-01

    The least understood aspects of the nutritional needs of bees are the elemental composition of pollen and the bees' need for a stoichiometrically balanced diet containing the required proportions of nutrients. Reduced plant diversity has been proposed as an indirect factor responsible for the pollinator crisis. We suggest stoichiometric mismatch resulting from a nutritionally unbalanced diet as a potential direct factor. The concentrations and stoichiometric ratios of C, N, S, P, K, Na, Ca, Mg, Fe, Zn, Mn, and Cu were studied in the bodies of honeybees of various castes and sexes and in the nectar and pollen of various plant species. A literature review of the elemental composition of pollen was performed. We identified possible co-limitations of bee growth and development resulting mainly from the scarcity of Na, S, Cu, P and K, and possibly Zn and N, in pollen. Particular castes and sexes face specific limitations. Concentrations of potentially limiting elements in pollen revealed high taxonomic diversity. High floral diversity may be necessary to maintain populations of pollen eaters. Single-species crop plantations, even if these species are rich in nectar and pollen, might limit bee growth and development, not allowing for gathering nutrients in adequate proportions. However, particular plant species may play greater roles than others in balancing honeybee diets. Therefore, we suggest specific plant species that may (1) ensure optimal growth and production of individuals by producing pollen that is exceptionally well balanced stoichiometrically (e.g., clover) or (2) prevent growth and development of honeybees by producing pollen that is extremely unbalanced for bees (e.g., sunflower). Since pollen is generally poor in Na, this element must be supplemented using "dirty water". Nectar cannot supplement the diet with limiting elements. Stoichiometric mismatch should be considered in intervention strategies aimed at improving the nutritional base for bees.

  9. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality

    PubMed Central

    Kuszewska, Karolina; Asselman, Michel; Denisow, Bożena; Stawiarz, Ernest; Woyciechowski, Michał; Weiner, January

    2017-01-01

    The least understood aspects of the nutritional needs of bees are the elemental composition of pollen and the bees’ need for a stoichiometrically balanced diet containing the required proportions of nutrients. Reduced plant diversity has been proposed as an indirect factor responsible for the pollinator crisis. We suggest stoichiometric mismatch resulting from a nutritionally unbalanced diet as a potential direct factor. The concentrations and stoichiometric ratios of C, N, S, P, K, Na, Ca, Mg, Fe, Zn, Mn, and Cu were studied in the bodies of honeybees of various castes and sexes and in the nectar and pollen of various plant species. A literature review of the elemental composition of pollen was performed. We identified possible co-limitations of bee growth and development resulting mainly from the scarcity of Na, S, Cu, P and K, and possibly Zn and N, in pollen. Particular castes and sexes face specific limitations. Concentrations of potentially limiting elements in pollen revealed high taxonomic diversity. High floral diversity may be necessary to maintain populations of pollen eaters. Single-species crop plantations, even if these species are rich in nectar and pollen, might limit bee growth and development, not allowing for gathering nutrients in adequate proportions. However, particular plant species may play greater roles than others in balancing honeybee diets. Therefore, we suggest specific plant species that may (1) ensure optimal growth and production of individuals by producing pollen that is exceptionally well balanced stoichiometrically (e.g., clover) or (2) prevent growth and development of honeybees by producing pollen that is extremely unbalanced for bees (e.g., sunflower). Since pollen is generally poor in Na, this element must be supplemented using “dirty water”. Nectar cannot supplement the diet with limiting elements. Stoichiometric mismatch should be considered in intervention strategies aimed at improving the nutritional base for bees. PMID:28829793

  10. Microbial N and P mining regulates the effect of N deposition on soil organic matter turnover

    NASA Astrophysics Data System (ADS)

    Meyer, Nele; Welp, Gerhard; Rodionov, Andrei; Borchard, Nils; Martius, Christopher; Amelung, Wulf

    2017-04-01

    Nitrogen (N) deposition to soils has become a global issue during the last decades. Its effect on mineralization of soil organic carbon (SOC), however, is still debated. Common theories based on Liebig's law predict higher SOC mineralization rates in nutrient-rich than in nutrient-poor soils. Contrastingly, the concept of microbial N mining predicts lower mineralization rates after N deposition. The latter is explained by ceased decomposition of recalcitrant soil organic matter (SOM) as the need of microbes to acquire N from this pool decreases. As N deposition might shift the nutrient balance towards relative phosphorus (P) deficiency, it is also necessary to consider P mining in this context. Due to limited knowledge about microbial nutrient mining, any predictions of N deposition effects are difficult. This study aims at elucidating the preconditions under which microbial nutrient mining occurs in soil. We hypothesized that the occurrence of N and P mining is controlled by the current nutrient status of the soil. Likewise, soils might respond differently to N additions. To investigate this hypothesis, we conducted substrate-induced respiration measurements on soils with pronounced gradients of N and P availability. We used topsoil samples taken repeatedly from a site which was up to 7 years under bare fallow (Selhausen, Germany) and up to 4 m deep tropical forest soils (Kalimantan, Indonesia). Additional nutrient manipulations (glucose, glucose+N, glucose+P, glucose+N+P additions) were conducted to study the effect of nutrient additions. Samples were incubated for one month. We further conducted 13C labeling experiments to trace the sources of CO2 (sugar vs. SOM derived CO2) for further hints on nutrient mining. Mineralization of glucose was limited by a lack of available N in the bare fallow soil but microbes were able to slowly acquire N from previously unavailable pools. This resulted in a slightly higher release of native SOM-derived CO2 compared to N-fertilized treatments. Nutrient additions had no effect on cumulative CO2 evolution in tropical topsoils. Subsoils of the tropical sites (20 - 100 cm depth) were co-limited by N and P. Here, alleviation of either N or P deficiency was necessary to stimulate the mineralization of glucose. In the deep subsoil (>150 cm depth) only the combined additions of N+P induced any CO2 release. Our results reveal that mining of both N and P potentially occurs but is restricted by multiple nutrient limitations, by the absence of potentially accessible nutrients (e.g., in the deep subsoil), and by full nutrient supply (e.g., high nutrient contents make mining unnecessary). The results suggest several implications for N deposition effects: 1) N deposition decreases (recalcitrant) SOC mineralization in former N-deficient soils, 2) N deposition increases SOC mineralization in former co-limited soils as it facilitates mining of the required P, 3) N deposition has no effect in nutrient rich topsoils.

  11. Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14-3-3 proteins.

    PubMed

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-05-30

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr(209), Ser(247), Ser(270), and Ser(303) as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr(209) and Ser(247) on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr(209) peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model

    PubMed Central

    Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng

    2016-01-01

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands. PMID:26999184

  13. Short-lived radium isotopes on the Scotian Shelf: Unique distribution and tracers of cross-shelf CO2 and nutrient transport

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth

    2013-04-01

    Radium (Ra) isotopes have become a common tool for investigating mixing rates on continental shelves, and more recently have been used to quantify the release of dissolved compounds enriched in pore-waters into the water column. We present results from Ra sampling of the Scotian Shelf region of the Canadian northwestern Atlantic Ocean, which reveal cross-shelf Ra distributions that are unique compared to other coastal regions. We explain the observations of lower 224Ra activities near the coast, relatively high activities at large distances offshore (>100km), and gradients in both offshore and onshore directions by inferring the regional geomorphology, as well as shelf bathymetry and circulation patterns. Ra gradients are used to calculate individual estimates of eddy diffusion in both the cross-shelf (KX) and vertical (KZ) directions using 1-D eddy diffusion models. Enhanced vertical mixing above offshore banks allows for Ra enrichments in offshore surface waters, while horizontal dispersion of this bank-related signal can transport Ra off the shelf break in surface waters, and towards the shore beneath the surface mixed layer. Similar onshore gradients in CO2 and nutrient species combined with Ra-derived KX values can yield onshore carbon and nutrient fluxes in subsurface waters, which in turn supply the CO2 outgassing from the Scotian Shelf. Our results thus provide constraints for cross-shelf transports of carbon and nutrients on the Scotian Shelf in order to guide mass balance or model based budget approaches in future studies.

  14. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.

  15. Nutrient density: addressing the challenge of obesity.

    PubMed

    Drewnowski, Adam

    2017-10-30

    Obesity rates are increasing worldwide. Potential reasons include excessive consumption of sugary beverages and energy-dense foods instead of more nutrient-rich options. On a per kJ basis, energy-dense grains, added sugars and fats cost less, whereas lean meats, seafood, leafy greens and whole fruit generally cost more. Given that consumer food choices are often driven by price, the observed social inequities in diet quality and health can be explained, in part, by nutrition economics. Achieving a nutrient-rich diet at an affordable cost has become progressively more difficult within the constraints of global food supply. However, given the necessary metrics and educational tools, it may be possible to eat better for less. New metrics of nutrient density help consumers identify foods, processed and unprocessed, that are nutrient-rich, affordable and appealing. Affordability metrics, created by adding food prices to food composition data, permit calculations of both kJ and nutrients per penny, allowing for new studies on the economic drivers of food choice. Merging dietary intake data with local or national food prices permits the estimation of individual-level diet costs. New metrics of nutrient balance can help identify those food patterns that provide optimal nutritional value. Behavioural factors, including cooking at home, have been associated with nutrition resilience, defined as healthier diets at lower cost. Studies of the energy and nutrient costs of the global food supply and diverse food patterns will permit a better understanding of the socioeconomic determinants of health. Dietary advice ought to be accompanied by economic feasibility studies.

  16. Methane and Hydrogen Production from Anaerobic Fermentation of Municipal Solid Wastes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuro; Lee, Dong-Yeol; Xu, Kaiqin; Li, Yu-You; Inamori, Yuhei

    Methane and hydrogen production was investigated in batch experiments of thermophilic methane and hydrogen fermentation, using domestic garbage and food processing waste classified by fat/carbohydrate balance as a base material. Methane production per unit of VS added was significantly positively correlated with fat content and negatively correlated with carbohydrate content in the substrate, and the average value of the methane production per unit of VS added from fat-rich materials was twice as large as that from carbohydrate-rich materials. By contrast, hydrogen production per unit of VS added was significantly positively correlated with carbohydrate content and negatively correlated with fat content. Principal component analysis using the results obtained in this study enable an evaluation of substrates for methane and hydrogen fermentation based on nutrient composition.

  17. Conceptual design and quantification of phosphorus flows and balances at the country scale: The case of France

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Kalimuthu; Nesme, Thomas; Mollier, Alain; Pellerin, Sylvain

    2012-06-01

    Global biogeochemical cycles have been deeply modified by human activities in recent decades. But detailed studies analyzing the influence of current economic and social organizations on global biogeochemical cycles within a system perspective are still required. Country level offers a relevant scale for assessing nutrient management and identifying key driving forces and possible leaks in the nutrient cycle. Conceptual modeling helps to quantify nutrient flows within the country and we developed such an approach for France. France is a typical Western European country with intensive agriculture, trade and an affluent diet, all of which may increase internal and external P flows. Phosphorus (P) was taken as a case study because phosphate rock is a non-renewable resource which future availability is becoming increasingly bleak. A conceptual model of major P flows at the country scale was designed. France was divided into agriculture, industry, domestic, import and export sectors, and each of these sectors was further divided into compartments. A total of 25 internal and eight external P flows were identified and quantified on a yearly basis for a period of 16 years (from 1990 to 2006) in order to understand long-term P flows. All the P flows were quantified using the substance flow analysis principle. The results showed that the industrial sector remained the largest contributor to P flows in France, followed by the agriculture and domestic sectors. Soil P balance was positive. However, a positive P balance of 18 kg P ha-1 in 1990 was reduced to 4 kg P ha-1 in 2006, mainly due to the reduced application of inorganic P fertilizer. The overall country scale P balance was positive, whereas half of this additional P was lost to the environment mainly through the landfilling of municipal and industrial waste, disposal of treated wastewater from which P was partially removed, and P losses from agricultural soils though erosion and leaching. Consequences for global P resources and soil and water compartments are discussed. Some opportunities to more effectively close the P cycle in France by both improving the intensity of P recycling and decreasing losses are quantified.

  18. Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth

    USGS Publications Warehouse

    Niswonger, Richard G.; Naranjo, Ramon C.; Smith, David; Constantz, James E.; Allander, Kip K.; Rosenberry, Donald O.; Neilson, Bethany; Rosen, Michael R.; Stonestrom, David A.

    2017-01-01

    Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow.

  19. Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway.

    PubMed

    André, Caroline; Cota, Daniela

    2012-11-01

    The mammalian target of rapamycin complex 1 (mTORC1) pathway is known to couple different environmental cues to the regulation of several energy-demanding functions within the cell, spanning from protein translation to mitochondrial activity. As a result, at the organism level, mTORC1 activity affects energy balance and general metabolic homoeostasis by modulating both the activity of neuronal populations that play key roles in the control of food intake and body weight, as well as by determining storage and use of fuel substrates in peripheral tissues. This review focuses on recent advances made in understanding the role of the mTORC1 pathway in the regulation of energy balance. More particularly, it aims at providing an overview of the status of knowledge regarding the mechanisms underlying the ability of certain amino acids, glucose and fatty acids, to affect mTORC1 activity and in turn illustrates how the mTORC1 pathway couples nutrient sensing to the hypothalamic regulation of the organisms' energy homoeostasis and to the control of intracellular metabolic processes, such as glucose uptake, protein and lipid biosynthesis. The evidence reviewed pinpoints the mTORC1 pathway as an integrator of the actions of nutrients on metabolic health and provides insight into the relevance of this intracellular pathway as a potential target for the therapy of metabolic diseases such as obesity and type-2 diabetes.

  20. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water.

    PubMed

    Jin, Jing; Yang, Lihua; Chan, Sidney M N; Luan, Tiangang; Li, Yan; Tam, Nora F Y

    2011-01-30

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Aquatic Plants and their Control.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  2. Effects of poultry manure on phosphorus availability to perennial ryegrass

    USDA-ARS?s Scientific Manuscript database

    Soil phosphorus (P) exists in numerous forms that differ in plant availability. High-P organic fertilizers, including poultry manure (PM), can alter the balance of these soil P forms and may affect plant nutrient status. To investigate the effects of PM on soil P distribution and plant utilization...

  3. Value of fluid fertilizer in bio-energy production

    USDA-ARS?s Scientific Manuscript database

    In field trials, analysis of whole corn plants at V6 and ear leaves at mid-silk showed adequate levels of all macronutrients, which suggests that nutrient management was balanced both for conventional and intensively managed (twin-row) planting scenarios and the amount of stover removed from the fie...

  4. Neonatal Nutrition Predicts Energy Balance in Young Adults Born Preterm at Very Low Birth Weight

    PubMed Central

    Matinolli, Hanna-Maria; Hovi, Petteri; Levälahti, Esko; Kaseva, Nina; Silveira, Patricia P.; Hemiö, Katri; Järvenpää, Anna-Liisa; Eriksson, Johan G.; Andersson, Sture; Lindström, Jaana; Männistö, Satu; Kajantie, Eero

    2017-01-01

    Epidemiological studies and animal models suggest that early postnatal nutrition and growth can influence adult health. However, few human studies have objective recordings of early nutrient intake. We studied whether nutrient intake and growth during the first 9 weeks after preterm birth with very low birth weight (VLBW, <1500 g) predict total energy intake, resting energy expenditure (REE), physical activity and food preferences in young adulthood. We collected daily nutritional intakes and weights during the initial hospital stay from hospital records for 127 unimpaired VLBW participants. At an average age 22.5 years, they completed a three-day food record and a physical activity questionnaire and underwent measurements of body composition (dual X-ray absorptiometry; n = 115 with adequate data) and REE (n = 92 with adequate data). We used linear regression and path analysis to investigate associations between neonatal nutrient intake and adult outcomes. Higher energy, protein and fat intakes during the first three weeks of life predicted lower relative (=per unit lean body mass) energy intake and relative REE in adulthood, independent of other pre- and neonatal factors. In path analysis, total effects of early nutrition and growth on relative energy intake were mostly explained by direct effects of early life nutrition. A path mediated by early growth reached statistical significance only for protein intake. There were no associations of neonatal intakes with physical activity or food preferences in adulthood. As a conclusion, higher intake of energy and nutrients during first three weeks of life of VLBW infants predicts energy balance after 20 years. This association is partly mediated through postnatal growth. PMID:29186804

  5. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial.

    PubMed

    Smeets, N; Nuyens, F; Van Campenhout, L; Delezie, E; Niewold, T A

    2018-06-01

    Two broiler trials were designed to investigate the relationship between the concentration of non-starch polysaccharides (NSP) in wheat and 1) its nutritional value for broilers and 2) the efficacy of exogenous enzymes. In a balance trial, diets were formulated with 3 wheat cultivars (Rustic and Viscount-medium NSP, Centenaire-high NSP) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 144 male Ross 308 broiler chickens housed in digestibility cages. Total tract nutrient digestibilities and AMEn were measured from 18 to 22 d of age. In a performance trial, diets were formulated with wheat (medium NSP diet) or with wheat mixed with rye and barley (high NSP diet) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 960 male Ross 308 broilers housed in pens and broiler performance during starter, grower and finisher periods was measured.In the balance trial, wheat cultivar did not affect nutrient digestibility or AMEn. Enzyme addition caused a significant increase in nutrient digestibilities and AMEn for the diet formulated with the high NSP wheat Centenaire only. In the performance trial, feeding the high NSP diet resulted in a higher feed conversion ratio and lower final body weight compared to the medium NSP diet. The largest improvements by enzyme addition were observed in the high NSP diet.In conclusion, the study was not able to show a consistent relationship between the NSP concentration of wheat and its nutritional value, but did demonstrate that the effect of an enzyme mixture on nutrient digestibility or broiler performance depends upon the NSP concentration in the diet.

  6. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial

    PubMed Central

    Smeets, N; Nuyens, F; Van Campenhout, L; Delezie, E; Niewold, T A

    2018-01-01

    ABSTRACT Two broiler trials were designed to investigate the relationship between the concentration of non-starch polysaccharides (NSP) in wheat and 1) its nutritional value for broilers and 2) the efficacy of exogenous enzymes. In a balance trial, diets were formulated with 3 wheat cultivars (Rustic and Viscount—medium NSP, Centenaire—high NSP) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 144 male Ross 308 broiler chickens housed in digestibility cages. Total tract nutrient digestibilities and AMEn were measured from 18 to 22 d of age. In a performance trial, diets were formulated with wheat (medium NSP diet) or with wheat mixed with rye and barley (high NSP diet) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 960 male Ross 308 broilers housed in pens and broiler performance during starter, grower and finisher periods was measured. In the balance trial, wheat cultivar did not affect nutrient digestibility or AMEn. Enzyme addition caused a significant increase in nutrient digestibilities and AMEn for the diet formulated with the high NSP wheat Centenaire only. In the performance trial, feeding the high NSP diet resulted in a higher feed conversion ratio and lower final body weight compared to the medium NSP diet. The largest improvements by enzyme addition were observed in the high NSP diet. In conclusion, the study was not able to show a consistent relationship between the NSP concentration of wheat and its nutritional value, but did demonstrate that the effect of an enzyme mixture on nutrient digestibility or broiler performance depends upon the NSP concentration in the diet. PMID:29471412

  7. Nutrient Digestibility and Metabolizable Energy Content of Mucuna pruriens Whole Pods Fed to Growing Pelibuey Lambs

    PubMed Central

    Loyra-Tzab, Enrique; Sarmiento-Franco, Luis Armando; Sandoval-Castro, Carlos Alfredo; Santos-Ricalde, Ronald Herve

    2013-01-01

    The nutrient digestibility, nitrogen balance and in vivo metabolizable energy supply of Mucuna pruriens whole pods fed to growing Pelibuey lambs was investigated. Eight Pelibuey sheep housed in metabolic crates were fed increasing levels of Mucuna pruriens pods: 0 (control), 100 (Mucuna100), 200 (Mucuna200) and 300 (Mucuna300) g/kg dry matter. A quadratic (p<0.002) effect was observed for dry matter (DM), neutral detergent fibre (aNDF), nitrogen (N) and gross energy (GE) intakes with higher intakes in the Mucuna100 and Mucuna200 treatments. Increasing M. pruriens in the diets had no effect (p>0.05) on DM and GE apparent digestibility (p<0.05). A linear reduction in N digestibility and N retention was observed with increasing mucuna pod level. This effect was accompanied by a quadratic effect (p<0.05) on fecal-N and N-balance which were higher in the Mucuna100 and Mucuna200 treatments. Urine-N excretion, GE retention and dietary estimated nutrient supply (metabolizable protein and metabolizable energy) were not affected (p>0.05). DM, N and GE apparent digestibility coefficient of M. pruriens whole pods obtained through multiple regression equations were 0.692, 0.457, 0.654 respectively. In vivo DE and ME content of mucuna whole pod were estimated in 11.0 and 9.7 MJ/kg DM. It was concluded that whole pods from M. pruriens did not affect nutrient utilization when included in an mixed diet up to 200 g/kg DM. This is the first in vivo estimation of mucuna whole pod ME value for ruminants. PMID:25049876

  8. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    NASA Astrophysics Data System (ADS)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  9. Using reference nutrient density goals with food balance sheet data to identify likely micronutrient deficits for fortification planning in countries in the Western Pacific region.

    PubMed

    Gibson, Rosalind S; Cavalli-Sforza, Tommaso

    2012-09-01

    Collection of nationwide food consumption data at the individual level is the preferred option for planning fortification programs. However, such data are seldom collected in low-income countries. In contrast, Food Balance Sheets (FBS), published annually for approximately 180 countries, may provide a source of national data for program planning. To explore the use of micronutrient densities from FBS data to identify likely deficits for eight micronutrients in national diets. Micronutrient densities in the daily available food supply per capita were calculated from the micronutrient contents of 95 food commodities in 17 Western Pacific Region countries. Densities were compared with reference nutrient density goals developed to ensure that at least 95% of individuals, irrespective of life-stage group, are likely to have adequate intakes. Of the eight micronutrients, Cambodia and Korea D.P.R. had likely deficits for six; China, Fiji, Kiribati, Korea Republic, Lao P.D.R., Philippines, Solomon Islands, Vanuatu, and Viet Nam had likely deficits for five; Brunei Darussalam, Malaysia, Mongolia, New Zealand, and Papua New Guinea had likely deficits for four; and New Caledonia had likely deficits for three. The most frequent deficits were for iron, zinc, and calcium (all countries), followed by vitamin B2 and vitamin A (n = 13), vitamin B1 (n = 2), and vitamin B12 (n = 1). The nutrient density approach could be applied to FBS data for ranking countries according to likely micronutrient deficits, but it provides no information on distribution of nutrient supply for fortification program planning. The approach described here could be applied to data from Household Consumption and Expenditures Surveys (HCES) to characterize households at greatest risk.

  10. Dietary challenges differentially affect activity and sleep/wake behavior in mus musculus: Isolating independent associations with diet/energy balance and body weight.

    PubMed

    Perron, Isaac J; Keenan, Brendan T; Chellappa, Karthikeyani; Lahens, Nicholas F; Yohn, Nicole L; Shockley, Keith R; Pack, Allan I; Veasey, Sigrid C

    2018-01-01

    Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.

  11. Peatland simulator connecting drainage, nutrient cycling, forest growth, economy and GHG efflux in boreal and tropical peatlands

    NASA Astrophysics Data System (ADS)

    Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Lehtonen, Aleksi

    2016-04-01

    Forest growth in peatlands is nutrient limited; principal source of nutrients is the decomposition of organic matter. Excess water decreases O2 diffusion and slows down the nutrient release. Drainage increases organic matter decomposition, CO2 efflux, and nutrient supply, and enhances the growth of forest. Profitability depends on costs, gained extra yield and its allocation into timber assortments, and the rate of interest. We built peatland simulator Susi to define and parameterize these interrelations. We applied Susi-simulator to compute water and nutrient processes, forest growth, and CO2 efflux of forested drained peatland. The simulator computes daily water fluxes and storages in two dimensions for a peatland forest strip located between drainage ditches. The CO2 efflux is made proportional to peat bulk density, soil temperature and O2 availability. Nutrient (N, P, K) release depends on decomposition and peat nutrient content. Growth limiting nutrient is detected by comparing the need and supply of nutrients. Increased supply of growth limiting nutrient is used to quantify the forest growth response to improved drainage. The extra yield is allocated into pulpwood and sawlogs based on volume of growing stock. The net present values of ditch cleaning operation and the gained extra yield are computed under different rates of interest to assess the profitability of the ditch cleaning. The hydrological sub-models of Susi-simulator were first parameterized using daily water flux data from Hyytiälä SMEAR II-site, after which the predictions were tested against independent hydrologic data from two drained peatland forests in Southern Finland. After verification of the hydrologic model, the CO2 efflux, nutrient release and forest growth proportionality hypothesis was tested and model performance validated against long-term forest growth and groundwater level data from 69 forested peatland sample plots in Central Finland. The results showed a clear relation between the stand growth, nutrient availability, and CO2 efflux. Potassium was the main limiting factor for the forest growth. This indicates that management aiming at decreasing heterotrophic CO2 efflux by raising the ground water table will decrease the forest growth. From the C balance perspective the growth rate of the tree stand becomes essential. Modelling approach enables a search for an optimal management schedule for producing timber in situation when there is a price given for release of C. Ditch network maintenance by ditch cleaning becomes profitable if: i) the initial drainage is very poor, ii) the availability of the critical nutrient is sufficient, iii) during prolonged rainy conditions, and iv) the tree stand is Scots pine (Pinus sylvestris) dominated and v) in a phase where most of the extra yield is allocated into sawlogs. The simulator and its holistic approach has been successfully implemented in both tropical pulpwood plantations in Sumatra, Indonesia and in Finnish boreal forests.

  12. Repeatability of metabolic responses to a nutrient deficiency in early and mid lactation and implications for robustness of dairy cows.

    PubMed

    Gross, J J; Bruckmaier, R M

    2015-12-01

    Nutrient partitioning toward the mammary gland during insufficient energy and nutrient supply is a strategy to ensure survival of the offspring in mammalian species. This homeorhetic priority of the mammary gland is also present in the modern dairy cow, in particular in early lactation. However, despite similar metabolic loads, the adaptive response to a given metabolic load varies considerably among animals. The aim of this study was to investigate if individual cows respond in a consistent manner to a negative energy balance (NEB) in early and mid lactation. Twenty-five dairy cows experienced the usual NEB after parturition and were subjected to a second 3-wk NEB induced by feed restriction in mid lactation. Animals were retrospectively ranked according to their highest plasma nonesterified fatty acid (NEFA) concentration in wk 1 to 4 postpartum. The animals with the 33% highest and 33% lowest values were selected and classified either as the high response (HR) or low response (LR) group. Before parturition, no differences in the studied parameters, dry matter intake, energy balance, concentrations of glucose, NEFA, β-hydroxybutyrate, cholesterol, triglycerides, growth hormone, and insulin-like growth factor-1, were detected between LR and HR. After parturition, milk yield and energy-corrected milk yield was higher for HR compared with LR in wk 2 to 14 and wk 1 to 6, respectively. During feed restriction in wk 15 to 17 postpartum, no differences in energy-corrected milk between LR and HR were found. Energy balance was more negative in HR during the NEB in early lactation, but not different from LR during feed restriction in mid lactation. Although plasma concentrations of glucose, growth hormone, triglycerides, and cholesterol showed group differences in early lactation, but not during feed restriction, the plasma concentrations of NEFA, β-hydroxybutyrate, and insulin-like growth factor-1 in HR changed repeatedly to a greater extent during the NEB at the 2 stages of lactation compared with LR despite the similar extent of the NEB itself in both groups. The repeatedly greater amplitude of adaptive responses in HR compared with LR at different time points might partly indicate an underlying genetic background to enable a sufficient and rapid supply of mobilization-derived nutrients. The individual characteristics of adaptation to an energy and nutrient shortage might be beneficial when implemented in breeding programs. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study - an elemental mass balance approach

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Silyakova, A.; Riebesell, U.

    2013-05-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air-sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of the three experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic carbon under nutrient-recycling summer conditions. This carbon over-consumption effect becomes evident from mass balance calculations, but was too small to be resolved by direct measurements of dissolved organic matter. Faster nutrient uptake by comparatively small algae at high CO2 after nutrient addition resulted in reduced production rates under future ocean CO2 conditions at the end of the experiment. This CO2 mediated shift towards smaller phytoplankton and enhanced cycling of dissolved matter restricted the development of larger phytoplankton, thus pushing the system towards a retention type food chain with overall negative effects on export potential.

  14. Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience

    NASA Astrophysics Data System (ADS)

    Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.

    2005-05-01

    Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.

  15. How important is the relative balance of fat and carbohydrate as sources of energy in relation to health?

    PubMed

    Sanders, Thomas A B

    2016-05-01

    Both the intake of fat, especially saturated trans fatty acids, and refined carbohydrates, particularly sugar, have been linked to increased risk of obesity, diabetes and CVD. Dietary guidelines are generally similar throughout the world, restrict both intake of SFA and added sugar to no more than 10 and 35 % energy for total fat and recommend 50 % energy from carbohydrates being derived from unrefined cereals, tubers, fruit and vegetables. Current evidence favours partial replacement of SFA with PUFA with regard to risk of CVD. The translation of these macronutrient targets into food-based dietary guidelines is more complex because some high-fat foods play an important part in meeting nutrient requirements as well as influencing the risk of chronic disease. Some of the recent controversies surrounding the significance of sugar and the type of fat in the diet are discussed. Finally, data from a recently published randomised controlled trial are presented to show the impact of following current dietary guidelines on cardiovascular risk and nutrient intake compared with a traditional UK diet.

  16. Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in China.

    PubMed

    Wu, Hailong; Huo, Yuanzi; Hu, Ming; Wei, Zhangliang; He, Peimin

    2015-06-15

    Intensive mariculture results in a rise in nutrient concentrations, then leads to serious eutrophication in coastal waters. Based on the sampling data obtained between August 2012 and July 2013, the eutrophication status in Yantian Bay was assessed, and the proportion of marine animals co-cultured with seaweeds was evaluated. The nutritional quality index (NQI) ranged from 4.37 to 13.20, indicating serious eutrophication conditions. The annual average ratio of nitrogen/phosphorus (N/P) was 25.19, indicating a nitrogen surplus in this system. DIN was selected as the best parameter to balance seaweed absorption and marine animal DIN production. Gracilaria lemaneiformis and Laminaria japonica were selected as co-cultured seaweeds. The optimal proportion of G. lemaneiformis production was assessed as 20074.14 tonnes. The optimal proportion of L. japonica production was evaluated as 15890.68 tonnes. High-temperature adapted seaweeds should be introduced for removing nutrients releasing by farmed aquatic animals in the summer in Yantian Bay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of nutrient deficiencies on in vitro Th1 and Th2 cytokine response of peripheral blood mononuclear cells to Plasmodium falciparum infection

    PubMed Central

    2010-01-01

    Background An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that mediate innate and adaptive immune responses is required for effective protection against human malaria and to avoid immunopathology. In malaria endemic countries, this immunological balance may be influenced by micronutrient deficiencies. Methods Peripheral blood mononuclear cells from Tanzanian preschool children were stimulated in vitro with Plasmodium falciparum-parasitized red blood cells to determine T-cell responses to malaria under different conditions of nutrient deficiencies and malaria status. Results The data obtained indicate that zinc deficiency is associated with an increase in TNF response by 37%; 95% CI: 14% to 118% and IFN-γ response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 371% and a reduction in IFN-γ production. These results reflect a shift in cytokine profile to a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type II response in magnesium deficiency. The data also reveal a non-specific decrease in cytokine production in children due to iron deficiency anaemia that is largely associated with malaria infection status. Conclusions The pathological sequels of malaria potentially depend more on the balance between type I and type II cytokine responses than on absolute suppression of these cytokines and this balance may be influenced by a combination of micronutrient deficiencies and malaria status. PMID:20546583

  18. Construction and completion of flux balance models from pathway databases.

    PubMed

    Latendresse, Mario; Krummenacker, Markus; Trupp, Miles; Karp, Peter D

    2012-02-01

    Flux balance analysis (FBA) is a well-known technique for genome-scale modeling of metabolic flux. Typically, an FBA formulation requires the accurate specification of four sets: biochemical reactions, biomass metabolites, nutrients and secreted metabolites. The development of FBA models can be time consuming and tedious because of the difficulty in assembling completely accurate descriptions of these sets, and in identifying errors in the composition of these sets. For example, the presence of a single non-producible metabolite in the biomass will make the entire model infeasible. Other difficulties in FBA modeling are that model distributions, and predicted fluxes, can be cryptic and difficult to understand. We present a multiple gap-filling method to accelerate the development of FBA models using a new tool, called MetaFlux, based on mixed integer linear programming (MILP). The method suggests corrections to the sets of reactions, biomass metabolites, nutrients and secretions. The method generates FBA models directly from Pathway/Genome Databases. Thus, FBA models developed in this framework are easily queried and visualized using the Pathway Tools software. Predicted fluxes are more easily comprehended by visualizing them on diagrams of individual metabolic pathways or of metabolic maps. MetaFlux can also remove redundant high-flux loops, solve FBA models once they are generated and model the effects of gene knockouts. MetaFlux has been validated through construction of FBA models for Escherichia coli and Homo sapiens. Pathway Tools with MetaFlux is freely available to academic users, and for a fee to commercial users. Download from: biocyc.org/download.shtml. mario.latendresse@sri.com Supplementary data are available at Bioinformatics online.

  19. Exploring the distance between nitrogen and phosphorus limitation in mesotrophic surface waters using a sensitive bioassay

    NASA Astrophysics Data System (ADS)

    Hrustić, Enis; Lignell, Risto; Riebesell, Ulf; Frede Thingstad, Tron

    2017-01-01

    The balance in microbial net consumption of nitrogen and phosphorus was investigated in samples collected in two mesotrophic coastal environments: the Baltic Sea (Tvärminne field station) and the North Sea (Espegrend field station). For this, we have refined a bioassay based on the response in alkaline phosphatase activity (APA) over a matrix of combinations in nitrogen and phosphorus additions. This assay not only provides information on which element (N or P) is the primary limiting nutrient, but also gives a quantitative estimate for the excess of the secondary limiting element (P+ or N+, respectively), as well as the ratio of balanced net consumption of added N and P over short timescales (days). As expected for a Baltic Sea late spring-early summer situation, the Tvärminne assays (n = 5) indicated N limitation with an average P+ = 0.30 ± 0.10 µM-P, when incubated for 4 days. For short incubations (1-2 days), the Espegrend assays indicated P limitation, but the shape of the response surface changed with incubation time, resulting in a drift in parameter estimates toward N limitation. Extrapolating back to zero incubation time gave P limitation with N+ ≈ 0.9 µM-N. The N : P ratio (molar) of nutrient net consumption varied considerably between investigated locations: from 2.3 ± 0.4 in the Tvärminne samples to 13 ± 5 and 32 ± 3 in two samples from Espegrend. Our assays included samples from mesocosm acidification experiments, but statistically significant effects of ocean acidification were not found by this method.

  20. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system.

    PubMed

    Yousaf, Muhammad; Li, Jifu; Lu, Jianwei; Ren, Tao; Cong, Rihuan; Fahad, Shah; Li, Xiaokun

    2017-04-28

    Incredible accomplishments have been achieved in agricultural production in China, but many demanding challenges for ensuring food security and environmental sustainability remain. Field experiments were conducted from 2011-2013 at three different sites, including Honghu, Shayang, and Jingzhou in China, to determine the effects of fertilization on enhancing crop productivity and indigenous nutrient-supplying capacity (INuS) in a rice (Oryza sativa L.)-rapeseed (Brassica napus L.) rotation. Four mineral fertilizer treatments (NPK, NP, NK and PK) were applied in a randomized complete block design with three replicates. Crop yields were increased by 19-41% (rice) and 61-76% (rapeseed) during the two years of rice-rapeseed rotation under NPK fertilization compared to PK fertilization across the study sites. Yield responses to fertilization were ranked NPK > NP > NK > PK, illustrating that N deficiency was the most limiting condition in a rice-rapeseed rotation, followed by P and K deficiencies. The highest and lowest N, P and K accumulations were observed under NPK and PK fertilization, respectively. The INuS of the soil decreased to a significant extent and affected rice-rapeseed rotation productivity at each site under NP, NK, and PK fertilization when compared to NPK. Based on the study results, a balanced nutrient application using NPK fertilization is a key management strategy for enhancing rice-rapeseed productivity and environmental safety.

  1. Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico

    USGS Publications Warehouse

    Turner, R.E.; Rabalais, N.N.; Alexander, Richard B.; McIsaac, G.; Howarth, R.W.

    2007-01-01

    We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.

  2. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    PubMed Central

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-01-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280

  3. Anti-Stress, Behavioural and Magnetoencephalography Effects of an L-Theanine-Based Nutrient Drink: A Randomised, Double-Blind, Placebo-Controlled, Crossover Trial.

    PubMed

    White, David J; de Klerk, Suzanne; Woods, William; Gondalia, Shakuntla; Noonan, Chris; Scholey, Andrew B

    2016-01-19

    L-theanine (γ-glutamylethylamide) is an amino acid found primarily in the green tea plant. This study explored the effects of an L-theanine-based nutrient drink on mood responses to a cognitive stressor. Additional measures included an assessment of cognitive performance and resting state alpha oscillatory activity using magnetoencephalography (MEG). Thirty-four healthy adults aged 18-40 participated in this double-blind, placebo-controlled, balanced crossover study. The primary outcome measure, subjective stress response to a multitasking cognitive stressor, was significantly reduced one hour after administration of the L-theanine drink when compared to placebo. The salivary cortisol response to the stressor was reduced three hours post-dose following active treatment. No treatment-related cognitive performance changes were observed. Resting state alpha oscillatory activity was significantly greater in posterior MEG sensors after active treatment compared to placebo two hours post-dose; however, this effect was only apparent for those higher in trait anxiety. This change in resting state alpha oscillatory activity was not correlated with the change in subjective stress response or the cortisol response, suggesting further research is required to assess the functional relevance of these treatment-related changes in resting alpha activity. These findings further support the anti-stress effects of L-theanine.

  4. [Structure and function of Fenshuijiang Reservoir ecosystem based on the analysis with Ecopath model].

    PubMed

    Wu, Zhen; Jia, Pei-Qiao; Hu, Zhong-Jun; Chen, Li-Qiao; Gu, Zhi-Min; Liu, Qi-Gen

    2012-03-01

    Based on the 2008-2009 survey data of fishery resources and eco-environment of Fenshuijiang Reservoir, a mass balance model for the Reservoir ecosystem was constructed by Ecopath with Ecosim software. The model was composed of 14 functional groups, including silver carp, bighead carp, Hemibarbus maculates, Cutler alburnus, Microlepis and other fishes, Oligochaeta, aquatic insect, zooplankton, phytoplankton, and organic detritus, etc. , being able to better simulate Fenshuijiang Reservoir ecosystem. In this ecosystem, there were five trophic levels (TLs), and the nutrient flow mainly occurred in the first three TLs. Grazing and detritus food chains were the main energy flows in the ecosystem, but the food web was simpler and susceptible to be disturbed by outer environment. The transfer efficiency at lower TLs was relatively low, indicating that the ecosystem had a lower capability in energy utilization, and the excessive stock of nutrients in the ecosystem could lead to eutrophication. The lower connectance index, system omnivory index, Finn' s cycled index, and Finn's mean path length demonstrated that the ecosystem was unstable, while the high ecosystem property indices such as Pp/R and Pp/B showed that the ecosystem was immature and highly productive. It was suggested that Fenshuijiang Reservoir was still a developing new reservoir ecosystem, with a very short history and comparatively high primary productivity.

  5. The base pairing RNA Spot 42 participates in a multi-output feedforward loop to help enact catabolite repression in Escherichia coli

    PubMed Central

    Beisel, Chase L.; Storz, Gisela

    2011-01-01

    SUMMARY Bacteria selectively consume some carbon sources over others through a regulatory mechanism termed catabolite repression. Here, we show that the base pairing RNA Spot 42 plays a broad role in catabolite repression in Escherichia coli by directly repressing genes involved in central and secondary metabolism, redox balancing, and the consumption of diverse non-preferred carbon sources. Many of the genes repressed by Spot 42 are transcriptionally activated by the global regulator CRP. Since CRP represses Spot 42, these regulators participate in a specific regulatory circuit called a multi-output feedforward loop. We found that this loop can reduce leaky expression of target genes in the presence of glucose and can maintain repression of target genes under changing nutrient conditions. Our results suggest that base pairing RNAs in feedforward loops can help shape the steady-state levels and dynamics of gene expression. PMID:21292161

  6. Use of dissolved inorganic carbon isotopes to track photosynthesis, respiration, and nitrification along a 56 mile transect in the Sacramento River and San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Peek, S.; Young, M. B.

    2013-12-01

    A decline in phytoplankton stocks in the San Francisco Bay and Delta is thought to contribute to the pelagic organism decline observed over the past two decades. One factor controlling phytoplankton growth rate is the availability of nutrients. Although there is an excess of nutrients in the Bay and Delta, the type and relative abundance of nutrients is critical to phytoplankton growth. To evaluate the response of phytoplankton to nutrient sources and to better understand phytoplankton dynamics downstream, we tested the hypothesis that the δ13C values of dissolved inorganic carbon (DIC) along with conventional water chemistry analyses will record events such as increased nitrification (related to the Sacramento River Wastewater Treatment Plant ammonium input) and algal blooms, and reflect the balance between photosynthesis and bacterial respiration. Multiple parameters affect [DIC] and its δ13C, including DIC sources, pH, and biological processes. Consumption of CO2 by phytoplankton during photosynthesis and by autotrophic bacteria during nitrification both result in increases in δ13C-DIC. However, photosynthesis and nitrification have very different relationships to chlorophyll and nutrient concentrations. The balance between heterotrophic bacterial respiration and photosynthesis should be reflected in trends in DIC, nutrient, and chlorophyll concentration, and δ13C-DIC. The δ13C of DIC should also be reflected in the δ13C of phytoplankton with approximately a 20 per mil fractionation. Significant deviation in the fractionation factor may indicate local variations in growth rate, nutrient availability, or speciation. Combined, these parameters should provide a gauge of the relative importance of the above mentioned processes. To test this hypothesis, we collected 19 water samples per cruise between July 2012 and July 2013 along a 56 mile transect between Rio Vista on the Sacramento River and San Francisco Bay near Angel Island during 8 cruises on the USGS RV Polaris. The samples were collected for DIC and particulate organic matter (POM, used as a proxy for phytoplankton) concentration and isotopic analysis. Our analyses were combined with water chemistry data provided by the USGS Water Quality of San Francisco Bay Program (http://sfbay.wr.usgs.gov/access/wqdata/index.html) . The results show a clear mixing trend between distinct freshwater and salt water end-members in terms of δ13C-DIC, δ13C-POM and concentration measurements. The baywater DIC endmember is produced largely through gas exchange with the atmosphere while the upstream endmember shows a significant component of CO2 produced through heterotrophic bacterial respiration. Local deviations from the mixing trend indicate variations in the balance between heterotrophic and autotrophic processes. The upstream effects of nitrification are not readily apparent but may be masked by the effects of reduced growth rates of phytoplankton due to elevated ammonium concentrations. Outliers to the mixing trend suggest local effects of biological processes. Pending nitrate and ammonium δ15N data will help to clarify these processes.

  7. TORC1 is required to balance cell proliferation and cell death in planarians

    PubMed Central

    Tu, Kimberly C.; Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2012-01-01

    Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion. PMID:22445864

  8. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.

    PubMed

    Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O

    2010-02-01

    Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52.5-71.2%, respectively, of total input TN and TP loads in the ChangLe River. Monthly riverine retention ratios were 3.5-88.7% for TN and 20.5-92.6% for TP. Hydrophyte growth and coverage on the river bed is the main cause for seasonal variation in riverine nutrient retention capacity. The total input TN and TP loads were the best indicators of RNRL and RPRL, respectively. High riverine nutrient retention capacity during summer due to hydrophytic growth is favorable to the avoidance of algal bloom in both river systems and coastal water in southeast China. Policies should be developed to strictly control nutrient applications on agricultural lands. Strategies for promoting hydrophyte growth in rivers are desirable for water quality management.

  9. Macronutrients and caloric intake in health and longevity

    PubMed Central

    Solon-Biet, Samantha M.; Mitchell, Sarah J.; de Cabo, Rafael; Raubenheimer, David; Le Couteur, David G.; Simpson, Stephen J.

    2015-01-01

    Both lifespan and healthspan are influenced by nutrition, with nutritional interventions proving to be robust across a wide range of species. However, the relationship between nutrition, health and aging is still not fully understood. Caloric restriction is the most studied dietary intervention known to extend life in many organisms, but recently the balance of macronutrients has been shown to play a critical role. In this review, we discuss the current understanding regarding the impact of calories and macronutrient balance in mammalian health and longevity and highlight the key nutrient-sensing pathways that mediate the effects of nutrition on health and ageing. PMID:26021555

  10. BIODEGRADATION OF DDT [1,1,1-TRICHLORO-2,2-BIS(4- CHLOROPHENYL) ETHANE] BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the form...

  11. A modeling study examining the impact of nutrient boundaries on primary production on the Louisiana Continental Shelf

    EPA Science Inventory

    A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchan...

  12. Exploring Strategies to Promote Middle School Student Participation in the School Breakfast Program

    ERIC Educational Resources Information Center

    Cullen, Karen Weber; Thompson, Deborah I.; Watson, Kathleen B.

    2012-01-01

    Purpose/Objective: Providing a school breakfast to students may be a practical intervention that improves energy balance, nutrient intake, and school academic achievement variables. This purpose of this pilot study was to identify the ecological factors influencing middle school student school breakfast participation and possible strategies to…

  13. Healthy Breakfasts for Kids: It's All about Balance

    MedlinePlus

    ... Nutrition Facts label and ingredient statement when you shop. “The label makes it easy to determine the amounts of nutrients your kids are getting and to compare one product to another,” Adler says. Make sure your ... & Veterinary Children's Health Cosmetics Dietary Supplements Drugs Food Medical Devices Nutrition Radiation-Emitting Products Tobacco ...

  14. Delicacy, Imprecision, and Uncertainty of Oceanic Simulations: An Investigation with the Regional Oceanic Modeling System (ROMS)

    DTIC Science & Technology

    2013-09-30

    Geochemistry and Ecosystems: An important community use for ROMS is biogeochemisty: chemical cycles, water quality, blooms , micro-nutrients, larval...Sci., submitted. Colas, F., J.C. McWilliams, X. Capet, and J. Kurian, 2012: Heat balance and eddies in the Peru- Chile Current System. Climate

  15. 75 FR 35026 - Science Advisory Board Staff Office Request for Nominations of Experts for a Nutrient Criteria...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... life. The specialized expertise and experience may be in one or more of the following disciplines... knowledge, the relevant scientific perspectives (which, among other factors, may be influenced by work... (f) diversity of and balance among scientific expertise and viewpoints. The SAB Staff Office's...

  16. Arabidopsis glutaredoxin s17 contributes to vegetative growth, mineral accumulation, and redox balance during iron deficiency

    USDA-ARS?s Scientific Manuscript database

    Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in par...

  17. Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China.

    PubMed

    Wei, Zhangliang; You, Jiaguo; Wu, Hailong; Yang, Fangfang; Long, Lijuan; Liu, Qiao; Huo, Yuanzi; He, Peimin

    2017-08-15

    To reduce negative environmental impacts from human aquaculture activities, the red alga Gracilaria lemaneiformis was co-cultured with the fish Pseudosciaena crocea in an integrated multi-trophic aquaculture (IMTA) system for 35d in Yantian Bay. The eutrophication index value decreased from 14.5 to 8.4 after seaweeds were co-cultured in cage farming areas, which indicated that the eutrophic water column in Yantian Bay could be mediated by IMTA. Total DIN and DIP of the tidal input and output were 9.23kg, 0.19kg and 11.08kg, and 0.27kg, respectively. Total 5.24kg of dissolved N and 0.81kg of dissolved P were released from IMTA system. These results indicate that G. lemaneiformis co-cultured in IMTA system could not completely remove all excess nutrients. In theory, at least 324.48kg of seaweed seedlings would be required to balance excess nutrients generated from fish cages. Copyright © 2017. Published by Elsevier Ltd.

  18. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.; Glen Harrison, W.

    1988-06-01

    Where the photic zone is a biological steady-state, the downward flux of organic material across the pycnocline to the interior of the ocean is thought to be balanced by upward turbulent flux of inorganic nitrogen across the nutricline. This model ignores a significant downward dissolved nitrogen flux caused by the diel vertical migration of interzonal zooplankton and nekton that feed in the photic zone at night and excrete nitrogenous compounds at depth by day. In the oligotrophic ocean this flux can be equivalent to the flux of particulate organic nitrogen from the photic zone in the form of faecal pellets and organic flocculates. Where nitrogen is the limiting plant nutrient, and the flux by diel migration of interzonal plankton is significant compared to other nitrogen exports from the photic zone, there must be an upward revision of previous estimates for the ratio of new to total primary production in the photic zone if a nutrient balance is to be maintained. This upward revision is of the order 5-100% depending on the oceanographic regime.

  19. Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.

    PubMed

    Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M

    2017-06-01

    This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Seasonality directs contrasting food collection behavior and nutrient regulation strategies in ants.

    PubMed

    Cook, Steven C; Eubanks, Micky D; Gold, Roger E; Behmer, Spencer T

    2011-01-01

    Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant.

  1. Seasonality Directs Contrasting Food Collection Behavior and Nutrient Regulation Strategies in Ants

    PubMed Central

    Cook, Steven C.; Eubanks, Micky D.; Gold, Roger E.; Behmer, Spencer T.

    2011-01-01

    Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant. PMID:21966522

  2. The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Bullen, T.D.; Fitzpatrick, J.

    2012-01-01

    Biotic/abiotic interactions between soil mineral nutrients and annual grassland vegetation are characterized for five soils in a marine terrace chronosequence near Santa Cruz, California. A Mediterranean climate, with wet winters and dry summers, controls the annual cycle of plant growth and litter decomposition, resulting in net above-ground productivities of 280-600gm -2yr -1. The biotic/abiotic (A/B) interface separates seasonally reversible nutrient gradients, reflecting biological cycling in the shallower soils, from downward chemical weathering gradients in the deeper soils. The A/B interface is pedologically defined by argillic clay horizons centered at soil depths of about one meter which intensify with soil age. Below these horizons, elevated solute Na/Ca, Mg/Ca and Sr/Ca ratios reflect plagioclase and smectite weathering along pore water flow paths. Above the A/B interface, lower cation ratios denote temporal variability due to seasonal plant nutrient uptake and litter leaching. Potassium and Ca exhibit no seasonal variability beneath the A/B interface, indicating closed nutrient cycling within the root zone, whereas Mg variability below the A/B interface denotes downward leakage resulting from higher inputs of marine aerosols and lower plant nutrient requirements.The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes F j,plants=q j,plants/(q j,plants+q j,discharge) with average values for K and Ca (F K,plants=0.99; F Ca,plants=0.93) much higher than for Mg and Na (F Mg,plants 0.64; F Na,plants=0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (K Sr/Ca=0.86; K Rb/K=0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. K Rb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from rainfall and mineral weathering. K Sr/Ca and K44Ca/40Ca fractionation factors fall outside these envelopes indicating that Ca nutrient cycling is closed to these external inputs. Small net positive K and Ca fluxes (6-14molm -2yr -1), based on annual mass balances, indicate that the soils are accumulating mineral nutrients, probably as a result of long-term environmental disequilibrium. ?? 2011.

  3. Biomass allocation and nutrients balance related to the concentration of Nitrogen and Phosphorus in Salvinia auriculata (Salviniaceae).

    PubMed

    Medeiros, J C C; Coelho, F F; Teixeira, E

    2016-06-01

    Aquatic plants can use differential allocation (trade-off) of carbon among their structures depending on the nutrition concentration. Given that N and P are limiting in the growth of plants, our questions were: Are the N and P concentrations in S. auriculata related to the biomass allocation to its structures? Is a differential allocation of N and P between floating and submerged leaves? We evaluated the relation between the nutrients and the biomass allocation, and the trade-off among the leaves using the Spearman correlation. Our results showed that N and P concentrations in S. auriculata are related to the biomass allocation to its structures, and that there is no trade-off of these nutrients between "shoot and root". Thus, we can see the importance of N and P concentration in the biomass of S. auriculata, and why this plant is capable to development in different environments as a weedy.

  4. Assessing the effect of nutrient mitigation measures in the watersheds of the Southern Bight of the North Sea.

    PubMed

    Thieu, Vincent; Garnier, Josette; Billen, Gilles

    2010-02-15

    The Seine, Somme, and Scheldt Rivers (France, Belgium, and Netherlands) are the major delivering rivers flowing into the continental coastal zone of the Southern Bight of the North Sea, an area regularly affected by eutrophication problems. In the present work, the Seneque-Riverstrahler model was implemented in a multi-regional case study in order to test several planned mitigation measures aimed at limiting stream nutrient contamination and restoring balanced nutrient ratios at the coastal zone. This modeling approach, which is spatially distributed at the basin scale, allows assessing the impact of any change in human activities, which widely differ over the three basins. Here, we define realistic scenarios based on currently proposed measures to reduce point and non-point sources, such as the upgrading of wastewater treatment, the introduction of catch crops, and the development of extensive farming. An analysis of the current situation showed that a 47-72% reduction in P point-source emissions within the three basins could be reached if the intended P treatment was generalized to the largest treatment plants. However, only an overall 14-23% reduction in N could be achieved at the outlet of the three basins, by combining improved wastewater treatment and land use with management measures aimed at regulating agricultural practices. Nonetheless, in spite of these efforts, N will still be exported in large excess with respect to the equilibrium defined by the Redfield ratios, even in the most optimistic hypothesis describing the long-term response of groundwater nitrate concentrations. A comprehensive assessment of these mitigation measures supports the need for additional reductions of nutrient losses from agriculture to control harmful algae development. It also stresses the relevance of this mechanistic approach, in which nutrient transfers from land to sea can be calculated, as an integrated strategy to test policy recommendations.

  5. Abattoir Wastewater Irrigation Increases the Availability of Nutrients and Influences on Plant Growth and Development.

    PubMed

    Matheyarasu, Raghupathi; Bolan, Nanthi S; Naidu, Ravi

    This study evaluated the effects of abattoir wastewater irrigation on plant growth and development. The soils used in this study were collected from Primo Smallgoods Abattoir (Port Wakefield, South Australia) at different sites such as currently irrigated (CI), currently not irrigated (CNI) and soil outside the irrigation area as control (CTRL). A completely randomised block design was employed for the plant growth experiment, where four crops (Pennisetum purpureum , Medicago sativa , Sinapis alba and Helianthus annuus ) were grown separately on three different soils (CI, CNI and CTRL) in plastic pots. Two types of water (tap water and wastewater) and two loadings were applied throughout the planting period based on the field capacity (FC 100 and 150 %). The overall dry matter yield was compared between the soils and treatments. Under wastewater irrigation, among the four species grown in the CI soil, P. purpureum (171 g) and H. annuus (151 g) showed high biomass yields, followed by S. alba (115 g) and M. sativa (31 g). The plants grown under tap water showed about 70 % lower yields compared to the abattoir wastewater irrigation (AWW). Similar trends in the biomass yields were observed for CNI and CTRL soils under the two water treatments, with the biomass yields in the following order CI > CNI > CTRL soils. The results confirm the beneficial effects of AWW at the greenhouse level. However, a proper cropping pattern and wastewater irrigation management plan is essential to utilise the nutrients available in the wastewater-irrigated land treatment sites. The increase in fertility is evident from the effects of wastewater on biomass growth and also the abundance of nutrients accumulated in plants. A mass balance calculation on the applied, residual and the plant-accumulated nutrients over a few cropping periods will help us in understanding the nutrient cycling processes involved in the abattoir-irrigated land treatment sites, which will serve as an effective tool for the environmental management.

  6. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  7. Brain nuclear receptors and body weight regulation

    PubMed Central

    O’Malley, Bert W.; Elmquist, Joel K.

    2017-01-01

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects. PMID:28218618

  8. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: experience from the International Lipid-Based Nutrient Supplements (iLANS) Project.

    USDA-ARS?s Scientific Manuscript database

    The International Lipid-Based Nutrient Supplements (iLiNS) Project began in 2009 with the goal of contributing to the evidence base regarding the potential of lipid-based nutrient supplements (LNS) to prevent undernutrition in vulnerable populations. The first project objective was the development o...

  9. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: experience from the International Lipid-Based Nutrient Supplements (iLiNS)

    USDA-ARS?s Scientific Manuscript database

    The International Lipid-Based Nutrient Supplements (iLiNS) Project began in 2009 with the goal of contributing to the evidence base regarding the potential of lipid-based nutrient supplements (LNS) to prevent undernutrition in vulnerable populations. The first project objective was the development o...

  10. Nutrient Recovery of Plant Leachates Under Thermal, Biological, and Photocatalytic Pretreatments

    NASA Technical Reports Server (NTRS)

    Wong, Les

    2015-01-01

    Nutrient recovery has always been a problem for long distance and long-term space missions. To allow humans to man these missions, a steady source of oxygen, water, and food are necessary for survival beyond Earth's atmosphere. Plants are currently an area of interest since they are capable of providing all three resources for life sustainability. We are currently interested in nutrient recovery for future plant growth and simple aqueous leachate extractions can recover some of the nutrients. However, leaching plants also removes water-soluble organic plant wastes, which inhibits plant growth if not separated properly. To combat the issues with waste and maximize nutrient recovery, we are attempting to pre-treat the plant matter using biological, thermal, and photocatalytic methods before subjecting the solution with variable-strength acid digestion. For the biological method, the inoculums: mixed heterotrophic/nitrifying bioreactor effluent and Trichoderma vessei are used in an attempt to liberate more nutrients from the plant matter. For the thermal method, plants are subjected to varying temperatures at different retention times to determine nutrient recovery. Lastly, the photocatalytic method utilizes TiO (sub 2)'s oxidizing abilities under specific pHs and retention times to reduce organic wastes and improve nutrient gains. A final acid digestion serves to liberate nutrients even further in order to maximize recovery. So far, we have tested ideal acid digestion variables for practicality and performance in our experiments. We found that a low retention time of 10 minutes and a high acid concentration of 0.1 and 1 mole HCl were the most effective at nutrient recovery. For space travel purposes, 0.1 mole currently looks like a viable acid digestion to use since it is relatively effective and sustainable from a mass and energy balance if acid recovery can be performed on waste brines. Biological pretreatments do not look to be too effective and the thermal and photocatalytic methods may be preferred since they show a potential to recover more than 70 percent of the nutrients.

  11. Are patterns in nutrient limitation belowground consistent with those aboveground: Results from a 4 million year chronosequence

    USGS Publications Warehouse

    Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.

    2011-01-01

    Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.

  12. Incorporating Green Infrastructure into Water Resources Management Plans to Address Water Quality Impairments

    NASA Astrophysics Data System (ADS)

    Piscopo, A. N.; Detenbeck, N. E.

    2017-12-01

    Managers of urban watersheds with excessive nutrient loads are more frequently turning to green infrastructure (GI) to manage their water quality impairments. The effectiveness of GI is dependent on a number of factors, including (1) the type and placement of GI within the watershed, (2) the specific nutrients to be treated, and (3) the uncertainty in future climates. Although many studies have investigated the effectiveness of individual GI units for different types of nutrients, relatively few have considered the effectiveness of GI on a watershed scale, the scale most relevant to management plans. At the watershed scale, endless combinations of GI type and location are possible, each with different effectiveness in reducing nutrient loads, minimizing costs, and maximizing co-benefits such as reducing runoff. To efficiently generate management plan options that balance the tradeoffs between these objectives, we simulate candidate options using EPA's Stormwater Management Model for multiple future climates and determine the Pareto optimal set of solution options using a multi-objective evolutionary algorithm. Our approach is demonstrated for an urban watershed in Rockville, Maryland.

  13. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.

    PubMed

    Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc

    2017-06-06

    Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Practical and clinical nutritional concerns during spaceflight.

    PubMed

    Seddon, M R; Fettman, M J; Phillips, R W

    1994-11-01

    Experience with space exploration to date has raised more questions regarding nutritional requirements for astronauts than it has answered. As mission lengths continue to increase, nutrient imbalances due to alterations in intake, dietary requirements, bioavailability, or excretion, may become more important. Factors adversely affecting intake include those as straightforward as stress and as complex as space-adaptation syndrome. Metabolic alterations induced by shifts in fluid and electrolyte balance, neuroendocrine function, and changes in hepatic protein synthesis and skeletal muscle type that result in nutrient partitioning to different biochemical pathways may also affect dietary requirements. Food processing effects on nutrient stability and digestibility, which apply to limited quantities of our usual diet on Earth, may become more important for diets that contain little fresh food during extended-length missions. Whereas nutrient and water recycling through ecosystems is taken for granted on Earth, specific effects of trace contaminant accumulation will require greater attention for prolonged space flights. Human factors, esthetics, and user-friendly operations will be necessary to facilitate the psychological as well as physiological health of the astronauts.

  15. Practical and clinical nutritional concerns during spaceflight

    NASA Technical Reports Server (NTRS)

    Seddon, M. R.; Fettman, M. J.; Phillips, R. W.

    1994-01-01

    Experience with space exploration to date has raised more questions regarding nutritional requirements for astronauts than it has answered. As mission lengths continue to increase, nutrient imbalances due to alterations in intake, dietary requirements, bioavailability, or excretion, may become more important. Factors adversely affecting intake include those as straightforward as stress and as complex as space-adaptation syndrome. Metabolic alterations induced by shifts in fluid and electrolyte balance, neuroendocrine function, and changes in hepatic protein synthesis and skeletal muscle type that result in nutrient partitioning to different biochemical pathways may also affect dietary requirements. Food processing effects on nutrient stability and digestibility, which apply to limited quantities of our usual diet on Earth, may become more important for diets that contain little fresh food during extended-length missions. Whereas nutrient and water recycling through ecosystems is taken for granted on Earth, specific effects of trace contaminant accumulation will require greater attention for prolonged space flights. Human factors, esthetics, and user-friendly operations will be necessary to facilitate the psychological as well as physiological health of the astronauts.

  16. Improving Growth and Productivity of Oleiferous Brassicas under Changing Environment: Significance of Nitrogen and Sulphur Nutrition, and Underlying Mechanisms

    PubMed Central

    Anjum, Naser A.; Gill, Sarvajeet S.; Umar, Shahid; Ahmad, Iqbal; Duarte, Armando C.; Pereira, Eduarda

    2012-01-01

    Mineral nutrients are the integral part of the agricultural systems. Among important plant nutrients, nitrogen (N) and sulphur (S) are known essential elements for growth, development, and various physiological functions in plants. Oleiferous brassicas (rapeseed and mustard) require higher amounts of S in addition to N for optimum growth and yield. Therefore, balancing S-N fertilization, optimization of nutrient replenishment, minimization of nutrient losses to the environment, and the concept of coordination in action between S and N could be a significant strategy for improvement of growth and productivity of oleiferous brassicas. Additionally, positive interaction between S and N has been reported to be beneficial for various aspects of oilseed brassicas. The current paper updates readers on the significance of N and S for the improvement of plant growth, development, and productivity in detail. In addition, S-N nutrition-mediated control of major plant antioxidant defense system components involved in the removal and/or metabolism of stress-induced/generated reactive oxygen species in plants (hence, the control of plant growth, development, and productivity) has been overviewed. PMID:22629181

  17. The distributions of, and relationship between, 3He and nitrate in eddies

    NASA Astrophysics Data System (ADS)

    Jenkins, W. J.; McGillicuddy, D. J., Jr.; Lott, D. E., III

    2008-05-01

    We present and discuss the distribution of 3He and its relationship to nutrients in two eddies (cyclone C1 and anticyclone A4) with a view towards examining eddy-related mechanisms whereby nutrients are transported from the upper 200-300 m into the euphotic zone of the Sargasso Sea. The different behavior of these tracers in the euphotic zone results in changes in their distributions and relationships that may provide important clues as to the nature of physical and biological processes involved. The cyclonic eddy (C1) is characterized by substantial 3He excesses within the euphotic zone. The distribution of this excess 3He is strongly suggestive of both past and recent ongoing deep-water injection into the euphotic zone. Crude mass balance calculations suggest that an average of approximately 1.4±0.7 mol m -2 of nitrate has been introduced into the euphotic zone of eddy C1, consistent with the integrated apparent oxygen utilization anomaly in the aphotic zone below. The 3He-NO 3 relationship within the eddy deviates substantially from the linear thermocline trend, suggestive of incomplete drawdown of nutrients and/or substantial mixing between euphotic and aphotic zone waters. Anticyclone (A4) displays a simpler 3He-NO 3 relationship, but is relatively impoverished in euphotic zone excess 3He. We suggest that because of the relatively strong upwelling and lateral divergence of water the residence time of upwelled 3He is relatively short within the euphotic zone of this eddy. An estimate of the recently upwelled nutrient inventory, based on the excess 3He observed in A4's lower euphotic zone, is stoichiometrically consistent with the oxygen maximum observed in the euphotic zone.

  18. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum

    NASA Astrophysics Data System (ADS)

    Beusen, Arthur H. W.; Bouwman, Alexander F.; Van Beek, Ludovicus P. H.; Mogollón, José M.; Middelburg, Jack J.

    2016-04-01

    Various human activities - including agriculture, water consumption, river damming, and aquaculture - have intensified over the last century. This has had a major impact on nitrogen (N) and phosphorus (P) cycling in global continental waters. In this study, we use a coupled nutrient-input-hydrology-in-stream nutrient retention model to quantitatively track the changes in the global freshwater N and P cycles over the 20th century. Our results suggest that, during this period, the global nutrient delivery to streams increased from 34 to 64 Tg N yr-1 and from 5 to 9 Tg P yr-1. Furthermore, in-stream retention and removal grew from 14 to 27 Tg N yr-1 and 3 to 5 Tg P yr-1. One of the major causes of increased retention is the growing number of reservoirs, which now account for 24 and 22 % of global N and P retention/removal in freshwater systems, respectively. This increase in nutrient retention could not balance the increase in nutrient delivery to rivers with the consequence that river nutrient transport to the ocean increased from 19 to 37 Tg N yr-1 and from 2 to 4 Tg P yr-1. Human activities have also led to a global increase in the molar N : P ratio in freshwater bodies.

  19. Global riverine N and P transport to ocean increased during the twentieth century despite increased retention along the aquatic continuum

    NASA Astrophysics Data System (ADS)

    Beusen, A. H. W.; Bouwman, A. F.; Van Beek, L. P. H.; Mogollón, J. M.; Middelburg, J. J.

    2015-12-01

    Various human activities, including agriculture, water consumption, river damming, and aquaculture, have intensified over the last century. This has had a major impact on nitrogen (N) and phosphorus (P) cycling in global continental waters. In this study, we use a coupled nutrient-input, hydrology, in-stream nutrient retention model to quantitatively track the changes in the global freshwater N and P cycles over the 20th century. Our results suggest that, during this period, the global nutrient delivery to streams increased from 34 to 64 Tg N yr-1 and from 5 to 9 Tg N yr-1. Furthermore, in-stream retention and removal grew from 14 to 27 Tg N yr-1 and 3 to 5 Tg N yr-1. One of the major cause of increased retention is the growing number of reservoirs which now account for 24 and 22 % of global N and P retention/removal in freshwater systems, respectively. This increase in nutrient retention could not balance the increase in nutrient delivery to rivers with the consequence that river nutrient transport to the ocean increased from 19 to 37 Tg N yr-1 and from 2 to 4 Tg N yr-1. Human activities have also led to a global increase in the molar N : P ratio in freshwater bodies.

  20. Amino acid–insensitive mTORC1 regulation enables nutritional stress resilience in hematopoietic stem cells

    PubMed Central

    Kalaitzidis, Demetrios; Efeyan, Alejo; Kfoury, Youmna; Nayyar, Naema; Sykes, David B.; Mercier, Francois E.; Papazian, Ani; Baryawno, Ninib; Victora, Gabriel D.; Sabatini, David M.; Scadden, David T.

    2017-01-01

    The mTOR pathway is a critical determinant of cell persistence and growth wherein mTOR complex 1 (mTORC1) mediates a balance between growth factor stimuli and nutrient availability. Amino acids or glucose facilitates mTORC1 activation by inducing RagA GTPase recruitment of mTORC1 to the lysosomal outer surface, enabling activation of mTOR by the Ras homolog Rheb. Thereby, RagA alters mTORC1-driven growth in times of nutrient abundance or scarcity. Here, we have evaluated differential nutrient-sensing dependence through RagA and mTORC1 in hematopoietic progenitors, which dynamically drive mature cell production, and hematopoietic stem cells (HSC), which provide a quiescent cellular reserve. In nutrient-abundant conditions, RagA-deficient HSC were functionally unimpaired and upregulated mTORC1 via nutrient-insensitive mechanisms. RagA was also dispensable for HSC function under nutritional stress conditions. Similarly, hyperactivation of RagA did not affect HSC function. In contrast, RagA deficiency markedly altered progenitor population function and mature cell output. Therefore, RagA is a molecular mechanism that distinguishes the functional attributes of reactive progenitors from a reserve stem cell pool. The indifference of HSC to nutrient sensing through RagA contributes to their molecular resilience to nutritional stress, a characteristic that is relevant to organismal viability in evolution and in modern HSC transplantation approaches. PMID:28319048

  1. 'Economy' line foods from four supermarkets and brand name equivalents: a comparison of their nutrient contents and costs.

    PubMed

    Cooper, S; Nelson, M

    2003-10-01

    Achieving healthy eating targets for low income households can be difficult because of economic barriers. Several UK supermarkets have introduced 'value line' or 'economy line' foods to improve their attractiveness to low income consumers. The costs and nutrient contents of five 'economy' line products of four major English supermarkets - Asda, KwikSave, Sainsbury and Tesco - were compared with branded (but not 'own label') equivalents. Single samples of tinned tomatoes, long-life orange juice, potatoes, sausages and white bread were purchased in each supermarket. They represented items of potential importance in relation to 'healthy' choices in the shopping baskets of low income households. Nutrients analysed were fat, sodium, potassium, iron, calcium, vitamin C, and energy. Economy line foods had a nutrient composition similar to and often better than the branded goods. The economy line products frequently had nutrient contents more in line with the Balance of Good Health (e.g. lower fat and sodium) compared with the branded goods. In terms of nutrients per pence, the economy line products were far better value for money compared with the branded lines. Economy line foods represent excellent value for money and are not nutritionally inferior to the branded products. They have a potentially important role to play in the promotion of healthy eating, especially amongst low income households.

  2. Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Null, Kimberly A.; Knee, Karen L.; Crook, Elizabeth D.; de Sieyes, Nicholas R.; Rebolledo-Vieyra, Mario; Hernández-Terrones, Laura; Paytan, Adina

    2014-04-01

    Submarine groundwater discharge (SGD) to the coastal environment along the eastern Yucatan Peninsula, Quintana Roo, Mexico was investigated using a combination of tracer mass balances and analytical solutions. Two distinct submarine groundwater sources including water from the unconfined surficial aquifer discharging at the beach face and water from a deeper aquifer discharging nearshore through submarine springs (ojos) were identified. The groundwater of nearshore ojos was saline and significantly enriched in short-lived radium isotopes (223Ra, 224Ra) relative to the unconfined aquifer beach face groundwater. We estimated SGD from ojos using 223Ra and used a salinity mass balance to estimate the freshwater discharge at the beach face. Analytical calculations were also used to estimate wave set-up and tidally driven saline seepage into the surf zone and were compared to the salinity-based freshwater discharge estimates. Results suggest that average SGD from ojos along the Yucatan Peninsula Caribbean coast is on the order of 308 m3 d-1 m-1 and varies between sampling regions. Higher discharge was observed in the southern regions (568 m3 d-1 m-1) compared to the north (48 m3 d-1 m-1). Discharge at the beach face was in the range of 3.3-8.5 m3 d-1 m-1 for freshwater and 2.7 m3 d-1 m-1 for saline water based on the salinity mass balance and wave- and tidally-driven discharge, respectively. Although discharge from the ojos was larger in volume than discharge from the unconfined aquifer at the beach face, dissolved inorganic nitrogen (DIN) was significantly higher in beach groundwater; thus, discharge of this unconfined beach aquifer groundwater contributed significantly to total DIN loading to the coast. DIN fluxes were up to 9.9 mol d-1 m-1 from ojos and 2.1 mol d-1 m-1 from beach discharge and varied regionally along the 500 km coastline sampled. These results demonstrate the importance of considering the beach zone as a significant nutrient source to coastal waters for future management strategies regarding nutrient loading to reef environments and coastal development. This study also identifies the importance of understanding the connectivity of submarine spring discharge to the nearshore coastal environment and the impact of inland anthropogenic activities may have on coastal health.

  3. Effects of lipid sources, lysophospholipids and organic acids in maize-based broiler diets on nutrient balance, liver concentration of fat-soluble vitamins, jejunal microbiota and performance.

    PubMed

    Polycarpo, G V; Burbarelli, M F C; CarÃo, A C P; Merseguel, C E B; Dadalt, J C; Maganha, S R L; Sousa, R L M; Cruz-Polycarpo, V C; Albuquerque, R

    2016-12-01

    Three experiments with a 2 × 2 × 2 factorial arrangement were conducted to evaluate maize-based diets for broilers containing different lipid sources [soybean oil (S) or beef tallow (T)] supplemented with or without lysophospholipids and organic acids on nutrient balance (Experiment I, evaluation period of 10-14 d), on liver concentration of fat-soluble vitamins, on jejunal microbiota (Experiment II, sampling at d 14) and on performance (Experiment III, accumulated periods of 1-14, 1-21 and 1-42 d). A total of 1344 male chicks were used. In each experiment, the birds were allotted in a completely randomised design with 8 replications. The lysophospholipids were mainly composed of lysolecithins and the organic acids blend was constituted by lactic (40%), acetic (7%) and butyric acids (1%). An interaction between lipid sources and lysophospholipids was observed on faecal apparent digestibility of lipid (ADL), which improved with lysophospholipids addition in T diets. Broilers fed on S had higher ADL and faecal apparent digestibility of nitrogen-corrected gross energy (ADGE N ). It was not possible to demonstrate a significant treatment effect on the liver concentration of vitamins A and E, even with the differences in fatty acid profile between S and T. Enterobacteria values were below the detection threshold. Lysophospholipid supplementation reduced gram-positive cocci in T-fed birds. S diets promoted lower total anaerobe counts compared with T diets, independent of additives. S diets increased BW gain and feed:gain ratio in all evaluation periods. Lysophospholipids and organic acids improved feed:gain ratio at 1-21 d in T diets. Furthermore, main effects were observed for lysophospholipids and organic acids at 1-42 d, which increased BW gain and improved feed:gain ratio, respectively. No positive interactions between additives were found.

  4. Analysis of Phosphorus Flows through Minnesota's Twin Cities Urban Food-Shed: Three Scenarios for Improving Nutrient Efficiency

    NASA Astrophysics Data System (ADS)

    Peterson, H. M.; Baker, L. A.

    2012-12-01

    Phosphorus (P) is a non-renewable resource, essential for agriculture and human food production. Although it is being depleted globally, urban P use is inefficient and contributes to water resources degradation, particularly accelerated eutrophication of receiving waters. A paradox in the P cycle is that although P enters the system through fertilizer application to agricultural land or livestock manure production in rural areas, the resulting food produced is consumed within urban households. Dietary food consumption is the largest P input to, and output from, Twin Cities Metropolitan Area (TCMA), Minnesota, households. This 7-county area has a population of 2.9 million (2010), which is over half of the State's population. Human food accounts for 41% of the P input to and 46% of the P output from the TCMA; only about 1% of the P in food waste is recycled. Expanding on previous work by the Twin Cities Household Ecosystem Project (TCHEP), this P flow analysis aims to quantify nutrient inputs required throughout the agricultural system to produce the amount of food consumed by TCMA households, while examining P use efficiency by summarizing the extent of leakage (waste), storage, and reuse throughout these systems. Food corresponding to a minimum of 80% of the total dietary P-input for TCMA households can be produced entirely within Minnesota's agricultural system, hence our "food-shed" is more-or-less directly connected to urban consumers. The top food products which contribute the largest input of dietary P are milk, cheese, wheat flour, beef, chicken, caloric sweeteners and pork. Mapping out an agricultural footprint which can support this urban ecosystem enables P use to be conceptualized through a circular economy model, in this case with Minnesota as the food-shed boundary. Using state-level data, augmented with intensive interview data collected from local livestock and food production experts, a detailed P balance was developed for each major animal and cropping system within the food-shed. P use efficiencies for these systems include: corn (1.14), hog (0.47), dairy (0.36), and beef (0.20). We will present three scenarios to illustrate how upstream and downstream changes alter the urban food-shed P balance. The first scenario examines upstream (food processing) waste management to identify nutrient recycling inefficiencies between agricultural and urban systems. The second scenario focuses on quantifying how altering consumer choices, such as converting to a more vegetable-based diet, shifts the P balance within the food-shed. The final scenario seeks to improve P use efficiency within the urban ecosystem to reduce downstream transfer. This research will contribute to the understanding of how human diets within a concentrated urban ecosystem impact an entire systems P balance. The potential for increasing P use efficiency and identifying barriers and opportunities to improve P use efficiency will be discussed.

  5. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    USGS Publications Warehouse

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side. Differences in microbial sulfate reduction, organic matter supply, and/or groundwater residence time likely contributed to this pattern. The contrasting features of the east and west sub-marsh zones highlight the need for multiple techniques for characterization of submarine groundwater discharge sources and the impact of biogeochemical processes on the delivery of nutrients and carbon to coastal areas via submarine groundwater discharge.

  6. [Adaptive adjustment of rhizome and root system on morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged condition].

    PubMed

    Liu, Yu-fang; Chen, Shuang-lin; Li Ying-chun; Guo, Zi-wu; Li, Ying-chun; Yang, Qing-ping

    2015-12-01

    The research was to approach the growth strategy of rhizome and roots based on the morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged conditions, and provided a theoretical basis for its application for vegetation restoration in wetland and water-level fluctuation belts. The morphological characteristics, physiological and biochemical indexes of annual bamboo rhizome and roots were investigated with an experiment using individually potted P. rivalis which was treated by artificial water-logging for 3, 6, and 12 months. Accordingly the morphological characteristics, biomass allocation, nutrient absorption and balance in rhizome and roots of P. rivalis were analyzed. The results showed that there was no obvious impact of long-term water-logging on the length and diameter of rhizomes, diameter of roots in P. rivalis. The morphological characteristics of rhizome had been less affected generally under water-logging for 3 months. And less rhizomes were submerged, while the growth of roots was inhibited to some extent. Furthermore, with waterlogging time extended, submerged roots and rhizomes grew abundantly, and the roots and rhizomes in soil were promoted. Moreover for ratios of rhizome biomass in soil and water, there were no obvious variations, the same for the root biomass in soil to total biomass. The ratio of root biomass in water to total biomass and the ratio of root biomass in water to root biomass in soil both increased significantly. The results indicated that P. rivalis could adapt to waterlogged conditions gradually through growth regulation and reasonable biomass distribution. However, the activity of rhizome roots in soil decreased and the nutrient absorption was inhibited by long-term water-logging, although it had no effect on stoichiometric ratios of root nutrient in soil. The activity of rhizome root in water increased and the stoichiometric ratios adjusted adaptively to waterlogged conditions, the ratio of N/P increased, while N/K and P/K decreased, which implied that roots in water absorbed oxygen and nutrients could help P. rivalis adapt to long-term waterlogged environment effectively.

  7. Shifting the Arctic Carbon Balance: Effects of a Long-Term Fertilization Experiment and Anomalously Warm Temperatures on Net Ecosystem Exchange in the Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Graham, L. M.; Jastrow, J. D.

    2017-12-01

    The arctic is warming at an accelerated rate relative to the globe. Among the predicted consequences of warming temperatures in the arctic are increased gross primary productivity (GPP), ecosystem respiration (ER), and nutrient availability. The net effect of these changes on the carbon (C) cycle and resulting C balance and feedback to climate change remain unclear. Historically the Arctic has been a C sink, but evidence from recent years suggests some regions in the Arctic are becoming C sources. To predict the role of the Arctic in global C cycling, the mechanisms affecting arctic C balances need to be better resolved. We measured net ecosystem exchange (NEE) in a long-term, multi-level, fertilization experiment at Toolik Lake, AK during an anomalously warm summer. We modeled NEE, ER, and GPP using a Bayesian network model. The best-fit model included Q10 temperature functions and linear fertilization functions for both ER and GPP. ER was more strongly affected by temperature and GPP was driven more by fertilization level. As a result, fertilization increased the C sink capacity, but only at moderate and low temperatures. At high temperatures (>28 °C) the NEE modeled for the highest level of fertilization was not significantly different from zero. In contrast, at ambient nutrient levels modeled NEE was significantly below zero (net uptake) until 35 °C, when it becomes neutral. Regardless of the level of fertilization, NEE never decreased with warming. Temperature in low ranges (5-15°C) had no net effect on NEE, whereas NEE began to increase exponentially with temperature after a threshold of 15°C until becoming a net source to the atmosphere at 37°C. Our results indicate that the C sink strength of tundra ecosystems can be increased with small increases in nutrient availability, but that large increase in nutrient availability can switch tundra ecosystems into C sources under warm conditions. Warming temperatures in tundra ecosystems will only decrease C sink strength, and the continued increase in days with anomalously high summer temperatures could lead to the Arctic tundra becoming a source of C and a positive feed back to climate change.

  8. Studies on supplementary desalted mother liquor on digestibility of nutrients, ruminal fermentation, and energy and nitrogen balance in Thai native cattle.

    PubMed

    Sakai, Takashi; Angthong, Wanna; Takeda, Motoharu; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2017-09-01

    Four Thai native steers were used to determine the adequate levels of supplementary desalted mother liquor (DML) for energy and nitrogen balances and ruminal fermentation. The crude protein and sodium chloride contents of DML were 25.5% and 60.3% on a dry matter (DM) basis, respectively. A 4 × 4 Latin square design experiment was conducted by adding different amounts of DML to three experimental diets (T1: 1.1%, T2: 2.2%, T3: 3.4% sodium chloride concentration with supplementary DML on a DM basis) and comparing their effects with those of a control diet (C) containing 1.0% commercial salt on a DM basis. The animals were given the experimental diets and rice straw daily at 1.2% and 0.8% of body weight, respectively, on a DM basis. No significant differences in the apparent digestibility of nutrients were observed among treatments. T3 achieved the lowest nitrogen retention (P < 0.05), followed by C, T2 and T1. The ratios of energy retention to gross energy were higher in T1 and T3 than T2, and that in C was lowest (P < 0.05). Supplementary NaCl concentration at 1% and 2% can be replaced with DML without an adverse effect on the digestibility of nutrients or on the nitrogen and energy retention. © 2017 Japanese Society of Animal Science.

  9. Stoichiometry of hydrological C, N, and P losses across climate and geology: An environmental matrix approach across New Zealand primary forests

    NASA Astrophysics Data System (ADS)

    McGroddy, M. E.; Baisden, W. T.; Hedin, L. O.

    2008-03-01

    Hydrologic losses can play a key role in regulating ecosystem nutrient balances, particularly in regions where baseline nutrient cycles are not augmented by industrial deposition. We used first-order streams to integrate hydrologic losses at the watershed scale across unpolluted old-growth forests in New Zealand. We employed a matrix approach to resolve how stream water concentrations of dissolved organic carbon (DOC), organic and inorganic nitrogen (DON and DIN), and organic and inorganic phosphorus (DOP and DIP) varied as a function of landscape differences in climate and geology. We found stream water total dissolved nitrogen (TDN) to be dominated by organic forms (medians for DON, 81.3%, nitrate-N, 12.6%, and ammonium-N, 3.9%). The median stream water DOC:TDN:TDP molar ratio of 1050:21:1 favored C slightly over N and P when compared to typical temperate forest foliage ratios. Using the full set of variables in a multiple regression approach explained approximately half of the variability in DON, DOC, and TDP concentrations. Building on this approach we combined a simplified set of variables with a simple water balance model in a regression designed to predict DON export at larger spatial scales. Incorporating the effects of climate and geologic variables on nutrient exports will greatly aid the development of integrated Earth-climate biogeochemical models which are able to take into account multiple element dynamics and complex natural landscapes.

  10. Macronutrient Optimization and Seasonal Diet Mixing in a Large Omnivore, the Grizzly Bear: A Geometric Analysis

    PubMed Central

    Coogan, Sean C. P.; Raubenheimer, David; Stenhouse, Gordon B.; Nielsen, Scott E.

    2014-01-01

    Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density of grizzly bears in this ecosystem. PMID:24841821

  11. Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis.

    PubMed

    Coogan, Sean C P; Raubenheimer, David; Stenhouse, Gordon B; Nielsen, Scott E

    2014-01-01

    Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density of grizzly bears in this ecosystem.

  12. Ecological Assimilation of Land and Climate Observations - the EALCO model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net radiation, evapotranspiration, gross primary production, net primary production, and net ecosystem production were discussed.

  13. 75 FR 17865 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... received will be included in the public docket without change and may be made available online at http... causes a reduction in visibility. Particulate matter is also deposited on the ground and in the water, changing nutrient and chemical balances. IV. What action is EPA taking? EPA is approving revisions to the...

  14. The effects of feeding increasing concentrations of corn oil on energy metabolism and nutrient balance in finishing beef steers

    USDA-ARS?s Scientific Manuscript database

    The use of added fat source is common in high-concentrate finishing diets. The objective of our experiment was to determine if feeding increasing concentrations of added dietary corn oil would decrease enteric methane production, increase the ME:DE ratio, and improve retained energy in finishing be...

  15. The effects of feeding increasing concentrations of corn oil on energy metabolism and nutrient balance in finishing beef steers

    USDA-ARS?s Scientific Manuscript database

    The use of added fat source is common in high-concentrate finishing diets. The objective of our experiment was to determine if feeding increasing concentrations of added dietary corn oil would decrease enteric methane production, increase the ME:DE ratio, and improve recovered energy (RE) in finish...

  16. Post-establishment fertilization of Minnesota hybrid poplar plantations

    Treesearch

    Mark Coleman; David Tolsted; Tom Nichols; Wendell D. Johnson; Edward G. Wene; Tom Houghtaling

    2006-01-01

    Experimental plantings were installed at five sites in three locations in western Minnesota. Aboveground biomass production increased 43–82% as a result of three annual applications of urea or balanced nutrient blend fertilizer beginning near canopy closure. There were no production differences between the type of fertilizer used, indicating that N was the major...

  17. Submesoscale Flows and Mixing in the Ocean Surface Layer Using the Regional Oceanic Modeling System (ROMS)

    DTIC Science & Technology

    2013-09-30

    chemical cycles, water quality, blooms , micro-nutrients, larval dispersal, biome transitions, and coupling to higher tropic levels. We collaborate with...Kurian, 2012: Heat balance and eddies in the Peru- Chile Current System. Climate Dynamics 39, 509-529, doi:10.1007/s00382-011-1170-6. Colas, F., X

  18. Modeling Actual Evapotranspiration From Forested Watersheds Across the Southeastern United States

    Treesearch

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Devendra M. Amatya

    2003-01-01

    About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However...

  19. Integration of Nutrient and Activity Analysis Software into a Worksite Weight Management Program.

    ERIC Educational Resources Information Center

    Dennison, Darwin; And Others

    1990-01-01

    A weight management program utilized the participant's own data for the participant to (1) understand energy balance; (2) compare his/her diet with U.S. dietary codes; (3) know which food selections were high in calories, fat, and cholesterol, and low in complex carbohydrates and fiber; and (4) understand weight management. (JD)

  20. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  1. A review of land–sea coupling by groundwater discharge of nitrogen to New England estuaries: Mechanisms and effects

    USGS Publications Warehouse

    2007-01-01

    Hydrologists have long been concerned with the interface of groundwater flow into estuaries, but not until the end of the last century did other disciplines realize the major role played by groundwater transport of nutrients to estuaries. Mass balance and stable isotopic data suggest that land-derived NO3, NH4, and dissolved organic N do enter estuaries in amounts likely to affect the function of the receiving ecosystem. Because of increasing human occupancy of the coastal zone, the nutrient loads borne by groundwater have increased in recent decades, in spite of substantial interception of nutrients within the land and aquifer components of watersheds. Groundwater-borne nutrient loads have increased the N content of receiving estuaries, increased phytoplankton and macroalgal production and biomass, decreased the area of seagrasses, and created a cascade of associated ecological changes. This linkage between land use and eutrophication of estuaries occurs in spite of mechanisms, including uptake of land-derived N by riparian vegetation and fringing wetlands, “unloading” by rapid water removal, and direct N inputs to estuaries, that tend to uncouple the effects of land use on receiving estuaries. It can be expected that as human activity on coastal watersheds continues to increase, the role of groundwater-borne nutrients to the receiving estuary will also increase.

  2. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism ofmore » phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.« less

  3. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of the conveyor. Thus, during the first 56-d period, the plants grew only in the fresh nutrient solution, whereas during the second 56-d period, the worked out nutrient solutions were being returned into the cycle having been added to the growth vessels along with the fresh SSMU. Growth characteristics, water and ionic relations of S. europaea plants, balance of nutrients between organs and growth media for the first and second 56-d periods of the conveyor operation are presented. There was no significant difference in the rates of shoot biomass production during the first and the second periods. The plants were producing shoot biomass with the rates close to those observed under optimal conditions. However, substantial increase in root biomass production (by 50% on the dry mass basis) was observed in the second period as compared with the first one. Decrease in organ water contents on the dry mass basis (by 13% and 30% for shoots and roots, respectively) and transpiration rates (by 25%) occurred also in the second period as compared with the first one. Measurements of Na+ , Cl- and nutrient contents in the growth media and plant organs and calculation of their balances showed that the plants did not suffer from a deficiency of nutrients during the 112 days of the conveyor operation while accumulating required NaCl amounts. Observed root proliferation and deterioration of water relations in the second 56-d period of the conveyor operation may be caused by toxic plant metabolites exuded by roots into the growth medium.

  4. Acid deposition and water use efficiency in Appalachian forests

    NASA Astrophysics Data System (ADS)

    Malcomb, J.

    2017-12-01

    Multiple studies have reported increases in forest water use efficiency in recent decades, but the drivers of these trends remain uncertain. While acid deposition has profoundly altered the biogeochemistry of Appalachian forests in the past century, its impacts on forest water use efficiency have been largely overlooked. Plant ecophysiology literature suggests that plants up-regulate transpiration in response to soil nutrient limitation in order to maintain sufficient mass flow of nutrients. To test the impacts of acid deposition on forest eco-hydrology in central Appalachia, we integrated dendrochronological techniques, including tree ring δ13C analysis, with catchment water balance data from the Fernow Experimental Forest in West Virginia. Tree cores from four species were collected in Fernow Watershed 3, which has received experimental ammonium sulfate additions since 1989, and Watershed 7, an adjacent control catchment. Initial results suggest that acidification treatments have not significantly influenced tree productivity compared to a control watershed, but the effect varies by species, with tulip poplar showing greatest sensitivity to acidification. Climatic water balance, defined as the difference between growing season precipitation and evapotranspiration, is significantly related to annual tree ring growth, suggesting that climate may be driving tree growth trends in chronically acidified Appalachian forests. Tree ring 13C analysis from Fernow cores is underway and these data will be integrated with catchment hydrology data from five other sites in central Appalachia and the U.S. Northeast, representing a range of forest types, soil base saturations, and acid deposition histories. This work will advance understanding of how climate and acid deposition interact to influence forest productivity and water use efficiency, and improve our ability to model carbon and water cycling in forested ecosystems impacted by acid deposition.

  5. Vegetarian children: appropriate and inappropriate diets.

    PubMed

    Jacobs, C; Dwyer, J T

    1988-09-01

    Acceptable and appropriate vegetarian diets fulfill the Recommended Dietary Allowances and other authoritative dietary guidelines dealing with balance, variety, moderation, and developmental appropriateness of diets for children. Vegetarian regimes currently fed to infants and children are evaluated using these criteria. Vegan-like diets, fed early in infancy and childhood, pose special problems with respect to sufficiency of certain nutrients, energy, and bulk, especially if they are unplanned and unaccompanied by ongoing health supervision. Lactovegetarian, lactoovovegetarian, and semivegetarian patterns are more likely to be satisfactory. They conform closely with the pediatric recommendations for promoting health and reducing risks of chronic degenerative diseases, are sufficient without being excessive in nutrients, are low in bulk, and are developmentally appropriate.

  6. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades.

    PubMed

    Qian, Y; Miao, S L; Gu, B; Li, Y C

    2009-01-01

    Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.

  7. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  8. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North.

    PubMed

    Liess, Antonia; Guo, Junwen; Lind, Martin I; Rowe, Owen

    2015-11-01

    Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can change key ecosystem functions. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  9. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients.

    PubMed

    Rodellas, Valentí; Stieglitz, Thomas C; Andrisoa, Aladin; Cook, Peter G; Raimbault, Patrick; Tamborski, Joseph J; van Beek, Pieter; Radakovitch, Olivier

    2018-06-16

    Evaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO 3 - , NH 4 + and PO 4 3- ) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances. The recirculation of lagoon water through sediments represents a source of NH 4 + (1900-5500 mol d -1 ) and PO 4 3- (22-71 mol d -1 ), but acts as a sink of NO 3 - . Estimated karstic groundwater-driven inputs of NO 3 - , NH 4 + and PO 4 3- to the lagoon are on the order of 200-1200, 1-12 and 1.5-8.7 mol d -1 , respectively. A comparison between the main nutrient sources to the lagoon (karstic groundwater, recirculation, diffusion from sediments, inputs from a sewage treatment plant and atmospheric deposition) reveals that the recirculation of lagoon water through sediments is the main source of both dissolved inorganic nitrogen (DIN) and phosphorous (DIP) to La Palme lagoon. These results are in contrast with several studies conducted in systems influenced by terrestrial groundwater inputs, where groundwater is often assumed to be the main pathway for dissolved inorganic nutrient loads. This work highlights the important role of lagoon water recirculation through permeable sediments as a major conveyor of dissolved nutrients to coastal lagoons and, thus, the need for a sound understanding of the recirculation-driven nutrient fluxes and their ecological implications to sustainably manage lagoonal ecosystems. Copyright © 2018. Published by Elsevier B.V.

  10. Life sciences and space research 25 (3): Natural and artifical ecosystems; Meeting F4 of the COSPAR Plenary Meeting, 29th, Washington, DC, Aug. 28-Sep. 5, 1992

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Mitchell, C. A. (Editor); Andre, M. (Editor); Blackwell, C. C. (Editor); Tibbitts, T. W. (Editor); Banin, A. (Editor); Levine, J. S. (Editor)

    1994-01-01

    Bioregenerative life support systems will be an essential part of long duration manned space flight. Studies have been made of various components of these closed ecological systems. these studies have included those spaceborne experiments on Spacelab and Mir, as well as ground-based simulations. The effects of reduced gravity include alterations in food crop and other plant growth and vigor. Systems have also been designed and tested to provide a balanced regenerative system that recycles airborne and other wastes while providing nutrients and other input for future cycles. Hydroponic cultivation must include control of pathogens. All closed systems require sensing and automatic control.

  11. Macronutrients and caloric intake in health and longevity.

    PubMed

    Solon-Biet, Samantha M; Mitchell, Sarah J; de Cabo, Rafael; Raubenheimer, David; Le Couteur, David G; Simpson, Stephen J

    2015-07-01

    Both lifespan and healthspan are influenced by nutrition, with nutritional interventions proving to be robust across a wide range of species. However, the relationship between nutrition, health and aging is still not fully understood. Caloric restriction is the most studied dietary intervention known to extend life in many organisms, but recently the balance of macronutrients has been shown to play a critical role. In this review, we discuss the current understanding regarding the impact of calories and macronutrient balance in mammalian health and longevity, and highlight the key nutrient-sensing pathways that mediate the effects of nutrition on health and ageing. © 2015 Society for Endocrinology.

  12. From salmon to shad: Shifting sources of marine-derived nutrients in the Columbia River Basin

    USGS Publications Warehouse

    Haskell, Craig A.

    2018-01-01

    Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed <0.2% of the total annual P load into John Day Reservoir, but during June when most adult shad are migrating into John Day Reservoir, they contributed as much as 2.0% of the P load. Nutrient inputs by American shad were similar to current but far less than historical inputs of Pacific salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine-derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.

  13. Nutrient intake of European adolescents: results of the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study.

    PubMed

    Diethelm, Katharina; Huybrechts, Inge; Moreno, Luis; De Henauw, Stefaan; Manios, Yannis; Beghin, Laurent; González-Gross, Marcela; Le Donne, Cinzia; Cuenca-García, Magdalena; Castillo, Manuel J; Widhalm, Kurt; Patterson, Emma; Kersting, Mathilde

    2014-03-01

    An adequate nutritional intake in childhood and adolescence is crucial for growth and the prevention of youth and adult obesity and nutrition-related morbidities. Improving nutrient intake in children and adolescents is of public health importance. The purpose of the present study was to describe and evaluate the nutrient intake in a European sample using the D-A-CH nutrient intake recommendations and the Nutritional Quality Index (NQI). The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study is a cross-sectional study, the main objective of which is to obtain comparable data on a variety of nutritional and health-related parameters in adolescents aged 12·5-17·5 years. Eight cities in Europe. The initial sample consisted of 3528 European adolescents. Among these, 1590 adolescents (54% female) had sufficient and plausible dietary data on energy and nutrient intakes from two 24 h recalls using the HELENA-DIAT software. The intakes of most macronutrients, vitamins and minerals were in line with the D-A-CH recommendations. While the intakes of SFA and salt were too high, the intake of PUFA was too low. Furthermore, the intakes of vitamin D, folate, iodine and F were less than about 55% of the recommendations. The median NQI was about 71 (of a maximum of 100). The intakes of most nutrients were adequate. However, further studies using suitable criteria to assess nutrient status are needed. Public health initiatives should educate children and adolescents regarding balanced food choices.

  14. Modelling system dynamics and phytoplankton diversity at Ranchi lake using the carbon and nutrient mass balance equations.

    PubMed

    Mukherjee, B; Nivedita, M; Mukherjee, D

    2014-05-01

    Modelling system dynamics in a hyper-eutrophic lake is quite complex especially with a constant influx of detergents and sewage material which continually changes the state variables and interferes with the assessment of the chemical rhythm occurring in polluted conditions as compared to unpolluted systems. In this paper, a carbon and nutrient mass balance model for predicting system dynamics in a complex environment was studied. Studies were conducted at Ranchi lake to understand the altered environmental dynamics in hyper-eutrophic conditions, and its impact on the plankton community. The lake was monitored regularly for five years (2007 - 2011) and the data collected on the carbon flux, nitrates, phosphates and silicates was used to design a mass balance model for evaluating and predicting the system. The model was then used to correlate the chemical rhythm with that of the phytoplankton dynamics and diversity. Nitrates and phosphates were not limiting (mean nitrate and phosphate concentrations were 1.74 and 0.83 mgl⁻¹ respectively). Free carbon dioxide was found to control the system and, interacting with other parameters determined the diversity and dynamics of the plankton community. N/P ratio determined which group of phytoplankton dominated the community, above 5 it favoured the growth of chlorophyceae while below 5 cyanobacteria dominates. TOC/TIC ratio determined the abundance. The overall system was controlled by the availability of free carbon dioxide which served as a limiting factor.

  15. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  16. Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species.

    PubMed

    Vongsangnak, Wanwipa; Klanchui, Amornpan; Tawornsamretkit, Iyarest; Tatiyaborwornchai, Witthawin; Laoteng, Kobkul; Meechai, Asawin

    2016-06-01

    We present a novel genome-scale metabolic model iWV1213 of Mucor circinelloides, which is an oleaginous fungus for industrial applications. The model contains 1213 genes, 1413 metabolites and 1326 metabolic reactions across different compartments. We demonstrate that iWV1213 is able to accurately predict the growth rates of M. circinelloides on various nutrient sources and culture conditions using Flux Balance Analysis and Phenotypic Phase Plane analysis. Comparative analysis of three oleaginous genome-scale models, including M. circinelloides (iWV1213), Mortierella alpina (iCY1106) and Yarrowia lipolytica (iYL619_PCP) revealed that iWV1213 possesses a higher number of genes involved in carbohydrate, amino acid, and lipid metabolisms that might contribute to its versatility in nutrient utilization. Moreover, the identification of unique and common active reactions among the Zygomycetes oleaginous models using Flux Variability Analysis unveiled a set of gene/enzyme candidates as metabolic engineering targets for cellular improvement. Thus, iWV1213 offers a powerful metabolic engineering tool for multi-level omics analysis, enabling strain optimization as a cell factory platform of lipid-based production. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Establishing a Multi-spatial Wireless Sensor Network to Monitor Nitrate Concentrations in Soil Moisture

    NASA Astrophysics Data System (ADS)

    Haux, E.; Busek, N.; Park, Y.; Estrin, D.; Harmon, T. C.

    2004-12-01

    The use of reclaimed wastewater for irrigation in agriculture can be a significant source of nutrients, in particular nitrogen species, but its use raises concern for groundwater, riparian, and water quality. A 'smart' technology would have the ability to measure wastewater nutrients as they enter the irrigation system, monitor their transport in situ and optimally control inputs with little human intervention, all in real-time. Soil heterogeneity and economic issues require, however, a balance between cost and the spatial and temporal scales of the monitoring effort. Therefore, a wireless and embedded sensor network, deployed in the soil vertically across the horizon, is capable of collecting, processing, and transmitting sensor data. The network consists of several networked nodes or 'pylons', each outfitted with an array of sensors measuring humidity, temperature, precipitation, soil moisture, and aqueous nitrate concentrations. Individual sensor arrays are controlled by a MICA2 mote (Crossbow Technology Inc., San Jose, CA) programmed with TinyOS (University of California, Berkeley, CA) and a Stargate (Crossbow Technology Inc., San Jose, CA) base-station capable of GPRS for data transmission. Results are reported for the construction and testing of a prototypical pylon at the benchtop and in the field.

  18. Following Saharan Dust Outbreak Toward The Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  19. Modelling the effect of environmental factors on resource allocation in mixed plants systems

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Priesack, Eckart

    2010-05-01

    In most cases, growth of plants is determined by competition against neighbours for the local resources light, water and nutrients and by defending against herbivores and pathogens. Consequently, it is important for a plant to grow fast without neglecting defence. However, plant internal substrates and energy required to support maintenance, growth and defence are limited and the total demand for these processes cannot be met in most cases. Therefore, allocation of carbohydrates to growth related primary metabolism or to defence related secondary metabolism can be seen as a trade-off between the demand of plants for being competitive against neighbours and for being more resistant against pathogens. A modelling approach is presented which can be used to simulate competition for light, water and nutrients between plant individuals in mixed canopies. The balance of resource allocation between growth processes and synthesis of secondary compounds is modelled by a concept originating from different plant defence hypothesis. The model is used to analyse the impact of environmental factors such as soil water and nitrogen availability, planting density and atmospheric concentration of CO2 on growth of plant individuals within mixed canopies and variations in concentration of carbon-based secondary metabolites in plant tissues.

  20. Qualitative Study of Functional Groups and Antioxidant Properties of Soy-Based Beverages Compared to Cow Milk

    PubMed Central

    Durazzo, Alessandra; Gabrielli, Paolo; Manzi, Pamela

    2015-01-01

    Soy-based beverages are a source of high quality proteins and balanced nutrients; they thus represent an alternative to milk in case of allergy to cow milk proteins or intolerance to lactose. In this research, antioxidant properties of soy-based beverages and UHT cow milk were studied. In addition, color parameters, by a quick and non-destructive methodology, were studied in order to verify a possible correlation with antioxidant properties and a qualitative analysis of the major functional groups undertaken by Fourier Transformed Infrared Spectroscopy (FTIR) on Attenuated Total Reflectance (ATR) was carried out. Extractable and hydrolysable polyphenols were studied in soy-based beverages. However, only the extractable fraction was studied in UHT milk, which was characterized by a small amount of polyphenols. All color parameters showed highly significant differences among soy-based beverages and between soy-based beverages and cow milk. FTIR-ATR spectra of soy-based beverages and cow milk showed several differences in the various regions depending on both the specific contribution of molecular groups and different food items. PMID:26783841

  1. Nutrient database for sorghum distillers dried grains with solubles from ethanol plants in the Western Plains Region and their effects on nursery pig performance.

    PubMed

    Sotak, K M; Goodband, R D; Tokach, M D; Dritz, S S; Derouchey, J M; Nelssen, J L

    2014-01-01

    Samples of sorghum distillers dried grains with solubles (DDGS) were collected and analyzed to establish a nutrient database and evaluate the quality and consistency between and within 5 ethanol plants in Kansas and Texas. Each sample (n = 21) was analyzed for AA, DM, CP, crude fiber, crude fat, ash, NDF, ADF, trace minerals, and starch. Mean values (DM basis) were 0.88% Lys, 10.49% crude fat, 34.21% CP, and 4,722 kcal/kg GE. The standard deviations among sorghum DDGS plants were similar to those within plants for most nutrients. Results of these analyses were used to formulate diets for 2 nursery trials. The 2 experiments were conducted to determine the effects of adding sorghum DDGS (29.0% CP and 7.2% crude fat) to corn- or sorghum-based diets on nursery pig growth performance. In Exp. 1, 360 nursery barrows (6.8 kg and 26 d of age) were used in a 34-d study. Pigs were allotted to 1 of 8 dietary treatments with 5 pigs per pen and 9 pens per treatment. Treatments were arranged in a 2 × 4 factorial with main effects of grain source (corn vs. sorghum) and sorghum DDGS (0, 15, 30, or 45%). Diets were formulated to 1.30 and 1.25% standardized ileal digestible (SID) Lys in phases 1 and 2, respectively, but were not balanced for energy. Overall, there were no differences among pigs fed sorghum- or corn-based diets for ADG and ADFI; however, as sorghum DDGS increased from 0 to 45% of the diet, ADG decreased (linear, P < 0.01). There was a DDGS × grain source interaction (linear, P < 0.04) observed for G:F. In corn-based diets, pigs fed increasing sorghum DDGS had relatively similar G:F. However, in pigs fed sorghum-based diets, G:F was best for those fed 0% DDGS but was decreased in pigs fed 15, 30, or 45% sorghum DDGS. In Exp. 2, 180 nursery pigs (10.7 kg and 38 d of age) were used in a 21-d study with 6 pigs per pen and 5 pens per treatment. Treatments were arranged in a 2 × 3 factorial with main effects of grain source (corn vs. sorghum) and DDGS (0 vs. 30% corn or sorghum DDGS). Diets were formulated to 1.27% SID Lys and were not balanced for energy. Overall, there were no differences in ADG among pigs fed sorghum- or corn-based diets as well as no differences among pigs fed sorghum or corn DDGS. Pigs fed diets with 30% DDGS gained less (P < 0.03) than pigs fed basal diets. These results indicate sorghum can be a suitable replacement for corn in nursery pig diets, but increasing sorghum DDGS decreased ADG.

  2. Verification and completion of a soil data base for process based erosion model applications in Mato Grosso/Brazil

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2014-05-01

    The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.

  3. Supply-demand balance in outward-directed networks and Kleiber's law

    PubMed Central

    Painter, Page R

    2005-01-01

    Background Recent theories have attempted to derive the value of the exponent α in the allometric formula for scaling of basal metabolic rate from the properties of distribution network models for arteries and capillaries. It has recently been stated that a basic theorem relating the sum of nutrient currents to the specific nutrient uptake rate, together with a relationship claimed to be required in order to match nutrient supply to nutrient demand in 3-dimensional outward-directed networks, leads to Kleiber's law (b = 3/4). Methods The validity of the supply-demand matching principle and the assumptions required to prove the basic theorem are assessed. The supply-demand principle is evaluated by examining the supply term and the demand term in outward-directed lattice models of nutrient and water distribution systems and by applying the principle to fractal-like models of mammalian arterial systems. Results Application of the supply-demand principle to bifurcating fractal-like networks that are outward-directed does not predict 3/4-power scaling, and evaluation of water distribution system models shows that the matching principle does not match supply to demand in such systems. Furthermore, proof of the basic theorem is shown to require that the covariance of nutrient uptake and current path length is 0, an assumption unlikely to be true in mammalian arterial systems. Conclusion The supply-demand matching principle does not lead to a satisfactory explanation for the approximately 3/4-power scaling of mammalian basal metabolic rate. PMID:16283939

  4. Supply-demand balance in outward-directed networks and Kleiber's law.

    PubMed

    Painter, Page R

    2005-11-10

    Recent theories have attempted to derive the value of the exponent alpha in the allometric formula for scaling of basal metabolic rate from the properties of distribution network models for arteries and capillaries. It has recently been stated that a basic theorem relating the sum of nutrient currents to the specific nutrient uptake rate, together with a relationship claimed to be required in order to match nutrient supply to nutrient demand in 3-dimensional outward-directed networks, leads to Kleiber's law (b = 3/4). The validity of the supply-demand matching principle and the assumptions required to prove the basic theorem are assessed. The supply-demand principle is evaluated by examining the supply term and the demand term in outward-directed lattice models of nutrient and water distribution systems and by applying the principle to fractal-like models of mammalian arterial systems. Application of the supply-demand principle to bifurcating fractal-like networks that are outward-directed does not predict 3/4-power scaling, and evaluation of water distribution system models shows that the matching principle does not match supply to demand in such systems. Furthermore, proof of the basic theorem is shown to require that the covariance of nutrient uptake and current path length is 0, an assumption unlikely to be true in mammalian arterial systems. The supply-demand matching principle does not lead to a satisfactory explanation for the approximately 3/4-power scaling of mammalian basal metabolic rate.

  5. Counterintuitive effects of global warming-induced wind patterns on primary production in the Northern Humboldt Current System.

    PubMed

    Mogollón, Rodrigo; R Calil, Paulo H

    2018-07-01

    It has been hypothesized that global warming will strengthen upwelling-favorable winds in the Northern Humboldt Current System (NHCS) as a consequence of the increase of the land-sea thermal gradient along the Peruvian coast. The effect of strengthened winds in this region is assessed with the use of a coupled physical-biogeochemical model forced with projected and climatological winds. Strengthened winds induce an increase in primary production of 2% per latitudinal degree from 9.5°S to 5°S. In some important coastal upwelling sites primary production is reduced. This is due to a complex balance between nutrient availability, nutrient use efficiency, as well as eddy- and wind-driven factors. Mesoscale activity induces a net offshore transport of inorganic nutrients, thus reducing primary production in the coastal upwelling region. Wind mixing, in general disadvantageous for primary producers, leads to shorter residence times in the southern and central coastal zones. Overall, instead of a proportional enhancement in primary production due to increased winds, the NHCS becomes only 5% more productive (+5 mol C m -2 year -1 ), 10% less limited by nutrients and 15% less efficient due to eddy-driven effects. It is found that regions with a initial strong nutrient limitation are more efficient in terms of nutrient assimilation which makes them more resilient in face of the acceleration of the upwelling circulation. © 2018 John Wiley & Sons Ltd.

  6. Evaluating the environmental impact of various dietary patterns combined with different food production systems.

    PubMed

    Baroni, L; Cenci, L; Tettamanti, M; Berati, M

    2007-02-01

    Recent studies support the hypothesis that plant-based diets are environmentally better than meat-based diets. This study aims to further explore this topic and to compare different environmental impacts resulting from different dietary patterns (omnivorous, vegetarian, vegan) and methods of production (conventional farming and organic agriculture). Three weekly balanced diets, equivalent to one another for energetic and nutrient content, have been planned: an omnivorous one, a vegetarian one and a vegan one. For each one, the Life Cycle Assessment (LCA) method has been applied in order to calculate the environmental impact, expressed in 'points'. The software we selected to carry out the Inventory Analysis and the Impact Assessment is SimaPro5. The Assessment phase has been conducted using Ecoindicator 99, a damage-oriented method, which analyses the impact according to three large damage categories, each of them subsuming various impact categories.

  7. [Milk, Daily products and Bone health.Milk and Dairy Products and "Wasyoku" -"New wasyoku"-.

    PubMed

    Ishida, Hiromi

    "Wasyoku;the traditional diets of Japan" refers to foods generally consumed by Japanese people, which is in contrast with the Western diets introduced by Europeans and Americans. The basic Japanese dietary pattern consists of rice as a staple food combined with one soup and two side dishes in a meal, making it easier to achieve a balanced nutritional status. However, salt content tends to be high in "Wasyoku", which negatively affects the overall health of an individual. Recently, Japanese's salt intake has been slowly decreasing;however, a further reduction by approximately 2 g per day is required to prevent hypertension and cardiovascular diseases. To reduce salt intake, while keeping a balanced nutritional status and obtaining adequate amount of energy and nutrients, one should be used to consume a lightly flavored food. However, as Japanese individuals have been accustomed to a high salt diet, which is directly related to a person's good taste or satisfaction level, shifting to lightly flavored foods is extremely difficult. Therefore, one of the methods developed to reduce salt intake is a "New Wasyoku;milk-plus traditional diets of Japan," a recipe utilizing the "koku" or umami taste of milk. The "New Wasyoku" is characterized by adopting to a milk/dairy product-based recipe, which promotes the realization of natural, healthy diets, while maintaining the palatability and nutritional balance of diets.

  8. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    USGS Publications Warehouse

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.

  9. Shifted hot spots and nutrient imbalance in global fertilizer use for agriculture production in the past half century

    NASA Astrophysics Data System (ADS)

    Tian, H.; Lu, C.

    2016-12-01

    In addition to enhance agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically altered global nutrient budget, water quality, greenhouse gas balance, and their feedbacks to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system/land surface modeling studies have to ignore or use over-simplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long period. In this study, we therefore develop a global time-series gridded data of annual synthetic N and P fertilizer use rate in croplands, matched with HYDE 3,2 historical land use maps, at a resolution of 0.5º latitude by longitude during 1900-2013. Our data indicate N and P fertilizer use rates increased by approximately 8 times and 3 times, respectively, since the year 1961, when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) survey of country-level fertilizer input were available. Considering cropland expansion, increase of total fertilizer consumption amount is even larger. Hotspots of agricultural N fertilizer use shifted from the U.S. and Western Europe in the 1960s to East Asia in the early 21st century. P fertilizer input show the similar pattern with additional hotspot in Brazil. We find a global increase of fertilizer N/P ratio by 0.8 g N/g P per decade (p< 0.05) during 1961-2013, which may have important global implication of human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global assessment on agricultural productivity, crop yield, agriculture-derived greenhouse gas balance, global nutrient budget, land-to-aquatic nutrient loss, and ecosystem feedback to the climate system.

  10. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    PubMed

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.

  11. Nutritional strategies to cope with reduced litter weight gain and total tract digestibility in lactating sows.

    PubMed

    Álvarez-Rodríguez, J; Mir, L; Seradj, A R; Morazán, H; Balcells, J; Babot, D

    2017-10-01

    Twelve lactating sows were used to evaluate the effects of reducing dietary crude protein (CP) (14% vs. 12%) and increasing neutral detergent fibre (NDF) levels (18% vs. 22%) on litter performance, total tract apparent digestibility and manure composition in a 4 × 4 latin square arrangement during a 36-day lactation period. Diets were isoenergetic (2.9 Mcal ME/kg) and had similar total lysine content (0.9%). In addition, a second aim was to compare a reference external marker method (Cr 2 O 3 ) with an internal feed marker [acid-insoluble ash (AIA)] for the calculation of apparent total tract digestibility of nutrients in lactating sows. The reduction of dietary CP level in lactating sows had no effect on either live-weight or backfat thickness or apparent total tract digestibility of nutrients. However, the piglets' average daily gain (ADG) was reduced in low dietary CP diets, which suggests that sows reduced milk production due to an underestimation of certain essential amino acid requirements (e.g. valine). The increase of dietary NDF level did not affect sow and litter performance. Nevertheless, the total tract apparent digestibility of organic matter, CP and carbohydrates was reduced, and ether extract digestion was increased in high NDF compared to normal NDF diets equally balanced for ME and lysine content. The coefficients of total tract apparent digestibility of nutrients in lactating sows were greater when using AIA compared to Cr 2 O 3 marker, regardless of dietary CP or NDF level, but their coefficients of variation were lower in the former than in the latter. In lactating sows, a trade-off between litter performance and nutrient digestion is established when reducing dietary CP or increasing NDF levels while maintaining similar lysine content through synthetic amino acids and balancing metabolizable energy through dietary fat sources. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  12. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment

    PubMed Central

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep. PMID:26894504

  13. Optimization of formulation and processing of Moringa oleifera and spirulina complex tablets.

    PubMed

    Zheng, Yi; Zhu, Fan; Lin, Dan; Wu, Jun; Zhou, Yichao; Mark, Bohn

    2017-01-01

    Objective: To prepare a more comprehensive nutrition, more balanced proportion of natural nutritional supplement tablets with Moringa oleifera leaves and spirulina the two nutrients which have complementary natural food ingredients. Method: On the basis of research M. oleifera leaves with spirulina nutrient composition was determined on M. oleifera leaves and spirulina ratio of raw materials, and the choice of microcrystalline cellulose, sodium salt of caboxy methyl cellulose(CMC),magnesium stearate excipient, through single factor and orthogonal experiment, selecting the best formula tablets prepared by powder direct compression technology, for preparation of M. oleifera and spirulina complex tablets. Results: The best ratio of raw material for the M. oleifera leaves powder: spirulina powder was 7:3, the best raw materials for the tablet formulation was 88.5%, 8.0% microcrystalline cellulose, CMC 2.0%, stearin magnesium 1.5%, the optimum parameters for the raw material crushing 200-300 mesh particle size, moisture content of 7%, tableting pressure 40 kN. Conclusion: Through formulation and process optimization, we can prepare more comprehensive and balanced nutrition M. oleifera and spirulina complex tablets, its sheet-shaped appearance, piece weight variation, hardness, friability, disintegration and other indicators have reached the appropriate quality requirements.

  14. The Nutrient Density of Snacks: A Comparison of Nutrient Profiles of Popular Snack Foods Using the Nutrient-Rich Foods Index.

    PubMed

    Hess, Julie; Rao, Goutham; Slavin, Joanne

    2017-01-01

    Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (-4.4), pies and cakes (-11.1), and carbonated soft drinks (-17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  15. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health.

    PubMed

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-03-01

    While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.

  16. Climate change and wetland loss impacts on a Western river's water quality

    NASA Astrophysics Data System (ADS)

    Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.

    2014-05-01

    An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss. This study assessed the potential climate-induced changes to in-stream sediment and nutrients loads in the historically snow melt-dominated Sprague River, Oregon, Western United States. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that in the Sprague River (1) mid-21st century nutrient and sediment loads could increase significantly during the high flow season under warmer-wetter climate projections, or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

  17. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Zhu, Jia-Ying; Roh, Jeehee; Marchive, Chloé; Kim, Seong-Ki; Meyer, Christian; Sun, Yu; Wang, Wenfei; Wang, Zhi-Yong

    2016-07-25

    For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates nutrient and energy signaling to regulate growth and homeostasis in both animals and plants [3-7]. Here, we show that sugar signaling through TOR controls the accumulation of the brassinosteroid (BR)-signaling transcription factor BZR1, which is essential for growth promotion by multiple hormonal and environmental signals [8-11]. Starvation, caused by shifting of light-grown Arabidopsis seedlings into darkness, as well as inhibition of TOR by inducible RNAi, led to plant growth arrest and reduced expression of BR-responsive genes. The growth arrest caused by TOR inactivation was partially recovered by BR treatment and the gain-of-function mutation bzr1-1D, which causes accumulation of active forms of BZR1 [12]. Exogenous sugar promoted BZR1 accumulation and seedling growth, but such sugar effects were largely abolished by inactivation of TOR, whereas the effect of TOR inactivation on BZR1 degradation is abolished by inhibition of autophagy and by the bzr1-1D mutation. These results indicate that cellular starvation leads sequentially to TOR inactivation, autophagy, and BZR1 degradation. Such regulation of BZR1 accumulation by glucose-TOR signaling allows carbon availability to control the growth promotion hormonal programs, ensuring supply-demand balance in plant growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Nitrogen excretion factors of livestock in the European Union: a review.

    PubMed

    Velthof, Gerard L; Hou, Yong; Oenema, Oene

    2015-12-01

    Livestock manures are major sources of nutrients, used for the fertilisation of cropland and grassland. Accurate estimates of the amounts of nutrients in livestock manures are required for nutrient management planning, but also for estimating nitrogen (N) budgets and emissions to the environment. Here we report on N excretion factors for a range of animal categories in policy reports by member states of the European Union (EU). Nitrogen excretion is defined in this paper as the total amount of N excreted by livestock per year as urine and faeces. We discuss the guidelines and methodologies for the estimation of N excretion factors by the EU Nitrates Directive, the OECD/Eurostat gross N balance guidebook, the EMEP/EEA Guidebook and the IPCC Guidelines. Our results show that N excretion factors for dairy cattle, other cattle, pigs, laying hens, broilers, sheep, and goats differ significantly between policy reports and between countries. Part of these differences may be related to differences in animal production (e.g. production of meat, milk and eggs), size/weight of the animals, and feed composition, but partly also to differences in the aggregation of livestock categories and estimation procedures. The methodologies and data used by member states are often not well described. There is a need for a common, harmonised methodology and procedure for the estimation of N excretion factors, to arrive at a common basis for the estimation of the production of manure N and N balances, and emissions of ammonia (NH3 ) and nitrous oxide (N2 O) across the EU. © 2015 Society of Chemical Industry.

  19. Nutrient fluxes and the recent collapse of coastal California salmon populations

    USGS Publications Warehouse

    Moore, Jonathan W.; Hayes, Sean A.; Duffy, Walter; Gallagher, Sean; Michel, Cyril J.; Wright, David

    2011-01-01

    Migratory salmon move nutrients both in and out of fresh waters during the different parts of their life cycle. We used a mass-balance approach to quantify recent changes in phosphorus (P) fluxes in six coastal California, USA, watersheds that have recently experienced dramatic decreases in salmon populations. As adults, semelparous Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon imported 8.3 and 10.4 times more P from the ocean, respectively, than they exported as smolts, while iteroparous steelhead (i.e., sea-run rainbow trout, Oncorhynchus mykiss) imported only 1.6 times more than they exported as kelts and smolts. Semelparous species whose life histories led them to import more nutrients were also the species whose populations decreased the most dramatically in California in recent years. In addition, the relationship between import and export was nonlinear, with export being proportionally more important at lower levels of import. This pattern was driven by two density-dependent processes — smolts were larger and disproportionately more abundant at lower spawner abundances. In fact, in four of our six streams we found evidence that salmon can drive net export of P at low abundance, evidence for the reversal of the "conveyor belt" of nutrients.

  20. Dairy in a sustainable diet: a question of balance.

    PubMed

    van Hooijdonk, Toon; Hettinga, Kasper

    2015-08-01

    The demand for dairy products is growing rapidly, especially in emerging markets. Dairy products are nutrient rich and, therefore, an important food group for ensuring nutrient security in the future. In many countries, dairy contributes significantly to nutrient intake. Meta-analyses have shown that consumption of dairy may reduce the risk of chronic diseases and thereby lower healthcare costs. Milk production and processing contribute to greenhouse gas emissions, estimated at 2.7% (cradle-to-retail) of the world's total. Evaluating the position of dairy in the diet should take into account the impact of both nutritional and environmental factors. Local conditions are also important; in many parts of the world, the cow is an efficient converter of human-inedible resources into nutrient-dense food. Increased productivity of cows is a decisive factor in realizing sufficient milk production with optimal resource efficiency and minimal greenhouse gas emission. Models that optimize total diets, rather than individual food products, for their nutritional and environmental impact are the preferred approach for developing realistic alternative consumption strategies. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Nutrigenomics and nutrigenetics.

    PubMed

    Farhud, Dd; Zarif Yeganeh, M; Zarif Yeganeh, M

    2010-01-01

    The nutrients are able to interact with molecular mechanisms and modulate the physiological functions in the body. The Nutritional Genomics focuses on the interaction between bioactive food components and the genome, which includes Nutrigenetics and Nutrigenomics. The influence of nutrients on f genes expression is called Nutrigenomics, while the heterogeneous response of gene variants to nutrients, dietary components and developing nutraceticals is called Nutrigenetics. Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual's genome. Nutrigenomics provides a genetic understanding for how common dietary components affect the balance between health and disease by altering the expression and/or structure of an individual's genetic makeup. Nutrigenetics describes that the genetic profile have impact on the response of body to bioactive food components by influencing their absorption, metabolism, and site of action.In this way, considering different aspects of gene-nutrient interaction and designing appropriate diet for every specific genotype that optimize individual health, diagnosis and nutritional treatment of genome instability, we could prevent and control conversion of healthy phenotype to diseases.

  2. Nutrigenomics and Nutrigenetics

    PubMed Central

    Farhud, DD; Zarif Yeganeh, M; Zarif Yeganeh, M

    2010-01-01

    The nutrients are able to interact with molecular mechanisms and modulate the physiological functions in the body. The Nutritional Genomics focuses on the interaction between bioactive food components and the genome, which includes Nutrigenetics and Nutrigenomics. The influence of nutrients on f genes expression is called Nutrigenomics, while the heterogeneous response of gene variants to nutrients, dietary components and developing nutraceticals is called Nutrigenetics. Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual’s genome. Nutrigenomics provides a genetic understanding for how common dietary components affect the balance between health and disease by altering the expression and/or structure of an individual’s genetic makeup. Nutrigenetics describes that the genetic profile have impact on the response of body to bioactive food components by influencing their absorption, metabolism, and site of action. In this way, considering different aspects of gene–nutrient interaction and designing appropriate diet for every specific genotype that optimize individual health, diagnosis and nutritional treatment of genome instability, we could prevent and control conversion of healthy phenotype to diseases. PMID:23113033

  3. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.

    PubMed

    Wu, Xi; Liang, Chanjuan

    2017-02-01

    Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.

  4. Ecosystem Modeling Applied to Nutrient Criteria Development in Rivers

    NASA Astrophysics Data System (ADS)

    Carleton, James N.; Park, Richard A.; Clough, Jonathan S.

    2009-09-01

    Threshold concentrations for biological impairment by nutrients are difficult to quantify in lotic systems, yet States and Tribes in the United States are charged with developing water quality criteria to protect these ecosystems from excessive enrichment. The analysis described in this article explores the use of the ecosystem model AQUATOX to investigate impairment thresholds keyed to biological indexes that can be simulated. The indexes selected for this exercise include percentage cyanobacterial biomass of sestonic algae, and benthic chlorophyll a. The calibrated model was used to analyze responses of these indexes to concurrent reductions in phosphorus, nitrogen, and suspended sediment in an enriched upper Midwestern river. Results suggest that the indexes would respond strongly to changes in phosphorus and suspended sediment, and less strongly to changes in nitrogen concentration. Using simulated concurrent reductions in all three water quality constituents, a total phosphorus concentration of 0.1 mg/l was identified as a threshold concentration, and therefore a hypothetical water quality criterion, for prevention of both excessive periphyton growth and sestonic cyanobacterial blooms. This kind of analysis is suggested as a way to evaluate multiple contrasting impacts of hypothetical nutrient and sediment reductions and to define nutrient criteria or target concentrations that balance multiple management objectives concurrently.

  5. Application of agricultural biotechnology to improve food nutrition and healthcare products.

    PubMed

    Sun, Samuel S M

    2008-01-01

    Crop plants provide essential food nutrients to humans and livestock, including carbohydrates, lipids, proteins, minerals and vitamins, directly or indirectly. The level and composition of food nutrients vary significantly in different food crops. As a result, plant foods are often deficient in certain nutrient components. Relying on a single food crop as source of nutrients thus will not achieve a balanced diet and results in malnutrition and deficiency diseases, especially in the developing countries, due mainly to poverty. The development and application of biotechnology offers opportunities and novel possibilities to enhance the nutritional quality of crops, particularly when the necessary genetic variability is not available. While initial emphasis of agricultural biotechnology has been placed on input traits of crops such as herbicide tolerance, insect resistance and virus resistance, increasing effort and promising proof-of-concept products have been made in output traits including enhancing the nutritional quality of crops since 1990s. Advancements in plant transformation and transgene expression also allow the use of plants as bioreactors to produce a variety of bio-products at large scale and low cost. Many proof-of-concept plant-derived healthcare products have been generated and several commercialized.

  6. N cycle and retention of croplands in complex terrain, South Korea

    NASA Astrophysics Data System (ADS)

    Kettering, J.; Arnhold, S.; Kuzyakov, Y.; Lee, B.; Lindner, S.; Ok, Y.; Ruidisch, M.; Tenhunen, J. D.

    2009-12-01

    The aims of our research are to gain a deeper understanding of processes and interactions in agricultural ecosystems as well as to make a contribution to sustainable agricultural production in changing environments. While crop production is highly desirable, negative effects include high input of nutrients, greater erosion rates, removal of nutrients and carbon in harvests, and decreases in the quality of soil organic matter. The field sites of this project are located in Haean basin in the central part of Korea, just south of the demilitarized zone. Intensive land use with high levels of fertilization together with distinctive erosion during the summer monsoon can be found on site. One part of this study focuses on general fertilizer budgets at catchment scale as well as on detailed information about the dynamics and pathways of nitrogen in soil-plant systems on upland slopes. These balances of elements and their fluxes are the main background information in soil-plant studies. The integrative approach of a general budget is based on a large spatial allocation of the field sites, different management types (conventional, organic), and on several typical crops of the Haean basin. In this project, various perspectives are combined (i.e. insects, weed, crops, nutrients). This allows representative conclusions for the entire catchment as well as for the modeling. The approach of a detailed N cycle uses an integrated experimental strategy within run-off plots. Charred biomass and synthetic polymers were additionally applied in these run-off plots to determine whether these additives can contribute significantly to sustainable farming methods in such complex terrain. Within this integrative approach, each treatment was tested for erosion prevention, soil hydrological parameters and flow systems, nutrient balances, as well as plant growth and yields. Finally, best agricultural management practices for sustainable land use of sloping uplands will be suggested. The methods of this research are primarily based on application of isotopes (13C, 14C, 15N). The approaches aim both on monitoring (natural abundance) as well as on experiments (tracer application). Isotope studies with 15N in the field sites allow examination of N uptake by aboveground plants, movement by percolation to deeper soil layers, surface run-off and overall retention within the farmland ecosystem. Isotope studies using 14C will be conducted under stable conditions in the laboratories of the University of Bayreuth this winter. 14C as a tracer provides insights about carbon fluxes in soil plant systems, such as total CO2 efflux dynamics of soils as well as C sequestration. 14C labeled maize and rice residues will be used for differentiating and quantifying the contribution of plant residues-derived C and native soil organic C. Fieldwork in South Korea started in summer 2009. Therefore, at the most partial results can be presented at the AGU Fall Meeting.

  7. Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kridelbaugh, Donna M; Nelson, Josh C; Engle, Nancy L

    2013-01-01

    Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed formore » the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.« less

  8. A systems approach to assess farm-scale nutrient and trace element dynamics: a case study at the Ojebyn dairy farm.

    PubMed

    Oborn, Ingrid; Modin-Edman, Anna-Karin; Bengtsson, Helena; Gustafson, Gunnela M; Salomon, Eva; Nilsson, S Ingvar; Holmqvist, Johan; Jonsson, Simon; Sverdrup, Harald

    2005-06-01

    A systems analysis approach was used to assess farmscale nutrient and trace element sustainability by combining full-scale field experiments with specific studies of nutrient release from mineral weathering and trace-element cycling. At the Ojebyn dairy farm in northern Sweden, a farm-scale case study including phosphorus (P), potassium (K), and zinc (Zn) was run to compare organic and conventional agricultural management practices. By combining different element-balance approaches (at farmgate, barn, and field scales) and further adapting these to the FARMFLOW model, we were able to combine mass flows and pools within the subsystems and establish links between subsystems in order to make farm-scale predictions. It was found that internal element flows on the farm are large and that there are farm internal sources (Zn) and loss terms (K). The approaches developed and tested at the Ojebyn farm are promising and considered generally adaptable to any farm.

  9. Fish Consumption, Levels of Nutrients and Contaminants, and Endocrine-Related Health Outcomes Among Older Male Anglers in Wisconsin.

    PubMed

    Christensen, Krista Y; Raymond, Michelle R; Thompson, Brooke A; Anderson, Henry A

    2016-07-01

    The aim of this study was to examine associations between endocrine disorders, fish consumption habits, and biomarkers of contaminants and nutrients : Male anglers aged at least 50 years living in Wisconsin (n = 154) completed a questionnaire and provided biological samples. Adjusted logistic regression models were used to evaluate risk factors for endocrine outcomes. Nineteen percent of anglers reported either pre-diabetes or diabetes, while 4.6% reported thyroid disease. There were few associations between endocrine disease and fish consumption, fish meal source, or species, aside from a notable increase in diabetes risk with lake trout consumption. Docosahexaenoic acid, certain polychlorinated biphenyls (PCBs), and perfluorinated compounds were associated with an increased risk of diabetes or pre-diabetes. PCBs were associated with a decreased risk of thyroid disease. Fish consumption patterns may affect risk for endocrine outcomes, but direction and magnitude of association may depend on the balance of the contaminants and nutrients in the individual diet.

  10. Co-cultivation of microalgae in aquaponic systems.

    PubMed

    Addy, Min M; Kabir, Faryal; Zhang, Renchuan; Lu, Qian; Deng, Xiangyuan; Current, Dean; Griffith, Richard; Ma, Yiwei; Zhou, Wenguang; Chen, Paul; Ruan, Roger

    2017-12-01

    Aquaponics is a sustainable system for the future farming. In aquaponic systems, the nutrient-rich wastewater generated by the fish provides nutrients needed for vegetable growth. In the present study, the role of microalgae of Chlorella sp. in the floating-raft aquaponic system was evaluated for ammonia control. The yields of algal biomass, vegetable, and removal of the key nutrients from the systems were monitored during the operation of the aquaponic systems. When the systems were in full operation, the algae production was about 4.15±0.19g/m 2 ·day (dry basis) which is considered low because the growth conditions are primarily tailored to fish and vegetable production. However, it was found that algae had a positive effect on balancing pH drop caused by nitrifying bacteria, and the ammonia could be controlled by algae since algae prefer for ammonia nitrogen over nitrate nitrogen. The algae are more efficient for overall nitrogen removal than vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium

    NASA Astrophysics Data System (ADS)

    Van Damme, Stefan; Frank, Dehairs; Micky, Tackx; Olivier, Beauchard; Eric, Struyf; Britta, Gribsholt; Oswald, Van Cleemput; Patrick, Meire

    2009-11-01

    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a freshwater tidal marsh along the Scheldt estuary (Belgium), covering oxygen, nutrients (N, P and Si), carbon, chlorophyll, suspended matter, chloride and sulfate. The role of seepage from the marsh was also investigated. A ranking between the parameters revealed that oxygenation was the strongest effect of the marsh on the estuarine water. Particulate parameters showed overall import. Export of dissolved silica (DSi) was more important than exchange of any other nutrient form. Export of DSi and import of total dissolved nitrogen (DIN) nevertheless contributed about equally to the increase of the Si:N ratio in the seepage water. The marsh had a counteracting effect on the long term trend of nutrient ratios in the estuary.

  12. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.

  13. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    PubMed

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.

  14. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    PubMed Central

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15–17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129

  15. Engineering a plant community to deliver multiple ecosystem services.

    PubMed

    Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine

    2015-06-01

    The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food production in the context of the sustainable management of natural resources.

  16. Distributed modeling of surface solar radiation based on aerosol optical depth and sunshine duration in China

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaofan; Zhao, Na; Ma, Yue

    2018-02-01

    Surface solar radiation, as a major component of energy balance, is an important driving condition for nutrient and energy cycle in the Earth system. The spatial distribution of total solar radiation at 10 km×10 km resolution in China was simulated with Aerosol Optical Depth (AOD) data from remote sensing and observing sunshine hours data from ground meteorological stations based on Geographic Information System (GIS). The results showed that the solar radiation was significantly different in the country, and affected by both sunshine hours and AOD. Sunshine hours are higher in the Northwest than that in the Northeast, but solar radiation is lower because of the higher AOD, especially in autumn and winter. It was suggested that the calculation accuracy of solar radiation was limited if just based on sunshine hours, and AOD can be considered as the influencing factor which would help to improve the simulation accuracy of the total solar radiation and realize the solar radiation distributed simulation.

  17. Recent insights into physiological responses to nutrients by the cylindrospermopsin producing cyanobacterium, Cylindrospermopsis raciborskii

    NASA Astrophysics Data System (ADS)

    Burford, Michele A.; Willis, Anusuya; Chuang, Ann; Man, Xiao; Orr, Phil

    2017-11-01

    The harmful cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. Studies have demonstrated some key attributes of this species which may explain its global dominance. It has a high level of flexibility with respect to light and nutrients, being capable of growth under low and variable light conditions. However, it is the strategy with respect to nutrient utilization that has received more attention. Unlike many bloom forming species, the dominance of this species is not simply linked to higher nutrient loads. In fact it appears that it is more competitive when phosphorus and nitrogen availability is low and/or variable. An important component of this flexibility appears to be the result of within-population strain variability in responses to nutrients, as well as key physiological adaptations. Strain variability also appears to have an effect on the population-level cell quota of toxins, specifically cylindrospermopsins (CYNs). Field studies in Australia showed that populations had the highest proportion of toxic strains when dissolved inorganic phosphorus was added, resulting in stoichiometrically balanced nitrogen and phosphorus within the cells. These strategies are part of an arsenal of responses to environmental conditions, making it a challenging species to manage. However, our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology and ecology of this species.

  18. A balancing act for autophagin.

    PubMed

    Till, Andreas; Subramani, Suresh

    2010-07-01

    Autophagy is a tightly regulated catabolic process whereby cells degrade their constituents to dispose of unwanted cytoplasmic elements and recycle nutrients for cellular remodeling. Studies of autophagy in mammals have elicited substantial interest because it is linked to a range of physiologic and pathologic states. In this issue of the JCI, Mariño et al. uncover a role for autophagy in a balance disorder related to inner ear pathologies. Mice lacking the protease autophagy-related 4B (Atg4b, also known as autophagin-1) exhibited a systemic reduction in autophagy and showed defects in the development of otoconia, organic particles that contain calcium carbonate crystals and proteins and that are essential for balance perception (equilibrioception) in mammals. The intriguing aspect of this work is that an autophagy block impairs the secretion and assembly of otoconial proteins, emphasizing a role for autophagy in functions distinct from macromolecule degradation.

  19. Electric-field-enhanced nutrient consumption in dielectric biomaterials that contain anchorage-dependent cells.

    PubMed

    Belfiore, Laurence A; Floren, Michael L; Belfiore, Carol J

    2012-02-01

    This research contribution addresses electric-field stimulation of intra-tissue mass transfer and cell proliferation in viscoelastic biomaterials. The unsteady state reaction-diffusion equation is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration occur in response to harmonic electric potential differences across a parallel-plate capacitor in a dielectric-sandwich configuration. The partial differential mass balance with diffusion and electro-kinetic consumption contains the Damköhler (Λ(2)) and Deborah (De) numbers. Zero-field and electric-field-sensitive Damköhler numbers affect nutrient boundary layer growth. Diagonal elements of the 2nd-rank diffusion tensor are enhanced in the presence of weak electric fields, in agreement with the formalism of equilibrium and nonequilibrium thermodynamics. Induced dipole polarization density within viscoelastic biomaterials is calculated via the real and imaginary components of the complex dielectric constant, according to the Debye equation, to quantify electro-kinetic stimulation. Rates of nutrient consumption under zero-field conditions are described by third-order kinetics that include local mass densities of nutrients, oxygen, and attached cells. Thinner nutrient boundary layers are stabilized at shorter dimensionless diffusion times when the zero-field intra-tissue Damköhler number increases above its initial-condition-sensitive critical value [i.e., {Λ(2)(zero-field)}(critical)≥53, see Eq. (23)], such that the biomaterial core is starved of essential ingredients required for successful proliferation. When tissue regeneration occurs above the critical electric-field-sensitive intra-tissue Damköhler number, the electro-kinetic contribution to nutrient consumption cannot be neglected. The critical electric-field-sensitive intra-tissue Damköhler number is proportional to the Deborah number. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  1. Hybrid modeling of nitrate fate in large catchments using fuzzy-rules

    NASA Astrophysics Data System (ADS)

    van der Heijden, Sven; Haberlandt, Uwe

    2010-05-01

    Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without problem, while the module assembly does not have to be modified. Apart from the concept of hybrid metamodeling first results are presented for the fuzzy-module for nitrate passage through the unsaturated zone.

  2. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses.

    PubMed

    Coe, Kirsten K; Belnap, Jayne; Sparks, Jed P

    2012-07-01

    Precipitation patterns including the magnitude, timing, and seasonality of rainfall are predicted to undergo substantial alterations in arid regions in the future, and desert organisms may be more responsive to such changes than to shifts in only mean annual rainfall. Soil biocrust communities (consisting of cyanobacteria, lichen, and mosses) are ubiquitous to desert ecosystems, play an array of ecological roles, and display a strong sensitivity to environmental changes. Crust mosses are particularly responsive to changes in precipitation and exhibit rapid declines in biomass and mortality following the addition of small rainfall events. Further, loss of the moss component in biocrusts leads to declines in crust structure and function. In this study, we sought to understand the physiological responses of the widespread and often dominant biocrust moss Syntrichia caninervis to alterations in rainfall. Moss samples were collected during all four seasons and exposed to two rainfall event sizes and three desiccation period (DP) lengths. A carbon balance approach based on single precipitation events was used to define the carbon gain or loss during a particular hydration period. Rainfall event size was the strongest predictor of carbon balance, and the largest carbon gains were associated with the largest precipitation events. In contrast, small precipitation events resulted in carbon deficits for S. caninervis. Increasing the length of the DP prior to an event resulted in reductions in carbon balance, probably because of the increased energetic cost of hydration following more intense bouts of desiccation. The season of collection (i.e., physiological status of the moss) modulated these responses, and the effects of DP and rainfall on carbon balance were different in magnitude (and often in sign) for different seasons. In particular, S. caninervis displayed higher carbon balances in the winter than in the summer, even for events of identical size. Overall, our results suggest that annual carbon balance and survivorship in biocrust mosses are largely driven by precipitation, and because of the role mosses play in biocrusts, changes in intra-annual precipitation patterns can have implications for hydrology, soil stability, and nutrient cycling in dryland systems.

  3. Chemotaxis and auto-chemotaxis of self-propelling artificial droplet swimmers

    NASA Astrophysics Data System (ADS)

    Jin, Chenyu; Krueger, Carsten; Maass, Corinna

    Chemotaxis and auto-chemotaxis are key mechanisms in the dynamics of micro-organisms, e.g. in the acquisition of nutrients and in the communication between individuals, influencing the collective behavior. However, chemical signalling and the natural environment of biological swimmers are generally complex, making them hard to access analytically. Simple experimental systems showing similar features could provide vital insights. We present such a swimmer system, as well as controlled assays to study chemotactic effects quantitatively and reproducibly. In our experiments, we let auto-chemotactic droplet swimmers pass through bifurcating microfluidic channels and record anticorrelations between the branch choices of consecutive droplets. We present an analytical model based on balancing stochastic forces versus a diffusing chemical gradient matching the experimental data. supported by the DFG SPP 1726 ''Microswimmers'' and the MaxSynBio network.

  4. Site-specific critical acid load estimates for forest soils in the Osborn Creek watershed, Michigan

    Treesearch

    Trevor Hobbs; Jason Lynch; Randy Kolka

    2017-01-01

    Anthropogenic acid deposition has the potential to accelerate leaching of soil cations, and in turn, deplete nutrients essential to forest vegetation. The critical load concept, employing a simple mass balance (SMB) approach, is often used to model this process. In an evaluation under the U.S. Forest Service Watershed Condition Framework program, soils in all 6th level...

  5. Strategies for Enhancing Military Physical Readiness in the 21st Century

    DTIC Science & Technology

    2012-03-22

    Acute MSIs and chronic musculoskeletal conditions arising from injuries are consistently the leading cause of hospitalizations and outpatient...female gender, low aerobic fitness, low levels of physical activity prior to military entrance, cigarette smoking prior to military entrance, past ankle ...wear semi-rigid ankle braces for high risk activities, 5) consume nutrients to restore energy balance within 1 hour following high-intensity activity

  6. Uses of nutrient profiling to address public health needs: from regulation to reformulation.

    PubMed

    Drewnowski, Adam

    2017-08-01

    Nutrient profiling (NP) models rate the nutritional quality of individual foods, based on their nutrient composition. Their goal is to identify nutrient-rich foods, generally defined as those that contain more nutrients than calories and are low in fat, sugar and salt. NP models have provided the scientific basis for evaluating nutrition and health claims and regulating marketing and advertising to children. The food industry has used NP methods to reformulate product portfolios. To help define what we mean by healthy foods, NP models need to be based on published nutrition standards, mandated serving sizes and open-source nutrient composition databases. Specifically, the development and testing of NP models for public health should follow the seven decision steps outlined by the European Food Safety Authority. Consistent with this scheme, the nutrient-rich food (NRF) family of indices was based on a variable number of qualifying nutrients (from six to fifteen) and on three disqualifying nutrients (saturated fat, added sugar, sodium). The selection of nutrients and daily reference amounts followed nutrient standards for the USA. The base of calculation was 418·4 kJ (100 kcal), in preference to 100 g, or serving sizes. The NRF algorithms, based on unweighted sums of percent daily values, subtracted negative (LIM) from positive (NRn) subscores (NRn - LIM). NRF model performance was tested with respect to energy density and independent measures of a healthy diet. Whereas past uses of NP modelling have been regulatory or educational, voluntary product reformulation by the food industry may have most impact on public health.

  7. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.

    PubMed

    Wang, Jing-Han; Zhang, Tian-Yuan; Dao, Guo-Hua; Xu, Xue-Qiao; Wang, Xiao-Xiong; Hu, Hong -Ying

    2017-04-01

    Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O 2 generation, CO 2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future studies on microalgae-based advanced wastewater treatment and water reuse.

  8. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.

    PubMed

    Jayaweera, Mahesh W; Kasturiarachchi, Jagath C; Kularatne, Ranil K A; Wijeyekoon, Suren L J

    2008-05-01

    Severe contamination of water resources including groundwater with iron (Fe) due to various anthropogenic activities has been a major environmental problem in industrial areas of Sri Lanka. Hence, the use of the obnoxious weed, water hyacinth (Eichhornia crassipes (Mart.) Solms) in constructed wetlands (floating aquatic macrophyte-based plant treatment systems) to phytoremediate Fe-rich wastewaters seems to be an appealing option. Although several studies have documented that hyacinths are good metal-accumulating plants none of these studies have documented the ability of this plant grown under different nutrient conditions to remove heavy metals from wastewaters. This paper, therefore, reports the phytoremediation efficiencies of water hyacinth grown under different nutrient conditions for Fe-rich wastewaters in batch-type constructed wetlands. This study was conducted for 15 weeks after 1-week acclimatization by culturing young water hyacinth plants (average height of 20+/-2cm) in 590L capacity fiberglass tanks under different nutrient concentrations of 1-fold [28 and 7.7mg/L of total nitrogen (TN) and total phosphorous (TP), respectively], 2-fold, 1/2-fold, 1/4-fold and 1/8-fold with synthetic wastewaters containing 9.27Femg/L. Another set-up of hyacinths containing only Fe as a heavy metal but without any nutrients (i.e., 0-fold) was also studied. A mass balance was carried out to investigate the phytoremediation efficiencies and to determine the different mechanisms governing Fe removal from the wastewaters. Fe removal was largely due to phytoremediation mainly through the process of rhizofiltration and chemical precipitation of Fe2O3 and FeOH3 followed by flocculation and sedimentation. However, chemical precipitation was more significant especially during the first 3 weeks of the study. Plants grown in the 0-fold set-up showed the highest phytoremediation efficiency of 47% during optimum growth at the 6th week with a highest accumulation of 6707Femg/kg dry weight. Active effluxing of Fe back to the wastewater at intermittent periods and with time was a key mechanism of avoiding Fe phytotoxicity in water hyacinth cultured in all set-ups. Our study elucidated that water hyacinth grown under nutrient-poor conditions are ideal to remove Fe from wastewaters with a hydraulic retention time of approximately 6 weeks.

  9. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbonmore » substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.« less

  10. Suboptimal nutrient balancing despite dietary choice in glucose-averse German cockroaches, Blattella germanica.

    PubMed

    Jensen, Kim; Schal, Coby; Silverman, Jules

    2015-10-01

    Insects have evolved fine-tuned gustatory and post-ingestive physiological mechanisms that enable them to self-select an optimal composition of macronutrients. Their ability to forage optimally among multiple food sources and maximize fitness parameters depends on their ability not only to taste and perceive the nutritional value of potential foods but also to avoid deleterious components; the strength of such avoidance should reflect the severity of the perceived hazard. In German cockroaches (Blattella germanica), glucose aversion has evolved in some populations in response to anthropogenic selection with glucose-containing insecticidal baits. In four feeding treatments, we gave newly eclosed glucose-averse female cockroaches free choice to feed from two artificial, nutritionally complementary foods varying in protein and carbohydrate composition, with glucose or fructose as the sole carbohydrate source in either food. After 6days of feeding, we measured diet consumption and the length of basal oocytes as an estimate of sexual maturation. The females did not compromise on their aversion to glucose in order to balance their protein and carbohydrate intake, and experienced lower sexual maturation rates as a consequence. Nutrient specific hunger via feedback mechanisms, and adjustments to gustatory sensitivity thus do not override the deterrence of glucose, likely due to strong selection against ingesting even small amounts of toxin associated with glucose in baits. In the absence of baits, glucose aversion would be expected to incur a fitness cost compared to wild-type individuals due to lower overall food availability but also to larger difficulty in attaining a nutritionally balanced diet. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    PubMed

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity. © 2014 American Society for Nutrition.

  12. Contrasting impact of forestry-drainage on CO2 balance at two adjacent peatlands in Finland

    NASA Astrophysics Data System (ADS)

    Lohila, Annalea; Minkkinen, Kari; Penttilä, Timo; Launiainen, Samuli; Koskinen, Markku; Ojanen, Paavo; Laurila, Tuomas

    2014-05-01

    Fate of carbon in peatlands after drainage has been a subject of many studies, particularly at agriculturally managed sites, but also at sites prepared for forestry. In general, the drainage of peatlands has been considered to trigger the decomposition rate of peat and to cause carbon dioxide (CO2) emissions from the peat into the atmosphere. However, there is not yet full consensus on what are the main regulating factors of the carbon balances in forested peatlands, and do all the forested peatland even act as a source of carbon into the atmosphere. In this study we compare the CO2 exchange rates at two adjacent peatland sites in southern Finland, drained for forestry about 40 years earlier. The pair of sites with similar climatic conditions offer an excellent case for studying the mechanisms controlling the carbon balances of forestry-drained peatlands. The sites differ from each other only by fertility, which has an impact on, e.g., tree growth rate. At both sites, CO2 and energy fluxes have been measured with the eddy covariance method over the course of 4 years, but not simultaneously. We have also built at both sites an automatic system consisting of six transparent closed chambers which collect data on the CO2 exchange of the forest floor vegetation (including tree roots) and soil around the year. This enables us to quantify the carbon uptake potential of the ground layer and the peat decomposition rates and helps us to understand the differences between the sites. The results show that the pine and dwarf-shrub-dominated site (nutrient-poor) is a large CO2 sink. The site with a mixture of spruce, birch and pine and lesser ground vegetation (nutrient-rich), on the contrary, has a close-to-neutral CO2 balance, despite the much higher tree growth rate there. In this presentation we will compare the general dynamics and climatic responses of CO2 exchange at the sites, compare the magnitude and factors causing interannual variation, and discuss potential reasons for the different carbon balances.

  13. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001).

    PubMed

    Prasad, V Krishna; Badarinath, K V S; Yonemura, S; Tsuruta, H

    2004-11-01

    Nitrogen regulates several ecological and biogeochemical processes and excess reactive nitrogen in the environment can lead to pollution problems, including the deterioration of air quality, disruption of forest processes, acidification of lakes and streams, and degradation of coastal waters. Much of the excess nitrogen inputs are related to food and energy production. An important step to understanding the sources of nitrogen and ultimately defining solutions to excess nitrogen is to describe the geographic distribution of agricultural nitrogen contributions from different regions. In this study, soil surface nitrogen loads were quantified for different states of India for the period 2000-2001. Nearly 35.4 Tg of nitrogen has been estimated as inputs from different sources, with output nitrogen from harvested crops of about 21.20 Tg. The soil surface nitrogen balance, estimated as inputs minus outputs, is found to be about 14.4 Tg surplus from the agricultural land of India. Livestock manure constituted a major percentage of total inputs (44.06%), followed by inorganic fertilizer (32.48%), atmospheric deposition (11.86%) and nitrogen fixation (11.58%). Nitrogen balance varied from deficit to surplus for different states. The highest nitrogen surplus was found in Uttar Pradesh (2.50 Tg) followed by Madhya Pradesh (1.83 Tg), Andhra Pradesh (1.79 Tg), etc. A negative nitrogen balance was found in Orissa (-0.01 Tg), Andaman Nicobar Islands (-0.32 Tg) and for some of the northeastern states. Major fertilizer consumption states were found to be Tamilnadu (204 kg/ha), Haryana (132 kg/ha), Punjab (148 kg/ha), followed by others. Similarly, nitrogen inputs from total livestock excretions were found to be high for Kerala (616 kg/ha), Jammu and Kashmir (389 kg/ha), Tamil Nadu (338 kg/ha), etc. The average nitrogen surplus of about 54 kg/ha observed for the agricultural land of the entire country of India is comparatively higher than the average surplus of about 31 kg/ha reported for European countries. These results, obtained from nutrient mass balance calculations, will be useful to formulate nutrient management plans relating to fertilizer usage, livestock management and for adopting some best management strategies at a state level in India.

  14. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil.

    PubMed

    Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue

    2018-02-01

    Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.

  15. Impact of glyphosate-resistant corn, glyphosate applications and tillage on soil nutrient ratios, exoenzyme activities and nutrient acquisition ratios.

    PubMed

    Jenkins, Michael B; Locke, Martin A; Reddy, Krishna N; McChesney, Daniel S; Steinriede, R Wade

    2017-01-01

    We report results of the last two years of a 7 year field experiment designed to test the null hypothesis: applications of glyphosate on glyphosate-resistant (GR) and non-resistant (non-GR) corn (Zea mays L.) under conventional tillage and no-till would have no effect on soil exoenzymes and microbial activity. Bulk soil (BS) and rhizosphere soil (RS) macronutrient ratios were not affected by either GR or non-GR corn, or glyphosate applications. Differences observed between exoenzyme activities were associated with tillage rather than glyphosate applications. In 2013, nutrient acquisition ratios for bulk and rhizosphere soils indicated P limitations, but sufficient assimilable N. In 2014, P limitations were observed for bulk and rhizosphere soils, in contrast to balanced C and N acquisition ratios in rhizosphere soils. Stoichiometric relationships indicated few differences between glyphosate and non-glyphosate treatments. Negative correlations between C:P and N:P nutrient ratios and nutrient acquisition ratios underscored the inverse relation between soil nutrient status and microbial community exoenzyme activities. Inconsistent relationships between microbial community metabolic activity and exoenzyme activity indicated an ephemeral effect of glyphosate on BS exoenzyme activity. Except for ephemeral effects, glyphosate applications appeared not to affect the function of the BS and RS exoenzymes under conventional tillage or no-till. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Zinc: an essential but elusive nutrient123

    PubMed Central

    King, Janet C

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515

  17. Chloride regulates leaf cell size and water relations in tobacco plants

    PubMed Central

    Franco-Navarro, Juan D.; Brumós, Javier; Rosales, Miguel A.; Cubero-Font, Paloma; Talón, Manuel; Colmenero-Flores, José M.

    2016-01-01

    Chloride (Cl–) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl– when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl–-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5mM Cl–) and no water limitation, Cl– specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1–5mM range, Cl– played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl– also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl–, these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl– responds to adaptive functions improving water homeostasis in higher plants. PMID:26602947

  18. Comparison of model performance and simulated water balance using NASIM and SWAT for the Wupper River Basin, Germany

    NASA Astrophysics Data System (ADS)

    Lorza, Paula; Nottebohm, Martin; Scheibel, Marc; aus der Beek, Tim

    2017-04-01

    Under the framework of the Horizon 2020 project BINGO (Bringing INnovation to onGOing water management), climate change impacts on the water cycle in the Wupper catchment area are being studied. With this purpose, a set of hydrological models in NASIM and SWAT have been set up, calibrated, and validated for past conditions using available data. NASIM is a physically-based, lumped, hydrological model based on the water balance equation. For the upper part of the Dhünn catchment area - Wupper River's main tributary - a SWAT model was also implemented. Observed and simulated discharge by NASIM and SWAT for the drainage area upstream of Neumühle hydrometric station (close to Große Dhünn reservoir's inlet) are compared. Comparison of simulated water balance for several hydrological years between the two models is also carried out. While NASIM offers high level of detail for modelling of complex urban areas and the possibility of entering precipitation time series at fine temporal resolution (e.g. minutely data), SWAT enables to study long-term impacts offering a huge variety of input and output variables including different soil properties, vegetation and land management practices. Beside runoff, also sediment and nutrient transport can be simulated. For most calculations, SWAT operates on a daily time step. The objective of this and future work is to determine catchment responses on different meteorological events and to study parameter sensitivity of stationary inputs such as soil parameters, vegetation or land use. Model performance is assessed with different statistical metrics (relative volume error, coefficient of determination, and Nash-Sutcliffe Efficiency).

  19. Intervention on whole grain with healthy balanced diet to manage childhood obesity (GReat-Child™trial): study protocol for a quasi-experimental trial.

    PubMed

    Koo, H C; Poh, B K; Ruzita, Abd Talib

    2016-01-01

    The rapid increase in childhood obesity is a serious public health problem, and has led to the development of many interventions. However, no intervention has emphasized whole grains as a strategy to manage childhood obesity. Therefore, this article describes the protocol of a 12-week multi-component, family-based intervention on whole grain, using a healthy balanced diet for managing childhood obesity. The GReat-Child trial utilize a quasi-experimental method in which two schools in Kuala Lumpur are assigned to intervention and control groups. The eligibility criteria are overweight/obese children, aged 9 through 11 years, who has no serious co-morbidities. The children who report consuming whole-grain foods in their 3-day diet-recall during the screening will be excluded. The study sample is characterized by anthropometric measurements (weight, height, percentage of body fat and waist circumference), whole grain and nutrient intakes (3-day 24-h diet recalls), and their knowledge, attitudes and practices towards whole grain. The 12-week intervention is comprised of three components addressing behaviour, personal and environmental factors, based on social cognitive theory: (1) individual diet counselling for the parents; (2) six 30-min nutrition education classes and (3) school delivery of whole-grain foods; The control school does not receive any interventions, however, for ethical purposes, a health talk is conducted after the entire GReat-Child Trial is completed. The GReat-Child trial represents a novel approach to examining the effectiveness of the intervention of whole grain in a healthy balanced diet on managing childhood obesity. We anticipate that this trial will reveal not only whether whole grain intervention will be effective in managing childhood obesity, but also provide greater insights into the acceptance of whole grain among Malaysian children.

  20. Heat-induced Protein Structure and Subfractions in Relation to Protein Degradation Kinetics and Intestinal Availability in Dairy Cattle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doiron, K.; Yu, P; McKinnon, J

    2009-01-01

    The objectives of this study were to reveal protein structures of feed tissues affected by heat processing at a cellular level, using the synchrotron-based Fourier transform infrared microspectroscopy as a novel approach, and quantify protein structure in relation to protein digestive kinetics and nutritive value in the rumen and intestine in dairy cattle. The parameters assessed included (1) protein structure a-helix to e-sheet ratio; (2) protein subfractions profiles; (3) protein degradation kinetics and effective degradability; (4) predicted nutrient supply using the intestinally absorbed protein supply (DVE)/degraded protein balance (OEB) system for dairy cattle. In this study, Vimy flaxseed protein wasmore » used as a model feed protein and was autoclave-heated at 120C for 20, 40, and 60 min in treatments T1, T2, and T3, respectively. The results showed that using the synchrotron-based Fourier transform infrared microspectroscopy revealed and identified the heat-induced protein structure changes. Heating at 120C for 40 and 60 min increased the protein structure a-helix to e-sheet ratio. There were linear effects of heating time on the ratio. The heating also changed chemical profiles, which showed soluble CP decreased upon heating with concomitant increases in nonprotein nitrogen, neutral, and acid detergent insoluble nitrogen. The protein subfractions with the greatest changes were PB1, which showed a dramatic reduction, and PB2, which showed a dramatic increase, demonstrating a decrease in overall protein degradability. In situ results showed a reduction in rumen-degradable protein and in rumen-degradable dry matter without differences between the treatments. Intestinal digestibility, determined using a 3-step in vitro procedure, showed no changes to rumen undegradable protein. Modeling results showed that heating increased total intestinally absorbable protein (feed DVE value) and decreased degraded protein balance (feed OEB value), but there were no differences between the treatments. There was a linear effect of heating time on the DVE and a cubic effect on the OEB value. Our results showed that heating changed chemical profiles, protein structure a-helix to e-sheet ratio, and protein subfractions; decreased rumen-degradable protein and rumen-degradable dry matter; and increased potential nutrient supply to dairy cattle. The protein structure a-helix to e-sheet ratio had a significant positive correlation with total intestinally absorbed protein supply and negative correlation with degraded protein balance.« less

  1. Investigation of variations in energy, macronutrients and sodium intake based on the places meals are provided: Using the Korea National Health and Nutrition Examination Survey (KNHANES, 1998-2009)

    PubMed Central

    Kwon, Yong-Seok; Park, Young-Hee; Choe, Jeong-Sook

    2014-01-01

    This study was conducted to investigate nutrient consumption by Korean adults in various places. To accomplish this, we used the 1998-2009 Korea National Health and Nutrition Examination Survey (KNHANES). Subjects of this investigation were over 19 years and the study included 37,160 people. The meals were categorized as breakfast, lunch, dinner, and snacks consumed at home, or while eating-out. Investigation of the rate of consumption at serving places based on daily meals and years showed that eating-out generally increased with time. The consumption of meals prepared at home was higher than that of meals consumed anyplace else in 1998, 2001, 2005, and 2007-2009. However, the rate of consumption of home meals decreased from 1998 to 2007-2009, while the rate of eating-out increased during this period. Annual nutrient intake according to serving places with respect to meals, energy, fat, and sodium were significantly lower in home meals than those consumed elsewhere in 2007-2009 relative to 1998. The sodium intake and energy distribution ratio of fat in meals consumed while eating-out increased significantly from 1998 to 2007-2009. The energy, fat and sodium intake and energy contribution ratio of fat consumed in meals at institutions was significantly higher in 2007-2009 than in 1998. Based on these results, additional research is required to develop guidelines for dietary life improvement at each serving place and to address education and policies for balanced nutrition intake. PMID:24611110

  2. The impact of the food-based and nutrient-based standards on lunchtime food and drink provision and consumption in secondary schools in England.

    PubMed

    Nicholas, Jo; Wood, Lesley; Harper, Clare; Nelson, Michael

    2013-06-01

    To assess lunchtime provision of food and drink in English secondary schools and the choices and consumption of food and drink by pupils having school lunches, and to compare provision in 2011 with that in 2004. Cross-sectional data collected between October 2010 and April 2011. In each school, food and drink provision, including portion weights and number of portions of each item served at lunchtime, were recorded over five consecutive days. Caterers provided recipe information. England. A random selection of 5969 pupils having school lunches in a nationally representative sample of eighty secondary schools in England. Compared with 2004, significantly more schools in 2011 provided main dishes, vegetables and salads, water, fruit juice and other drinks on 4 or 5 d/week (P < 0.005). The number of schools offering items not permitted under the food-based standards for school food on 4 or 5 d/week fell significantly over time (P < 0.005), while the number not offering these items on any day increased significantly (P < 0.005). Meals eaten by pupils were well-balanced in relation to macronutrients. Lunchtime food provision and consumption in secondary schools have improved considerably since 2004, following the introduction of new compulsory standards for school food in 2009. To maximise their energy and nutrient intake at lunchtime, pupils should be encouraged to select a full meal, and to take and eat more fruit and vegetables. Schools also need continued support to increase the micronutrient content of menus and recipes.

  3. Nutrition education of school children: a non-formal approach.

    PubMed

    Udipi, S A; Kamath, R; Shah, N

    1993-01-01

    The health education learning can be promoted through children's games. How basic nutrition knowledge was provided to Indian children aged 7-10 years through nutrition games was described. The project involved teaching educational games to 882 students in 4 different primary schools over 8 months in Bombay: 478 from private fee-paying schools and 404 from non-fee-paying municipal schools. Games covered the 4 basic food groups and a balanced diet. The games were food relay, passing the parcel, throw ball, and food chain. An initial introduction to the importance of nutrition, the major nutrients, and their food sources was provided by a trained nutritionist to 30-35 students at a time. Nutrients of importance were identified as protein, energy, fat, vitamins A and C, and minerals such as calcium and iron. There were 2 games for the basic food groups followed by 2 games for the balanced diet; each game was played for 3 turns. Pretests and posttests were conducted. The Relay Game was played with 4 groups (1 group for each food group) of children standing 15 feet away from foods in plastic bags. At the signal, the first one in line ran to the end, grabbed a food appropriate to his or her food group, and returned to the rear of the line, which released the second runner to repeat the process until all the food was gone. The teacher checked the items collected and corrected mistakes. In Pass the Parcel, children sat in a circle and passed a bag filled with scrape of paper with the names of food items written on them, while music played. When the music was stopped, whoever was holding the bag drew out a food name and had to identify the food item, the basic food group, and the major nutrient in the food and its importance. In Throw Ball, 30-35 children stood in a circle with a person in the center with a ball. At each throw of the ball, the student named a food, and the following 5 students named foods that would complete a balanced diet. Then these 5 children moved out of the circle, and the game continued until all were out. The Food Chain game involved 1 student tagging 5 students to a group, who would plan a balanced diet and present it to the class for evaluation. Each of the games took about 40-45 minutes. There were benefits in learning, in compatibility with children's short attention spans, and in the low cost.

  4. Quantifying time-varying ground-water discharge and recharge in wetlands of the northern Florida Everglades

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.

    2000-01-01

    Developing a more thorough understanding of water and chemical budgets in wetlands depends in part on our ability to quantify time-varying interactions between ground water and surface water. We used a combined water and solute mass balance approach to estimate time-varying ground-water discharge and recharge in the Everglades Nutrient Removal project (ENR), a relatively large constructed wetland (1544 hectare) built for removing nutrients from agricultural drainage in the norther Everglades in South Florida, USA. Over a 4-year period (1994 through 1998), ground-water recharge averaged 13.4 hectare-meter per day (ha-m/day) or 0.9 cm/day, which is approximately 31% of surface water pumped into the ENR for treatment. In contrast, ground-water discharge was much smaller (1.4 ha-m/day, or 0.09 cm/day, or 2.8% of water input to ENR for treatment). Using a water-balance approach alone only allowed net ground-water exchange (discharge - recharge) to be estimated (-12 ?? 2.4 ha-ma/day). Disharge and recharge were individually determined by combining a chloride mass balance with the water balance. For a variety of reasons, the ground-water discharge estimated by the combined mass balance approach was not reliable (1.4 ?? 37 ha-m/day). As a result, ground-water interactions could only be reliably estimated by comparing the mass-balance results with other independent approaches, including direct seepage-meter measurements and previous estimates using ground-water modeling. All three independent approaches provided similar estimates of average ground-water recharge, ranging from 13 to 14 ha-m/day. There was also relatively good agreement between ground-water discharge estimates for the mass balance and seepage meter methods, 1.4 and 0.9 ha-m/day, respectively. However, ground-water-flow modeling provided an average discharge estimate that was approximately a factor of four higher (5.4 ha-m/day) than the other two methods. Our study developed an initial understanding of how the design and operation of the ENR increases interactions between ground water and surface water. A considerable portion of recharged ground water (73%) was collected and returned to the ENR by a seepage canal. Additional recharge that was not captured by the seepage canal only occurred when pumped inflow rates to ENR (and ENR water levels) were relatively high. Management of surface water in the northern Everglades therefore clearly has the potential to increase interactions with ground water.

  5. Diet density during the first week of life: Effects on energy and nitrogen balance characteristics of broiler chickens.

    PubMed

    Lamot, D M; Sapkota, D; Wijtten, P J A; van den Anker, I; Heetkamp, M J W; Kemp, B; van den Brand, H

    2017-07-01

    This study aimed to determine effects of diet density on growth performance, energy balance, and nitrogen (N) balance characteristics of broiler chickens during the first wk of life. Effects of diet density were studied using a dose-response design consisting of 5 dietary fat levels (3.5, 7.0, 10.5, 14.0, and 17.5%). The relative difference in dietary energy level was used to increase amino acid levels, mineral levels, and the premix inclusion level at the same ratio. Chickens were housed in open-circuit climate respiration chambers from d 0 to 7 after hatch. Body weight was measured on d 0 and 7, whereas feed intake was determined daily. For calculation of energy balances, O2 and CO2 exchange were measured continuously and all excreta from d 0 to 7 was collected and analyzed at d 7. Average daily gain (ADG) and average daily feed intake (ADFI) decreased linearly (P = 0.047 and P < 0.001, respectively), whereas gain to feed ratio increased (P < 0.001) with increasing diet density. Gross energy (GE) intake and metabolizable energy (ME) intake were not affected by diet density, but the ratio between ME and GE intake decreased linearly with increasing diet density (P = 0.006). Fat, N, and GE efficiencies (expressed as gain per unit of nutrient intake), heat production, and respiratory exchange ratio (CO2 to O2 ratio) decreased linearly (P < 0.001) as diet density increased. Energy retention, N intake, and N retention were not affected by diet density. We conclude that a higher diet density in the first wk of life of broiler chickens did not affect protein and fat retention, whereas the ME to GE ratio decreased linearly with increased diet density. This suggests that diet density appears to affect digestibility rather than utilization of nutrients. © 2017 Poultry Science Association Inc.

  6. The Nutrient Density of Snacks

    PubMed Central

    Hess, Julie; Rao, Goutham; Slavin, Joanne

    2017-01-01

    Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (−4.4), pies and cakes (−11.1), and carbonated soft drinks (−17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage. PMID:28491924

  7. The challenge of meeting nutrient needs of infants and young children during the period of complementary feeding: an evolutionary perspective.

    PubMed

    Dewey, Kathryn G

    2013-12-01

    Breast-fed infants and young children need complementary foods with a very high nutrient density (particularly for iron and zinc), especially at ages 6-12 mo. However, in low-income countries, their diet is usually dominated by cereal-based porridges with low nutrient density and poor mineral bioavailability. Complementary feeding diets typically fall short in iron and zinc and sometimes in other nutrients. These gaps in nutritional adequacy of infant diets have likely been a characteristic of human diets since the agricultural revolution ~10,000 y ago. Estimates of nutrient intakes before then, based on hypothetical diets of preagricultural humans, suggest that infants had much higher intakes of key nutrients than is true today and would have been able to meet their nutrient needs from the combination of breast milk and premasticated foods provided by their mothers. Strategies for achieving adequate nutrition for infants and young children in modern times must address the challenge of meeting nutrient needs from largely cereal-based diets.

  8. Biogeochemical legacy of prescribed fire in a giant sequoia - Mixed conifer forest: A 16-year record of watershed balances

    USGS Publications Warehouse

    Engle, D.L.; Sickman, J.O.; Moore, C.M.; Esperanza, A.M.; Melack, J.M.; Keeley, J.E.

    2008-01-01

    The effects of prescription burning on watershed balances of major ions in mixed conifer forest were examined in a 16-year paired catchment study in Sequoia National Park, California. The objective was to determine whether fire-related changes in watershed balances persist as long as estimated low-end natural fire-return intervals (???10 years), and whether cumulative net export caused by fire could deplete nutrient stocks between successive fires. Inputs (wet + dry deposition) and outputs (stream export) of N, S, Cl-, HCO3-, Ca2+, Mg2+, Na+, K+, H+, and SiO2 were measured for 7 years preceding, and 9 years following, a prescribed burn of one of the catchments. After fire, runoff coefficients increased by 7% (in dry years) to 35% (in wet years). Inorganic N was elevated in stream water for 3 years after fire. Increased export of water, SO42-, Cl-,SiO2, and base cations continued through the end of the study. Pools and processes attributed to fire led to the cumulative loss, per hectare, of 1.2 kg N, 16 kg S, 25 kg Cl-, 130 kg Ca2+, 19 kg Mg2+, 71 kg Na+, 29 kg K+ and 192 kg Si, above that predicted by prefire regression equations relating export in the paired catchments. This additional export equaled <1% of the N, up to one-third of the Ca and Mg, and up to three-fourths of the K, contained in the forest floor prior to combustion. Changes in watershed balances indicated that low-end natural fire-return intervals may prevent complete reaccumulation of several elements between fires. Copyright 2008 by the American Geophysical Union.

  9. CNMM: a Catchment Environmental Model for Managing Water Quality and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-12-01

    Mitigating agricultural diffuse pollution and greenhouse gas emissions is a complicated task due to tempo-spatial lags between the field practices and the watershed responses. Spatially-distributed modeling is essential to the implementation of cost-effective and best management practices (BMPs) to optimize land uses and nutrient applications as well as to project the impact of climate change on the watershed service functions. CNMM (the Catchment Nutrients Management Model) is a 3D spatially-distributed, grid-based and process-oriented biophysical model comprehensively developed to simulate energy balance, hydrology, plant/crop growth, biogeochemistry of life elements (e.g., C, N and P), waste treatment, waterway vegetation/purification, stream water quality and land management in agricultural watersheds as affected by land utilization strategies such as BMPs and by climate change. The CNMM is driven by a number of spatially-distributed data such as weather, topography (including DEM and shading), stream network, stream water, soil, vegetation and land management (including waste treatments), and runs at an hourly time step. It represents a catchment as a matrix of square uniformly-sized cells, where each cell is defined as a homogeneous hydrological response unit with all the hydrologically-significant parameters the same but varied at soil depths in fine intervals. Therefore, spatial variability is represented by allowing parameters to vary horizontally and vertically in space. A four-direction flux routing algorithm is applied to route water and nutrients across soils of cells governed by the gradients of either water head or elevation. A linear channel reservoir scheme is deployed to route water and nutrients in stream networks. The model is capable of computing CO2, CH4, NH3, NO, N2O and N2 emissions from soils and stream waters. The CNMM can serve as an idea modelling tool to investigate the overwhelming critical zone research at various catchment scales.

  10. Inclusion of sainfoin (Onobrychis viciifolia) silage in dairy cow rations affects nutrient digestibility, nitrogen utilization, energy balance, and methane emissions.

    PubMed

    Huyen, N T; Desrues, O; Alferink, S J J; Zandstra, T; Verstegen, M W A; Hendriks, W H; Pellikaan, W F

    2016-05-01

    Sainfoin (Onobrychis viciifolia) is a tanniniferous legume forage that has potential nutritional and health benefits preventing bloating, reducing nematode larval establishment, improving N utilization, and reducing greenhouse gas emissions. However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still relatively unknown. The objective of this study was to evaluate the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization, and CH4 production. Six rumen-cannulated, lactating dairy cows with a metabolic body weight (BW(0.75)) of 132.5±3.6kg were randomly assigned to either a control (CON) or a sainfoin (SAIN)-based diet over 2 experimental periods of 25 d each in a crossover design. The CON diet was a mixture of grass silage, corn silage, concentrate, and linseed. In the SAIN diet, 50% of grass silage dry matter (DM) of the CON diet was exchanged for sainfoin silage. The cows were adapted to 95% of ad libitum feed intake for a 21-d period before being housed in climate-controlled respiration chambers for 4 d, during which time feed intake, apparent total-tract digestibility, N and energy balance, and CH4 production was determined. Data were analyzed using a mixed model procedure. Total daily DM, organic matter, and neutral detergent fiber intake did not differ between the 2 diets. The apparent digestibility of DM, organic matter, neutral detergent fiber, and acid detergent fiber were, respectively, 5.7, 4.0, 15.7, and 14.8% lower for the SAIN diet. Methane production per kilogram of DM intake was lowest for the SAIN diet, CH4 production as a percentage of gross energy intake tended to be lower, and milk yield was greater for the SAIN diet. Nitrogen intake, N retention, and energy retained in body protein were greater for the SAIN than for the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results suggest that inclusion of sainfoin silage in dairy cow rations reduces CH4 per kilogram of DM intake and nutrient digestibility. Moreover, sainfoin silage improves milk production and seems to redirect metabolism toward body protein accretion at the expense of body fat. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Climate change and wetland loss impacts on a western river's water quality

    NASA Astrophysics Data System (ADS)

    Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.

    2014-11-01

    An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

  12. Nutrients intake, performance and nitrogen balance of West African dwarf sheep fed graded levels of toasted Enterolobium cyclocarpum seeds as supplement to Panicum maximum.

    PubMed

    Idowu, O J; Arigbede, O M; Dele, P A; Olanite, J A; Adelusi, O O; Ojo, V O A; Sunmola, A S

    2013-12-01

    A study was conducted to assess the nutritive value of Enterolobium cyclocarpum seeds as supplementary feed for ruminant animals during the dry season when grasses are either not available or of low quality. Matured fruits of E. cyclocarpum were collected, toasted, peeled and then used for the trial. Thirty two West African Dwarf (WAD) sheep aged between 12 +/- 2 months with an average body weight of 10 +/- 2 kg were used in assessing the nutritive value of graded levels of toasted Enterolobium cyclocarpum seed in a concentrate diets as supplement to Panicum maximum basal diet. The percent compositions of the experimental diets were toasted E. cyclocarpum seeds at various levels of inclusion (0, 10, 20 and 30%) for diets 1, 2, 3 and 4. respectively. The diets (1-4) were consecutively fed to each animal at 50 g kg(-1) b.wt. for 12 weeks in a completely randomized design. Parameters taken were weekly body weights, daily feed intake, nutrient utilization and nitrogen balance status for each animal. Diet 2 had the highest significant (p < 0.05) nutrients intake being 871.88, 137.13, 147.59, 33.26 and 69.86 g day(-1) for DM, CP, CF, EE and ASH respectively. The Dry Matter Digestibility (DMD) coefficients decreased significantly (p < 0.05) with increased inclusion levels of toasted E. cyclocarpum seeds supplementation. Sheep fed diet 4 had the lowest feed conversion ratio (8.61) and the highest daily average gain of 58.93 g. However the animals fed Diet 2 had the highest nitrogen retension and converted their feed to flesh.

  13. The Optimal Lateral Root Branching Density for Maize Depends on Nitrogen and Phosphorus Availability1[C][W][OPEN

    PubMed Central

    Postma, Johannes Auke; Dathe, Annette; Lynch, Jonathan Paul

    2014-01-01

    Observed phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1–41 cm−1 major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm−1), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm−1), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm−1, suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition. PMID:24850860

  14. Carbon and nitrogen nutrient balance signaling in plants.

    PubMed

    Zheng, Zhi-Liang

    2009-07-01

    Cellular carbon (C) and nitrogen (N) metabolism must be tightly coordinated to sustain optimal growth and development for plants and other cellular organisms. Furthermore, C/N balance is also critical for the ecosystem response to elevated atmospheric CO(2). Despite numerous physiological and molecular studies in C/N balance or ratio response, very few genes have been shown to play important roles in C/N balance signaling. During recent five years, exciting progress was made through genetic and genomic studies. Several DNA microarray studies have shown that more than half of the transcriptome is regulated by C, N and the C-N combination. Three genetic studies involving distinct bioassays have demonstrated that a putative nitrate transporter (NTR2.1), a putative glutamate receptor (GLR1.1) and a putative methyltransferase (OSU1) have important functions in the C/N balance response. OSU1 is identical to QUA2/TSD2 which has been implicated to act in cell wall biogenesis, indicating a link between cell wall property and the C/N balance signaling. Given that many investigations are only focused on C alone or N alone, the C/N balance bioassays and gene expression patterns are discussed to assist phenotypic characterization of C/N balance signaling. Further, re-examination of those previously reported sugar or nitrogen responsive genes in C/N balance response may be necessary to dissect the C/N signaling pathways. In addition, key components involved in C-N interactions in bacterial, yeast and animal systems and whether they are functionally conserved in plants are discussed. These rapid advances have provided the first important step towards the construction of the complex yet elegant C/N balance signaling networks in plants.

  15. The effect of protective nutrients on mucosal defense in the immature intestine.

    PubMed

    Forchielli, Maria L; Walker, W Allan

    2005-10-01

    Oral nutrition plays a dual role in the gut, providing nutrition to the body while affecting the function of the gastrointestinal tract. The exposure of the gut to food antigens, in the form of either beneficial or harmful nutritional substances, contributes to a vast array of physiological and pathologic gastrointestinal responses with secondary systemic implications. The immune system of the gastrointestinal tract is always involved in the first line of defense, and its actions are particularly important in the early period of life as maturation takes place. From maturation, a balance ensues in the regulatory mechanism of host defense, ultimately leading to either tolerance or immune reaction. This paper emphasizes how some nutrients may beneficially affect the gastrointestinal immune system's maturation in both term and especially premature neonates.

  16. Release of motilin by oral and intravenous nutrients in man.

    PubMed Central

    Christofides, N D; Bloom, S R; Besterman, H S; Adrian, T E; Ghatei, M A

    1979-01-01

    Motilin is a hormonal peptide found in the duodenum and jejunum which potently influences gastrointestinal tract motility. Its role in human physiology is not yet established. After a standard hospital lunch the plasma concentration of motilin showed a small, transient, but significant rise in 28 healthy subjects. Individual food components either stimulated (oral fat) or suppressed release (oral glucose). Plasma motilin levels were, in addition, altered to an equal extent by intravenous nutrients, with glucose and amino acids suppressing release, and intravenous fat causing a significant rise in plasma concentration. These results demonstrate a consistent response to food stimuli, whether oral or intravenous. The release mechanism appears to be complicated and after a balanced meal, containing food components which both stimulate and suppress release, there is only a small net change. PMID:428820

  17. [Group preventive consultation of the population concerning nutrition. Experience of School of the balanced nutrition founded on the basis of the Health center].

    PubMed

    Lobykina, E N; Tatarnikova, I S; Rusaev, Yu W; Naydenova, N E; Maklakova, T P

    2015-01-01

    The development of the program of group preventive consultation of visitors of the centers of health concerning nutrition and assessment of its efficiency was the purpose of the work. The analysis of the results of inspection of 2569 visitors of the Health сenter at the age of 18–78 years and randomized, open, cross research of 242 women (27–72 years old) who passed group preventive consultation in the Center of health at «School of a balanced nutrition » were carried out. Anthropometrical data and the actual nutrition with use of the computer program «Analysis of the Person Nutrition» were studied. The study of nutritional status of 242 women with different body mass revealed an excess consumption of fats and carbohydrates, dietary energy supply in obese. Basing on the structural features of patient’s nutrition the School nutrition program was developed. Сomparing of laboratory, diagnostic and resource capabilities of Health сenter with algorithm of overweight and obesity patients treatment has shown wide opportunities of Health сenter, not only in the diagnosis (the study of nutrient, metabolic status), but also in the complex treatment of patients with different body mass. Due to group preventive counseling in the School of a balanced nutrition the efficiency of such an approach contributed 1-month weight loss (2.18±1.28 kg) in 64.4% of the participants.

  18. Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.

    PubMed

    Weber, F J; Hartmans, S

    1996-04-05

    Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. We therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitation a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m(3) h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. We also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m(3) h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.

  19. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  20. Enhancing nutrition with pulses: defining a recommended serving size for adults

    PubMed Central

    Marinangeli, Christopher P F; Curran, Julianne; Barr, Susan I; Slavin, Joanne; Puri, Seema; Swaminathan, Sumathi; Tapsell, Linda; Patterson, Carol Ann

    2017-01-01

    Abstract Pulses, defined as dry-harvested leguminous crops, include several varieties of beans, peas, lentils, and chickpeas. There is no consensus around a recommended serving size of pulses within a balanced diet, which prevents the development of transregional strategies that rely on consistent messaging to drive increases in consumption. The purpose of this review is to define and disseminate an appropriate target for a minimum serving size of pulses on any given day that can be used in international or collaborative strategies to promote the consumption of pulses. Relevant data were reviewed to examine dietary guidelines across jurisdictions, determine consumption levels of pulses across the globe, evaluate the nutritional composition of pulses in the context of dietary nutrient insufficiency, and assess the impact of pulses on dietary quality. Across a variety of pulses, 100 g of cooked pulses aligned with most regional serving sizes for pulses and provides significant levels of nutrients that are underconsumed by specific age-sex groups. Moreover, 100 g of pulses provides a number of nutrients that qualify for nutrient content claims under regional regulatory frameworks. The data demonstrate that 100 g or 125 mL (0.5 metric cup) of cooked pulses is a reasonable target for aligning strategies that promote the dietary and nutritional attributes of these legumes. PMID:29202192

Top