Topographic controls on soil nutrient variations in a Silvopasture system
USDA-ARS?s Scientific Manuscript database
Topography plays a crucial role in the spatial distribution of nutrients in soils because of its influence on the flow and (re)distribution of water and energy in a landscape. Information on the spatial pattern of soil nutrient distribution would benefit management decisions to maximize crop yield a...
Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Habib, Shahid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz; Stehr, Jeff
2011-01-01
The Gulf of Mexico Modeling Framework is a suite of coupled models linking the deposition and transport of sediment and nutrients to subsequent bio-geo chemical processes and the resulting effect on concentrations of dissolved oxygen in the coastal waters of Louisiana and Texas. Here, we examine the potential benefits of using multiple NASA remote sensing data products within this Modeling Framework for increasing the accuracy of the models and their utility for nutrient control decisions in the Gulf of Mexico. Our approach is divided into three components: evaluation and improvement of (a) the precipitation input data (b) atmospheric constituent concentrations in EPA's air quality/deposition model and (c) the calculation of algal biomass, organic carbon and suspended solids within the water quality/eutrophication models of the framework.
NASA Astrophysics Data System (ADS)
Sunaryani, A.; Harsono, E.; Rustini, H. A.; Nomosatryo, S.
2018-02-01
Lake Toba is the largest lake in Indonesia utilized as a source of life-support for drinking and clean water, energy sources, aquaculture and tourism. Nowadays the water quality in Lake Toba has decreased due to the presence of excessive nutrient (nitrogen: N and phosphorus: P). This study aims to describe the spatial distribution of nutrient pollution and to develop a decision support tool for the identification and evaluation of nutrient pollution control in Lake Toba. Spatial distribution method was conducted by 2D-multi layers hydrodynamic model, while DPSIR Framework is used as a tool for the assessment. The results showed that the concentration of nutrient was low and tended to increase along the water depth, but nutrient concentration in aquaculture zones was very high and the trophic state index has reached eutrophic state. The principal anthropogenic driving forces were population growth and the development of aquaculture, livestock, agriculture, and tourism. The main environmental pressures showed that aquaculture and livestock waste are the most important nutrient sources (93% of N and 87% of P loads). State analysis showed that high nutrient concentration and increased algal growth lead to oxygen depletion. The impacts of these conditions were massive fish kills, loss of amenities and tourism value, also decreased usability of clean water supply. This study can be a useful information for decision-makers to evaluate nutrient pollution control. Nutrient pollution issue in Lake Toba requires the attention of local government and public society to maintain its sustainability.
Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Habib, Shaid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz
2010-01-01
As required by the Harmful Algal Bloom and Hypoxia Research Control Act of 1998, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force issued the 2001 Gulf Hypoxia Action Plan (updated in 2008). In response to the Gulf Hypoxia Action Plan of 2001 (updated in 2008), the EPA Gulf of Mexico Hypoxia Modeling and Monitoring Project has established a detailed model for the Mississippi-Attchafalaya River Basin which provides a capability to forecast the multi-source nutrient loading to the Gulf and the subsequent bio-geochemical processes leading to hypoxic conditions and subsequent effects on Gulf habitats and fisheries. The primary purpose of the EPA model is to characterize the impacts of nutrient management actions, or proposed actions on the spatial and temporal characteristics of the Gulf hypoxic zone. The model is expected to play a significant role in determining best practices and improved strategies for incentivizing nutrient reduction strategies, including installation of on-farm structures to reduce sediment and nutrient runoff, use of cover crops and other agricultural practices, restoration of wetlands and riparian buffers, improved waste water treatment and decreased industrial nitrogen emissions. These decisions are currently made in a fragmented way by federal, state, and local agencies, using a variety of small scale models and limited data. During the past three years, EPA has collected an enormous amount of in-situ data to be used in the model. We believe that the use of NASA satellite data products in the model and for long term validation of the model has the potential to significantly increase the accuracy and therefore the utility of the model for the decision making described above. This proposal addresses the Gulf of Mexico Alliance (GOMA) priority issue of reductions in nutrient inputs to coastal ecosystem. It further directly relates to water quality for healthy beaches and shellfish beds and wetland and coastal conservation restoration.
Itskov, Pavel M.; Ribeiro, Carlos
2012-01-01
To survive and successfully reproduce animals need to maintain a balanced intake of nutrients and energy. The nervous system of insects has evolved multiple mechanisms to regulate feeding behavior. When animals are faced with the choice to feed, several decisions must be made: whether or not to eat, how much to eat, what to eat, and when to eat. Using Drosophila melanogaster substantial progress has been achieved in understanding the neuronal and molecular mechanisms controlling feeding decisions. These feeding decisions are implemented in the nervous system on multiple levels, from alterations in the sensitivity of peripheral sensory organs to the modulation of memory systems. This review discusses methodologies developed in order to study insect feeding, the effects of neuropeptides and neuromodulators on feeding behavior, behavioral evidence supporting the existence of internal energy sensors, neuronal and molecular mechanisms controlling protein intake, and finally the regulation of feeding by circadian rhythms and sleep. From the discussed data a conceptual framework starts to emerge which aims to explain the molecular and neuronal processes maintaining the stability of the internal milieu. PMID:23407678
Research to Inform Nutrient Thresholds and Prioritization of ...
The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution. The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two important elements of EPA’s framework for managing nutrient pollution.
An integrated decision support system for wastewater nutrient recovery and recycling to agriculture
NASA Astrophysics Data System (ADS)
Roy, E. D.; Bomeisl, L.; Cornbrooks, P.; Mo, W.
2017-12-01
Nutrient recovery and recycling has become a key research topic within the wastewater engineering and nutrient management communities. Several technologies now exist that can effectively capture nutrients from wastewater, and innovation in this area continues to be an important research pursuit. However, practical nutrient recycling solutions require more than capable nutrient capture technologies. We also need to understand the role that wastewater nutrient recovery and recycling can play within broader nutrient management schemes at the landscape level, including important interactions at the nexus of food, energy, and water. We are developing an integrated decision support system that combines wastewater treatment data, agricultural data, spatial nutrient balance modeling, life cycle assessment, stakeholder knowledge, and multi-criteria decision making. Our goals are to: (1) help guide design decisions related to the implementation of sustainable nutrient recovery technology, (2) support innovations in watershed nutrient management that operate at the interface of the built environment and agriculture, and (3) aid efforts to protect aquatic ecosystems while supporting human welfare in a circular nutrient economy. These goals will be realized partly through the assessment of plausible alternative scenarios for the future. In this presentation, we will describe the tool and focus on nutrient balance results for the New England region. These results illustrate that both centralized and decentralized wastewater nutrient recovery schemes have potential to transform nutrient flows in many New England watersheds, diverting wastewater N and P away from aquatic ecosystems and toward local or regional agricultural soils where they can offset a substantial percentage of imported fertilizer. We will also highlight feasibility criteria and next steps to integrate stakeholder knowledge, economics, and life cycle assessment into the tool.
Maximizing the accuracy of field-derived numeric nutrient criteria in water quality regulations.
McLaughlin, Douglas B
2014-01-01
High levels of the nutrients nitrogen and phosphorus can cause unhealthy biological or ecological conditions in surface waters and prevent the attainment of their designated uses. Regulatory agencies are developing numeric criteria for these nutrients in an effort to ensure that the surface waters in their jurisdictions remain healthy and productive, and that water quality standards are met. These criteria are often derived using field measurements that relate nutrient concentrations and other water quality conditions to expected biological responses such as undesirable growth or changes in aquatic plant and animal communities. Ideally, these numeric criteria can be used to accurately "diagnose" ecosystem health and guide management decisions. However, the degree to which numeric nutrient criteria are useful for decision making depends on how accurately they reflect the status or risk of nutrient-related biological impairments. Numeric criteria that have little predictive value are not likely to be useful for managing nutrient concerns. This paper presents information on the role of numeric nutrient criteria as biological health indicators, and the potential benefits of sufficiently accurate criteria for nutrient management. In addition, it describes approaches being proposed or adopted in states such as Florida and Maine to improve the accuracy of numeric criteria and criteria-based decisions. This includes a preference for developing site-specific criteria in cases where sufficient data are available, and the use of nutrient concentration and biological response criteria together in a framework to support designated use attainment decisions. Together with systematic planning during criteria development, the accuracy of field-derived numeric nutrient criteria can be assessed and maximized as a part of an overall effort to manage nutrient water quality concerns. © 2013 SETAC.
NASA Astrophysics Data System (ADS)
Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul
2017-04-01
USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four watersheds to use web-based forecast maps in daily manure and fertilizer application decisions. Data from on-farm trials is being used to assess farmer fertilizer, manure, and tillage management decisions before and after use of the Fertilizer Forecaster. This data will help us understand not only the effectiveness of the tool, but also characteristics of farmers with the greatest potential to benefit from such a tool. Feedback from on-farm trials will be used to refine a final tool for field deployment. We hope that the Fertilizer Forecaster will serve as the basis for state (USA-PA), regional (Chesapeake Bay), and national changes in nutrient management planning. This Fertilizer Forecaster is an innovative management practice that is designed to enhance the services of aquatic ecosystems by improving water quality and enhance the services of terrestrial ecosystems by increasing the efficiency of nutrient use by targeted crops.
Reconsideration Decision and Rationale: Nutrient and Sediment TMDLs for the Indian Creek Watershed, Pennsylvania: Established by the U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. March 21, 2014. 6 Documents, below
Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.
2016-01-01
Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.
Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R
2016-01-01
Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.
Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.
2016-01-01
Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep. PMID:26894504
Research to Inform Nutrient Thresholds and Prioritization of Watersheds for Nutrient Management
The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two importan...
The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila
Hentze, Julie L.; Carlsson, Mikael A.; Kondo, Shu; Nässel, Dick R.; Rewitz, Kim F.
2015-01-01
Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in Drosophila, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both the insulin and AKH producing cells. Silencing of Dar-2 in these cells results in changes in gene expression and physiology associated with reduced DILP and AKH signaling and animals lacking AstA accumulate high lipid levels. This suggests that AstA is regulating the balance between DILP and AKH, believed to be important for the maintenance of nutrient homeostasis in response to changing ratios of dietary sugar and protein. Furthermore, AstA and Dar-2 are regulated differentially by dietary carbohydrates and protein and AstA-neuronal activity modulates feeding choices between these types of nutrients. Our results suggest that AstA is involved in assigning value to these nutrients to coordinate metabolic and feeding decisions, responses that are important to balance food intake according to metabolic needs. PMID:26123697
IMPROVED SCIENCE AND DECISION SUPPORT FOR MANAGING WATERSHED NUTRIENT LOADS
The proposed research addresses two critical gaps in the TMDL process: (1) the inadequacy of presently existing receiving water models to accurately simulate nutrient-sediment-water interactions and fixed plants; and (2) the lack of decision-oriented optimization f...
Adding Remote Sensing Data Products to the Nutrient Management Decision Support Toolbox
NASA Technical Reports Server (NTRS)
Lehrter, John; Schaeffer, Blake; Hagy, Jim; Spiering, Bruce; Blonski, Slawek; Underwood, Lauren; Ellis, Chris
2011-01-01
Some of the primary issues that manifest from nutrient enrichment and eutrophication (Figure 1) may be observed from satellites. For example, remotely sensed estimates of chlorophyll a (chla), total suspended solids (TSS), and light attenuation (Kd) or water clarity, which are often associated with elevated nutrient inputs, are data products collected daily and globally for coastal systems from satellites such as NASA s MODIS (Figure 2). The objective of this project is to inform water quality decision making activities using remotely sensed water quality data. In particular, we seek to inform the development of numeric nutrient criteria. In this poster we demonstrate an approach for developing nutrient criteria based on remotely sensed chla.
Nutritional controls of food reward.
Fernandes, Maria F; Sharma, Sandeep; Hryhorczuk, Cecile; Auguste, Stephanie; Fulton, Stephanie
2013-08-01
The propensity to select and consume palatable nutrients is strongly influenced by the rewarding effects of food. Neural processes integrating reward, emotional states and decision-making can supersede satiety signals to promote excessive caloric intake and weight gain. While nutritional habits are influenced by reward-based neural mechanisms, nutrition and its impact on energy metabolism, in turn, plays an important role in the control of food reward. Feeding modulates the release of metabolic hormones that have an important influence on central controls of appetite. Nutrients themselves are also an essential source of energy fuel, while serving as key metabolites and acting as signalling molecules in the neural pathways that control feeding and food reward. Along these lines, this review discusses the impact of nutritionally regulated hormones and select macronutrients on the behavioural and neural processes underlying the rewarding effects of food. Copyright © 2013 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
McCleery, W. Tyler; Mohd-Radzman, Nadiatul A.; Grieneisen, Veronica A.
Cells within tissues can be regarded as autonomous entities that respond to their local environment and signaling from neighbors. Cell coordination is particularly important in plants, where root architecture must strategically invest resources for growth to optimize nutrient acquisition. Thus, root cells are constantly adapting to environmental cues and neighbor communication in a non-linear manner. To explain such plasticity, we view the root as a swarm of coupled multi-cellular structures, ''metamers'', rather than as a continuum of identical cells. These metamers are individually programmed to achieve a local objective - developing a lateral root primordia, which aids in local foraging of nutrients. Collectively, such individual attempts may be halted, structuring root architecture as an emergent behavior. Each metamer's decision to branch is coordinated locally and globally through hormone signaling, including processes of controlled diffusion, active polar transport, and dynamic feedback. We present a physical model of the signaling mechanism that coordinates branching decisions in response to the environment. This work was funded by the European Commission 7th Framework Program, Project No. 601062, SWARM-ORGAN.
Developing a web-based forecasting tool for nutrient management
USDA-ARS?s Scientific Manuscript database
Modern nutrient management planning tools provide strategic guidance that, in the best cases, educates farmers and others involved in nutrient management to make prudent management decisions. The strategic guidance provided by nutrient management plans does not provide the day-to-day support require...
Robert B. Harrison; Douglas A. Maguire; Deborah Page-Dumroese
2011-01-01
Maintaining adequate nutrient supply to maintain or enhance tree vigor and forest growth requires conservation of topsoil and soil organic matter. Sometimes nutrient amendments are also required to supplement inherent nutrient-pool limitations or replenish nutrients removed in harvested material. The goal is to maintain the productive potential of the soil and, when...
Commensal bacteria and essential amino acids control food choice behavior and reproduction
Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M.; Piper, Matthew D. W.
2017-01-01
Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits. PMID:28441450
Commensal bacteria and essential amino acids control food choice behavior and reproduction.
Leitão-Gonçalves, Ricardo; Carvalho-Santos, Zita; Francisco, Ana Patrícia; Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M; Piper, Matthew D W; Ribeiro, Carlos
2017-04-01
Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.
Predicting Nitrogen in Streams : A Comparison of Two Estimates of Fertilizer Application
Decision makers frequently rely on water and air quality models to develop nutrient management strategies. Obviously, the results of these models (e.g., SWAT, SPARROW, CMAQ) are only as good as the nutrient source input data and recently the Nutrient Innovations Task Group has ca...
McLaughlin, Douglas B
2012-01-01
The utility of numeric nutrient criteria established for certain surface waters is likely to be affected by the uncertainty that exists in the presence of a causal link between nutrient stressor variables and designated use-related biological responses in those waters. This uncertainty can be difficult to characterize, interpret, and communicate to a broad audience of environmental stakeholders. The US Environmental Protection Agency (USEPA) has developed a systematic planning process to support a variety of environmental decisions, but this process is not generally applied to the development of national or state-level numeric nutrient criteria. This article describes a method for implementing such an approach and uses it to evaluate the numeric total P criteria recently proposed by USEPA for colored lakes in Florida, USA. An empirical, log-linear relationship between geometric mean concentrations of total P (a potential stressor variable) and chlorophyll a (a nutrient-related response variable) in these lakes-that is assumed to be causal in nature-forms the basis for the analysis. The use of the geometric mean total P concentration of a lake to correctly indicate designated use status, defined in terms of a 20 µg/L geometric mean chlorophyll a threshold, is evaluated. Rates of decision errors analogous to the Type I and Type II error rates familiar in hypothesis testing, and a 3rd error rate, E(ni) , referred to as the nutrient criterion-based impairment error rate, are estimated. The results show that USEPA's proposed "baseline" and "modified" nutrient criteria approach, in which data on both total P and chlorophyll a may be considered in establishing numeric nutrient criteria for a given lake within a specified range, provides a means for balancing and minimizing designated use attainment decision errors. Copyright © 2011 SETAC.
Lee, Kayla B; Wang, Jue; Palme, Julius; Escalante-Chong, Renan; Hua, Bo; Springer, Michael
2017-05-01
In nature, microbes often need to "decide" which of several available nutrients to utilize, a choice that depends on a cell's inherent preference and external nutrient levels. While natural environments can have mixtures of different nutrients, phenotypic variation in microbes' decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the concentration of glucose and galactose required to induce galactose-responsive (GAL) genes across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we found that a locus containing the galactose sensor GAL3 was associated with differences in GAL signaling in eight different crosses. Using allele replacements, we confirmed that GAL3 is the major driver of GAL induction variation, and that GAL3 allelic variation alone can explain as much as 90% of the variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag, a selectable trait. These results suggest that ecological constraints on the galactose pathway may have led to variation in a single protein, allowing cells to quantitatively tune their response to nutrient changes in the environment.
Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off
Corrales-Carvajal, Verónica María; Faisal, Aldo A; Ribeiro, Carlos
2016-01-01
Internal states can profoundly alter the behavior of animals. A quantitative understanding of the behavioral changes upon metabolic challenges is key to a mechanistic dissection of how animals maintain nutritional homeostasis. We used an automated video tracking setup to characterize how amino acid and reproductive states interact to shape exploitation and exploration decisions taken by adult Drosophila melanogaster. We find that these two states have specific effects on the decisions to stop at and leave proteinaceous food patches. Furthermore, the internal nutrient state defines the exploration-exploitation trade-off: nutrient-deprived flies focus on specific patches while satiated flies explore more globally. Finally, we show that olfaction mediates the efficient recognition of yeast as an appropriate protein source in mated females and that octopamine is specifically required to mediate homeostatic postmating responses without affecting internal nutrient sensing. Internal states therefore modulate specific aspects of exploitation and exploration to change nutrient selection. DOI: http://dx.doi.org/10.7554/eLife.19920.001 PMID:27770569
The role of precision agriculture for improved nutrient management on farms.
Hedley, Carolyn
2015-01-01
Precision agriculture uses proximal and remote sensor surveys to delineate and monitor within-field variations in soil and crop attributes, guiding variable rate control of inputs, so that in-season management can be responsive, e.g. matching strategic nitrogen fertiliser application to site-specific field conditions. It has the potential to improve production and nutrient use efficiency, ensuring that nutrients do not leach from or accumulate in excessive concentrations in parts of the field, which creates environmental problems. The discipline emerged in the 1980s with the advent of affordable geographic positioning systems (GPS), and has further developed with access to an array of affordable soil and crop sensors, improved computer power and software, and equipment with precision application control, e.g. variable rate fertiliser and irrigation systems. Precision agriculture focusses on improving nutrient use efficiency at the appropriate scale requiring (1) appropriate decision support systems (e.g. digital prescription maps), and (2) equipment capable of varying application at these different scales, e.g. the footprint of a one-irrigation sprinkler or a fertiliser top-dressing aircraft. This article reviews the rapid development of this discipline, and uses New Zealand as a case study example, as it is a country where agriculture drives economic growth. Here, the high yield potentials on often young, variable soils provide opportunities for effective financial return from investment in these new technologies. © 2014 Society of Chemical Industry.
Metabolic State Alters Economic Decision Making under Risk in Humans
Drew, Megan E.; Batterham, Rachel L.; Dolan, Raymond J.
2010-01-01
Background Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. Methodology/Principal Findings We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. Conclusions/Significance We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity. PMID:20585383
Rivera-Monroy, Victor H.; Twilley, Robert R.; Davis, Stephen E.; Childers, Daniel L.; Simard, Marc; Chambers, Randolph; Jaffe, Rudolf; Boyer, Joseph N.; Rudnick, David T.; Zhang, Keqi; Castañeda-Moya, Edward; Ewe, Sharon M.L.; Price, Rene M.; Coronado-Molina, Carlos; Ross, Michael; Smith, Thomas J.; Michot, Beatrice; Meselhe, Ehab; Nuttle, William; Troxler, Tiffany G.; Noe, Gregory B.
2011-01-01
The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height -1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (~1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.
Unearthing Secrets of the Forest
Beldin, Sarah I.; Perakis, Steven S.
2009-01-01
Forests are a defining feature for large areas of the Pacific northwestern United States from northern California to Alaska. Coniferous temperate rainforests in the western Cascade and coastal mountain ranges are appreciated for their aesthetic value and abundant natural resources. Few people recognize the riches beneath the forest floor; yet, soil is a key ecosystem component that makes each type of forest unique. Soils harbor immense biological diversity and control the release of water and nutrients that support life above ground. Understanding how carbon and nutrients cycle in forests, known as forest biogeochemistry, is crucial for evaluating forest productivity, composition, diversity, and change. At the U.S. Geological Survey (USGS) Forest and Rangeland Ecosystem Science Center, research in the Terrestrial Ecosystems Laboratory focuses on nutrient cycling in five themes: climate change, nutrition and sustainability, fire effects, restoration, and forest-stream linkages. This research is essential to understand the entire forest ecosystem and to use the best science available to make informed policy and management decisions.
Including spatial data in nutrient balance modelling on dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke
2017-04-01
The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.
The mission of ORD's Ecosystme Services Research Program (ESRP) is to provide the information and methods needed by decision-makers to assess the benefits of ecosystem goods and services to human well-being for inclusion in management alternatives. The Decision Support Framework...
Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J
2017-06-01
In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Van Meter, Kimberly J.; Basu, Nandita B.
2015-01-01
Nutrient legacies in anthropogenic landscapes, accumulated over decades of fertilizer application, lead to time lags between implementation of conservation measures and improvements in water quality. Quantification of such time lags has remained difficult, however, due to an incomplete understanding of controls on nutrient depletion trajectories after changes in land-use or management practices. In this study, we have developed a parsimonious watershed model for quantifying catchment-scale time lags based on both soil nutrient accumulations (biogeochemical legacy) and groundwater travel time distributions (hydrologic legacy). The model accurately predicted the time lags observed in an Iowa watershed that had undergone a 41% conversion of area from row crop to native prairie. We explored the time scales of change for stream nutrient concentrations as a function of both natural and anthropogenic controls, from topography to spatial patterns of land-use change. Our results demonstrate that the existence of biogeochemical nutrient legacies increases time lags beyond those due to hydrologic legacy alone. In addition, we show that the maximum concentration reduction benefits vary according to the spatial pattern of intervention, with preferential conversion of land parcels having the shortest catchment-scale travel times providing proportionally greater concentration reductions as well as faster response times. In contrast, a random pattern of conversion results in a 1:1 relationship between percent land conversion and percent concentration reduction, irrespective of denitrification rates within the landscape. Our modeling framework allows for the quantification of tradeoffs between costs associated with implementation of conservation measures and the time needed to see the desired concentration reductions, making it of great value to decision makers regarding optimal implementation of watershed conservation measures. PMID:25985290
Van Meter, Kimberly J; Basu, Nandita B
2015-01-01
Nutrient legacies in anthropogenic landscapes, accumulated over decades of fertilizer application, lead to time lags between implementation of conservation measures and improvements in water quality. Quantification of such time lags has remained difficult, however, due to an incomplete understanding of controls on nutrient depletion trajectories after changes in land-use or management practices. In this study, we have developed a parsimonious watershed model for quantifying catchment-scale time lags based on both soil nutrient accumulations (biogeochemical legacy) and groundwater travel time distributions (hydrologic legacy). The model accurately predicted the time lags observed in an Iowa watershed that had undergone a 41% conversion of area from row crop to native prairie. We explored the time scales of change for stream nutrient concentrations as a function of both natural and anthropogenic controls, from topography to spatial patterns of land-use change. Our results demonstrate that the existence of biogeochemical nutrient legacies increases time lags beyond those due to hydrologic legacy alone. In addition, we show that the maximum concentration reduction benefits vary according to the spatial pattern of intervention, with preferential conversion of land parcels having the shortest catchment-scale travel times providing proportionally greater concentration reductions as well as faster response times. In contrast, a random pattern of conversion results in a 1:1 relationship between percent land conversion and percent concentration reduction, irrespective of denitrification rates within the landscape. Our modeling framework allows for the quantification of tradeoffs between costs associated with implementation of conservation measures and the time needed to see the desired concentration reductions, making it of great value to decision makers regarding optimal implementation of watershed conservation measures.
Geiger, C J; Wyse, B W; Parent, C R; Hansen, R G
1991-07-01
This study estimated the effects of changing multiple levels and combinations of nutrition information format, load, expression, and order on consumers' perceptions of label usefulness in purchase decisions using adaptive conjoint analysis. A shopping mall intercept survey, which was administered by a marketing research firm, assessed consumer preferences for 12 label alternatives produced on Campbell's soup cans to portray nutrition information realistically; 252 of 258 respondents completed the computer interactive interview. Consumers significantly preferred the bar graph format to the bar graph/nutrient density and traditional label formats. Consumers considered the bar graph/nutrient density format to be as useful as the traditional label format. There was a highly significant difference among the three levels of information load; the most information load was preferred regardless of nutrient importance. Consumers significantly preferred nutrition information stated in absolute numbers and percentages vs in absolute numbers only in traditional, or in percentages only expressions. There was a significant difference between consumer preferences for the two types of information order. The findings indicate that consumers clearly preferred the nutrition label that displayed all nutrient values using a bar graph format, offered the most information load, and expressed nutrient values using both absolute numbers and percentages. Consumers also preferred nutrition information rearranged in an order that grouped nutrients that should be consumed in adequate amounts on the top, calories in the middle, and nutrients that should be consumed in lesser amounts on the bottom of the label.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
NASA Astrophysics Data System (ADS)
Kaufman, G.; Crawford, T. N.
2016-12-01
To protect the integrity of US waters, the Clean Water Act calls for the development of water quality standards. One key component of standards is limits for pollutants, known as water quality criteria. A cornerstone of deriving water quality criteria is determining how nutrients and other chemicals affect the goals for a waterbody set by a state or tribe, known as designated uses. By establishing a quantifiable and predictable relationship between nutrients and nutrient sensitive organisms and processes, known as assessment endpoints, researchers can help policy makers to address the consequences of pollution in a risk-based, understandable way tied to the goals for a waterbody. Furthermore, public buy-in and effectiveness of criteria can be enhanced by using endpoints to show the connection between nutrient pollution and the uses of waters that are important to the public. This talk will communicate the work done by the US Environmental Protection Agency in cooperation with state, federal, and academic partners to explore the connections between biological and ecological responses and nutrient pollution to derive numeric nutrient criteria in estuarine and coastal waters. The presentation will examine the variety of endpoints that have been used in the work of various research efforts and assessment frameworks. Examples will also be given of numeric nutrient criteria development using assessment endpoints and some of the key decisions that were made during endpoint selection and criteria development will be discussed. Aspects of those decisions that will be presented include development of selection factors for endpoints, data considerations when selecting endpoints, and spatial and temporal representation of endpoints for criteria development. Promising endpoints and future research needs will also be highlighted.
NASA Astrophysics Data System (ADS)
Kaufman, G.; Crawford, T. N.
2016-02-01
To protect the integrity of US waters, the Clean Water Act calls for the development of water quality standards. One key component of standards is limits for pollutants, known as water quality criteria. A cornerstone of deriving water quality criteria is determining how nutrients and other chemicals affect the goals for a waterbody set by a state or tribe, known as designated uses. By establishing a quantifiable and predictable relationship between nutrients and nutrient sensitive organisms and processes, known as assessment endpoints, researchers can help policy makers to address the consequences of pollution in a risk-based, understandable way tied to the goals for a waterbody. Furthermore, public buy-in and effectiveness of criteria can be enhanced by using endpoints to show the connection between nutrient pollution and the uses of waters that are important to the public. This talk will communicate the work done by the US Environmental Protection Agency in cooperation with state, federal, and academic partners to explore the connections between biological and ecological responses and nutrient pollution to derive numeric nutrient criteria in estuarine and coastal waters. The presentation will examine the variety of endpoints that have been used in the work of various research efforts and assessment frameworks. Examples will also be given of numeric nutrient criteria development using assessment endpoints and some of the key decisions that were made during endpoint selection and criteria development will be discussed. Aspects of those decisions that will be presented include development of selection factors for endpoints, data considerations when selecting endpoints, and spatial and temporal representation of endpoints for criteria development. Promising endpoints and future research needs will also be highlighted.
Brauer, Verena S; Stomp, Maayke; Huisman, Jef
2012-06-01
Resource competition theory predicts that the outcome of competition for two nutrients depends on the ratio at which these nutrients are supplied. Yet there is considerable debate whether nutrient ratios or absolute nutrient loads determine the species composition of phytoplankton and plant communities. Here we extend the classical resource competition model for two nutrients by including light as additional resource. Our results suggest the nutrient-load hypothesis, which predicts that nutrient ratios determine the species composition in oligotrophic environments, whereas nutrient loads are decisive in eutrophic environments. The underlying mechanism is that nutrient enrichment shifts the species interactions from competition for nutrients to competition for light, which favors the dominance of superior light competitors overshadowing all other species. Intermediate nutrient loads can generate high biodiversity through a fine-grained patchwork of two-species and three-species coexistence equilibria. Depending on the species traits, however, competition for nutrients and light may also produce multiple alternative stable states, suppressing the predictability of the species composition. The nutrient-load hypothesis offers a solution for several discrepancies between classical resource competition theory and field observations, explains why eutrophication often leads to diversity loss, and provides a simple conceptual framework for patterns of biodiversity and community structure observed in nature.
Remote Sensing Applications to Water Quality Management in Florida
NASA Astrophysics Data System (ADS)
Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.
2013-12-01
Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria
Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Zia, Huma; Harris, Nick; Merrett, Geoff
2013-04-01
Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of collaborative information sharing can have a direct influence on agricultural practice. We apply a nutrient management scheme to a model of an example catchment with several individual networks. The networks are able to correlate catchment events to events within their zone of influence, allowing them to adapt their monitoring and control strategy in light of wider changes across the catchment. Results indicate that this can lead to significant reductions in nutrient losses (up to 50%) and better reutilization of nutrients amongst farms, having a positive impact on catchment scale water quality and fertilizer costs. 1. EC, E.C., Directive 2000/60/EC establishing a framework for Community action in the field of water policy, 2000. 2. Rivers, M., K. Smettem, and P. Davies. Estimating future scenarios for farm-watershed nutrient fluxes using dynamic simulation modelling-Can on-farm BMPs really do the job at the watershed scale? in Proc.29th Int.Conf System Dynamics Society, 2011. 2010. Washington 3. Liu, C., et al., On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008. 100(6): p. 1527-1534. 4. Kotamäki, N., et al., Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: Evaluation from a data user's perspective. Sensors, 2009. 9(4): p. 2862-2883.
Consumer perceptions of the Nutrition Facts table and front-of-pack nutrition rating systems.
Emrich, Teri E; Qi, Ying; Mendoza, Julio E; Lou, Wendy; Cohen, Joanna E; L'abbé, Mary R
2014-04-01
Preferences for, and consumer friendliness of, front-of-pack (FOP) nutrition rating systems have not been studied in a Canadian population, and studies comparing systems that are accompanied by mandatory labelling, such as Canada's Nutrition Facts table (NFt), are lacking. The purpose of this study was to evaluate 4 FOP systems relative to the NFt with respect to consumer friendliness and their influence on perceptions of the healthiness and nutrient content of food. Canadian consumers (n = 3029) participating in an online survey were randomized to score the consumer friendliness of 1 of 5 FOP conditions with or without an NFt and to score the healthiness and nutrient content of 2 foods using the provided label(s). The mean differences in scores were evaluated with analysis of covariance (ANCOVA) controlling for age, gender, and education, with Tukey-Kramer adjustments for multiple comparisons. The NFt received the highest scores of consumer friendliness with respect to liking, helpfulness, credibility, and influence on purchase decisions (p < 0.05); however, consumers still supported the implementation of a single, standardized FOP system, with the nutrient-specific systems (a "Traffic Light" and a Nutrition Facts FOP system) being preferred and scored as more consumer friendly than the summary indicator systems. Without the NFt, consumer ratings of the healthiness and calorie and nutrient content differed by FOP system. With the NFt present, consumers rated the healthiness and calorie and nutrient content similarly, except for those who saw the Traffic Light; their ratings were influenced by the Traffic Light's colours. The introduction of a single, standard, nutrient-specific FOP system to supplement the mandatory NFt should be considered by Canadian policy makers.
Nutrient signaling and developmental timing of maturation.
Danielsen, E Thomas; Moeller, Morten E; Rewitz, Kim F
2013-01-01
In animals, developmental timing of sexual maturation is tightly linked to nutrition and growth. Maturation only occurs once the juvenile has acquired sufficient nutrients and completed enough growth to produce a reproductively mature adult with a genetically predefined body size. Animals therefore adjust the duration of juvenile development to the dietary conditions. When nutrients are scarce the juvenile growth phase is extended to compensate for slow growth. Conversely, development is accelerated in nutrient rich environments where animals rapidly reach their genetic target size. To achieve such flexibility, nutrient-dependent growth regulators must feed into the endocrine system that controls the timing of maturation. Work on the fruit fly Drosophila has revealed a central role of secreted signal molecules with similarity to the conserved insulin-like growth factors (IGFs) in the decision making process. These molecules are involved in checkpoints that allow the endocrine system to decide whether to release the steroid hormone, ecdysone, that triggers maturation or extent development, depending on nutrient levels and growth status. Importantly, different dietary components influence timing of maturation in Drosophila, with proteins having the greatest impact; fat and sugar play a minor role, at least within the limits of what can be considered a balanced diet. Remarkably, excess dietary sugar concentrations that mimic physiological conditions associated with diabetes, negatively affect growth and delays maturation. Altogether, this shows that the source of energy in the diet is important for timing and may provide a paradigm for understanding the emerging links between diet, obesity and diabetes, and the onset of puberty. Here, we provide an overview of the system underlying developmental timing of maturation in Drosophila and review recent success in understanding its coupling to nutrition and growth. © 2013 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Understanding fecal indicator bacteria persistence in aquatic environments is important when making management decisions to improve instream water quality. Routinely, bacteria fate and transport models that rely on published kinetic decay constants are used to inform such decision making. The object...
Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae
Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M
2014-01-01
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210
NASA Technical Reports Server (NTRS)
Davis, D.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.
1998-01-01
Control of nutrient solution parameters is very important for the growth and development of plants grown hydroponically. Protocols involving different nutrient solution replenishment times (e.g. one-week, two-week, or two-day replenishment) provide manual periodic control of the nutrient solution's electrical conductivity (EC). Since plants take-up nutrients as they grow, manual control has a drawback in that EC is not held constant between replenishments. In an effort to correct this problem the Center for Food and Environmental Systems for Human Exploration of Space at Tuskegee University has developed a system for managing and controlling levels of EC over a plant's entire growing cycle. A prototype system is being tested on sweetpotato production using the nutrient film technique (NFT), and it is being compared to a system in which sweetpotatoes are grown using NFT with manual control. NASA has played an important role in the development of environmental control systems. They have become a forerunner in growing plants hydroponically with some control systems through the use of networked data acquisition and control using environmental growth chambers. Data acquisition systems which involve the use of real-time, calibration, set points, user panel, and graphical representation programming provide a good method of controlling nutrient solution parameters such as EC and pH [Bledsoe, 19931]. In NASA's Biomass Production Chamber (BPC) at Kennedy Space Center, control is provided by a programmable logic controller (PLC). This is an industrial controller which combines ladder computer logic which has the ability to handle various levels of electrical power. The controller controls temperature, light and other parameters that affect the plant's environment, in the BPC, the Nutrient Delivery System (NIX), a sub-system of the PLC, controls nutrient solution parameters such as EC, pH, and solution levels. When the nutrient EC measurement goes outside a preset range (120-130 mS/m) a set amount of a stock solution of nutrients is automatically added by a metering pump to bring the EC back into operating range [Fortson, 1992]. This paper describes a system developed at Tuskegee University for controlling the EC of a nutrient solution used for growing sweetpotatoes with an EC controller and a computer with LabView data acquisition and instrumentation software. It also describes the preliminary data obtained from the growth of sweetpotatoes using this prototype control system.
Ohhara, Yuya; Kobayashi, Satoru
2017-01-01
Many animals have an intrinsic growth checkpoint during juvenile development, after which an irreversible decision is made to upregulate steroidogenesis, triggering the metamorphic juvenile-to-adult transition. However, a molecular process underlying such a critical developmental decision remains obscure. Here we show that nutrient-dependent endocycling in steroidogenic cells provides the machinery necessary for irreversible activation of metamorphosis in Drosophila melanogaster. Endocycle progression in cells of the prothoracic gland (PG) is tightly coupled with the growth checkpoint, and block of endocycle in PG cells causes larval developmental arrest due to reduction in biosynthesis of the steroid hormone ecdysone. Moreover, inhibition of the nutrient sensor target of rapamycin (TOR) in the PG during the checkpoint period causes endocycle inhibition and developmental arrest, which can be rescued by inducing additional rounds of endocycles by Cyclin E. We propose that a TOR-mediated cell cycle checkpoint in steroidogenic tissue provides a systemic growth checkpoint for reproductive maturation. PMID:28121986
Rivera-Monroy, V. H.; Twilley, R.R.; Davis, S.E.; Childers, D.L.; Simard, M.; Chambers, R.; Jaffe, R.; Boyer, J.N.; Rudnick, D.T.; Zhang, K.; Castaneda-Moya, E.; Ewe, S.M.L.; Price, R.M.; Coronado-Molina, C.; Ross, M.; Smith, T.J.; Michot, B.; Meselhe, E.; Nuttle, W.; Troxler, T.G.; Noe, G.B.
2011-01-01
The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 ??g P g dw-1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (???1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER. Copyright ?? 2011 Taylor & Francis Group, LLC.
Nutrient cycling Microbial Ecosystems: Assembly, Function and Targeted Design
2017-05-05
different chemical transformations, converting potentially harmful chemicals via a series of intermediates, to harmless waste products. This shuttling of...Report: Nutrient-cycling Microbial Ecosystems: Assembly, Function and Targeted Design The views, opinions and/or findings contained in this report...are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other
NASA Astrophysics Data System (ADS)
Heeren, A.; Toman, E.; Wilson, R. S.; Martin, J.
2016-12-01
Lake Erie is the most productive of the Great Lakes. However, harmful algal blooms (HABs) caused by nutrient run-off threaten the lake. Experts have proposed numerous best management practices (BMPs) designed to reduce nutrient and sediment run-off. However, for these practices to be effective at reducing HABs, a significant portion of farmers and landowners within Lake Erie's watersheds have to first adopt and implement these practices. In order to better understand how farmers and landowners make decisions about whether or not to adopt and implement BMPs we conducted a series of focus groups and a mail survey of Lake Erie's largest watershed. We found that many farmers were supportive of adopting BMPs. For example, 60% of farmers in the watershed have already adopted using grid soil sampling while another 30% are willing to adopt the practice in the future. However, other practices were less popular, for example, only 18% of farmers had already adopted cover crops. Farmers also expressed several reservations about adopting some BMPs. For example, farmers were concerned about the costs of some BMPs, such as cover crops and drainage management systems, and how such practices might interfere with the planting of subsequent crops. Our research has several implications for reducing nutrient production by promoting BMPs. First, we identified potential concerns and limitations farmers faced in implementing specific BMPs. For example, conservationists can design future programs and communication efforts to target these specific concerns. Second, through examining the socio-psychological and cognitive characteristics that influence farmer decision-making, we identified that willingness to adopt nutrient BMPs is association with how strongly a farmer identifies with conservation and how effective they believed the BMP was at reducing run-off. Messages and information about BMPs may be more effective if they are framed in a way that aligns with identities and beliefs about BMP efficacy. Lastly, our research provides a framework of how the "wicked problem" of nutrient run-off can be addressed through the promotion of BMPs.
Vitamin-Fortified Snack Food May Lead Consumers to Make Poor Dietary Decisions.
Verrill, Linda; Wood, Dallas; Cates, Sheryl; Lando, Amy; Zhang, Yuanting
2017-03-01
The US Food and Drug Administration's (FDA's) fortification policy discourages the fortification of certain foods, including sugars and snack foods such as cookies, candies, cakes, chips, and carbonated beverages, yet manufacturers sometimes add vitamins and minerals to snack foods. To assess whether vitamin-fortified snack foods affect consumers' information-seeking, purchase decisions, and product-related health perceptions. For this experimental study, participants were randomly assigned to study conditions to compare products that varied in product type, nutrition profile, and fortification and nutrient claim status. Data were collected via an online consumer panel. US adults aged 18 years and older were randomly selected from Research Now's e-panel online household panel. Data were collected during fall 2014 (N=5,076). Participants were randomly assigned to one of 24 conditions: two products (vegetable chip/potato chip), two nutrition profiles (healthier/less healthy), two fortification scenarios (not fortified/fortified), and three nutrient claim conditions (two no claim/one with claim). The design was not balanced; claims were not shown on products that were not vitamin fortified. Outcome measures were information-seeking (viewed the Nutrition Facts label), purchase decisions, perception of product healthfulness, and correct selection of product with the healthier nutrient profile. Logistic regression was used to test all models. Analyses was adjusted for general label use, consumes product, health status, age, sex, level of education, presence of children in the household, and race/ethnicity. When the snack food carried a nutrient claim for vitamin fortification, participants were 1) less likely to look for nutrition information on the Nutrition Facts label, 2) more likely to select the product for purchase, 3) more likely to perceive the product as healthier, and 4) less likely to correctly choose the healthier product. Snack foods that have been vitamin-fortified may cause consumers to make poor dietary decisions. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Hamdan, M. Z.; Smith, R. A.; Hoos, A.; Schwarz, G. E.; Alexander, R. B.; Crosson, W. L.; Srikishen, J.; Estes, M., Jr.; Cruise, J.; Al-Hamdan, A.; Ellenburg, W. L., II; Flores, A.; Sanford, W. E.; Zell, W.; Reitz, M.; Miller, M. P.; Journey, C. A.; Befus, K. M.; Swann, R.; Herder, T.; Sherwood, E.; Leverone, J.; Shelton, M.; Smith, E. T.; Anastasiou, C. J.; Seachrist, J.; Hughes, A.; Graves, D.
2017-12-01
The USGS Spatially Referenced Regression on Watershed Attributes (SPARROW) surface water quality modeling system has been widely used for long term, steady state water quality analysis. However, users have increasingly requested a dynamic version of SPARROW that can provide seasonal estimates of nutrients and suspended sediment to receiving waters. The goal of this NASA-funded project is to develop a dynamic decision support system to enhance the southeast SPARROW water quality model and finer-scale dynamic models for selected coastal watersheds through the use of remotely-sensed data and other NASA Land Information System (LIS) products. The spatial and temporal scale of satellite remote sensing products and LIS modeling data make these sources ideal for the purposes of development and operation of the dynamic SPARROW model. Remote sensing products including MODIS vegetation indices, SMAP surface soil moisture, and OMI atmospheric chemistry along with LIS-derived evapotranspiration (ET) and soil temperature and moisture products will be included in model development and operation. MODIS data will also be used to map annual land cover/land use in the study areas and in conjunction with Landsat and Sentinel to identify disturbed areas that might be sources of sediment and increased phosphorus loading through exposure of the bare soil. These data and others constitute the independent variables in a regression analysis whose dependent variables are the water quality constituents total nitrogen, total phosphorus, and suspended sediment. Remotely-sensed variables such as vegetation indices and ET can be proxies for nutrient uptake by vegetation; MODIS Leaf Area Index can indicate sources of phosphorus from vegetation; soil moisture and temperature are known to control rates of denitrification; and bare soil areas serve as sources of enhanced nutrient and sediment production. The enhanced SPARROW dynamic models will provide improved tools for end users to manage water quality in near real time and for the formulation of future scenarios to inform strategic planning. Time-varying SPARROW outputs will aid water managers in decision making regarding allocation of resources in protecting aquatic habitats, planning for harmful algal blooms, and restoration of degraded habitats, stream segments, or lakes.
The lysosome as a command-and-control center for cellular metabolism
2016-01-01
Lysosomes are membrane-bound organelles found in every eukaryotic cell. They are widely known as terminal catabolic stations that rid cells of waste products and scavenge metabolic building blocks that sustain essential biosynthetic reactions during starvation. In recent years, this classical view has been dramatically expanded by the discovery of new roles of the lysosome in nutrient sensing, transcriptional regulation, and metabolic homeostasis. These discoveries have elevated the lysosome to a decision-making center involved in the control of cellular growth and survival. Here we review these recently discovered properties of the lysosome, with a focus on how lysosomal signaling pathways respond to external and internal cues and how they ultimately enable metabolic homeostasis and cellular adaptation. PMID:27621362
Nutrient variation in an urban lake chain and its consequences for phytoplankton production.
Roach, W John; Grimm, Nancy B
2009-01-01
In the Central Arizona-Phoenix (CAP) ecosystem, managers divert mixed stream water and groundwater to maintain an artificial lake chain in Indian Bend Wash (IBW), a historically flashy, ephemeral, desert stream. Nutrient concentrations in the CAP ecosystem's groundwater, stream water, and floodwater differ: stream water has low concentrations of both inorganic N and P, while groundwater is low in inorganic P but rich in nitrate (NO(3)(-)). Consequently, groundwater contribution drives inorganic N concentrations in the lake chain. In contrast, floodwater typically has high P concentrations while remaining low in N. Thus we expected N and P concentrations in IBW lakes to vary with the mix of water flowing through them. Elevated NO(3)(-) and low inorganic P concentrations were predicted when groundwater pumping was pronounced and this prediction was supported. We hypothesized that these predictable changes in water chemistry would affect nutrient limitation of phytoplankton. Laboratory nutrient-addition bioassays demonstrated that phytoplankton growth was P-limited throughout the summer of 2003 when N/P was high. However, after a late-season flood drove N/P below 31:1, the expected threshold between N and P limitation, N limitation was observed. Our results indicate that effects of floods, the preeminent historic drivers of Sonoran Desert stream biogeochemistry, are mitigated in urban ecosystems by decisions about which spigots to turn. Consequently, nutrient limitation of urban streams is driven as much by management decisions as by natural hydrologic variation.
Plant response to gravity: towards a biosystems view of root gravitropism
NASA Astrophysics Data System (ADS)
Palme, Klaus; Volkmann, Dieter; Bennett, Malcolm J.; Gausepohl, Heinrich
2005-10-01
Plants are sessile organisms that originated and evolved in Earth's environment. They monitor a wide range of disparate external and internal signals and compute appropriate developmental responses. How do plant cells process these myriad signals into an appropriate response? How do they integrate these signals to reach a finely balanced decision on how to grow, how to determine the direction of growth and how to develop their organs to exploit the environment? As plant responses are generally irreversible growth responses, their signalling systems must compute each developmental decision with extreme care. One stimulus to which plants are continuously exposed is the gravity vector. Gravity affects adaptive growth responses that reorient organs towards light and nutrient resources. The MAP team was established by ESA to study in the model plant Arabidopsis thaliana the role of the hormone auxin in gravity-mediated growth control. Another goal was to dissect gravity perception and gravity signal transduction pathways.
Transcription factors controlling innate lymphoid cell fate decisions.
Klose, Christoph S N; Diefenbach, Andreas
2014-01-01
The mucosal epithelium is in direct contact with symbiotic and pathogenic microorganisms. Therefore, the mucosal surface is the principal portal of entry for invading pathogens and immune cells accumulated in the intestine to prevent infections. In addition to these conventional immune system functions, it has become clear that immune cells during steady-state continuously integrate microbial and nutrient-derived signals from the environment to support organ homeostasis. A major role in both processes is played by a recently discovered group of lymphocytes referred to as innate lymphoid cells (ILCs) Innate lymphoid cells (ILCs) that are specifically enriched at mucosal surfaces but are rather rare in secondary lymphoid organs. In analogy to the dichotomy between CD8 and CD4 T cells, we propose to classify ILCs into interleukin-7 receptor α-negative cytotoxic ILCs and IL-7Rα(+) helper-like ILCs. Dysregulated immune responses triggered by the various ILC subsets have been linked to inflammatory diseases such as inflammatory bowel disease, atopic dermatitis and airway hyperresponsiveness. Here, we will review recent progress in determining the transcriptional and developmental programs that control ILC fate decisions.
Filgueira, Ramon; Grant, Jon; Strand, Øivind
2014-06-01
Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.
NASA Astrophysics Data System (ADS)
Booth, N. L.; Everman, E.; Kuo, I.; Sprague, L.; Murphy, L.
2011-12-01
A new web-based decision support system has been developed as part of the U.S. Geological Survey (USGS) National Water Quality Assessment Program's (NAWQA) effort to provide ready access to Spatially Referenced Regressions On Watershed attributes (SPARROW) results of stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via an intuitive graphical user interface with a map-based display. The SPARROW Decision Support System (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions, distribution of nutrient sources, nutrient delivery to downstream waterbodies, and simulations of altered nutrient inputs including atmospheric and agricultural sources. The DSS offers other features for analysis including various background map layers, model output exports, and the ability to save and share prediction scenarios. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. The underlying modeling framework and server infrastructure illustrate innovations in the information technology and geosciences fields for delivering SPARROW model predictions over the web by performing intensive model computations and map visualizations of the predicted conditions within the stream network.
NASA Astrophysics Data System (ADS)
Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.
2013-12-01
The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions derived from the DSM2-HYDRO hydrologic model demonstrate that mixing between San Joaquin and Sacramento River water can occur as far as 30 miles upstream of the confluence within the San Joaquin channel, and that San Joaquin-derived nitrate only reaches the western Delta during periods of high flow.
NASA Astrophysics Data System (ADS)
Kerebel, A.; Cassidy, R.; Jordan, P.; Holden, N. M.
2012-04-01
Eutrophication of both fresh and coastal water bodies is one of the greatest threats to water quality in Europe and other developed countries. Sources of pollution are multiple but agriculture is known to be a large contributor, due to farm nutrient management such as land spreading of fertilisers and their subsequent loss via overland flow to surface waters. The stringent targets set for compliance with the Water Framework Directive by 2015 have led to action by the Irish regulatory authorities to reduce risk and prevent further deterioration of water status. One step was to prohibit the spreading of fertilisers over the winter period, with closed periods in 3 zones based on annual rainfall statistics. While this calendar approach is supported by scientific evidence, its justification has been debated by the farming community. A consequence of the regulation has been the concentration of hazard on dates directly preceding and following the closed period when soils can be heavily loaded with organic slurries and manures. An alternative lies in a Sustainable Nutrient Management Decision Support System (SNM-DSS), which has been developed to predict optimum conditions for fertiliser application depending on real-time observations of soil and weather conditions. The Hybrid Soil Moisture Deficit (HSMD) model forms the basis of this system and is essential for defining the thresholds for optimum management. The model outputs were tested against field water content data (θ) and evaluated by comparison with farmer opinion over a 3-year period. Daily Soil Moisture Deficit (SMD) was calculated from weather data collected on 5 sites and θ was estimated using time domain Reflectometry probes on 10 fields (2 × 5 sites). The question "Can slurry be spread today?" was also answered on a daily basis by 6 farmers located at the instrumented sites and the responses were related to calculated SMD values. A significant relationship between SMD and θ for all test sites showed that the HSMD model acceptably captured temporal variations in θ, suggesting that it should be able to predict when risk of nutrient transport by gravity moveable water is high. It was also found that the decision whether to spread the nutrients was determined by soil moisture conditions relative to field capacity. According to farmer opinion, slurry should not be spread when the soil is at or wetter than field capacity but conditions would be suitable when drier. The HSMD model showed great potential and could therefore be used as a core component in a decision support tool for daily farm management practices such as slurry spreading. Although the SNM-DSS has been designed to work at the farm scale, such tools should be able to devise sustainable nutrient management plans for agricultural catchments.
NASA Astrophysics Data System (ADS)
Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.
2014-09-01
While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.
Hydrology and ecology of the Apalachicola River, Florida : a summary of the river quality assessment
Elder, John F.; Flagg, Sherron D.; Mattraw, Harold C.
1988-01-01
During 1979-81, the U.S. Geological Survey conducted a large-scale study of the Apalachicola River in northwest Florida, the largest and one of the most economically important rivers in the State. Termed the Apalachicola River Quality Assessment, the study emphasized interrelations among hydrodynamics, the flood-plain forest, and the nutrient-detritus flow through the river system to the estuary. This report summarizes major findings of the study. Data on accumulation of toxic substances in sediments and benthic organisms in the river were also collected. Because of the multiple uses of the Apalachicola River system, there are many difficult management decisions. The river is a waterway for shipping; hence there is an economic incentive for modification to facilitate movement of barge traffic. Such modifications include the proposed construction of dams, levees, bend easings, and training dikes; ditching and draining in the flood plain; and dredging and snagging in the river channel. The river is also recognized as an important supplier of detritus, nutrients, and freshwater to the Apalachicola Bay, which maintains an economically important shellfish industry. The importance of this input to the bay creates an incentive to keep the river basin in a natural state. Other values, such as timber harvesting, recreation, sport hunting, nature appreciation, and wildlife habitat, add even more to the difficulty of selecting management strategies. Water and nutrient budgets based on data collected during the river assessment study indicate the relative importance of various inputs and outflows in the system. Waterflow is controlled primarily by rainfall in upstream watersheds and is not greatly affected by local precipitation, ground-water exchanges, or evapotranspiration in the basin. On an annual basis, the total nutrient inflow to the system is nearly equal in quantity to total outflow, but there is a difference between inflow and outflow in the chemical and physical forms in which the nutrients are carried. The flood plain tends to be a net importer of soluble inorganic nutrients and a net exporter of particulate organic material. Analysis of long-term records shows that dam construction in the upstream watersheds and at the Apalachicola headwaters has had little effect on the total annual waterflow but has probably suppressed low-flow extremes. Other effects include riverbed degradation and channelization which have to do with alteration of the habitat for aquatic biota and changes in flood-plain vegetation. Whatever management decisions are made should take into account the impact on the natural flooding cycle. Flooding is crucial to the present flood-plain plant community and to the production, decomposition, and transport of organic material from that community. Permanent, substantial changes in the natural flooding cycle would be likely to induce concomitant changes in the flood-plain environment and in the nutrient and detritus yield to the estuary.
Electrochemical control of pH in a hydroponic nutrient solution
NASA Technical Reports Server (NTRS)
Schwartzkopf, S. H.
1986-01-01
The electrochemical pH control system described was found to provide a feasible alternative method of controlling nutrient solution pH for CELSS applications. The plants grown in nutrient solution in which the pH was controlled electrochemically showed no adverse effects. Further research into the design of a larger capacity electrode bridge for better control is indicated by the results of this experiment, and is currently under way.
NASA Astrophysics Data System (ADS)
Jordan, Phil; Melland, Alice; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Ryan, David; Crockford, Lucy; Macintosh, Katrina; Campbell, Julie; Arnscheidt, Joerg; Cassidy, Rachel
2014-05-01
A complete appraisal of material fluxes in flowing waters is really only possibly with high time resolution data synchronous with measurements of discharge. Defined by Kirchner et al. (2004; Hydrological Processes, 18/7) as the high-frequency wave of the future and with regard to disentangling signal noise from process pattern, this challenge has been met in terms of nutrient flux monitoring by automated bankside analysis. In Ireland over a ten-year period, time-series nutrient data collected on a sub-hourly basis in rivers have been used to distinguish fluxes from different catchment sources and pathways and to provide more certain temporal pictures of flux for the comparative definition of catchment nutrient dynamics. In catchments where nutrient fluxes are particularly high and exhibit a mix of extreme diffuse and point source influences, high time resolution data analysis indicates that there are no satisfactory statistical proxies for seasonal or annual flux predictions that use coarse datasets. Or at least exposes the limits of statistical approaches to catchment scale and hydrological response. This has profound implications for catchment monitoring programmes that rely on modelled relationships. However, using high resolution monitoring for long term assessments of catchment mitigation measures comes with further challenges. Sustaining continuous wet chemistry analysis at river stations is resource intensive in terms of capital, maintenance and quality assurance. Furthermore, big data capture requires investment in data management systems and analysis. These two institutional challenges are magnified when considering the extended time period required to identify the influences of land-based nutrient control measures on water based systems. Separating the 'climate signal' from the 'source signal' in river nutrient flux data is a major analysis challenge; more so when tackled with anything but higher resolution data. Nevertheless, there is scope to lower costs in bankside analysis through technology development, and the scientific advantages of these data are clear and exciting. When integrating its use with policy appraisal, it must be made clear that the advances in river process understanding from high resolution monitoring data capture come as a package with the ability to make more informed decisions through an investment in better information.
Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir
NASA Astrophysics Data System (ADS)
Liu, L.; Fu, X.; Wang, G.
2009-12-01
Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the administrative agencies and policy makers to make correct decisions for the water utilization of Minyun reservoir once some emergency events occur. Key words: Fecal pollution, Modeling, Transport, Inactivation Figure 1: Relative contributions of settling and solar insolation to the overall inactivation of E. coli at the Mt. Baldy Beach (Liu et al. 2006)
Strong hydrological control on nutrient cycling of subtropical rainforests
NASA Astrophysics Data System (ADS)
Lin, T. C.; Chang, C. T.; Huang, J. C.; Wang, L.; Lin, N. H.
2016-12-01
Forest nutrient cycling is strongly controlled by both biological and hydrological factors. However, based on a close examination of earlier reports, we highlight the role of hydrological control on nutrient cycling at a global scale and is more important at humid tropical and subtropical forests. we analyzed the nutrient budget of precipitation input and stream water output from 1994 to 2013 in a subtropical forest in Taiwan and conducted a data synthesis using results from 32 forests across the globe. The results revealed that monthly input and output of ions were positively correlated with water quantity, indicating hydrological control on nutrient cycling. Hydrological control is also evident from the greater ions export via stream water during the warm and wet growing season. The synthesis also illustrates that strong hydrological control leads to lower nitrogen retention and greater net loss of base cations in humid regions, particularly in the humid tropical and subtropical forests. Our result is of great significance in an era of global climate change because climate change could directly affect ecosystem nutrient cycling particularly in the tropics through changes in patterns of precipitation regime.
Development of Gene Centric Modeling for Nutrient Cycling
opportunity to participate in the development of a gene-centric model to help predict potential changes in the biogeochemistry of aquatic ecosystems that may arise from anthropogenic stressors and management decisions
Vonnahme, K A; Hess, B W; Nijland, M J; Nathanielsz, P W; Ford, S P
2006-12-01
Maternal nutrient restriction from early to midgestation can lead to fetal growth retardation, with long-term impacts on offspring growth, physiology, and metabolism. We hypothesized that ewes from flocks managed under markedly different environmental conditions and levels of nutrition might differ in their ability to protect their own fetus from a bout of maternal nutrient restriction. We utilized multiparous ewes of similar breeding, age, and parity from 2 flocks managed as 1) ewes adapted to a nomadic existence and year-long, limited nutrition near Baggs, WY (Baggs ewes), and 2) University of Wyoming ewes with a sedentary lifestyle and continuous provision of more than adequate nutrition (UW ewes). Groups of Baggs ewes and UW ewes were fed 50 (nutrient restricted) or 100% (control fed) of National Research Council recommendations from d 28 to 78 of gestation, then necropsied, and fetal and placental data were obtained. Although there was a marked decrease (P < 0.05) in fetal weight and blood glucose concentrations in nutrient-restricted vs. control fed UW ewes, there was no difference in these fetal measurements between nutrient-restricted and control-fed Baggs ewes. Nutrient-restricted and control-fed UW ewes exhibited predominantly type A placentomes on d 78, but there were fewer (P c0.05) type A and greater (P < 0.05) numbers of type B, C, and D placentomes in nutrient-restricted than control-fed Baggs ewes. Placental efficiency (fetal weight/placentomal weight) was reduced (P = 0.04) in d 78 nutrient-restricted UW ewes when compared with control-fed UW ewes. In contrast, nutrient-restricted and control-fed Baggs ewes exhibited similar placental efficiencies on d 78. This is the first report of different placental responses to a nutritional challenge during pregnancy when ewes were selected under different management systems. These data are consistent with the concept that Baggs ewes or their conceptuses, which were adapted to both harsh environments and limited nutrition, initiated conversion of type A placentomes to other placentomal types when subjected to an early to mid-gestational nutrient restriction, whereas this conversion failed to occur in UW ewes. This early placentomal conversion in the Baggs ewes may function to maintain normal nutrient delivery to their developing fetuses during maternal nutrient restriction.
Sacks, G; Rayner, M; Stockley, L; Scarborough, P; Snowdon, W; Swinburn, B
2011-03-01
A number of different nutrient-profiling models have been proposed and several applications of nutrient profiling have been identified. This paper outlines the potential role of nutrient-profiling applications in the prevention of diet-related chronic disease (DRCD), and considers the feasibility of a core nutrient-profiling system, which could be modified for purpose, to underpin the multiple potential applications in a particular country. The 'Four 'P's of Marketing' (Product, Promotion, Place and Price) are used as a framework for identifying and for classifying potential applications of nutrient profiling. A logic pathway is then presented that can be used to gauge the potential impact of nutrient-profiling interventions on changes in behaviour, changes in diet and, ultimately, changes in DRCD outcomes. The feasibility of a core nutrient-profiling system is assessed by examining the implications of different model design decisions and their suitability to different purposes. There is substantial scope to use nutrient profiling as part of the policies for the prevention of DRCD. A core nutrient-profiling system underpinning the various applications is likely to reduce discrepancies and minimise the confusion for regulators, manufacturers and consumers. It seems feasible that common elements, such as a standard scoring method, a core set of nutrients and food components, and defined food categories, could be incorporated as part of a core system, with additional application-specific criteria applying. However, in developing and in implementing such a system, several country-specific contextual and technical factors would need to be balanced.
Computer model of hydroponics nutrient solution pH control using ammonium.
Pitts, M; Stutte, G
1999-01-01
A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.
Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience
NASA Astrophysics Data System (ADS)
Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.
2005-05-01
Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.
McNamara, J P
2015-12-01
A major role of the dairy cow is to convert low-quality plant materials into high-quality protein and other nutrients for humans. We must select and manage cows with the goal of having animals of the greatest efficiency matched to their environment. We have increased efficiency tremendously over the years, yet the variation in productive and reproductive efficiency among animals is still large. In part, this is because of a lack of full integration of genetic, nutritional, and reproductive biology into management decisions. However, integration across these disciplines is increasing as the biological research findings show specific control points at which genetics, nutrition, and reproduction interact. An ordered systems biology approach that focuses on why and how cells regulate energy and N use and on how and why organs interact through endocrine and neurocrine mechanisms will speed improvements in efficiency. More sophisticated dairy managers will demand better information to improve the efficiency of their animals. Using genetic improvement and animal management to improve milk productive and reproductive efficiency requires a deeper understanding of metabolic processes throughout the life cycle. Using existing metabolic models, we can design experiments specifically to integrate data from global transcriptional profiling into models that describe nutrient use in farm animals. A systems modeling approach can help focus our research to make faster and larger advances in efficiency and determine how this knowledge can be applied on the farms.
Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith
2016-01-01
The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...
Bhumika; Singh, Arvind Kumar
2018-06-01
One of the most fundamental behaviors in all the organisms, in order to achieve a satiated state and internal energy homeostasis is feeding. The action of feeding in any being whether be it any vertebrate or an invertebrate involves the perception of the external environment along with the gamut of decision making processes to eat or to not eat. The feeding decision along with chemosensation through gustation and olfaction leads to intake of food with proper nutrient balance along with avoidance of bitter and toxic substances. The progressions in the understanding of the complexity of feeding behavior involving gustation, neuronal and physiological processes have been achieved through the use of unparalleled model organism Drosophila melanogaster . Here, in this review, we aim to discuss the studies about the taste perception of major macronutrients in Drosophila through gustatory receptors as well as how the involvement of neuropeptides and neuromodulators in feeding behavior modulate the plasticity in feeding decisions. This review also summarizes the involvement of insulin/insulin-like growth factor signaling pathway in nutrient sensing and how the interaction of Drosophila insulin-like peptides with neuromodulators regulate feeding decision process. The review provides an integrative approach towards a balanced metabolic state in Drosophila through the interplay of physiology, gustatory perception and neuromodulation.
Yen, Haw; White, Michael J; Arnold, Jeffrey G; Keitzer, S Conor; Johnson, Mari-Vaughn V; Atwood, Jay D; Daggupati, Prasad; Herbert, Matthew E; Sowa, Scott P; Ludsin, Stuart A; Robertson, Dale M; Srinivasan, Raghavan; Rewa, Charles A
2016-11-01
Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation. Copyright © 2016 Elsevier B.V. All rights reserved.
Yen, Haw; White, Michael J.; Arnold, Jeffrey G.; Keitzer, S. Conor; Johnson, Mari-Vaughn V; Atwood, Jay D.; Daggupati, Prasad; Herbert, Matthew E.; Sowa, Scott P.; Ludsin, Stuart A.; Robertson, Dale M.; Srinivasan, Raghavan; Rewa, Charles A.
2016-01-01
Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT2012) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation.
Uses of nutrient profiling to address public health needs: from regulation to reformulation.
Drewnowski, Adam
2017-08-01
Nutrient profiling (NP) models rate the nutritional quality of individual foods, based on their nutrient composition. Their goal is to identify nutrient-rich foods, generally defined as those that contain more nutrients than calories and are low in fat, sugar and salt. NP models have provided the scientific basis for evaluating nutrition and health claims and regulating marketing and advertising to children. The food industry has used NP methods to reformulate product portfolios. To help define what we mean by healthy foods, NP models need to be based on published nutrition standards, mandated serving sizes and open-source nutrient composition databases. Specifically, the development and testing of NP models for public health should follow the seven decision steps outlined by the European Food Safety Authority. Consistent with this scheme, the nutrient-rich food (NRF) family of indices was based on a variable number of qualifying nutrients (from six to fifteen) and on three disqualifying nutrients (saturated fat, added sugar, sodium). The selection of nutrients and daily reference amounts followed nutrient standards for the USA. The base of calculation was 418·4 kJ (100 kcal), in preference to 100 g, or serving sizes. The NRF algorithms, based on unweighted sums of percent daily values, subtracted negative (LIM) from positive (NRn) subscores (NRn - LIM). NRF model performance was tested with respect to energy density and independent measures of a healthy diet. Whereas past uses of NP modelling have been regulatory or educational, voluntary product reformulation by the food industry may have most impact on public health.
Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds
USDA-ARS?s Scientific Manuscript database
Controls on baseflow nutrient concentrations in agroecosystems are poorly characterized in comparison with storm events. However, in landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can drive deleterious environm...
Nutrient Intake of Dengue Hemorrhagic Fever Patients in Semarang City
NASA Astrophysics Data System (ADS)
Ratri Maharani, Agustina; Restuti, Christina Tri; Sari, Erna; Endah Wahyuningsih, Nur; Murwani, Retno; Hapsari, MMDEAH
2018-05-01
Dengue Hemorrhagic Fever (DHF) is an acute infectious disease caused by dengue virus and transmission of the virus is mediated by mosquitoes bites [1]. Host immunity against dengue infection is affected by nutrient adequacy which is depending on nutrient intake [2]. The aim of this study was to determine nutrient intake of DHF patients in Semarang city. The DHF sample cases were obtained from three hospitals in Semarang city (n=48), from the period of March to May 2016 and the control groups were obtained from healthy respondents with matched age, sex, and district location (n=48). Nutrient intake were obtained by food recall and calculated using Nutrisurvey Indonesia. Afterwards, the result of the nutrisurvey will be compared to Indonesian daily value according to Permenkes no. 75 about daily value based on age and gender. The results showed that both in cases and control groups the macro-(energy, carbohydrate, protein, fat) and micro-nutrient (vitamins A., C, B1, B2, B6, calcium, magnesium, phosphorus, zinc, and Iron) intake were below 80% of nutrient adequacy. No correlation was found between nutrient adequacy and DHF cases. We find that macro and micronutrient intake in DHF case and control groups are the same and below 80% of nutrient adequacy. The nutrient intake was not related to DHF cases.
Development of an Integrated Wastewater Treatment System/water reuse/agriculture model
NASA Astrophysics Data System (ADS)
Fox, C. H.; Schuler, A.
2017-12-01
Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The research will provide scientific knowledge to support the transformation of traditionally `linear' into `recycling' societies capable of making productive gains in water use and reuse while minimizing environmental pollution.
A decision support tool for selecting the optimal sewage sludge treatment.
Turunen, Ville; Sorvari, Jaana; Mikola, Anna
2018-02-01
Sewage sludge contains significant amounts of resources, such as nutrients and organic matter. At the same time, the organic contaminants (OC) found in sewage sludge are of growing concern. Consequently, in many European countries incineration is currently favored over recycling in agriculture. This study presents a Multi-Attribute Value Theory (MAVT)-based decision support tool (DST) for facilitating sludge treatment decisions. Essential decision criteria were recognized and prioritized, i.e., weighted, by experts from water utilities. Since the fate of organic contaminants was in focus, a simple scoring method was developed to take into account their environmental risks. The final DST assigns each sludge treatment method a preference score expressing its superiority compared to alternative methods. The DST was validated by testing it with data from two Finnish municipal wastewater treatment plants (WWTP). The validation results of the first case study preferred sludge pyrolysis (preference score: 0.629) to other alternatives: composting and incineration (score 0.580, and 0.484 respectively). The preference scores were influenced by WWTP dependent factors, i.e., the operating environment and the weighting of the criteria. A lack of data emerged as the main practical limitation. Therefore, not all of the relevant criteria could be included in the value tree. More data are needed on the effects of treatment methods on the availability of nutrients, the quality of organic matter and sludge-borne OCs. Despite these shortcomings, the DST proved useful and adaptable in decision-making. It can also help achieve a more transparent, understandable and comprehensive decision-making process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automated lettuce nutrient solution management using an array of ion-selective electrodes
USDA-ARS?s Scientific Manuscript database
Automated sensing and control of macronutrients in hydroponic solutions would allow more efficient management of nutrients for crop growth in closed systems. This paper describes the development and evaluation of a computer-controlled nutrient management system with an array of ion-selective electro...
USGS perspectives on an integrated approach to watershed and coastal management
Larsen, Matthew C.; Hamilton, Pixie A.; Haines, John W.; Mason, Jr., Robert R.
2010-01-01
The writers discuss three critically important steps necessary for achieving the goal for improved integrated approaches on watershed and coastal protection and management. These steps involve modernization of monitoring networks, creation of common data and web services infrastructures, and development of modeling, assessment, and research tools. Long-term monitoring is needed for tracking the effectiveness approaches for controlling land-based sources of nutrients, contaminants, and invasive species. The integration of mapping and monitoring with conceptual and mathematical models, and multidisciplinary assessments is important in making well-informed decisions. Moreover, a better integrated data network is essential for mapping, statistical, and modeling applications, and timely dissemination of data and information products to a broad community of users.
Biogeochemical Hotspots: Role of Small Wetlands in Nutrient Processing at the Watershed Scale
NASA Astrophysics Data System (ADS)
Cheng, F. Y.; Basu, N. B.
2016-12-01
Increased loading of nutrients (nitrogen N and phosphorus P) from agricultural and urban intensification in the Anthropocene has led to severe degradation of inland and coastal waters. Amongst aquatic ecosystems, wetlands receive and retain significant quantities of nutrients and thus are important regulators of nutrient transport in watersheds. While the factors controlling N and P retention in wetlands is relatively well known, there is a lack of quantitative understanding on the relative contributions of the different factors on nutrient retention. There is also a deficiency in knowledge of how these processes behave across system size and type. In our study, we synthesized nutrient retention data from wetlands, lakes, and reservoirs to gain insight on the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicated that the first-order reaction rate constant, k [T-1], is inversely proportional to the hydraulic residence time, τ, across six orders of magnitude in residence time for total nitrogen, total phosphorus, nitrate and phosphate. We hypothesized that the consistency of the relationship across constituent and system types points to the strong hydrologic control on biogeochemical processing. The hypothesis was tested using a two-compartment mechanistic model that links the nutrient removal processes (denitrification for N and sedimentation for P) with the system size. Finally, the k-τ relationships were upscaled with a regional size-frequency distribution to demonstrate the disproportionately large role of small wetlands in watershed-scale nutrient processing. Our results highlight the importance of hydrological controls as the dominant modifiers of nutrient removal mechanisms and the need for a stronger focus on small lentic ecosystems like wetlands as major nutrient sinks in the landscape.
USDA-ARS?s Scientific Manuscript database
Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key comp...
The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast
2017-01-01
The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. PMID:28939614
Surendran, U; Rama Subramoniam, S; Raja, P; Kumar, V; Murugappan, V
2016-04-01
Mining of nutrients from soil is a major problem in developing countries causing soil degradation and threaten long-term food production. The present study attempts to apply NUTrient MONitoring (NUTMON) model for carrying out nutrient budgeting to assess the stocks and flows of nitrogen (N), phosphorus (P), and potassium (K) in defined geographical unit based on the inputs, viz., mineral fertilizers, manures, atmospheric deposition, and sedimentation, and outputs, viz., harvested crop produces, residues, leaching, denitrification, and erosion losses. The study area covers Coimbatore and Erode Districts, which are potential agricultural areas in western agro-ecological zone of Tamil Nadu, India. The calculated nutrient balances for both the districts at district scale, using NUTMON methodology, were negative for nitrogen (N -3.3 and -10.1 kg ha(-1)) and potassium (K -58.6 and -9.8 kg ha(-1)) and positive for phosphorus (P +14.5 and 20.5 kg ha(-1)). Soil nutrient pool has to adjust the negative balance of N and K; there will be an expected mining of nutrient from the soil reserve. A strategy was attempted for deriving the fertilizer recommendation using Decision Support System for Integrated Fertilizer Recommendation (DSSIFER) to offset the mining in selected farms. The results showed that when DSSIFER recommended fertilizers are applied to crops, the nutrient balance was positive. NUTMON-Toolbox with DSSIFER would serve the purpose on enhancing soil fertility, productivity, and sustainability. The management options to mitigate nutrient mining with an integrated system approach are also discussed.
Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.
Isaac, Marney E; Kimaro, Anthony A
2011-01-01
Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
These Nutrient Control Seminars will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). These seminars will present ...
DOT National Transportation Integrated Search
2015-06-01
Virginia Stormwater Management Program (VSMP) regulations require transportation projects to account for stormwater runoff impacts from increased impervious surfaces in order to prevent water quality reduction, erosion, and flooding.1 Organizations l...
Geospatial Tools for Evaluating Ecosystems in Lakes and Ponds of the Northeastern US
Northeastern lakes benefit residents and visitors by providing valuable ecosystem services such as nutrient retention, recreational opportunities, and aesthetic value. Concurrently, however, complex changes such landscape change, population growth, and management decisions influ...
USDA-ARS?s Scientific Manuscript database
Cranberry growers are looking for ways to reduce off-site movement of nitrogen (N) and phosphorus (P). Controlled-release fertilizers (CRF) may increase nutrient uptake efficiency in cranberry and decrease potential for nutrient leaching or lateral movement into drainage. Data regarding N and P in...
Oyster reef restoration in controlling coastal pollution around India: A viewpoint.
Chakraborty, Parthasarathi
2017-02-15
Coastal waters receive large amounts of nutrients and pollutants from different point and nonpoint sources through bays and estuaries. Excess supply of nutrients in coastal waters may have detrimental effects, leading to hypoxia and anoxia from eutrophication. Reduction in concentrations of excess nutrients/pollutants in bays/estuarine system is must for healthy coastal ecosystem functioning. Conservations of bays, estuaries and coastal zones are must for sustainable development in any maritime country. Excellent ability of oyster in removing and controlling the concentrations of nutrients, pollutants, suspended particulate matters from bays and estuarine waters stimulated me to provide a viewpoint on oyster reef restoration in controlling nutrient/heavy metals fluxes and marine coastal pollution around India. Oyster reefs restoration may decrease nutrient and heavy metals fluxes in coastal waters and reduce the intensity of oxygen depletion in the coastal Arabian Sea (seasonal) and Bay of Bengal. However, extensive research is recommended to understand the impact of oyster reef restoration in controlling coastal pollution which is essential for sustainable development around India. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iwayama, Koji; Zhu, Liping; Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki
2016-04-12
An amoeboid unicellular organism, a plasmodium of the true slime mold Physarum polycephalum, exhibits complex spatiotemporal oscillatory dynamics and sophisticated information processing capabilities while deforming its amorphous body. We previously devised an 'amoeba-based computer (ABC),' that implemented optical feedback control to lead this amoeboid organism to search for a solution to the traveling salesman problem (TSP). In the ABC, the shortest TSP route (the optimal solution) is represented by the shape of the organism in which the body area (nutrient absorption) is maximized while the risk of being exposed to aversive light stimuli is minimized. The shortness of the TSP route found by ABC, therefore, serves as a quantitative measure of the optimality of the decision made by the organism. However, it remains unclear how the decision-making ability of the organism originates from the oscillatory dynamics of the organism. We investigated the number of coexisting traveling waves in the spatiotemporal patterns of the oscillatory dynamics of the organism. We show that a shorter TSP route can be found when the organism exhibits a lower number of traveling waves. The results imply that the oscillatory dynamics are highly coordinated throughout the global body. Based on the results, we discuss the fact that the decision-making ability of the organism can be enhanced not by uncorrelated random fluctuations, but by its highly coordinated oscillatory dynamics.
Nutrient Control Design Manual
The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...
Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System.
Zhang, Xueyan; Zhang, Jianwu; Li, Lin; Zhang, Yuzhu; Yang, Guocai
2017-02-23
Chongqing mountain citrus orchard is one of the main origins of Chinese citrus. Its planting terrain is complex and soil parent material is diverse. Currently, the citrus fertilization, irrigation and other management processes still have great blindness. They usually use the same pattern and the same formula rather than considering the orchard terrain features, soil differences, species characteristics and the state of tree growth. With the help of the ZigBee technology, artificial intelligence and decision support technology, this paper has developed the research on the application technology of agricultural Internet of Things for real-time monitoring of citrus soil moisture and nutrients as well as the research on the integration of fertilization and irrigation decision support system. Some achievements were obtained including single-point multi-layer citrus soil temperature and humidity detection wireless sensor nodes and citrus precision fertilization and irrigation management decision support system. They were applied in citrus base in the Three Gorges Reservoir Area. The results showed that the system could help the grower to scientifically fertilize or irrigate, improve the precision operation level of citrus production, reduce the labor cost and reduce the pollution caused by chemical fertilizer.
Vizoso-Vázquez, A; Barreiro-Alonso, A; González-Siso, M I; Rodríguez-Belmonte, E; Lamas-Maceiras, M; Cerdán, M E
2018-04-30
The number of ribosomes and their activity need to be highly regulated because their function is crucial for the cell. Ribosome biogenesis is necessary for cell growth and proliferation in accordance with nutrient availability and other external and intracellular signals. High-mobility group B (HMGB) proteins are conserved from yeasts to human and are decisive in cellular fate. These proteins play critical functions, from the maintenance of chromatin structure, DNA repair, or transcriptional regulation, to facilitation of ribosome biogenesis. They are also involved in cancer and other pathologies. In this review, we summarize evidence of how HMGB proteins contribute to ribosome-biogenesis control, with special emphasis on a common nexus to the target of rapamycin (TOR) pathway, a signaling cascade essential for cell growth and proliferation from yeast to human. Perspectives in this field are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitesell, C.D.; DeBell, D.S.; Schubert, T.H.
1992-11-01
A 10-year research and development program was conducted on the island of Hawaii, where nearly 230,000 acres are suitable for growing biomass in short-rotation Eucalyptus plantations. Successful techniques are described for seedling production, plantation establishment (site preparation, weed control, planting), maintenance (weed control, fertilization), biomass yield estimation, and harvest. Basic biological relationships are described to aid decisions on site selection, initial spacing, fertilizer schedules, and rotation length. Environmental issues likely to be faced by growers of Eucalyptus plantations are discussed, including soil erosion, nutrient depletion, and monocultures. Continuing programs for tree improvement, monitoring, and silviculture research are recommeded. Production costsmore » for biomass yields are estimated for three promising management regimes, representing pure Eucalyptus plantings at dense and wide spacings and a mixed species plantation where Albizia is used as a nurse crop to provide nitrogen needed for optimum Eucalyptus growth.« less
Forecasting runoff from Pennsylvania landscapes
USDA-ARS?s Scientific Manuscript database
Identifying sites prone to surface runoff has been a cornerstone of conservation and nutrient management programs, relying upon site assessment tools that support strategic, as opposed to operational, decision making. We sought to develop simple, empirical models to represent two highly different me...
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake
2010-01-01
The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)
1996-01-01
Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in growth similar to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.
Nutrient enrichment of phosphorus and nitrogen is the second most cited cause for impairment of streams and rivers in the U.S. There is a need to develop stream nutrient criteria to control nutrient loadings. Since biotic metrics can assess the overall impact of nutrient enrichm...
The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.
Leitao, Ricardo M; Kellogg, Douglas R
2017-11-06
The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.
Huang, Jianjun; Boerner, Ralph E J
2007-08-01
This study examined tissue nutrient responses of Desmodium nudiflorum to changes in soil total inorganic nitrogen (TIN) and available phosphorus (P) that occurred as the result of the application of alternative forest management strategies, namely (1) prescribed low-intensity fire (B), (2) overstory thinning followed by prescribed fire (T + B), and (3) untreated control C), in two Quercus-dominated forests in the State of Ohio, USA. In the fourth growing season after a first fire, TIN was significantly greater in the control plots (9.8 mg/kg) than in the B (5.5 mg/kg) and T + B (6.4 mg/kg) plots. Similarly, available P was greater in the control sites (101 microg/g) than in the B (45 microg/kg) and T + B (65 microg/kg) sites. Leaf phosphorus ([P]) was higher in the plants from control site (1.86 mg/g) than in either the B (1.77 mg/g) or T + B plants (1.73 mg/g). Leaf nitrogen ([N]) and root [N] showed significant site-treatment interactive effects, while stem [N], stem [P], and root [P] did not differ significantly among treatments. During the first growing season after a second fire, leaf [N], stem [N], litter [P] and available soil [P] were consistently lower in plots of the manipulated treatments than in the unmanaged control plot, whereas the B and T + B plots did not differ significantly from each other. N resorption efficiency was positively correlated with the initial foliar [N] in the manipulated (B and T + B) sites, but there was no such relation in the unmanaged control plots. P resorption efficiency was positively correlated with the initial leaf [P] in both the control and manipulated plots. Leaf nutrient status was strongly influenced by soil nutrient availability shortly after fire, but became more influenced by topographic position in the fourth year after fire. Nutrient resorption efficiency was independent of soil nutrient availability. These findings enrich our understanding of the effects of ecosystem restoration treatments on soil nutrient availability, plant nutrient relations, and plant-soil interactions at different temporal scales.
NASA Astrophysics Data System (ADS)
Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Krause, Stefan
2017-04-01
At the river catchment scale, storm events can drive highly variable behaviour in nutrient and water fluxes, yet short-term dynamics are frequently missed by low resolution sampling regimes. In addition, nutrient source contributions can vary significantly within and between storm events. Our inability to identify and characterise time dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here, we utilise an 8-month high-frequency (hourly) time series of streamflow, nitrate concentration (NO3) and fluorescent dissolved organic matter concentration (FDOM) derived from optical in-situ sensors located in a headwater agricultural catchment. We characterised variability in flow and nutrient dynamics across 29 storm events. Storm events represented 31% of the time series and contributed disproportionately to nutrient loads (43% of NO3 and 36% of CDOM) relative to their duration. Principal components analysis of potential hydroclimatological controls on nutrient fluxes demonstrated that a small number of components, representing >90% of variance in the dataset, were highly significant model predictors of inter-event variability in catchment nutrient export. Hysteresis analysis of nutrient concentration-discharge relationships suggested spatially discrete source zones existed for NO3 and FDOM, and that activation of these zones varied on an event-specific basis. Our results highlight the benefits of high-frequency in-situ monitoring for characterising complex short-term nutrient dynamics and unravelling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights are fundamental to underpinning the development of targeted management measures to reduce nutrient loading of surface waters.
Zhang, Yi; Wang, Liangju; Yuan, Yongge; Xu, Jing; Tu, Cong; Fisk, Connie; Zhang, Weijian; Chen, Xin; Ritchie, David; Hu, Shuijin
2018-02-15
Orchard management practices such as weed control and irrigation are primarily aimed at maximizing fruit yields and economic profits. However, the impact of these practices on soil fertility and soil microbiology is often overlooked. We conducted a two-factor experimental manipulation of weed control by herbicide and trickle irrigation in a nutrient-poor peach (Prunus persica L. cv. Contender) orchard near Jackson Springs, North Carolina. After three and eight years of treatments, an array of soil fertility parameters were examined, including soil pH, soil N, P and cation nutrients, microbial biomass and respiration, N mineralization, and presence of arbuscular mycorrhizal fungi (AMF). Three general trends emerged: 1) irrigation significantly increased soil microbial biomass and activity, 2) infection rate of mycorrhizal fungi within roots were significantly higher under irrigation than non-irrigation treatments, but no significant difference in the AMF community composition was detected among treatments, 3) weed control through herbicides reduced soil organic matter, microbial biomass and activity, and mineral nutrients, but had no significant impacts on root mycorrhizal infection and AMF communities. Weed-control treatments directly decreased availability of soil nutrients in year 8, especially soil extractable inorganic N. Weed control also appears to have altered the soil nutrients via changes in soil microbes and altered net N mineralization via changes in soil microbial biomass and activity. These results indicate that long-term weed control using herbicides reduces soil fertility through reducing organic C inputs, nutrient retention and soil microbes. Together, these findings highlight the need for alternative practices such as winter legume cover cropping that maintain and/or enhance organic inputs to sustain the soil fertility. Copyright © 2017 Elsevier B.V. All rights reserved.
Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M
2016-01-01
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.
21 CFR 106.20 - Ingredient control.
Code of Federal Regulations, 2010 CFR
2010-04-01
... CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES Quality Control Procedures for Assuring Nutrient Content of Infant Formulas § 106.20 Ingredient control. (a) Except as provided in § 106.20(b), no analysis... prepared by the infant formula manufacturer shall be sampled and analyzed for each relied-upon nutrient...
NASA Astrophysics Data System (ADS)
Pullanagari, R. R.; Kereszturi, Gábor; Yule, I. J.
2016-07-01
On-farm assessment of mixed pasture nutrient concentrations is important for animal production and pasture management. Hyperspectral imaging is recognized as a potential tool to quantify the nutrient content of vegetation. However, it is a great challenge to estimate macro and micro nutrients in heterogeneous mixed pastures. In this study, canopy reflectance data was measured by using a high resolution airborne visible-to-shortwave infrared (Vis-SWIR) imaging spectrometer measuring in the wavelength region 380-2500 nm to predict nutrient concentrations, nitrogen (N) phosphorus (P), potassium (K), sulfur (S), zinc (Zn), sodium (Na), manganese (Mn) copper (Cu) and magnesium (Mg) in heterogeneous mixed pastures across a sheep and beef farm in hill country, within New Zealand. Prediction models were developed using four different methods which are included partial least squares regression (PLSR), kernel PLSR, support vector regression (SVR), random forest regression (RFR) algorithms and their performance compared using the test data. The results from the study revealed that RFR produced highest accuracy (0.55 ⩽ R2CV ⩽ 0.78; 6.68% ⩽ nRMSECV ⩽ 26.47%) compared to all other algorithms for the majority of nutrients (N, P, K, Zn, Na, Cu and Mg) described, and the remaining nutrients (S and Mn) were predicted with high accuracy (0.68 ⩽ R2CV ⩽ 0.86; 13.00% ⩽ nRMSECV ⩽ 14.64%) using SVR. The best training models were used to extrapolate over the whole farm with the purpose of predicting those pasture nutrients and expressed through pixel based spatial maps. These spatially registered nutrient maps demonstrate the range and geographical location of often large differences in pasture nutrient values which are normally not measured and therefore not included in decision making when considering more effective ways to utilized pasture.
Nutrient compensatory foraging in a free-living social insect
NASA Astrophysics Data System (ADS)
Christensen, Keri L.; Gallacher, Anthony P.; Martin, Lizzie; Tong, Desmond; Elgar, Mark A.
2010-10-01
The geometric framework model predicts that animal foraging decisions are influenced by their dietary history, with animals targeting a combination of essential nutrients through compensatory foraging. We provide experimental confirmation of nutrient-specific compensatory foraging in a natural, free-living population of social insects by supplementing their diet with sources of protein- or carbohydrate-rich food. Colonies of the ant Iridomyrmex suchieri were provided with feeders containing food rich in either carbohydrate or protein for 6 days, and were then provided with a feeder containing the same or different diet. The patterns of recruitment were consistent with the geometric framework: while feeders with a carbohydrate diet typically attracted more workers than did feeders with protein diet, the difference in recruitment between the two nutrients was smaller if the colonies had had prior access to carbohydrate than protein. Further, fewer ants visited feeders if the colony had had prior access to protein than to carbohydrates, suggesting that the larvae play a role in worker foraging behaviour.
Chong, C; Purvis, P; Lumis, G; Holbein, B E; Voroney, R P; Zhou, H; Liu, H-W; Alam, M Z
2008-04-01
Wastewaters from farm and composting operations are often rich in select nutrients that potentially can be reutilized in crop production. Liners of silverleaf dogwood (Cornus alba L. 'Argenteo-marginata'), common ninebark [Physocarpus opulifolius (L.) Maxim.], and Anthony Waterer spirea (Spiraeaxbumalda Burvénich 'Anthony Waterer') were grown in 6L containers filled with a bark-based commercial mix. Plants were fertigated daily via a computer-controlled multi-fertilizer injector with three recirculated fertilizer treatments: (1) a stock (control) solution with complete macro- and micro-nutrients, electrical conductivity (EC) 2.2 dS m(-1); (2) wastewater from a mushroom farm; and (3) process wastewater from anaerobic digestion of municipal solid waste. The wastewaters used in both treatments 2 and 3 were diluted with tap water, and the computer was programmed to amend, dispense and recirculate nutrients based on the same target EC as in treatment 1. For comparison, there was a traditional controlled-release fertilizer treatment [Nutryon 17-5-12 (17N-2P-10K) plus micro-nutrients topdressed at a rate of 39 g/plant, nutrients not recirculated]. All three species responded similarly to the three recirculated fertilizer treatments. Growth with the recirculated treatments was similar and significantly higher than that obtained with controlled-release fertilizer. Throughout the study, the EC measured in wastewater-derived nutrient solutions, and also in the container substrate, were similar or close to those of the control treatment, although there were small to large differences among individual major nutrients. There was no sign of nutrient deficiency or toxicity symptoms to the plants. Small to moderate excesses in concentrations of SO(4), Na, and/or Cl were physiologically tolerable to the species.
Bubenheim, D L; Wignarajah, K
1997-01-01
The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.
NITROGEN EFFECTS ON COASTAL MARINE ECOSYSTEMS
In the 1960s the problem of nutrient inputs to freshwater systems, and scientific debate about it, was reaching a peak. . . Even before the freshwater decision-makers became fully focused on setting limits on phosphorus (P) loading by a seminal experiment of David Schindler (1974...
Toward an inventory of nitrogen input to the United States
Accurate accounting of nitrogen inputs is increasingly necessary for policy decisions related to aquatic nutrient pollution. Here we synthesize available data to provide the first integrated estimates of the amount and uncertainty of nitrogen inputs to the United States. Abou...
21 CFR 106.25 - In-process control.
Code of Federal Regulations, 2014 CFR
2014-04-01
... analyzed as specified in § 106.30(b)(1), the manufacturer shall analyze each in-process batch for: (1) Solids; (2) Protein, fat, and carbohydrates (carbohydrates either by analysis or by mathematical difference); (3) The indicator nutrient(s) in each nutrient premix; (4) Each nutrient added independently of...
Modeling transport kinetics in clinoptilolite-phosphate rock systems
NASA Technical Reports Server (NTRS)
Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.
1995-01-01
Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.
Ravnikar, Tina; Bohanec, Marko; Muri, Gregor
2016-04-01
The Fifth Triglav Lake is a remote mountain lake in the Julian Alps. The area of the Julian Alps where the lake is situated is protected by law and lies within the Triglav National Park. Mountain lakes in Slovenia were considered for a long time as pristine, unpolluted lakes, but analyses in the last decade revealed considerable human impact even in such remote places. Eutrophication or excessive accumulation of nutrients is the main problem of most lakes in the temperate climatic zone, also in Slovenia. Since the introduction of fish in 1991, the lake is going through a series of changes for which we do not know exactly where they lead, so the monitoring and assessment of anthropogenic activities are of great importance. For this purpose, a qualitative multiattribute decision model was developed with DEX method to assess ecological effects on the lake. The extent of the ecological effects on the lake is assessed using four main parameters: the trophic state, lake characteristics, environmental parameters, and anthropogenic stressors. Dependence of environmental impact on various external factors beyond human control, such as temperature, precipitation, retention time, and factors on which we have influence, such as the amount of wastewater and the presence of fish in the lake, were also evaluated. The following data were measured: chlorophyll a, nutrients, TP, oxygen, C/N ratio, nutrients in sediment, temperature, precipitation, retention time, and volume. We made assumptions about fish and wastewater, which we could not measure. The main contributions of this work are the designed model and the obtained findings for the Fifth Triglav Lake that can help not only scientists in understanding the complexity of lake-watershed systems and interactions among system components but also local authorities to manage and monitor the lake aquatic environment in an effective and efficient way. The model is flexible and can be also used for other lakes, assuming that the used parameters are measured and anthropogenic stressors are adjusted to a specific situation. The results of assessment are of particular interest for decision makers in protected areas, providing a new approach to the management of the quality of the water environment.
Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment
USDA-ARS?s Scientific Manuscript database
Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...
Nutrient intake during peritoneal dialysis at the Prince of Wales Hospital in Hong Kong.
Wang, Angela Yee-Moon; Sea, Mandy Man-Mei; Ng, Kenway; Kwan, Mandy; Lui, Siu-Fai; Woo, Jean
2007-05-01
Individuals undergoing peritoneal dialysis are at increased risk of developing cardiac disease and malnutrition. A cross-sectional survey. 249 Chinese continuous ambulatory peritoneal dialysis (CAPD) patients were recruited from the Prince of Wales Hospital in Hong Kong. Another 249 age- and sex-matched controls were recruited from an archive of 1,010 individuals with known food frequency questionnaire (FFQ) data. To compare the dietary intake pattern of CAPD patients with controls and evaluate its association with background cardiac disease. Intake of different nutrients was estimated by using a 7-day FFQ. Intake of all nutrients was lower in CAPD patients than controls, with resulting lower overall energy intake. Nutrient intake was decreased further in CAPD patients with background cardiac disease, which corresponded to worse nutritional status. Controlling for age, male sex, body weight, diabetes mellitus, dialysis therapy duration, residual renal function, peritoneal dialysis urea clearance, and Charlson Comorbidity Index score, background cardiac disease was associated independently with less intake of energy and most macronutrients and micronutrients. However, the association between background cardiac disease and energy and most nutrient intake was decreased or even lost when additional adjustment was made for C-reactive protein and serum albumin levels. An FFQ is limited in that nutrient quantitation is not exact and may be underestimated as a result of underreporting by patients. CAPD patients were compared with a control group without cardiovascular disease ascertainment that did not include subjects with diabetes. Chinese CAPD patients had significantly lower nutrient intake than age- and sex-matched controls. The association between cardiac disease and lower dietary macronutrient and micronutrient intake in CAPD patients was mediated in part through systemic inflammation, which also was associated with more malnutrition. More attention should be focused on improving the intake pattern of Chinese CAPD patients.
Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport
NASA Astrophysics Data System (ADS)
Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.
2017-12-01
In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.
Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. EP...
Algorithms for in-season nutrient management in cereals
USDA-ARS?s Scientific Manuscript database
The demand for improved decision making products for cereal production systems has placed added emphasis on using plant sensors in-season, and that incorporate real-time, site specific, growing environments. The objective of this work was to describe validated in-season sensor based algorithms prese...
LAKE MICHIGAN MASS BALANCE STUDY: PROGNOSIS FOR PCBS
The Lake Michigan Mass Balance Study was conducted to measure and model nutrients, atrazine, PCBs, trans-nonachlor, and mercury to gain a better understanding of the transport and fate of these substances within the system and to aid managers in the environmental decision-making ...
Giving advice on cost effective measures for a cleaner Baltic Sea: a challenge for science.
Wulff, F; Bonsdorff, E; Gren, I M; Johansson, S; Stigebrandt, A
2001-08-01
The Baltic Sea is one of the world's seas that is most severely affected by human activities. Although there is an international agreement that nutrient input to the Baltic should be reduced, the measures taken so far have not resulted in major reductions in nutrient inputs nor in environmental improvements. The reasons for this are partly due to lack of knowledge on large-scale relationships and couplings between physics, biogeochemistry and ecological properties. But there is also a lack of overall drainage basin-wide analyses on cost-effective measures. There is a danger in making the wrong decisions, e.g. implement reduction schemes that are at worst ineffective or at best, far from cost effective. Researchers from many disciplines are faced with a common challenge: To develop a decision-support system, which can be used as the scientific base for cost-effective measures for the entire Baltic Sea. Such an effort is now being made within the research program MARE (http://www.mare.su.se).
Managing expectations from our land: 3 is the magic number.
NASA Astrophysics Data System (ADS)
Creamer, Rachel; Schulte, Rogier; O'Sullivan, Lilian; Staes, Jan; Vrebos, Dirk; Jones, Arwyn
2017-04-01
In recent years, sustainable food production has risen to the top of the EU policy agenda. Europe's land is now expected to provide multiple ecosystem services (soil functions) for society. These include: i) food production, ii) carbon storage, iii) the provision of clean water, iv) habitats for biodiversity and v) nutrient cycling. A tension exists between the demand for and supply of these soil functions on our land. We cannot expect all soil functions to be delivered simultaneously to optimal capacity, but with careful decision making we can optimise our soils to provide multiple functions. Our societal demands also vary in spatial extent, for example we may require nutrient cycling and food production to be focussed at local scale, but carbon sequestration may be a national target to reduce greenhouse gas emissions. Every day, farmers make decisions on how they manage their land and soil. At the same time, national and European policy makers make long-term decisions on how to manage their soil resources at larger scales. Therefore, the contemporary challenge for researchers and stakeholders is to link the decision making on land management across scales, so that the practicalities of how farmers make decisions is reflected in policy formation and that policies enable farmers to make decisions that meet EU policy objectives. LANDMARK (LAND Management: Assessment, Research, Knowledge base) is a Horizon 2020 consortium of 22 partner institutes from 14 EU countries plus Switzerland, China and Brazil. The primary objective of the LANDMARK project is to provide a policy framework for Functional Land Management at EU level. This implies the identification of policy instruments that could guide the management of soil functions at the appropriate scale. This presentation will provide an overview of the challenge faced across these scales, from local to European, it will demonstrate how local decision making must try and account for the delivery of at least three soil functions to contribute to sustainable soil management.
NASA Astrophysics Data System (ADS)
Coelho, J. P.; Lillebø, A. I.; Crespo, D.; Leston, S.; Dolbeth, M.
2018-05-01
The main aim of this study was to evaluate the impact of the alien invasive bivalve Corbicula fluminea (Müller, 1774) in the nutrient dynamics of temperate estuarine systems (oligohaline areas) under climate change scenarios. The scenarios simulated shifts in climatic conditions, following salinity (0 or 5) and temperature (24 or 30 °C) changes, usual during drought and heat wave events. The effect of the individual size/age (different size classes with fixed biomass) and density (various densities of <1 cm clams) on the bioturbation-associated nutrient dynamics were also evaluated under an 18-day laboratory experimental setup. Results highlight the significant effect of C. fluminea on the ecosystem nutrient dynamics, enhancing the efflux of both phosphate and dissolved inorganic nitrogen (DIN) from the sediments to the water column. Both drought and heat wave events will have an impact on the DIN dynamics within C. fluminea colonized systems, favouring a higher NH4-N efflux. The population structure of C. fluminea will have a decisive role on the impact of the species, with stronger nutrient effluxes associated with a predominantly juvenile population structure.
Performance test of nutrient control equipment for hydroponic plants
NASA Astrophysics Data System (ADS)
Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.
2017-11-01
Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.
Physiological Response of Plants Grown on Porous Ceramic Tubes
NASA Technical Reports Server (NTRS)
Tsao, David; Okos, Martin
1997-01-01
This research involves the manipulation of the root-zone water potential for the purposes of discriminating the rate limiting step in the inorganic nutrient uptake mechanism utilized by higher plants. This reaction sequence includes the pathways controlled by the root-zone conditions such as water tension and gradient concentrations. Furthermore, plant based control mechanisms dictated by various protein productions are differentiated as well. For the nutrients limited by the environmental availability, the kinetics were modeled using convection and diffusion equations. Alternatively, for the nutrients dependent upon enzyme manipulations, the uptakes are modeled using Michaelis-Menten kinetics. In order to differentiate between these various mechanistic steps, an experimental apparatus known as the Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) was used. Manipulation of the applied suction pressure circulating a nutrient solution through this system imposes a change in the matric component of the water potential. This compensates for the different osmotic components of water potential dictated by nutrient concentration. By maintaining this control over the root-zone conditions, the rate limiting steps in the uptake of the essential nutrients into tomato plants (Lycopersicon esculentum cv. Cherry Elite) were differentiated. Results showed that the uptake of some nutrients were mass transfer limited while others were limited by the enzyme kinetics. Each of these were adequately modeled with calculations and discussions of the parameter estimations provided.
The objective of this poster is by comparing nutrient and DOM concentrations in small and large streams, we hope to better understand: (1) watershed controls on stream nutrient and DOM concentrations; and (2) the variability of nutrient and DOM concentrations within a river netwo...
Soil and Nutrient Loss Following Site Preparation Burning
J.P. Field; E.A. Carter
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinus taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff...
Soil and nutrient loss following site preparation burning
J.P. Field; K.W. Farrish; E.A. Carter
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff...
Xiao-Tao, Lü; Reed, Sasha C.; Yu, Qiang; Han, Xing-Guo
2016-01-01
Taken together, the results suggest plants in this ecosystem are much more responsive to changing N cycles than P cycles and emphasize the significance of nutrient resorption as an important plant control over the stoichiometric coupling of N and P under nutrient enriched conditions.
Fourqurean, James W; Muth, Meredith F; Boyer, Joseph N
2010-07-01
Despite marked gradients in nutrient availability that control the abundance and species composition of seagrasses in south Florida, and the importance of nutrient availability in controlling abundance and composition of epiphytes on seagrasses in other locations, we did not find that epiphyte load on the dominant seagrass, Thalassia testudinum, or that the relative contribution of algal epiphytes to the epiphyte community, was positively correlated with nutrient availability in the water column or the sediment in oligotrophic seagrass beds. Further, the abundance of microphytobenthos, as indicated by Chlorophyll-a concentration in the sediments, was not directly correlated with concentrations of nutrients in the sediments. Our results suggest that epiphyte and microphytobenthos abundance are not unambiguous indicators of nutrient availability in relatively pristine seagrass environments, and therefore would make poor candidates for indicators of the status and trends of seagrass ecosystems in relatively low-nutrient environments like the Florida Keys. Copyright 2010 Elsevier Ltd. All rights reserved.
Mothers of young children cluster into 4 groups based on psychographic food decision influencers.
Byrd-Bredbenner, Carol; Abbot, Jaclyn Maurer; Cussler, Ellen
2008-08-01
This study explored how mothers grouped into clusters according to multiple psychographic food decision influencers and how the clusters differed in nutrient intake and nutrient content of their household food supply. Mothers (n = 201) completed a survey assessing basic demographic characteristics, food shopping and meal preparation activities, self and spouse employment, exposure to formal food or nutrition education, education level and occupation, weight status, nutrition and food preparation knowledge and skill, family member health and nutrition status, food decision influencer constructs, and dietary intake. In addition, an in-home inventory of 100 participants' household food supplies was conducted. Four distinct clusters presented when 26 psychographic food choice influencers were evaluated. These clusters appear to be valid and robust classifications of mothers in that they discriminated well on the psychographic variables used to construct the clusters as well as numerous other variables not used in the cluster analysis. In addition, the clusters appear to transcend demographic variables that often segment audiences (eg, race, mother's age, socioeconomic status), thereby adding a new dimension to the way in which this audience can be characterized. Furthermore, psychographically defined clusters predicted dietary quality. This study demonstrates that mothers are not a homogenous group and need to have their unique characteristics taken into consideration when designing strategies to promote health. These results can help health practitioners better understand factors affecting food decisions and tailor interventions to better meet the needs of mothers.
NASA Astrophysics Data System (ADS)
Marcarelli, A. M.
2005-05-01
To test the importance of factors controlling N-fixation in subalpine streams, I conducted a stream-side mesocosm experiment with epilithic communities and nutrient diffusing substrates (NDS) to test how temperature and nutrients interact to influence algal communities. Within two days, warm temperature (18°C) stimulated N-fixation by Calothrix in the epilithic community 2X above cold temperature (13°C), indicating a strong physiological response. Community responses measured on NDS indicated that cold-water diatoms dominated by day 45 in the cold treatment, while diatoms containing N-fixing endosymbionts dominated only in warm treatments with added phosphorus. There was a significant interaction between nutrient supply and temperature on N-fixation rates in the experiment. On nutrient controls, warm temperature boosted fixation 2X above cold temperature, but when P was added, temperature increased fixation 20X. This study indicates that N-fixation is stimulated both by temperature and nutrients in this stream, but the magnitude of response to phosphorus was much greater than to temperature. Furthermore, our results support the hypothesis that biological characteristics in streams, including community structure and biogeochemical processes, can be altered in complex ways by disturbances like grazing and logging that alter multiple controlling factors simultaneously.
Amoeboid organism solves complex nutritional challenges
Dussutour, Audrey; Latty, Tanya; Beekman, Madeleine; Simpson, Stephen J.
2010-01-01
A fundamental question in nutritional biology is how distributed systems maintain an optimal supply of multiple nutrients essential for life and reproduction. In the case of animals, the nutritional requirements of the cells within the body are coordinated by the brain in neural and chemical dialogue with sensory systems and peripheral organs. At the level of an insect society, the requirements for the entire colony are met by the foraging efforts of a minority of workers responding to cues emanating from the brood. Both examples involve components specialized to deal with nutrient supply and demand (brains and peripheral organs, foragers and brood). However, some of the most species-rich, largest, and ecologically significant heterotrophic organisms on earth, such as the vast mycelial networks of fungi, comprise distributed networks without specialized centers: How do these organisms coordinate the search for multiple nutrients? We address this question in the acellular slime mold Physarum polycephalum and show that this extraordinary organism can make complex nutritional decisions, despite lacking a coordination center and comprising only a single vast multinucleate cell. We show that a single slime mold is able to grow to contact patches of different nutrient quality in the precise proportions necessary to compose an optimal diet. That such organisms have the capacity to maintain the balance of carbon- and nitrogen-based nutrients by selective foraging has considerable implications not only for our understanding of nutrient balancing in distributed systems but for the functional ecology of soils, nutrient cycling, and carbon sequestration. PMID:20142479
Threats to the ecological integrity of marine and estuarine systems operate over many spatial scales, from nutrient enrichment at watershed/estuarine linkages to invasive species and climate change at regional/global scales. Decision support tools and information systems needed t...
Kafle, Arjun; Garcia, Kevin; Wang, Xiurong; Pfeffer, Philip E; Strahan, Gary D; Bücking, Heike
2018-06-02
Legumes form tripartite interactions with arbuscular mycorrhizal (AM) fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the SUT and SWEET family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits. This article is protected by copyright. All rights reserved.
Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching.
Vega Thurber, Rebecca L; Burkepile, Deron E; Fuchs, Corinne; Shantz, Andrew A; McMinds, Ryan; Zaneveld, Jesse R
2014-02-01
Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat-forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5-fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching-induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future. © 2013 John Wiley & Sons Ltd.
Long term growth responses of loblolly pine to optimal nutrient and water resource availability
Timothy J. Albaugh; H. Lee Allen; Phillip M. Dougherty; Kurt H. Johnsen
2004-01-01
A factorial combination of four treatments (control (CW), optimal growing season water availability (IW), optimum nutrient availability (FW), and combined optimum water and nutrient availability (FIW)) in four replications were initiated in an 8-year- old Pinus taeda stand growing on a droughty, nutrient-poor, sandy site in Scotland County, NC and...
Artificial Soil With Build-In Plant Nutrients
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Allen, Earl; Henninger, Donald; Golden, D. C.
1995-01-01
Nutrients contained in sandlike material. Artificial soil provides nutrients to plants during several growing seasons without need to add fertilizer or nutrient solution. When watered, artificial soil slowly releases all materials a plant needs to grow. Developed as medium for growing crops in space. Also used to grow plants on Earth under controlled conditions or even to augment natural soil.
Soil an-d nutrient loss following site preparation burning
E.A. Carter; J.P. Field; K.W. Farrish
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff samples indicated that...
Szajewska, Hania
2011-12-01
The role of early nutrition as a cost-effective measure to ensure optimal infant growth, development, and long-term health is gaining attention. In particular, the role of supplementation with nutrients such as n-3 (omega-3) fatty acids, iron, zinc, and B vitamins, which are relevant to brain structure and function, is of interest. However, for all of these nutrients, there is a lack of clarity and no consensus regarding their role in the mental and motor development of children. Systematic reviews with or without a meta-analysis are a well-established means of reviewing existing evidence and of integrating findings from various studies, including those related to infant nutrition. In this article, I provide an overview of the basic principles of systematic review and meta-analysis of randomized controlled trials (RCTs) and summarize such evidence related to the effects of early nutrition on mental and motor development. The inclusion of only RCTs in a systematic review could be considered the major strength. Randomization is the only means to control for unknown and unmeasured differences between comparison groups as well as for those that are known and measured. However, even if only RCTs are included, reviews are not free of potential biases. An understanding of the strengths and limitations of the meta-analytic approach, which I discuss in this article, is needed by everyone involved in decision making regarding interventions assessed by this approach.
Sabu, T. K.; Nirdev, P. M.; Aswathi, P.
2014-01-01
Abstract An analysis of host plant leaf age preferences and phenology studies led to the predictions that tender rubber plant leaves are essential for the completion of the life cycle of the Mupli beetle, Luprops tristis Fabricius (Coleoptera: Tenebrionidae) and that low tender leaf availability during the post-dormancy stage will limit the beetle population. Analyses of the effects of feeding the beetles leaves of various ages, nitrogen (N) content, and moisture content on fecundity and the duration of post-dormancy survival were carried out. The results showed that tender leaf availability during the post-dormancy phase of L. tristis is a critical factor that determines the survival of L. tristis adults and the subsequent generation. The control of powdery mildew ( Odium hevea ) disease-mediated premature leaf fall in rubber plantations may regulate the beetle population. A peak in fecundity during the early phase of post-dormancy is proposed as an adaptive mechanism of L. tristis to synchronize egg production and feeding with tender leaf availability in rubber plantations. Variations in nutrient levels and moisture content between deciduous rubber tree leaves of different ages are attributed to the leaf nutrient resorption mechanism of senescing leaves. These results established that tender leaves with high N and moisture levels are essential for post-dormancy survival and that N influences fecundity. The results of the experiments could aid decision making regarding the population management and control of L. tristis in rubber plantations. PMID:25373159
Herbivores and nutrients control grassland plant diversity via light limitation
USDA-ARS?s Scientific Manuscript database
Human alterations to nutrient cycles and herbivore communities are dramatically altering global biodiversity. Theory predicts these changes to be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive excl...
Nutrient-gene interactions in early pregnancy: a vascular hypothesis.
Steegers-Theunissen, R P M; Steegers, E A P
2003-02-10
It is hypothesized that the following periconceptional and early pregnancy nutrient-gene interactions link vascular-related reproductive complications and cardiovascular diseases in adulthood: (1) Maternal and paternal genetically controlled nutrient status affects the quality of gametes and fertilization capacity; (2) The embryonic genetic constitution, derived from both parents, and the maternal genetically controlled nutrient environment determine embryogenesis and fetal growth; (3) Trophoblast invasion of decidua and spiral arteries is driven by genes derived from both parents as well as by maternal nutritional factors; (4) Angiogenesis, vasculogenesis and vascular function are dependent on the genetic constitution of the embryo, derived from both parents, and the maternal genetically controlled nutritional environment.Early intra-uterine programming of vessels may concern the same (in)dependent determinants of vascular-related complications during pregnancy and cardiovascular diseases in later life.
Steyfkens, Fenella; Zhang, Zhiqiang; Van Zeebroeck, Griet; Thevelein, Johan M
2018-01-01
The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae . In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA) pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s) induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in the development of receptors from nutrient transporters during evolution. The nutrient-sensing transceptor system in yeast for activation of the PKA pathway has served as a paradigm for similar studies on candidate nutrient transceptors in other eukaryotes and we succinctly discuss the many examples of transceptors that have already been documented in other yeast species, filamentous fungi, plants, and animals, including the examples in human cells.
Translational Regulation in Nutrigenomics12
Liu, Botao; Qian, Shu-Bing
2011-01-01
The emergence of genome-wide analysis to interrogate cellular DNA, RNA, and protein content has revolutionized the study of the control network that mediates cellular homeostasis. Nutrigenomics addresses the effect of nutrients on gene expression, which provides a basis for understanding the biological activity of dietary components. Translation of mRNAs represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular, under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are influenced by nutrient signaling. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during pathophysiological conditions by translation of selective mRNAs. Here we describe recent advances in our understanding of translational control, nutrient signaling, and their dysregulation in aging and cancer. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health. PMID:22332093
Time trends and patterns of reported egg consumption in the U.S. by sociodemographic characteristics
USDA-ARS?s Scientific Manuscript database
Eggs have the potential to contribute essential nutrients to nutritionally vulnerable populations on limited food budgets. Further research is needed to better understand patterns of egg consumption across diverse sociodemographic groups in order to inform clinical practice and industry decision-mak...
Douds, D D; Schenck, N C
1990-02-01
Adjustment of pot culture nutrient solutions increased root colonization and sporulation of vesicular-arbuscular mycorrhizal (VAM) fungi. Paspalum notatum Flugge and VAM fungi were grown in a sandy soil low in N and available P. Hoagland nutrient solution without P enhanced sporulation in soil and root colonization of Acaulospora longula, Scutellospora heterogama, Gigaspora margarita, and a wide range of other VAM fungi over levels produced by a tap water control or nutrient solutions containing P. However, Glomus intraradices produced significantly more spores in plant roots in the tap water control treatment. The effect of the nutrient solutions was not due solely to N nutrition, because the addition of NH(4)NO(3) decreased both colonization and sporulation by G. margarita relative to levels produced by Hoagland solution without P.
Nutrient Management in Recirculating Hydroponic Culture
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
2004-01-01
There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.
A porous stainless steel membrane system for extraterrestrial crop production
NASA Technical Reports Server (NTRS)
Koontz, H. V.; Prince, R. P.; Berry, W. L.; Knott, W. M. (Principal Investigator)
1990-01-01
A system was developed in which nutrient flow to plant roots is controlled by a thin (0.98 or 1.18 mm) porous (0.2 or 0.5 microns) stainless steel sheet membrane. The flow of nutrient solution through the membrane is controlled by adjusting the relative negative pressure on the nutrient solution side of the membrane. Thus, the nutrient solution is contained by the membrane and cannot escape from the compartment even under microgravity conditions if the appropriate pressure gradient across the membrane is maintained. Plant roots grow directly on the top surface of the membrane and pull the nutrient solution through this membrane interface. The volume of nutrient solution required by this system for plant growth is relatively small, since the plenum, which contains the nutrient solution in contact with the membrane, needs only to be of sufficient size to provide for uniform flow to all parts of the membrane. Solution not passing through the membrane to the root zone is recirculated through a reservoir where pH and nutrient levels are controlled. The size of the solution reservoir depends on the sophistication of the replenishment system. The roots on the surface of the membrane are covered with a polyethylene film (white on top, black on bottom) to maintain a high relative humidity and also limit light to prevent algal growth. Seeds are sown directly on the stainless steel membrane under the holes in the polyethylene film that allow a pathway for the shoots.
Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Hu, Guojie; Yue, Guangyang; Sheng, Yu; Wu, Jichun; Chen, Ji; Wang, Zhiwei; Li, Wangping; Zou, Defu; Ping, Chien-Lu; Shang, Wen; Zhao, Yuguo; Zhang, Ganlin
2018-05-01
Soil nutrient stoichiometry and its environmental controllers play vital roles in understanding soil-plant interaction and nutrient cycling under a changing environment, while they remain poorly understood in alpine grassland due to lack of systematic field investigations. We examined the patterns and controls of soil nutrients stoichiometry for the top 10cm soils across the Tibetan ecosystems. Soil nutrient stoichiometry varied substantially among vegetation types. Alpine swamp meadow had larger topsoil C:N, C:P, N:P, and C:K ratios compared to the alpine meadow, alpine steppe, and alpine desert. In addition, the presence or absence of permafrost did not significantly impact soil nutrient stoichiometry in Tibetan grassland. Moreover, clay and silt contents explained approximately 32.5% of the total variation in soil C:N ratio. Climate, topography, soil properties, and vegetation combined to explain 10.3-13.2% for the stoichiometry of soil C:P, N:P, and C:K. Furthermore, soil C and N were weakly related to P and K in alpine grassland. These results indicated that the nutrient limitation in alpine ecosystem might shifts from N-limited to P-limited or K-limited due to the increase of N deposition and decrease of soil P and K contents under the changing climate conditions and weathering stages. Finally, we suggested that soil moisture and mud content could be good predictors of topsoil nutrient stoichiometry in Tibetan grassland. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.
2016-04-01
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.
Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H
2016-04-05
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.
Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.
2016-01-01
Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973
Optimizing simulated fertilizer additions using a genetic algorithm with a nutrient uptake model
Wendell P. Cropper; N.B. Comerford
2005-01-01
Intensive management of pine plantations in the southeastern coastal plain typically involves weed and pest control, and the addition of fertilizer to meet the high nutrient demand of rapidly growing pines. In this study we coupled a mechanistic nutrient uptake model (SSAND, soil supply and nutrient demand) with a genetic algorithm (GA) in order to estimate the minimum...
Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato.
McKeehen, J D; Mitchell, C A; Wheeler, R M; Bugbee, B; Nielsen, S S
1996-01-01
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.
Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato
NASA Technical Reports Server (NTRS)
McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.
1996-01-01
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.
Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato
NASA Astrophysics Data System (ADS)
McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.
Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System
NASA Technical Reports Server (NTRS)
Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.
1998-01-01
Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.
NASA Astrophysics Data System (ADS)
Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua
2018-04-01
Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.
Paerl, Hans
2008-01-01
Nutrient and hydrologic conditions strongly influence harmful planktonic and benthic cyanobacterial bloom (CHAB) dynamics in aquatic ecosystems ranging from streams and lakes to coastal ecosystems. Urbanization, agricultural and industrial development have led to increased nitrogen (N) and phosphorus (P) discharge, which affect CHAB potentials of receiving waters. The amounts, proportions and chemical composition of N and P sources can influence the composition, magnitude and duration of blooms. This, in turn, has ramifications for food web dynamics (toxic or inedible CHABs), nutrient and oxygen cycling and nutrient budgets. Some CHABs are capable of N2 fixation, a process that can influence N availability and budgets. Certain invasive N2 fixing taxa (e.g., Cylindrospermopsis, Lyngbya) also effectively compete for fixed N during spring, N-enriched runoff periods, while they use N2 fixation to supplant their N needs during N-deplete summer months. Control of these taxa is strongly dependent on P supply. However, additional factors, such as molar N:P supply ratios, organic matter availability, light attenuation, freshwater discharge, flushing rates (residence time) and water column stability play interactive roles in determining CHAB composition (i.e. N2 fixing vs. non-N2 fixing taxa) and biomass. Bloom potentials of nutrient-impacted waters are sensitive to water residence (or flushing) time, temperatures (preference for > 15 degrees C), vertical mixing and turbidity. These physical forcing features can control absolute growth rates of bloom taxa. Human activities may affect "bottom up" physical-chemical modulators either directly, by controlling hydrologic, nutrient, sediment and toxic discharges, or indirectly, by influencing climate. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on N and/or P. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by flushing and artificial mixing (along with nutrient input constraints) can be effective alternatives. Blooms that are not readily consumed and transferred up the food web will form a relatively large proportion of sedimented organic matter. This, in turn, will exacerbate sediment oxygen demand, and enhance the potential for oxygen depletion and release of nutrients back to the water column. This scenario is particularly problematic in long-residence time (i.e., months) systems, where blooms may exert a strong positive feedback on future events. Implications of these scenarios and the confounding issues of climatic (hydrologic) variability, including droughts, tropical storms, hurricanes and floods, will be discussed in the context of developing effective CHAB control strategies along the freshwater-marine continuum.
Empirical evidence of the efficiency and efficacy of fat taxes and thin subsidies.
Clark, J Stephen; Dittrich, Ludwig O; Xu, Qin
2014-09-01
This study summarizes the empirical literature on fat taxes and thin subsidies to assess their efficiency and efficacy as instruments of public policy to control obesity. Three specific types of taxes are studied in the literature: food group taxes; nutrient taxes; and nutrient index taxes. Anumber of studies use food expenditure data to assess the impact of various taxes on obesity and therefore only indirectly measure the impacts of taxes and subsidies on obesity. These studies generally conclude that food group taxes, nutrient taxes and nutrient index taxes have a small impact on the purchases of food and the nutrients purchased. Other studies use the body mass index as the explanatory variable and thus measure the impacts of taxes on body mass index directly. Nutrient taxes are found to be more effective than food group taxes, although even for nutrient taxes, the effects are small. In general, thin subsidies seem to offer more effective control of obesity than obesity taxes. However, due to the small effects of both fat taxes and thin subsidies, they are not recommended as instruments of food and nutrition policy.
Kjerstadius, H; Haghighatafshar, S; Davidsson, Å
2015-01-01
In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.
Roseman, Mary G; Joung, Hyun-Woo; Littlejohn, Emily I
2018-05-01
Front-of-package (FOP) labels are increasing in popularity on retail products. Reductive FOP labels provide nutrient-specific information, whereas evaluative FOP labels summarize nutrient information through icons. Better understanding of consumer behavior regarding FOP labels is beneficial to increasing consumer use of nutrition labeling when making grocery purchasing decisions. We aimed to determine FOP label format effectiveness in aiding consumers at assessing nutrient density of food products. In addition, we sought to determine relationships between FOP label use and attitude toward healthy eating, diet self-assessment, self-reported health and nutrition knowledge, and label and shopping behaviors. A between-subjects experimental design was employed. Participants were randomly assigned to one of four label conditions: Facts Up Front, Facts Up Front Extended, a binary symbol, and no-label control. One hundred sixty-one US primary grocery shoppers, aged 18 to 69 years. Participants were randomly invited to the online study. Participants in one of four label condition groups viewed three product categories (cereal, dairy, and snacks) with corresponding questions. Adults' nutrition assessment of food products based on different FOP label formats, along with label use and attitude toward healthy eating, diet self-assessment, self-reported health and nutrition knowledge, and label and shopping behaviors. Data analyses included descriptive statistics, χ 2 tests, and logistical regression. Significant outcomes were set to α=.05. Participants selected the more nutrient-dense product in the snack food category when it contained an FOP label. Subjective health and nutrition knowledge and frequency of selecting food for healthful reasons were associated with FOP label use (P<0.01 and P<0.05, respectively). Both Facts Up Front (reductive) and binary (evaluative) FOP labels appear effective for nutrition assessment of snack products compared with no label. Specific attitude and behavior factors were associated with label use. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Forster, Hannah; Walsh, Marianne C; O'Donovan, Clare B; Woolhead, Clara; McGirr, Caroline; Daly, E J; O'Riordan, Richard; Celis-Morales, Carlos; Fallaize, Rosalind; Macready, Anna L; Marsaux, Cyril F M; Navas-Carretero, Santiago; San-Cristobal, Rodrigo; Kolossa, Silvia; Hartwig, Kai; Mavrogianni, Christina; Tsirigoti, Lydia; Lambrinou, Christina P; Godlewska, Magdalena; Surwiłło, Agnieszka; Gjelstad, Ingrid Merethe Fange; Drevon, Christian A; Manios, Yannis; Traczyk, Iwona; Martinez, J Alfredo; Saris, Wim H M; Daniel, Hannelore; Lovegrove, Julie A; Mathers, John C; Gibney, Michael J; Gibney, Eileen R; Brennan, Lorraine
2016-06-30
Despite numerous healthy eating campaigns, the prevalence of diets high in saturated fatty acids, sugar, and salt and low in fiber, fruit, and vegetables remains high. With more people than ever accessing the Internet, Web-based dietary assessment instruments have the potential to promote healthier dietary behaviors via personalized dietary advice. The objectives of this study were to develop a dietary feedback system for the delivery of consistent personalized dietary advice in a multicenter study and to examine the impact of automating the advice system. The development of the dietary feedback system included 4 components: (1) designing a system for categorizing nutritional intakes; (2) creating a method for prioritizing 3 nutrient-related goals for subsequent targeted dietary advice; (3) constructing decision tree algorithms linking data on nutritional intake to feedback messages; and (4) developing personal feedback reports. The system was used manually by researchers to provide personalized nutrition advice based on dietary assessment to 369 participants during the Food4Me randomized controlled trial, with an automated version developed on completion of the study. Saturated fatty acid, salt, and dietary fiber were most frequently selected as nutrient-related goals across the 7 centers. Average agreement between the manual and automated systems, in selecting 3 nutrient-related goals for personalized dietary advice across the centers, was highest for nutrient-related goals 1 and 2 and lower for goal 3, averaging at 92%, 87%, and 63%, respectively. Complete agreement between the 2 systems for feedback advice message selection averaged at 87% across the centers. The dietary feedback system was used to deliver personalized dietary advice within a multi-country study. Overall, there was good agreement between the manual and automated feedback systems, giving promise to the use of automated systems for personalizing dietary advice. Clinicaltrials.gov NCT01530139; https://clinicaltrials.gov/ct2/show/NCT01530139 (Archived by WebCite at http://www.webcitation.org/6ht5Dgj8I).
Potato growth and yield using nutrient film technique (NFT)
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Hinkle, C. R.
1990-01-01
Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.
Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.
Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D
2014-01-01
Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.
Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients
Matimati, Ignatious
2014-01-01
Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035
Impact of managed moorland burning on peat nutrient and base cation status
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Gilpin, Martin; Wearing, Catherine; Johnston, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
Controlled 'patch' burning of moorland vegetation has been used for decades in the UK to stimulate growth of heather (Calluna vulgaris) for game bird habitat and livestock grazing. Typically small patches (300-900 m2) are burned in rotations of 8-25 years. However, our understanding of the short-to-medium term environmental impacts of the practice on these sensitive upland areas has so far been limited by a lack of scientific data. In particular the effect of burning on concentrations of base cations and acid-base status of these highly organic soils has implications both for ecosystem nutrient status and for buffering of acidic waters. As part of the EMBER project peat chemistry data were collected in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Soil solution chemistry was also monitored at two intensively studied sites (one regularly burned and one control). Fifty-centimetre soil cores, sectioned into 5-cm intervals, were collected from triplicate patches of four burn ages at each burned site, and from twelve locations at similar hillslope positions at each control site. At the two intensively monitored sites, soil solution chemistry was monitored at four depths in each patch. Across all sites, burned plots had significantly smaller cation exchange capacities, lower concentrations of exchangeable base cations and increased concentrations of exchangeable H+ and Al3+ in near-surface soil. C/N ratios were also lower in burned compared to unburned surface soils. There was no consistent trend between burn age and peat chemistry across all burned sites, possibly reflecting local controls on post-burn recovery rates or external influences on burn management decisions. At the intensively monitored site, plots burned less than two years prior to sampling had significantly smaller exchange capacities and lower concentrations of soil base cations in surface soils relative to plots burned 15-25 years previously. In contrast, surface soil solutions in recently burned plots were enriched in base cations relative to older plots and relative to the control site, possibly due to enhanced leaching at bare soil surfaces. The results offer evidence for an impact of burning on peat nutrient and acid-base status, but suggest that soils recover given time with no further burning.
NASA Astrophysics Data System (ADS)
Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun
2013-03-01
Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.
Leaf life span and the mobility of "non-mobile" mineral nutrients - the case of boron in conifers
Pedro J. Aphalo; Anna W. Schoettle; Tarja Lehto
2002-01-01
Nutrient conservation is considered important for the adaptation of plants to infertile environments. The importance of leaf life spans in controlling mean residence time of nutrients in plants has usually been analyzed in relation to nutrients that can be retranslocated within the plant. Longer leaf life spans increase the mean residence time of all mineral...
Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A
2017-07-01
Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity. © 2017 by the Ecological Society of America.
Collins, Sarah M.; Oliver, Samantha K.; Lapierre, Jean-Francois; Stanley, Emily H.; Jones, John R.; Wagner, Tyler; Soranno, Patricia A.
2017-01-01
Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry. Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity.
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing. PMID:29556497
The role of headwater streams in downstream water quality
Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing.
The Role of Headwater Streams in Downstream Water Quality1
Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565
21 CFR 106.30 - Finished product evaluation.
Code of Federal Regulations, 2014 CFR
2014-04-01
... FOR HUMAN CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES (Eff. until 7-10-14) Quality Control... the maintenance of nutrient content throughout the shelf life of the product. (c) The manufacturer... nutrients, and the biological quality of the protein. A protein biological quality analysis is not necessary...
Alves-de-Souza, Catharina; Pecqueur, David; Le Floc’h, Emilie; Mas, Sébastien; Roques, Cécile; Mostajir, Behzad; Vidussi, Franscesca; Velo-Suárez, Lourdes; Sourisseau, Marc; Fouilland, Eric; Guillou, Laure
2015-01-01
Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole. PMID:26030411
NASA Astrophysics Data System (ADS)
Davis, J. M.; McDowell, W. H.; Campbell, J. E.; Hristov, A. N.
2010-12-01
Developing sustainable agricultural practices and policies requires an understanding of the hydrological and biological processes that control nutrient fluxes and how those processes are manifested in nutrient loading of surface water bodies. Groundwater and surface water from the UNH Organic Research Dairy, located in southeast New Hampshire, flow into the Lamprey River and then into the Great Bay, New Hampshire; both are experiencing increasing nutrient loads. The farm hosts approximately 80 Jersey cows (40 milking) and is located on relatively thin (<10m) glacial deposits that include sandy glacial till moraines, an ice-contact delta, and marine silt and clay overlying fractured calcareous quartzite. Recharge of precipitation is the dominant mode through which nutrients are introduced into the hydrologic system. Intensive meteorological, hydrological, and biogeochemical monitoring of a 35 hectare watershed that includes the main farm operation buildings and several pastures has been underway since June 2009. A three-dimensional transient unsaturated-saturated groundwater flow model was developed using LIDAR topography and detailed field mapping. The transient model was calibrated to observed water level and streamflow observations. Model results suggest that summer recharge rates vary considerably across the site and depth to the water table is the dominant control on the recharge flux. Areas having depth to water of 1-2 m experience the greatest recharge (up to 60% of precipitation). Areas with deeper water tables experience greater evapotranspiration from the vadose zone, and shallower water tables experience greater runoff. Water budget calculations suggest that the hydrologic fluxes occur predominately in the shallow groundwater, wetlands, and small surface streams draining the watershed. High dissolved nitrogen (N) concentrations (up to an average concentration of 35 mg N/L) are observed in groundwater immediately downgradient from the main farm operation and decrease more than an order of magnitude along the flowpaths. However, Nitrogen-15 concentrations do not change appreciably along flowpaths, suggesting that reductions in N concentrations are primarily due to dilution rather than denitrification. Our overall objective is to understand how farm hydrology and biogeochemistry are linked to farm management. Our understanding of biophysical feedbacks and functional links can be used to guide sustainable management actions, informing decisions about the timing and location of manure applications and other farm operations.
NASA Astrophysics Data System (ADS)
Nelson, N.; Munoz-Carpena, R.; Phlips, E. J.
2017-12-01
Diversity in the eco-physiological adaptations of cyanobacteria genera creates challenges for water managers who are tasked with developing appropriate actions for controlling not only the intensity and frequency of cyanobacteria blooms, but also reducing the potential for blooms of harmful taxa (e.g., toxin producers, N2 fixers). Compounding these challenges, the efficacy of nutrient management strategies (phosphorus-only versus nitrogen-and-phosphorus) for cyanobacteria bloom abatement is the subject of an ongoing debate, which increases uncertainty associated with bloom mitigation decision-making. In this work, we analyze a unique long-term (17-year) dataset composed of monthly observations of cyanobacteria genera abundances, zooplankton abundances, water quality, and flow from Lake George, a bloom-impacted flow-through lake of the St. Johns River (FL, USA). Using the Random Forests machine learning algorithm, an assumption-free ensemble modeling approach, the dataset was evaluated to quantify and characterize relationships between environmental conditions and seven cyanobacteria groupings: five genera (Anabaena, Cylindrospermopsis, Lyngbya, Microcystis, and Oscillatoria) and two functional groups (N2 fixers and non-fixers). Results highlight the selectivity of nitrogen in describing genera and functional group dynamics, and potential for physical effects to limit the efficacy of nutrient management as a mechanism for cyanobacteria bloom mitigation.
Jr. Westby-Gibson; Cathryn H. Greenberg; Christopher E. Moorman; T.G. Forrest; Tara L. Keyser; Dean M. Simon; Gordon S. Warburton
2017-01-01
 Macroarthropods rarely are considered in forest management decisions, despite their ecological importance as decomposers, herbivores, pollinators, predators, and nutrient cyclers, and potential of some taxa as indicators of forest condition. We used a replicated design to experimentally determine if, and how, community composition,...
Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. Th...
Lithologic composition and rock weathering potential of forested, glacial-till soils
Scott W. Bailey; James W. Hornbeck; James W. Hornbeck
1992-01-01
Describes methods for predicting lithologies present in soils developed on glacial till, and the potential weathering contributions from rock particles >2 mm in diameter. The methods are not quantitative in terms of providing weathering rates, but provide information that can further the understanding of forest nutrient cycles, and possibly assist with decisions...
USDA-ARS?s Scientific Manuscript database
Over the past 20 years, there has been a proliferation of phosphorus (P) site assessment tools for nutrient management planning, particularly in the United State. These decision support tools, range from the P Index to fate-and-transport models to weather-forecast based risk calculators. All require...
Caffrey, J.M.; Chapin, T.P.; Jannasch, H.W.; Haskins, J.C.
2007-01-01
Elkhorn Slough is a small estuary in Central California, where nutrient inputs are dominated by runoff from agricultural row crops, a golf course, and residential development. We examined the variability in nutrient concentrations from decadal to hourly time scales in Elkhorn Slough to compare forcing by physical and biological factors. Hourly data were collected using in situ nitrate analyzers and water quality data sondes, and two decades of monthly monitoring data were analyzed. Nutrient concentrations increased from the mid 1970s to 1990s as pastures and woodlands were converted to row crops and population increased in the watershed. Climatic variability was also a significant factor controlling interannual nutrient variability, with higher nutrient concentrations during wet than drought years. Elkhorn Slough has a Mediterranean climate with dry and rainy seasons. Dissolved inorganic nitrogen (DIN) concentrations were relatively low (10-70 ??mol L-1) during the dry season and high (20-160 ??mol L-1) during the rainy season. Dissolved inorganic phosphorus (DIP) concentrations showed the inverse pattern, with higher concentrations during the dry season. Pulsed runoff events were a consistent feature controlling nitrate concentrations during the rainy season. Peak nitrate concentrations lagged runoff events by 1 to 6 days. Tidal exchange with Monterey Bay was also an important process controlling nutrient concentrations, particularly near the mouth of the Slough. Biological processes had the greatest effect on nitrate concentrations during the dry season and were less important during the rainy season. While primary production was enhanced by nutrient pulses, chlorophyll a concentrations were not. We believe that the generally weak biological response compared to the strong physical forcing in Elkhorn Slough occurred because the short residence time and tidal mixing rapidly diluted nutrient pulses. ?? 2006 Elsevier Ltd. All rights reserved.
Marshall, Stephen
2006-08-01
Traditionally, nutrients such as glucose and amino acids have been viewed as substrates for the generation of high-energy molecules and as precursors for the biosynthesis of macromolecules. However, it is now apparent that nutrients also function as signaling molecules in functionally diverse signal transduction pathways. Glucose and amino acids trigger signaling cascades that regulate various aspects of fuel and energy metabolism and control the growth, proliferation, and survival of cells. Here, we provide a functional and regulatory overview of three well-established nutrient signaling pathways-the hexosamine signaling pathway, the mTOR (mammalian target of rapamycin) signaling pathway, and the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Nutrient signaling pathways are interconnected, coupled to insulin signaling, and linked to the release of metabolic hormones from adipose tissue. Thus, nutrient signaling pathways do not function in isolation. Rather, they appear to serve as components of a larger "metabolic regulatory network" that controls fuel and energy metabolism (at the cell, tissue, and whole-body levels) and links nutrient availability with cell growth and proliferation. Understanding the diverse roles of nutrients and delineating nutrient signaling pathways should facilitate drug discovery research and the search for novel therapeutic compounds to prevent and treat various human diseases such as diabetes, obesity, and cancer.
NASA Astrophysics Data System (ADS)
Wolfenden, Benjamin J.; Wassens, Skye M.; Jenkins, Kim M.; Baldwin, Darren S.; Kobayashi, Tsuyoshi; Maguire, James
2018-03-01
For many floodplain rivers, reinstating wetland connectivity is necessary for ecosystems to recover from decades of regulation. Environmental return flows (the managed delivery of wetland water to an adjacent river) can be used strategically to facilitate natural ecosystem connectivity, enabling the transfer of nutrients, energy, and biota from wetland habitats to the river. Using an informal adaptive management framework, we delivered return flows from a forested wetland complex into a large lowland river in south-eastern Australia. We hypothesized that return flows would (a) increase river nutrient concentrations; (b) reduce wetland nutrient concentrations; (c) increase rates of ecosystem metabolism through the addition of potentially limiting nutrients, causing related increases in the concentration of water column chlorophyll-a; and (d) increase the density and species richness of microinvertebrates in riverine benthic habitats. Our monitoring results demonstrated a small increase in the concentrations of several key nutrients but no evidence for significant ecological responses was found. Although return flows can be delivered from forested floodplain areas without risking hypoxic blackwater events, returning nutrient and carbon-rich water to increase riverine productivity is limited by the achievable scale of return flows. Nevertheless, using return flows to flush carbon from floodplains may be a useful management tool to reduce carbon loads, preparing floodplains for subsequent releases (e.g., mitigating the risk of hypoxic blackwater events). In this example, adaptive management benefited from a semi-formal collaboration between science and management that allowed for prompt decision-making.
Short-term Forecasting Tools for Agricultural Nutrient Management.
Easton, Zachary M; Kleinman, Peter J A; Buda, Anthony R; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J; Walter, M Todd; Guinan, Pat; Lory, John A; Sommerlot, Andrew R; Sharpley, Andrew
2017-11-01
The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
BEST MANAGEMENT PRACTICES FOR THE CONTROL OF NUTRIENTS FROM URBAN NONPOINT SOURCES
While the costs and benefits associated with the point source control of nutrients are relatively well defined, considerable uncertainties remain in the efficiency and long-term costs associated with the best management practices (BMPs) used to redcuce loads from nonpoint and dif...
Major role of nutrient supply in the control of picophytoplankton community structure
NASA Astrophysics Data System (ADS)
Mouriño, B.; Agusti, S.; Bode, A.; Cermeno, P.; Chouciño, P.; da Silva, J. C. B.; Fernández-Castro, B.; Gasol, J.; Gil Coto, M.; Graña, R.; Latasa, M.; Lubián, L.; Marañón, E.; Moran, X. A.; Moreno, E.; Moreira-Coello, V.; Otero-Ferrer, J. L.; Ruiz Villarreal, M.; Scharek, R.; Vallina, S. M.; Varela, M.; Villamaña, M.
2016-02-01
The Margalef's mandala (1978) is a simplified bottom-up control model that explains how mixing and nutrient concentration determine the composition of marine phytoplankton communities. Due to the difficulties of measuring turbulence in the field, previous attempts to verify this model have applied different proxies for nutrient supply, and very often used interchangeably the terms mixing and stratification. Moreover, because the mandala was conceived before the discovery of smaller phytoplankton groups (picoplankton <2 μm), it describes only the succession of vegetative phases of microplankton. In order to test the applicability of the classical mandala to picoplankton groups, we used a multidisciplinary approach including specifically designed field observations supported by remote sensing, database analyses, and modeling and laboratory chemostat experiments. Simultaneous estimates of nitrate diffusive fluxes, derived from microturbulence observations, and picoplankton abundance collected in more than 200 stations, spanning widely different hydrographic regimes, showed that the contribution of eukaryotes to picoautotrophic biomass increases with nutrient supply, whereas that of picocyanobacteria shows the opposite trend. These findings were supported by laboratory and modeling chemostat experiments that reproduced the competitive dynamics between picoeukaryote sand picocyanobacteria as a function of changing nutrient supply. Our results indicate that nutrient supply controls the distribution of picoplankton functional groups in the ocean, further supporting the model proposed by Margalef.
Jin, Jing; Yang, Lihua; Chan, Sidney M N; Luan, Tiangang; Li, Yan; Tam, Nora F Y
2011-01-30
The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency. Copyright © 2010 Elsevier B.V. All rights reserved.
The psychology of nutrition messages.
Schofield, Heather; Mullainathan, Sendhil
2008-01-01
The purpose of this paper is to explore consumer thinking about nutrition decisions and how firms can use consumers' awareness of the links between nutrients and health generated by public health messages to market products, including ones, which have little nutritional value. We approach this issue by tracking the development of public health messages based on scientific research, dissemination of those messages in the popular press, and use of nutrition claims in food advertisements to assess whether firms are timing the use of nutrition claims to take advantage of heuristic-based decision-making. Our findings suggest that the timing of the development of nutrition information, its dissemination in the press, and use in advertising accords well with a heuristic processing model in which firms take advantage of associations between nutrient information and health in their advertisements. However, the demonstrated relationships may not be causal. Further research will be needed to provide stronger and more comprehensive evidence regarding the proposed message hijacking process. If the message hijacking framework is borne out: (1) simple overall health rating scales could significantly improve consumer decision-making, (2) the impact of misleading advertisements could be mitigated by encouraging a multidimensional view of nutrition, and (3) more intensive regulation of product labeling could limit the impact of hijacked messages. Overall, this paper considers a novel hypothesis about the impact of public health messages on nutrition and health.
Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E
2012-03-01
Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The present study therefore demonstrated that the soil investigated harbours hydrocarbon-degrading bacterial populations which can be biostimulated to achieve effective bioremediation of oil-contaminated soil.
Plant Growth Module (PGM) conceptual design
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Rasmussen, Daryl
1987-01-01
The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.
INFLUENCES OF HYDROLOGY ON NUTRIENT DYNAMICS IN LAKE SUPERIOR COASTAL WETLANDS
Little is known about the role of the coastal wetlands (CWs) of Lake Superior in modifying or contributing to nutrient fluxes from watersheds to the lake. We are studying factors controlling nutrient retention and transformation of CWs in Western Lake Superior. CWs may be unique ...
Herbivores and nutrients control grassland plant diversity via light limitation
Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.
2014-01-01
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Herbivores and nutrients control grassland plant diversity via light limitation.
Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H
2014-04-24
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
ERIC Educational Resources Information Center
Carver, Jeffrey; Wasserman, Bradley
2012-01-01
Hydroponics is a process in which plants are grown using nutrient-rich water instead of soil. Because this process maximizes the use of water and nutrients--providing only what the plant uses in controlled and easily maintained systems--it is a viable alternative to traditional farming methods. The amount of control in these systems also ensures…
USDA-ARS?s Scientific Manuscript database
The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling ...
NASA Astrophysics Data System (ADS)
Cohen, M. J.; Reijo, C. J.; Hensley, R. T.
2017-12-01
Riverine processing of nutrients and carbon is a local process, subject to heterogeneity in sediment, biotic, insolation, and flow velocity drivers. Measurements at the reach scale aggregate across riverscapes, limiting their utility for enumerating these drivers, and thus for scaling to river networks. Using a combination of in situ sensors that sample water chemistry at high temporal resolution and open benthic chambers that isolate the biogeochemical impacts of a small footprint of benthic surface area, we explored controls on metabolism and nutrient cycling. We specifically sought to answer two questions. First, what are the controls on primary production, with a particular emphasis on the relative roles of light vs. nutrient limitation? Second, what are the pathways of nutrient retention, and do the reaction kinetics of these different pathways differ? We demonstrate the considerable utility of these benthic chambers, reasoning that they provide experimental units for river processes that are not attainable at the reach or network scale. Specifically, in addition to their ability to sample the heterogeneity of the river bed as well as observe nutrient depletion to create concentrations well below ambient levels, they enable manipulative experiments (e.g., nutrient enrichment, light reduction, grazer adjustments) while retaining key elements of the natural system. Across several of Florida's spring-fed river sites, our results strongly support the primacy of light limitation of primary production, with very little evidence of any incremental effects of nutrient enrichment. Nutrient depletion assays further support the dominance of two N retention mechanisms (denitrification and assimilation), the kinetics of which differ markedly, with denitrification exhibiting nearly first-order reactions, and assimilation following zero-order or Michaelis-Menten kinetics over the range of observed concentrations. This latter result helps explain the absence of strong nutrient enrichment effects (i.e., zero-order kinetics imply nutrient saturation), and offers novel insights into the benthic conditions that control both rates and kinetics. The capacity to measure processes at the point scale, and effectively scale to the reach, opens new doors for understanding aquatic ecosystem biogeochemistry.
Ni, Zhaokui; Wang, Shengrui
2015-12-01
China has been confronted with serious water quality deterioration concurrent with rapid socioeconomic progress during the past 40 years. Consequently, knowledge about economic growth and lake water quality dynamics is important to understand eutrophication processes. Objectives were to (i) reconstruct historical nutrient accumulation and the basin economic progress on burial flux (BF); (ii) determine forms and structures of nitrogen (N) and phosphorus (P) in sediment and water using six cores in three of the most severely eutrophic lake areas in China (i.e., Eastern Plain, Yunnan-Guizhou Plain, and Inner Mongolia-Xinjiang regions). Results suggest that BFs of total nitrogen (TN) continued to increase in sediment, whereas total phosphorus (TP) levels were consistent or only slightly increased, except in highly polluted lakes during the past decades. Similar results were observed for concentrations of nutrients in water (i.e., increased N/P). This historical distribution pattern was correlated to long-term fertilization practices of farmers in the watershed (N fertilization exceeds that of P) and was contingent upon pollution control policies (e.g., emphasized P whereas N was ignored). Vertical profiles of BFs indicated that lake nutrient accumulation included three stages in China. Nutrient accumulation started in the 1980s, accelerated from the 1990s, and then declined after 2000. Before the 1980s, nutrients were relatively low and stable, with nutrient inputs being controlled by natural processes. Thereafter, N- and P-bound sediments dramatically increased due to the increasing influence of anthropogenic processes. Nutrients were primarily derived from industries and domestic sewage. After 2000, BFs of nutrients were steady and even decreased, owing to implementation of watershed load reduction policies. The decreasing NaOH-extracted P (Fe/Al-P) and increasing organic phosphorus (OP) indicated that the source of exogenous pollution underwent a shift. Inputs of nutrients were predominantly from agricultural and domestic sewage, whereas industrial pollution has been gradually controlled in most of the watersheds. Historical nutrient dynamics suggest that the economy of China is growing at the expense of its aquatic ecological environments. Therefore, more attention to nutrient export to groundwater resulting from economic development is important for further aquatic ecosystem deterioration and eutrophication in China.
Raynaud, Xavier; Jaillard, Benoît; Leadley, Paul W
2008-01-01
Plants modify nutrient availability by releasing chemicals in the rhizosphere. This change in availability induced by roots (bioavailability) is known to improve nutrient uptake by individual plants releasing such compounds. Can this bioavailability alter plant competition for nutrients and under what conditions? To address these questions, we have developed a model of nutrient competition between plant species based on mechanistic descriptions of nutrient diffusion, plant exudation, and plant uptake. The model was parameterized using data of the effects of root citrate exudation on phosphorus availability. We performed a sensitivity analysis for key parameters to test the generality of these effects. Our simulations suggest the following. (1) Nutrient uptake depends on the number of roots when nutrients and exudates diffuse little, because individual roots are nearly independent in terms of nutrient supply. In this case, bioavailability profits only species with exudates. (2) Competition for nutrients depends on the spatial arrangement of roots when nutrients diffuse little but exudates diffuse widely. (3) Competition for nutrients depends on the nutrient uptake capacity of roots when nutrients and exudates diffuse widely. In this case, bioavailability profits all species. Mechanisms controlling competition for bioavailable nutrients appear to be diverse and strongly depend on soil, nutrient, and plant properties.
Barna, János; Princz, Andrea; Kosztelnik, Mónika; Hargitai, Balázs; Takács-Vellai, Krisztina; Vellai, Tibor
2012-11-01
Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.
Nutrition care of AIDS patients.
Resler, S S
1988-07-01
Often the complications of the acquired immunodeficiency syndrome (AIDS) have a negative impact on nutritional status. Weight loss and protein depletion are commonly seen among the AIDS population. Though the relationship between disease progression and nutritional status has not been established, maintaining good nutritional status may support response to treatment of opportunistic infections and improve patient strength and comfort. Increased nutrient needs, decreased nutrient intake, and impaired nutrient absorption contribute to malnutrition in AIDS patients. Causes of decreased nutrient intake and absorption may be poor appetite, oral and esophageal pain, mechanical problems with eating, and gastrointestinal complications (diarrhea and malabsorption). Causes of these impediments to maintaining nutritional status are discussed, and suggestions to overcome them are given. Dietitians working with AIDS patients need to understand how the complications of the disease might affect nutritional status so that strategies for nutrition treatment can be developed. Nutrition care of AIDS patients requires that dietitians and their support personnel provide supportive, nonjudgmental care. The patients should be included in decision making regarding their nutrition care. Caring for AIDS patients in the community and through home care agencies represents an area in need of the expertise of a dietetics professional.
Dairy in a sustainable diet: a question of balance.
van Hooijdonk, Toon; Hettinga, Kasper
2015-08-01
The demand for dairy products is growing rapidly, especially in emerging markets. Dairy products are nutrient rich and, therefore, an important food group for ensuring nutrient security in the future. In many countries, dairy contributes significantly to nutrient intake. Meta-analyses have shown that consumption of dairy may reduce the risk of chronic diseases and thereby lower healthcare costs. Milk production and processing contribute to greenhouse gas emissions, estimated at 2.7% (cradle-to-retail) of the world's total. Evaluating the position of dairy in the diet should take into account the impact of both nutritional and environmental factors. Local conditions are also important; in many parts of the world, the cow is an efficient converter of human-inedible resources into nutrient-dense food. Increased productivity of cows is a decisive factor in realizing sufficient milk production with optimal resource efficiency and minimal greenhouse gas emission. Models that optimize total diets, rather than individual food products, for their nutritional and environmental impact are the preferred approach for developing realistic alternative consumption strategies. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Organic Biochar Based Fertilization
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Pandit, Bishnu Hari; Cornelissen, Gerard; Kammann, Claudia
2017-04-01
Biochar produced in cost-efficient flame curtain kilns (Kon-Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar-based fertilizers containing between 60-100 kg N, 5-60 kg P2O5 and 60-100 kg K2O, respectively, per ton of biochar. In 21 field trials nutrient-enriched biochars were applied at rates of 0.5 to 2 t ha-1 into the root zone of 13 different annual and perennial crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained the same amounts of nutrients but without biochar. All nutrient-enriched biochar substrates improved yields compared to their respective no-biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5.1% (N=4) higher yields than standard NPK fertilization without biochar. Cow urine-enriched biochar blended with compost resulted on average in 123% ± 76.7% (N=13) higher yields compared to the organic farmer practice with cow urine-blended compost and outcompeted NPK-enriched biochar (same nutrient dose) by 103% ± 12.4% (N=4) on average. 21 field trials robustly revealed that low-dosage root zone application of organic biochar-based fertilizers caused substantial yield increases in rather fertile silt loam soils compared to traditional organic fertilization and to mineral NPK- or NPK-biochar fertilization. This can likely be explained by the nutrient carrier effect of biochar causing a slow nutrient release behavior, more balanced nutrient fluxes and reduced nutrient losses especially when liquid organic nutrients are used for the biochar enrichment. The results promise new pathways for optimizing organic farming and improving on-farm nutrient cycling.
Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun
2013-03-01
Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a(-1) and 5254.4 tons P a(-1), and annual area-specific nutrient loads were 1.94 tons N km(-2) and 0.31 tons P km(-2). Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.
Belowground Microbiota and the Health of Tree Crops.
Mercado-Blanco, Jesús; Abrantes, Isabel; Barra Caracciolo, Anna; Bevivino, Annamaria; Ciancio, Aurelio; Grenni, Paola; Hrynkiewicz, Katarzyna; Kredics, László; Proença, Diogo N
2018-01-01
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.
NASA Astrophysics Data System (ADS)
Kamiri, Hellen; Kreye, Christine; Becker, Mathias
2013-04-01
Wetland soils play an important role as storage compartments for water, carbon and nutrients. These soils implies various conditions, depending on the water regimes that affect several important microbial and physical-chemical processes which in turn influence the transformation of organic and inorganic components of nitrogen, carbon, soil acidity and other nutrients. Particularly, soil carbon and nitrogen play an important role in determining the productivity of a soil whereas management practices could determine the rate and magnitude of nutrient turnover. A study was carried out in a floodplain wetland planted with rice in North-west Tanzania- East Africa to determine the effects of different management practices and soil water regimes on paddy soil organic carbon and nitrogen. Four management treatments were compared: (i) control (non weeded plots); (ii) weeded plots; (iii) N fertilized plots, and (iv) non-cropped (non weeded plots). Two soil moisture regimes included soil under field capacity (rainfed conditions) and continuous water logging compared side-by-side. Soil were sampled at the start and end of the rice cropping seasons from the two fields differentiated by moisture regimes during the wet season 2012. The soils differed in the total organic carbon and nitrogen between the treatments. Soil management including weeding and fertilization is seen to affect soil carbon and nitrogen regardless of the soil moisture conditions. Particularly, the padddy soils were higher in the total organic carbon under continuous water logged field. These findings are preliminary and a more complete understanding of the relationships between management and soil moisture on the temporal changes of soil properties is required before making informed decisions on future wetland soil carbon and nitrogen dynamics. Keywords: Management, nitrogen, paddy soil, total carbon, Tanzania,
Belowground Microbiota and the Health of Tree Crops
Mercado-Blanco, Jesús; Abrantes, Isabel; Barra Caracciolo, Anna; Bevivino, Annamaria; Ciancio, Aurelio; Grenni, Paola; Hrynkiewicz, Katarzyna; Kredics, László; Proença, Diogo N.
2018-01-01
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops. PMID:29922245
Jiang, Yueyang; Rastetter, Edward B; Shaver, Gaius R; Rocha, Adrian V; Zhuang, Qianlai; Kwiatkowski, Bonnie L
2017-01-01
To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO 2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO 2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation. © 2016 by the Ecological Society of America.
Nutrient over-enrichment is one of the most often cited causes of 305b impairment in coastal waters. Excessive nutrients affect designated uses of the nation's aquatic resources, and pose risks to human health and the environment. The process of developing nutrient criteria for e...
Joseph M. Secoges; Wallace M. Aust; John R. Seiler; C. Andrew Dolloff; William A. Lakel
2013-01-01
Forestry best management practices (BMP) recommendations for streamside management zones (SMZs) are based on limited data regarding SMZ width, partial harvests, and nutrient movements after forest fertilization. Agricultural fertilization is commonly linked to increased stream nutrients. However, less is known about effectiveness of SMZ options for controlling nutrient...
Resource Evaluation and Site Selection for Microalgae Production in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrandt, A.; Jarvis, E.
2010-09-01
The study evaluates climate conditions, availability of CO2 and other nutrients, water resources, and land characteristics to identify areas in India suitable for algae production. The purpose is to provide an understanding of the resource potential in India for algae biofuels production and to assist policymakers, investors, and industry developers in their future strategic decisions.
Reconciling fisheries with conservation in watersheds: tools for informed decisions.
Peter A. Bisson; Timothy J. Beechie; George R. Pess
2007-01-01
Watersheds capture and deliver fresh water to streams, rivers, wetlands and lakes. They are fundamental landscape units for freshwater fisheries because they govern the characteristics of the annual hydrograph, the configuration and physical features of stream channels, and the input of organic matter and nutrients. Watersheds are also where we live, grow crops, and...
Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.
2009-01-01
Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.
Plant growth in controlled environments in response to characteristics of nutrient solutions
NASA Technical Reports Server (NTRS)
Raper, C. D., Jr.
1982-01-01
Plant growth in controlled environments in response to characteristics of nutrient solutions is discussed. Descriptions of experimental results concerning root acclimation to temperature, root and shoot acclimation to nitrogen stress, and growth response to NH4(+) and NO3(-) nutrition are included. A preliminary model validation to changing temperatures is presented.
Duguma, Dagne; Hall, Michael W; Smartt, Chelsea T; Neufeld, Josh D
2017-01-01
Pollution from nutrients in aquatic habitats has been linked to increases in disease vectors, including mosquitoes and other pestiferous insects. One possibility is that changes in mosquito microbiomes are impacted by nutrient enrichments and that these changes affect various traits, including larval development, susceptibility to larval control agents, and susceptibility of the adult mosquitoes to pathogens. We tested this hypothesis using field mesocosms supplemented with low- and high-organic-nutrient regimens and then sampled microbial communities associated with the naturally colonizing Culex nigripalpus mosquito vector. By high-throughput sequencing of 16S rRNA gene sequences, we found no significant differences in overall microbial communities associated with sampled mosquitoes, despite detecting discernible differences in environmental variables, including pH, dissolved oxygen, and nutrient amendments. Nevertheless, indicator species analysis revealed that members of the Clostridiales were significantly associated with mosquitoes that originated from high-nutrient enrichments. In contrast, members of the Burkholderiales were associated with mosquitoes from the low-nutrient enrichment. High bacterial variability associated with the life stages of the C. nigripalpus was largely unaffected by levels of nutrient enrichments that impacted larval microbial resources, including bacteria, ciliates, and flagellates in the larval environments. IMPORTANCE Mosquito microbiota provide important physiological and ecological attributes to mosquitoes, including an impact on their susceptibility to pathogens, fitness, and sensitivity to mosquito control agents. Culex nigripalpus mosquito populations transmit various pathogens, including the Saint Louis and West Nile viruses, and proliferate in nutrient-rich environments, such as in wastewater treatment wetlands. Our study examined whether increases in nutrients within larval mosquito developmental habitats impact microbial communities associated with C. nigripalpus mosquitoes. We characterized the effects of organic enrichments on microbiomes associated with C. nigripalpus mosquitoes and identified potential bacterial microbiota that will be further investigated for whether they alter mosquito life history traits and for their potential role in the development of microbial-based control strategies.
Marshall, Lynne; Rideout, Elizabeth J; Grewal, Savraj S
2012-01-01
The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth. PMID:22367393
Nutrient intake disparities in the US: modeling the effect of food substitutions.
Conrad, Zach; Johnson, LuAnn K; Roemmich, James N; Juan, WenYen; Jahns, Lisa
2018-05-17
Diet quality among federal food assistance program participants remains low, and little research has assessed the diet quality of food insecure non-participants. Further research is needed to assess the extent to which food substitutions can improve the nutritional status of these vulnerable populations. Substituting egg dishes for other commonly consumed dishes at certain eating occasions may be an effective strategy for improving the daily nutrient intake among these groups. Eggs are rich in many important nutrients, and are low-cost and part of a wide range of cultural food menus, which are important considerations for low-income and ethnically diverse populations. To help guide the focus of targeted nutrition interventions and education campaigns for vulnerable populations, the present work begins by 1) estimating the prevalence of nutrient inadequacy among these groups, and then models the effect of consuming egg dishes instead of commonly consumed dishes at each eating occasion on 2) the prevalence of nutrient inadequacy, and 3) the mean intake of nutrients. Dietary data from 34,741 adults ≥ 20 y were acquired from the National Health and Nutrition Examination Survey, 2001-2014. Diet pattern modeling was used to substitute commonly consumed egg dishes for commonly consumed main dishes at breakfast, lunch, and dinner. National Cancer Institute usual intake methods were used to estimate the prevalence of inadequate intake of 31 nutrients pre- and post-substitution, and a novel index was used to estimate change in intake of all nutrients collectively. Substituting eggs for commonly consumed main dishes at lunch or dinner did not change total daily nutrient intake for each group (P > 0.05), but decreased the prevalence of vitamin D inadequacy by 1-4 percentage points (P < 0.01). Substituting eggs for commonly consumed foods at breakfast increased the prevalence of folate inadequacy by 8-12 percentage points among each group (P < 0.01). When making food substitutions to increase nutrient intake, eating occasion should be an important consideration. Further research is needed to better understand how food substitutions affect diet costs, which may be an important driver of food purchasing decisions among low income individuals with limited food budgets.
Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott; ...
2017-09-15
In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott
In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less
Variation in wood nutrients along a tropical soil fertility gradient.
Heineman, Katherine D; Turner, Benjamin L; Dalling, James W
2016-07-01
Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Zhang, Yan; Zhou, Hong; Perkins, Anthony; Wang, Yan; Sun, Jing
2017-03-01
This study aimed to evaluate dietary nutrient intake among Chinese pregnant women by comparison with Chinese Dietary Reference Intakes (DRIs) and to explore the association between dietary nutrients and preterm birth. A case-control design was conducted in Beijing with 130 preterm delivery mothers in case group and 381 term delivery mothers in control group. Information on mothers' diet was collected using a food frequency questionnaire, and nutrients and energy intakes were subsequently calculated based on DRIs. Multivariate analysis of variance was used to compare the differences between term and preterm groups in relation to dietary nutrients. Dietary nutrient intakes were imbalanced in both groups compared with Chinese DRIs. Preterm delivery mothers had a lower level of fat and vitamin E intake than term delivery mothers (p < 0.05). Multivariate analysis showed lower vitamin E intake in preterm delivery mothers with a prepregnancy BMI < 18.5 kg/m2 (p < 0.05) and higher carbohydrate intake in preterm delivery mothers with prepregnancy BMI ≥ 24 kg/m2 (p < 0.05). An imbalanced diet in both groups and low level of dietary intakes of fat and vitamin E in preterm group suggest health education measures should be taken to improve the dietary quality of pregnant women, especially for those with an abnormal prepregnancy BMI.
Understanding biorefining efficiency--the case of agrifood waste.
Kuisma, Miia; Kahiluoto, Helena; Havukainen, Jouni; Lehtonen, Eeva; Luoranen, Mika; Myllymaa, Tuuli; Grönroos, Juha; Horttanainen, Mika
2013-05-01
The aim of this study was to determine biorefining efficiency according to the choices made in the entire value chain. The importance of the share of biomass volume biorefined or products substituted was investigated. Agrifood-waste-based biorefining represented the case. Anticipatory scenarios were designed for contrasting targets and compared with the current situation in two Finnish regions. Biorefining increases nutrient and energy efficiency in comparison with current use of waste. System boundaries decisively influence the relative efficiency of biorefining designs. For nutrient efficiency, full exploitation of biomass potential and anaerobic digestion increase nutrient efficiency, but the main determinant is efficient substitution for mineral fertilisers. For energy efficiency, combustion and location of biorefining close to heat demand are crucial. Regional differences in agricultural structure, the extent of the food industry and population density have a major impact on biorefining. High degrees of exploitation of feedstock potential and substitution efficiency are the keys. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stefani, Eduardo De; Boffetta, Paolo L; Ronco, Alvaro; Deneo-Pellegrini, Hugo
2016-01-01
In order to determine the role of meat consumption and related nutrients in the etiology of prostate cancer we conducted a case-control study among Uruguayan men in the time period 1998-2007. The study included 464 cases and 472 controls, frequency matched for age and residence. Both series were drawn from the four major public hospitals in Montevideo. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (95 % CI) of prostate cancer by quartiles of meat intake and related nutrients. The highest vs. the lowest quartile of intake of total meat (OR = 5.19, 95 % CI 3.46-7.81), red meat (OR = 4.64, 95 % CI 3.10-6.95), and processed meat (OR = 1.78, 95% CI 1.22-2.59) were associated with increased risk of prostate cancer. Meat nutrients were directly associated with the risk of prostate cancer (OR for cholesterol 5.61, 95 % CI 3.75-8.50). Moreover, both total meat and red meat displayed higher risks among obese patients. This study suggests that total and red meat and meat nutrients may play a role in the etiology of prostate cancer in Uruguay.
Quality-control materials in the USDA National Food and Nutrient Analysis Program (NFNAP).
Phillips, Katherine M; Patterson, Kristine Y; Rasor, Amy S; Exler, Jacob; Haytowitz, David B; Holden, Joanne M; Pehrsson, Pamela R
2006-03-01
The US Department of Agriculture (USDA) Nutrient Data Laboratory (NDL) develops and maintains the USDA National Nutrient Databank System (NDBS). Data are released from the NDBS for scientific and public use through the USDA National Nutrient Database for Standard Reference (SR) ( http://www.ars.usda.gov/ba/bhnrc/ndl ). In 1997 the NDL initiated the National Food and Nutrient Analysis Program (NFNAP) to update and expand its food-composition data. The program included: 1) nationwide probability-based sampling of foods; 2) central processing and archiving of food samples; 3) analysis of food components at commercial, government, and university laboratories; 4) incorporation of new analytical data into the NDBS; and 5) dissemination of these data to the scientific community. A key feature and strength of the NFNAP was a rigorous quality-control program that enabled independent verification of the accuracy and precision of analytical results. Custom-made food-control composites and/or commercially available certified reference materials were sent to the laboratories, blinded, with the samples. Data for these materials were essential to ongoing monitoring of analytical work, to identify and resolve suspected analytical problems, to ensure the accuracy and precision of results for the NFNAP food samples.
Marine microorganisms and global nutrient cycles
NASA Astrophysics Data System (ADS)
Arrigo, Kevin R.
2005-09-01
The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine microorganisms are a major component of global nutrient cycles. Understanding what controls their distributions and their diverse suite of nutrient transformations is a major challenge facing contemporary biological oceanographers. What is emerging is an appreciation of the previously unknown degree of complexity within the marine microbial community.
Poon, Gary T; Maherali, Hafiz
2015-01-01
The widespread invasion of the nonmycorrhizal biennial plant, Alliaria petiolata in North America is hypothesized to be facilitated by the production of novel biochemical weapons that suppress the growth of mycorrhizal fungi. As a result, A. petiolata is expected to be a strong competitor against plant species that rely on mycorrhizal fungi for nutrient uptake services. If A. petiolata is also a strong competitor for soil resources, it should deplete nutrients to levels lower than can be tolerated by weaker competitors. Because the negative effect of losing the fungal symbiont for mycorrhizal plants is greatest when nutrients are low, the ability of A. petiolata to simultaneously suppress fungi and efficiently take up soil nutrients should further strengthen its competitive ability against mycorrhizal plants. To test this hypothesis, we grew 27 mycorrhizal tree, forb and grass species that are representative of invaded habitats in the absence or presence of competition with A. petiolata in soils that had previously been experimentally planted with the invader or left as a control. A history of A. petiolata in soil reduced plant available forms of nitrogen by >50% and phosphorus by 17% relative to control soil. Average mycorrhizal colonization of competitor species was reduced by >50% in A. petiolata history versus control soil. Contrary to expectations, competition between A. petiolata and other species was stronger in control than history soil. The invader suppressed the biomass of 70% of competitor species in control soil but only 26% of species in history soil. In addition, A. petiolata biomass was reduced by 56% in history versus control soil, whereas the average biomass of competitor species was reduced by 15%. Thus, our results suggest that the negative effect of nutrient depletion on A. petiolata was stronger than the negative effect of suppressing mycorrhizal colonization on competitor species. These findings indicate that the inhibitory potential of A. petiolata on competitor species via mycorrhizal suppression is not enhanced under nutrient limitation.
Poon, Gary T.
2015-01-01
The widespread invasion of the nonmycorrhizal biennial plant, Alliaria petiolata in North America is hypothesized to be facilitated by the production of novel biochemical weapons that suppress the growth of mycorrhizal fungi. As a result, A. petiolata is expected to be a strong competitor against plant species that rely on mycorrhizal fungi for nutrient uptake services. If A. petiolata is also a strong competitor for soil resources, it should deplete nutrients to levels lower than can be tolerated by weaker competitors. Because the negative effect of losing the fungal symbiont for mycorrhizal plants is greatest when nutrients are low, the ability of A. petiolata to simultaneously suppress fungi and efficiently take up soil nutrients should further strengthen its competitive ability against mycorrhizal plants. To test this hypothesis, we grew 27 mycorrhizal tree, forb and grass species that are representative of invaded habitats in the absence or presence of competition with A. petiolata in soils that had previously been experimentally planted with the invader or left as a control. A history of A. petiolata in soil reduced plant available forms of nitrogen by >50% and phosphorus by 17% relative to control soil. Average mycorrhizal colonization of competitor species was reduced by >50% in A. petiolata history versus control soil. Contrary to expectations, competition between A. petiolata and other species was stronger in control than history soil. The invader suppressed the biomass of 70% of competitor species in control soil but only 26% of species in history soil. In addition, A. petiolata biomass was reduced by 56% in history versus control soil, whereas the average biomass of competitor species was reduced by 15%. Thus, our results suggest that the negative effect of nutrient depletion on A. petiolata was stronger than the negative effect of suppressing mycorrhizal colonization on competitor species. These findings indicate that the inhibitory potential of A. petiolata on competitor species via mycorrhizal suppression is not enhanced under nutrient limitation. PMID:26213654
Bioregenerative life support systems for microgravity
NASA Technical Reports Server (NTRS)
Nevill, Gail E., Jr.; Hessel, Michael I., Jr.; Rodriguez, Jose; Morgan, Steve (Editor)
1993-01-01
NASA's Controlled Ecological Life Support System (CELSS) project centers on growing plants and recycling wastes in space. The current version of the biomass production chamber (BPC) uses a hydroponic system for nutrient delivery. To optimize plant growth and conserve system resources, the content of the nutrient solution which feeds the plants must be constantly monitored. The macro-nutrients (greater than ten ppm) in the solution include nitrogen, phosphorous, potassium, calcium, magnesium, and sulphur; the micro-nutrients (less than ten ppm) include iron, copper, manganese, zinc, and boron. The goal of this project is to construct a computer-controlled system of ion detectors that will accurately measure the concentrations of several necessary ions in solution. The project focuses on the use of a sensor array to eliminate problems of interference and temperature dependence.
Weather is the main driver in both plant use of nutrients and fate and transport of nutrients in the environment. In previous work, we evaluated a green tax for control of agricultural nutrients in a bi-level optimization framework that linked deterministic models. In this study,...
Closed-Cycle Nutrient Supply For Hydroponics
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.
1991-01-01
Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.
USDA-ARS?s Scientific Manuscript database
• The common mycorrhizal networks (CMN) of arbuscular mycorrhizal (AM) fungi in the soil provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled, are currently unknown. • We followed by radioactive and st...
Reef, Ruth; Feller, Ilka C; Lovelock, Catherine E
2010-09-01
Mangrove forests dominate the world's tropical and subtropical coastlines. Similar to other plant communities, nutrient availability is one of the major factors influencing mangrove forest structure and productivity. Many mangrove soils have extremely low nutrient availability, although nutrient availability can vary greatly among and within mangrove forests. Nutrient-conserving processes in mangroves are well developed and include evergreeness, resorption of nutrients prior to leaf fall, the immobilization of nutrients in leaf litter during decomposition, high root/shoot ratios and the repeated use of old root channels. Both nitrogen-use efficiency and nutrient resorption efficiencies in mangroves are amongst the highest recorded for angiosperms. A complex range of interacting abiotic and biotic factors controls the availability of nutrients to mangrove trees, and mangroves are characteristically plastic in their ability to opportunistically utilize nutrients when these become available. Nitrogen and phosphorus have been implicated as the nutrients most likely to limit growth in mangroves. Ammonium is the primary form of nitrogen in mangrove soils, in part as a result of anoxic soil conditions, and tree growth is supported mainly by ammonium uptake. Nutrient enrichment is a major threat to marine ecosystems. Although mangroves have been proposed to protect the marine environment from land-derived nutrient pollution, nutrient enrichment can have negative consequences for mangrove forests and their capacity for retention of nutrients may be limited.
Food sources of energy and nutrients in Finnish girls and boys 6-8 years of age - the PANIC study.
Eloranta, Aino-Maija; Venäläinen, Taisa; Soininen, Sonja; Jalkanen, Henna; Kiiskinen, Sanna; Schwab, Ursula; Lakka, Timo A; Lindi, Virpi
2016-01-01
Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls ( n =213) and boys ( n =217) aged 6-8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake), vitamin D (32%), potassium (20%), calcium (39%), magnesium (17%), and zinc (16%). Vegetable oils (15%) and high-fat vegetable oil-based spreads (14%) were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27%) and iron (12%). Non-root vegetables were the top source of folate (14%) and vitamin C (22%). Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil-based spreads provided a higher proportion of these nutrients among girls. Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil-based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education, and health policy decision making.
Food sources of energy and nutrients in Finnish girls and boys 6–8 years of age – the PANIC study
Eloranta, Aino-Maija; Venäläinen, Taisa; Soininen, Sonja; Jalkanen, Henna; Kiiskinen, Sanna; Schwab, Ursula; Lakka, Timo A.; Lindi, Virpi
2016-01-01
Background Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. Objective To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. Design We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls (n=213) and boys (n=217) aged 6–8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Results Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake), vitamin D (32%), potassium (20%), calcium (39%), magnesium (17%), and zinc (16%). Vegetable oils (15%) and high-fat vegetable oil–based spreads (14%) were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27%) and iron (12%). Non-root vegetables were the top source of folate (14%) and vitamin C (22%). Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil–based spreads provided a higher proportion of these nutrients among girls. Conclusion Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil–based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education, and health policy decision making. PMID:27702428
Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android
NASA Astrophysics Data System (ADS)
Sihombing, P.; Karina, N. A.; Tarigan, J. T.; Syarif, M. I.
2018-03-01
Technological developments today make the combination of science is very common, including in Computer Science and Agriculture to make both of science need each other. This paper aims to develop a control tool for the flow of nutrients of hydroponic plants automatically using Arduino microcontroller and controlled by smartphone. We use an Arduino Uno microcontroller to automatically control the flow of nutrient solution with logic if else. The microcontroller can also send data of fluid level (solution) and temperature around the plant to smartphone android of the owner of the hydroponics plant. The height of the nutrient solution (water) is detected by the Ultrasonic sensor HC-SR04 and the temperature is detected by the temperature sensor LM35. Data from the sensor will forward into Arduino Uno and displayed in liquid crystal display (LCD) then via wireless fidelity (WIFI) ESP8266 module will transmit the height of the nutrient solution and the temperature around of the plants to Android smartphone.
El-Dawayati, Maiada M; Zayed, Zeinab E
2017-01-01
Hyperhydricity (or vitrification) is a fundamental physiological disorder in date palm micropropagation. Several factors have been ascribed as being responsible for hyperhydricity, which are related to the explant, medium, culture vessel, and environment. The optimization of inorganic nutrients in the culture medium improves in vitro growth and morphogenesis, in addition to controlling hyperhydricity. This chapter describes a protocol for controlling hyperhydricity during the embryogenic callus stage by optimizing the ratio of nitrogen salts of the Murashige and Skoog (MS) nutrient culture medium. The best results of differentiation from cured hyperhydric callus are obtained using modification at a ratio of NH 4+ /NO 3- at 10:15 (825:1425 mg/L) of the MS culture medium to remedy hyperhydric date palm callus and achieve the recovery of normal embryogenic callus and subsequent regeneration of plantlets. Based on the results of this study, nutrient medium composition has an important role in avoiding hyperhydricity problems during date palm micropropagation.
Method and automated apparatus for detecting coliform organisms
NASA Technical Reports Server (NTRS)
Dill, W. P.; Taylor, R. E.; Jeffers, E. L. (Inventor)
1980-01-01
Method and automated apparatus are disclosed for determining the time of detection of metabolically produced hydrogen by coliform bacteria cultured in an electroanalytical cell from the time the cell is inoculated with the bacteria. The detection time data provides bacteria concentration values. The apparatus is sequenced and controlled by a digital computer to discharge a spent sample, clean and sterilize the culture cell, provide a bacteria nutrient into the cell, control the temperature of the nutrient, inoculate the nutrient with a bacteria sample, measures the electrical potential difference produced by the cell, and measures the time of detection from inoculation.
Nutrition acquisition strategies during fungal infection of plants.
Divon, Hege H; Fluhr, Robert
2007-01-01
In host-pathogen interactions, efficient pathogen nutrition is a prerequisite for successful colonization and fungal fitness. Filamentous fungi have a remarkable capability to adapt and exploit the external nutrient environment. For phytopathogenic fungi, this asset has developed within the context of host physiology and metabolism. The understanding of nutrient acquisition and pathogen primary metabolism is of great importance in the development of novel disease control strategies. In this review, we discuss the current knowledge on how plant nutrient supplies are utilized by phytopathogenic fungi, and how these activities are controlled. The generation and use of auxotrophic mutants have been elemental to the determination of essential and nonessential nutrient compounds from the plant. Considerable evidence indicates that pathogen entrainment of host metabolism is a widespread phenomenon and can be accomplished by rerouting of the plant's responses. Crucial fungal signalling components for nutrient-sensing pathways as well as their developmental dependency have now been identified, and were shown to operate in a coordinate cross-talk fashion that ensures proper nutrition-related behaviour during the infection process.
Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning
Joly-Amado, Aurélie; Denis, Raphaël G P; Castel, Julien; Lacombe, Amélie; Cansell, Céline; Rouch, Claude; Kassis, Nadim; Dairou, Julien; Cani, Patrice D; Ventura-Clapier, Renée; Prola, Alexandre; Flamment, Melissa; Foufelle, Fabienne; Magnan, Christophe; Luquet, Serge
2012-01-01
Obesity-related diseases such as diabetes and dyslipidemia result from metabolic alterations including the defective conversion, storage and utilization of nutrients, but the central mechanisms that regulate this process of nutrient partitioning remain elusive. As positive regulators of feeding behaviour, agouti-related protein (AgRP) producing neurons are indispensible for the hypothalamic integration of energy balance. Here, we demonstrate a role for AgRP-neurons in the control of nutrient partitioning. We report that ablation of AgRP-neurons leads to a change in autonomic output onto liver, muscle and pancreas affecting the relative balance between lipids and carbohydrates metabolism. As a consequence, mice lacking AgRP-neurons become obese and hyperinsulinemic on regular chow but display reduced body weight gain and paradoxical improvement in glucose tolerance on high-fat diet. These results provide a direct demonstration of a role for AgRP-neurons in the coordination of efferent organ activity and nutrient partitioning, providing a mechanistic link between obesity and obesity-related disorders. PMID:22990237
Viviparous placentotrophy in reptiles and the parent-offspring conflict.
Blackburn, Daniel G
2015-09-01
In placentotrophic viviparous reptiles, pregnant females deliver nutrients to their developing fetuses by diverse morphological specializations that reflect independent evolutionary origins. A survey of these specializations reveals a major emphasis on histotrophy (uterine secretion and fetal absorption) rather than hemotrophy (transfer between maternal and fetal blood streams). Of available hypotheses for the prevalence of histotrophic transfer, the most promising derives insights from the theoretical parent-offspring conflict over nutrient investment. I suggest that histotrophy gives pregnant females greater control over nutrient synthesis, storage, and delivery than hemotrophic transfer, reflecting maternal preeminence in any potential parent-offspring competition over nutrient investment. One lizard species shows invasive ovo-implantation and direct contact between fetal tissues and maternal blood vessels, potentially conferring control over nutrient transfer to the embryo. Future research on squamates will benefit from application of parent-offspring conflict theory to the transition from incipient to substantial matrotrophy, as well as by testing theory-derived predictions on both facultatively and highly placentotrophic forms. © 2015 Wiley Periodicals, Inc.
Jungho Im; John R. Jensen; Mark Coleman; Eric Nelson
2009-01-01
Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized...
Using polymer-coated controlled-release fertilizers in the nursery and after outplanting
Thomas D. Landis; R. Kasten Dumroese
2009-01-01
Controlled-release fertilizers (CRF) are the newest and most technically advanced way of supplying mineral nutrients to nursery crops. Compared to conventional fertilizers, their gradual pattern of nutrient release better meets plant needs, minimizes leaching, and therefore improves fertilizer use efficiency. In our review of the literature, we found many terms used...
Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System
NASA Technical Reports Server (NTRS)
Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.
1997-01-01
A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.
Food-induced brain responses and eating behaviour.
Smeets, Paul A M; Charbonnier, Lisette; van Meer, Floor; van der Laan, Laura N; Spetter, Maartje S
2012-11-01
The brain governs food intake behaviour by integrating many different internal and external state and trait-related signals. Understanding how the decisions to start and to stop eating are made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we aim to (1) review the current state of the field of 'nutritional neuroscience' with a focus on the interplay between food-induced brain responses and eating behaviour and (2) highlight research needs and techniques that could be used to address these. The brain responses associated with sensory stimulation (sight, olfaction and taste), gastric distension, gut hormone administration and food consumption are the subject of increasing investigation. Nevertheless, only few studies have examined relations between brain responses and eating behaviour. However, the neural circuits underlying eating behaviour are to a large extent generic, including reward, self-control, learning and decision-making circuitry. These limbic and prefrontal circuits interact with the hypothalamus, a key homeostatic area. Target areas for further elucidating the regulation of food intake are: (eating) habit and food preference formation and modification, the neural correlates of self-control, nutrient sensing and dietary learning, and the regulation of body adiposity. Moreover, to foster significant progress, data from multiple studies need to be integrated. This requires standardisation of (neuroimaging) measures, data sharing and the application and development of existing advanced analysis and modelling techniques to nutritional neuroscience data. In the next 20 years, nutritional neuroscience will have to prove its potential for providing insights that can be used to tackle detrimental eating behaviour.
EURRECA: development of tools to improve the alignment of micronutrient recommendations.
Matthys, C; Bucchini, L; Busstra, M C; Cavelaars, A E J M; Eleftheriou, P; Garcia-Alvarez, A; Fairweather-Tait, S; Gurinović, M; van Ommen, B; Contor, L
2010-11-01
Approaches through which reference values for micronutrients are derived, as well as the reference values themselves, vary considerably across countries. Harmonisation is needed to improve nutrition policy and public health strategies. The EURRECA (EURopean micronutrient RECommendations Aligned, http://www.eurreca.org) Network of Excellence is developing generic tools for systematically establishing and updating micronutrient reference values or recommendations. Different types of instruments (including best practice guidelines, interlinked web pages, online databases and decision trees) have been identified. The first set of instruments is for training purposes and includes mainly interactive digital learning materials. The second set of instruments comprises collection and interlinkage of diverse information sources that have widely varying contents and purposes. In general, these sources are collections of existing information. The purpose of the majority of these information sources is to provide guidance on best practice for use in a wider scientific community or for users and stakeholders of reference values. The third set of instruments includes decision trees and frameworks. The purpose of these tools is to guide non-scientists in decision making based on scientific evidence. This platform of instruments will, in particular in Central and Eastern European countries, contribute to future capacity-building development in nutrition. The use of these tools by the scientific community, the European Food Safety Authority, bodies responsible for setting national nutrient requirements and others should ultimately help to align nutrient-based recommendations across Europe. Therefore, EURRECA can contribute towards nutrition policy development and public health strategies.
Lu, Qin; He, Zhenli L; Graetz, Donald A; Stoffella, Peter J; Yang, Xiaoe
2010-01-01
Water quality impairment by nutrient enrichment from agricultural activities has been a concern worldwide. Phytoremediation technology using aquatic plants in constructed wetlands and stormwater detention ponds is increasingly applied to remediate eutrophic waters. The objectives of this study were to evaluate the effectiveness and potential of water lettuce (Pistia stratiotes L.) in removing nutrients including nitrogen (N) and phosphorus (P) from stormwater in the constructed water detention systems before it is discharged into the St. Lucie Estuary, an important surface water system in Florida, using phytoremediation technologies. In this study, water lettuce (P. stratiotes) was planted in the treatment plots of two stormwater detention ponds (East and West Ponds) in 2005-2007 and water samples from both treatment and control plots were weekly collected and analyzed for water quality properties including pH, electrical conductivity, turbidity, suspended solids, and nutrients (N and P). Optimum plant density was maintained and plant samples were collected monthly and analyzed for nutrient contents. Water quality in both ponds was improved, as evidenced by decreases in water turbidity, suspended solids, and nutrient concentrations. Water turbidity was decreased by more than 60%. Inorganic N (NH(4) (+) and NO(3) (-)) concentrations in treatment plots were more than 50% lower than those in control plots (without plant). Reductions in both PO(4) (3-) and total P were approximately 14-31%, as compared to the control plots. Water lettuce contained average N and P concentrations of 17 and 3.0 g kg(-1), respectively, and removed 190-329 kg N ha(-1) and 25-34 kg P ha(-1) annually. Many aquatic plants have been used to remove nutrients from eutrophic waters but water lettuce proved superior to most other plants in nutrient removal efficiency, owing to its rapid growth and high biomass yield potential. However, the growth and nutrient removal potential are affected by many factors such as temperature, water salinity, and physiological limitations of the plant. Low temperature, high concentration of salts, and low concentration of nutrients may reduce the performance of this plant in removing nutrients. The results from this study indicate that water lettuce has a great potential in removing N and P from eutrophic stormwaters and improving other water quality properties.
USDA-ARS?s Scientific Manuscript database
Managing the timing of fertilizer and manure application is critical to protecting water quality in agricultural watersheds. When fertilizers and manures are applied at inopportune times (e.g., just prior to a rainfall event that produces surface runoff) the risk of surface water contamination is un...
Scott D. Roberts; Constance A. Harrington; Thomas A. Terry
2005-01-01
Decisions made during stand regeneration that affect subsequent levels of competing vegetation and residual biomass can have important short-term consequences for early stand growth, and may affect long-term site productivity. Competing vegetation clearly affects the availability of site resources such as soil moisture and nutrients. Harvest residues can also impact...
Incorporating Ecosystem Services into Community-level ...
EPA’s Office of Research and Development’s Sustainable and Healthy Communities Research Program is developing tools and approaches to incorporate ecosystem goods and services concepts into community-level decision-making. The San Juan Community Study is one of a series of coordinated community studies, which also include Mobile Bay, AL, Great Lakes Areas of Concern, and the Pacific Northwest. Common elements across the community studies include a focus on watershed management and national estuary programs (National Estuary Program, National Estuarine Research Reserve System). San Juan, Puerto Rico, is unique from the other community studies in that it is located in a highly urbanized watershed integrated with a number of freshwater and coastal ecosystems. The San Juan Community Study will explore linkages between watershed management decisions (e.g., dredging canals, restoration of mangrove buffers, sewage discharge interventions, climate adaptive strategies) targeting priority stressors (e.g., nutrients, contaminants, and pathogens; aquatic debris; habitat loss; modified hydrology and water circulation; sea level rise; storm intensity and frequency) effecting the condition of ecosystems (e.g., estuarine habitats and fish, as well as the connected terrestrial and coastal ecosystems), associated ecosystem goods and services (e.g., tourism and recreation, fishing, nutrient & sediment retention, contaminant processing, carbon sequestration, flood protection),
Improving crop nutrient efficiency through root architecture modifications.
Li, Xinxin; Zeng, Rensen; Liao, Hong
2016-03-01
Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.
Salt controls feeding decisions in a blood-sucking insect.
Pontes, Gina; Pereira, Marcos H; Barrozo, Romina B
2017-04-01
Salts are necessary for maintaining homeostatic conditions within the body of all living organisms. Like with all essential nutrients, deficient or excessive ingestion of salts can result in adverse health effects. The taste system is a primary sensory modality that helps animals to make adequate feeding decisions in terms of salt consumption. In this work we show that sodium and potassium chloride salts modulate the feeding behavior of Rhodnius prolixus in a concentration-dependent manner. Feeding is only triggered by an optimal concentration of any of these salts (0.1-0.15M) and in presence of the phagostimulant ATP. Conversely, feeding solutions that do not contain salts or have a high-salt concentration (>0.3M) are not ingested by insects. Notably, we show that feeding decisions of insects cannot be explained as an osmotic effect, because they still feed over hyperosmotic solutions bearing the optimal salt concentration. Insects perceive optimal-salt, no-salt and high-salt solutions as different gustatory information, as revealed the electromyogram recordings of the cibarial pump. Moreover, because insects do a continuous gustatory monitoring of the incoming food during feeding, sudden changes beyond the optimal sodium concentration decrease and even inhibit feeding. The administration of amiloride, a sodium channel blocker, noticeably reduces the ingestion of the optimal sodium solution but not of the optimal potassium solution. Salt detection seems to occur at least through two salt receptors, one amiloride-sensitive and another amiloride-insensitive. Our results confirm the importance of the gustatory system in R. prolixus, showing the relevant role that salts play on their feeding decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Finlay, J. C.
2015-12-01
Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.
Shukla, Praveen; Ghatta, Srinivas; Dubey, Nidhi; Lemley, Caleb O; Johnson, Mary Lynn; Modgil, Amit; Vonnahme, Kimberly; Caton, Joel S; Reynolds, Lawrence P; Sun, Chengwen; O'Rourke, Stephen T
2014-07-15
The mechanisms underlying developmental programming are poorly understood but may be associated with adaptations by the fetus in response to changes in the maternal environment during pregnancy. We hypothesized that maternal nutrient restriction during pregnancy alters vasodilator responses in fetal coronary arteries. Pregnant ewes were fed a control [100% U.S. National Research Council (NRC)] or nutrient-restricted (60% NRC) diet from days 50 to 130 of gestation (term = 145 days); fetal tissues were collected at day 130. In coronary arteries isolated from control fetal lambs, relaxation to bradykinin was unaffected by nitro-l-arginine (NLA). Iberiotoxin or contraction with KCl abolished the NLA-resistant response to bradykinin. In fetal coronary arteries from nutrient-restricted ewes, relaxation to bradykinin was fully suppressed by NLA. Large-conductance, calcium-activated potassium channel (BKCa) currents did not differ in coronary smooth muscle cells from control and nutrient-restricted animals. The BKCa openers, BMS 191011 and NS1619, and 14,15-epoxyeicosatrienoic acid [a putative endothelium-derived hyperpolarizing factor (EDHF)] each caused fetal coronary artery relaxation and BKCa current activation that was unaffected by maternal nutrient restriction. Expression of BKCa-channel subunits did not differ in fetal coronary arteries from control or undernourished ewes. The results indicate that maternal undernutrition during pregnancy results in loss of the EDHF-like pathway in fetal coronary arteries in response to bradykinin, an effect that cannot be explained by a decreased number or activity of BKCa channels or by decreased sensitivity to mediators that activate BKCa channels in vascular smooth muscle cells. Under these conditions, bradykinin-induced relaxation is completely dependent on nitric oxide, which may represent an adaptive response to compensate for the absence of the EDHF-like pathway. Copyright © 2014 the American Physiological Society.
Ecosystem Models as Support to Eutrophication Management in the North Atlantic Ocean (EMoSEM)
NASA Astrophysics Data System (ADS)
Lacroix, Geneviève; Billen, Gilles; Desmit, Xavier; Garnier, Josette; Gypens, Nathalie; Lancelot, Christiane; Lenhart, Hermann; Los, Hans; Mateus, Marcos; Ménesguen, Alain; Neves, Ramiro; Troost, Tineke; van der Molen, Johan
2013-04-01
One of the leading challenges in marine science and governance is to improve scientific guidance of management measures to mitigate eutrophication nuisances in the EU seas. Existing approaches do not integrate the eutrophication process in space (continuum river-ocean) and in time (past, present and future status). A strong need remains for (i) knowledge/identification of all the processes that control eutrophication and its consequences, (ii) consistent and harmonized reference levels assigned to each eutrophication-related indicator, (iii) identification of the main rivers directly or indirectly responsible for eutrophication nuisances in specific areas, (iv) an integrated transboundary approach and (v) realistic and scientific-based nutrient reduction scenarios. The SEAS-ERA project EMoSEM aims to develop and combine the state-of-the-art modelling tools describing the river-ocean continuum in the North-East Atlantic (NEA) continental seas. This will allow to link the eutrophication nuisances in specific marine regions to anthropogenic inputs, trace back their sources up to the watersheds, then test nutrient reduction options that might be implemented in these watersheds, and propose consistent indicators and reference levels to assess the Good Environmental Status (GES). At the end, EMoSEM will deliver coupled river-coastal-sea mathematical models and will provide guidance to end-users (policy- and decision makers) for assessing and combating eutrophication problems in the NEA continental waters.
Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina
NASA Astrophysics Data System (ADS)
Pedrozo, Fernando L.; Temporetti, Pedro F.; Beamud, Guadalupe; Diaz, Mónica M.
2008-12-01
The strategies for eutrophication control, remediation, and policy management are often defined for neutral to alkaline freshwater systems, as they are most suitable for human use. The influence of nutrients on eutrophication in a naturally-acidic lake is poorly known. The main purpose of the present work is to evaluate the significance of volcanic nutrients in the control of the trophic state of the acidic Lake Caviahue, located at North Patagonia, Argentina. Acidic water systems were most studied on artificial acidified lakes, such as mining lakes in Germany or pit lakes in the United States. Lake Caviahue received a very high P load (42-192 ton P/yr) and low N load (14 ton N/yr), mainly as ammonium with quite low N:P ratios (< 1.0). The magmatic activity of the Copahue volcano represents the main natural contribution of nutrients and acidity to the Lake Caviahue. The lake is oligotrophic in terms of CHLa. Neither the transparency nor the nutrient, dissolved or particulate, contents are to date representative of the trophic state of the lake. High P loads do not imply the eutrophication of the lake. We suggest that nitrogen and not phosphorus represents the key control nutrient in volcanically acidified lakes as TON was better related to CHLa observed (0.13-0.36 mg/m 3) in the lake. The pH increased around one unit (pH 2.0-3.0) during the last five years suggesting that the lake has not yet returned to a stable state.
The nutritional adequacy of a limited vegan diet for a Controlled Ecological Life-Support System.
Saha, P R; Trumbo, P R
1996-01-01
Purdue University, as well as the Johnson and Kennedy Space Centers and NASA Ames Research Center, are investigating approximately 5-10 plants that will be grown hydroponically to provide not only the energy and nutrients, but also the oxygen for humans habitating in Mars and lunar bases. The growth and nutritional status of rats fed either a control diet (adequate in all macro- and micronutrients) or a strict vegetarian diet consisting of 5 (vegan-5) or 10 (vegan-10) candidate crop species were investigated. In addition, vegan-10 diets were supplemented with mineral and/or vitamin mix at a level similar to the control diets to assess the effect of supplementation on nutrient status. The assessment of inedible plant material as an alternative food source was also investigated. Results of this study demonstrated that consumption of the vegan-10 diet significantly improved weight gain of rats compared to that for rats fed the vegan-5 diet. Mineral supplementation, at a level present in the control diet, to the vegan-10 diet improved growth and nutrient status, but growth was significantly lower compared to the control-fed rats. Inclusion of inedible plant material, high in ash content, improved some indices of nutrient status, without improving growth.
The nutritional adequacy of a limited vegan diet for a Controlled Ecological Life-Support System
NASA Technical Reports Server (NTRS)
Saha, P. R.; Trumbo, P. R.; Mitchell, C. A. (Principal Investigator)
1996-01-01
Purdue University, as well as the Johnson and Kennedy Space Centers and NASA Ames Research Center, are investigating approximately 5-10 plants that will be grown hydroponically to provide not only the energy and nutrients, but also the oxygen for humans habitating in Mars and lunar bases. The growth and nutritional status of rats fed either a control diet (adequate in all macro- and micronutrients) or a strict vegetarian diet consisting of 5 (vegan-5) or 10 (vegan-10) candidate crop species were investigated. In addition, vegan-10 diets were supplemented with mineral and/or vitamin mix at a level similar to the control diets to assess the effect of supplementation on nutrient status. The assessment of inedible plant material as an alternative food source was also investigated. Results of this study demonstrated that consumption of the vegan-10 diet significantly improved weight gain of rats compared to that for rats fed the vegan-5 diet. Mineral supplementation, at a level present in the control diet, to the vegan-10 diet improved growth and nutrient status, but growth was significantly lower compared to the control-fed rats. Inclusion of inedible plant material, high in ash content, improved some indices of nutrient status, without improving growth.
The nutritional adequacy of a limited vegan diet for a controlled ecological life-support system
NASA Astrophysics Data System (ADS)
Saha, P. R.; Trumbo, P. R.
Purdue University, as well as the Johnson and Kennedy Space Centers and NASA Ames Research Center, are investigating approximately 5-10 plants that will be grown hydroponically to provide not only the energy and nutrients, but also the oxygen for humans habitating in Mars and lunar bases. The growth and nutritional status of rats fed either a control diet (adequate in all macro- and micronutrients) or a strict vegetarian diet consisting of 5 (vegan-5) or 10 (vegan-10) candidate crop species were investigated. In addition, vegan-10 diets were supplemented with mineral and/or vitamin mix at a level similar to the control diets to assess the effect of supplementation on nutrient status. The assessment of inedible plant material as an alternative food source was also investigated. Results of this study demonstrated that consumption of the vegan-10 diet significantly improved weight gain of rats compared to that for rats fed the vegan-5 diet. Mineral supplementation, at a level present in the control diet, to the vegan-10 diet improved growth and nutrient status, but growth was significantly lower compared to the control-fed rats. Inclusion of inedible plant material, high in ash content, improved some indices of nutrient status, without improving growth.
Artiles, Karen; Anastasia, Stephanie; McCusker, Derek; Kellogg, Douglas R.
2009-01-01
The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates. PMID:19911052
How does fire affect longleaf pine roots carbohydrates, foliar nutrients, and sapling growth?
Eric A. Kuehler; Marry Anne Sword Sayer; C. Dan Andries
2006-01-01
In central Louisiana, we conducted a prescribed-fire study in a 5-year-old longleaf pine (Pinus palustris P. Mill.) stand to evaluate the effects of fire on fine-root (2- to 5-mm diameter) carbohydrates, dormant season foliar nutrients, and sapling growth. Control, burn, and nonburned vegetation control treatments were studied using a randomized...
Felix, Jr. Ponder
2003-01-01
Five years after planting, measurements of soil moisture and temperature, leaf nutrient concentrations and growth, were compared for plots of northern red oak, white oak, and shortleaf pine for treatment combinations that included two levels each of harvesting intensity (organic matter removal), site disturbance (soil compaction), and weed control (control of the...
Bruce R. Zutter; James H. Miller; H.L. Allen; S.M. Xedaker; M.B. Edwards; R.A. Newbold
1999-01-01
Individual fascicle mass and foliar nutrient content and concentration of young loblolly pine (Pinus taeda L.) wen evaluated on 13 locations of a regionwide competition study in the southeastern United States. The study included a factorial combination of two levels of weed control txatmalt (none, treated) and two levels of woody treatment (none,...
Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model
Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.
2013-01-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. PMID:22749872
Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.
Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H
2012-11-01
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. Copyright © 2012 Elsevier Inc. All rights reserved.
A review of mathematical modeling and simulation of controlled-release fertilizers.
Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N
2018-02-10
Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecosystem Services and Environmental Markets in ...
This report contains two separate analyses, both of which make use of an optimization framework previously developed to evaluate trade-offs in alternative restoration strategies to achieve the Chesapeake Bay Total Maximum Daily Load (TMDL). The first analysis expands on model applications that examine how incorporating selected co-benefits of nutrient reductions into the optimization framework alters the optimal distribution of nutrient reductions in the watershed (U.S. EPA, 2011). In previous applications, the analyzed co-benefits included carbon sequestration and recreational hunting benefits from certain agricultural best management practices (BMPs). In this report we expand the optimization framework to also include benefits from water quality improvements in freshwater river and streams. We find that these nontidal water quality co-benefits are larger than the other co-benefits combined and would result in greater nutrient control efforts in upstream portions of the watershed. Compared to cost-minimization results that do not account for co-benefits, including all co-benefits in the optimization would increase annual nutrient control costs by $16 million in the Susquehanna River Basin in Pennsylvania; however, the co-benefits would increase by $31 million, for a net gain of $15 million per year. In the James River Basin in Virginia, considering monetized co-benefits results in an estimated increase in nutrient control costs of $17 million but an increase in
Mitigating Harmful Cyanobacterial Blooms in a Human- and Climatically-Impacted World
Paerl, Hans W.
2014-01-01
Bloom-forming harmful cyanobacteria (CyanoHABs) are harmful from environmental, ecological and human health perspectives by outcompeting beneficial phytoplankton, creating low oxygen conditions (hypoxia, anoxia), and by producing cyanotoxins. Cyanobacterial genera exhibit optimal growth rates and bloom potentials at relatively high water temperatures; hence, global warming plays a key role in their expansion and persistence. CyanoHABs are regulated by synergistic effects of nutrient (nitrogen:N and phosphorus:P) supplies, light, temperature, vertical stratification, water residence times, and biotic interactions. In most instances, nutrient control strategies should focus on reducing both N and P inputs. Strategies based on physical, chemical (nutrient) and biological manipulations can be effective in reducing CyanoHABs; however, these strategies are largely confined to relatively small systems, and some are prone to ecological and environmental drawbacks, including enhancing release of cyanotoxins, disruption of planktonic and benthic communities and fisheries habitat. All strategies should consider and be adaptive to climatic variability and change in order to be effective for long-term control of CyanoHABs. Rising temperatures and greater hydrologic variability will increase growth rates and alter critical nutrient thresholds for CyanoHAB development; thus, nutrient reductions for bloom control may need to be more aggressively pursued in response to climatic changes globally. PMID:25517134
CNS-targets in control of energy and glucose homeostasis.
Kleinridders, André; Könner, A Christine; Brüning, Jens C
2009-12-01
The exceeding efforts in understanding the signals initiated by nutrients and hormones in the central nervous system (CNS) to regulate glucose and energy homeostasis have largely revolutionized our understanding of the neurocircuitry in control of peripheral metabolism. The ability of neurons to sense nutrients and hormones and to adopt a coordinated response to these signals is of crucial importance in controlling food intake, energy expenditure, glucose and lipid metabolism. Anatomical lesion experiments, pharmacological inhibition of signaling pathways, and, more recently, the analysis of conditional mouse mutants with modifications of hormone and nutrient signaling in defined neuronal populations have broadened our understanding of these complex neurocircuits. This review summarizes recent findings regarding the role of the CNS in sensing and transmitting nutritional and hormonal signals to control energy and glucose homeostasis and aims to define them as potential novel drug targets for the treatment of obesity and type 2 diabetes mellitus.
Impact of Seasonal Variability in Water, Plant and Soil Nutrient Dynamics in Agroecosystems
NASA Astrophysics Data System (ADS)
Pelak, N. F., III; Revelli, R.; Porporato, A. M.
2017-12-01
Agroecosystems cover a significant fraction of the Earth's surface, making their water and nutrient cycles a major component of global cycles across spatial and temporal scales. Most agroecosystems experience seasonality via variations in precipitation, temperature, and radiation, in addition to human activities which also occur seasonally, such as fertilization, irrigation, and harvesting. These seasonal drivers interact with the system in complex ways which are often poorly characterized. Crop models, which are widely used for research, decision support, and prediction of crop yields, are among the best tools available to analyze these systems. Though normally constructed as a set of dynamical equations forced by hydroclimatic variability, they are not often analyzed using dynamical systems theory and methods from stochastic ecohydrology. With the goal of developing this viewpoint and thus elucidating the roles of key feedbacks and forcings on system stability and on optimal fertilization and irrigation strategies, we develop a minimal dynamical system which contains the key components of a crop model, coupled to a carbon and nitrogen cycling model, driven by seasonal fluctuations in water and nutrient availability, temperature, and radiation. External drivers include seasonally varying climatic conditions and random rainfall forcing, irrigation and fertilization as well as harvesting. The model is used to analyze the magnitudes and interactions of the effects of seasonality on carbon and nutrient cycles, crop productivity, nutrient export of agroecosystems, and optimal management strategies with reference to productivity, sustainability and profitability. The impact of likely future climate scenarios on these systems is also discussed.
NASA Astrophysics Data System (ADS)
Xu, E.
2015-12-01
Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.
Aggett, Peter J; Hathcock, John; Jukes, David; Richardson, David P; Calder, Philip C; Bischoff-Ferrari, Heike; Nicklas, Theresa; Mühlebach, Stefan; Kwon, Oran; Lewis, Janine; Lugard, Maurits J F; Prock, Peter
2012-03-01
Codex documents may be used as educational and consensus materials for member governments. Also, the WTO SPS Agreement recognizes Codex as the presumptive international authority on food issues. Nutrient bioavailability is a critical factor in determining the ability of nutrients to provide beneficial effects. Bioavailability also influences the quantitative dietary requirements that are the basis of nutrient intake recommendations and NRVs. Codex, EFSA and some national regulatory authorities have established guidelines or regulations that will permit several types of health claims. The scientific basis for claims has been established by the US FDA and EFSA, but not yet by Codex. Evidence-based nutrition differs from evidence-based medicine, but the differences are only recently gaining recognition. Health claims on foods may provide useful information to consumers, but many will interpret the information to mean that they can rely upon the food or nutrient to eliminate a disease risk. NRVs are designed to provide a quantitative basis for comparing the nutritive values of foods, helping to illustrate how specific foods fit into the overall diet. The INL-98 and the mean of adult male and female values provide NRVs that are sufficient when used as targets for individual intakes by most adults. WTO recognizes Codex as the primary international authority on food issues. Current regulatory schemes based on recommended dietary allowances are trade restrictive. A substantial number of decisions by the EFSA could lead to violation of WTO agreements.
Davidson, Eric A.; Niphong, Rachel; Ferguson, Richard B.; Palm, Cheryl; Osmond, Deanna L.; Baron, Jill S.
2016-01-01
Synthetic nitrogen (N) fertilizer has enabled modern agriculture to greatly improve human nutrition during the twentieth century, but it has also created unintended human health and environmental pollution challenges for the twenty-first century. Averaged globally, about half of the fertilizer-N applied to farms is removed with the crops, while the other half remains in the soil or is lost from farmers’ fields, resulting in water and air pollution. As human population continues to grow and food security improves in the developing world, the dual development goals of producing more nutritious food with low pollution will require both technological and socio-economic innovations in agriculture. Two case studies presented here, one in sub-Saharan Africa and the other in Midwestern United States, demonstrate how management of nutrients, water, and energy is inextricably linked in both small-scale and large-scale food production, and that science-based solutions to improve the efficiency of nutrient use can optimize food production while minimizing pollution. To achieve the needed large increases in nutrient use efficiency, however, technological developments must be accompanied by policies that recognize the complex economic and social factors affecting farmer decision-making and national policy priorities. Farmers need access to affordable nutrient supplies and support information, and the costs of improving efficiencies and avoiding pollution may need to be shared by society through innovative policies. Success will require interdisciplinary partnerships across public and private sectors, including farmers, private sector crop advisors, commodity supply chains, government agencies, university research and extension, and consumers.
Boyle, Kerry E.; Monaco, Hilary; van Ditmarsch, Dave; Deforet, Maxime; Xavier, Joao B.
2015-01-01
Many unicellular organisms live in multicellular communities that rely on cooperation between cells. However, cooperative traits are vulnerable to exploitation by non-cooperators (cheaters). We expand our understanding of the molecular mechanisms that allow multicellular systems to remain robust in the face of cheating by dissecting the dynamic regulation of cooperative rhamnolipids required for swarming in Pseudomonas aeruginosa. We combine mathematical modeling and experiments to quantitatively characterize the integration of metabolic and population density signals (quorum sensing) governing expression of the rhamnolipid synthesis operon rhlAB. The combined computational/experimental analysis reveals that when nutrients are abundant, rhlAB promoter activity increases gradually in a density dependent way. When growth slows down due to nutrient limitation, rhlAB promoter activity can stop abruptly, decrease gradually or even increase depending on whether the growth-limiting nutrient is the carbon source, nitrogen source or iron. Starvation by specific nutrients drives growth on intracellular nutrient pools as well as the qualitative rhlAB promoter response, which itself is modulated by quorum sensing. Our quantitative analysis suggests a supply-driven activation that integrates metabolic prudence with quorum sensing in a non-digital manner and allows P. aeruginosa cells to invest in cooperation only when the population size is large enough (quorum sensing) and individual cells have enough metabolic resources to do so (metabolic prudence). Thus, the quantitative description of rhlAB regulatory dynamics brings a greater understating to the regulation required to make swarming cooperation stable. PMID:26102206
Forster, Hannah; Walsh, Marianne C; O'Donovan, Clare B; Woolhead, Clara; McGirr, Caroline; Daly, E.J; O'Riordan, Richard; Celis-Morales, Carlos; Fallaize, Rosalind; Macready, Anna L; Marsaux, Cyril F M; Navas-Carretero, Santiago; San-Cristobal, Rodrigo; Kolossa, Silvia; Hartwig, Kai; Mavrogianni, Christina; Tsirigoti, Lydia; Lambrinou, Christina P; Godlewska, Magdalena; Surwiłło, Agnieszka; Gjelstad, Ingrid Merethe Fange; Drevon, Christian A; Manios, Yannis; Traczyk, Iwona; Martinez, J Alfredo; Saris, Wim H M; Daniel, Hannelore; Lovegrove, Julie A; Mathers, John C; Gibney, Michael J; Gibney, Eileen R
2016-01-01
Background Despite numerous healthy eating campaigns, the prevalence of diets high in saturated fatty acids, sugar, and salt and low in fiber, fruit, and vegetables remains high. With more people than ever accessing the Internet, Web-based dietary assessment instruments have the potential to promote healthier dietary behaviors via personalized dietary advice. Objective The objectives of this study were to develop a dietary feedback system for the delivery of consistent personalized dietary advice in a multicenter study and to examine the impact of automating the advice system. Methods The development of the dietary feedback system included 4 components: (1) designing a system for categorizing nutritional intakes; (2) creating a method for prioritizing 3 nutrient-related goals for subsequent targeted dietary advice; (3) constructing decision tree algorithms linking data on nutritional intake to feedback messages; and (4) developing personal feedback reports. The system was used manually by researchers to provide personalized nutrition advice based on dietary assessment to 369 participants during the Food4Me randomized controlled trial, with an automated version developed on completion of the study. Results Saturated fatty acid, salt, and dietary fiber were most frequently selected as nutrient-related goals across the 7 centers. Average agreement between the manual and automated systems, in selecting 3 nutrient-related goals for personalized dietary advice across the centers, was highest for nutrient-related goals 1 and 2 and lower for goal 3, averaging at 92%, 87%, and 63%, respectively. Complete agreement between the 2 systems for feedback advice message selection averaged at 87% across the centers. Conclusions The dietary feedback system was used to deliver personalized dietary advice within a multi-country study. Overall, there was good agreement between the manual and automated feedback systems, giving promise to the use of automated systems for personalizing dietary advice. Trial Registration Clinicaltrials.gov NCT01530139; https://clinicaltrials.gov/ct2/show/NCT01530139 (Archived by WebCite at http://www.webcitation.org/6ht5Dgj8I) PMID:27363307
Duffy, G; Regan, F
2017-11-20
The demand for autonomous sensors for unattended, continuous nutrient monitoring in water is rapidly growing with the increasing need for more frequent and widespread environmental pollution monitoring. Legislative bodies, local authorities and industries all require frequent water quality monitoring, however, this is time and labour intensive, and an expensive undertaking. Autonomous sensors allow for frequent, unattended data collection. While this solves the time and labour intensive aspects of water monitoring, sensors can be very expensive. Development of low-cost sensors is essential to realise the concept of Internet of Things (IoT). However there is much work yet to be done in this field. This article reviews current literature on the research and development efforts towards deployable autonomous sensors for phosphorus (in the form of phosphate) and nitrogen (in the form of nitrate), with a focus on analytical performance and cost considerations. Additionally, some recent sensing approaches that could be automated in the future are included, along with an overview of approaches to monitoring both nutrients. These approaches are compared with standard laboratory methods and also with commercially available sensors for both phosphate and nitrate. Application of nutrient sensors in agriculture is discussed as an example of how sensor networks can provide improvements in decision making.
Nutrient control of hunger by extrinsic gastrointestinal neurons.
Mithieux, Gilles
2013-08-01
The neural sensing of nutrients during food digestion plays a key role in the regulation of hunger. Recent data have emphasized that the extrinsic gastrointestinal nervous system is preponderant in this phenomenon and in its translation to the control of food intake by the central nervous system (CNS). Nutrient sensing by the extrinsic gastrointestinal nervous system may account for the satiation induced by food lipids, the satiety initiated by food protein, and for the rapid benefits of gastric bypass surgeries on both glucose and energy homeostasis. Thus, this recent knowledge provides novel examples of the mechanisms that control food intake and body weight, and this might pave the way for future approaches to the prevention and/or treatment of obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Controlled ecological life support systems: Development of a plant growth module
NASA Technical Reports Server (NTRS)
Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.
1987-01-01
An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.
Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China.
Mu, Di; Yuan, Dekui; Feng, Huan; Xing, Fangwei; Teo, Fang Yenn; Li, Shuangzhao
2017-01-30
Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Periphytic biofilms: A promising nutrient utilization regulator in wetlands.
Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R
2018-01-01
Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estiarte, Marc; Peñuelas, Josep
2015-03-01
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress. © 2014 John Wiley & Sons Ltd.
Swift recovery of Sphagnum nutrient concentrations after excess supply.
Limpens, Juul; Heijmans, Monique M P D
2008-08-01
Although numerous studies have addressed the effects of increased N deposition on nutrient-poor environments such as raised bogs, few studies have dealt with to what extent, and on what time-scale, reductions in atmospheric N supply would lead to recovery of the ecosystems in question. Since a considerable part of the negative effects of elevated N deposition on raised bogs can be related to an imbalance in tissue nutrient concentrations of the dominant peat-former Sphagnum, changes in Sphagnum nutrient concentration after excess N supply may be used as an early indicator of ecosystem response. This study focuses on the N and P concentrations of Sphagnum magellanicum and Sphagnum fallax before, during and after a factorial fertilization experiment with N and P in two small peatlands subject to a background bulk deposition of 2 g N m(-2) year(-1). Three years of adding N (4.0 g N m(-2) year(-1)) increased the N concentration, and adding P (0.3 g P m(-2) year(-1)) increased the P concentration in Sphagnum relative to the control treatment at both sites. Fifteen months after the nutrient additions had ceased, N concentrations were similar to the control whereas P concentrations, although strongly reduced, were still slightly elevated. The changes in the N and P concentrations were accompanied by changes in the distribution of nutrients over the capitulum and the stem and were congruent with changes in translocation. Adding N reduced the stem P concentration, whereas adding P reduced the stem N concentration in favor of the capitulum. Sphagnum nutrient concentrations quickly respond to reductions in excess nutrient supply, indicating that a management policy aimed at reducing atmospheric nutrient input to bogs can yield results within a few years.
Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao
2017-12-31
Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Minpeng; Liu, Yanmei; Wang, Jiahui; Dahlgren, Randy A.; Chen, Dingjiang
2018-06-01
Source apportionment is critical for guiding development of efficient watershed nitrogen (N) pollution control measures. The ReNuMa (Regional Nutrient Management) model, a semi-empirical, semi-process-oriented model with modest data requirements, has been widely used for riverine N source apportionment. However, the ReNuMa model contains limitations for addressing long-term N dynamics by ignoring temporal changes in atmospheric N deposition rates and N-leaching lag effects. This work modified the ReNuMa model by revising the source code to allow yearly changes in atmospheric N deposition and incorporation of N-leaching lag effects into N transport processes. The appropriate N-leaching lag time was determined from cross-correlation analysis between annual watershed individual N source inputs and riverine N export. Accuracy of the modified ReNuMa model was demonstrated through analysis of a 31-year water quality record (1980-2010) from the Yongan watershed in eastern China. The revisions considerably improved the accuracy (Nash-Sutcliff coefficient increased by ∼0.2) of the modified ReNuMa model for predicting riverine N loads. The modified model explicitly identified annual and seasonal changes in contributions of various N sources (i.e., point vs. nonpoint source, surface runoff vs. groundwater) to riverine N loads as well as the fate of watershed anthropogenic N inputs. Model results were consistent with previously modeled or observed lag time length as well as changes in riverine chloride and nitrate concentrations during the low-flow regime and available N levels in agricultural soils of this watershed. The modified ReNuMa model is applicable for addressing long-term changes in riverine N sources, providing decision-makers with critical information for guiding watershed N pollution control strategies.
NASA Technical Reports Server (NTRS)
Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.
1996-01-01
This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.
Liu, Mohan; Li, Yang; Che, Yeye; Deng, Shaojun; Xiao, Yan
2017-10-01
This study aimed to explore the effects of different fertilizers and their combinations on growth and nutrient and Cd uptake of Lolium multiflorum. Compared with control treatment, chemical fertilizer, organic manure, and their conjunctions with biofertilizer increased shoot biomass. Biofertilizers were found to cause significant reductions in shoot biomass of plants grown in organic manure-treated and control soil. Decreased soil-available N and P and shoot N and K concentrations in biofertilizer amendment treatments indicated that plant growth and nutrient absorption might be negatively affected under nutrient deficiency conditions. Elevated shoot biomasses contributed to the highest shoot Cd contents in chemical fertilizer and chemical fertilizer + biofertilizer treatments among all treatments. But the maximum translocation efficiency occurred in biofertilizer + chemical fertilizer + organic manure treatment, followed by organic manure and chemical fertilizer + organic manure treatments. Based on the results, we can conclude that the application of only the biofertilizer Bacillus subtilis should be avoided in nutrient-limited soils. Chemical fertilizer application could benefit the amount of Cd in shoots, and organic manure application and its combinations could result in the higher translocation efficiency.
Plant litter decomposition and nutrient release in peatlands
NASA Astrophysics Data System (ADS)
Bragazza, Luca; Buttler, Alexandre; Siegenthaler, Andy; Mitchell, Edward A. D.
Decomposition of plant litter is a crucial process in controlling the carbon balance of peatlands. Indeed, as long as the rate of litter decomposition remains lower than the rate of above- and belowground litter production, a net accumulation of peat and, thus, carbon will take place. In addition, decomposition controls the release of important nutrients such as nitrogen, phosphorus, and potassium, the availability of which affects the structure and the functioning of plant communities. This chapter describes the role of the main drivers in affecting mass loss and nutrient release from recently deposited plant litter. In particular, the rate of mass loss of Sphagnum litter and vascular plant litter is reviewed in relation to regional climatic conditions, aerobic/anaerobic conditions, and litter chemistry. The rate of nutrient release is discussed in relation to the rate of mass loss and associated litter chemistry by means of a specific case study.
Minimising losses to predation during microalgae cultivation.
Flynn, Kevin J; Kenny, Philip; Mitra, Aditee
2017-01-01
We explore approaches to minimise impacts of zooplanktonic pests upon commercial microalgal crops using system dynamics models to describe algal growth controlled by light and nutrient availability and zooplankton growth controlled by crop abundance and nutritional quality. Losses of microalgal crops are minimised when their growth is fastest and, in contrast, also when growing slowly under conditions of nutrient exhaustion. In many culture systems, however, dwindling light availability due to self-shading in dense suspensions favours slow growth under nutrient sufficiency. Such a situation improves microalgal quality as prey, enhancing zooplankton growth, and leads to rapid crop collapse. Timing of pest entry is important; crop losses are least likely in established, nutrient-exhausted microalgal communities grown for high C-content (e.g. for biofuels). A potentially useful approach is to promote a low level of P-stress that does not adversely affect microalgal growth but which produces a crop that is suboptimal for zooplankton growth.
Feast and famine: Adipose tissue adaptations for healthy aging.
Lettieri Barbato, Daniele; Aquilano, Katia
2016-07-01
Proper adipose tissue function controls energy balance with favourable effects on metabolic health and longevity. The molecular and metabolic asset of adipose tissue quickly and dynamically readapts in response to nutrient fluctuations. Once delivered into cells, nutrients are managed by mitochondria that represent a key bioenergetics node. A persistent nutrient overload generates mitochondrial exhaustion and uncontrolled reactive oxygen species ((mt)ROS) production. In adipocytes, metabolic/molecular reorganization is triggered culminating in the acquirement of a hypertrophic and hypersecretory phenotype that accelerates aging. Conversely, dietary regimens such as caloric restriction or time-controlled fasting endorse mitochondrial functionality and (mt)ROS-mediated signalling, thus promoting geroprotection. In this perspective view, we argued some important molecular and metabolic aspects related to adipocyte response to nutrient stress. Finally we delineated hypothetical routes by which molecularly and metabolically readapted adipose tissue promotes healthy aging. Copyright © 2016 Elsevier B.V. All rights reserved.
Escherichia coli growth under modeled reduced gravity
NASA Technical Reports Server (NTRS)
Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.
2004-01-01
Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.
NASA Astrophysics Data System (ADS)
Dong, Feifei; Liu, Yong; Wu, Zhen; Chen, Yihui; Guo, Huaicheng
2018-07-01
Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.
Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds
NASA Astrophysics Data System (ADS)
Ford, William I.; King, Kevin; Williams, Mark R.
2018-01-01
In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.
NASA Astrophysics Data System (ADS)
Krause, S.; Baranov, V. A.; Lewandowski, J.; Blaen, P. J.; Romeijn, P.
2016-12-01
The interfaces between streams, lakes and their bed sediments have for a long time been in the research focus of ecohydrologists, aquatic ecologists and biogeochemists. While over the past decades, critical understanding has been gained of the spatial patterns and temporal dynamics in nutrient cycling at sediment-freshwater interfaces, important question remain as to the actual drivers (physical, biogeochemical and biological) of the often observed hot spots and hot moments of nutrient cycling at these highly reactive systems. This study reports on a combination of laboratory manipulation, artificial stream and field experiments from reach to river network scales to investigate the interplay of physical, biogeochemical and biological drivers of interface nutrient cycling under the impact of and resilience to global environmental change. Our results indicate that biogeochemical hotspots at sediment-freshwater interfaces were controlled not only by reactant mixing ratios and residence time distributions, but strongly affected by patterns in streambed physical properties and bioavailability of organic carbon. Lab incubation experiments revealed that geology, and in particular organic matter content strongly controlled the magnitude of enhanced streambed greenhouse gas production caused by increasing water temperatures. While these findings help to improve our understanding of physical and biogeochemical controls on nutrient cycling, we only start to understand to what degree biological factors can enhance these processes even further. We found that for instance chironomid or brittle star facilitated bioturbation in has the potential to substantially enhance freshwater or marine sediment pore-water flow and respiration. We revealed that ignorance of these important biologically controls on physical exchange fluxes can lead to critical underestimation of whole system respiration and its increase under global environmental change.
Ceulemans, Tobias; Hulsmans, Eva; Vanden Ende, Wim; Honnay, Olivier
2017-01-01
Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.
Vanden Ende, Wim; Honnay, Olivier
2017-01-01
Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide. PMID:28406910
Periconceptional nutrient intakes and risks of neural tube defects in California.
Carmichael, Suzan L; Yang, Wei; Shaw, Gary M
2010-08-01
This study investigated the association of neural tube defects (NTDs) with maternal periconceptional intake of folic acid-containing supplements and dietary nutrients, including folate, among deliveries that occurred after folic acid fortification in selected California counties. The population-based case-control study included fetuses and live born infants with spina bifida (189) or anencephaly (141) and 625 nonmalformed, live born controls delivered from 1999 to 2003. Mothers reported supplement use during telephone interviews, which included a 107-item food frequency questionnaire. For dietary nutrients, intakes <25th, 25th to <75th (reference), and > or =75th percentile were compared, based on control distributions. After adjustment for potential confounders, any versus no supplement intake resulted in ORs of 0.8 (95% CI, 0.5-1.3) for anencephaly and 0.8 (95% CI, 0.6-1.2) for spina bifida. After stratification by maternal intake of vitamin supplements, most factors in the glycemic pathway were not associated with either NTD, with the exception of low levels of fructose and glucose that were significantly associated with anencephaly. Some nutrients that contribute to one-carbon metabolism showed lowered risks (folate, riboflavin, vitamins B(6) and B(12)); others did not (choline, methionine, zinc). Antioxidant nutrients tended to be associated with lowered risks (vitamins C, E, A, beta-carotene, lutein). Mothers' intake of vitamin supplements was modestly if at all associated with a lowered risk of NTDs. Dietary intake of several nutrients contributing to one-carbon metabolism and oxidative stress were associated with reduced NTD risk.
Bowsher, Alan W.; Ali, Rifhat; Harding, Scott A.; Tsai, Chung-Jui; Donovan, Lisa A.
2016-01-01
Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments. PMID:26824236
Bowsher, Alan W; Ali, Rifhat; Harding, Scott A; Tsai, Chung-Jui; Donovan, Lisa A
2016-01-01
Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments.
Lake Michigan offshore ecosystem structure and food web changes from 1987 to 2008
Rogers, Mark W.; Bunnell, David B.; Madenjian, Charles P.; Warner, David M.
2014-01-01
Ecosystems undergo dynamic changes owing to species invasions, fisheries management decisions, landscape modifications, and nutrient inputs. At Lake Michigan, new invaders (e.g., dreissenid mussels (Dreissena spp.), spiny water flea (Bythotrephes longimanus), round goby (Neogobius melanostomus)) have proliferated and altered energy transfer pathways, while nutrient concentrations and stocking rates to support fisheries have changed. We developed an ecosystem model to describe food web structure in 1987 and ran simulations through 2008 to evaluate changes in biomass of functional groups, predator consumption, and effects of recently invading species. Keystone functional groups from 1987 were identified as Mysis, burbot (Lota lota), phytoplankton, alewife (Alosa pseudoharengus), nonpredatory cladocerans, and Chinook salmon (Oncorhynchus tshawytscha). Simulations predicted biomass reductions across all trophic levels and predicted biomasses fit observed trends for most functional groups. The effects of invasive species (e.g., dreissenid grazing) increased across simulation years, but were difficult to disentangle from other changes (e.g., declining offshore nutrient concentrations). In total, our model effectively represented recent changes to the Lake Michigan ecosystem and provides an ecosystem-based tool for exploring future resource management scenarios.
ANALYSIS OF PARTICULATE BOUND NUTRIENTS IN URBAN STORMWATER
Nutrients are important players in the degradation of waterbodies because they are often the elements that limit primary productivity and, hence, are the key factors controlling eutrophication. Eutrophication causes unsightly algal blooms leading to oxygen depletion, stress on o...
Woodchip bioreactors effectively treat aquaculture effluent
USDA-ARS?s Scientific Manuscript database
Nutrients, in particular nitrogen and phosphorus, can create eutrophication problems in any watershed. Preventing water quality impairment requires controlling nutrients from both point-source and non-point source discharges. Woodchip bioreactors are one relatively new approach that can be utilized ...
Changing Atmospheric Acidity and the Oceanic Solubility of Nutrients
NASA Astrophysics Data System (ADS)
Baker, Alex; Sarin, Manmohan; Duce, Robert; Jickells, Tim; Kanakidou, Maria; Myriokefalitakis, Stelios; Ito, Akinori; Turner, David; Mahowald, Natalie; Middag, Rob; Guieu, Cecile; Gao, Yuan; Croot, Peter; Shelley, Rachel; Perron, Morgane
2017-04-01
The atmospheric deposition of nutrients to the ocean is known to play a significant role in the marine carbon cycle. The impact of such deposition is dependent on the identity of the nutrient in question (e.g., N, P, Fe, Co, Zn, Ni, Cd), the location of the deposition, and the bioavailability of the deposited nutrient. Bioavailability is largely governed by the chemical speciation of a nutrient and, in general, insoluble species are not bioavailable. For Fe and P (and perhaps the other nutrient trace metals) solubility increases during transport through the atmosphere. The causes of this increase are complex, but interactions of aerosol particles with acids appears to play a significant role. Emissions of acidic (SO2 and NOx) and alkaline (NH3) gases have increased significantly since the Industrial Revolution, with a net increase in atmospheric acidity. This implies that Fe and P solubility may also have increased over this time period, potentially resulting in increased marine productivity. More recently, pollution controls have decreased emissions of SO2 from some regions and further reductions in SO2 and NOx are likely in the future. Emissions of NH3 are much more difficult to control however, and are projected to stabilise or increase slightly to the end of this century. Future anthropogenic emissions are thus likely to change the acidity of the atmosphere downwind of major urban / industrial centres, with potential consequences for the supply of soluble nutrients to the ocean. To address these issues UN/GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean, is convening a workshop on this topic at the University of East Anglia in February, 2017. The goals of this workshop are to review and synthesize the current scientific information on the solubility of aerosol-associated key biogeochemical elements, the biogeochemical controls on aerosol solubility, and the pH sensitivity of those controls; to consider the likely changes in solubility of key species into the future and the potential biogeochemical consequences of such changes; and to identify the key future research needs to reduce uncertainties in predictive capability in this area. The results, conclusions, and recommendations of this workshop will be presented.
Porter, Judi; Huggins, Catherine E; Truby, Helen; Collins, Jorja
2016-12-17
(1) Background: Mobile technologies may be utilised for dietary intake assessment for people with diabetes. The published literature was systematically reviewed to determine the effect of using mobile electronic devices to record food or nutrient intake on diabetes control and nutrition outcomes; (2) Methods: The review protocol was registered with PROSPERO: registration number CRD42016050079, and followed PRISMA guidelines. Original research of mobile electronic devices where food or nutrient intake was recorded in people with diabetes with any treatment regimen, and where this intervention was compared with usual care or alternative treatment models, was considered. Quality was assessed using the Quality Criteria Checklist for Primary Research; (3) Results: Nine papers formed the final library with a range of interventions and control practices investigated. The food/nutrient intake recording component of the intervention and patient engagement with the technology was not well described. When assessed for quality, three studies rated positive, five were neutral and one negative. There was significantly greater improvement in HbA1c in the intervention group compared to the control group in four of the nine studies; (4) Conclusion: Based on the available evidence there are no clear recommendations for using technology to record dietary data in this population.
Porter, Judi; Huggins, Catherine E.; Truby, Helen; Collins, Jorja
2016-01-01
(1) Background: Mobile technologies may be utilised for dietary intake assessment for people with diabetes. The published literature was systematically reviewed to determine the effect of using mobile electronic devices to record food or nutrient intake on diabetes control and nutrition outcomes; (2) Methods: The review protocol was registered with PROSPERO: registration number CRD42016050079, and followed PRISMA guidelines. Original research of mobile electronic devices where food or nutrient intake was recorded in people with diabetes with any treatment regimen, and where this intervention was compared with usual care or alternative treatment models, was considered. Quality was assessed using the Quality Criteria Checklist for Primary Research; (3) Results: Nine papers formed the final library with a range of interventions and control practices investigated. The food/nutrient intake recording component of the intervention and patient engagement with the technology was not well described. When assessed for quality, three studies rated positive, five were neutral and one negative. There was significantly greater improvement in HbA1c in the intervention group compared to the control group in four of the nine studies; (4) Conclusion: Based on the available evidence there are no clear recommendations for using technology to record dietary data in this population. PMID:27999302
NASA Astrophysics Data System (ADS)
Mackey, K. R.; Labiosa, R. G.; Calhoun, M.; Street, J. H.; Post, A. F.; Paytan, A.
2006-12-01
The relationships among phytoplankton taxon-specific phosphorus-status, phytoplankton community composition, and nutrient levels were assessed over three seasons in the Gulf of Aqaba, Red Sea. During summer and fall, stratified surface waters were depleted of nutrients and picophytoplankton populations comprised the majority of cells (80% and 88% respectively). In winter, surface nutrient concentrations were higher and larger phytoplankton were more abundant (63%). Cell specific alkaline phosphatase activity (APA) derived from enzyme labeled fluorescence was consistently low (less than 5%) in the picophytoplankton throughout the year, whereas larger cells expressed elevated APA during the summer and fall but less in the winter. A nutrient addition bioassay during the fall showed that, relative to control, APA was reduced by half in larger cells following addition of orthophosphate, whereas the APA of picophytoplankton remained low (less than 1%) across all treatments and the control. These results indicate that the most abundant phytoplankton are not limited by orthophosphate and only some subpopulations (particularly of larger cells) exhibit orthophosphate-limitation throughout the year. Our results indicate that orthophosphate availability influences phytoplankton ecology, correlating with shifts in phytoplankton community structure and the nutrient status of individual cells. The role of dissolved organic phosphorus as an important phosphorus source for marine phytoplankton in oligotrophic settings and the need for evaluating nutrient limitation at the taxa and/or single cell level (rather than inferring it from nutrient concentrations and ratios or bulk enzyme activity measurements) are highlighted.
Fang, Linda L; Valverde-Pérez, Borja; Damgaard, Anders; Plósz, Benedek Gy; Rygaard, Martin
2016-01-01
Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to support early stage research and development of a biochemical system for wastewater resource recovery. The freshwater and nutrient content of wastewater are recognized as potential valuable resources that can be recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental concerns, for example, water scarcity and use of non-renewable phosphorus. However, the resource recovery may come at the cost of unintended environmental impacts. One promising recovery system, referred to as TRENS, consists of an enhanced biological phosphorus removal and recovery system (EBP2R) connected to a photobioreactor. Based on a simulation of a full-scale nutrient and water recovery system in its potential operating environment, we assess the potential environmental impacts of such a system using the EASETECH model. In the simulation, recovered water and nutrients are used in scenarios of agricultural irrigation-fertilization and aquifer recharge. In these scenarios, TRENS reduces global warming up to 15% and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the LCA are linked to increased human toxicity impacts from the chosen end use of wastewater recovery products. The toxicity impacts are from both heavy metals release associated with land application of recovered nutrients and production of AlCl3, which is required for advanced wastewater treatment prior to aquifer recharge. Perturbation analysis of the LCA pinpointed nutrient substitution and heavy metals content of algae biofertilizer as critical areas for further research if the performance of nutrient recovery systems such as TRENS is to be better characterized. Our study provides valuable feedback to the TRENS developers and identifies the importance of system expansion to include impacts outside the immediate nutrient recovery system itself. The study also show for the first time the successful evaluation of urban-to-agricultural water systems in EASETECH. Copyright © 2015. Published by Elsevier Ltd.
Ecoenzymatic Stoichiometry of Microbial Organic Nutrient Acquisition in Soil and Sediment
Terrestrial soils and freshwater sediments contain reserves of organic carbon estimated at 1500 Pg and 0.2 Pg, respectively. Mineralization of this organic matter by heterotrophic microorganisms drives global carbon and nutrient cycles, controlling plant production and atmospher...
When microbes and consumers determine the limiting nutrient of autotrophs: a theoretical analysis
Cherif, Mehdi; Loreau, Michel
2008-01-01
Ecological stoichiometry postulates that differential nutrient recycling of elements such as nitrogen and phosphorus by consumers can shift the element that limits plant growth. However, this hypothesis has so far considered the effect of consumers, mostly herbivores, out of their food-web context. Microbial decomposers are important components of food webs, and might prove as important as consumers in changing the availability of elements for plants. In this theoretical study, we investigate how decomposers determine the nutrient that limits plants, both by feeding on nutrients and organic carbon released by plants and consumers, and by being fed upon by omnivorous consumers. We show that decomposers can greatly alter the relative availability of nutrients for plants. The type of limiting nutrient promoted by decomposers depends on their own elemental composition and, when applicable, on their ingestion by consumers. Our results highlight the limitations of previous stoichiometric theories of plant nutrient limitation control, which often ignored trophic levels other than plants and herbivores. They also suggest that detrital chains play an important role in determining plant nutrient limitation in many ecosystems. PMID:18854301
The placenta. Not just a conduit for maternal fuels.
Hay, W W
1991-12-01
The placenta is a specialized organ of exchange that provides nutrients to and excretes waste products from the fetus. The exchange of nutrients between placenta and fetus involves three major mechanisms: 1) direct transfer of nutrients from the maternal to the fetal plasma, 2) placental consumption of nutrients, and 3) placental conversion of nutrients to alternate substrate forms. Although direct transfer has been considered the primary means by which placental-fetal exchange controls the supply of nutrients to the fetus and thereby fetal metabolism and growth, the considerable metabolic activity of the placenta provides a large and fundamentally important contribution to both the quality and quantity of nutrient substrates supplied to the fetus; e.g., placental O2 and glucose consumption rates approach or even exceed those of brain and tumor tissue. Other placental metabolic activities include glycolysis, gluconeogenesis, glycogenesis, oxidation, protein synthesis, amino acid interconversion, triglyceride synthesis, and chain lengthening or shortening of individual fatty acids. Thus, consideration of the metabolism of the placenta is essential for a more complete understanding of how the placenta regulates nutrient transfer to the fetus, fetal energy balance, and fetal growth.
Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland.
Wang, Meng; Talbot, Julie; Moore, Tim R
2018-04-15
Nutrient availability is an important control on the vegetation distribution, productivity and functioning of peatland ecosystems and we examined spatial and temporal patterns of nutrient availability through ion exchange at Mer Bleue bog, southeast Ontario, Canada. We installed ion exchange probes at 5-15cm for 4weeks and determined nutrient sorption at undisturbed sites as well as those affected by nitrogen (N), phosphorus (P), potassium (K) fertilization and drainage. Under undisturbed conditions, the bog had very small amount of available nutrients, especially N (ammonium>nitrate) and P, and exhibited small variations in nutrient availability during the growing season (May to October). The increase in NPK availability upon fertilization was short-lived over the season and the stoichiometry of available NPK captured by the probes was mismatched with the vegetation. The increase in nutrient availability with drainage was confounded by substantial changes in vegetation. We compare these results with data from other Canadian bogs and fens to provide baseline data on nutrient availability in peatlands. Copyright © 2017 Elsevier B.V. All rights reserved.
Heaney, Robert P
2007-01-01
Much evidence indicates that both calcium and vitamin D are efficacious in protecting the skeleton, particularly when these 2 nutrients are used in combination. Each nutrient is necessary for the full expression of the effect of the other, and where their actions are independent, their effects on skeletal health are complementary. Nutrient status for both tends to be deficient in the adult population of the industrialized nations. Hence, supplementation or food fortification with both nutrients is appropriate and, given contemporary diets and sun exposure, probably necessary. Various meta-analyses, systematic evidence reviews, and controlled trials evaluating these 2 nutrients will be defective if they fail 1) to take into consideration the nearly universal need to augment the status of both nutrients in the populations studied rather than just one or the other, 2) to consider the threshold characteristics of both nutrients, and 3) to use the achieved serum 25-hydroxyvitamin D concentration as the independent variable for vitamin D effects (instead of oral vitamin D intake). Problems with adherence to a regimen of taking supplements daily make an appropriate fortification strategy the preferred option for improving the status of both nutrients.
Nutrient limitation in tropical savannas across multiple scales and mechanisms.
Pellegrini, Adam F A
2016-02-01
Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape scales, and is regulated through different mechanisms based on spatial (differences in underlying geology), temporal (stage in biome transition) and biological (species traits and community composition) variability.
Liu, Junzhuo; Wu, Yonghong; Wu, Chenxi; Muylaert, Koenraad; Vyverman, Wim; Yu, Han-Qing; Muñoz, Raúl; Rittmann, Bruce
2017-10-01
Innovative and cost-effective technologies for advanced nutrient removal from surface water are urgently needed for improving water quality. Conventional biotechnologies, such as ecological floating beds, or constructed wetlands, are not effective in removing nutrients present at low-concentration. However, microalgae-bacteria consortium is promising for advanced nutrient removal from wastewater. Suspended algal-bacterial systems can easily wash out unless the hydraulic retention time is long, attached microalgae-bacteria consortium is more realistic. This critical review summarizes the fundamentals and status of attached microalgae-bacteria consortium for advanced nutrient removal from surface water. Key advantages are the various nutrient removal pathways, reduction of nutrients to very low concentration, and diversified photobioreactor configurations. Challenges include poor identification of functional species, poor control of the community composition, and long start-up times. Future research should focus on the selection and engineering of robust microbial species, mathematical modelling of the composition and functionality of the consortium, and novel photobioreactor configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of methods for establishing nutrient criteria in lakes and reservoirs: A review.
Huo, Shouliang; Ma, Chunzi; Xi, Beidou; Zhang, Yali; Wu, Fengchang; Liu, Hongliang
2018-05-01
Nutrient criteria provide a scientific foundation for the comprehensive evaluation, prevention, control and management of water eutrophication. In this review, the literature was examined to systematically evaluate the benefits, drawbacks, and applications of statistical analysis, paleolimnological reconstruction, stressor-response model, and model inference approaches for nutrient criteria determination. The developments and challenges in the determination of nutrient criteria in lakes and reservoirs are presented. Reference lakes can reflect the original states of lakes, but reference sites are often unavailable. Using the paleolimnological reconstruction method, it is often difficult to reconstruct the historical nutrient conditions of shallow lakes in which the sediments are easily disturbed. The model inference approach requires sufficient data to identify the appropriate equations and characterize a waterbody or group of waterbodies, thereby increasing the difficulty of establishing nutrient criteria. The stressor-response model is a potential development direction for nutrient criteria determination, and the mechanisms of stressor-response models should be studied further. Based on studies of the relationships among water ecological criteria, eutrophication, nutrient criteria and plankton, methods for determining nutrient criteria should be closely integrated with water management requirements. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu
In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods ismore » less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the relative size of the transient storage zone and how it changes in the downstream direction, as well as the nature of hydrologic variability.« less
NASA Astrophysics Data System (ADS)
Jima, T. G.; Roberts, A.
2013-12-01
Quality of coastal and freshwater resources in the Southeastern United States is threatened due to Eutrophication as a result of excessive nutrients, and phosphorus is acknowledged as one of the major limiting nutrients. In areas with much non-point source (NPS) pollution, land use land cover and climate have been found to have significant impact on water quality. Landscape metrics applied in catchment and riparian stream based nutrient export models are known to significantly improve nutrient prediction. The regional SPARROW (Spatially Referenced Regression On Watershed attributes), which predicts Total Phosphorus has been developed by the Southeastern United States regions USGS, as part of the National Water Quality Assessment (NAWQA) program and the model accuracy was found to be 67%. However, landscape composition and configuration metrics which play a significant role in the source, transport and delivery of the nutrient have not been incorporated in the model. Including these matrices in the models parameterization will improve the models accuracy and improve decision making process for mitigating and managing NPS phosphorus in the region. The National Land Cover Data 2001 raster data will be used (since the base line is 2002) for the region (with 8321 watersheds ) with fragstats 4.1 and ArcGIS Desktop 10.1 for the analysis of landscape matrices, buffers and creating map layers. The result will be imported to the Southeast SPARROW model and will be analyzed. Resulting statistical significance and model accuracy will be assessed and predictions for those areas with no water quality monitoring station will be made.
Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A
2012-10-22
A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations usingmore » LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.« less
Vascular plant abundance and diversity in an alpine heath under observed and simulated global change
Alatalo, Juha M.; Little, Chelsea J.; Jägerbrand, Annika K.; Molau, Ulf
2015-01-01
Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment. PMID:25950370
Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Yakob, Getahun; Boke, Shiferaw; Habte, Mulugeta; Coull, Malcolm; Peressotti, Alessandro; Black, Helaina
2018-07-01
Land degradation is a serious issue especially in dry and developing countries leading to ecosystem services (ESS) degradation due to soil functions' depletion. Reliably mapping land degradation spatial distribution is therefore important for policy decisions. The main objectives of this paper were to infer land degradation through ESS assessment and compare the modelling results obtained using different sets of data. We modelled important physical processes (sediment erosion and nutrient export) and the equivalent ecosystem services (sediment and nutrient retention) to infer land degradation in an area in the Ethiopian Great Rift Valley. To model soil erosion/retention capability, and nitrogen export/retention capability, two datasets were used: a 'global' dataset derived from existing global-coverage data and a hybrid dataset where global data were integrated with data from local surveys. The results showed that ESS assessments can be used to infer land degradation and identify priority areas for interventions. The comparison between the modelling results of the two different input datasets showed that caution is necessary if only global-coverage data are used at a local scale. In remote and data-poor areas, an approach that integrates global data with targeted local sampling campaigns might be a good compromise to use ecosystem services in decision-making. Copyright © 2018. Published by Elsevier B.V.
Collado-Vides, Ligia; Burkepile, Deron E.
2016-01-01
Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succession tiles, kept in the field for nine months, were established in an ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment had already created very different algal communities across the different herbivory and nutrient treatments. We tracked algal recruitment, species richness, and species abundance through time. Our results show seasonal variation in the effect of herbivory and nutrient availability on recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species richness and abundance of recruits, herbivory appeared to have more control on macroalgal community structure than did nutrients. In contrast, there was no effect of either herbivory or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The abundance of recruits on tiles was positively correlated with the abundance of algal in the ongoing, established experiment, suggesting that propagule abundance is likely a strong influence on algal recruitment and early succession. Results of the present study suggest that abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the warm season when macroalgal growth is higher. However, herbivory appears less impactful on algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that the timing of coral mortality (e.g., summer vs. winter mortality) and freeing of benthic space may strongly influence the dynamics of algae that colonize open space. PMID:27833810
NASA Astrophysics Data System (ADS)
Hiatt, M. R.; Castaneda, E.; Twilley, R.; Hodges, B. R.; Passalacqua, P.
2015-12-01
River deltas have the potential to mitigate increased nutrient loading to coastal waters by acting as biofilters that reduce the impact of nutrient enrichment on downstream ecosystems. Hydraulic residence time (HRT) is known to be a major control on biogeochemical processes and deltaic floodplains are hypothesized to have relatively long HRTs. Hydrological connectivity and delta floodplain inundation induced by riverine forces, tides, and winds likely alter surface water flow patterns and HRTs. Since deltaic floodplains are important elements of delta networks and receive significant fluxes of water, sediment, and nutrients from distributary channels, biogeochemical transformations occurring within these zones could significantly reduce nutrient loading to coastal receiving waters. However, network-scale estimates of HRT in river deltas are lacking and little is known about the effects of tides, wind, and the riverine input on the HRT distribution. Subsequently, there lacks a benchmark for evaluating the impact of engineered river diversions on coastal nutrient ecology. In this study, we estimate the HRT of a coastal river delta by using hydrodynamic modeling supported by field data and relate the HRT to spatial and temporal patterns in nitrate levels measured at discrete stations inside a delta island at Wax Lake Delta. We highlight the control of the degree of hydrological connectivity between distributary channels and interdistributary islands on the network HRT distribution and address the roles of tides and wind on altering the shape of the distribution. We compare the observed nitrate concentrations to patterns of channel-floodplain hydrological connectivity and find this connectivity to play a significant role in the nutrient removal. Our results provide insight into the potential role of deltaic wetlands in reducing the nutrient loading to near-shore waters in response to large-scale river diversions.
Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah
Neff, J.C.; Reynolds, R.; Sanford, R.L.; Fernandez, D.; Lamothe, P.
2006-01-01
The cold deserts of the Colorado Plateau contain numerous geologically and geochemically distinct sedimentary bedrock types. In the area near Canyonlands National Park in Southeastern Utah, geochemical variation in geologic substrates is related to the depositional environment with higher concentrations of Fe, Al, P, K, and Mg in sediments deposited in alluvial or marine environments and lower concentrations in bedrock derived from eolian sand dunes. Availability of soil nutrients to vegetation is also controlled by the formation of secondary minerals, particularly for P and Ca availability, which, in some geologic settings, appears closely related to variation of CaCO3 and Ca-phosphates in soils. However, the results of this study also indicate that P content is related to bedrock and soil Fe and Al content suggesting that the deposition history of the bedrock and the presence of P-bearing Fe and Al minerals, is important to contemporary P cycling in this region. The relation between bedrock type and exchangeable Mg and K is less clear-cut, despite large variation in bedrock concentrations of these elements. We examined soil nutrient concentrations and foliar nutrient concentration of grasses, shrubs, conifers, and forbs in four geochemically distinct field sites. All four of the functional plant groups had similar proportional responses to variation in soil nutrient availability despite large absolute differences in foliar nutrient concentrations and stoichiometry across species. Foliar P concentration (normalized to N) in particular showed relatively small variation across different geochemical settings despite large variation in soil P availability in these study sites. The limited foliar variation in bedrock-derived nutrients suggests that the dominant plant species in this dryland setting have a remarkably strong capacity to maintain foliar chemistry ratios despite large underlying differences in soil nutrient availability. ?? 2006 Springer Science+Business Media, Inc.
Duran, Alain; Collado-Vides, Ligia; Burkepile, Deron E
2016-01-01
Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succession tiles, kept in the field for nine months, were established in an ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment had already created very different algal communities across the different herbivory and nutrient treatments. We tracked algal recruitment, species richness, and species abundance through time. Our results show seasonal variation in the effect of herbivory and nutrient availability on recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species richness and abundance of recruits, herbivory appeared to have more control on macroalgal community structure than did nutrients. In contrast, there was no effect of either herbivory or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The abundance of recruits on tiles was positively correlated with the abundance of algal in the ongoing, established experiment, suggesting that propagule abundance is likely a strong influence on algal recruitment and early succession. Results of the present study suggest that abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the warm season when macroalgal growth is higher. However, herbivory appears less impactful on algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that the timing of coral mortality (e.g., summer vs. winter mortality) and freeing of benthic space may strongly influence the dynamics of algae that colonize open space.
On-Orbit and Ground Performance of the PGBA Plant Growth Facility
NASA Technical Reports Server (NTRS)
Hoehn, A.; Chamberlain, D. J.; Forsyth, S. W.; Hanna, D. S.; Scovazzo, P.; Stodieck, L. S.; Heyenga, G.; Kliss, Mark
1997-01-01
PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 30 plants (6 species) for 10 days on board the Space Shuttle Endeavour (STS-77) and is scheduled for reflight on board MSL-1 (STS-83) for a 16 day flight. The PGBA life support systems provide atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 23.6 liter chamber. Atmosphere treatment includes ethylene and other hydrocarbon removal, CO2 replenishment, and O2 control. The normally closed system uses controlled CO2 replenishment from the crew cabin as required by the plants. Temperature is controlled (1 C) at user-specified setpoints between 20-32 C, using water-filled coolant loops, solid state Peltier thermoelectric devices, and liquid heat exchangers. The thermoelectric cooling systems were optimized for low power consumption and high cooling efficiencies. Relative humidity is maintained between 60-100% using a cooled porous metal plate to remove water vapor from the air stream without cooling the bulk air below the dew point. The lighting system utilizes three compact fluorescent bi-axial lights with variable lighting control and light intensity (PAR) between 220 and 330 micromol/sq m/s at a distance of 20 cm in spaceflight configuration (on orbit power limited to 230 Watt for entire payload). A ground, up to 550 micromol/sq m/s light intensity can be achieved with 330 Watt payload power consumption. Plant water and nutrient support is sustained via the 'Nutrient Pack' system including the passive or active 'Water Replenishable Nutrient Pack.' The root matrix material (soil or Agar) and nutrient formulation of each pack is prepared according to plant species and experimental requirements. These systems were designed by NASA Ames personnel. Data acquisition and control systems provide 32 channels of environmental data as well as digitized or analog video signals for downlink.
Verbowski, Vashti; Talukder, Zaman; Hou, Kroeun; Sok Hoing, Ly; Michaux, Kristina; Anderson, Victoria; Gibson, Rosalind; Li, Kathy H; Lynd, Larry D; McLean, Judy; Green, Tim J; Barr, Susan I
2018-01-05
The Cambodian diet is low in nutrient-dense animal-source foods. Enhanced homestead food production (EHFP) and aquaculture, which increase availability of nutrient-dense foods, are promising interventions to improve dietary intake. This study examined the effect of EHFP with or without aquaculture on dietary intake and prevalence of inadequate intake of select nutrients among women and children living in rural Cambodia, compared to controls. In a registered, cluster randomized controlled trial in Prey Veng, Cambodia, 10 households in each of 90 villages (n = 900) were randomized by village to receive EHFP, EHFP plus aquaculture, or control. After 22-month intervention, 24-hr dietary recalls (24HRs) were collected from mothers aged 18-50 years (n = 429) and their children aged 6 months-7 years (n = 421), reported by their mothers. Usual intake distributions (generated using 24HRs and repeat 24HRs on a subsample) were used to estimate prevalence of inadequate intake. Compared to controls, women in the EHFP group had significantly higher zinc (+1.0 mg/d) and Vitamin A (+139 retinol activity equivalents/d) intakes, and women in the EHFP plus aquaculture group had significantly higher iron (+2.7 mg/d), Vitamin A (+191 retinol activity equivalents/d), and riboflavin (+0.17 mg/d) intakes. Women in the EHFP plus aquaculture group also had significantly lower prevalence of inadequate iron (-7%, at 10% bioavailability), Vitamin A (-19%), and riboflavin (-17%) intakes, compared to controls. No significant differences in intakes or nutrient adequacy were observed among children or between EHFP and EHFP plus aquaculture groups. The biological importance of the small differences in nutrient intakes among women remains to be established. © 2018 John Wiley & Sons Ltd.
Rational dosages of nutrients have a prolonged effect on learning disabilities.
Carlton, R M; Ente, G; Blum, L; Heyman, N; Davis, W; Ambrosino, S
2000-05-01
Reports that administration of nutrients has increased the academic performance of learning-disabled children exist in the literature. To document the effects of nutrients on learning-disabled children in a controlled study. A randomized, double-blind, placebo-controlled crossover trial, which followed 1 year of open-label nutrients. Children who improved in the open-label trial were eligible to enter the controlled phase of the study. Subjects were enrolled from the general community through advertisements. Twenty children met the criteria for being learning disabled. Each child was tried out on some (but not necessarily all) of the B vitamins and minerals used in this study. These were administered semi-blinded for the first year; double-blinded in crossover rotations during the second year; and open-label in the ensuing years. At various time points, school-certified psychologists administered psychoeducational tests. School report cards were evaluated at baseline and for all subsequent periods. Twenty learning-disabled children entered the study, but 1 dropped out because of nausea. The remaining 19 children showed significant academic and behavioral improvements within a few weeks or months of open-label treatment with nutrient supplements. Some children gained 3 to 5 years in reading comprehension within the first year of treatment; and all children in special education classes became mainstreamed, and their grades rose significantly. Twelve of the children completed the 1-year double-blind phase, after which approximately half of the children chose to remain on the nutrients for at least 2 additional years. For those who discontinued, it took at least 1 year to begin to see the first indications of decline in academic performance, and another year for their grades to drop significantly. In contrast, for children who remained on nutrients, the gains continued the upward trend; at the end of year 4, the difference in scores between the 2 groups had reached statistical significance (P < .01). The overall results of this study tentatively support the concept that learning disabilities may in some cases be a nutrient-responsive disorder.
NASA Astrophysics Data System (ADS)
Ellison, S.; Sullivan, P. F.
2014-12-01
The position of the Arctic treeline is of critical importance for global carbon cycling and surface energy budgets. However, controls on tree growth at treeline remain uncertain. In the Alaskan Brooks Range, 20th century warming has caused varying growth responses among treeline trees, with trees in the west responding positively, while trees in the east have responded negatively. The prevailing explanation of this trend ascribes the negative growth response to warming-induced drought stress in the eastern Brooks Range. However, recent measurements of carbon isotope discrimination in tree rings, xylem sap flow and needle gas exchange suggest that drought stress cannot explain these regional growth declines. Additionally, evidence from the western Brooks Range suggests that nutrient availability, rather than drought stress, may be the proximate control on tree growth. In this study, we investigated the hypothesis that low and declining growth of eastern Brooks Range trees is due to low and declining soil nutrient availability, which may continue to decrease with climate change as soils become drier and microbial activity declines. We compared microclimate, tree performance, and a wide range of proxies for soil nutrient availability in four watersheds along a west-east transect in the Brooks Range during the growing seasons of 2013 and 2014. We hypothesized that soil nutrient availability would track closely with the strong west-east precipitation gradient, with higher rainfall and greater soil nutrient availability in the western Brooks Range. We expected to find that soil water contents in the west are near optimum for nitrogen mineralization, while those in the east are below optimum. Needle nitrogen concentration, net photosynthesis, branch extension growth, and growth in the main stem are expected to decline with the hypothesized decrease in soil nutrient availability. The results of our study will elucidate the current controls on growth of trees near the Arctic treeline, enabling improved predictions of future treeline position and more accurate reconstructions of past climate.
Davidson, Thomas A; Audet, Joachim; Svenning, Jens-Christian; Lauridsen, Torben L; Søndergaard, Martin; Landkildehus, Frank; Larsen, Søren E; Jeppesen, Erik
2015-12-01
Fresh waters make a disproportionately large contribution to greenhouse gas (GHG) emissions, with shallow lakes being particular hot spots. Given their global prevalence, how GHG fluxes from shallow lakes are altered by climate change may have profound implications for the global carbon cycle. Empirical evidence for the temperature dependence of the processes controlling GHG production in natural systems is largely based on the correlation between seasonal temperature variation and seasonal change in GHG fluxes. However, ecosystem-level GHG fluxes could be influenced by factors, which while varying seasonally with temperature are actually either indirectly related (e.g. primary producer biomass) or largely unrelated to temperature, for instance nutrient loading. Here, we present results from the longest running shallow-lake mesocosm experiment which demonstrate that nutrient concentrations override temperature as a control of both the total and individual GHG flux. Furthermore, testing for temperature treatment effects at low and high nutrient levels separately showed only one, rather weak, positive effect of temperature (CH4 flux at high nutrients). In contrast, at low nutrients, the CO2 efflux was lower in the elevated temperature treatments, with no significant effect on CH4 or N2 O fluxes. Further analysis identified possible indirect effects of temperature treatment. For example, at low nutrient levels, increased macrophyte abundance was associated with significantly reduced fluxes of both CH4 and CO2 for both total annual flux and monthly observation data. As macrophyte abundance was positively related to temperature treatment, this suggests the possibility of indirect temperature effects, via macrophyte abundance, on CH4 and CO2 flux. These findings indicate that fluxes of GHGs from shallow lakes may be controlled more by factors indirectly related to temperature, in this case nutrient concentration and the abundance of primary producers. Thus, at ecosystem scale, response to climate change may not follow predictions based on the temperature dependence of metabolic processes. © 2015 John Wiley & Sons Ltd.
Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A
2012-04-01
The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-04-01
... CONSUMPTION INFANT FORMULA QUALITY CONTROL PROCEDURES Records and Reports § 106.100 Records. (a) Every..., including tests conducted when nutrients exceed their expiration date or shelf life (retest date). (2) All... when nutrient premixes exceed their expiration date or shelf life (retest date). (e) The manufacturer...
NONPOINT SOURCES AND WATER QUALITY TRADING
Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...
MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL
Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...
The physical and chemical factors controlling sediment release and water column cycling of phosphorus and other nutrients (internal loading) are discussed within a 'systems' framework. Applying the systems approach, time-dependent nutrient storage within identified compartments, ...
Panda, Arun Kumar; Rao, Savaram Venkata Rama; Raju, Mantena Venkata Lakshmi Narasimha; Niranjan, Matam; Reddy, Maddula Ramkoti
2012-02-01
A study was conducted to evaluate the effect of various concentrations of metabolizable energy (ME) with graded incremental levels of crude protein (CP) and essential amino acids (lysine and methionine) on production performance, egg quality and humoral immune response of Dahlem Red laying hens. Four experimental diets based on maize-soybean meal-deoiled rice bran were prepared. Diet 1 was fed as a control diet containing 2,600 kcal ME/kg, 15% CP, 0.75% Lys and 0.36% Met, and in the other three diets (D2, D3 and D4), concentrations of the above nutrients were increased by 2.5%, 5.0% and 7.5%, respectively. The levels of Ca (3.5%) and available P (0.32) were constant in all the diets. Each diet was offered ad libitum from 28 to 40 weeks of age to eight replicates containing six birds in each replicate. The egg production, egg weight and egg mass (in grams of egg per hen per day) were not affected by increasing the nutrient density up to 7.5% (2,795 kcal ME/kg diet) compared to the control group (2,600 ME/kg diet). However, feed consumption and feed efficiency (in grams of egg per gram of feed) were influenced by the variation in the nutrient density of diets. As the nutrient density increased by 5% (2,730 ME/kg diet), birds consumed significantly (P < 0.001) less feed. The birds in the 7.5% higher density group produced significantly (P < 0.05) higher egg mass per unit feed consumption compared to the control diet. Increasing nutrient density up to 7.5% had no effect on relative weight of albumen, yolk or shell. The Haugh unit, yolk colour and shell thickness were also not affected due to variation in the nutrient density. The humoral immune response measured at 34 and 40 weeks was progressively improved by increasing the nutrient density up to 5%. Increasing the nutrient density beyond 5% in the diet had no further influence on the humoral immune response. Based on the results of the present study, it can be concluded that Dahlem Red laying hens required 2,795 kcal/kg ME, 16% CP, 0.8% lysine and 0.4% methionine for eliciting optimum performance and immune response during 28 to 40 weeks of age.
James H. Miller; H. Lee Allen; Bruce R. Zutter; Shepard M. Zedaker; Ray A. Newbold
2006-01-01
Influences of competition-control treatments on long-term soil and foliar nutrition were examined using a regional data set (the Competition Omission Monitoring Project) that documents loblolly pine (Pinus taeda L.) plantation nutrients in soils sampled at years 0 and 15 and in pine foliage at years 2, 6, and 15 and their correlations with one...
Patterns and Controls of Nutrient Concentrations in a Southeastern United States Tidal Creek
2013-09-01
which the Duplm’s salinity was controlled solely by mixing between Altamaha River and Atlantic Ocean water . Marine end-membei composition was...ix’iiirrint; within the water - shed must hove been responsible. SEDIMENT AND WATER COLUMN MICROBIAL PROCESSES There was a great deal ot...subsequent processes transform these nutrients in the land-ocean transition zone. Here, we describe spatial and temporal patterns in surface water
Dries, Jan
2016-01-01
On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.
Scarborough, Peter; Matthews, Anne; Eyles, Helen; Kaur, Asha; Hodgkins, Charo; Raats, Monique M; Rayner, Mike
2015-12-12
Colour coded front-of-pack nutrition labelling ('traffic light labelling') has been recommended for use in the UK since 2006. The voluntary scheme is used by all the major retailers and some manufacturers. It is not clear how consumers use these labels to make a single decision about the relative healthiness of foods. Our research questions were: Which of the four nutrients on UK traffic light labels (total fat, saturated fat, sugar and salt) has the most influence on decisions? Do green lights or red lights have a greater influence? Are there age and gender differences in how people use the colour and nutrient information? We recruited participants from a UK supermarket chain membership list to conduct an online choice experiment in May 2014. We analysed data using multilevel logisitic models with food choices (n = 3321) nested in individuals (n = 187) as the unit of analysis. A food with more reds was 11.4 (95% confidence intervals: 10.3, 12.5) times less likely to be chosen as healthy, whereas a food with more greens was 6.1 (5.6, 6.6) times more likely to be chosen as healthy. Foods with better colours on saturated fat and salt were 7.3 (6.7, 8.0) and 7.1 (6.5, 7.8) times more likely to be chosen as healthy - significantly greater than for total fat (odds ratio 4.8 (4.4, 5.3)) and sugar (5.2 (4.7, 5.6)). Results were broadly similar for different genders and age groups. We found that participants were more concerned with avoiding reds than choosing greens, and that saturated fat and salt had a greater influence on decisions regarding healthiness than total fat and sugar. This could influence decisions about food reformulation and guidance on using nutrition labelling.
Spatial distribution analysis of chemical and biochemical properties across Koiliaris CZO
NASA Astrophysics Data System (ADS)
Tsiknia, Myrto; Varouchakis, Emmanouil A.; Paranychianakis, Nikolaos V.; Nikolaidis, Nikolaos P.
2015-04-01
Arid and semi-arid ecosystems cover approximately 47% of the Earth's surface. Soils in these climatic zones are often severely degraded and poor in organic carbon and nutrients. Anthropogenic activities like overgrazing and intensive agricultural practices further exacerbate the quality of the soils making them more vulnerable to erosion and accelerating losses of nutrients which might end up to surface waterways degrading their quality. Data of the geospatial distribution of nutrient availability as well as on the involved processes at watershed level might help us to identify areas which will potentially act as sources of nutrients and probably will allow us to adopt appropriate management practices to mitigate environmental impacts. In the present study we have performed an extensive sampling campaign (50 points) across a typical Mediterranean watershed, the Koiliaris Critical Zone Observatory (CZO), organized in such a way to effectively capture the complex variability (climatic, soil properties, hydrology, land use) of the watershed. Analyses of soil physico-chemical properties (texture, pH, EC, TOC, TN, NO3--N, and NH4+-N) and biochemical assays (potential nitrification rate, nitrogen mineralization rate, enzymes activities) were carried out. Geostatistical analysis and more specifically the kriging interpolation method was employed to generate distribution maps of the distribution of nitrogen forms and of the related biochemical assays. Such maps could provide an important tool for effective ecosystem management and monitoring decisions.
Effects of nutrient optimization on intra-annual wood formation in Norway spruce.
Kalliokoski, Tuomo; Mäkinen, Harri; Jyske, Tuula; Nöjd, Pekka; Linder, Sune
2013-11-01
In the Nordic countries, growth of Norway spruce (Picea abies (L.) Karst.) is generally limited by low availability of nutrients, especially nitrogen. Optimizing forest management requires better insight on how growth responds to the environmental conditions and their manipulation. The aim of this study was to analyse the effects of nutrient optimization on timing and the rate of tracheid formation of Norway spruce and to follow the differentiation of newly formed tracheids. The study was performed during two growing seasons in a long-term nutrient optimization experiment in northern Sweden, where all essential macro- and micronutrients were supplied in irrigation water every second day from mid-June to mid-August. The control plots were without additional nutrients and water. Tracheid formation in the stem was monitored throughout the growing season by weekly sampling of microcores at breast height. The onset of xylogenesis occurred in early June, but in early summer there were no significant between-treatment differences in the onset and relative rate of tracheid formation. In both treatments, the onset of secondary cell wall formation occurred in mid-June. The maximum rate of tracheid formation occurred close to the summer solstice and 50% of the tracheids had been accumulated in early July. Optimized nutrition resulted in the formation of ∼50% more tracheids and delayed the cessation of tracheid formation, which extended the tracheid formation period by 20-50%, compared with control trees. The increased growth was mainly an effect of enhanced tracheid formation rate during the mid- and later-part of the growing season. In the second year, the increased growth rate also resulted in 11% wider tracheids. We conclude that the onset and rate of tracheid formation and differentiation during summer is primarily controlled by photoperiod, temperature and availability of nutrients, rather than supply of carbohydrates.
Food and symptom generation in functional gastrointestinal disorders: physiological aspects.
Farré, Ricard; Tack, Jan
2013-05-01
The response of the gastrointestinal tract (GIT) to ingestion of food is a complex and closely controlled process, which allows optimization of propulsion, digestion, absorption of nutrients, and removal of indigestible remnants. This review summarizes current knowledge on the mechanisms that control the response of the GIT to food intake. During the cephalic phase, triggered by cortical food-related influences, the GIT prepares for receiving nutrients. The gastric phase is dominated by the mechanical effect of the meal volume. Accumulation of food in the stomach activates tension-sensitive mechanoreceptors, which in turn stimulate gastric accommodation and gastric acid secretion through the intrinsic and vago-vagal reflex pathways. After meal ingestion, the tightly controlled process of gastric emptying starts, with arrival of nutrients in the duodenum triggering negative feedback on emptying and stimulating secretion of digestive enzymes through the neural (mainly vago-vagal reflex, but also intrinsic) and endocrine (release of peptides from entero-endocrine cells) pathways. Several types of specialized receptors detect the presence of all main categories of nutrients. In addition, the gastrointestinal mucosa expresses receptors of the T1R and T2R families (taste receptors) and several members of the transient receptor potential channel family, all of which are putatively involved in the detection of specific tastants in the lumen. Activation of nutrient and taste sensors also activates the extrinsic and intrinsic neural, as well as entero-endocrine, pathways. During passage through the small bowel, nutrients are progressively extracted, and electrolyte-rich liquid intestinal content with non-digestible residue is delivered to the colon. The colon provides absorption of the water and electrolytes, storage of non-digestible remnants of food, aboral propulsion of contents, and finally evacuation through defecation.
Maternal Nutrition During Pregnancy: Intake of Nutrients Important for Bone Health.
Hyde, Natalie K; Brennan-Olsen, Sharon L; Bennett, Kathy; Moloney, David J; Pasco, Julie A
2017-04-01
Objectives Maternal nutrition during pregnancy plays an important role in predisposing offspring to the development of chronic disease in adulthood, including osteoporosis. Our aim was to investigate maternal dietary intakes during pregnancy, with a focus on nutrients important for skeletal development in the offspring. Methods In this case-control study, cases were pregnant women recruited for the Vitamin D in Pregnancy Study (n = 350, age 20-40 years) and controls were non-pregnant peers participating in the Geelong Osteoporosis Study (n = 305, age 20-40 years). Dietary intakes of nutrients were quantified using a validated food frequency questionnaire. Results Compared to controls, cases consumed more energy [median (interquartile range): 7831 (6506-9461) vs. 7136 (6112-8785) kJ/day]; median intakes for cases were greater for carbohydrates [206.2 (172.5-249.9) vs. 188.2 (147.7-217.5) g/day], fat [77.9 (60.3-96.6) vs. 72.1 (53.3-87.4) g/day], potassium [2860 (2363-3442) vs. 2606 (2166-3442) mg/day] and calcium [1022 (819-1264) vs. 918 (782-1264) mg/day] (all p ≤ 0.05). However, pregnant women were not consuming greater amounts of those nutrients which had an increased demand (protein, magnesium, phosphorus and zinc). Similarly, this translated to the likelihood of achieving national recommendations for corresponding nutrients. Conclusions for Practice Compared to their non-pregnant peers, pregnant women were more likely to meet dietary recommendations for calcium and potassium; however, this was not the pattern observed for protein, magnesium and zinc. Future public health messages should perhaps focus on increasing awareness of the importance of all these nutrients during pregnancy.
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Berry, W. L.; Mackowiak, C.; Corey, K. A.; Sager, J. C.; Heeb, M. M.; Knott, W. M.
1993-01-01
A data set is given describing the daily nutrient uptake, gas exchange, environmental conditions, and carbon (C), and nutrient partitioning at harvest for the entire canopy and root system of a wheat crop (Triticum aestivum, cv. Yecora Rojo). The data were obtained from a 20 m2 stand of wheat plants grown from planting to maturity in a closed, controlled environment, and include daily nutrient uptake [macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients, iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mo)], canopy carbon dioxide (CO2) exchange rates, and transpiration. Environmental factors such as relative humidity, air temperature, nutrient solution temperature, pH and electrical conductivity, and photoperiod were controlled in the chamber to specific set points. A detailed description of biomass yield for each of the 64 plant growth trays comprising the 20 m2 of growth area is also provided, and includes dry weights of grain, straw, chaff, and roots, along with the concentration of nutrients in different plant tissues and the percent carbohydrate, fat, and protein. To our knowledge, this information represents one of the most extensive data sets available for a canopy of wheat grown from seed to maturity under controlled environmental and nutritional conditions, and thus may provide useful information for model development and validation. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar indicating when adjustments in set points and occasional equipment or sensor failures occurred.
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.; Berry, Wade L.; Mackowiak, Cheryl; Corey, Kenneth A.; Sager, John C.; Heeb, Margaret M.; Knott, William M.
1993-01-01
A data set is given describing the daily nutrient uptake, gas exchange, environmental conditions, and carbon (C), and nutrient partitioning at harvest for the entire canopy and root system of a wheat crop (Triticum aestivum, cv. Yecora Rojo). The data were obtained from a 20 sq m stand of wheat plants grown from planting to maturity in a closed, controlled environment, and include daily nutrient uptake [macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients, iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mo)], canopy carbon dioxide (CO2) exchange rates, and transpiration. Environmental factors such as relative humidity, air temperature, nutrient solution temperature, pH and electrical conductivity, and photoperiod were controlled in the chamber to specific set points. A detailed description of biomass yield for each of the 64 plant growth trays comprising the 20 sq m of growth area is also provided, and includes dry weights of grain, straw, chaff, and roots, along with the concentration of nutrients in different plant tissues and the percent carbohydrate, fat, and protein. To our knowledge, this information represents one of the most extensive data sets available for a canopy of wheat grown from seed to maturity under controlled environmental and nutritional conditions, and thus may provide useful information for model development and validation. A methods section is included to qualify any assumptions that might he required for the use of the data in plant growth models, along with a daily event calendar indicating when adjustments in set points and occasional equipment or sensor failures occurred.
Lamba, Jasmeet; Srivastava, Puneet; Way, Thomas R; Sen, Sumit; Wood, C Wesley; Yoo, Kyung H
2013-09-01
Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
The dilemma of controlling cultural eutrophication of lakes
Schindler, David W.
2012-01-01
The management of eutrophication has been impeded by reliance on short-term experimental additions of nutrients to bottles and mesocosms. These measures of proximate nutrient limitation fail to account for the gradual changes in biogeochemical nutrient cycles and nutrient fluxes from sediments, and succession of communities that are important components of whole-ecosystem responses. Erroneous assumptions about ecosystem processes and lack of accounting for hysteresis during lake recovery have further confused management of eutrophication. I conclude that long-term, whole-ecosystem experiments and case histories of lake recovery provide the only reliable evidence for policies to reduce eutrophication. The only method that has had proven success in reducing the eutrophication of lakes is reducing input of phosphorus. There are no case histories or long-term ecosystem-scale experiments to support recent claims that to reduce eutrophication of lakes, nitrogen must be controlled instead of or in addition to phosphorus. Before expensive policies to reduce nitrogen input are implemented, they require ecosystem-scale verification. The recent claim that the ‘phosphorus paradigm’ for recovering lakes from eutrophication has been ‘eroded’ has no basis. Instead, the case for phosphorus control has been strengthened by numerous case histories and large-scale experiments spanning several decades. PMID:22915669
A control-theory model for human decision-making
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.
1971-01-01
A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.
Erro, Javier; Urrutia, Oscar; San Francisco, Sara; Garcia-Mina, Jose M
2007-09-19
To optimize the economical cost of each unit of fertilizer applied and to reduce the environmental contamination caused by nutrient losses, the development of highly efficient granulated fertilizers is of great importance. This study proposes a strategy that consists of developing specific fertilizers having nutrient release patterns that are dependent on plant activity in the rhizosphere. This type of fertilizer is named "rhizosphere-controlled fertilizer" (RCF fertilizer). This fertilizer is based on the introduction of an organomineral matrix composed of metal [Mg (Ca is also possible), Zn (Fe and other metals are also possible)]-humic phosphates. The presence of this matrix modifies the nutrient release pattern of the fertilizer. In this way there are two main nutrient fractions: (i) a water-soluble fraction or "starter" fraction and (ii) a "rhizosphere-controlled" fraction insoluble in water but soluble by the action of the rhizospheric acids released by plants and microorganisms. This study shows the chemical and structural characterization of the organomineral matrix, as well as its efficiency in slowing the nutrient release rate of the RCF fertilizer, principally with respect to P and N. It is demonstrated how these properties of the matrix were also reflected in the significant reduction in both ammonia volatilization and N leaching in a pot system consisting of wheat plants cultivated in a calcareous soil and fertilized with a RCF fertilizer.
Dixon, H; Scully, M; Niven, P; Kelly, B; Chapman, K; Donovan, R; Martin, J; Baur, L A; Crawford, D; Wakefield, M
2014-04-01
To assess pre-adolescent children's responses to common child-oriented front-of-pack food promotions. Between-subjects, web-based experiment with four front-of-pack promotion conditions on energy-dense and nutrient-poor (EDNP) foods: no promotion [control]; nutrient content claims; sports celebrity endorsements (male athletes) and premium offers. Participants were 1302 grade 5 and 6 children (mean age 11 years) from Melbourne, Australia. Participants chose their preferred product from a randomly assigned EDNP food pack and comparable healthier food pack then completed detailed product ratings. Child-oriented pack designs with colourful, cartooned graphics, fonts and promotions were used. Compared to the control condition, children were more likely to choose EDNP products featuring nutrient content claims (both genders) and sports celebrity endorsements (boys only). Perceptions of nutritional content were enhanced by nutrient content claims. Effects of promotions on some product ratings (but not choice) were negated when children referred to the nutrition information panel. Premium offers did not enhance children's product ratings or choice. Nutrient content claims and sports celebrity endorsements influence pre-adolescent children's preferences towards EDNP food products displaying them. Policy interventions to reduce the impact of unhealthy food marketing to children should limit the use of these promotions. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.
Langland, Michael J.
1998-01-01
Excessive concentrations of nutrients and suspended solids in water adversely affect water quality in the Chesapeake Bay. High levels of nutrients in the Bay result in algal blooms and suspended solids reduce water clarity, both of which decrease the amount of light reaching submerged aquatic vegetation (SAV). The die off and decomposition of algae and SAV deplete oxygen supplies in the water. Low dissolved oxygen (DO) levels (less than 5.0 milligrams per liter for aquatic life, U.S. Environmental Protection Agency, 1986) can lead to fish kills and stress other living resources in the Bay. In 1987, the Chesapeake Bay Agreement called for a 40-percent reduction in the amount of controllable nutrients reaching the Chesapeake Bay by the year 2000. This goal was based on results of computer simulations that predicted that periods of low DO would be reduced or eliminated if nutrient inputs to the Bay were reduced by that amount. In an effort to achieve that goal, nutrient-reduction strategies, including banning phosphate detergents, upgrading sewagetreatment plants, controlling runoff from agricultural and urban areas, and preserving forest and wetland areas (Zynjuk, 1995), were implemented in many areas of the basin to help reduce nutrient inputs to the Bay. In 1997, a basinwide reevaluation of the 40-percent reduction goal was initiated to determine if that goal is achievable and to identify and document any changes in water quality and living resources in response to nutrient-reduction strategies. In support of this reevaluation, the U.S. Geological Survey (USGS) designed a database and retrieved water-quality data from approximately 1,300 nontidal stream sites in the Chesapeake Bay Basin (Langland and others, 1995). At 84 of the 1,300 sites, where sufficient data were available, trends, yields, and annual loads of nutrients and suspended solids were estimated for 1985 through 1996. This report presents: (1) spatial distribution of available nutrient and suspended-solids data for the 84 sites, (2) yields of nutrients and total suspended solids, and (3) trends in concentrations of nutrients and total suspended solids. Results presented here are limited to analyses for total nitrogen (TN), nitrate nitrogen (NO3), total phosphorus (TP), and total suspended solids (TSS).
NASA Astrophysics Data System (ADS)
Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.
2009-04-01
Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.
Complementary models of tree species-soil relationships in old-growth temperate forests
Cross, Alison; Perakis, Steven S.
2011-01-01
Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and context-dependent tree species-soil relationships occur simultaneouslyinold-grow the temperate forests, with context-dependent relationships strongest for organically cycled elements, and site-independent relationships strongest for weather able elements with in organic cycling phases. These models provide complementary explanations for patterns of nutrient accumulation and cycling in mixed species old-growth temperate forests.
Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.
1985-01-01
Algal nutrient studies in chemically-defined media typically employ a synthetic chelator to prevent iron hydroxide precipitation. Micronutrient-particulate interactions may, however, significantly affect chemical speciation and hence biovailability of these nutrients in natural waters. A technique is described by which Selenastrum capricornutum Printz (Chlorophyta) may be cultured in a medium where trace metal speciation (except iron) is controlled, not by organic chelation, but by sorption onto titanium dioxide. Application of this culturing protocol in conjunction with results from sorption studies of nutrient ions on mineral particles provides a means of studying biological impacts of sorptive processes in aquatic environments. ?? 1985 Dr W. Junk Publishers.
Carlson Mazur, Martha L.; Kowalski, Kurt P.; Galbraith, David
2014-01-01
In the Laurentian Great Lakes, the invasive form of Phragmites australis (common reed) poses a threat to highly productive coastal wetlands and shorelines by forming impenetrable stands that outcompete native plants. Large, dominant stands can derail efforts to restore wetland ecosystems degraded by other stressors. To be proactive, landscape-level management of Phragmites requires information on the current spatial distribution of the species and a characterization of areas suitable for future colonization. Using a recent basin-scale map of this invasive plant’s distribution in the U.S. coastal zone of the Great Lakes, environmental data (e.g., soils, nutrients, disturbance, climate, topography), and climate predictions, we performed analyses of current and predicted suitable coastal habitat using boosted regression trees, a type of species distribution modeling. We also investigated differential influences of environmental variables in the upper lakes (Lakes Superior, Michigan, and Huron) and lower lakes (Lakes St. Clair, Erie, and Ontario). Basin-wide results showed that the coastal areas most vulnerable to Phragmites expansion were in close proximity to developed lands and had minimal topographic relief, poorly drained soils, and dense road networks. Elevated nutrients and proximity to agriculture also influenced the distribution of Phragmites. Climate predictions indicated an increase in suitable habitat in coastal Lakes Huron and Michigan in particular. The results of this study, combined with a publicly available online decision support tool, will enable resource managers and restoration practitioners to target and prioritize Phragmites control efforts in the Great Lakes coastal zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendall, Elise; Ogle, Kiona; Parton, William
2016-02-29
This research project improved understanding of how climate change (elevated atmospheric CO 2, warming and altered precipitation) can affect grassland ecosystem productivity and nutrient availability. Our advanced experimental and modeling methods allowed us to test 21 specific hypotheses. We found that ecosystem changes over years of exposure to climate change can shift the plant communities and potentially make them more resilient to future climate changes. These changes in plant communities may be related to increased growth of belowground roots and enhanced nutrient uptake by some species. We also found that climate change can increase the spread of invasive and noxiousmore » weeds. These findings are important for land managers to make adaptive planning decisions for domestic livestock production in response to climate variability in semi-arid grasslands.« less
Neuronal regulation of homeostasis by nutrient sensing.
Lam, Tony K T
2010-04-01
In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.
Nutrient Infiltrate Concentrations from Three Permeable Pavement Types
While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha...
Plant nutrition: root transporters on the move.
Zelazny, Enric; Vert, Grégory
2014-10-01
Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development. © 2014 American Society of Plant Biologists. All Rights Reserved.
Zhao, Liyun; Yu, Wentao; Jia, Fengmei; Liu, Aidong; Vi, Guoqin; Song, Yi; Gong, Chenrui; Hua, Liming; Zhang, Jiguo; Zhai, Fengying
2009-11-01
To analyze the effect of complex nutrients on growth and development, intelligence and nutrition state of 6-12 years old children in two continuous years. According to the rural school's similar condition, such as social economical statement, education condition and proportion of students entering schools, 6 rural schools were respectively selected in Xishui County of Hubei Province as the experimental group and control group. In the former, middle and later periods (2004, 2005, 2006 ), growth and development, nutrition state and intelligence were analyzed and compared. The increase of height and weight in experimental group were higher than those of the control group. In 2 years, height in experimental group increased 12.9 cm, while the control group increased 11.5 cm. Weights increased in experimental group were 6.6 kg, while the control group increased 5.2 kg. Girl's bone density in experimental group increased from 0.236 g/cm in 2004 to 0.280 g/cm in 2006. The hemoglobin contents of 4 age group's children in experimental group increased significantly (P < 0.05) . While the anemia prevalence decreased 25 .8% in 2 years, the control group decreased 7.2%. Moreover, other results showed that the complex nutrients also have some effect on the intelligence in experiment group. The complex nutrients supplement could improve the rural school children's growth and development, bone and intelligence.
Durá-Travé, Teodoro; Gallinas-Victoriano, Fidel
2014-02-01
To study calorie and nutrients intake in a group of patients diagnosed with attention deficit hyperactivity disorder (ADHD) under treatment with extended-release methylphenidate (MPH-ER), and to analyse the need to design nutrition intervention strategies. Observational (case-control). Navarra Hospital Complex, Pamplona, Spain. A total of 100 patients diagnosed with ADHD under treatment with MPH-ER and 100 healthy children (control group). A nutrition survey was carried out (food intake registration of 3 consecutive school days). Calorie and nutrient intake, as well as nutrition status, were evaluated and compared in both groups. Nutritional status in ADHD group was significantly lower (p < 0.05) than in control group. Calorie intake in mid-morning snack, lunch and afternoon snack was significantly higher (p < 0.05) in the control group. Calorie intake in supper was significantly higher (p < 0.05) in the ADHD group. There were no significant differences in breakfast. Total calorie intake, as well as protein, carbohydrates, fat, fibre, calcium, iron, magnesium, zinc, selenium and phosphorous, thiamine, niacin, vitamin B6 and folate intake, in control group was significantly higher than in ADHD group. The daily calorie and nutrients intake in patients under treatment with MPH-ER is, generally, lower than in healthy population of similar age. The need to impart programmes of nutrition education simultaneously with multimodal treatment in order to avoid the nutrition consequences of treatment with MPH should be considered.
González, Angélica L; Fariña, José Miguel; Pinto, Raquel; Pérez, Cecilia; Weathers, Kathleen C; Armesto, Juan J; Marquet, Pablo A
2011-11-01
Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which are ubiquitous across fog-dominated ecosystems.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.
2004-12-01
Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.
Integrated watershed management for saturation excess generated runoff, erosion and nutrient control
USDA-ARS?s Scientific Manuscript database
Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...
Toward understanding mechanisms controlling urea delivery in a coastal plain watershed
USDA-ARS?s Scientific Manuscript database
Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver ...
USDA-ARS?s Scientific Manuscript database
Land application of manure is a cost-effective method for recycling nutrients from livestock operations. Increasingly, there has been interest in promoting alternative methods of manure application that minimize nonpoint source phosphorus pollution. Watershed and nutrient trading programs rely upon ...
Stark, Romana; Reichenbach, Alex; Andrews, Zane B
2015-12-15
The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin at POMC or NPY neurons may depend on appropriate nutrient-sensing in these neurons and we hypothesize carnitine metabolism is critical in the integrative processing. Future research is required to examine the neuron-specific effects of carnitine metabolism on concurrent nutrient- and hormonal-sensing in AgRP and POMC neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta
Brett, Kendra Elizabeth; Ferraro, Zachary Michael; Yockell-Lelievre, Julien; Gruslin, Andrée; Adamo, Kristi Bree
2014-01-01
Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth. PMID:25222554
Both riverine detritus and dissolved nutrients drive lagoon fisheries
NASA Astrophysics Data System (ADS)
Bonthu, Subbareddy; Ganguly, Dipnarayan; Ramachandran, Purvaja; Ramachandran, Ramesh; Pattnaik, Ajit K.; Wolanski, Eric
2016-12-01
The net ecosystem metabolism in lagoons has often been estimated from the net budget of dissolved nutrients. Such is the case of the LOICZ estuarine biogeochemistry nutrient budget model that considers riverine dissolved nutrients, but not riverine detritus. However the neglect of detritus can lead to inconsistencies; for instance, it results in an estimate of 5-10 times more seaward export of nutrients than there is import from rivers in Chilika Lagoon, India. To resolve that discrepancy the UNESCO estuarine ecohydrology model, that considers both dissolved nutrients and detritus, was used and, for Chilika Lagoon, it reproduced successfully the spatial distribution of salinity, dissolved nutrients, phytoplankton and zooplankton as well as the fish yield data. Thus the model suggests that the riverine input of both detritus and dissolved nutrients supports the pelagic food web. The model also reproduces well the observation of decreased fish yield when the mouth of the lagoon was choked in the 1990s, demonstrating the importance of the physics that determine the flushing rate of waterborne matter. Thus, both farming in the watershed by driving the nutrient and detritus inputs to the lagoon, and dredging and engineering management of the mouth by controlling the flushing rate of the lagoon, have a major influence on fish stocks in the lagoon.
NASA Astrophysics Data System (ADS)
Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.
2011-12-01
There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.
Interactive effects of nutrient additions and predation on infaunal communities
Posey, M.H.; Alphin, T.D.; Cahoon, L.; Lindquist, D.; Becker, M.E.
1999-01-01
Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa, Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, M.S.
A baseline study of phytoplankton production and nutrient dynamics was conducted on Lake Norman, NC, a 13000-ha, warm-monomictic reservoir, prior to the initiation of thermal inputs from an 1180-MW nuclear electric generation facility. The objective of the study was to identify the major physical, chemical and biological processes controlling nutrient dynamics in Lake Norman, with specific reference to the impact of phytoplankton production on the cycling of carbon, nitrogen and phosphorus.
Yan, Zhengbing; Li, Peng; Chen, Yahan; Han, Wenxuan; Fang, Jingyun
2016-02-05
Allocation of limited nutrients, such as nitrogen (N) and phosphorus (P), among plant organs reflects the influences of evolutionary and ecological processes on functional traits of plants, and thus is related to functional groups and environmental conditions. In this study, we tested this hypothesis by exploring the stoichiometric scaling of N and P concentrations between twig stems and leaves of 335 woody species from 12 forest sites across eastern China. Scaling exponents of twig stem N (or P) to leaf N (or P) varied among functional groups. With increasing latitude, these scaling exponents significantly decreased from >1 at low latitude to <1 at high latitude across the study area. These results suggested that, as plant nutrient concentration increased, plants at low latitudes showed a faster increase in twig stem nutrient concentration, whereas plants at high latitudes presented a faster increase in leaf nutrient concentration. Such shifts in nutrient allocation strategy from low to high latitudes may be controlled by temperature. Overall, our findings provide a new approach to explore plant nutrient allocation strategies by analysing the stoichiometric scaling of nutrients among organs, which could broaden our understanding of the interactions between plants and their environments.
Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis
Conde-Sieira, Marta; Soengas, José L.
2017-01-01
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells. PMID:28111540
Nutrient sensing modulates malaria parasite virulence.
Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T; Grosso, Ana Rita; Modrzynska, Katarzyna K; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M
2017-07-13
The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.
Nutrient concentrations and fluxes in tributaries to the Swan-Canning estuary, Western Australia
Peters, N.E.; Donohue, R.
1999-01-01
In Western Australia, catchment nutrient availability on an areal basis is primarily controlled by the disposal of animal waste and the type and rate of fertilizer application, particularly in coastal areas. The coastal areas receive notably higher rainfall and have more intense horticulture and animal production than inland areas, and are undergoing rapid urbanization, particularly adjacent to the estuary. Also, the surficial aquifers on the coastal plain are generally sandy having a low nutrient retention capacity and rapidly transmit soluble and colloidal material through the subsurface. In the Swan-Canning basin, high air and soil temperatures and seasonally arid conditions cause rapid mineralization of nitrogen and phosphorus. The nutrients are subsequently available for transport during the onset of seasonal wet weather, which typically begins during the period from late April to June. In addition to the rapid mobility of nutrients in streamwater from agricultural areas during the wet season, drains in urban areas, which typically have high nutrient concentrations, also are an important source of nutrients as the drains flow directly to the estuary throughout the year.
Differences in nutrient requirements imply a non-linear emergence of leaders in animal groups.
Sueur, Cédric; Deneubourg, Jean-Louis; Petit, Odile; Couzin, Iain D
2010-09-02
Collective decision making and especially leadership in groups are among the most studied topics in natural, social, and political sciences. Previous studies have shown that some individuals are more likely to be leaders because of their social power or the pertinent information they possess. One challenge for all group members, however, is to satisfy their needs. In many situations, we do not yet know how individuals within groups distribute leadership decisions between themselves in order to satisfy time-varying individual requirements. To gain insight into this problem, we build a dynamic model where group members have to satisfy different needs but are not aware of each other's needs. Data about needs of animals come from real data observed in macaques. Several studies showed that a collective movement may be initiated by a single individual. This individual may be the dominant one, the oldest one, but also the one having the highest physiological needs. In our model, the individual with the lowest reserve initiates movements and decides for all its conspecifics. This simple rule leads to a viable decision-making system where all individuals may lead the group at one moment and thus suit their requirements. However, a single individual becomes the leader in 38% to 95% of cases and the leadership is unequally (according to an exponential law) distributed according to the heterogeneity of needs in the group. The results showed that this non-linearity emerges when one group member reaches physiological requirements, mainly the nutrient ones - protein, energy and water depending on weight - superior to those of its conspecifics. This amplification may explain why some leaders could appear in animal groups without any despotism, complex signalling, or developed cognitive ability.
Biophysical Controls on Carbon Cycling in Restored and Unrestored Urban Streams
NASA Astrophysics Data System (ADS)
Larsen, L. G.; Harvey, J. W.; Singh, J. D.; Sinclair, G. A.; Langston, T.; Maglio, M. M.
2012-12-01
Stream restoration is a multibillion dollar industry, yet how restoration impacts the ecological functioning of streams remains poorly understood. Because stream restoration may alter numerous biophysical controls, including light availability (through tree removal during bank regrading), hydraulics, sediment characteristics, and/or nutrient concentrations, it can be challenging to achieve a general understanding of how different aspects of stream restoration design influence ecosystem function (e.g., carbon cycling). In this study we combined strategies of continuously monitoring hydrology, turbidity, and dissolved oxygen at a station with spatially distributed but temporally sparse synoptic sampling to understand how restoration and land-use impact carbon fixation and respiration in urban streams. The study was performed over three years in three adjacent 3rd-4th order stream reaches in the urban Chesapeake Bay watershed, one of which was restored in 2002 using the ubiquitous Natural Channel Design method. By parsing the dissolved oxygen time series into contributions from respiration and gross primary production, we found the unrestored urban reach to be the most heterotrophic. It removed two times more carbon from the stream to the atmosphere than an unrestored suburban stream that was nutrient impacted and five times more carbon than the restored urban stream. The synoptic sampling revealed that nutrients, light, and hydrodynamic disturbance were the primary controls on carbon fixation and respiration, with fine sediment also exhibiting importance, likely as a vehicle for nutrient transport. Low rates of net carbon removal in the restored stream arose from high light availability resulting in high primary production, combined with low fine sediment availability restricting respiration. Thus, while restoration may have been effective for stream stabilization, it has decreased the functionality of the stream for net carbon removal to the atmosphere. Surprisingly, streambed potential respiration rates were indistinguishable between different geomorphic zones within the streams, suggesting that large-scale factors (i.e., nutrient and fine sediment supply) were more dominant controls than geomorphically controlled local variability.
NASA Astrophysics Data System (ADS)
Newcomer, M. E.; Dwivedi, D.; Raberg, J.; Fox, P. M.; Nico, P. S.; Wainwright, H. M.; Conrad, M. E.; Bill, M.; Bouskill, N.; Williams, K. H.; Hubbard, S.; Steefel, C. I.
2017-12-01
Riverine systems in snow-dominated mountainous regions often express complex biogeochemistry and river nutrient indicators as a function of hydrologic variability. In early spring, meltwater infiltration from a ripened snowpack creates a hydrological gradient through hillslopes, floodplains, and hyporheic zones. During this time, these systems are more-or-less a passive filter that allows the rising limb of the hydrograph to display chemo-dynamic relationships (inversely proportional) with solutes and nutrients. During the growing season, temperatures, plants, microbes, and hydrologic gradients shift dramatically and activate hyporheic-zone biogeochemistry as a major control on water nutrient degradation. Hyporheic biogeochemical reliance on the timing of meltwater infiltration and the possibility of a longer vernal window under future climate change indicates the importance of hyporheic cycling as the dominant ecological control point on carbon and nitrogen fluxes and transformations. The objective of our study is to develop a predictive understanding of the subsurface and surface controls on hyporheic biogeochemical behavior through data-model integration. Data from our 2017 field campaign in the East River, Colorado, a pristine, mountainous watershed, were taken at key times during the rising, peak, falling, and dry limb of the hydrograph. Throughout multiple locations across this spatial and temporal gradient, we measured surface and subsurface gases, geochemistry, isotopes, and hydrological flow conditions and used this data to constrain a numerical flow and reactive transport model of the hyporheic zone that included microbial and flow feedback dynamics. Our data coupled with the predictive power of our numerical model reveal that the hyporheic zone serves dual roles throughout the year—as a net source of nutrients and solutes during the early vernal phase, shifting to a net sink of nutrients during the summer dry season. The possibility of a future lengthened vernal window motivates a better understanding of the role each ecological control point plays in processing landscape biological productivity and for understanding biogeochemical cycling in riverine systems.
How Hydrodynamics Control Algal Blooms in the Ythan Estuary, Scotland
NASA Astrophysics Data System (ADS)
Champangern, K.; Hoey, T.; Thomas, R.; Mitchard, E. T.
2016-12-01
The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilisers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as nutrient transport in the estuary is crucial for comprehending the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. To understand the controls, the Delft3d flow model is used to simulate hydrodynamic patterns and nutrient pathways in the estuary during high flow and low flow events. The results from the simulations reveal that during high river flow in the central part of the estuary, where algal growth is most extensive, flow velocity are higher during flood tide than in the ebb. However, the velocity in this area remain very low throughout the tidal cycle. During low river flow, the velocity during one tidal cycle has the same pattern as in high flow event, although the velocity is generally slightly higher than during high river flow except during slack tide where velocity and shear stress are lower. The modelled nutrient pathways and their concentration also show the movement of nutrients with regard to interaction of both fresh and sea water. The concentration is greatest during low tide in the upper estuary followed by middle and lower estuary, while appearing lowest during high tide. The nutrients mobilise along the main channel where velocity is greater. However, they are also dispersed to shallower areas where algal growth is extensive and remain high concentrated in the areas until a new flood tide. These model results are validated against measured data, of which the validation results illustrate a good agreement with the measured data. Moreover, these results are clearly consistent with areas where extensive algal growth occurs in upper and middle estuary derived from satellite image classification. This study suggests that hydrodynamics strongly controls over persistence of algal formation in location and extent.
The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in m...
Study on shrimp waste water and vermicompost as a nutrient source for bell peppers
USDA-ARS?s Scientific Manuscript database
The aquaculture industry generates significant nutrient-rich wastewater that is released into streams and rivers causing environmental concern. The objective of this controlled environment study was to evaluate the effect of waste shrimp water (SW), vermicompost (VC), at rates of 10%, 20%, 40%, and ...
The effect of herbicide application on rangeland soil nutrient availability
USDA-ARS?s Scientific Manuscript database
Very sparse literature exists on the effect of soil active herbicides on nutrient availability. As part of a larger rangeland rehabilitation project, on four sites in northern Nevada, we quantified the effect of the herbicides Landmark®, Perspective®, and Plateau® relative to controls on surface soi...
CONTROLS OF SEAGRASS EPIPHYTE ABUNDANCE: DOES LIGHT TRUMP NUTRIENTS?
Epiphytes on seagrass growing in the lower intertidal were examined along an estuarine gradient within Yaquina Bay, Oregon over a period of 4 years. The Yaquina Estuary receives high levels of nutrients from the watershed during the wet season and from the ocean during the dry s...
USDA-ARS?s Scientific Manuscript database
Our objective was to assess whether using lipid-based nutrient supplements (LNS) to complement the diets of infants and young children affected when they achieved selected developmental milestones. In rural Malawi, 840 6-month-old healthy infants were enrolled to a randomised trial. Control particip...
Effects of Phos-Chek® on soil nutrient availability
USDA-ARS?s Scientific Manuscript database
Wildfire frequencies and intensities have been steadily increasing on western US landscapes. Phos-chek® is an aerially-applied fire retardant used to contain and control wildfires. Composed of ammonium and phosphate salts, Phos-chek® has the potential to increase soil nutrient availability of N and ...
Winter nutrient behaviours in the Pearl River estuary
NASA Astrophysics Data System (ADS)
Wang, G.; Jin, S.; Du, M.
2017-12-01
Nutrient (nitrate, nitrite, ammonium, phosphate, and silicate) mapping and time-series investigation were carried out in winter in the Pearl River estuary, China. These nutrients behaved non-conservatively in the upper estuary. In the middle and lower estuary, however, nitrate and silicate seemed to be controled by physical mixing, while additions of nitrite, ammonium, and phosphate were found in the middle estuary. Nitrate was the dominant disslved inorganic nitrogen, with a fraction of more than 2/3. From the upper to the lower estuary the N:P ratio decreased from more than 200 to near the Redfield ratio of 16. Nutrients near the surface behaved almost the same as near the bottom in the water column at both the uppper and lower estuary. During a tidal cycle these nutrients seemed to be regulated more by physical mixing than by other processes.
Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling
2013-07-01
Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.
NASA Astrophysics Data System (ADS)
Irby, I.; Friedrichs, M. A. M.
2017-12-01
Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea level, and changes in precipitation, have elevated the conversation surrounding the future of the Bay's water quality. As a result, in 2010, a Total Maximum Daily Load (TMDL) was established for the Chesapeake Bay that limited nutrient and sediment input in an effort to increase dissolved oxygen. This research utilizes a multiple model approach to evaluate confidence in the estuarine water quality modeling portion of the TMDL. One of the models is then used to assess the potential impact climate change may have on the success of currently mandated nutrient reduction levels in 2050. Results demonstrate that although the models examined differ structurally and in biogeochemical complexity, they project a similar attainment of regulatory water quality standards after nutrient reduction, while also establishing that meeting water quality standards is relatively independent of hydrologic conditions. By developing a Confidence Index, this research identifies the locations and causes of greatest uncertainty in modeled projections of water quality. Although there are specific locations and times where the models disagree, this research lends an increased degree of confidence in the appropriateness of the TMDL levels and in the general impact nutrient reductions will have on Chesapeake Bay water quality under current environmental conditions. However, when examining the potential impacts of climate change, this research shows that the combined impacts of increasing temperature, sea level, and river flow negatively affect dissolved oxygen throughout the Chesapeake Bay and impact progress towards meeting the water quality standards associated with the TMDL with increased temperature as the primary culprit. These results, having been continually shared with the regulatory TMDL modelers, will aid in the decision making for the 2017 TMDL Mid-Point Assessment.
Possible Roles of Strigolactones during Leaf Senescence
Yamada, Yusuke; Umehara, Mikihisa
2015-01-01
Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence. PMID:27135345
Sharma, S; Hopping, B N; Roache, C; Sheehy, T
2013-12-01
Inuit in Nunavut, Canada, are currently undergoing a nutritional transition that may contribute to an increased prevalence of chronic disease. Information is lacking about the extent to which contemporary Inuit diets are meeting current dietary recommendations. A culturally appropriate quantitative food frequency questionnaire (QFFQ) developed and validated for Inuit in Nunavut, Canada, was used to assess food and nutrient intake in a cross-sectional sample of adults. Participants included 175 women and 36 men with mean (SD) ages of 42.4 (13.2) and 42.1 (15.0) years, respectively. The response rate for those who completed the study was 79% with 208 QFFQs included for analysis. Reported mean daily energy intakes were: men 15,171 kJ (3626 kcal); women 11,593 kJ (2771 kcal). Dietary inadequacy was expressed as the percentage of participants reporting intakes below the sex- and age-specific estimated average requirements (EARs). For nutrients without EARs, adequate intakes were used. Energy and sodium intakes exceeded the recommendations. Less than 10% of participants met recommendations for dietary fibre intake. Vitamin E intakes were below EARs for ≥97% of participants, whereas >20% reported inadequate vitamin A, folate and magnesium intakes. Among women, >50% reported inadequate calcium and vitamin D intakes. Non-nutrient-dense foods contributed 30% of energy, 73% of sugars and 22% of fat. Traditional foods contributed 56% of protein and 49% of iron. The present study demonstrates a relatively high prevalence of inadequate nutrient intakes among Inuit. The results may be used to monitor the nutrition transition among Inuit, evaluate nutritional interventions, and inform public health policy decision-making. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Piggott, Jeremy J; Salis, Romana K; Lear, Gavin; Townsend, Colin R; Matthaei, Christoph D
2015-01-01
Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of multiple stressors in a warming climate. © 2014 John Wiley & Sons Ltd.
Pratt, Nathan S; Ellison, Brenna D; Benjamin, Aaron S; Nakamura, Manabu T
2016-01-01
Consumers have difficulty using nutrition information. We hypothesized that graphically delivering information of select nutrients relative to a target would allow individuals to process information in time-constrained settings more effectively than numerical information. Objectives of the study were to determine the efficacy of the graphical method in (1) improving memory of nutrient information and (2) improving consumer purchasing behavior in a restaurant. Values of fiber and protein per calorie were 2-dimensionally plotted alongside a target box. First, a randomized cued recall experiment was conducted (n=63). Recall accuracy of nutrition information improved by up to 43% when shown graphically instead of numerically. Second, the impact of graphical nutrition signposting on diner choices was tested in a cafeteria. Saturated fat and sodium information was also presented using color coding. Nutrient content of meals (n=362) was compared between 3 signposting phases: graphical, nutrition facts panels (NFP), or no nutrition label. Graphical signposting improved nutrient content of purchases in the intended direction, whereas NFP had no effect compared with the baseline. Calories ordered from total meals, entrées, and sides were significantly less during graphical signposting than no-label and NFP periods. For total meal and entrées, protein per calorie purchased was significantly higher and saturated fat significantly lower during graphical signposting than the other phases. Graphical signposting remained a predictor of calories and protein per calorie purchased in regression modeling. These findings demonstrate that graphically presenting nutrition information makes that information more available for decision making and influences behavior change in a realistic setting. Copyright © 2016 Elsevier Inc. All rights reserved.
A hydroponic system for microgravity plant experiments
NASA Technical Reports Server (NTRS)
Wright, B. D.; Bausch, W. C.; Knott, W. M.
1988-01-01
The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.
Haytowitz, David B; Pehrsson, Pamela R
2018-01-01
For nearly 20years, the National Food and Nutrient Analysis Program (NFNAP) has expanded and improved the quantity and quality of data in US Department of Agriculture's (USDA) food composition databases (FCDB) through the collection and analysis of nationally representative food samples. NFNAP employs statistically valid sampling plans, the Key Foods approach to identify and prioritize foods and nutrients, comprehensive quality control protocols, and analytical oversight to generate new and updated analytical data for food components. NFNAP has allowed the Nutrient Data Laboratory to keep up with the dynamic US food supply and emerging scientific research. Recently generated results for nationally representative food samples show marked changes compared to previous database values for selected nutrients. Monitoring changes in the composition of foods is critical in keeping FCDB up-to-date, so that they remain a vital tool in assessing the nutrient intake of national populations, as well as for providing dietary advice. Published by Elsevier Ltd.
Preface [to special section on recent Loch Vale Watershed research
Baron, Jill S.; Williams, Mark W.
2000-01-01
Catchment-scale intensive and extensive research conducted over the last decade shows that our understanding of the biogeochemical and hydrologic processes in subalpine and alpine basins is not yet sufficiently mature to model and predict how biogeochemical transformations and surface water quality will change in response to climatic or human-driven changes in energy, water, and chemicals. A better understanding of these processes is needed for input to decision-making regulatory agencies and federal land managers. In recognition of this problem the National Research Council [1998] has identified as a critical research need an improved understanding of how global change will affect biogeochemical interactions with the hydrologic cycle and biogeochemical controls over the transport of water, nutrients, and materials from land to freshwater ecosystems. Improved knowledge of alpine and subalpine ecosystems is particularly important since high-elevation catchments are very sensitive to small changes in the flux of energy, chemicals, and water. Furthermore, alpine ecosystems may act as early warning indicators for ecosystem changes at lower elevations.
Hashim, Sarfraz; Yuebo, Xie; Saifullah, Muhammad; Nabi Jan, Ramila; Muhetaer, Adila
2015-01-01
Today's ecology is erected with miscellaneous framework. However, numerous sources deteriorate it, such as urban rivers that directly cause the environmental pollution. For chemical pollution abatement from urban water bodies, many techniques were introduced to rehabilitate the water quality of these water bodies. In this research, Bacterial Technology (BT) was applied to urban rivers escalating the necessity to control the water pollution in different places (Xuxi River (XXU); Gankeng River (GKS); Xia Zhang River (XZY); Fenghu and Song Yang Rivers (FSR); Jiu Haogang River (JHH)) in China. For data analysis, the physiochemical parameters such as temperature, chemical oxygen demand (COD), dissolved oxygen (DO), total phosphorus (TP), and ammonia nitrogen (NH3N) were determined before and after the treatment. Multicriteria Decision Making (MCDM) method was used for relative significance of different water quality on each station, based on fuzzy analytical hierarchy process (FAHP). The overall results revealed that the pollution is exceeding at “JHH” due to the limit of “COD” as critical water quality parameter and after treatment, an abrupt recovery of the rivers compared with the average improved efficiency of nutrients was 79%, 74%, 68%, and 70% of COD, DO, TP, and NH3N, respectively. The color of the river's water changed to its original form and aquatic living organism appeared with clear effluents from them. PMID:26516623
Hashim, Sarfraz; Yuebo, Xie; Saifullah, Muhammad; Nabi Jan, Ramila; Muhetaer, Adila
2015-01-01
Today's ecology is erected with miscellaneous framework. However, numerous sources deteriorate it, such as urban rivers that directly cause the environmental pollution. For chemical pollution abatement from urban water bodies, many techniques were introduced to rehabilitate the water quality of these water bodies. In this research, Bacterial Technology (BT) was applied to urban rivers escalating the necessity to control the water pollution in different places (Xuxi River (XXU); Gankeng River (GKS); Xia Zhang River (XZY); Fenghu and Song Yang Rivers (FSR); Jiu Haogang River (JHH)) in China. For data analysis, the physiochemical parameters such as temperature, chemical oxygen demand (COD), dissolved oxygen (DO), total phosphorus (TP), and ammonia nitrogen (NH3N) were determined before and after the treatment. Multicriteria Decision Making (MCDM) method was used for relative significance of different water quality on each station, based on fuzzy analytical hierarchy process (FAHP). The overall results revealed that the pollution is exceeding at "JHH" due to the limit of "COD" as critical water quality parameter and after treatment, an abrupt recovery of the rivers compared with the average improved efficiency of nutrients was 79%, 74%, 68%, and 70% of COD, DO, TP, and NH3N, respectively. The color of the river's water changed to its original form and aquatic living organism appeared with clear effluents from them.
A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.
Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook
2016-08-01
We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sansalone, John; Raje, Saurabh; Kertesz, Ruben; Maccarone, Kerrilynn; Seltzer, Karl; Siminari, Michele; Simms, Peter; Wood, Brandon
2013-12-01
The built environs alter hydrology and water resource chemistry. Florida is subject to nutrient criteria and is promulgating "no-net-load-increase" criteria for runoff and constituents (nutrients and particulate matter, PM). With such criteria, green infrastructure, hydrologic restoration, indirect reuse and source control are potential design solutions. The study simulates runoff and constituent load control through urban source area re-design to provide long-term "no-net-load-increases". A long-term continuous simulation of pre- and post-development response for an existing surface parking facility is quantified. Retrofits include a biofiltration area reactor (BAR) for hydrologic and denitrification control. A linear infiltration reactor (LIR) of cementitious permeable pavement (CPP) provides infiltration, adsorption and filtration. Pavement cleaning provided source control. Simulation of climate and source area data indicates re-design achieves "no-net-load-increases" at lower costs compared to standard construction. The retrofit system yields lower cost per nutrient load treated compared to Best Management Practices (BMPs). Copyright © 2013 Elsevier Ltd. All rights reserved.
A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands.
Delevaux, Jade M S; Whittier, Robert; Stamoulis, Kostantinos A; Bremer, Leah L; Jupiter, Stacy; Friedlander, Alan M; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L L; Wiegner, Tracy; Ticktin, Tamara
2018-01-01
Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Hā'ena and Ka'ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management.
Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight
NASA Astrophysics Data System (ADS)
Nechitailo, Galina S.
2016-07-01
MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity of nanoparticles and their active interactions with components of a nutrient medium demands development of certain technological solutions for conservation of activity potential of nanoparticles in nutrient mediums. Thus, we have elaborated and created the artificial nutrient medium having balanced structure of components and assuring successful plants cultivation in conditions of spaceflight.
NASA Astrophysics Data System (ADS)
Grossman, E. E.; Rosenbauer, R. J.; Takesue, R. K.; Gelfenbaum, G.; Reisenbichler, R.; Paulson, A.; Sexton, N. R.; Labiosa, B.; Beamer, E. M.; Hood, G.; Wyllie-Echeverria, S.
2006-12-01
Historic land use, ongoing resource extraction, and population expansion throughout Puget Sound have scientists and managers rapidly seeking effective restoration strategies to recover salmon (a cultural icon, as well as, a host of other endangered species and threatened habitats. Of principal concern is the reduction of salmon (Oncorhynchus spp.) and diminished carrying capacity of critical habitat in deltaic regions. Delta habitats, essential to salmon survival, have lost 70 to 80 % area since ~1850 and are now adjusting to a new suite of environmental changes associated with land use practices, including wetland restoration, and regional climate change. The USGS Coastal Habitats in Puget Sound Project, in collaboration with partners from the Skagit River System Cooperative, University of Washington, and other federal, state, and local agencies, is integrating geologic, biologic, hydrologic, and socioeconomic information to quantify changes in the distribution and function of deltaic-estuarine nearshore habitats and better predict "possible futures". We are combining detailed geologic and geochemical analyses of sedimentary environments, plant biomarkers (n-alkanes, PAHs, fatty-acids, and sterols), and compound-specific isotopes to estimate historic habitat coverage, eelgrass (Zostera marina) abundance and modern characteristics of nutrient cycling. Hydrologic and sediment transport processes are being measured to characterize physical processes shaping modern habitats including sediment transport and freshwater mixing that control the temporal and spatial pattern of substrate and water column conditions available as habitat. We are using geophysical, remote sensing, and modeling techniques to determine large-scale coastal morphologic and land-use change and characterize how alteration of physical, hydrologic, and biogeochemical processes influence the dynamics of freshwater mixing, and sediment and nutrient transport in the nearshore. To assist restoration planning, we are integrating a Geographic Information System of land use, ecologic, and hydrodynamic attributes with a hydrodynamic process model to (1) quantitatively estimate land-use impacts on ecologic functions and (2) to provide decision-support tools to help develop and implement effective restoration strategies that will balance socioeconomic demands and ecologic function of the Puget Sound lowlands.
NASA Astrophysics Data System (ADS)
Bauer, S.; Benisch, K.; Li, D.; Beyer, C.; Mitiku, A. B.; Graupner, B.
2011-12-01
The Critical Zone Observatory (CZO) program, initiated by the U.S. National Science Foundation in 2007 with 3 sites, was expanded to 6 sites in 2009 and is expected to grow to at least 8 sites in FY 2014. The CZO program is now maturing into a coordinated network that enables scientific research around terrestrial fluxes of water, carbon and nutrients and informs societal questions around resource management and adaptation to climate change. Individual CZOs have contributed to understanding of the influences of disturbances and of changes in climate on fluxes and stores in critical ecosystems, and to a better predictive ability. CZOs have enabled the disciplinary integration needed to consider controlling processes together, from bedrock to boundary layer, and over sub-daily to millennial or longer times. Together, the CZO network has shown the role of climate versus disturbance on rain, snowfall and snowmelt reaching the ground surface, and the influences of climate, disturbance and regolith properties on partitioning of infiltrated water into evapotranspiration versus streamflow. The influence of disturbance is manifest both through abiotic factors, e.g. boundary-layer meteorology and turbulence, and through biotic influences, e.g. changes in vegetation density due to fire or disease, and thus interception and evapotranspiration. Climatic influences are overlain on this, including i) changes in rain versus snowfall and thus snowpack and soil-water storage, and ii) growing season and thus evapotranspiration. Carbon and nutrient fluxes are closely linked to those of water. Thus rich data sets and improved models from the CZO sites together provide a better understanding of the bi-directional feedbacks between vegetation structure, regolith properties and climate. Going forward, the CZO network as a whole offers well-instrumented sites with many common measurements and multi-disciplinary data across gradient of climate, parent material, vegetation structure and regolith properties. Measurements are at scales that are sufficiently large for research involving water, carbon or nutrient balances. Results are relevant to help guide decisions around vegetation management, and to understand the water, carbon and nutrient implications of vegetation-management options. The CZO network is a community platform for research, with the common, long-term observations across the multiple sites a resource available to all for multi-disciplinary critical-zone science.
NASA Astrophysics Data System (ADS)
Bales, R. C.; Brooks, P. D.; Molotch, N. P.
2013-12-01
The Critical Zone Observatory (CZO) program, initiated by the U.S. National Science Foundation in 2007 with 3 sites, was expanded to 6 sites in 2009 and is expected to grow to at least 8 sites in FY 2014. The CZO program is now maturing into a coordinated network that enables scientific research around terrestrial fluxes of water, carbon and nutrients and informs societal questions around resource management and adaptation to climate change. Individual CZOs have contributed to understanding of the influences of disturbances and of changes in climate on fluxes and stores in critical ecosystems, and to a better predictive ability. CZOs have enabled the disciplinary integration needed to consider controlling processes together, from bedrock to boundary layer, and over sub-daily to millennial or longer times. Together, the CZO network has shown the role of climate versus disturbance on rain, snowfall and snowmelt reaching the ground surface, and the influences of climate, disturbance and regolith properties on partitioning of infiltrated water into evapotranspiration versus streamflow. The influence of disturbance is manifest both through abiotic factors, e.g. boundary-layer meteorology and turbulence, and through biotic influences, e.g. changes in vegetation density due to fire or disease, and thus interception and evapotranspiration. Climatic influences are overlain on this, including i) changes in rain versus snowfall and thus snowpack and soil-water storage, and ii) growing season and thus evapotranspiration. Carbon and nutrient fluxes are closely linked to those of water. Thus rich data sets and improved models from the CZO sites together provide a better understanding of the bi-directional feedbacks between vegetation structure, regolith properties and climate. Going forward, the CZO network as a whole offers well-instrumented sites with many common measurements and multi-disciplinary data across gradient of climate, parent material, vegetation structure and regolith properties. Measurements are at scales that are sufficiently large for research involving water, carbon or nutrient balances. Results are relevant to help guide decisions around vegetation management, and to understand the water, carbon and nutrient implications of vegetation-management options. The CZO network is a community platform for research, with the common, long-term observations across the multiple sites a resource available to all for multi-disciplinary critical-zone science.
Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)
NASA Astrophysics Data System (ADS)
Xiao, Q.
2009-12-01
Climate change alters hydrodynamic and nutrient dynamic in both large and small geographic scales. These changes in our freshwater system directly affect drinking water, food production, business, and all aspects of our life. Along with climate change is increasing urbanization which alters natural landscape. Urban runoff has been identified as one of many potential drivers of the decline of pelagic fishes in san Francisco Bay-Delta region. Recent found of Pyrethroids in American River has increased scientists, public, and policy makers’ concern about our fresh water system. Increasing our understanding about the fundamental hydrodynamic, nutrient dynamics, and the transport mechanics of runoff and nutrients are important for future water resource and ecosystem management. Urbanization has resulted in significantly increasing the amount of impervious land cover. Most impervious land covers are hydrophobic that alters surface runoff because of the effects on surface retention storage, rainfall interception, and infiltration. Large volumes of excess storm runoff from urbanized areas cause flooding, water pollution, groundwater recharge deficits, destroyed habitat, beach closures, and toxicity to aquatic organisms. Parking lot alone accounts for more than 11% of these impervious surfaces. Contrast to impervious parking lot, turfgrass can accouter for 12% of urban land in California. Irrigated urban landscapes create considerable benefits to our daily living. However, the use of fertilizers and pesticides has caused environmental problems. Preventing fertilizers and pesticides from entering storm drains is an important goal for both landscape and storm runoff managers. Studies of urban runoff have found that the most fertilizers and pesticides are from dry weather runoff which conveys pollutants to sidewalks, streets, and storm drains. Controlling surface runoff is critical to preventing these pollutants from entering storm drains and water bodies. Large scale construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.
NASA Astrophysics Data System (ADS)
Chang, N. B.
2016-12-01
Many countries concern about development and redevelopment efforts in urban regions to reduce the flood risk by considering hazards such as high-tide events, storm surge, flash floods, stormwater runoff, and impacts of sea level rise. Combining these present and future hazards with vulnerable characteristics found throughout coastal communities such as majority low-lying areas and increasing urban development, create scenarios for increasing exposure of flood hazard. As such, the most vulnerable areas require adaptation strategies and mitigation actions for flood hazard management. In addition, in the U.S., Numeric Nutrient Criteria (NNC) are a critical tool for protecting and restoring the designated uses of a waterbody with regard to nitrogen and phosphorus pollution. Strategies such as low impact development (LID) have been promoted in recent years as an alternative to traditional stormwater management and drainage to control both flooding and water quality impact. LID utilizes decentralized multifunctional site designs and incorporates on-site storm water management practices rather than conventional storm water management approaches that divert flow toward centralized facilities. How to integrate hydrologic and water quality models to achieve the decision support becomes a challenge. The Cross Bayou Watershed of Pinellas County in Tampa Bay, a highly urbanized coastal watershed, is utilized as a case study due to its sensitivity to flood hazards and water quality management within the watershed. This study will aid the County, as a decision maker, to implement its stormwater management policy and honor recent NNC state policy via demonstration of an integrated hydrologic and water quality model, including the Interconnected Channel and Pond Routing Model v.4 (ICPR4) and the BMPTRAIN model as a decision support tool. The ICPR4 can be further coupled with the ADCIRC/SWAN model to reflect the storm surge and seal level rise in coastal regions.
Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives
Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.
2017-01-01
Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790
Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives.
Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D
2017-01-01
Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.
Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M.C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E.; Houlton, Benjamin Z.; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C.; Sierra, Carlos A.; Silver, Whendee L.; Tanner, Edmund V.J.; Wieder, William R.
2011-01-01
Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (< 1000 m), a regression tree analysis revealed that foliar and soil-based measurements of phosphorus (P) were the only variables that explained a significant proportion of the variation in ANPP, although the relationships were weak. However, foliar P, foliar nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0–10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations – especially in lowland forests – to elucidate the most important nutrient interactions and controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espeleta, Javier F.; Cardon, Zoe G.; Mayer, K. Ulrich
Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K + and NH 4 +, both high-demand nutrients. A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K + and NH 4 +. Competitive cation exchangemore » enabled lowdemand cations that accumulate against roots (Ca 2+, Mg 2+, Na +) to desorb NH 4 + and K + from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH 4 + and K + aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations. Finally, diel plant water use and competitive cation exchange enhanced NH 4 + and K + availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.« less
NASA Astrophysics Data System (ADS)
Adams, Russell; Owen, Gareth
2015-04-01
Over the past few years a series of catchment monitoring studies in the UK have developed a wide range of tools to enable managers and planners to make informed decisions to target several key outcomes. These outcomes include the mitigation of diffuse pollution and the reduction of flood risk. Good progress has been but additional steps are still required to link together more detailed models that represent catchment processes with the decision support systems (often termed matrices; i.e. DSMs) which form the basis of these planning and management tools. Examples include: (i) the FARM tools developed by the PROACTIVE team at Newcastle University to assess different catchment management options for mitigating against flooding events, (ii) TOPMANAGE, a suite of algorithms that link with high resolution DEMs to enable surface flow pathways, having the potential to be mitigated by Natural Flood Management (NFM) features (in order to target diffuse pollution due to nutrients and sediments) to be identified. To date, these DSMs have not been underpinned by models that can be run in real-time to quantify the benefits in terms of measurable reductions in flood or nutrient pollution risks. Their use has therefore been mostly as qualitative assessment tools. This study aims to adapt an existing spreadsheet-based model, the CRAFT, in order for it to become fully coupled to a DSM approach. Previous catchment scale applications of the CRAFT have focussed on meso-scale studies where any management interventions at a local scale are unlikely to be detectable at the monitoring point (the catchment outlet). The model has however been reasonably successful in identifying potential flow and transport pathways that link the headwater subcatchments to the outlet. Furthermore, recent enhancements to the model enable features such as sedimentation ponds and lagoons that can trap and remove nutrients and sediments to be added, once data become available from different types of NFM features to parameterise these. The model can be used to investigate runoff attenuation (in this case primarily through a lagged routing term applied to surface runoff) as a result of implementing mitigation measures. However to be fully integrated within a DSM framework requires the CRAFT to be linked to a user-friendly interface that will allow the user to modify key parameters, preferably using a web-based expert system, which will be explored further.
NASA Astrophysics Data System (ADS)
Artigas, Joan; García-Berthou, Emili; Bauer, Delia E.; Castro, Maria I.; Cochero, Joaquín; Colautti, Darío C.; Cortelezzi, Agustina; Donato, John C.; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Gómez, Nora; Leggieri, Leonardo; Muñoz, Isabel; Rodrigues-Capítulo, Alberto; Romaní, Anna M.; Sabater, Sergi
2013-03-01
We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6-4-fold following a before-after control-impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2-77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9-48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure.
McMillan, Sara K.; Noe, Gregory
2017-01-01
Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.
NASA Astrophysics Data System (ADS)
Moore, T.; Fong, P.; Cuker, B.
2016-02-01
Aquatic communities worldwide are increasingly subjected to multiple anthropogenic stressors that often result in shifts in structure and function. On coral reefs, human impacts have been associated with phase-shifts from coral to algal domination. We hypothesized that the proliferation of these algal communities, especially on fringing reefs, may be facilitated by human alterations in nutrient enrichment and input of sediments from developed watersheds, which may also influence competitive outcomes among dominant algal species. To evaluate how changes in these abiotic stressors as well as competition may affect the growth of 2 common species of calcifying coral reef algae, Galaxaura fasciculata and Padina boryana, we conducted 3 separate 2 factor mesocosm experiments modeling fringing reefs in Moorea, French Polynesia. In the first experiment, we varied sediment source (marine vs. terrestrial) and water column nutrients (ambient vs. enriched) for each species separately and measured growth after 7 days. While both algae grew faster in enriched compared to ambient nutrients, P. boryana performed best with marine sediment (+27% change in biomass) and G. fasciculata with terrestrial sediment (+14% change in biomass). Next, we varied sediment source (as above) as well as sediment nutrients (ambient/enriched) for each species. While P. boryana lost 44% biomass in the eutrophic terrestrial sediment treatment, G. fasciculata performed the best and gained 19% biomass. Finally, we varied competition (alone/together) and terrestrial sediment nutrients (ambient/enriched). Over the 7 day period, P. boryana lost 64% biomass when in competition with G. fasciculata in the enriched treatment while G. fasciculata gained 38% biomass when in competition with P. boryana in the ambient treatment. These results indicate that, while growth of both species of macroalgae was regulated by nutrients, sediments, and competition, each responded uniquely to these controlling factors.
Duvenage, Stacey; Korsten, Lise
2016-11-01
Temperature and good sanitation practices are important factors for controlling growth of microorganisms. Fresh produce is stored at various temperatures to ensure quality and to prolong shelf life. When foodborne pathogens survive and grow on fresh produce at storage temperatures, then additional control strategies are needed to inactivate these pathogens. The aim of this study was to determine how temperatures associated with deciduous fruit processing and storage facilities (0.5, 4, and 21°C) affect the growth and/or survival of Escherichia coli O157:H7, Listeria monocytogenes , Salmonella enterica subsp. enterica serovar Typhimurium, and Staphylococcus aureus under different nutrient conditions (nutrient rich and nutrient poor) and on simulated contact surfaces (vinyl coupons). Information on the growth and survival of foodborne pathogens at specific deciduous fruit processing and storage temperatures (0.5°C) is not available. All pathogens except E. coli O157:H7 were able to survive on vinyl coupons at all temperatures. L. monocytogenes proliferated under both nutrient conditions independent of temperature. S. aureus was the pathogen least affected by nutrient conditions. The survival of foodborne pathogens on the vinyl coupons, a model system for studying surfaces in fruit preparation and storage environments, indicates the potential for cross-contamination of deciduous fruit products under poor sanitation conditions. Foodborne pathogens that can proliferate and survive at various temperatures under different nutrient conditions could lead to fruit cross-contamination. Temperature mismanagement, which could allow pathogen proliferation in contaminated fruit packing houses and storage environments, is a concern. Therefore, proper hygiene and sanitation practices, removal of possible contaminants, and proper food safety management systems are needed to ensure food safety.
Post-fire soil nutrient redistribution in northern Chihuahuan Desert
NASA Astrophysics Data System (ADS)
Wang, G.; Li, J. J.; Ravi, S.; Sankey, J. B.; Duke, D.; Gonzales, H. B.; Van Pelt, S.
2016-12-01
The desert grassland in the southwestern US has undergone dramatic land degradation with woody shrub encroachment over the last 150 years. Wind erosion and periodic fires are major drivers of vegetation dynamics in these ecosystems. Due to climate change and anthropogenic disturbances, many drylands are undergoing changes in fire regimes, which can largely alter the nutrient loss rate as well as the soil resource heterogeneity. In this study, we used manipulative field experiments, laboratory and geostatistical analyses to investigate the distribution of fertile islands, nutrient loss rate and spatial variation. Replicated burned and control experimental plots were set up in a desert grassland in northern Chihuahuan Desert in March 2016. Windblown sediments were monitored by multiple MWAC sediment collectors on each plot. Surface soil samples, with their locations accurately recorded (i.e., under shrub, under grass, and bare interspace) were collected twice per year in spring and again in summer after the experimental setup. Our preliminary results show that the spatial heterogeneity of soil C and N in the burned plots has changed notably compared to the control plots. Our results further demonstrated that areas with burned shrubs is most vulnerable to wind erosion, therefore the soil nutrient loss is most significant, almost five times of the nutrient loss rate of bare areas. Interspace bare areas is in the lowest micro-land and some of the surface has caliche, which makes the surface resistant to wind erosion. And areas with burned grass receive the lightest wind erosion and nutrient loss, around one third of the erosion on bare areas, because burned grasses still cover the surface and the dead bodies can eliminate wind erosion to a large extent. Hence, periodic fire in desert grassland favors the evenness distribution of soil nutrients and can retard the shrub encroachment process.
Can we manipulate root system architecture to control soil erosion?
NASA Astrophysics Data System (ADS)
Ola, A.; Dodd, I. C.; Quinton, J. N.
2015-09-01
Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.
Tindall, J.A.; Friedel, M.J.; Szmajter, R.J.; Cuffin, S.M.
2005-01-01
The objectives of the laboratory study described in this paper were (1) to determine the effectiveness of four nutrient solutions and a control in stimulating the microbial degradation of toluene in the unsaturated zone as an alternative to bioremediation methodologies such as air sparging, in situ vitrification, or others (Part I), and (2) to compare the effectiveness of the addition of the most effective nutrient solution from Part I (modified Hoagland type, nitrate-rich) and hydrogen peroxide (H2O2) on microbial degradation of toluene for repeated, simulated spills in the unsaturated zone (Part II). For Part 1, fifteen columns (30-cm diameter by 150-cm height), packed with air-dried, 0.25-mm, medium-fine sand, were prepared to simulate shallow unconfined aquifer conditions. Toluene (10 mL) was added to the surface of each column, and soil solution and soil gas samples were collected from the columns every third day for 21 days. On day 21, a second application of toluene (10 mL) was made, and the experiment was run for another 21 days. Solution 4 was the most effective for microbial degradation in Part I. For Part II, three columns were designated nutrient-rich 3-day toluene columns and received toluene injections every 3 days; three columns were designated as nutrient-rich 7-day columns and received toluene injections every 7 days; and two columns were used as controls to which no nutrient was added. As measured by CO2 respiration, the initial benefits for aerobic organisms from the O2 enhancement were sustained by the bacteria for only a short period of time (about 8 days). Degradation benefits from the nutrient solution were sustained throughout the experiment. The O2 and nutrient-enhanced columns degraded significantly more toluene than the control columns when simulating repeated spills onto the unsaturated zone, and demonstrated a potentially effective in situ bioremediation technology when used immediately or within days after a spill. The combined usage of H 2O2 and nitrate-rich nutrients served to effectively maximize natural aerobic and anaerobic metabolic processes that biodegrade hydrocarbons in petroleum-contaminated media. Applications of this technology in the field may offer economical advantages to other, more intrusive abatement technologies. ?? Springer 2005.
Patient Decision Control and the Use of Cardiac Catheterization
Paasche-Orlow, Michael K.; Orner, Michelle B.; Stewart, Sabrina K.; Kressin, Nancy R.
2015-01-01
Background: Shared decision-making is a key determinant of patient-centered care. A lack of patient involvement in treatment decisions may explain persistent racial disparities in rates of cardiac catheterization (CCATH). To date, limited evidence exists to demonstrate whether patients who engage in shared decision-makingare more or less likely to undergo non-emergency CCATH. Objective: To assess the relationship between participation in the decision to undergo a CCATH and the use of CCATH. We also examined whether preference for or actual engagement in decision-making varied by patient race. Methods: We analyzed data from 826 male Veterans Administration patients for whom CCATH was indicated and who participated in the Cardiac Decision Making Study. Results: After controlling for confounders, patients reporting any degree of decision control were more likely to receive CCATH compared with those reporting no control (doctor made decision without patient input) (54% vs 39%, P<.0001). Across racial groups, patients were equally likely to report a preference for control over decision-making (P=.53) as well as to experience discordance between their preference for control and their perception of the actual decision-making process (P=.59). Therefore, these factors did not mediate racial disparities in rates of CCATH use. Conclusion: Shared decision-making is an essential feature of whole-person care. While participation in decision-making may not explain disparities in CCATH rates, further work is required to identify strategies to improve congruence between patients' desire for and actual control over decision-making to actualize patient-centered care. PMID:26331101
Understanding the influence of nutrients on stream ecosystems in agricultural landscapes
Munn, Mark D.; Frey, Jeffrey W.; Tesoriero, Anthony J.; Black, Robert W.; Duff, John H.; Lee, Kathy E.; Maret, Terry R.; Mebane, Christopher A.; Waite, Ian R.; Zelt, Ronald B.
2018-06-06
Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term economic, social, and environmental benefits that make a difference to the lives of the almost 400 million people projected to live in the United States by 2050.In 1991, Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) to address where, when, why, and how the Nation’s water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has been a leading source of scientific data and knowledge used by national, regional, State, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs (https://water.usgs.gov/nawqa/applications/). Plans for the third decade of NAWQA (2013–23) address priority water-quality issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee on Water Information and the National Research Council, and are designed to meet increasing challenges related to population growth, increasing needs for clean water, and changing land-use and weather patterns.Excess nutrients are a pervasive problem of streams, lakes, and coastal waters. The current report, “The Quality of Our Nation’s Waters—Understanding the Effects of Nutrients on Stream Ecosystems in Agricultural Landscapes,” presents a summary of results from USGS investigations conducted from 2003 to 2011 on processes that influence nutrients and how nutrient enrichment can alter biological components of agricultural streams. This study included collecting data from 232 sites distributed among eight study areas. This report summarizes findings on processes that influence nutrients and how nutrient enrichment can alter biological communities in agricultural streams. These findings are relevant to local, State, regional, and national decision-makers involved in efforts to (1) better understand the influence of nutrients on agricultural streams, (2) develop nutrient criteria for streams and rivers, (3) reduce nutrients to streams and downstream receiving waters, and (4) develop tools for tracking nutrient and biological conditions following nutrient reduction strategies. All NAWQA reports are available online at https://water.usgs.gov/nawqa/bib/.We hope this publication will provide you with insights and information to meet your water-resource needs and will foster increased citizen awareness and involvement in the protection and restoration of our Nation’s waters. The information in this report is intended primarily for those interested or involved in resource management and protection, conservation, regulation, and policymaking at the regional and national levels.
Hodge, Angela
2009-06-01
Root systems have recognizable developmental plans when grown in solution or agar; however, these plans often must be modified to cope with the prevailing conditions in the soil environment such as the avoidance of obstacles and the exploitation of nutrient-rich patches or water zones. The modular structure of roots enables them to respond to their environment, and roots are very adaptive at modifying growth throughout the root system to concentrate their efforts in the areas that are the most profitable. Roots also form associations with microorganisms as a strategy to enhance resource capture. However, while the responses of roots in nutrient patches are well-recognized, overall 'rules of response' and variation in strategy among plant species that can be applied in a number of different environments are still lacking. Finally, there is increasing evidence that root-root interactions are much more sophisticated than previously thought, and the evidence for roots to identify self from non-self roots will be briefly discussed.
Sakai, Yoshiyuki; Iwata, Yoshinori; Enomoto, Hirayuki; Saito, Masaki; Yoh, Kazunori; Ishii, Akio; Takashima, Tomoyuki; Aizawa, Nobuhiro; Ikeda, Naoto; Tanaka, Hironori; Iijima, Hiroko; Nishiguchi, Shuhei
2015-01-01
The usefulness of branched-chain amino acid (BCAA) granules and BCAA-enriched nutrient mixtures for patients with liver cirrhosis is often reported. However, no randomized controlled studies have investigated the usefulness of these supplements in the nutritional intervention of cirrhotic patients receiving endoscopic treatment for esophageal varices. Patients without BCAA before endoscopic treatment were divided into study 1, and those who received BCAA were divided into study 2. In study 1, 44 eligible patients were divided into a control group (n = 13), a general liquid nutrient (snack) group (n = 15), and a BCAA-enriched nutrient mixture (BCAA-EN) group (n = 16). In study 2, 48 eligible patients were divided into a BCAA group (n = 24) and a BCAA-EN group (n = 24). The nutritional status including non-protein respiratory quotient (NPRQ) levels, weight gain, and albumin were evaluated on days 0, 7, and 50. In study 1, the BCAA-EN group showed significant improvement in NPRQ levels on day 7 as compared with the snack group. In study 2, the BCAA-EN group showed significant improvement in NPRQ levels on day 7 and in weight levels on day 50 relative to the BCAA group, while the BCAA group showed improved serum albumin levels on day 7 compared to the BCAA-EN group. The BCAA-enriched nutrient mixture maintained NPRQ and weight in cirrhotic patients. Our findings suggest that supplements including both BCAA and a nutritional energy supplement would be beneficial for cirrhotic patients undergoing endoscopic treatment for esophageal varices.
NASA Astrophysics Data System (ADS)
Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.
2015-01-01
Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with biochar amendments to the soils. Biochars are characterised by a high adsorption capacity, i.e., they may retain nutrients such nitrate and ammonium. However, biochar properties strongly depend on feedstock and the production process. We investigated the nutrient retention capacity of biochars derived from pyrolysis (pyrochar) as well as from hydrothermal carbonization (hydrochar; produced at 200 and 250 °C) from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of biochar degradation on its nutrient retention capacity using a seven-month in-situ field incubation of pyrochar and hydrochar. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-biochar mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the biochars' adsorption capacity after field application of the biochars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80% to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of biochar applications to temperate zone soils to minimize nutrient losses via leaching.
NASA Astrophysics Data System (ADS)
Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.
2015-06-01
Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with amendments of chars derived from pyrolysis (pyrochars) or hydrothermal carbonization (hydrochars). Chars are characterized by a high adsorption capacity - i.e. they may retain nutrients such as nitrate and ammonium. However, the physicochemical properties of the chars and hence their sorption capacity likely depend on feedstock and the production process. We investigated the nutrient retention capacity of pyrochars and hydrochars from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of char degradation on its nutrient retention capacity using a 7-month in situ field incubation of pyrochar and hydrochar mixed into soils at three different field sites. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-char mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the chars' adsorption capacity after field application of the chars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80 % to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of char applications to temperate zone soils to minimize nutrient losses via leaching.
Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo
2013-03-01
Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.
Effects of Gravel Bars on Nutrient Spiraling in Bedrock-Alluvium Streams
NASA Astrophysics Data System (ADS)
Iobst, B. R.; Carroll, E. P.; Furbish, D. J.
2007-05-01
The importance of the connection between nutrient transport and local stream geomorphology is becoming increasingly important. Studies have shown that the interconnectivity of nutrient cycles in the downstream direction is in part controlled by the distribution and size of gravel bars in low order streams, as hyporheic flow occurs dominantly through alternate and mid-channel gravel bars. For this investigation multiple gravel bars in a 3rd order bedrock-alluvium stream were studied to determine general relationships between nutrient spiraling and hyporheic flow. The first goal was to understand (1) the extent to which water moves through hyporheic zones and (2) the basic chemistry of the hyporheic water. The second part of the study was to understand how nutrients, notably nitrogen, are affected in their cycling by the relatively long residence times encountered in gravel bars during hyporheic flow. Wells were installed along a 600 m reach of Panther Creek, KY in selected bars, as well as in a secondary location involving a grid installation pattern in one large bar. Results have shown that hyporheic flow through gravel bars is an important factor in influencing stream chemistry. Background water chemistry surveys have shown that certain parameters, specifically ammonium and nitrogen concentrations vary downstream, and that the dominant control over these changes is gravel bar location. Rhodamine WT was used in field tracer tests to track the travel times of water through bars as well as partitioning of water between the open channel and hyporheic flows. Further tests will be conducted utilizing a stable isotope study to determine how nitrogen is affected by hyporheic flow, and what implications this has for nutrient transport. We expect results to show that the spacing and size of gravel bars is a dominant control in key nutrient spiraling parameters, namely uptake lengths and overall nitrogen cycling rates. This has implications for how natural systems will respond to human impacts, both through the modification of the physical template of stream systems as well as increased anthropogenic loading of nitrogen.
Effect of a Nutrient Rich Foods consumer education program: results from the nutrition advice study.
Glanz, Karen; Hersey, James; Cates, Sheryl; Muth, Mary; Creel, Darryl; Nicholls, Jill; Fulgoni, Victor; Zaripheh, Susan
2012-01-01
The Nutrient Rich Foods (NRF) approach to eating uses the NRF Index, a nutrient profiling metric to help consumers choose foods that contain more vitamins, minerals, and other nutrients per kilocalorie. Research is needed to test the efficacy of dietary guidance using nutrient profiling systems to rank foods. To examine whether nutrition education and supporting materials would increase understanding of the NRF approach and improve food shopping, meal planning, consumption of nutrient-rich foods, and diet quality. Unbalanced randomized controlled trial conducted in February to May 2009 with participants assigned to NRF education group (n=128) or control group receiving standard nutrition education (n=61). Adult primary food shoppers and preparers with at least one child in the household aged 3 to 17 years. Group education session and support tools (pocket guide, shopping list, refrigerator magnet, weekly e-mail messages, and biweekly mailings). Surveys of knowledge, attitudes, and behaviors and two 24-hour telephone dietary recalls at baseline and after an 8-week intervention period. Examined time-by-treatment interactions in outcome measures. Compared to controls, NRF participants increased meal planning (+24.2% vs ?4.9%; P<0.01), ability to identify nutrient-rich foods (+60.2% vs +24.6%; P<0.001), and use of shopping lists (+14.1% vs +3.3%; nonsignificant trend), and consumed more vegetables and fruits (P<0.05). NRF participants improved overall diet quality as shown by their scores on the Healthy Eating Index (P=0.04) and NRF scale scores (nonsignificant trend). Significant improvements were observed in Healthy Eating Index component scores for total fruit; whole fruit; whole grains; saturated fat; and energy from solid fats, alcohol, and added sugars. Findings of this study showed that a consumer education program increased participants' use of the NRF approach and improved diet quality. Larger and longer-term studies are needed to confirm the findings and better understand processes of change. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Migliavacca, Mirco
2017-04-01
Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induces variation in structural and functional changes of vegetation under different nutrient availability. Among those, sun-induced fluorescence in the far-red region provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and photosynthetic carbon dioxide uptake (Gross Primary Production, GPP). However, the mechanistic link between GPP and sun-induced fluorescence under different environmental conditions is not completely understood. In this contribution we investigated the structural and functional factors controlling the emission of SIF at 760 nm in a Mediterranean grassland with different levels of nutrient availability (Nitrogen (N), Phosphorous (P), and Nitrogen and Phosphorous (NP)). We showed how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. nitrogen content per dry mass of leaves, N%, Chlorophyll ab concentration - Cab, and maximum carboxylation capacity, Vcmax) affected the observed relationship between SIF and GPP. Simultaneous measurements of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and narrow-band spectrometers, respectively. To disentangle the main drivers of the GPP-SIF relationship we performed a factorial modeling exercise with the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) model. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy. This lead to changes in canopy structure (leaf area index, leaf inclinaton distribution function LIDF parameters) and functional traits (N%, P%, Cab and Vcmax) that eventually controlled the spatial patterns of SIF. Changes in LIDF mainly control the GPP-SIF relationship, with a secondary control of Cab and Vcmax. In order to exploit SIF data to model GPP at global/regional scale canopy structural variability, plant community, and plant functional traits are important confounding factors that have to be considered to correct the plant-functional type specific relationship between sun-induced fluorescence and GPP.
Palter, Jaime; Coto, Sandra León; Ballestero, Daniel
2007-06-01
In the Gulf of Nicoya on the Pacific Coast of Costa Rica, nutrient rich equatorial subsurface water (ESW) is upwelled in much of the lower gulf. These offshore waters are often regarded as the major source of nutrients to the gulf. However, for most of the year, the ESW has little influence on the nutrient content of the upper gulf, which has a distinct character from the lower gulf. The upper gulf, extending 40 km north of the restriction between Puntarenas Peninsula and San Lucas Island, is bordered primarily by mangrove swamps, is less than 20 m deep, and is less saline than the lower gulf. We surveyed the upper gulf for dissolved inorganic nitrogen, phosphate, silicate, dissolved oxygen, and chlorophyll in November 2000, January and July 2001. All nutrients are more concentrated in the upper gulf during the rainy and transitional seasons than the dry season, significantly so for phosphate and silicate. Throughout the year, nutrients tend to be much more concentrated in the less saline water of the upper gulf. This trend indicates that discharge from the Tempisque River predominantly controls spatial and temporal nutrient variability in the upper gulf. However, nutrient rich ESW, upwelled offshore and mixed to form a mid-temperature intermediate water, may enter the inner gulf to provide an important secondary source of nutrients during the dry season.
Hartmann, Monika; Cash, Sean B; Yeh, Ching-Hua; Landwehr, Stefanie C; McAlister, Anna R
2017-10-01
Children's dietary-related diseases and their associated costs have expanded dramatically in many countries, making children's food choice a policy issue of increasing relevance. As children spend a considerable amount of money on energy-dense, nutrient-poor (EDNP) products, a better understanding of the main drivers of children's independent food purchase decisions is crucial to move this behavior toward healthier options. The objective of the study is to investigate the role of branding and price in motivating children to choose healthier snack options. The study investigates snack choices of children ages 8 to 11, using a survey and a purchase experiment. The research took place in after-school programs of selected schools in the Boston area. Participants included 116 children. Products in the choice experiment differed on three factors: product type, brand, and price. Data were analyzed using aggregated and mixed logit models. Children's purchase decisions are primarily determined by product type (Importance Value (IV) 56.6%), while brand (IV 22.8%) and price (IV 20.6%) prove to be of less relevance. Only those children who state that they like the familiar brand reveal a preference for the branded product in their purchase decision. Price is a significant predictor of choice when controlling for whether or not children obtain an allowance. It is not simple brand awareness but a child's liking of the brand that determines whether a brand is successful in motivating a child to choose a product. The extent of children's experience with money influences their price responsiveness. To the extent that children who receive an allowance are primarily the ones buying food snacks, higher prices for EDNP snacks could be successful in motivating children to choose a healthier option. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rai, Deshanie; Bird, Julia K; McBurney, Michael I; Chapman-Novakofski, Karen M
2015-06-01
Understanding nutrient intakes among women of childbearing age within the USA is important given the accumulating evidence that maternal body weight gain and nutrient intakes prior to pregnancy may influence the health and well-being of the offspring. The objective of the present study was to evaluate nutritional status in women of childbearing age and to ascertain the influence of ethnicity and income on nutrient intakes. Nutritional status was assessed using data on nutrient intakes through foods and supplements from the National Health and Nutrition Examination Survey. Biomarker data from the Centers for Disease Control and Prevention were used to assess nutritional status for selected nutrients. Poverty-income ratio was used to assess family income. White (n 1560), African-American (n 889) and Mexican-American (n 761) women aged 19-30 and 31-50 years were included. A nationally representative sample of non-pregnant women of childbearing age resident in the USA. African-American women had the lowest intakes of fibre, folate, riboflavin, P, K, Ca and Mg. Women (31-50 years) with a poverty-income ratio of ≤ 1.85 had significantly lower intakes of almost all nutrients analysed. Irrespective of ethnicity and income, a significant percentage of women were not consuming the estimated recommended amounts (Estimated Average Requirement) of several key nutrients: vitamin A (~80%), vitamin D (~78%) and fibre (~92%). Nutrient biomarker data were generally reflective of nutrient intake patterns among the different ethnic groups. Women of childbearing age in the USA are not meeting nutrient intake guidelines, with differences between ethnic groups and socio-economic strata. These factors should be considered when establishing nutrition science advocacy and policy.
Making Decisions About Supplement Use.
Maughan, Ronald J; Shirreffs, Susan M; Vernec, Alan
2018-03-01
The use of dietary supplements is widespread among athletes in all sports and at all levels of competition, as it is in the general population. For the athlete training at the limits of what is sustainable, or for those seeking a shortcut to achieving their aims, supplements offer the prospect of bridging the gap between success and failure. Surveys show, however, that this is often not an informed choice and that the knowledge level among consumers is often low and that they are often influenced in their decisions by individuals with an equally inadequate understanding of the issues at stake. Supplement use may do more harm than good, unless it is based on a sound analysis of the evidence. Where a deficiency of an essential nutrient has been established by appropriate investigations, supplementation can provide a rapid and effective correction of the problem. Supplements can also provide a convenient and time-efficient solution to achieving the necessary intake of key nutrients such as protein and carbohydrate. Athletes contemplating the use of supplements should consider the potential for both positive and negative outcomes. Some ergogenic supplements may be of benefit to some athletes in some specific contexts, but many are less effective than is claimed. Some may be harmful to health of performance and some may contain agents prohibited by anti-doping regulations. Athletes should make informed choices that maximize the benefits while minimizing the risks.
Variation in Nutrient Release of Polymer-Coated Fertilizers
Douglass F. Jacobs
2005-01-01
Polymer-coated fertilizers (PCF) are used primarily in horticultural plant production. However, interest in using these fertilizers in forest tree nurseries has increased over the last decade. Compared to immediately-available forms of fertilizer and other controlled-release fertilizer types, PCF tend to release nutrients in a relatively consistent flow over time. This...
Growth and physiology of aspen supplied with different fertilizer addition rates
Mark D. Coleman; Richard E. Dickson; J.G. Isebrands
1998-01-01
Variable internal plant nutrient content may confound plant response to environmental stress. Plant nutrient content may be controlled with relative addition rate techniques in solution culture. However, because raising large numbers of plants in flowing solution culture is difficult. we investieated the feasibility of raisine plants in soil mix using relative...
Three sites were selected across the intertidal zone of the lower Yaquina Bay to investigate the role of benthic microalgae in benthic nutrient fluxes. Study sites were selected where microalage were present but without seagrass or mud shrimp. Sediment columns were collected th...
USDA-ARS?s Scientific Manuscript database
The objective was to examine the effect of maternal nutrient restriction followed by realimentation during mid-gestation on uterine blood flow (BF). On Day 30 of pregnancy, lactating, multiparous Simmental beef cows were assigned randomly to treatments: control (CON; 100% National Research Council; ...
Endemic grazers control benthic microalgal growth in a eutrophic tropical brackish ecosystem
T.S. Sakihara; B.D. Dudley; R.A. MacKenzie; J.P. Beets
2015-01-01
Anthropogenic changes to nutrient supply, numbers and behavior of grazers and interactions of these factors are known to change epilithon composition and biomass. In brackish waters, these changes occur across wide-ranging abiotic conditions (e.g. nutrient concentrations and salinity), which may alter their relative impacts on microphytobenthic communities. Such...
USDA-ARS?s Scientific Manuscript database
Hydroponic production systems grow plants without soil, relying on a circulating solution to provide the necessary nutrients. Maintaining an optimum nutrient balance in this solution is important for maximizing crop growth and yield. Particularly in closed hydroponic systems it is important to monit...
USDA-ARS?s Scientific Manuscript database
Anaerobic soil disinfestation (ASD) is proposed as a pre-plant, non-chemical soil disinfestation technique to control several soilborne phytosanitary issues. Limited information is available on the impact of ASD on soil fertility, plant growth, and potential nutrient loss. The objectives of the curr...
USDA-ARS?s Scientific Manuscript database
Investment in agricultural conservation practices (CPs) to address Lake Erie's re-eutrophication may offer benefits that extend beyond the lake, such as improved habitat conditions for fish communities throughout the watershed. If such conditions are not explicitly considered in Lake Erie nutrient ...
Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.
Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R
2018-01-22
The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Higashide, T; Shimaji, H; Takaichi, M
1996-12-01
We researched effects of diurnal change of the mineral concentration on tomato yield and nutrient absorption. First, we examined the effect on yield in a spray culture, in the experiment 1-1, when nitrate concentration of solution (N) and potassium concentration (K) were low and phosphate concentration (P) was high during the daytime, while N and K were high and P was low during the night, the yield was low. In the experiment 1-2, when N and K were high and P was low during the daytime, while N and K were low and P was high during the night, the yield was low. Second, we examined the effect on nutrient absorption in a water culture. Concentration of KNO3, of solution was changed in the daytime or the night. When KNO3 level was low during the daytime, while it was high during the night, total nitrate and potassium absorption for 24 hours was the highest. It were showed the possibility of the efficient supply of minerals to plants by the diurnal control in minerals.
Feed-Back Moisture Sensor Control for the Delivery of Water to Plants Cultivated in Space
NASA Technical Reports Server (NTRS)
Levine, Howard G.; Prenger, Jessica J.; Rouzan, Donna T.; Spinale, April C.; Murdoch, Trevor; Burtness, Kevin A.
2005-01-01
The development of a spaceflight-rated Porous Tube Insert Module (PTIM) nutrient delivery tray has facilitated a series of studies evaluating various aspects of water and nutrient delivery to plants as they would be cultivated in space. We report here on our first experiment using the PTIM with a software-driven feedback moisture sensor control strategy for maintaining root zone wetness level set-points. One-day-old wheat seedlings (Tritium aestivum cv Apogee; N=15) were inserted into each of three Substrate Compartments (SCs) pre-packed with 0.25-1 . mm Profile(TradeMark) substrate and maintained at root zone relative water content levels of 70, 80 and 90%. The SCs contained a bottom-situated porous tube around which a capillary mat was wrapped. Three Porous Tubes. were planted using similar protocols (but without the substrate) and also maintained at these three moisture level set-points. Half-strength modified Hoagland's nutrient solution was used to supply water and nutrients. Results on hardware performance, water usage rates and wheat developmental differences between the different experimental treatments are presented.
Spatial and Temporal Scales of Surface Water-Groundwater Interactions
NASA Astrophysics Data System (ADS)
Boano, F.
2016-12-01
The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.
Reuse of hydroponic waste solution.
Kumar, Ramasamy Rajesh; Cho, Jae Young
2014-01-01
Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.
Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc
2017-06-06
Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.
Anjum, Naser A.; Gill, Sarvajeet S.; Umar, Shahid; Ahmad, Iqbal; Duarte, Armando C.; Pereira, Eduarda
2012-01-01
Mineral nutrients are the integral part of the agricultural systems. Among important plant nutrients, nitrogen (N) and sulphur (S) are known essential elements for growth, development, and various physiological functions in plants. Oleiferous brassicas (rapeseed and mustard) require higher amounts of S in addition to N for optimum growth and yield. Therefore, balancing S-N fertilization, optimization of nutrient replenishment, minimization of nutrient losses to the environment, and the concept of coordination in action between S and N could be a significant strategy for improvement of growth and productivity of oleiferous brassicas. Additionally, positive interaction between S and N has been reported to be beneficial for various aspects of oilseed brassicas. The current paper updates readers on the significance of N and S for the improvement of plant growth, development, and productivity in detail. In addition, S-N nutrition-mediated control of major plant antioxidant defense system components involved in the removal and/or metabolism of stress-induced/generated reactive oxygen species in plants (hence, the control of plant growth, development, and productivity) has been overviewed. PMID:22629181
Rising nutrient-pulse frequency and high UVR strengthen microbial interactions
Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; Dorado-García, Irene; Villar-Argaiz, Manuel; Carrillo, Presentación
2017-01-01
Solar radiation and nutrient pulses regulate the ecosystem’s functioning. However, little is known about how a greater frequency of pulsed nutrients under high ultraviolet radiation (UVR) levels, as expected in the near future, could alter the responses and interaction between primary producers and decomposers. In this report, we demonstrate through a mesocosm study in lake La Caldera (Spain) that a repeated (press) compared to a one-time (pulse) schedule under UVR prompted higher increases in primary (PP) than in bacterial production (BP) coupled with a replacement of photoautotrophs by mixotrophic nanoflagellates (MNFs). The mechanism underlying these amplified phytoplanktonic responses was a dual control by MNFs on bacteria through the excretion of organic carbon and an increased top-down control by bacterivory. We also show across a 6-year whole-lake study that the changes from photoautotrophs to MNFs were related mainly to the frequency of pulsed nutrients (e.g. desert dust inputs). Our results underscore how an improved understanding of the interaction between chronic and stochastic environmental factors is critical for predicting ongoing changes in ecosystem functioning and its responses to climatically driven changes. PMID:28252666
Rising nutrient-pulse frequency and high UVR strengthen microbial interactions
NASA Astrophysics Data System (ADS)
Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; Dorado-García, Irene; Villar-Argaiz, Manuel; Carrillo, Presentación
2017-03-01
Solar radiation and nutrient pulses regulate the ecosystem’s functioning. However, little is known about how a greater frequency of pulsed nutrients under high ultraviolet radiation (UVR) levels, as expected in the near future, could alter the responses and interaction between primary producers and decomposers. In this report, we demonstrate through a mesocosm study in lake La Caldera (Spain) that a repeated (press) compared to a one-time (pulse) schedule under UVR prompted higher increases in primary (PP) than in bacterial production (BP) coupled with a replacement of photoautotrophs by mixotrophic nanoflagellates (MNFs). The mechanism underlying these amplified phytoplanktonic responses was a dual control by MNFs on bacteria through the excretion of organic carbon and an increased top-down control by bacterivory. We also show across a 6-year whole-lake study that the changes from photoautotrophs to MNFs were related mainly to the frequency of pulsed nutrients (e.g. desert dust inputs). Our results underscore how an improved understanding of the interaction between chronic and stochastic environmental factors is critical for predicting ongoing changes in ecosystem functioning and its responses to climatically driven changes.
Saliba, Elie; Evangelinos, Minoas; Gournas, Christos; Corrillon, Florent; Georis, Isabelle; André, Bruno
2018-03-23
The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H + influx catalyzed by amino-acid/H + symporters. H + -dependent uptake of other nutrients, ionophore-mediated H + diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H + elicited by these processes stimulates the compensating H + -export activity of the plasma membrane H + -ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H + -ATPase, H + influx or increase fails to activate TORC1. Our results show that H + influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism. © 2018, Saliba et al.
Migliavacca, Mirco; Perez-Priego, Oscar; Rossini, Micol; El-Madany, Tarek S; Moreno, Gerardo; van der Tol, Christiaan; Rascher, Uwe; Berninger, Anna; Bessenbacher, Verena; Burkart, Andreas; Carrara, Arnaud; Fava, Francesco; Guan, Jin-Hong; Hammer, Tiana W; Henkel, Kathrin; Juarez-Alcalde, Enrique; Julitta, Tommaso; Kolle, Olaf; Martín, M Pilar; Musavi, Talie; Pacheco-Labrador, Javier; Pérez-Burgueño, Andrea; Wutzler, Thomas; Zaehle, Sönke; Reichstein, Markus
2017-05-01
Sun-induced fluorescence (SIF) in the far-red region provides a new noninvasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and gross primary production (GPP). However, the mechanistic link between GPP and SIF is not completely understood. We analyzed the structural and functional factors controlling the emission of SIF at 760 nm (F 760 ) in a Mediterranean grassland manipulated with nutrient addition of nitrogen (N), phosphorous (P) or nitrogen-phosphorous (NP). Using the soil-canopy observation of photosynthesis and energy (SCOPE) model, we investigated how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. N content in dry mass of leaves, N%, Chlorophyll a+b concentration (Cab) and maximum carboxylation capacity (V cmax )) affected the observed linear relationship between F 760 and GPP. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy that controls F 760 . Changes in canopy structure mainly control the GPP-F 760 relationship, with a secondary effect of Cab and V cmax . In order to exploit F 760 data to model GPP at the global/regional scale, canopy structural variability, biodiversity and functional traits are important factors that have to be considered. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin P; Williams, Evan Shane
2013-07-01
Stormwater infiltration basins, one of the typical stormwater best management practices, are commonly constructed for surface water pollution control, flood mitigation, and groundwater restoration in rural or residential areas. These basins have soils with better infiltration capacity than the native soil; however, the ever-increasing contribution of nutrients to groundwater from stormwater due to urban expansion makes existing infiltration basins unable to meet groundwater quality criteria related to environmental sustainability and public health. This issue requires retrofitting current infiltration basins for flood control as well as nutrient control before the stormwater enters the groundwater. An existing stormwater infiltration basin in north-central Florida was selected, retrofitted, and monitored to identify subsurface physiochemical and biological processes during 2007-2010 to investigate nutrient control processes. This implementation in the nexus of contaminant hydrology and ecological engineering adopted amended soil layers packed with biosorption activated media (BAM; tire crumb, silt, clay, and sand) to perform nutrient removal in a partitioned forebay using a berm. This study presents an infiltration basin-nitrogen removal (IBNR) model, a system dynamics model that simulates nitrogen cycling in this BAM-based stormwater infiltration basin with respect to changing hydrologic conditions and varying dissolved nitrogen concentrations. Modeling outputs of IBNR indicate that denitrification is the biogeochemical indicator in the BAM layer that accounted for a loss of about one third of the total dissolved nitrogen mass input. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Sadagurski, Marianna; Landeryou, Taylor; Blandino-Rosano, Manuel; Cady, Gillian; Elghazi, Lynda; Meister, Daniel; See, Lauren; Bartke, Andrzej; Bernal-Mizrachi, Ernesto; Miller, Richard A
2014-06-01
The action of nutrients on early postnatal growth can influence mammalian aging and longevity. Recent work has demonstrated that limiting nutrient availability in the first 3 wk of life [by increasing the number of pups in the crowded-litter (CL) model] leads to extension of mean and maximal lifespan in genetically normal mice. In this study, we aimed to characterize the impact of early-life nutrient intervention on glucose metabolism and energy homeostasis in CL mice. In our study, we used mice from litters supplemented to 12 or 15 pups and compared those to control litters limited to eight pups. At weaning and then throughout adult life, CL mice are significantly leaner and consume more oxygen relative to control mice. At 6 mo of age, CL mice had low fasting leptin concentrations, and low-dose leptin injections reduced body weight and food intake more in CL female mice than in controls. At 22 mo, CL female mice also have smaller adipocytes compared with controls. Glucose and insulin tolerance tests show an increase in insulin sensitivity in 6 mo old CL male mice, and females become more insulin sensitive later in life. Furthermore, β-cell mass was significantly reduced in the CL male mice and was associated with reduction in β-cell proliferation rate in these mice. Together, these data show that early-life nutrient intervention has a significant lifelong effect on metabolic characteristics that may contribute to the increased lifespan of CL mice.
Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong
2015-01-01
As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664
A model of phytoplankton blooms.
Huppert, Amit; Blasius, Bernd; Stone, Lewi
2002-02-01
A simple model that describes the dynamics of nutrient-driven phytoplankton blooms is presented. Apart from complicated simulation studies, very few models reported in the literature have taken this "bottom-up" approach. Yet, as discussed and justified from a theoretical standpoint, many blooms are strongly controlled by nutrients rather than by higher trophic levels. The analysis identifies an important threshold effect: a bloom will only be triggered when nutrients exceed a certain defined level. This threshold effect should be generic to both natural blooms and most simulation models. Furthermore, predictions are given as to how the peak of the bloom Pmax is determined by initial conditions. A number of counterintuitive results are found. In particular, it is shown that increasing initial nutrient or phytoplankton levels can act to decrease Pmax. Correct predictions require an understanding of such factors as the timing of the bloom and the period of nutrient buildup before the bloom.
Nutrient Stress Detection in Corn Using Neural Networks and AVIRIS Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Estep, Lee
2001-01-01
AVIRIS image cube data has been processed for the detection of nutrient stress in corn by both known, ratio-type algorithms and by trained neural networks. The USDA Shelton, NE, ARS Variable Rate Nitrogen Application (VRAT) experimental farm was the site used in the study. Upon application of ANOVA and Dunnett multiple comparsion tests on the outcome of both the neural network processing and the ratio-type algorithm results, it was found that the neural network methodology provides a better overall capability to separate nutrient stressed crops from in-field controls.
Rubino, Francesco; Forgione, Antonello; Cummings, David E; Vix, Michel; Gnuli, Donatella; Mingrone, Geltrude; Castagneto, Marco; Marescaux, Jacques
2006-11-01
Most patients who undergo Roux-en-Y gastric bypass (RYGB) experience rapid resolution of type 2 diabetes. Prior studies indicate that this results from more than gastric restriction and weight loss, implicating the rearranged intestine as a primary mediator. It is unclear, however, if diabetes improves because of enhanced delivery of nutrients to the distal intestine and increased secretion of hindgut signals that improve glucose homeostasis, or because of altered signals from the excluded segment of proximal intestine. We sought to distinguish between these two mechanisms. Goto-Kakizaki (GK) type 2 diabetic rats underwent duodenal-jejunal bypass (DJB), a stomach-preserving RYGB that excludes the proximal intestine, or a gastrojejunostomy (GJ), which creates a shortcut for ingested nutrients without bypassing any intestine. Controls were pair-fed (PF) sham-operated and untreated GK rats. Rats that had undergone GJ were then reoperated to exclude the proximal intestine; and conversely, duodenal passage was restored in rats that had undergone DJB. Oral glucose tolerance (OGTT), food intake, body weight, and intestinal nutrient absorption were measured. There were no differences in food intake, body weight, or nutrient absorption among surgical groups. DJB-treated rats had markedly better oral glucose tolerance compared with all control groups as shown by lower peak and area-under-the-curve glucose values (P < 0.001 for both). GJ did not affect glucose homeostasis, but exclusion of duodenal nutrient passage in reoperated GJ rats significantly improved glucose tolerance. Conversely, restoration of duodenal passage in DJB rats reestablished impaired glucose tolerance. This study shows that bypassing a short segment of proximal intestine directly ameliorates type 2 diabetes, independently of effects on food intake, body weight, malabsorption, or nutrient delivery to the hindgut. These findings suggest that a proximal intestinal bypass could be considered for diabetes treatment and that potentially undiscovered factors from the proximal bowel might contribute to the pathophysiology of type 2 diabetes.
Li, Xia; Cui, Baoshan; Yang, Qichun; Tian, Hanqin; Lan, Yan; Wang, Tingting; Han, Zhen
2012-01-01
Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO3-N and NH4-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes. PMID:22848699
Consumer species richness and nutrients interact in determining producer diversity.
Groendahl, Sophie; Fink, Patrick
2017-03-17
While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration.
Glass bead cultivation of fungi: combining the best of liquid and agar media.
Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette; Sondergaard, Teis Esben
2013-09-01
Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier than from agar plates and the quality was superior. The system allows simple control of nutrient availability throughout fungal cultivation. This combined with the ease of extraction of nucleic acids and metabolites makes the system highly suitable for the study of gene regulation in response to specific nutrient factors. © 2013.
Consumer species richness and nutrients interact in determining producer diversity
Groendahl, Sophie; Fink, Patrick
2017-01-01
While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration. PMID:28303953
Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.
Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E
2017-09-05
Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.
NASA Astrophysics Data System (ADS)
Vergara, Odette A.; Echevín, Vincent; Sepúlveda, Héctor Hito; Quiñones, Renato A.
2017-09-01
The spatial and seasonal variability of nutrients and chlorophyll in the southern Humboldt Current System were assessed using a high-resolution regional ocean circulation model (ROMS) coupled to a biogeochemical model (Pelagic-Interactions Scheme for carbon and Ecosystem Studies; PISCES). The simulated nutrients and chlorophyll fields were validated using satellite and in situ observations at a continental shelf time-series station. The annual cycles of modeled chlorophyll and nutrients were consistent with the highest values observed in spring and summer, which is in agreement with enhanced upwelling observations. Co-limitation of phytoplankton growth by nutrients and light was analyzed for diatoms, the dominant phytoplankton group in the simulations. The results showed that co-limitation, near the coast, was governed in autumn and winter by light, and by silicate in spring and summer, whereas other nutrients were limiting offshore between January and April. Nutrient transport in the surface layer was analyzed. Vertical advection reflected areas with higher coastal upwelling, and was partly offset by horizontal processes related to eddy-induced transport from the nearshore to the open ocean. Vertical mixing was shown to play a key role in replenishing the surface layer with nutrients.
Nutrient control of eukaryote cell growth: a systems biology study in yeast.
Gutteridge, Alex; Pir, Pinar; Castrillo, Juan I; Charles, Philip D; Lilley, Kathryn S; Oliver, Stephen G
2010-05-24
To elucidate the biological processes affected by changes in growth rate and nutrient availability, we have performed a comprehensive analysis of the transcriptome, proteome and metabolome responses of chemostat cultures of the yeast, Saccharomyces cerevisiae, growing at a range of growth rates and in four different nutrient-limiting conditions. We find significant changes in expression for many genes in each of the four nutrient-limited conditions tested. We also observe several processes that respond differently to changes in growth rate and are specific to each nutrient-limiting condition. These include carbohydrate storage, mitochondrial function, ribosome synthesis, and phosphate transport. Integrating transcriptome data with proteome measurements allows us to identify previously unrecognized examples of post-transcriptional regulation in response to both nutrient and growth-rate signals. Our results emphasize the unique properties of carbon metabolism and the carbon substrate, the limitation of which induces significant changes in gene regulation at the transcriptional and post-transcriptional level, as well as altering how many genes respond to growth rate. By comparison, the responses to growth limitation by other nutrients involve a smaller set of genes that participate in specific pathways. See associated commentary http://www.biomedcentral.com/1741-7007/8/62.
NASA Astrophysics Data System (ADS)
Kirkham, K. G.; Perry, W. L.
2005-05-01
Headwater streams in central Illinois have been dredged and channelized to drain surrounding agricultural fields and has led to extensive erosion and eutrophication. Restoration of these systems through farmer implementation of Best Management Practices (BMPs) may be one solution. Examination of algal population dynamics may be useful in assessment of BMP effectiveness. We have monitored two small headwater streams, Bray Creek and Frog Alley, for a suite of physicochemical parameters focusing on dissolved oxygen, nitrogen, and phosphorus for three years. Nutrient concentrations suggested potential nutrient limitation by nitrates during late summer and phosphorus limitation in early summer. To determine seasonal algal dynamics with seasonally varying nutrient limitation in agricultural headwater streams, we used nutrient diffusing substrata (NDS). NDS with agar (controls) or amended with either nitrogen, phosphorus, or both were deployed for 21-24 days in both streams each month for a year. Slight nutrient limitation was observed in Bray Creek during August and November while phosphorus was limiting in September (P<0.05). We suggest agricultural streams are more dynamic than previously thought and algal populations may be seasonally nutrient limited and with consequent effects on dissolved oxygen concentrations.
Nutrient sensing modulates malaria parasite virulence
Mancio-Silva, Liliana; Slavic, Ksenija; Grilo Ruivo, Margarida T.; Grosso, Ana Rita; Modrzynska, Katarzyna K.; Vera, Iset Medina; Sales-Dias, Joana; Gomes, Ana Rita; MacPherson, Cameron Ross; Crozet, Pierre; Adamo, Mattia; Baena-Gonzalez, Elena; Tewari, Rita; Llinás, Manuel; Billker, Oliver; Mota, Maria M.
2017-01-01
The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host(s), primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signaling networks that confer to cells the ability to sense and adapt to varying environmental conditions1,2. Canonical nutrient-sensing pathways are presumably absent in the causing agent of malaria Plasmodium3–5, thus raising the question of whether these parasites possess the capacity to sense and cope with host nutrient fluctuations. Here, we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through a rearrangement of their transcriptome accompanied by a significant adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology to SNF1/AMPKα and yeast complementation studies suggest functional conservation of an ancient cellular energy sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical to modulate parasite replication and virulence. PMID:28678779
Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen
2015-08-01
Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna P.; Panike, Katherine R.; Havlovick, Caryn M.
The Idaho National Laboratory (INL) has teamed with University of Idaho and Boise State University to make the use of ADs more attractive by implementing a two-stage AD and coupling additional processes to the system. The addition of a polyhydroxyalkanoate (PHA) reactor, algae cultivation system, and a biomass treatment system such as fast-pyrolysis or hydrothermal liquefaction (HTL) would further sequester carbon and nutrients, as well as add valuable products that can be sold or used on-site to mitigate costs. The Decision-support for Digester-Algae IntegRation for Improved Environmental and Economic Sustainability (DAIRIEES) technoeconomic model will play a key role in evaluatingmore » the effectiveness and viability of this system to achieve economic and environmental sustainability by the dairy industry.« less
The Tangled Circuitry of Metabolism and Apoptosis
Andersen, Joshua L.; Kornbluth, Sally
2013-01-01
For single cell organisms, nutrient uptake and metabolism are at the crux of their most basic decision of whether to grow or divide. In metazoans, cell fate decisions are more complex: organismal homeostasis must be strictly maintained by balancing cell proliferation and death. Despite this increased complexity, cell fate within multicellular organisms is also influenced by metabolism; recent studies, triggered in part be an interest tumor metabolism, are beginning to illuminate the mechanisms through which proliferation, death, and metabolism are intertwined. In particular, work on Bcl-2 family proteins suggests that the signaling pathways governing metabolism and apoptosis are inextricably linked. Here, we review the crosstalk between these pathways, emphasizing recent work that illustrates the emerging dual nature of several core apoptotic proteins in regulating both metabolism and cell death. PMID:23395270
The tangled circuitry of metabolism and apoptosis.
Andersen, Joshua L; Kornbluth, Sally
2013-02-07
For single-cell organisms, nutrient uptake and metabolism are central to the fundamental decision of whether to grow or divide. In metazoans, cell fate decisions are more complex: organismal homeostasis must be strictly maintained by balancing cell proliferation and death. Despite this increased complexity, cell fate within multicellular organisms is also influenced by metabolism; recent studies, triggered in part by an interest in tumor metabolism, are beginning to illuminate the mechanisms through which proliferation, death, and metabolism are intertwined. In particular, work on Bcl-2 family proteins suggests that the signaling pathways governing metabolism and apoptosis are inextricably linked. Here we review the crosstalk between these pathways, emphasizing recent work that illustrates the emerging dual nature of several core apoptotic proteins in regulating both metabolism and cell death. Copyright © 2013 Elsevier Inc. All rights reserved.
The challenges of control groups, placebos and blinding in clinical trials of dietary interventions.
Staudacher, Heidi M; Irving, Peter M; Lomer, Miranda C E; Whelan, Kevin
2017-08-01
High-quality placebo-controlled evidence for food, nutrient or dietary advice interventions is vital for verifying the role of diet in optimising health or for the management of disease. This could be argued to be especially important where the benefits of dietary intervention are coupled with potential risks such as compromising nutrient intake, particularly in the case of exclusion diets. The objective of the present paper is to explore the challenges associated with clinical trials in dietary research, review the types of controls used and present the advantages and disadvantages of each, including issues regarding placebos and blinding. Placebo-controlled trials in nutrient interventions are relatively straightforward, as in general placebos can be easily produced. However, the challenges associated with conducting placebo-controlled food interventions and dietary advice interventions are protean, and this has led to a paucity of placebo-controlled food and dietary advice trials compared with drug trials. This review appraises the types of controls used in dietary intervention trials and provides recommendations and nine essential criteria for the design and development of sham diets for use in studies evaluating the effect of dietary advice, along with practical guidance regarding their evaluation. The rationale for these criteria predominantly relate to avoiding altering the outcome of interest in those delivered the sham intervention in these types of studies, while not compromising blinding.
Linking decision-making research and cancer prevention and control: important themes.
McCaul, Kevin D; Peters, Ellen; Nelson, Wendy; Stefanek, Michael
2005-07-01
This article describes 6 themes underlying the multiple presentations from the Basic and Applied Decision Making in Cancer Control meeting, held February 19-20, 2004. The following themes have important implications for research and practice linking basic decision-making research to cancer prevention and control: (a) Traditional decision-making theories fail to capture real-world decision making, (b) decision makers are often unable to predict future preferences, (c) preferences are often constructed on the spot and thus are influenced by situational cues, (d) decision makers often rely on feelings rather than beliefs when making a decision, (e) the perspective of the decision maker is critical in determining preferences, and (f) informed decision making may--or may not--yield the best decisions.
Moore, Jonathan W; Olden, Julian D
2017-05-01
Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.
Qiao, Yunfa; Miao, Shujie; Han, Xiaozeng; Yue, Shuping; Tang, Caixian
2017-12-15
Rhizodeposited carbon (C) is an important source of soil organic C, and plays an important role in the C cycle in the soil-plant-atmosphere continuum. However, interactive effects of plant species and soil nutrient availability on C rhizodeposition remain unclear. This experiment examined the effect of soil nutrient availability on C rhizodeposition of C4 maize and C3 soybean with contrasting photosynthetic capacity. The soils (Mollisols) were collected from three treatments of no fertilizer (Control), inorganic fertilizer only (NPK), and NPK plus organic manure (NPKM) in a 24-year fertilization field trial. The plants were labelled with 13 C at the vegetative and reproductive stages. The 13 C abundance of shoots, roots and soil were quantified at 0, 7days after 13 C labelling, and at maturity. Increasing soil nutrient availability enhanced the C rhizodeposition due to the greater C fixation in shoots and distribution to roots and soil. The higher amount of averaged below-ground C allocated to soil resulted in greater specific rhizodeposited C from soybean than maize. Additional organic amendment further enhanced them. As a result, higher soil nutrient availability increased total soil organic C under both maize and soybean systems though there was no significant difference between the two crop systems. All these suggested that higher soil nutrient availability favors C rhizodeposition. Mean 80, 260 and 300kgfixedCha -1 were estimated to transfer into soil in the Control, NPK and NPKM treatments, respectively, during one growing season. Copyright © 2017 Elsevier B.V. All rights reserved.
Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control
Loewith, Robbie; Hall, Michael N.
2011-01-01
TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae. PMID:22174183
Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties
NASA Astrophysics Data System (ADS)
Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.
2017-12-01
Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.
NASA Astrophysics Data System (ADS)
Zhao, Yongcun; Xu, Xianghua; Darilek, Jeremy Landon; Huang, Biao; Sun, Weixia; Shi, Xuezheng
2009-05-01
Topsoil samples (0-20 cm) ( n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.
NASA Astrophysics Data System (ADS)
Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris
2016-04-01
Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.
The global stoichiometry of litter nitrogen mineralization
Stefano Manzoni; Robert B. Jackson; John A. Trofymow; Amilcare Porporato
2008-01-01
Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of ~2800 observations to show...
Joseph M. Secoges; W. Michael Aust; John R. Seiler
2013-01-01
Many State best management practice programs recommend streamside management zone (SMZ) widths based on limited or inadequate data with regard to nutrient fluxes from silvicultural activities. Diammonium phosphate and urea were applied to subwatersheds of 2- to 3-year-old loblolly pines (Pinus taeda) upslope from 12 SMZ study areas in Buckingham...
Hal O. Liechty; Valerie L. Sawyer; Michael G. Shelton
2002-01-01
Abstract - Uneven-aged management is used to promote adequate pine reproduction and control species composition of shortleaf pine (Pinus echinata Mill.)-hardwood stands in the Interior Highlands of the southern United States. The modification of pine-hardwood composition in these stands has the potential to alter nutrient pools and availability since...
USDA-ARS?s Scientific Manuscript database
Background: Dietary intake assessment with diet records (DR) is a standard research and practice tool in nutrition. Manual entry and analysis of DR is time-consuming and expensive. New electronic tools for diet entry by clients and research participants may reduce the cost and effort of nutrient int...
Nutrient availability constrains the hydraulic architecture and water relations of savannah trees.
S.J. Bucci; F.G. Scholz; G. Goldstein; F.C. Meinzer; A.C. Franco; P.I. Campanello; R. Villalobos-Vega; M. Bustamante; F. Miralles-Wilhelm
2006-01-01
Several plant functional traits were studied in five dominant woody savanna species in a Brazilian savanna to determine whether removal of nutrient limitations has an effect on carbon allocation, water relations, and hydraulic architecture. Four treatments consisting of a control, and nitrogen (N), phosphorus (P), and N plus P additions were maintained for 5 years....
ERIC Educational Resources Information Center
Tate, Eleanor B.; Unger, Jennifer B.; Chou, Chih-Ping; Spruijt-Metz, Donna; Pentz, Mary Ann; Riggs, Nathaniel R.
2015-01-01
Objective: This study tested the relationships among child executive function (EF), child-perceived parent fast food intake, and child self-reported subsequent consumption of high-calorie, low-nutrient (HCLN) food. Design: One year and 6-month longitudinal observation from a larger randomized controlled trial. Setting. Southern California…
Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank
2014-01-01
Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.
NASA Astrophysics Data System (ADS)
Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.
2017-02-01
The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove and recycle nutrients from both constructed wetlands and nutrient-loaded natural wetlands.
Mathers, Nicole J; Nash, David M; Gangaiya, Philomena
2007-01-01
Cropping is one of the many industries contributing to the excessive loading of nitrogen (N) and phosphorus (P) to rivers and lakes in Australia. Nitrogen and P exports from cropping systems have not been systematically investigated to the same extent as those from other agricultural sectors, such as dairy pastures. Therefore, this review relies heavily on information derived from agronomy and other fundamental studies on soil-nutrient interactions to determine the potential for nutrient export from high rainfall zone (HRZ) cropping. There is a great deal of variation in environmental and management strategies across cropping in the HRZ, which suggests that nutrient exports could occur under a range of scenarios. The potential for exports is therefore discussed within a conceptual framework of nutrient sources, mechanisms for mobilization, and transport pathways in HRZ cropping. Transport refers to nutrient movement by flowing water after it has been mobilized, and export refers to the transfer of nutrients from one landscape compartment (e.g., a soil) to another (e.g., a stream or lake). The transport of nutrients from HRZ cropping can occur through surface and/or subsurface pathways depending on factors such as landform and infiltration and nutrient sorption characteristics of the soil profile. Surface pathways are likely to be more significant for phosphorus. For N, subsurface movement is likely to be as significant as surface movement because nitrates are generally not bound by most soils. Information about mechanisms of nutrient mobilization is essential for developing management strategies to control nutrient exports from HRZ cropping.
Peng, Jiao-Ting; Zhu, Xiao-Dong; Sun, Xiang; Song, Xiao-Wei
2018-04-01
Reducing external nutrient loads is the first step for controlling eutrophication. Here, we identified external nutrient reduction requirements and potential of strategies for achieving reductions to remediate a eutrophic water body, Lake Taihu, China. A mass balance approach based on the entire lake was used to identify nutrient reduction requirements; an empirical export coefficient approach was introduced to estimate the nutrient reduction potential of the overall program on integrated regulation of Taihu Lake Basin (hereafter referred to as the "Guideline"). Reduction requirements included external total nitrogen (TN) and total phosphorus (TP) loads, which should be reduced by 41-55 and 25-50%, respectively, to prevent nutrient accumulation in Lake Taihu and to meet the planned water quality targets. In 2010, which is the most seriously polluted calendar year during the 2008-2014 period, the nutrient reduction requirements were estimated to be 36,819 tons of N and 2442 tons of P, and the potential nutrient reduction strategies would reduce approximately 25,821 tons of N and 3024 tons of P. Since there is a net N remaining in the reduction requirements, it should be the focus and deserves more attention in identifying external nutrient reduction strategies. Moreover, abatement measures outlined in the Guideline with high P reduction potential required large monetary investments. Achieving TP reduction requirement using the cost-effective strategy costs about 80.24 million USD. The design of nutrient reduction strategies should be enacted according to regional and sectoral differences and the cost-effectiveness of abatement measures.
Utilization of the water soluable fraction of wheat straw as a plant nutrient source
NASA Technical Reports Server (NTRS)
Mackowiak, C. L.; Garland, J. L.
1990-01-01
Recovery of water soluble, inorganic nutrients from the inedible portion of wheat was found to be an effective means of recycling nutrients within hydroponic systems. Through aqueous extraction (leaching), 60 percent of the total inorganic nutrient weight was removed from wheat straw and roots, although the recovery of individual nutrients varied. Leaching also removed about 20 percent of the total organic carbon from the biomass. In terms of dry weight, the leachate was comprised of approximately 60 percent organic and 40 percent inorganic compounds. Direct use of wheat straw leachate in static hydroponic systems had an inhibitory effect on wheat growth, both in the presence and absence of microorganisms. Biological treatment of leachate either with a mixed microbial community or the oyster mushroom Pleurotus ostreatus L., prior to use in hydroponic solutions, significantly reduced both the organic content and the inhibitory effects of the leachate. The inhibitory effects of unprocessed leachate appear to be a result of rapidly acting phytotoxic compounds that are detoxified by microbial activity. Leaching holds considerable promise as a method for nutrient recycling in a Controlled Ecological Life Support System (CELSS).
Riverine C, N, Si and P transport to the coastal ocean: An overview
Peterson, David H.; Hager, Stephen W.; Schemel, Laurence E.; Cayan, Daniel R.
1988-01-01
Terrestrial ecosystems cycle and recyle inorganic nutrients including a feedback to atmospheric dry deposition and precipitation (cf. Lewis et al., 1985). Each year, however, a small fraction per unit area of the atmosphere/plant/soil flux leaks from these land-based cycles via precipitation/runoff (Meybeck, 1982). These losses are, in general, unpreventable. Moreover, such nutrient “losses” have increased with increasing human population (Wollast, 1983); although to some extent this anthropogenic component can be controlled. Most rivers eventually flow into estuaries and the coastal ocean where their natural and anthropogenic nutrient loads continue to recycle, are lost to the atmosphere, or are buried in sediment. In one extreme, when riverine nutrient concentrations are exceedingly low, as in southwestern Canadian streams (Naiman and Sibert, 1978; Stockner and Shortreed, 1978, 1985), downstream plant biomass can be nutrient limited. In the other extreme, when these nutrient concentrations are very high such as in highly populated European river basins, downstream plant biomass can increase, perhaps intensifying natural anoxia cycles within the receiving estuarine/coastal ocean waters if these waters are stratified (Rosenberg, 1985).