Science.gov

Sample records for nutrient deficiencies soil

  1. Combating Human Micronutrient Deficiencies through Soil Management Practices that Enhance Bioavailability of Nutrients to Plants

    ERIC Educational Resources Information Center

    O'Meara, Mary

    2009-01-01

    Micronutrient malnutrition affects the health and well being of 3 billion people globally. Identifying means to improve the micronutrient density in the edible portions of crops is an important way to combat nutrient deficiencies. By studying how plants obtain micronutrients from the soil, we can develop methods to enhance uptake. Although more…

  2. Utilizing ERTS imagery to detect plant diseases and nutrient deficiencies, soil types and soil moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L.; Sewell, J. I.; Hilty, J. W.; Rennie, J. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery may be used to delineate soil associations. It does have the capacity to divide soils into groups such that their land use and management would be similar. It offers definite potential for making grass flood-plain, wetland, river shoreline, and land use change surveys. Production of volume strata and forest type from the two usable bands of ERTS-1 imagery were of questionable value. No imagery was received for evaluation during the time of year when maine dwarf mosaic virus and southern corn leaf blight were active.

  3. Utilizing ERTS imagery to detect plant diseases and nutrient deficiencies, soil types and soil moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L. (Principal Investigator); Sewell, J. I.; Hilty, J. W.; Rennie, J. C.

    1973-01-01

    The author has identified the following significant results. The delineation of soil associations and detection of drainage patterns, erosion and sedimentation through the use of ERTS-1 imagery are shown. Corn blight and corn virus could not be detected from ERTS-1 and detection of forest composition was at a very low probability.

  4. Utilization of ERTS data to detect plant diseases and nutrient deficiencies, soil types and moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L.; Sewell, J. I. (Principal Investigator); Hilty, J. W.; Rennie, J. C.

    1972-01-01

    The author has identified the following significant results. A significant finding is the identification and delineation of a large soil association in Obion County, West Tennessee. These data are now being processed through the scanner and computer and will be included in the next report along with pictures of printout and imagery. Channel 7 appears to provide the most useful imagery related to soil differences. Soil types have been identified through the use of aircraft imagery. However, a soil association map appears to be the best that space imagery will provide. The exception to this will be large areas of a uniform soil type as occurs in the great plains.

  5. Utilization of ERTS data to detect plant diseases and nutrient deficiencies, soil types and moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L. (Principal Investigator); Sewell, J. I.; Hilty, J. W.; Rennie, J. C.

    1973-01-01

    The author has identified the following significant results. A significant finding to date is the delineation of the Memphis soil association in Obion County, Dyer County, and in portions of Kentucky. This soil association was delineated mechanically through the use of imagery in the digital tape format, appropriate computer software, and an IBM/360/05 computer. The Waverly-Swamp association as well as the Obion River have been identified on the ERTS-1 imagery as well as on the computer printout. These findings demonstrate the feasibility of delineating major soil associations through vegetative cover common to the association. Channel 7 provides the most information for studies of this type. Computer density printouts assist markedly in making density separations and delineating major soil moisture differences; however, signatures for soil moisture classification for this area of mixed land uses in relatively small tracts have not yet been developed.

  6. Effects of soil applications of micro-nutrients and chelating agent citric acid on mineral nutrients in soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micro-nutrients deficiency in soil result in crop yield loss and poor seed quality. Correcting this deficiency is normally conducted by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) with a ...

  7. Nutrient availability in rangeland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil nutrient availability is a major factor influencing plant community composition and susceptibility to invasion by exotic plants. We used resin capsules to integrate, over time, soil nutrient availability at sagebrush-grassland elevation transects in the east Tintic range of Utah and in the Shos...

  8. Responses of spinach to salinity and nutrient deficiency in growth, physiology and nutritional value

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity and nutrient depleted soil are major constraints to crop production, especially for vegetable crops. The effects of salinity and nutrient deficiency on spinach were evaluated in sand cultures under greenhouse conditions. Plants were watered every day with Hoagland nutrition solution, depriv...

  9. Soil nutrient assessment for urban ecosystems in Hubei, China.

    PubMed

    Li, Zhi-Guo; Zhang, Guo-Shi; Liu, Yi; Wan, Kai-Yuan; Zhang, Run-Hua; Chen, Fang

    2013-01-01

    Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges) and three topographies (mountainous [142-425 m a.s.l], hilly [66-112 m a.s.l], and plain [26-30 m a.s.l]). Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N), available phosphorus (P), and available boron (B) concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca), sulfur (S), copper (Cu), manganese (Mn), and zinc (Zn) that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05). Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers. PMID:24086647

  10. Soil Nutrient Assessment for Urban Ecosystems in Hubei, China

    PubMed Central

    Li, Zhi-guo; Zhang, Guo-shi; Liu, Yi; Wan, Kai-yuan; Zhang, Run-hua; Chen, Fang

    2013-01-01

    Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges) and three topographies (mountainous [142–425 m a.s.l], hilly [66–112 m a.s.l], and plain [26–30 m a.s.l]). Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N), available phosphorus (P), and available boron (B) concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca), sulfur (S), copper (Cu), manganese (Mn), and zinc (Zn) that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05). Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers. PMID:24086647

  11. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    NASA Astrophysics Data System (ADS)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in

  12. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  13. Lichen substances prevent lichens from nutrient deficiency.

    PubMed

    Hauck, Markus; Willenbruch, Karen; Leuschner, Christoph

    2009-01-01

    The dibenzofuran usnic acid, a widespread cortical secondary metabolite produced by lichen-forming fungi, was shown to promote the intracellular uptake of Cu(2+) in two epiphytic lichens, Evernia mesomorpha and Ramalina menziesii, from acidic, nutrient-poor bark. Higher Cu(2+) uptake in the former, which produces the depside divaricatic acid in addition to usnic acid, suggests that this depside promotes Cu(2+) uptake. Since Cu(2+) is one of the rarest micronutrients, promotion of Cu(2+) uptake by lichen substances may be crucial for the studied lichens to survive in their nutrient-poor habitats. In contrast, study of the uptake of other metals in E. mesomorpha revealed that the intracellular uptake of Mn(2+), which regularly exceeds potentially toxic concentrations in leachates of acidic tree bark, was partially inhibited by the lichen substances produced by this species. Inhibition of Mn(2+) uptake by lichen substances previously has been demonstrated in lichens. The uptake of Fe(2+), Fe(3+), Mg(2+), and Zn(2+), which fail to reach toxic concentrations in acidic bark at unpolluted sites, although they are more common than Cu(2+), was not affected by lichen substances of E. mesomorpha.

  14. Macro and micro nutrient uptake parameters and use efficiency in cacao genotypes influenced by deficient to excess levels of soil K

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cacao (Theobroma cacao L.) is an important economic crop for many of the tropical countries. Adequate levels of soil K are essential for good growth and achieving high cocoa bean yields. Soils under cacao invariably have low levels of plant available K to support good cacao growth. Growth chamber ex...

  15. Spectra of normal and nutrient-deficient maize leaves

    NASA Technical Reports Server (NTRS)

    Al-Abbas, A. H.; Barr, R.; Hall, J. D.; Crane, F. L.; Baumgardner, M. F.

    1973-01-01

    Reflectance, transmittance and absorptance spectra of normal and six types of nutrient-deficient (N, P, K, S, Mg, and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths from 500 to 2600 nm. The analysis of variance showed significant differences in reflectance, transmittance and absorptance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven treatments, and among the interactions of leaf number and treatments. In the infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all nutrient-deficient treatments. Percent moisture was increased in S-, Mg-, and N-deficiencies. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related. Leaves from the P- and Ca-deficient plants absorbed less energy in the near infrared than the normal plants; S-, Mg-, K-, and N-deficient leaves absorbed more than the normal. Both S- and N-deficient leaves had higher temperatues than normal maize leaves.

  16. Coping with uncertainty: Nutrient deficiencies motivate insect migration at a cost to immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Migration is often associated with movement away from areas with depleted nutrients or other resources, and yet migration itself is energetically demanding. Migrating Mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae) lack nutrients, and supplementation of deficient nutrients slows migrator...

  17. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency

    PubMed Central

    Maillard, Anne; Diquélou, Sylvain; Billard, Vincent; Laîné, Philippe; Garnica, Maria; Prudent, Marion; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2015-01-01

    Higher plants have to cope with fluctuating mineral resource availability. However, strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare) and tree species (Quercus robur, Populus nigra, Alnus glutinosa) grown under field conditions were harvested regularly during their life span and analyzed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize) to 90% (wheat), other macronutrients (K–P–S–Mg) were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu–Mo–Ni–B–Fe–Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N–S–Cu) or increased by nutrient deficiency (K–P–Mg) while nutrient deficiency had no effect on Mo–Zn–B–Ca–Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively) to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms. PMID:26029223

  18. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    PubMed

    Maillard, Anne; Diquélou, Sylvain; Billard, Vincent; Laîné, Philippe; Garnica, Maria; Prudent, Marion; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2015-01-01

    Higher plants have to cope with fluctuating mineral resource availability. However, strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare) and tree species (Quercus robur, Populus nigra, Alnus glutinosa) grown under field conditions were harvested regularly during their life span and analyzed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize) to 90% (wheat), other macronutrients (K-P-S-Mg) were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu) or increased by nutrient deficiency (K-P-Mg) while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively) to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms. PMID:26029223

  19. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.

  20. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea. PMID:18758977

  1. Artificial Soil With Build-In Plant Nutrients

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Allen, Earl; Henninger, Donald; Golden, D. C.

    1995-01-01

    Nutrients contained in sandlike material. Artificial soil provides nutrients to plants during several growing seasons without need to add fertilizer or nutrient solution. When watered, artificial soil slowly releases all materials a plant needs to grow. Developed as medium for growing crops in space. Also used to grow plants on Earth under controlled conditions or even to augment natural soil.

  2. Spectral characteristics of normal and nutrient-deficient maize leaves

    NASA Technical Reports Server (NTRS)

    Al-Abbas, A. H.; Barr, R.; Hall, J. D.; Crane, F. L.; Baumgardner, M. F.

    1972-01-01

    Reflectance, transmittance and absorbance spectra of normal and six types of mineral-deficient (N,P,K,S,Mg and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths along the electromagnetic spectrum from 500 to 2600 nm. Chlorophyll content and percent leaf moisture were also determined. Leaf thermograms were obtained for normal, N- and S- deficient leaves. The results of the analysis of variance showed significant differences in reflectance, transmittance and absorbance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven nutrient treatments, and among the interactions of leaves and treatments. In the reflective infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all deficiencies in comparison to controls. Percent moisture was increased in S-, Mg- and N- deficiencies. Positive correlation (r = 0.707) between moisture content and percent absorption at both 1450 and 1930 nm were obtained. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related (r = 0.894).

  3. Tillage and nutrient sources impact the productivity of eroded soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil degradation is a consequence of soil organic matter (SOM) losses due to soil disturbance, SOM decomposition, and soil erosion. Manure addition has been shown to enhance SOM, improve soil nutrient status, and increase soil productivity. Manure rates and degree of incorporation may also influenc...

  4. Nutrient status and plant growth effects of forest soils in the Basin of Mexico.

    PubMed

    Fenn, M E; Perea-Estrada, V M; de Bauer, L I; Pérez-Suárez, M; Parker, D R; Cetina-Alcalá, V M

    2006-03-01

    The nutrient status of forest soils in the Mexico City Air Basin was evaluated by observing plant growth responses to fertilization with N, P or both nutrients combined. P deficiency was the most frequent condition for soil from two high pollution sites and N deficiency was greatest at a low N deposition site. Concentrations of Pb and Ni, and to a lesser extent Zn and Co, were higher at the high pollution sites. However, positive plant growth responses to P and sometimes to N, and results of wheat root elongation bioassays, suggest that heavy metal concentrations were not directly phytotoxic. Further studies are needed to determine if heavy metal toxicity to mycorrhizal symbionts of eucalyptus (Eucalyptus camaldulensis Dehnh.) from high pollution sites may explain the P deficiency and stunted growth. P deficiency is expected to limit the capacity for biotic N retention in N saturated forested watersheds in the Basin of Mexico dominated by Andisols.

  5. NUTRIENT UPTAKE: A Microcomputer Program to Predict Nutrient Absorption from Soil by Roots.

    ERIC Educational Resources Information Center

    Oates, Kenneth; Barber, S. A.

    1987-01-01

    Discusses the use of a computer program designed to solve the mathematical model associated with soil nutrient uptake by plant roots and to predict the nutrient uptake. Describes a user-friendly personal computer version of this program. (TW)

  6. Fiber optic spectrophotometry monitoring of plant nutrient deficiency under hydroponic culture conditions

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Boey, William S. L.; Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min

    1999-05-01

    In this paper, fiber optic spectrophotometry (FOSpectr) was adapted to provide early detection of plant nutrient deficiency by measuring leaf spectral reflectance variation resulting from nutrient stress. Leaf reflectance data were obtained form a local vegetable crop, Brassica chinensis var parachinensis (Bailey), grown in nitrate-nitrogen (N)- and calcium (Ca)- deficient hydroponics nutrient solution. FOSpectr analysis showed significant differences in leaf reflectance within the first four days after subjecting plants to nutrient-deficient media. Recovery of the nutrient-stressed plants could also be detected after transferring them back to complete nutrient solution. In contrast to FOSpectr, plant response to nitrogen and calcium deficiency in terms of reduced growth and tissue elemental levels was slower and less pronounced. Thus, this study demonstrated the feasibility of using FOSpectr methodology as a non-destructive alternative to augment current methods of plant nutrient analysis.

  7. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency

    PubMed Central

    Reddy, Kavya; Cusack, Corey L.; Nnah, Israel C.; Khayati, Khoosheh; Saqcena, Chaitali; Huynh, Tuong B.; Noggle, Scott A.; Ballabio, Andrea; Dobrowolski, Radek

    2016-01-01

    Summary Attenuated auto-lysosomal system has been associated with Alzheimer disease (AD), yet all underlying molecular mechanisms leading to this impairment are unknown. We show that the amino acid sensing of mechanistic target of rapamycin complex 1 (mTORC1) is dysregulated in cells deficient in presenilin, a protein associated with AD. In these cells, mTORC1 is constitutively tethered to lysosomal membranes, unresponsive to starvation, and inhibitory to TFEB-mediated clearance due to a reduction in Sestrin2 expression. Normalization of Sestrin2 levels through overexpression or elevation of nuclear calcium rescued mTORC1 tethering and initiated clearance. While CLEAR network attenuation in vivo results in buildup of amyloid, phospho-Tau, and neurodegeneration, presenilin-knockout fibroblasts and iPSC-derived AD human neurons fail to effectively initiate autophagy. These results propose an altered mechanism for nutrient sensing in presenilin deficiency and underline an importance of clearance pathways in the onset of AD. PMID:26923592

  8. Soil Aeration deficiencies in urban sites

    NASA Astrophysics Data System (ADS)

    Weltecke, Katharina; Gaertig, Thorsten

    2010-05-01

    Soil aeration deficiencies in urban sites Katharina Weltecke and Thorsten Gaertig On urban tree sites reduction of soil aeration by compaction or sealing is an important but frequently underestimated factor for tree growth. Up to 50% of the CO2 assimilated during the vegetation period is respired in the root space (Qi et al. 1994). An adequate supply of the soil with oxygen and a proper disposal of the exhaled carbon dioxide are essential for an undisturbed root respiration. If the soil surface is smeared, compacted or sealed, soil aeration is interrupted. Several references show that root activity and fine root growth are controlled by the carbon dioxide concentration in soil air (Qi et al.1994, Burton et al. 1997). Gaertig (2001) found that decreasing topsoil gas permeability leads to reduced fine root density and hence to injury in crown structure of oaks. In forest soils a critical CO2 concentration of more than 0.6 % indicates a bad aeration status (Gaertig 2001). The majority of urban tree sites are compacted or sealed. The reduction of soil aeration may lead to dysfunctions in the root space and consequently to stress during periods of drought, which has its visible affects in crown structure. It is reasonable to assume that disturbances in soil aeration lead to reduced tree vigour and roadworthiness, resulting in high maintenance costs. The assessment of soil aeration in urban sites is difficult. In natural ecosystems the measurement of gas diffusivity and the gas-chromatical analysis of CO2 in soil air are accepted procedures in analyzing the state of aeration (Schack-Kirchner et al. 2001, Gaertig 2001). It has been found that these methods can also be applied for analyzing urban sites. In particular CO2 concentration in the soil atmosphere can be considered as a rapidly assessable, relevant and integrating indicator of the aeration situation of urban soils. This study tested the working hypothesis that soil aeration deficiencies lead to a decrease of fine

  9. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  10. Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...

  11. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    PubMed

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. PMID:25840500

  12. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    PubMed

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner.

  13. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, eastern China.

    PubMed

    Liu, Yang; Lv, Jianshu; Zhang, Bing; Bi, Jun

    2013-04-15

    Identifying the sources of spatial variability and deficiency risk of soil nutrients is a crucial issue for soil and agriculture management. A total of 1247 topsoil samples (0-20 cm) were collected at the nodes of a 2×2 km grid in Rizhao City and the contents of soil organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) were determined. Factorial kriging analysis (FKA), stepwise multiple regression, and indicator kriging (IK) were appled to investigate the scale dependent correlations among soil nutrients, identify the sources of spatial variability at each spatial scale, and delineate the potential risk of soil nutrient deficiency. Linear model of co-regionalization (LMC) fitting indicated that the presence of multi-scale variation was comprised of nugget effect, an exponential structure with a range of 12 km (local scale), and a spherical structure with a range of 84 km (regional scale). The short-range variation of OC and TN was mainly dominated by land use types, and TP was controlled by terrain. At long-range scale, spatial variation of OC, TN, and TP was dominated by parent material. Indicator kriging maps depicted the probability of soil nutrient deficiency compared with the background values in eastern Shandong province. The high deficiency risk area of all nutrient integration was mainly located in eastern and northwestern parts.

  14. Selection of optimal auxiliary soil nutrient variables for Cokriging interpolation.

    PubMed

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes.

  15. Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation

    PubMed Central

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129

  16. Geostatistical analyses reveal nutrient-vegetation relationships in savanna soils

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Okin, G. S.; Cassel, D.; Caylor, K. C.; Clausen, K. M.

    2005-12-01

    The uniform Kalahari sands that underlay the Kalahari Transect (KT) are a unique test bed for examining soil nutrient and vegetation cover relationships in a savanna ecosystem. Transects (300m x 100m) were sampled and mapped for each of four sites located along an aridity gradient from Mongu, Zambia in the north (1600 mm/yr precipitation), to Tshane, Botswana in the south (250 mm/yr precipitation). Geostatistical analyses of soil chemistry and tree, shrub, and grass cover at four sites along the moisture gradient of the KT indicated an accumulation of nutrients below tree/shrub cover. In general, areas where grasses dominated between canopies were negatively correlated with soil nutrients at the drier sites. Here we examine effects of vegetation cover on soil productivity and differences in soil nutrients along the moisture gradient of the KT.

  17. Nutrient omission in Bt cotton affects soil organic carbon and nutrients status

    NASA Astrophysics Data System (ADS)

    Aladakatti, Y. R.; Biradar, D. P.; Satyanarayana, T.; Majumdar, K.; Shivamurthy, D.

    2012-04-01

    Studies carried out at the University of Agricultural Sciences, Dharwad, India, in medium black soils assessed the effect of nutrient omission in Bt cotton and its effect on the soil organic carbon (SOC) and available nutrients at the end of second consecutive year of nutrient omission. The study also assessed the extent of contribution of the macro and micronutrients towards seed cotton yield. The experiment consisting 11 treatments omitting a nutrient in each treatment including an absolute control without any nutrients was conducted in a Randomised Block Design with three replications. Cotton crop sufficiently fertilized with macro and micro nutrients (165 : 75 : 120 NPK kg ha-1 and 20 kg each of CaSO4, and MgSO4, 10 kg of S, 20 kg each of ZnSO4, FeSO4 and 0.1 per cent Boron twice as foliar spray) was taken as a standard check to assess the contribution of each nutrient in various nutrient omission treatments. Soils of each treatment were analysed initially and after each crop of cotton for SOC and available nutrient status. Results indicated that the SOC decreased after each crop of cotton in absolute control where no nutrients were applied (0.50 % to 0.38 %) and also in the N omission treatment (0.50 % to 0.35 %). But there was no significant impact of omission of P, K and other nutrients on soil organic carbon. Soil available N, P and K in the soil were reduced as compared to the initial soil status after first and second crop of cotton in the respective treatment where these nutrients were omitted. The soil available N, P and K were reduced to the extent of 61 kg ha-1, 7.1 kg ha-1 and 161.9 kg ha-1 in the respective nutrient omission treatment at end of second crop of cotton as compared to the initial status of these nutrients in the soil. This might be due to the mining of these nutrients from the soil nutrient pool with out addition of these nutrients extraneously. The nutrient status of N, P and K remained almost similar in omission of other nutrients

  18. JAZ Repressors: Potential Involvement in Nutrients Deficiency Response in Rice and Chickpea

    PubMed Central

    Singh, Ajit P.; Pandey, Bipin K.; Deveshwar, Priyanka; Narnoliya, Laxmi; Parida, Swarup K.; Giri, Jitender

    2015-01-01

    Jasmonates (JA) are well-known phytohormones which play important roles in plant development and defense against pathogens. Jasmonate ZIM domain (JAZ) proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behavior of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify 10 novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK) and micronutrients (Zn, Fe) deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity toward type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations. PMID:26617618

  19. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties

    EPA Science Inventory

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  20. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    EPA Science Inventory

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  1. Landscape influence on soil carbon and nutrient levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Past runoff, erosion, and management practices influence nutrient levels on the landscape. These starting levels affect future nutrient transport due to runoff, erosion, and leaching events. The purpose of this study was to examine closed-depression landscape effects on surface soil organic matter, ...

  2. The Mauna Loa environmental matrix: foliar and soil nutrients

    USGS Publications Warehouse

    Vitousek, P.M.; Aplet, G.; Turner, D.; Lockwood, J.J.

    1992-01-01

    The accumulation of total carbon, nitrogen, and phosphorus in soils, available soil nutrients, and foliar nutrients in the native dominant Metrosideros polymorpha were determined across a wide elevational range on 9 lava flows on Mauna Loa, Hawai'i. The flows included a young (2800 y) a??a?? (rough surface texture) and pa??hoehoe (smooth) flow on the wet east and dry northwest side of the mountain. Soil element pools and nutrient availability increased with flow age independent of climate. The dry sites accumulated organic matter and nutrients more slowly than comparable wet sites, but relative nutrient availability to plants (as indicated by soil assays and foliar nutrients) was greater in the dry sites. Accumulation of soil organic matter and nutrients occurred most rapidly in lowerelevation sites on the young flows, but the largest accumulations occurred at higher elevations on old flows. The range of sites sampled represents a complete and largely independent matrix of major factors governing ecosystem structure and function. ?? 1992 Springer-Verlag.

  3. Soil nutrient status across soil denudation gradients, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Eger, A.; Almond, P. C.; Larsen, I. J.

    2013-12-01

    In humid climates, progressive chemical weathering of rock releases nutrients to the soil and into the biogeochemical cycle. On non-eroding landforms the input of parent material-derived nutrients to soils decreases over time because the advance of the weathering front slows as soils age. Deep soils with little ecosystem-accessible nutrients develop. However, in eroding landscapes sustained lowering of the weathering front is assumed to replenish the soil nutrient pool by advection of parent material. However, field data that directly relate soil denudation rates and nutrient status are lacking. If sustained denudation replenishes soil nutrients, then soil nutrient concentrations should approach that of bedrock with increasing denudation rates. Here we present soil nutrient data from soils with previously measured soil production rates located in three high-rainfall catchments of the western side of the rapidly uplifting Southern Alps of New Zealand. Soil production rates quantified with in-situ produced cosmogenic 10Be range from 0.11×0.01 to 2.47×0.51 mm y-1. Two of three catchments show an exponential decline in soil production rates as soil depth increases (Abstract EP41D-0823, AGU 2012). We quantified the concentrations of the nutrients P, Ca, K and Mg using XRF on subsets of the same soil bulk samples used for 10Be analysis. We present data for 1) soil nutrient concentrations and 2) chemical mass balance using the conservative element Zr. We used regression analysis to explore the relationship between denudation rates and soil nutrients. We found no statistically significant relationships between nutrient concentrations and total soil denudation rates (D), chemical denudation rates (W) or physical denudation rates (E). Similarly, there are no significant relationships between D, W, or E and the mass balance of the nutrients. Consequently, our relative nutrient data are also not significantly correlated with soil residence times or soil thicknesses. The

  4. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    SciTech Connect

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  5. [Spatial variability and management zone of soil major nutrients in tobacco fields in Qiannan mountainous region].

    PubMed

    Wu, De-Chuan; Luo, Hong-Xiang; Song, Ze-Min; Guo, Guang-Dong; Chen, Yong-An; Li, Yu-Xiang; Jiang, Yu-Ping; Li, Zhang-Hai

    2014-06-01

    Spatial variability and management zone of soil major nutrients in tobacco fields in Qian-nan mountainous region were analyzed using geostatistics and fuzzy c-mean algorithm. Results indicated that the level of soil organic matter (OM) was moderate, and alkalytic nitrogen (AN), available phosphorus (AP) and available potassium (AK) were rich according to tobacco soil nutrient classification standards. Coefficients of variation (CV) of OM, AN, AP and AK were moderate. Contents of OM, AN, AP and AK fitted log-normal distributions. Correlation analysis showed moderate correlations between OM and AN, AP and AK. OM and AN were best described by Gaussian semivariogram models, while AP and AK were described by exponential models. The four nutrients displayed moderate spatial autocorrelation. There were significant differences among lag distances of four soil nutrients. OM, AN, AP and AK in the majority of studied regions varied at moderate to very rich levels, and deficiencies of OM, AN, AP and AK only accounted for 0.93%, 0.53%, 0.24% and 7.91% of the total studied region, respectively. Based on the results, the studied region was divided into two management zones (MZ), namely MZ1 and MZ2, accounting for 69. 8% and 30. 2% of the studied region respectively. The soil levels of OM, AN, AP and AK in MZ1 were significantly lower than those in MZ2 (P < 0.01).

  6. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies.

    PubMed

    García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-09-01

    To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed.

  7. [Study on the polarized reflectance characteristics of single greenhouse tomato nutrient deficiency leaves].

    PubMed

    Zhu, Wen-Jing; Mao, Han-Ping; Liu, Hong-Yu; Zhang, Xiao-Dong; Ni, Ji-Heng

    2014-01-01

    In order to improve accuracy of quantitative analysis model for the greenhouse tomato nitrogen, phosphorus and potassium nutrient stress, and explore the advantages of polarization non-destructive detection in single-leaf plants scale, polarized reflectance characteristics of greenhouse nutrient deficiency tomato leaves in different growing seasons and different deficiency extents were both examined via means of polarized reflectance spectroscopy system, which was self-developed by the research group. The main factors with effects on the polarized reflectance characteristics of tomato leaves were discussed, such as incident zenith angle, azimuth angle, detection zenith angle, light source polarizer degree, and detector polarizer degree. Experiments were carried out to verify the optimum level of above five parameters by means of range analysis of orthogonal experiments, through that way we can know the best angle combination of five parameters. Based on the above analysis, the angle combination and sorting of detecting tomato nutrients deficiency leaves via means of polarization spectroscopy system were obtained as follows: incident zenith angle 60 degrees, light source polarizer degree 0 degrees, detection zenith angle 45 degrees, detector polarizer degree 45 degrees and azimuth angle 180 degrees. At the same time, both the spectra of nitrogen, phosphorus and potassium deficiency leaves in different growth stages and different deficiency extent leaves were compared with each other. Results show that there is a positive correlation between the greenhouse nutrient deficiency tomato leaves growth cycle and tomato leaves polarized reflectance spectra. Nutrient excess or nutrient deficiency can both lead to polarized reflectance decline and polarized reflectance decline extent of greenhouse tomato leaves is more obvious during the fruiting and harvest period. This paper has a certain theoretical and practical significance in the research on nutrition rapid detection on

  8. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    tillage and ratoon (no-till) harvest. We expect that the physical soil differences due to tillage versus no-tillage with vegetative regrowth on the biochar-amended soil will increase the diversity of soil microbial community structure, potential for C sequestration, and overall valuation of biochar as a soil amendment for factors such as waste-stream diversion, nutrient holding capacity, and C sequestration in addition to crop yield and GHG flux. These different treatments paired with intensive biochar characterization will aid in identifying how specific biochar properties translate to soil quality changes and increase the ability to target specific soil deficiencies with a tailored biochar for maximum holistic benefits.

  9. Substrate and nutrient limitation regulating microbial growth in soil

    NASA Astrophysics Data System (ADS)

    Bååth, Erland

    2015-04-01

    Microbial activity and growth in soil is regulated by several abiotic factors, including temperature, moisture and pH as the most important ones. At the same time nutrient conditions and substrate availability will also determine microbial growth. Amount of substrate will not only affect overall microbial growth, but also affect the balance of fungal and bacterial growth. The type of substrate will also affect the latter. Furthermore, according to Liebig law of limiting factors, we would expect one nutrient to be the main limiting one for microbial growth in soil. When this nutrient is added, the initial second liming factor will become the main one, adding complexity to the microbial response after adding different substrates. I will initially describe different ways of determining limiting factors for bacterial growth in soil, especially a rapid method estimating bacterial growth, using the leucine incorporation technique, after adding C (as glucose), N (as ammonium nitrate) and P (as phosphate). Scenarios of different limitations will be covered, with the bacterial growth response compared with fungal growth and total activity (respiration). The "degree of limitation", as well as the main limiting nutrient, can be altered by adding substrate of different stoichiometric composition. However, the organism group responding after alleviating the nutrient limitation can differ depending on the type of substrate added. There will also be situations, where fungi and bacteria appear to be limited by different nutrients. Finally, I will describe interactions between abiotic factors and the response of the soil microbiota to alleviation of limiting factors.

  10. Phytotoxicity studies with Lactuca sativa in soil and nutrient solution

    SciTech Connect

    Hulzebos, E.M.; Dirven-van Breemen, E.M.; Dis, W.A. van; Herbold, H.A.; Hoekstra, J.A.; Baerselman, R.; Gestel, C.A.M van ); Adema, D.M.M.; Henzen, L. )

    1993-06-01

    The toxicity of 76 priority pollutants to lettuce (Lactuca sativa) was determined in soil and in nutrient solution. In the first case a static and in the latter a semistatic exposure was established. Volatile and easily degradable compounds had high EC50 values in soil. In nutrient solution, however, several of these compounds were rather toxic. Quantitative structure activity relationships (QSARs) relating EC50 values to log K[sub ow] could be described for the toxicity in nutrient solution. Generally, the toxicity of the compounds increased with increasing lipophilicity. Deviations were caused by reactivity (N-containing compounds, double bonds in compounds), low lipophilicity, and EC50 values close to solubility. To relate toxicity in soil and nutrient solution, soil EC50 values were recalculated to values in the soil pore water using calculated adsorption coefficients. Estimated pore-water EC50 values showed a good correlation with values determined in nutrient solution but were not equal to these values. The differences can be attributed to differences in exposure.

  11. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  12. Nutrient Transformations in Soils Under Aerobic and Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Owens, P.; Lee, L.

    2003-12-01

    Poultry litter is most commonly land applied as a fertilizer for pastures. Soils vary according to landscape position and the biogeochemistry changes within the soils depending on the landscape position. This research focuses on nutrient speciation in aerobic and anaerobic environments. A 3.4 kg Ha-1 chicken litter application rate was used to determine the speciation of nutrients in these two environments. A 50 g sample of Ruston soil was placed in 250 mL centrifuge tubes and continuously stirred in anaerobic and aerobic environments. The Eh and pH were measured daily and a sample was collected at 0, 3, 7, 14 and 21 days. The Eh decreased from around 600 mV at day 0 to near 100 at day 2; whereas the aerobic sample had a decrease to around 450 mV. The pH increased from 6.5 to 7.0 in the anaerobic soil and from 6.5 to around 8.0 in the aerobic soil. The anaerobic soils had a rapid decrease in NO3- and a sharp increase in NH4+ to around 100 mg NH4+ kg-1 soil at day 7. The aerobic soil had an increase in NH4+ to 70 mg Nh4+ kg-1 soil at day 7 then decrease in NH4+ with a corresponding increase in NO3-. Both the anaerobic and aerobic soil had a rapid decrease in PO42- concentrations and remained low for 21 d.

  13. Chicken manure biochar as liming and nutrient source for acid Appalachian soil.

    PubMed

    Hass, Amir; Gonzalez, Javier M; Lima, Isabel M; Godwin, Harry W; Halvorson, Jonathan J; Boyer, Douglas G

    2012-01-01

    Acid weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 and 700°C with and without subsequent steam activation, were evaluated in an incubation study as soil amendments for a representative acid and highly weathered soil from Appalachia. Biochars were mixed at 5, 10, 20, and 40 g kg into a Gilpin soil (fine-loamy, mixed, active, mesic Typic Hapludult) and incubated in a climate-controlled chamber for 8 wk, along with a nonamended control and soil amended with agronomic dolomitic lime (AgLime). At the end of the incubation, soil pH, nutrient availability (by Mehlich-3 and ammonium bicarbonate diethylene triamine pentaacetic acid [AB-DTPA] extractions), and soil leachate composition were evaluated. Biochar effect on soil pH was process- and rate-dependent. Biochar increased soil pH from 4.8 to 6.6 at the high application rate (40 g kg), but was less effective than AgLime. Biochar produced at 350°C without activation had the least effect on soil pH. Biochar increased soil Mehlich-3 extractable micro- and macronutrients. On the basis of unit element applied, increase in pyrolysis temperature and biochar activation decreased availability of K, P, and S compared to nonactivated biochar produced at 350°C. Activated biochars reduced AB-DTPA extractable Al and Cd more than AgLime. Biochar did not increase NO in leachate, but increased dissolved organic carbon, total N and P, PO, SO, and K at high application rate (40 g kg). Risks of elevated levels of dissolved P may limit chicken manure biochar application rate. Applied at low rates, these biochars provide added nutritional value with low adverse impact on leachate composition. PMID:22751051

  14. Bacterial Mobilization of Nutrients From Biochar-Amended Soils.

    PubMed

    Schmalenberger, A; Fox, A

    2016-01-01

    Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur. PMID:26917243

  15. Effects of nutrient deficiencies and excesses on reproductive efficiency of livestock.

    PubMed

    Dunn, T G; Moss, G E

    1992-05-01

    Successful reproduction is dependent on a host of macro- and micronutrients and ceases well before an animal expires from deficiency of a particular nutrient. This review focuses on the functional roles phosphorus, vitamin A and beta-carotene, protein, and energy play in reproductive processes. Although it is not known whether deficiencies of these nutrients limit reproduction through common or discrete mechanisms, appropriate quantities of these nutrients are required for optimal reproduction. Mechanisms through which nutritional status is perceived by the hypothalamic-pituitary-gonadal axis remain unclear but seem to impinge on hypothalamic regions that selectively regulate production and release of pituitary trophic hormones. Body condition, or degree of fatness, seems to be the most reliable indicator of well-being of an animal, and, when coupled with changes in BW, provides a useful method to assess reproductive potential.

  16. Temporal Changes in the Spatial Variability of Soil Nutrients

    SciTech Connect

    R. L. Hoskinson; J. R. Hess; R. S. Alessi

    1999-07-01

    This paper reports the temporal changes in the spatial variability of soil nutrient concentrations across a field during the growing season, over a four-year period. This study is part of the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. Uniform fertilization did not produce a uniform increase in fertility. During the growing season, several of the nutrients and micronutrients showed increases in concentration although no additional fertilization had occurred. Potato plant uptake did not explain all of these changes. Some soil micronutrient concentrations increased above levels considered detrimental to potatoes, but the plants did not show the effects in reduced yield. All the nutrients measured changed between the last sampling in the fall and the first sampling the next spring prior to fertilization. The soil microbial community may play a major role in the temporal changes in the spatial variability of soil nutrient concentrations. These temporal changes suggest potential impact when determining fertilizer recommendations, and when evaluating the results of spatially varying fertilizer application.

  17. Effects of Phos-Chek® on soil nutrient availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wildfire frequencies and intensities have been steadily increasing on western US landscapes. Phos-chek® is an aerially-applied fire retardant used to contain and control wildfires. Composed of ammonium and phosphate salts, Phos-chek® has the potential to increase soil nutrient availability of N and ...

  18. Geographic variations of soil phosphorus induced by long-term land and manure nutrient management practices

    NASA Astrophysics Data System (ADS)

    Dao, Thanh

    2014-05-01

    Most natural and agricultural ecosystems are deficient in phosphorus (P), and supplemental P must be provided to attain optimal levels of agronomic production. Animal manure is often used to supply needed plant nutrients to enhance production of feed and fiber crops for human and livestock consumption. Soils have been treated with large amounts of P-enriched manure, and have shown elevated P levels in watersheds where there is a high density of intensive confined animal agriculture. Long-term additions can have lasting effects on the geographic distribution of soil microbes associated with the turnover of major soil nutrients, in particular non-mobile one such as P. We determined the distribution of soil P forms in a 10-ha no-till field that received annual additions of dairy manure at 0, 15, and 30 kg P ha-1 at the field scale for 16 consecutive years. Spectroscopic analyses of the near-surface zone were performed by X-ray fluorescence in soil cores taken to a depth of 0.2 m. Geostatistical methods were used to determine the spatial structure of the soil compositional data. Soil X-ray fluorescence spectral attributes were obtained based on a set of five parallel transects established across five experimental blocks, i.e., a 5 × 5 rectangular grid pattern. Three subsets of each soil attribute were identified for the three rates of manure addition. Long-term manure addition, albeit liquid manure, resulted in significant variability in soil P distribution in the near surface zone. The heterogeneity persisted over years of continuous no-tillage management. Therefore, a high density of geo-referenced soil measurements must be made to estimate the status of a required plant nutrient, especially a non-mobile nutrient in soil. A large number of timely measurements would require a rapid geo-referenced soil sensing spectroscopic method such as X-ray fluorescence to manage in near real-time the observed spatial variability of manure-treated fields.

  19. Plant nutrient-acquisition strategies change with soil age.

    PubMed

    Lambers, Hans; Raven, John A; Shaver, Gaius R; Smith, Sally E

    2008-02-01

    Nitrogen (N) tends to limit plant productivity on young soils; phosphorus (P) becomes increasingly limiting in ancient soils because it gradually disappears through leaching and erosion. Plant traits that are regarded as adaptations to N- and P-limited conditions include mycorrhizas and cluster roots. Mycorrhizas 'scavenge' P from solution or 'mine' insoluble organic N. Cluster roots function in severely P-impoverished landscapes, 'mining' P fixed as insoluble inorganic phosphates. The 'scavenging' and 'mining' strategies of mycorrhizal species without and non-mycorrhizal species with cluster roots, respectively, allow functioning on soils that differ markedly in P availability. Based on recent advances in our understanding of these contrasting strategies of nutrient acquisition, we provide an explanation for the distribution of mycorrhizal species on less P-impoverished soils, and for why, globally, cluster-bearing species dominate on severely P-impoverished, ancient soils, where P sensitivity is relatively common.

  20. Prehistoric agricultural depletion of soil nutrients in Hawai'i

    PubMed Central

    Hartshorn, A. S.; Chadwick, O. A.; Vitousek, P. M.; Kirch, P. V.

    2006-01-01

    We investigated the fate of soil nutrients after centuries of indigenous dryland agriculture in Hawai‘i using a coupled geochemical and archaeological approach. Beginning ≈500 years ago, farmers began growing dryland taro and sweet potato on the leeward slopes of East Maui. Their digging sticks pierced a subsurface layer of cinders, enhancing crop access to the soil water stored below the intact cinders. Cultivation also catalyzed nutrient losses, directly by facilitating leaching of mobile nutrients after disturbing a stratigraphic barrier to vertical water movement, and indirectly by increasing mineral weathering and subsequent uptake and harvest. As a result, centuries of cultivation lowered volumetric total calcium, magnesium, sodium, potassium, and phosphorus content by 49%, 28%, 75%, 37%, and 32%, respectively. In the absence of written records, we used the difference in soil phosphorus to estimate that prehistoric yields were sufficient to meet local demand over very long time frames, but the associated acceleration of nutrient losses could have compromised subsequent yields. PMID:16832047

  1. [Soil Microorganism Characteristics and Soil Nutrients of Different Wetlands in Sanjinag Plain, Northeast China].

    PubMed

    Xiao, Ye; Huang, Zhi-gang; Wu, Hai-tao; Lü, Xian-guo

    2015-05-01

    Four typical wetland types (i.e. wetlands with the following dominant plant species: Calamagrostis angustifolia + Salix brachypoda, Calamagrostis angustifolia, Carex lasiocarpa and Phragmites australis) of the Honghe reserve in Sanjiang Plain were studied to investigate the distribution of soil microorganism quantity and enzyme activity and their relationships with soil nutrients. The results showed that in 0-30 cm soil layer of these four wetlands: (1) Contents of soil total organic carbon, total nitrogen and total phosphorus decreased with the increase of soil depth, while available nitrogen, phosphorus and potassium did not exhibit regularly changes. Moreover, there were significantly different for soil nutrient contents among different wetland types (P < 0.05). (2) The number of soil microorganism was bacteria > actinomycetes > fungi, furthermore, the number of three microbial colonies all decreased with the increase of soil depth. Total soil microbial number of C. angustifolia wetland was the highest and that of C. lasiocarpa wetland was the lowest. (3) Soil invertase and cellulase activities decreased with soil depth, while soil catalase activity showed no consistent changes. Three kinds of enzyme activities in C. angustifolia + S. brachypoda and C. angustifolia wetlands were significantly higher than those of C. lasiocarpa and P. australis wetlands (P < 0.05). (4) The correlation analysis showed that soil bacteria, fungi and cellulose activity had a significant correlation with indicators of soil nutrients. But there was no correlation between actinomyces, invertase and available potassium, as well as between catalase and available potassium, available phosphorus. Overall, soil microorganism and enzyme activities are important indicators for reflecting the status of soil nutrients.

  2. [Soil Microorganism Characteristics and Soil Nutrients of Different Wetlands in Sanjinag Plain, Northeast China].

    PubMed

    Xiao, Ye; Huang, Zhi-gang; Wu, Hai-tao; Lü, Xian-guo

    2015-05-01

    Four typical wetland types (i.e. wetlands with the following dominant plant species: Calamagrostis angustifolia + Salix brachypoda, Calamagrostis angustifolia, Carex lasiocarpa and Phragmites australis) of the Honghe reserve in Sanjiang Plain were studied to investigate the distribution of soil microorganism quantity and enzyme activity and their relationships with soil nutrients. The results showed that in 0-30 cm soil layer of these four wetlands: (1) Contents of soil total organic carbon, total nitrogen and total phosphorus decreased with the increase of soil depth, while available nitrogen, phosphorus and potassium did not exhibit regularly changes. Moreover, there were significantly different for soil nutrient contents among different wetland types (P < 0.05). (2) The number of soil microorganism was bacteria > actinomycetes > fungi, furthermore, the number of three microbial colonies all decreased with the increase of soil depth. Total soil microbial number of C. angustifolia wetland was the highest and that of C. lasiocarpa wetland was the lowest. (3) Soil invertase and cellulase activities decreased with soil depth, while soil catalase activity showed no consistent changes. Three kinds of enzyme activities in C. angustifolia + S. brachypoda and C. angustifolia wetlands were significantly higher than those of C. lasiocarpa and P. australis wetlands (P < 0.05). (4) The correlation analysis showed that soil bacteria, fungi and cellulose activity had a significant correlation with indicators of soil nutrients. But there was no correlation between actinomyces, invertase and available potassium, as well as between catalase and available potassium, available phosphorus. Overall, soil microorganism and enzyme activities are important indicators for reflecting the status of soil nutrients. PMID:26314138

  3. Nutrient concentrations in tree leaves on brown and gray reclaimed mine soils in West Virginia.

    PubMed

    Wilson-Kokes, Lindsay; Skousen, Jeff

    2014-05-15

    Surface mining in Appalachia disrupts large areas of forested land. Federal and state laws require disturbed lands be reclaimed by re-constructing the landscape and replacing soil materials to provide a rooting medium. If insufficient quantities of native topsoil are available, substitute materials derived from the overburden may be used as soil media. This study examined soil and foliar nutrient concentrations of three hardwood tree species on areas where brown and gray sandstone overburden were applied as substitute growth media at the Birch River mine in West Virginia. Soil and foliar nutrient concentrations found in four experimental plots were compared to soil and foliar nutrient concentrations found in a nearby native Appalachian forest. Many foliar nutrients such as phosphorus and potassium were lower in all three tree species on most mine soils compared to trees growing in nearby native forest soils and to tree nutrient concentrations from the literature. Foliar and soil nutrient concentrations in the Brown mine soil were similar to those found in native forest soil, while the Gray mine soil provided significantly lower levels of nutrients. Overall, low nutrient availability in mine soils translates into generally lower foliar nutrient concentrations in trees growing on mine soils. After six years, amended topsoil substitutes and Brown mine soil produced higher foliar nutrient concentrations than Gray mine soil.

  4. The relative importance of vertical soil nutrient heterogeneity, and mean and depth-specific soil nutrient availabilities for tree species richness in tropical forests and woodlands.

    PubMed

    Shirima, Deo D; Totland, Ørjan; Moe, Stein R

    2016-11-01

    The relative importance of resource heterogeneity and quantity on plant diversity is an ongoing debate among ecologists, but we have limited knowledge on relationships between tree diversity and heterogeneity in soil nutrient availability in tropical forests. We expected tree species richness to be: (1) positively related to vertical soil nutrient heterogeneity; (2) negatively related to mean soil nutrient availability; and (3) more influenced by nutrient availability in the upper than lower soil horizons. Using a data set from 60, 20 × 40-m plots in a moist forest, and 126 plots in miombo woodlands in Tanzania, we regressed tree species richness against vertical soil nutrient heterogeneity, both depth-specific (0-15, 15-30, and 30-60 cm) and mean soil nutrient availability, and soil physical properties, with elevation and measures of anthropogenic disturbance as co-variables. Overall, vertical soil nutrient heterogeneity was the best predictor of tree species richness in miombo but, contrary to our prediction, the relationships between tree species richness and soil nutrient heterogeneity were negative. In the moist forest, mean soil nutrient availability explained considerable variations in tree species richness, and in line with our expectations, these relationships were mainly negative. Soil nutrient availability in the top soil layer explained more of the variation in tree species richness than that in the middle and lower layers in both vegetation types. Our study shows that vertical soil nutrient heterogeneity and mean availability can influence tree species richness at different magnitudes in intensively utilized tropical vegetation types.

  5. Skeletal changes in multiparous and nulliparous mice fed a nutrient-deficient diet containing cadmium.

    PubMed

    Whelton, B D; Bhattacharyya, M H; Peterson, D P; Moretti, E S; Toomey, J M; Williams, L L

    1994-08-12

    Female mice were given nutrient-deficient, purified diets containing either 0.25 (environmental), 5, or 50 ppm Cd; the nutrient quality of each was patterned after deficiencies known to be present in food consumed by Japanese women who contracted Itai-Itai disease. One-half of the mice were bred for six consecutive, 42-day rounds of pregnancy/lactation (PL mice); remaining females were non-pregnant, virgin controls (NP mice). PL and NP mice were sacrificed at the end of rounds 1, 2, 3, 5, or 6. PL mice taken during the first three rounds were successively pregnant; those taken in later rounds experienced gestation/lactation either four (round 5) or three (round 6) non-successive times. No consistent round-by-round decreases in diet consumption or body weight occurred among NP mice during the 252 days of cadmium exposure, however a significant decrease in femur calcium content (11-17%) was observed in virgin groups exposed to 50 vs. 0.25 ppm Cd. Similar femur decalcification (14-20%) was observed in PL mice, however calcium loss at 50 ppm Cd paralleled decreases in food consumption (24%) and body weight (9-17%). Significant but smaller decreases in the calcium/dry weight (Ca/DW) ratio were found for NP and PL groups consuming 50 ppm dietary Cd. Over the 6-round experiment, exposure to cadmium was found to effect smaller decreases in both femur Ca content and Ca/DW ratio than either consumption of nutrient-deficient diet or multiparous experience. Demineralization results for PL mice provide evidence that the combination of chronic ingestion of cadmium in a nutrient-deficient diet and multiparous activity likely played a role in the etiology of Itai-Itai disease; results for NP mice additionally suggest that decalcification may have been initiated in human females at a time prior to the multiparous and menopausal stages of life.

  6. Plant nutrients do not covary with soil nutrients under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Luo, Wentao; Elser, James J.; Lü, Xiao-Tao; Wang, Zhengwen; Bai, Edith; Yan, Caifeng; Wang, Chao; Li, Mai-He; Zimmermann, Niklaus E.; Han, Xingguo; Xu, Zhuwen; Li, Hui; Wu, Yunna; Jiang, Yong

    2015-08-01

    Nitrogen (N) and phosphorus (P) play vital roles in plant growth and development. Yet how climate regimes and soil fertility influence plant N and P stoichiometry is not well understood, especially in the belowground plant parts. Here we investigated plant aboveground and belowground N and P concentrations ([N] and [P]) and their stoichiometry in three dominant genera along a 2200 km long climatic gradient in northern China. Results showed that temperature explained more variation of [N] and [P] in C4 plants, whereas precipitation exerted a stronger influence on [N] and [P] in C3 plants. Both plant aboveground and belowground [N] and [P] increased with decreasing precipitation, and increasing temperatures yet were negatively correlated with soil [N] and [P]. Plant N:P ratios were unrelated with all climate and soil variables. Plant aboveground and belowground [N] followed an allometric scaling relationship, but the allocation of [P] was isometric. These results imply that internal processes stabilize plant N:P ratios and hence tissue N:P ratios may not be an effective parameter for predicting plant nutrient limitation. Our results also imply that past positive relationships between plant and nutrient stocks may be challenged under changing climatic conditions. While any modeling would need to be able to replicate currently observed relationships, it is conceivable that some relationships, such as those between temperature or rainfall and carbon:nutrient ratios, should be different under changing climatic conditions.

  7. Risks and benefits of gardening in urban soil; heavy metals and nutrient content in Los Angeles Community Gardens

    NASA Astrophysics Data System (ADS)

    Clarke, L. W.; Jenerette, D.; Bain, D. J.

    2012-12-01

    The availability of soil nutrients and heavy metals in urban community gardens can influence health of crops and participants. Interactions between garden history, management, and soils are understudied in cities. In July 2011, we collected soil samples from 45 plots at 6 Los Angeles community gardens. For comparison, 3 samples were collected from uncultivated garden soils and 3 more from outside soils. Samples were then tested for major nutrients- Nitrogen(N), Potassium (K), and Phosphorous (P)- and organic matter (SOM). We also measured concentrations of 29 metals in 3 gardens using Inductively Coupled Plasma- Atomic Emission Spectroscopy. Potassium and phosphorus exceeded optimum levels in all plots, with some over twice the maximum recommended levels. Over-fertilized soils may contribute to local watershed pollution and crop micronutrient deficiencies. Low soil SOM was observed in gardens in impoverished neighborhoods, possibly due to low quality amendments. Our metals analysis showed dangerous levels of lead (Pb)-- up to 1700 ppm in outside soils and 150 ppm in garden soils-- near older gardens, indicating lead deposition legacies. California lead safety standards indicate that children should not play near soils with Pb above 200 ppm, indicating need for long term monitoring of lead contaminated gardens. Arsenic (As) levels exceeded federal risk levels (0.3 ppm) and average CA background levels (2 ppm) in all areas, with some gardens exceeding 10 ppm. Heavy metal legacies in gardens may pose risks to participants with prolonged exposure and remediation of soils may be necessary.

  8. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  9. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop... 7 Agriculture 3 2012-01-01 2012-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer...

  10. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop... 7 Agriculture 3 2014-01-01 2014-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer...

  11. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop... 7 Agriculture 3 2013-01-01 2013-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer...

  12. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop... 7 Agriculture 3 2011-01-01 2011-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer...

  13. Proposed chemical mechanismsManagement practices impacts soil nutrients and bacterial populations in backgrounding beef feedlot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive beef backgrounding often accumulate manure born soil nutrients, microbes, and pharmaceuticals at different site locations. Unless properly managed, such waste materials can pollute surrounding soil and water sources. Soil sampling from these sites helps determining waste material levels bu...

  14. Soil nutrients influence spatial distributions of tropical trees species

    USGS Publications Warehouse

    John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; Foster, R.B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. ?? 2007 by The National Academy of Sciences of the USA.

  15. BOREAS TE-1 SSA-Fen Soil Profile Nutrient Data

    NASA Technical Reports Server (NTRS)

    Papagno, Andrea; Anderson, Darwin; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall traniect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains soil profile measurements of various nutrients at the SSA-Fen site. The data were collected from 23-May to 21-Oct- 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration

    PubMed Central

    Blaser, Wilma J; Shanungu, Griffin K; Edwards, Peter J; Olde Venterink, Harry

    2014-01-01

    During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient

  17. Substrate- and nutrient-limited toluene biotransformation in sandy soil

    SciTech Connect

    Allen-King, R.M. . Dept. of Geology); Barker, J.F.; Gillham, R.W. . Waterloo Centre for Groundwater Research); Jensen, B.K. . Environmental Biotechnology Section)

    1994-05-01

    Lab microcosm tests of the rate of toluene biodegradation were performed using soil from the A, B, and C horizons of the unsaturated zone of a sandy field site. Toluene biodegradation was rapid, occurring at a time scale comparable to the rate of sorption in many of the microcosms and demonstrating the potential for bioremediation of these contaminants in unsaturated soil. In the A horizon, with an initial toluene concentration in the solution phase of 4.5 mg/L, degradation was controlled by substrate-limited growth on toluene as the primary substrate. Soil from the B and C horizons initially showed similar behavior with a lower toluene concentrations of about 2.5 mg/L. The maximum utilization rate ([mu][sub max]) for soil from all three depths was 2.0 d[sup [minus]1]. With repeated exposure to moderate to high concentrations of toluene, transformation in the B- and C-horizon soil appeared to be zero order, at a rate of 1.0 to 2.0 [mu]g toluene/g soil/d. In C-horizon soil that had been taken directly from the field, the transformation rate was almost immeasurably slow. Addition of nitrogens as either ammonium or nitrate accelerated the degradation, showing that nitrogen was the most limiting nutrient. The apparent adaptation period observed before rapid toluene removal was fit by a substrate-limited growth model. Greater numbers of toluene-degrading microorganisms were found in soil exposed to toluene than in unexposed soil, supporting biomass growth as the explanation for the adaptation period. The results of enumeration of heterotrophs compared to the numbers of toluene degraders suggested that a small proportion to the total viable microorganisms were responsible for degradation of toluene.

  18. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.

    PubMed

    Kalaji, Hazem M; Oukarroum, Abdallah; Alexandrov, Vladimir; Kouzmanova, Margarita; Brestic, Marian; Zivcak, Marek; Samborska, Izabela A; Cetner, Magdalena D; Allakhverdiev, Suleyman I; Goltsev, Vasilij

    2014-08-01

    The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records. PMID:24811616

  19. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils.

    PubMed

    Koyama, Akihiro; Wallenstein, Matthew D; Simpson, Rodney T; Moore, John C

    2014-01-01

    The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming.

  20. The effect of nutrient deficiency on removal of organic solvents from textile manufacturing wastewater during activated sludge treatment.

    PubMed

    Freedman, D L; Payauys, A M; Karanfil, T

    2005-02-01

    Textile manufacturing wastewater is often deficient in nitrogen and phosphorus and contains hazardous solvents, including methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), toluene (TOL), and xylenes (XYL). The objectives of this study were to evaluate the effectiveness of a short-term batch assay for predicting when a nutrient deficient condition exists in textile wastewater activated sludge, and to determine if nutrient deficiency affects biodegradation of MEK, MIBK, TOL,and p-XYL to a greater or lesser extent than bulk soluble chemical oxygen demand (sCOD). Addition of N + P significantly improved sCOD removal during treatment of textile wastewater in laboratory-scale sequencing batch reactors (SBRs). Batch tests using mixed liquor suspended solids (MLSS) from the SBRs correctly predicted the nutrient deficiency in the reactors that received unamended wastewater. During batch tests in sealed containers (to prevent volatilization) when N + P were added, the solvents biodegraded faster and to a greater extent than the bulk wastewater sCOD. MEK and MIBK were also completely consumed in MLSS from the SBR that received unamended wastewater, indicating that a shortage of nutrients did not significantly impact biodegradation of these ketones. However, nutrient deficient conditions significantly decreased the rate of TOL and p-XYL biodegradation. The difference in biodegradability of the ketones and monoaromatics under nutrient deficient conditions may be related to loss of plasmids required for aerobic catabolism of TOL and p-XYL. These results demonstrate that N + P addition to nutrient-deficient textile wastewater improves bulk sCOD removal and also significantly improves the biodegradability of TOL and p-XYL, thereby reducing the amount released to the atmosphere by volatilization.

  1. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  2. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5∶100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5∶100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  3. Sex-related differences in photoinhibition, photo-oxidative stress and photoprotection in stinging nettle (Urtica dioica L.) exposed to drought and nutrient deficiency.

    PubMed

    Simancas, Bárbara; Juvany, Marta; Cotado, Alba; Munné-Bosch, Sergi

    2016-03-01

    Dimorphic plant species can show distinct nutrient needs due to sex-related differences in nutrient allocation to reproductive structures, which can potentially affect their sensitivity to photoinhibition and photo-oxidative stress. Here, we investigated sex-related differences in the extent of photo-oxidative stress in male and female individuals of U. dioica exposed to a combination of severe drought and nutrient starvation. Male and female individuals of U. dioica subject to severe drought stress were exposed to various levels of nutrient availability. First, a set of plants grown under field conditions and exposed to summer drought was used to test the effects of nutrient supply (given as NPK fertilizer). Secondly, the effects of various phosphate concentrations in the nutrient solution were tested in drought-stressed potted plants. The Fv/Fm ratio (maximum efficiency of PSII photochemistry), photoprotection capacity (levels of carotenoids, including the xanthophyll cycle, and vitamins C and E), and the extent of lipid peroxidation (hydroperoxide levels) were measured. Results showed that an application of the NPK fertilizer to the soil had a positive effect on drought-stressed plants, reducing the extent of lipid peroxidation in both males and females. P deficiency led to residual photoinhibition, as indicated by significant reductions in the Fv/Fm ratio, and enhanced lipid peroxidation in females, but not in males. We conclude that (i) increased nutrient availability in the soil can alleviate photo-oxidative stress in drought-stressed U. dioica plants, and (ii) U. dioica plants show sexual secondary dimorphism in terms of photoinhibition and photo-oxidative stress, but this is only apparent when stress infringed on plants is very severe. PMID:26799330

  4. Sex-related differences in photoinhibition, photo-oxidative stress and photoprotection in stinging nettle (Urtica dioica L.) exposed to drought and nutrient deficiency.

    PubMed

    Simancas, Bárbara; Juvany, Marta; Cotado, Alba; Munné-Bosch, Sergi

    2016-03-01

    Dimorphic plant species can show distinct nutrient needs due to sex-related differences in nutrient allocation to reproductive structures, which can potentially affect their sensitivity to photoinhibition and photo-oxidative stress. Here, we investigated sex-related differences in the extent of photo-oxidative stress in male and female individuals of U. dioica exposed to a combination of severe drought and nutrient starvation. Male and female individuals of U. dioica subject to severe drought stress were exposed to various levels of nutrient availability. First, a set of plants grown under field conditions and exposed to summer drought was used to test the effects of nutrient supply (given as NPK fertilizer). Secondly, the effects of various phosphate concentrations in the nutrient solution were tested in drought-stressed potted plants. The Fv/Fm ratio (maximum efficiency of PSII photochemistry), photoprotection capacity (levels of carotenoids, including the xanthophyll cycle, and vitamins C and E), and the extent of lipid peroxidation (hydroperoxide levels) were measured. Results showed that an application of the NPK fertilizer to the soil had a positive effect on drought-stressed plants, reducing the extent of lipid peroxidation in both males and females. P deficiency led to residual photoinhibition, as indicated by significant reductions in the Fv/Fm ratio, and enhanced lipid peroxidation in females, but not in males. We conclude that (i) increased nutrient availability in the soil can alleviate photo-oxidative stress in drought-stressed U. dioica plants, and (ii) U. dioica plants show sexual secondary dimorphism in terms of photoinhibition and photo-oxidative stress, but this is only apparent when stress infringed on plants is very severe.

  5. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    PubMed

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning. PMID:19637584

  6. Microbial respiration and organic carbon indicate nutrient cycling recovery in reclaimed soils

    SciTech Connect

    Ingram, L.J.; Schuman, G.E.; Stahl, P.D.; Spackman, L.K.

    2005-12-01

    Soil quality and the ability of soil to sustain nutrient cycling in drastically disturbed ecosystems will influence the establishment and maintenance of a permanent and stable plant community. We undertook research to evaluate a recently developed method to assess soil quality and nutrient cycling potential in a series of reclaimed soils. The method involves correlating the 3-d flush of microbial respiration after a soil is rewetted against a range of soil biological parameters. Soils were sampled from a number of reclaimed coal mines, a reclaimed uranium mine, and native, undisturbed prairie. All sites were located in semiarid Wyoming.

  7. Soil Nutrient Content Influences the Abundance of Soil Microbes but Not Plant Biomass at the Small-Scale

    PubMed Central

    Koorem, Kadri; Gazol, Antonio; Öpik, Maarja; Moora, Mari; Saks, Ülle; Uibopuu, Annika; Sõber, Virve; Zobel, Martin

    2014-01-01

    Small-scale heterogeneity of abiotic and biotic factors is expected to play a crucial role in species coexistence. It is known that plants are able to concentrate their root biomass into areas with high nutrient content and also acquire nutrients via symbiotic microorganisms such as arbuscular mycorrhizal (AM) fungi. At the same time, little is known about the small-scale distribution of soil nutrients, microbes and plant biomass occurring in the same area. We examined small-scale temporal and spatial variation as well as covariation of soil nutrients, microbial biomass (using soil fatty acid biomarker content) and above- and belowground biomass of herbaceous plants in a natural herb-rich boreonemoral spruce forest. The abundance of AM fungi and bacteria decreased during the plant growing season while soil nutrient content rather increased. The abundance of all microbes studied also varied in space and was affected by soil nutrient content. In particular, the abundance of AM fungi was negatively related to soil phosphorus and positively influenced by soil nitrogen content. Neither shoot nor root biomass of herbaceous plants showed any significant relationship with variation in soil nutrient content or the abundance of soil microbes. Our study suggests that plants can compensate for low soil phosphorus concentration via interactions with soil microbes, most probably due to a more efficient symbiosis with AM fungi. This compensation results in relatively constant plant biomass despite variation in soil phosphorous content and in the abundance of AM fungi. Hence, it is crucial to consider both soil nutrient content and the abundance of soil microbes when exploring the mechanisms driving vegetation patterns. PMID:24637633

  8. Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment

    NASA Astrophysics Data System (ADS)

    Armitage, A. R.; Fourqurean, J. W.

    2015-10-01

    The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50-100 %. Soil carbon content slightly decreased (~ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen: phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded a threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m-2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.

  9. Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment

    NASA Astrophysics Data System (ADS)

    Armitage, A. R.; Fourqurean, J. W.

    2016-01-01

    The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50-100 %. Soil carbon content slightly decreased ( ˜ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen : phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded an approximate threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m-2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.

  10. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...

  11. Soil nutrient dynamics in small beef cattle backgrounding feedlot on karst environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle backgrounding feedlot systems that grow out weaned calves for feedlot finishing can become potential diffuse sources of manure derived soil nutrients. Better understanding of these nutrient concentrations and their distribution will aid in development of effective nutrient management gui...

  12. Nutrient-stimulated biodegradation of aged refinery hydrocarbons in soil

    SciTech Connect

    Drake, E.N.; Stokley, K.E.; Calcavecchio, P.; Bare, R.E.; Rothenburger, S.J.; Prince, R.C.; Douglas, G.S.

    1995-12-31

    Aged hydrocarbon-contaminated refinery soil was amended with water and nutrients and tilled weekly for 1 year to stimulate biodegradation. Gas chromatography/mass spectrometry (GC/MS) analysis of polycyclic aromatic compounds (PAHs) and triterpane biomarkers, and Freon IR analysis of total petroleum hydrocarbons (TPH), were used to determine the extent of biodegradation. There was significant degradation of extractable hydrocarbon (up to 60%), but neither hopane, oleanane, nor the amount of polars decreased during this period of bioremediation, allowing them to be used as conserved internal markers for estimating biodegradation. Significant degradation of the more alkylated two- and three-ring compounds, and of the four-ring species pyrene and chrysene and their alkylated congeners, was seen. Substantial degradation (> 40%) of benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene also was seen. The results show that bioremediation can be a useful treatment in the cleanup of contaminated refinery sites.

  13. Long-term effects of sustained beef feedlot manure application on soil nutrients, corn silage yield, and nutrient uptake.

    PubMed

    Ferguson, Richard B; Nienaber, John A; Eigenberg, Roger A; Woodbury, Brian L

    2005-01-01

    A field study was initiated in 1992 to investigate the long-term impacts of beef feedlot manure application (composted and uncomposted) on nutrient accumulation and movement in soil, corn silage yield, and nutrient uptake. Two application strategies were compared: providing the annual crop nitrogen (N) requirement (N-based rate) or crop phosphorus (P) removal (P-based rate), as well as a comparison to inorganic fertilizer. Additionally, effects of a winter cover crop were evaluated. Irrigated corn (Zea mays L.) was produced annually from 1993 through 2002. Average silage yield and crop nutrient removal were highest with N-based manure treatments, intermediate with P-based manure treatments, and least with inorganic N fertilizer. Use of a winter cover crop resulted in silage yield reductions in four of ten years, most likely due to soil moisture depletion in the spring by the cover crop. However, the cover crop did significantly reduce NO3-N accumulation in the shallow vadose zone, particularly in latter years of the study. The composted manure N-based treatment resulted in significantly greater soil profile NO3-N concentration and higher soil P concentration near the soil surface. The accounting procedure used to calculate N-based treatment application rates resulted in acceptable soil profile NO3-N concentrations over the short term. While repeated annual manure application to supply the total crop N requirement may be acceptable for this soil for several years, sustained application over many years carries the risk of unacceptable soil P concentrations.

  14. Spatial distribution of livestock concentration areas and soil nutrients in pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock congregate at feeders, shades, or other sites in pastures, which severely disturbs soil and vegetation leading to erosion and nutrient runoff. Our objective was to determine the extent and spatial distribution of soil nutrients in livestock concentration areas in pastures. We georeferenced...

  15. Spatial distribution of livestock concentration areas and soil nutrients in pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock frequently congregate at feeders, shades, or other sites on pastures, which severely disturbs soil and vegetation leading to erosion and nutrient runoff. Our objective was to determine the extent and spatial distribution of soil nutrients in livestock concentration areas on pastures and qu...

  16. Measurement of nutrients in green house soil with laser induced breakdown spectroscopy.

    PubMed

    Hussain, T; Gondal, M A; Yamani, Z H; Baig, M A

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied for the determination of nutrients in the green house soil samples. We determined appropriate spectral signatures of vital nutrients and calibrated the method to measure the nutrients in a naturally fertilized plot, cultivated with tomato and cucumber plants. From the calibration curves we predicted the concentrations of important nutrients such as Ca, K, P, Mg, Fe, S, Ni and Ba in the soil. Our measurements proved that the LIBS method rapidly and efficiently measures soil nutrients with excellent detection limits of 12, 9, 7, 9, 7, 10, 8 and 12 mg/kg for Ca, K, P, Mg, Fe, S, Ni and Ba respectively with a precision of approximately 2%, The unique features of LIBS for rapid sample analysis demonstrated by this study suggests that this method offers promise for precision measurements of soil nutrients as compared to conventional methods in short span of time.

  17. Colonization of soil by Arthrobacter and Pseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy.

    PubMed Central

    Labeda, D P; Liu, K C; Casida, L E

    1976-01-01

    Arthrobacter globiformis and a Pseudomonas soil isolate were incubated separately and in combination in soil that had been presterilized by autoclaving. Growth and other responses of the cells in situ in this soil were monitored by plate counts and transmission electron microscopy examinations of cell sections. During the soil incubations, some of the samples were first allowed to dry and then were remoistened with water or with a dilute or a concentrated nutrient solution. Based on plate counts and ultrastructural analysis. Arthrobacter seemed to be in a non-multiplying coccoid-rod resting state and to be virtually immune to soil drying. Addition of a dilute nutrient solution helped maintain cell ultrastructure and prevent a low level of lysing that occurred in the absence of nutrient addition. Addition of a concentrated nutrient solution brought on cell multiplication as both coccoid-rods and long rods, but the ultimate form with further incubation was the coccoid-rod. The Pseudomonas strain suffered death and ultrastructural deterioration as water became less available. It responded by cell multiplication to an equal extent when either water or dilute nutrients were added, but possibly was able to give a growth response to nutritive amendment when a concentrated nutrient addition was made. The Arthrobacter was not affected by the presence of Pseudomonas in dual culture. The Pseudomonas, however, possibly suffered a nutritive deficiency under these conditions. Images PMID:1267449

  18. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils.

    PubMed

    Fornara, Dario A; Banin, Lindsay; Crawley, Michael J

    2013-12-01

    Human activities have greatly increased the availability of biologically active forms of nutrients [e.g., nitrogen (N), phosphorous (P), potassium (K), magnesium (Mg)] in many soil ecosystems worldwide. Multi-nutrient fertilization strongly increases plant productivity but may also alter the storage of carbon (C) in soil, which represents the largest terrestrial pool of organic C. Despite this issue is important from a global change perspective, key questions remain on how the single addition of N or the combination of N with other nutrients might affect C sequestration in human-managed soils. Here, we use a 19-year old nutrient addition experiment on a permanent grassland to test for nutrient-induced effects on soil C sequestration. We show that combined NPKMg additions to permanent grassland have 'constrained' soil C sequestration to levels similar to unfertilized plots whereas the single addition of N significantly enhanced soil C stocks (N-only fertilized soils store, on average, 11 t C ha(-1) more than unfertilized soils). These results were consistent across grazing and liming treatments suggesting that whilst multi-nutrient additions increase plant productivity, soil C sequestration is increased by N-only additions. The positive N-only effect on soil C content was not related to changes in plant species diversity or to the functional composition of the plant community. N-only fertilized grasslands show, however, increases in total root mass and the accumulation of organic matter detritus in topsoils. Finally, soils receiving any N addition (N only or N in combination with other nutrients) were associated with high N losses. Overall, our results demonstrate that nutrient fertilization remains an important global change driver of ecosystem functioning, which can strongly affect the long-term sustainability of grassland soil ecosystems (e.g., soils ability to deliver multiple ecosystem services).

  19. Deficiencies and toxicities of trace elements and micronutrients in tropical soils: Limitations of knowledge and future research needs

    SciTech Connect

    Davies, B.E.

    1997-01-01

    This article reviews present knowledge concerning deficiencies and toxicities of trace elements and micronutrients in tropical soils. The myth that all tropical soils are highly leached and nutrient-poor is challenged. Continuing use of the term laterite by ecologists and geologists is criticized and adoption of plinthite is urged. The trace element content of plinthite and its possible influence on micronutrient availability are described. Micronutrient limitations of tropical agriculture are related to soil type and formation, and the special problem of aluminum toxicity in acid soils is discussed in both agricultural and ecological contexts. Studies of micronutrient cycling in tropical forests or savannas are needed to supplement the emerging picture of the complexities of major element cycles in these ecosystems.

  20. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil.

    PubMed

    Martínez-Sánchez, José Luis

    2005-01-01

    In tropical forests with nutrient-rich soil tree's nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm) of three undisturbed forest plots at 'Estaci6n de Biologia Los Tuxtlas' on the east coast of Mexico (18 degrees 34' - 18 degrees 36' N, 95 degrees 04' - 95 degrees 09' W). N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30) and extractable P (4.11 microg g(-1) n = 30). As expected, trees showed incomplete N (1.13%, n = 11) and P (0.11%, n = 1) resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption.

  1. Evidence for Cross-Tolerance to Nutrient Deficiency in Three Disjunct Populations of Arabidopsis lyrata ssp. lyrata in Response to Substrate Calcium to Magnesium Ratio

    PubMed Central

    Veatch-Blohm, Maren E.; Roche, Bernadette M.; Campbell, MaryJean

    2013-01-01

    Species with widespread distributions that grow in varied habitats may consist of ecotypes adapted to a particular habitat, or may exhibit cross-tolerance that enables them to exploit a variety of habitats. Populations of Arabidopsis lyrata ssp. lyrata (L.) O’Kane & Al-Shehbaz grow in a wide variety of edaphic settings including serpentine soil, limestone sand, and alluvial flood plains. While all three of these environments share some stressors, a crucial difference among these environments is soil calcium to magnesium ratio, which ranges from 25∶1 in the limestone sand to 0.2∶1 in serpentine soil. The three populations found on these substrates were subjected to three different Ca to Mg ratios under controlled environmental conditions during germination and rosette growth. Response to Ca to Mg ratio was evaluated through germination success and radicle growth rate, rosette growth rate, and the content of Ca and Mg in the rosette. All three populations were particularly efficient in fueling growth under nutrient deficiency, with the highest nutrient efficiency ratio for Ca under Ca deficiency and for Mg under Mg deficiency. Although the serpentine population had significantly higher leaf Ca to Mg ratio than the limestone or flood plain populations under all three Ca to Mg ratios, this increase did not result in any advantage in growth or appearance of the serpentine plants, during early life stages before the onset of flowering, even in the high Mg substrate. The three populations showed no population by substrate interaction for any of the parameters measured indicating that these populations may have cross-tolerance to substrate Ca to Mg ratio. PMID:23650547

  2. Effect of soil carbohydrates on nutrient availability in natural forests and cultivated lands in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Ratnayake, R. R.; Seneviratne, G.; Kulasooriya, S. A.

    2013-05-01

    Carbohydrates supply carbon sources for microbial activities that contribute to mineral nutrient production in soil. Their role on soil nutrient availability has not yet been properly elucidated. This was studied in forests and cultivated lands in Sri Lanka. Soil organic matter (SOM) fractions affecting carbohydrate availability were also determined. Soil litter contributed to sugars of plant origin (SPO) in croplands. The negative relationship found between clay bound organic matter (CBO) and glucose indicates higher SOM fixation in clay that lower its availability in cultivated lands. In forests, negative relationships between litter and sugars of microbial origin (SMO) showed that litter fuelled microbes to produce sugars. Fucose and glucose increased the availability of Cu, Zn and Mn in forests. Xylose increased Ca availability in cultivated lands. Arabinose, the main carbon source of soil respiration reduced the P availability. This study showed soil carbohydrates and their relationships with mineral nutrients could provide vital information on the availability of limiting nutrients in tropical ecosystems.

  3. Soil nutrient competition in earth system models: an important but underappreciated driver of plant responses to nutrient fertilization

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C.

    2015-12-01

    Earth System Models (ESMs) used to project future biosphere-climate feedbacks rely on predictions of terrestrial carbon dynamics. Furthermore, soil nutrient availability strongly modulates land surface carbon dynamics, including plant sequestration of atmospheric CO2. Plant growth under future environmental changes (e.g., nitrogen and phosphorus deposition) depends on how well plants compete with microbial and abiotic competitors. Here, we surveyed recent developments of nutrient competition representations in ESMs that participated in the CMIP5 project. We found that nutrient competition is over-simplified despite its ecological significance. Existing ESMs either assume that soil-decomposing microbes (1) outcompete plants or (2) are evenly competitive, both of which are inconsistent with theoretical understanding and field observations. We compiled and synthesized global data of forest carbon productivity in response to nitrogen and phosphorus fertilization experiments. Using this synthesis, we show that existing ESMs with the first and second competition schemes lead to underestimation and overestimation, respectively, of fertilization effects on plant growth. We reduced these systematic biases by applying a new competition scheme in CLM4.5 and the essentially equivalent ACME land model (ALMv0) based on the Equilibrium Chemistry Approximation, which is based on classical equilibrium chemical kinetics theory. This approach dynamically updates nutrient competitiveness among multiple consumers (e.g., plants, decomposing microbes, nitrifier, denitrifier, mineral surfaces) as a function of soil nutrient status. There has been a long-term debate regarding how to implement theoretically realistic and computationally efficient nutrient competition schemes in ESMs. Our approach reconciles the complex nature of ecosystem nutrient competition with a computationally tractable approach applicable to ESMs. More importantly, our results imply that previous estimates of plant

  4. Spatial Nutrient Variability in a Sierran Forest Soil: an Investigation into the Nature and Potential Causes of Nutrient Hot Spots

    NASA Astrophysics Data System (ADS)

    Johnson, D. W.; Miller, W. W.; Rau, B. M.; Meadows, M. W.

    2010-12-01

    Because of the extremely dry summers, rooting is entirely absent in the O horizons of many forest ecosystems in the eastern Sierra Nevada Mountains of Nevada and California. Thus, decomposition/N mineralization and vegetation uptake processes are spatially discoupled, and the intense competition for N between roots and decomposers in the O horizon which characterizes more humid forest ecosystems is absent. Because of this discoupling, the N returned in littterfall is not recycled to the trees until: 1) N supply exceeds microbial demand, and 2) N is leached to lower horizons where roots are present. Both O horizons and the mineral soil surface in these ecosystems are extremely hydrophobic in summer, restricting the ability of summer rainfall to wet underlying mineral soils except via preferential flowpaths. Recent studies have found very high concentrations of ionic forms of N in O horizon interflow solutions that flow over the top of mineral soils. We hypothesize that this O horizon interflow creates biogeochemical “hot spots” where it infiltrates into preferential flowpaths present in the mineral soil (Bundt et al., 2001). This paper reports the results of a study aimed at detecting O horizon runoff and nutrient hot spots in soils of the King’s River Experimental Watershed (KREW) in the western Sierra Nevada Mountains of California, one of the Critical Zone Observatory sites. Over two winter seasons, we found substantial amounts of O horizon interflow, some of which was highly enriched in inorganic forms of N and P. Measurements of nutrient variability by resin based collectors and coring within in small plots (6 x 6 m) revealed the presence of hot spots (defined as statistical outliers) and a varying degrees of positive skew for all measured nutrients, with the degree of skew and prevalence of hotspots being greater with weaker extractants. For example, skew was greatest and the hotspots were most prevalent for water soluble ammonium and nitrate, less for

  5. Biochar soil amendment: Impact of soil types on heavy metal sorption-desorption behaviors and repeated nutrient leaching

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on soil types, properties of chars especially pH and leachable organic/inorganic components can have varying impacts when used as a soil amendment. We have investigated sorption-desorption behaviors of metal contaminant of concern in shooting ranges and urban soils (Cu), nutrient supply (...

  6. Root chemistry in Populus tremuloides: effects of soil nutrients, defoliation, and genotype.

    PubMed

    Stevens, Michael T; Gusse, Adam C; Lindroth, Richard L

    2014-01-01

    Although genetic, environmental, and G x E effects on aboveground phytochemistry have been well documented in trembling aspen (Populus tremuloides), little work has focused on the same factors affecting tissues underground. Belowground plant defenses are likely important mediators of root-feeding herbivores that can strongly influence plant fitness. We used a common garden of potted aspen trees to explore the individual and interactive effects of soil nutrient availability, foliar damage, genotype, and their interactions, on concentrations of phytochemicals in aspen roots. Our common garden experiment employed 12 aspen genotypes that were planted into either low- or high-nutrient soil environments. Half of the trees were subjected to defoliation for two successive years, while the others were protected from damage. At the end of the growing season after the second defoliation, we harvested the trees to obtain root samples for which we assessed levels of phenolic glycosides, condensed tannins, nitrogen, and starch. Phenolic glycosides were most affected by genotype, while the other root phytochemicals were most responsive to soil nutrient conditions. The effects of defoliation were observed in interaction with soil nutrient environment and/or genotype. Interestingly, the effect of defoliation on phenolic glycosides was mediated by soil nutrients, whereas the effect of defoliation on condensed tannins was observed in concert with effects of both soil nutrients and genotype. Comparison of data from this study with an earlier, related study revealed that concentrations of phenolic glycosides and condensed tannins are lower in roots than leaves, and less responsive to defoliation. That soil nutrient environment affects root phytochemical concentrations is not unexpected given the intimate association of roots and soil, but the complex interactions between soil nutrients, aboveground damage, and genotype, and their effects on root phytochemistry, are intriguing

  7. Management Practices Affect Soil Nutrients and Bacterial Populations in Backgrounding Beef Feedlot.

    PubMed

    Netthisinghe, A M P; Cook, K L; Gilfillen, R A; Sistani, K R; Woosley, P B

    2015-11-01

    Contaminants associated with manure in animal production sites are of significant concern. Unless properly managed, manure-derived soil nutrients in livestock production sites can deteriorate soil and water quality. This 3-yr study evaluated a soil nutrient management strategy with four sequentially imposed management practices: 12-mo backgrounding (BG), manure removal from the feeder area (FD), 12-mo destocking (DS), and 12-mo grass hay harvesting (H) in a small backgrounding feedlot. Resulting soil nutrient levels, total (), and N cycling bacterial ( and ) populations after each management practice in feedlot feeder and grazing (GR) areas and in crop grown at the control location (CT) were measured. Irrespective of management practice, FD contained greater soil nutrient concentrations than the GR and CT. Regardless of management practice, total bacteria cells (1.4 × 10 cells g soil) and nitrate reducers (5.2 × 10 cells g soil) were an order of magnitude higher in the FD than in the GR and CT, whereas nitrifying bacteria concentrations (1.4 × 10 cells g soil) were higher in the GR. Manure removal from the feeder area reduced M3-P (39%), total C (21%), total N (23%), NH-N (47%), and NO-N (93%) levels established in the FD during BG. Destocking lowered total C and N (45%) in the FD and NH-N (47%), NO-N (76%), and Zn (16%) in the GR. Hay harvesting reduced all soil nutrients in the FD and GR marginally. The management strategy has potential to lower soil nutrient concentrations, control soil nutrient buildup, and limit nutrient spread within the feedlot. PMID:26641341

  8. Management Practices Affect Soil Nutrients and Bacterial Populations in Backgrounding Beef Feedlot.

    PubMed

    Netthisinghe, A M P; Cook, K L; Gilfillen, R A; Sistani, K R; Woosley, P B

    2015-11-01

    Contaminants associated with manure in animal production sites are of significant concern. Unless properly managed, manure-derived soil nutrients in livestock production sites can deteriorate soil and water quality. This 3-yr study evaluated a soil nutrient management strategy with four sequentially imposed management practices: 12-mo backgrounding (BG), manure removal from the feeder area (FD), 12-mo destocking (DS), and 12-mo grass hay harvesting (H) in a small backgrounding feedlot. Resulting soil nutrient levels, total (), and N cycling bacterial ( and ) populations after each management practice in feedlot feeder and grazing (GR) areas and in crop grown at the control location (CT) were measured. Irrespective of management practice, FD contained greater soil nutrient concentrations than the GR and CT. Regardless of management practice, total bacteria cells (1.4 × 10 cells g soil) and nitrate reducers (5.2 × 10 cells g soil) were an order of magnitude higher in the FD than in the GR and CT, whereas nitrifying bacteria concentrations (1.4 × 10 cells g soil) were higher in the GR. Manure removal from the feeder area reduced M3-P (39%), total C (21%), total N (23%), NH-N (47%), and NO-N (93%) levels established in the FD during BG. Destocking lowered total C and N (45%) in the FD and NH-N (47%), NO-N (76%), and Zn (16%) in the GR. Hay harvesting reduced all soil nutrients in the FD and GR marginally. The management strategy has potential to lower soil nutrient concentrations, control soil nutrient buildup, and limit nutrient spread within the feedlot.

  9. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests.

    PubMed

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-21

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al(3+) replacement of Ca(2+) in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K(+)+Ca(2+)+Mg(2+)) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests.

  10. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests

    PubMed Central

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-01

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al3+ replacement of Ca2+ in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K++Ca2++Mg2+) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests. PMID:25605567

  11. Detecting nutrients deficiencies of oil palm trees using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Marzukhi, Faradina; Liyana Elahami, Aina; Norashikin Bohari, Sharifah

    2016-06-01

    Oil palm plantation management involve crucial role for the farmers. The remote sensing imagery has widely used nowadays in order to monitor oil palm tree in plantation. To pact with the problem, the use of vegetation indices analysis on satellite image on plantation will examine the ability of spectral data in determining the greenness of the trees. Vegetation Indices are used for estimating the crops and vegetation variables by using visible and nearinfrared region (NIR) from the electromagnetic spectrum. The healthy tree will display very low reflectance and transmitted in visible region and very high reflectance transmitted in NIR. The chlorophyll absorption in reflectance and normalizes pigment chlorophyll vegetation indexes will show a loss of chlorophyll pigment compared to healthy oil palm trees. Besides, pH. value and soil nutrient will be examined to determine their effect towards the trees. In addition, the laboratory test sample is done to analyse the pH. value and major nutrient status of nitrogen (N), phosphorus (P) and potassium (K) together with their relationship with the remotely sensed data.

  12. Studies on nutrient uptake of rice and characteristics of soil microorganisms in a long-term fertilization experiments for irrigated rice.

    PubMed

    Zhang, Qi-chun; Wang, Guang-huo

    2005-02-01

    The ecosystem characteristics of soil microorganism and the nutrient uptake of irrigated rice were investigated in a split-block experiment with different fertilization treatments, including control (no fertilizer application), PK, NK, NP, NPK fertilization, in the main block, and conventional rice and hybrid rice comparison, in the sub block. Average data of five treatments in five years indicated that the indigenous N supply (INS) capacity ranged from 32.72 to 93.21 kg/ha; that indigenous P supply (IPS) capacity ranged from 7.42 to 32.25 kg/ha; and that indigenous K supply (IKS) capacity ranged from 16.24 to 140.51 kg/ha, which showed that soil available nutrient pool depletion might occur very fast and that P, K deficiency has become a constraint to increasing yields of consecutive crops grown without fertilizer application. It was found that soil nutrient deficiency and unbalanced fertilization to rice crop had negative effect on the diversity of the microbial community and total microbial biomass in the soil. The long-term fertilizer experiment (LTFE) also showed that balanced application of N, P and K promoted microbial biomass growth and improvement of community composition. Unbalanced fertilization reduced microbial N and increased C/N ratio of the microbial biomass. Compared with inbred rice, hybrid rice behavior is characterized by physiological advantage in nutrient uptake and lower internal K use efficiency. PMID:15633252

  13. Impacts of soil petroleum contamination on nutrient release during litter decomposition of Hippophae rhamnoides.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Yu, Qi; Liu, Xiaobo; Liang, Xiao

    2016-03-01

    Petroleum exploitation causes contamination of shrub lands close to oil wells. Soil petroleum contamination affects nutrient release during the litter decomposition of shrubs, which influences nutrient recycling and the maintenance of soil fertility. Hence, this contamination may reduce the long-term growth and stability of shrub communities and consequently, the effects of phytoremediation. Fresh foliar litter of Hippophae rhamnoides, a potential phytoremediating species, was collected for this study. The litter was placed in litterbags and then buried in different petroleum-polluted soil media (the petroleum concentrations were 15, 30, and 45 g kg(-1) dry soil, which were considered as slightly, moderately and seriously polluted soil, respectively) for a decomposition test. The impacts of petroleum contamination on the release of nutrients (including N, P, K, Cu, Zn, Fe, Mn, Ca and Mg) were assessed. The results showed that (1) after one year of decomposition, the release of all nutrients was accelerated in the slightly polluted soil. In the moderately polluted soil, P release was accelerated, while Cu, Zn and Mn release was inhibited. In the seriously polluted soil, Cu and Zn release was accelerated, while the release of the other nutrients was inhibited. (2) The effect of petroleum on nutrient release from litter differed in different periods during decomposition; this was mainly due to changes in soil microorganisms and enzymes under the stress of petroleum contamination. (3) To maintain the nutrient cycling and the soil fertility of shrub lands, H. rhamnoides is only suitable for phytoremediation of soils containing less than 30 g kg(-1) of petroleum. PMID:26911518

  14. Evaluation models for soil nutrient based on support vector machine and artificial neural networks.

    PubMed

    Li, Hao; Leng, Weijia; Zhou, Yibing; Chen, Fudi; Xiu, Zhilong; Yang, Dazuo

    2014-01-01

    Soil nutrient is an important aspect that contributes to the soil fertility and environmental effects. Traditional evaluation approaches of soil nutrient are quite hard to operate, making great difficulties in practical applications. In this paper, we present a series of comprehensive evaluation models for soil nutrient by using support vector machine (SVM), multiple linear regression (MLR), and artificial neural networks (ANNs), respectively. We took the content of organic matter, total nitrogen, alkali-hydrolysable nitrogen, rapidly available phosphorus, and rapidly available potassium as independent variables, while the evaluation level of soil nutrient content was taken as dependent variable. Results show that the average prediction accuracies of SVM models are 77.87% and 83.00%, respectively, while the general regression neural network (GRNN) model's average prediction accuracy is 92.86%, indicating that SVM and GRNN models can be used effectively to assess the levels of soil nutrient with suitable dependent variables. In practical applications, both SVM and GRNN models can be used for determining the levels of soil nutrient.

  15. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon

  16. Nutrient levels modify saltmarsh responses to increased inundation in different soil types.

    PubMed

    Wong, Joanne X W; Van Colen, Carl; Airoldi, Laura

    2015-03-01

    Saltmarshes have been depleted historically, and cumulative stressors threaten their future persistence. We examined experimentally how nutrient availability (high vs. low) affects the responses of Spartina maritima to increased inundation in two mineral soil types (low vs. medium organic). Increased inundation, one of the effects of accelerated sea level rise, had negative effects on most plant growth parameters, but the magnitude varied with soil and nutrient levels, and between plants from different locations. Average differences between inundation treatments were largest at high nutrient conditions in low organic matter soils. We conclude that saltmarsh vegetation would be more drastically affected by increased inundation in low than in medium organic matter soils, and especially in estuaries already under high nutrient availability. This knowledge enhances the prediction of changes at the foreshore of saltmarshes related to sea level rise, and the development of site-specific conservation strategies.

  17. Ecoenzymatic Stoichiometry of Microbial Organic Nutrient Acquisition in Soil and Sediment

    EPA Science Inventory

    Terrestrial soils and freshwater sediments contain reserves of organic carbon estimated at 1500 Pg and 0.2 Pg, respectively. Mineralization of this organic matter by heterotrophic microorganisms drives global carbon and nutrient cycles, controlling plant production and atmospher...

  18. [Soil nutrient status of pure birch and larch plantations based on their seedlings bioassay].

    PubMed

    Liu, Zhong-ling; Wang, Qing-cheng; Sun, Xin-xin

    2011-08-01

    One-year-old birch (Betula platyphylla) and larch (Larix olgensis) seedlings were respectively planted in pots with the soils taken from 35-year-old pure birch and larch plantations, and the seedlings growth, biomass increment, foliar nutrient content, and soil nutrient status were monitored, aimed to evaluate the fertility levels of the two soils and the possible interspecific interaction in mixed larch-birch forest. Birch soil had significantly higher contents of total N and available N than larch soil, while larch soil had significantly higher contents of total P, available P, and total K than birch soil (P < 0.05). In the first growth season, the height and collar diameter growth and the biomass accumulation of birch seedlings growing on birch soil were 69%, 52%, and 65% (P < 0.05) higher than those growing on larch soil, and the larch seedlings also had 12%, 8%, and 37% gains of the indices, respectively. The foliar N concentration of both larch and birch seedlings growing on birch soil was higher than that on larch soil, while the foliar P concentration was higher when the seedlings were growing on larch soil than on birch soil. The birch soil had higher content of available N because of the higher litterfall, while the larch soil had greater available P because of the higher P mobilizing effect. It was predicted that in mixed birch-larch forest, the complementary interaction of soil N and P could benefit the growth of the two tree species.

  19. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    PubMed

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05) . The Content of fungi PLFAs in soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05). This study provides evidence that effectiveness of the soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata. PMID:26281577

  20. Nutrients in soil water under three rotational cropping systems, Iowa, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    tSubsurface nutrient losses differ between annual and perennial crops; however, nutrient losses fromcropping systems that rotate annual and perennial crops are poorly documented. This study trackedNO3-N and P in soil water under three cropping systems suited for the U.S. Midwest, includingtwo-year (...

  1. EVALUATION OF PHOSPHATE ION-SELECTIVE MEMBRANES AND COBALT-BASED ELECTRODES FOR SOIL NUTRIENT SENSING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time soil nutrient sensor would allow efficient collection of data with a fine spatial resolution to accurately characterize within-field variability for site-specific nutrient application. Ion-selective electrodes are a promising approach because they have rapid response, directly measure th...

  2. Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport of sediment and nutrients from land application areas is an environmental concern. New methods are needed for estimating soil and nutrient concentrations of runoff from cropland areas on which manure is applied. Artificial Neural Networks (ANN) trained with a Backpropagation (BP) algor...

  3. Effect of interactions on the nutrient status of a tropical soil treated with green manures and inorganic phosphate fertilizers.

    PubMed

    Bah, Abdul R; Rahman, Zaharah A; Hussin, Aminuddin

    2004-06-01

    markedly enhanced uptake of N, K, Ca, and Mg. Thus GMs+PRs is an appropriate combination for correcting nutrient deficiencies in tropical soils. PMID:15252691

  4. The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests.

    PubMed

    Rosenstock, Nicholas P; Berner, Christoffer; Smits, Mark M; Krám, Pavel; Wallander, Håkan

    2016-07-01

    We investigated fungal growth and community composition in buried meshbags, amended with apatite, biotite or hornblende, in Norway spruce (Picea abies) forests of varying nutrient status. Norway spruce needles and soil collected from forests overlying serpentinite had low levels of potassium and phosphorus, those from granite had low levels of magnesium, whereas those from amphibolite had comparably high levels of these nutrients. We assayed the fungal colonization of meshbags by measuring ergosterol content and fungal community with 454 sequencing of the internal transcribed spacer region. In addition, we measured fine root density. Fungal biomass was increased by apatite amendment across all plots and particularly on the K- and P-deficient serpentinite plots, whereas hornblende and biotite had no effect on fungal biomass on any plots. Fungal community (total fungal and ectomycorrhizal) composition was affected strongly by sampling location and soil depth, whereas mineral amendments had no effect on community composition. Fine root biomass was significantly correlated with fungal biomass. Ectomycorrhizal communities may respond to increased host-tree phosphorus demand by increased colonization of phosphorus-containing minerals, but this does not appear to translate to a shift in ectomycorrhizal community composition. This growth response to nutrient demand does not appear to exist for potassium or magnesium limitation.

  5. The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests.

    PubMed

    Rosenstock, Nicholas P; Berner, Christoffer; Smits, Mark M; Krám, Pavel; Wallander, Håkan

    2016-07-01

    We investigated fungal growth and community composition in buried meshbags, amended with apatite, biotite or hornblende, in Norway spruce (Picea abies) forests of varying nutrient status. Norway spruce needles and soil collected from forests overlying serpentinite had low levels of potassium and phosphorus, those from granite had low levels of magnesium, whereas those from amphibolite had comparably high levels of these nutrients. We assayed the fungal colonization of meshbags by measuring ergosterol content and fungal community with 454 sequencing of the internal transcribed spacer region. In addition, we measured fine root density. Fungal biomass was increased by apatite amendment across all plots and particularly on the K- and P-deficient serpentinite plots, whereas hornblende and biotite had no effect on fungal biomass on any plots. Fungal community (total fungal and ectomycorrhizal) composition was affected strongly by sampling location and soil depth, whereas mineral amendments had no effect on community composition. Fine root biomass was significantly correlated with fungal biomass. Ectomycorrhizal communities may respond to increased host-tree phosphorus demand by increased colonization of phosphorus-containing minerals, but this does not appear to translate to a shift in ectomycorrhizal community composition. This growth response to nutrient demand does not appear to exist for potassium or magnesium limitation. PMID:26996085

  6. The role of soil surface water regimes and raindrop impact on hillslope soil erosion and nutrient losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface water regimes on hill-slopes may appreciably affect soil erosion and nutrient losses. Different water regimes are often prevalent on different parts of the slope and therefore may affect these losses differently. A laboratory rainfall simulator study was conducted to determine the effec...

  7. [Dynamics of soil enzyme activity and nutrient content in intercropped cotton rhizosphere and non-rhizosphere].

    PubMed

    Meng, Yali; Wang, Liguo; Zhou, Zhiguo; Wang, Ying; Zhang, Lizhen; Bian, Haiyun; Zhang, Siping; Chen, Binglin

    2005-11-01

    The study with high yield cotton-wheat double cropping system showed that soil urease, invertase, protease and catalase activities in intercropped cotton field had the same changing trends with those in mono-cultured cotton field, but were significantly higher in intercropped than in mono-cultured cotton rhizosphere and non-rhizosphere at all development stages of cotton. During the intergrowth period of wheat and cotton, soil nutrient contents in intercropped cotton rhizosphere and non-rhizosphere were lower than or had little difference with those in mono-cultured cotton rhizosphere and non-rhizosphere, but became significantly higher after wheat harvested. The changing trends of soil nutrient contents in intercropped cotton field had little difference from those in mono-cultured cotton field, but the nutrient absorption peak appeared late. The soil enzyme activities and nutrient contents were generally higher in rhizosphere than in non-rhizosphere of both intercropped and mono-cultured cotton. Soil nutrient contents had significant (P < 0.05, n = 32) or very significant (P < 0.01, n = 32) correlation with the activities of soil urease, invertase and protease, but had little correlation with soil catalase activity.

  8. Comprehensive biometric, biochemical and histopathological assessment of nutrient deficiencies in gilthead sea bream fed semi-purified diets.

    PubMed

    Ballester-Lozano, Gabriel F; Benedito-Palos, Laura; Estensoro, Itziar; Sitjà-Bobadilla, Ariadna; Kaushik, Sadasivam; Pérez-Sánchez, Jaume

    2015-09-14

    Seven isoproteic and isolipidic semi-purified diets were formulated to assess specific nutrient deficiencies in sulphur amino acids (SAA), n-3 long-chain PUFA (n-3 LC-PUFA), phospholipids (PL), P, minerals (Min) and vitamins (Vit). The control diet (CTRL) contained these essential nutrients in adequate amounts. Each diet was allocated to triplicate groups of juvenile gilthead sea bream fed to satiety over an 11-week feeding trial period. Weight gain of n-3 LC-PUFA, P-Vit and PL-Min-SAA groups was 50, 60-75 and 80-85 % of the CTRL group, respectively. Fat retention was decreased by all nutrient deficiencies except by the Min diet. Strong effects on N retention were found in n-3 LC-PUFA and P fish. Combined anaemia and increased blood respiratory burst were observed in n-3 LC-PUFA fish. Hypoproteinaemia was found in SAA, n-3 LC-PUFA, PL and Vit fish. Derangements of lipid metabolism were also a common disorder, but the lipodystrophic phenotype of P fish was different from that of other groups. Changes in plasma levels of electrolytes (Ca, phosphate), metabolites (creatinine, choline) and enzyme activities (alkaline phosphatase) were related to specific nutrient deficiencies in PL, P, Min or Vit fish, whereas changes in circulating levels of growth hormone and insulin-like growth factor I primarily reflected the intensity of the nutritional stressor. Histopathological scoring of the liver and intestine segments showed specific nutrient-mediated changes in lipid cell vacuolisation, inflammation of intestinal submucosa, as well as the distribution and number of intestinal goblet and rodlet cells. These results contribute to define the normal range of variation for selected biometric, biochemical, haematological and histochemical markers. PMID:26220446

  9. Comprehensive biometric, biochemical and histopathological assessment of nutrient deficiencies in gilthead sea bream fed semi-purified diets.

    PubMed

    Ballester-Lozano, Gabriel F; Benedito-Palos, Laura; Estensoro, Itziar; Sitjà-Bobadilla, Ariadna; Kaushik, Sadasivam; Pérez-Sánchez, Jaume

    2015-09-14

    Seven isoproteic and isolipidic semi-purified diets were formulated to assess specific nutrient deficiencies in sulphur amino acids (SAA), n-3 long-chain PUFA (n-3 LC-PUFA), phospholipids (PL), P, minerals (Min) and vitamins (Vit). The control diet (CTRL) contained these essential nutrients in adequate amounts. Each diet was allocated to triplicate groups of juvenile gilthead sea bream fed to satiety over an 11-week feeding trial period. Weight gain of n-3 LC-PUFA, P-Vit and PL-Min-SAA groups was 50, 60-75 and 80-85 % of the CTRL group, respectively. Fat retention was decreased by all nutrient deficiencies except by the Min diet. Strong effects on N retention were found in n-3 LC-PUFA and P fish. Combined anaemia and increased blood respiratory burst were observed in n-3 LC-PUFA fish. Hypoproteinaemia was found in SAA, n-3 LC-PUFA, PL and Vit fish. Derangements of lipid metabolism were also a common disorder, but the lipodystrophic phenotype of P fish was different from that of other groups. Changes in plasma levels of electrolytes (Ca, phosphate), metabolites (creatinine, choline) and enzyme activities (alkaline phosphatase) were related to specific nutrient deficiencies in PL, P, Min or Vit fish, whereas changes in circulating levels of growth hormone and insulin-like growth factor I primarily reflected the intensity of the nutritional stressor. Histopathological scoring of the liver and intestine segments showed specific nutrient-mediated changes in lipid cell vacuolisation, inflammation of intestinal submucosa, as well as the distribution and number of intestinal goblet and rodlet cells. These results contribute to define the normal range of variation for selected biometric, biochemical, haematological and histochemical markers.

  10. Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate.

    PubMed

    Janoušková, Martina; Rydlová, Jana; Püschel, David; Száková, Jiřina; Vosátka, Miroslav

    2011-10-01

    The effect of arbuscular mycorrhiza (AM) on the interaction of large plants and seedlings in an early succession situation was investigated in a greenhouse experiment using compartmented rhizoboxes. Tripleurospermum inodorum, a highly mycorrhiza-responsive early coloniser of spoil banks, was cultivated either non-mycorrhizal or inoculated with AM fungi in the central compartment of the rhizoboxes. After two months, seedlings of T. inodorum or Sisymbrium loeselii, a non-host species colonising spoil banks simultaneously with T. inodorum, were planted in lateral compartments, which were colonised by the extraradical mycelium (ERM) of the pre-cultivated T. inodorum in the inoculated treatments. The experiment comprised the comparison of two AM fungal isolates and two substrates: spoil bank soil and a mixture of this soil with sand. As expected based on the low nutrient levels in the substrates, the pre-cultivated T. inodorum plants responded positively to mycorrhiza, the response being more pronounced in phosphorus uptake than in nitrogen uptake and growth. In contrast, the growth of the seedlings, both the host and the non-host species, was inhibited in the mycorrhizal treatments. Based on the phosphorus and nitrogen concentrations in the biomass of the experimental plants, this growth inhibition was attributed to nitrogen depletion in the lateral compartments by the ERM radiating from the central compartment. The results point to an important aspect of mycorrhizal effects on the coexistence of large plants and seedlings in nutrient deficient substrates.

  11. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil.

    PubMed

    Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika

    2016-08-01

    The main challenge for plants growing in nutrient poor, contaminated soil is biomass reduction, nutrient deficiency and presence of heavy metals. Our aim is to overcome these challenges using different microbial combinations in mining-impacted soil and focus on their physiological and biochemical impacts on a model plant system, which has multiple applications. In the current study, sorghum BTx623 seedlings grown in mining-impacted soil in greenhouse were subjected to plant growth promoting bacteria (PGPB or B) alone, PGPB with arbuscular mycorrhizal fungi (My), My alone and control group with no treatment. Root biomass and uptake of most of the elements showed significant increase in all treatment groups in comparison with control. Mycorrhiza group showed the best effect followed by My + B and B groups for uptake of majority of the elements by roots. On the contrary, biomass of both shoot and root was more influenced by B treatment than My + B and My treatments. Metabolomics identified compounds whose levels changed in roots of treatment groups significantly in comparison to control. Upregulation of stearic acid, sorbitol, sebacic acid and ferulic acid correlated positively with biomass and uptake of almost all elements. Two biochemical pathways, fatty acid biosynthesis and galactose metabolism, were regulated in all treatment groups. Three common pathways were upregulated only in My and My + B groups. Our results suggest that PGPB enhanced metabolic activities which resulted in increase in element uptake and sorghum root biomass whether accompanied with mycorrhiza or used solely.

  12. Soil Microbial and Enzymatic Responses to Complex and Labile Nutrient Inputs

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Vitousek, P. M.

    2003-12-01

    Microbial extracellular enzymes are essential for converting complex organic compounds into smaller molecules that are available for plant and microbial uptake. However, enzyme production represents a substantial resource cost for microbes, and microbes may be under selection to produce enzymes only when benefits exceed costs. We predicted that soil enzyme activities would be highest when complex substrates were abundant, but available nutrients were scarce (large potential benefit from enzyme production). We also predicted that rates of nutrient and carbon mineralization would correspond to observed shifts in enzyme activities. To test these predictions, we added insoluble and available carbon, nitrogen, and phosphorus substrates to soil incubations and measured enzyme activities, CO2 respiration, microbial biomass, and nutrient mineralization. Labile carbon additions increased respiration rates and microbial biomass, while labile nutrient additions were taken up by microbes but did not increase respiration rates. Labile carbon + nitrogen additions increased acid phosphatase activity, while labile nitrogen additions suppressed aminopeptidase activity. Insoluble nutrients caused major increases in enzyme and microbial activities only when added in combination with complementary labile nutrients (e.g. insoluble carbon + available nitrogen and phosphorus). These results indicate that microbes respond to soil nutrient status by changing patterns of extracellular enzyme production. Such changes can allow microbes to access nutrients in complex molecules, but may be limited by the availability of resources to build enzymes.

  13. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    PubMed Central

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  14. Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Neubauer, S. C.; Richardson, C. J.

    2013-12-01

    Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with

  15. Costs of Nutrient Losses in Priceless Soils Eroded From the Highlands of Northwestern Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebreselassie, Yihenew; Belay, Yihenew

    2014-05-01

    Soils formation is a geomorphic process that takes place through the interaction of soil forming factors in several hundreds and thousands of years. However, land degradation and soil erosion is consistently taking place in the horn of Africa washing away this priceless product in short period of time. The scale of the problem dramatically increased due to the increase in deforestation, overgrazing, over-cultivation, inappropriate farming practices, and increasing human population. Several research results were published in the region showing the extent of land degradation and soil loss. However, little attempt has been done to estimate the nutrient loss in monitory terms which made it difficult for policy makers to properly understand the extent of the problem. A study was, therefore, conducted in 2011 to estimate soil and nutrient losses caused by water erosion and predict nutrient replacement costs on different land use types and slope classes at Harfetay watershed, Northwestern Ethiopia. The revised soil loss equation (RUSLE) was used to estimate the soil loss from the different land uses and slope classes in watershed. Moreover, nutrient loss from similar units was calculated by multiplying the in situ nutrient concentration of soil samples by the estimated soil loss using RUSLE. The replacement costs of nutrient losses were calculated by multiplying the nutrient loss with the price of available nutrients in urea and diammonium phosphate. The estimate of the RUSLE indicated that the average soil losses in the study watershed were 119 tons ha-1 year-1 for non-conserved crop land, 23 tons for conserved farmlands, 23 tons for forest and shrub lands, 19 tons for grazing lands, and 6 tons for plantation forest. The mean soil loss for lower slope classes (<15%), middle slope classes (15-30%) and upper slope classes (>30%) were 30.11, 48.09 and 57.22 tons ha-1 year-1, respectively. The highest losses of total nitrogen (154.7 kg ha-1 year-1), available phosphorus (1

  16. Species-soil associations, disturbance, and nutrient cycling in an Australian tropical rainforest.

    PubMed

    Gleason, Sean Michael; Read, Jennifer; Ares, Adrian; Metcalfe, Daniel J

    2010-04-01

    Resource availability and disturbance are important factors that shape the composition, structure, and functioning of ecosystems. We investigated the effects of soil fertility and disturbance on plant-soil interactions and nutrient cycling in a diverse tropical rainforest. Our goal was to determine how common soil specialisation is among species and how plant-soil interactions affect ecosystem functioning in the presence of disturbance. Most species (59%) showed significant fidelity to either fertile (basalt) or infertile (schist) soils. Obligate schist specialists (six species) contributed 39 and 37% to total stand-level basal area and aboveground net primary productivity, respectively. High nutrient use efficiency of schist specialists reduced the rates of within-stand nutrient cycling through the production of nutrient-poor plant tissues and litter. Although forests on schist soils had higher basal area and similar rates of productivity to forests on basalt, uptake of Mg, K, P, and N were markedly less on schist than on basalt, particularly after a cyclone disturbance. Stands on schist soils were also less affected by the cyclone and, as a result, contributed less (ca. 50%) Mg, K, P, and N inputs to the forest floor (via litterfall) than stands on basalt soils. System "openness" (i.e. the risk of nutrient loss) from cyclone-affected basalt forests was minimised by high rates of uptake following disturbance and large effective cation exchange capacities of soils. Soil-plant-disturbance interactions are likely to engender different fitness-enhancing strategies on fertile and infertile soils, possibly leading to the development and/or maintenance of diversity in rainforests.

  17. Relationship between fire temperature and changes in chemical soil properties: a conceptual model of nutrient release

    NASA Astrophysics Data System (ADS)

    Thomaz, Edivaldo L.; Doerr, Stefan H.

    2014-05-01

    The purpose of this study was to evaluate the effects of fire temperatures (i.e., soil heating) on nutrient release and aggregate physical changes in soil. A preliminary conceptual model of nutrient release was established based on results obtained from a controlled burn in a slash-and-burn agricultural system located in Brazil. The study was carried out in clayey subtropical soil (humic Cambisol) from a plot that had been fallow for 8 years. A set of three thermocouples were placed in four trenches at the following depths: 0 cm on the top of the mineral horizon, 1.0 cm within the mineral horizon, and 2 cm within the mineral horizon. Three soil samples (true independent sample) were collected approximately 12 hours post-fire at depths of 0-2.5 cm. Soil chemical changes were more sensitive to fire temperatures than aggregate physical soil characteristics. Most of the nutrient response to soil heating was not linear. The results demonstrated that moderate temperatures (< 400°C) had a major effect on nutrient release (i.e., the optimum effect), whereas high temperatures (> 500 °C) decreased soil fertility.

  18. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils.

    PubMed

    Sharma, Seema B; Sayyed, Riyaz Z; Trivedi, Mrugesh H; Gobi, Thivakaran A

    2013-01-01

    Phosphorus is the second important key element after nitrogen as a mineral nutrient in terms of quantitative plant requirement. Although abundant in soils, in both organic and inorganic forms, its availability is restricted as it occurs mostly in insoluble forms. The P content in average soil is about 0.05% (w/w) but only 0.1% of the total P is available to plant because of poor solubility and its fixation in soil (Illmer and Schinner, Soil Biol Biochem 27:257-263, 1995). An adequate supply of phosphorus during early phases of plant development is important for laying down the primordia of plant reproductive parts. It plays significant role in increasing root ramification and strength thereby imparting vitality and disease resistance capacity to plant. It also helps in seed formation and in early maturation of crops like cereals and legumes. Poor availability or deficiency of phosphorus (P) markedly reduces plant size and growth. Phosphorus accounts about 0.2 - 0.8% of the plant dry weight. To satisfy crop nutritional requirements, P is usually added to soil as chemical P fertilizer, however synthesis of chemical P fertilizer is highly energy intensive processes, and has long term impacts on the environment in terms of eutrophication, soil fertilility depletion, carbon footprint. Moreover, plants can use only a small amount of this P since 75-90% of added P is precipitated by metal-cation complexes, and rapidly becomes fixed in soils. Such environmental concerns have led to the search for sustainable way of P nutrition of crops. In this regards phosphate-solubilizing microorganisms (PSM) have been seen as best eco-friendly means for P nutrition of crop. Although, several bacterial (pseudomonads and bacilli) and fungal strains (Aspergilli and Penicillium) have been identified as PSM their performance under in situ conditions is not reliable and therefore needs to be improved by using either genetically modified strains or co-inoculation techniques. This review

  19. Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah

    USGS Publications Warehouse

    Neff, J.C.; Reynolds, R.; Sanford, R.L.; Fernandez, D.; Lamothe, P.

    2006-01-01

    The cold deserts of the Colorado Plateau contain numerous geologically and geochemically distinct sedimentary bedrock types. In the area near Canyonlands National Park in Southeastern Utah, geochemical variation in geologic substrates is related to the depositional environment with higher concentrations of Fe, Al, P, K, and Mg in sediments deposited in alluvial or marine environments and lower concentrations in bedrock derived from eolian sand dunes. Availability of soil nutrients to vegetation is also controlled by the formation of secondary minerals, particularly for P and Ca availability, which, in some geologic settings, appears closely related to variation of CaCO3 and Ca-phosphates in soils. However, the results of this study also indicate that P content is related to bedrock and soil Fe and Al content suggesting that the deposition history of the bedrock and the presence of P-bearing Fe and Al minerals, is important to contemporary P cycling in this region. The relation between bedrock type and exchangeable Mg and K is less clear-cut, despite large variation in bedrock concentrations of these elements. We examined soil nutrient concentrations and foliar nutrient concentration of grasses, shrubs, conifers, and forbs in four geochemically distinct field sites. All four of the functional plant groups had similar proportional responses to variation in soil nutrient availability despite large absolute differences in foliar nutrient concentrations and stoichiometry across species. Foliar P concentration (normalized to N) in particular showed relatively small variation across different geochemical settings despite large variation in soil P availability in these study sites. The limited foliar variation in bedrock-derived nutrients suggests that the dominant plant species in this dryland setting have a remarkably strong capacity to maintain foliar chemistry ratios despite large underlying differences in soil nutrient availability. ?? 2006 Springer Science

  20. [Effects of nutrient deficiency on principal components of ginseng root exudates].

    PubMed

    Li, Yong; Huang, Xiao-fang; Ding, Wan-long

    2008-08-01

    By the method of solution culture, the effects of N, P, and K deficiency on the principol components in root exudates of ginseng at its early growth stage were studied. The results showed that in treatments N and K deficiency and control, no significant difference was observed in the principal components of ginseng root exudates, and 28, 29, and 27 principal chromatographic peaks were detected by GC-MS, respectively; while in treatment P deficiency, only 22 principal chromatographic peaks were detected. Furthermore compounds in the root exudates from treatments N, P, and K deficiency and control were identified, respectively. Compared with control, treatments N and K deficiency had more kinds of organic acids and phenolic acids in root exudates, while treatment P deficiency was in adverse, which suggested that at early growth stages, ginseng had more requirement to N and K than P, and N and K deficiency would accelerate the exudation of organic acids and phenolic acids by roots.

  1. Biochar from Swine solids and digestate influence nutrient dynamics and carbon dioxide release in soil.

    PubMed

    Marchetti, Rosa; Castelli, Fabio

    2013-01-01

    Large amounts of livestock manure solids are expected to become available in the near future due to the development of technologies for the separation of the solid fraction of animal effluents. The charring of manure solids for biochar (BC) production represents an opportunity for recycling organic matter (OM) of high nutrient value. The objectives of this study were to evaluate the suitability of BC from swine solids (SS) to improve soil fertility through nutrient supply and decomposition of the OM incorporated into soil and to verify a possible interaction effect on soil nutrient dynamics between digestate application and soil amendment with BC. We monitored at laboratory scale the soil mineral nitrogen (N) and Olsen phosphorus (P) content, and the cumulative carbon dioxide (CO-C) release in treatments with or without a supply of digestate obtained from a biogas plant. The experiment was performed in laboratory microcosms during a 3-mo incubation period. Compared treatments were soil amendments with SS, BC from SS, wood chip, BC from wood chip, and soil with no amendment, each of them with and without incorporation of digestate (10 treatments in total). Soil N levels were unaffected by BC amendments and only increased temporarily when digestate was applied to soil amended with SS or BC from SS. For the same N content, the BC from SS supplied much more P than the nontreated OM. The amount of cumulative CO-C released from soil with BC with or without digestate did not differ from that in the unamended control soil and was lower than that in the soils with noncharred amendments. Soil amendment with BC from SS does not modify soil N availability, whereas it increases the content of P available for crops and reduces the release of CO-C from digestate applied to soil for agricultural purposes.

  2. Biochar from Swine solids and digestate influence nutrient dynamics and carbon dioxide release in soil.

    PubMed

    Marchetti, Rosa; Castelli, Fabio

    2013-01-01

    Large amounts of livestock manure solids are expected to become available in the near future due to the development of technologies for the separation of the solid fraction of animal effluents. The charring of manure solids for biochar (BC) production represents an opportunity for recycling organic matter (OM) of high nutrient value. The objectives of this study were to evaluate the suitability of BC from swine solids (SS) to improve soil fertility through nutrient supply and decomposition of the OM incorporated into soil and to verify a possible interaction effect on soil nutrient dynamics between digestate application and soil amendment with BC. We monitored at laboratory scale the soil mineral nitrogen (N) and Olsen phosphorus (P) content, and the cumulative carbon dioxide (CO-C) release in treatments with or without a supply of digestate obtained from a biogas plant. The experiment was performed in laboratory microcosms during a 3-mo incubation period. Compared treatments were soil amendments with SS, BC from SS, wood chip, BC from wood chip, and soil with no amendment, each of them with and without incorporation of digestate (10 treatments in total). Soil N levels were unaffected by BC amendments and only increased temporarily when digestate was applied to soil amended with SS or BC from SS. For the same N content, the BC from SS supplied much more P than the nontreated OM. The amount of cumulative CO-C released from soil with BC with or without digestate did not differ from that in the unamended control soil and was lower than that in the soils with noncharred amendments. Soil amendment with BC from SS does not modify soil N availability, whereas it increases the content of P available for crops and reduces the release of CO-C from digestate applied to soil for agricultural purposes. PMID:23673957

  3. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    ERIC Educational Resources Information Center

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  4. Biochar application to sandy and loamy soils for agricultural nutrient management

    NASA Astrophysics Data System (ADS)

    Gronwald, Marco; Don, Axel; Tiemeyer, Baerbel; Helfrich, Mirjam

    2014-05-01

    Soil fertility of agricultural soils is challenged by nutrients losses and increasing soil acidification. Furthermore, leached nutrients negatively affect the quality of ground and surface water 1]. In addition to the possible soil carbon sequestration by applying biochars, many positive soil-improving properties are attributed to biochars. The application of biochars to agricultural - especially sandy - soils could reduce leaching of nutrients and may improve their availability 1,2]. Thus, biochar application to agricultural fields could be an ecologically and economically viable option to improve soils' fertility. However, biochar properties strongly depend on their feedstock and production process 3]. Various types of biochars (pyrolysis char, hydrochar (produced at 200 and 250° C); feedstocks: digestate, Miscanthus and wood chips) were used to determine sorption kinetics and sorption isotherms for the major nutrients Ca, Mg, K, NH4 and NO3 as a function of biochar types in different soil substrates (sand, loess). In addition, the biochars were washed to create free binding sites on the chars' surface that simulate aged char. We compared the simulated aged char with biochars that was aged in-situ at a field experiment for seven months. The first results showed that pyrochars have the largest retention potential for NO3 and hydrochars have retention potential for NH4. Washing of biochars turned them from a PO4 and NH4 source into an adsorber, especially for hydrochars. Highest leaching was observed for biochars from digestates likely due to the high nutrient content of digestates. But the different ions may lead to pH-dependent interactions between each other and the chars' surface that override the adsoption effects. In this context, cation-bridge and ligand bindings 4,5] need to be further investigated. Most of the fresh, unwashed biochars were a source of nutrients with hardly any detectable nutrient retention. Pyrochars showed the highest potential for anion

  5. Spatial variability of soil nutrient in paddy plantation: Sites FELCRA Seberang Perak

    NASA Astrophysics Data System (ADS)

    Kamarudin, H.; Adnan, N. A.; Mispan, M. R.; Athirah. A, A.

    2016-06-01

    The conventional methods currently used for rice cultivation in Malaysia are unable to give maximum yield although the yield production of paddy is increasing. This is due to the conversional method being unable to include soil properties as one of their parameters in agriculture management. Soil properties vary spatially in farm scale due to differences in topography, parent material, vegetation or land management and soil characteristics; also plantation productivity varies significantly over small spatial scales. Knowledge of spatial variability in soil fertility is important for site specific nutrient management. Analysis of spatial variability of soil nutrient of nitrogen (N), phosphorus (P) and potassium (K) were conducted in this study with the aid of GIS (i.e ArcGIS) and statistical softwares. In this study different temporal and depths of soil nutrient were extracted on the field and further analysis of N,P,K content were analysed in the chemical laboratory and using spatially technique in GIS sofware. The result indicated that for the Seberang Perak site of 58 hactares area, N and K are met minimum requirements nutrient content as outlines by the MARDI for paddy cultivation. However, P indicated poor condition in the study area; therefore the soil needs further attention and treatment.

  6. Water and nutrient transport on a heavy clay soil in a fluvial plain in the Netherlands.

    PubMed

    van der Salm, Caroline; van den Toorn, Antonie; Chardon, Wim J; Koopmans, Gerwin F

    2012-01-01

    In flat areas, transport of dissolved nutrients by water through the soil matrix to groundwater and drains is assumed to be the dominant pathway for nutrient losses to ground- and surface waters. However, long-term data on the losses of nutrients to surface water and the contribution of various pathways is limited. We studied nutrient losses and pathways on a heavy clay soil in a fluvial plain in The Netherlands during a 5-yr period. Average annual nitrogen (N) and phosphorus (P) losses to surface water were 15.1 and 3.0 kg ha(-1) yr(-1), respectively. Losses were dominated by particulate N (50%) and P (70%) forms. Rapid discharge through trenches was the dominant pathway (60-90%) for water and nutrient transport. The contribution of pipe drains to the total discharge of water and nutrients was strongly related to the length of the dry period in the preceding summer. This relationship can be explained by the very low conductivity of the soil matrix and the formation of shrinkage cracks during summer. Losses of dissolved reactive P through pipe drains appear to be dominated by preferential flow based on the low dissolved reactive P concentration in the soil matrix at this depth. Rainfall occurring after manure application played an important role with respect to the annual losses of N and P in spring when heavy rainfall occurred within 2 wk after manure application. PMID:22218191

  7. Elevated atmospheric CO{sub 2} and soil nutrients alter competitive performance of California annual grassland species

    SciTech Connect

    Reynolds, H.L.; Chapin, F.S. III; Field, C.B.

    1995-06-01

    Atmospheric CO{sub 2} and soil nutrients altered interspecific competitive performance of three grassland annuals, all exhibiting the C{sub 3} metabolic pathway. Plantago erecta, an herbaceous dicot dominant in low-fertility serpentine grassland, was the superior interspecific competitor at low soil nutrients. Bromus hordeaceus, an introduced grass dominant in higher fertility sandstone grassland, was the superior interspecific competitor at high soil nutrients. Interspecific competitive ability of Plantago was slightly enhanced under elevated CO{sub 2}, but only at high soil nutrients, whereas interspecific competitive ability of Bromus was stimulated under elevated CO{sub 2} at both low and high soil nutrients. Interspecific competitive ability of Lasthenia californica, another herbaceous dicot common in serpentine grassland, was low in all treatments, and tended to decrease with elevated CO{sub 2} at low soil nutrients. Our results suggest that elevated CO{sub 2} may shift plant species abundance of serpentine grassland in favor of Bromus hordeaceus.

  8. Comparison of methods for nutrient measurement in calcareous soils: Ion-exchange resin bag, capsule, membrane, and chemical extractions

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2002-01-01

    Four methods for measuring quantities of 12 plant-available nutrients were compared using three sandy soils in a series of three experiments. Three of the methods use different ion-exchange resin forms-bags, capsules, and membranes-and the fourth was conventional chemical extraction. The first experiment compared nutrient extraction data from a medium of sand saturated with a nutrient solution. The second and third experiments used Nakai and Sheppard series soils from Canyonlands National Park, which are relatively high in soil carbonates. The second experiment compared nutrient extraction data provided by the four methods from soils equilibrated at two temperatures, "warm" and "cold." The third experiment extracted nutrients from the same soils in a field equilibration. Our results show that the four extraction techniques are not comparable. This conclusion is due to differences among the methods in the net quantities of nutrients extracted from equivalent soil volumes, in the proportional representation of nutrients within similar soils and treatments, in the measurement of nutrients that were added in known quantities, and even in the order of nutrients ranked by net abundance. We attribute the disparities in nutrient measurement among the different resin forms to interacting effects of the inherent differences in resin exchange capacity, differences among nutrients in their resin affinities, and possibly the relatively short equilibration time for laboratory trials. One constraint for measuring carbonate-related nutrients in high-carbonate soils is the conventional ammonium acetate extraction method, which we suspect of dissolving fine CaCO3 particles that are more abundant in Nakai series soils, resulting in erroneously high Ca2+ estimates. For study of plant-available nutrients, it is important to identify the nutrients of foremost interest and understand differences in their resin sorption dynamics to determine the most appropriate extraction method.

  9. Soil nutrient processes during spring thaw along a thermokarst recovery chronosequence

    NASA Astrophysics Data System (ADS)

    Buckeridge, K. M.; Schaeffer, S. M.; Baron, A.; Mack, M. C.; Schuur, E. A.; Schimel, J.

    2012-12-01

    Arctic soils store large pools of carbon (C) that are sensitive to a warming climate. When upland permafrost thaws, soil organic matter, C and nutrients are mobilized by the resulting landscape erosion. The intermediate ecosystem recovery stage (~ 50 y) is characterized by strongly enhanced above-ground biomass (shrubbiness) relative to undisturbed, early or late successional stages. However, upland arctic terrestrial ecosystems are very strongly nutrient- limited to plant growth and microbial activity, so the source of nutrients for this intermediate recovery stage is unknown. We hypothesized that nutrient inputs from upslope during spring thaw, combined with differential retention between recovery stages could be a potential mechanism. Furthermore, we hypothesized that the leachate nutrients from upslope vegetation would be an important stimulant to soil microbial activity at thaw. In winter, we placed ion exchange resin bags at the base of the snowpack, along the top, middle and base of each recovery stage slope. These were collected in spring and analyzed to estimate relative C, N and P inputs and outputs for each recovery stage. Also in winter, we collected snow cores (n=5) from the surface horizon of each of the recovery stages of the thermokarst chronosequence, in addition to live (dormant) plants and surface litter from snow-covered, undisturbed tundra directly above the thermokarst, with which we made cold (0-2 oC) vegetation leachate. To test the response of soil microbes to thaw pulses of vegetation leachate, we added this leachate (or water) to the frozen soil cores, and stepped them up in temperature from -10 oC to +4 oC over the course of 6 days and measured changes in microbial biomass and extractable soil biogeochemistry at the end of the incubation. As an indicator of soil microbial activity, we measured soil respiration and gross N mineralization over the course of the incubation. Time since thermokarst disturbance was the most important predictor

  10. [Distribution and accumulation characteristics of nutrients in solar greenhouse soil in Ji'nan, Shandong Province of East China].

    PubMed

    Cao, Qi-Wei; Zhang, Wei-Hua; Li, Li-Bin; Sun, Yu-Liang; Sun, Xiao-Lei; Ai, Xi-Zhen

    2012-01-01

    Taking the solar greenhouses with different cultivating years and vegetables in Ji'nan as test objects, this paper studied the amounts and frequency distribution of soil nutrients and the relationships between cultivating years and soil nutrients accumulation characteristics, and analyzed the factors causing soil salinization and acidification by fitting soil nutrients contents with cultivating years and vegetables. In the greenhouses, the contents of soil alkali-hydrolysable nitrogen, available phosphorus, available potassium, organic matter, and electrical conductivity were significantly higher than those in the open field, with an increment of 135.3%, 475.2%, 290.1%, 97.7%, and 188.7%, respectively, but the soil pH value was 0.31 lower than that of open field. The frequency distribution of soil nutrients presented a normal curve. Differences were observed in the soil nutrients contents in the greenhouses with different cultivating vegetables. The soil alkali-hydrolysable nitrogen content and electrical conductivity were in the order of tomato > cucumber > sweet pepper, soil organic matter content and pH value were cucumber > sweet pepper > tomato, soil available phosphorus content was cucumber > tomato > sweet pepper, and soil available potassium content was tomato > cucumber > sweet pepper. There was a mild tendency of soil acidification in soil alkali-hydrolysable nitrogen and available potassium. The decrease of soil pH was closely related to the accumulation of alkali-hydrolysable nitrogen. The soil nutrients accumulation in the greenhouses had the similar patterns, i. e. , rapid accumulation in the first two cultivating years, slowed down in the third and fourth year, and kept stable later, demonstrating a dynamic balance on the whole. All the nutrients contents were positively accumulated, while soil pH presented negatively. In the greenhouses with different cultivating vegetables, there was a significant correlation between soil nutrients and cultivating

  11. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    PubMed

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  12. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    PubMed

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function. PMID:27255124

  13. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    PubMed

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy. PMID:22497162

  14. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    SciTech Connect

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism of phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.

  15. Soil nutrients trump intraspecific effects on understory plant communities.

    PubMed

    Crutsinger, Gregory M; Carter, Benjamin E; Rudgers, Jennifer A

    2013-12-01

    Understanding the links between intraspecific genetic variation and patterns of diversity in associated communities has been the primary focus of community genetics or 'genes-to-ecosystem' research in ecology. While other ecological factors, such as the abiotic environment, have well-documented influences on communities, the relative contributions of genetic variation versus the environment to species interactions remains poorly explored. In this study, we use a common garden experiment to study a coastal dune plant community dominated by the shrub, Baccharis pilularis, which displays a morphological dimorphism in plant architecture. We found the differences in the understory plant community between erect and prostrate morphs of Baccharis to be statistically significant, but small relative to the impacts of nutrient additions (NPK and C additions), for the richness, cover, and biomass of the understory plant community. There were no significant interactions between Baccharis morphology and nutrient-addition treatments, suggesting the influence of nutrient addition was consistent between erect and prostrate morphs. Moreover, we found no difference in overall plant community composition between Baccharis morphs, while NPK additions led to shifts in understory community composition compared to unfertilized shrubs. In sum, our results indicate that nutrients are the more important factor governing understory plant community structure in a coastal dunes ecosystem followed by intraspecific variation in dominant shrub architecture. Our results address a growing call to understand the extended consequences of intraspecific variation across heterogeneous environments in terrestrial ecosystems.

  16. [Effects of mowing and grazing on soil nutrients and soil microbes in rhizosphere and bulk soil of Stipa grandis in a typical steppe].

    PubMed

    Hu, Jing; Hou, Xiang-yang; Wang, Zhen; Ding, Yong; Li, Xi-liang; Li, Ping; Ji, Lei

    2015-11-01

    This study conducted experiments using Stipa grandis, the dominant species of the typical steppe in Inner Mongolia. The research explored the different effects of mowing and grazing on organic carbon, total nitrogen, available nitrogen, total phosphorus and available phosphorus in rhizosphere and bulk soil. The results showed that: Both mowing and grazing inhibited assemble and storage capacity of rhizosphere, and decreased the organic carbon, total nitrogen, and available nitrogen contents in rhizosphere soil. The rhizosphere effect on total phosphorus in soil was found to be insignificant because of its high immobility. Available phosphorus in soil was distributed heterogeneously. Available soil phosphorus under mowing and grazing changed but the difference was not significant between rhizosphere and bulk soil. Grazing drastically reduced the number of soil microbes. The availability of soil nutrients was significantly correlated with soil microbial numbers. The status of soil nutrients could be more closely aligned with the change in bacteria and fungi. Grazing brought about greater soil nutrient loss and soil microbe loss than did mowing.

  17. [Effects of mowing and grazing on soil nutrients and soil microbes in rhizosphere and bulk soil of Stipa grandis in a typical steppe].

    PubMed

    Hu, Jing; Hou, Xiang-yang; Wang, Zhen; Ding, Yong; Li, Xi-liang; Li, Ping; Ji, Lei

    2015-11-01

    This study conducted experiments using Stipa grandis, the dominant species of the typical steppe in Inner Mongolia. The research explored the different effects of mowing and grazing on organic carbon, total nitrogen, available nitrogen, total phosphorus and available phosphorus in rhizosphere and bulk soil. The results showed that: Both mowing and grazing inhibited assemble and storage capacity of rhizosphere, and decreased the organic carbon, total nitrogen, and available nitrogen contents in rhizosphere soil. The rhizosphere effect on total phosphorus in soil was found to be insignificant because of its high immobility. Available phosphorus in soil was distributed heterogeneously. Available soil phosphorus under mowing and grazing changed but the difference was not significant between rhizosphere and bulk soil. Grazing drastically reduced the number of soil microbes. The availability of soil nutrients was significantly correlated with soil microbial numbers. The status of soil nutrients could be more closely aligned with the change in bacteria and fungi. Grazing brought about greater soil nutrient loss and soil microbe loss than did mowing. PMID:26915206

  18. The influence of microtopography on soil nutrients in created mitigation wetlands

    USGS Publications Warehouse

    Moser, K.F.; Ahn, C.; Noe, G.B.

    2009-01-01

    This study explores the relationship between microtopography and soil nutrients (and trace elements), comparing results for created and reference wetlands in Virginia, and examining the effects of disking during wetland creation. Replicate multiscale tangentially conjoined circular transects were used to quantify microtopography both in terms of elevation and by two microtopographic indices. Corresponding soil samples were analyzed for moisture content, total C and N, KCl-extractable NH4-N and NO3-N, and Mehlich-3 extractable P, Ca, Mg, K, Al, Fe, and Mn. Means and variances of soil nutrient/element concentrations were compared between created and natural wetlands and between disked and nondisked created wetlands. Natural sites had higher and more variable soil moisture, higher extractable P and Fe, lower Mn than created wetlands, and comparatively high variability in nutrient concentrations. Disked sites had higher soil moisture, NH4-N, Fe, and Mn than did nondisked sites. Consistently low variances (Levene test for inequality) suggested that nondisked sites had minimal nutrient heterogeneity. Across sites, low P availability was inferred by the molar ratio (Mehlich-3 [P/(Al + Fe)] < 0.06); strong intercorrelations among total C, total N, and extractable Fe, Al, and P suggested that humic-metal-P complexes may be important for P retention and availability. Correlations between nutrient/element concentrations and microtopographic indices suggested increased Mn and decreased K and Al availability with increased surface roughness. Disking appears to enhance water and nutrient retention, as well as nutrient heterogeneity otherwise absent from created wetlands, thus potentially promoting ecosystem development. ?? 2008 Society for Ecological Restoration International.

  19. Effects of soil tillage and management of crop residues on soil properties: abundance, biomass and diversity of earthworms, soil structure and nutrient evolutions

    NASA Astrophysics Data System (ADS)

    lemtiri, Aboulkacem

    2013-04-01

    The living soil is represented by soil biota that interacts with aboveground biota and with the abiotic environment, soil structure, soil reaction, organic matter, nutrient contents, aso. Maintenance of soil organic matter through integrated soil fertility management is an important issue to conciliate soil quality and agricultural productivity. Earthworms are key actors in soil structure formation through the production of casts and the incorporation of soil organic matter in the soil. Research is still needed about the interactive effects of various tillage and crop residue management practices on earthworm populations and physical and chemical properties of soil. To investigate the impacts of two tillage management systems and two cropping systems on earthworm populations, soil structure evolution and nutrient dynamics, we carried out a three years study in an experimental field. The aims of this experimentation, were to assess the effects of the tillage systems (ploughing versus reduced tillage) and the availability of crop residues (export versus no export) on (i) the abundance, biomass and diversity of earthworms, on the soil structure and on the temporal variation of water extractable nutrients and organic carbon. The first results show that tillage management did significantly affect earthworm abundance and biomass. However, crop residue management did not affect abundance, biomass and diversity of earthworms. Regarding soil physical properties, the tillage affected the compaction profiles within the top 30cm. The analysis of nutrient and organic carbon dynamics show divergent trends (decrease of calcium and magnesium, increase of hot water extractable carbon and phosphorus…) but no clear effect of the studied factors could be identified. The question of the initial soil variability raised as a crucial point in the discussion.

  20. Climate and soil-age constraints on nutrient uplift by plants.

    NASA Astrophysics Data System (ADS)

    Porder, S.; Chadwick, O. A.

    2007-12-01

    We analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 28 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (10, 170, and 350 ky) each of which crosses a precipitation gradient from <500 to 2,500 mm yr- 1. The results identify a sweet spot of plant nutrient uplift where nutrient cations and phosphorus are retained in upper horizons as a result of plant activity. The gradients also elucidate several abiotic constraints on plant- driven retention of nutrients. At the dry sites (<750 mm yr-1on all three flows, plant slow the loss of nutrient (e.g. potassium) vs. non-nutrient (e.g. sodium) cations, but the effect is small because of low plant cover and productivity. At intermediate rainfall (750 - 1300 mm yr-1) plants substantially enrich both nutrient cations and P in the upper soils, an effect that increases with flow age. In contrast, at high rainfall (>1500 mm yr-1), the effect of plants on nutrient distributions diminishes with soil age and is largely absent after 350 ky of soil development. Unlike the major plant macronutrients, the distribution of the transition metals iron (Fe) and aluminum (Al) is driven more by chemical reactions than by plant uptake. Dry sites exhibit very little movement of either element, even after 350 ky of soil development. However at high rainfall the older flows show substantial Al and Fe translocations, and wet sites on all three flows have increased Al on soil exchange sites. These transition metals are key constituents of the secondary minerals that strongly influence the availability of cations and P to plants. The loss of Fe and Al is highly correlated with the loss of P in the older and wetter sites, and increased Al on exchange sites limits the availability of nutrient cations to plants. Thus redox driven redistribution of Fe and acid solublization of Al place a further abiotic constraint on nutrient

  1. [Assessment of soil nutrient status in urban green space of main cities in Hubei Province, China].

    PubMed

    Li, Zhi-guo; Zhang, Guo-Shi; Liu, Yi; Wan, Kai-Yuan; Zhang, Run-Hua; Chen, Fang

    2013-08-01

    According to the topography of the cities in Hubei Province, soil samples were collected from the urban green space in two mountainous cities (Enshi and Shiyan), three hilly cities (Jing-men, Xiangfan and Yichang), and five plain cities (Wuhan, Xiaogan, Xianning, Jingzhou, Suizhou and Huangshi). Within each city, subsoil samples were taken in accordance with four different types of land use, including park, residential, institutional (school, hospital and government, etc.), and roadside. In the main cities in Hubei, the soil pH of urban green space was averagely 7.9, being obviously higher than that of natural soils, while the soil organic matter content was rather low (6.8 g x kg(-1)). The soil available N and P contents were at a low level, while the soil available trace element (Ca, Mg, S, Fe, Cu, Mn, Zn and B) contents were moderate. Land use type had significant effects on the soil nutrient contents in plain cities. The soil pH in the residential green space was significantly higher than that in the park, roadside and institutional green space, while the contents of soil available trace elements (S, Cu, Mn and Zn) in roadside green space were significantly higher than those of green space in the other land use types. Park green space had the lowest soil nutrient contents. There existed significant differences in the soil nutrient contents among the cities with different topography. The soil organic matter, NH4-N, available K and P, and Ca, Mg, S, Fe, Cu and Mn contents were significantly higher in plain cities than in mountainous cities.

  2. [Effects of different land use types on soil nutrients in karst region of Northwest Guangxi].

    PubMed

    Xu, Lian-Fang; Wang, Ke-Lin; Zhu, Han-Hua; Hou, Ya; Zhang, Wei

    2008-05-01

    Selecting the main land use types (shrub land, secondary forest land, orchard, pasture land, and upland) at the peak-cluster depression in karst region of Northwest Guangxi as test objects, this paper studied the effects of different land use types on soil nutrients. The results showed that, the contents of soil organic matter (SOM), total N, and available N were 86%-155%, 62% -119%, and 66%-215% higher in shrub land and secondary forest land than in orchard, pasture land, and upland, respectively, i. e., increased with the decrease of land use intensity. The contents of soil total P and K were mainly controlled by their origins, but less affected by land use type. Soil available P content was mainly affected by fertilization, while soil available K content was controlled by vegetation cover and water- and soil loss. Land use type was the dominant factor affecting the contents of soil SOM, total N, and available N, P and K. Extensive cultivation could decrease soil nutrient contents and lead to the degradation of cropland soil, while ecological restoration could improve soil fertility. Therefore, in karst region, the measures as changing extensive cultivation into intensive farming, applying organic fertilizers, balance fertilization, and "Grain for Green Project" for > or = 25 degrees slope should be taken to recover and rebuild the eco-environment, and keep the sustainable utilization of land resources.

  3. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    SciTech Connect

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  4. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe

    PubMed Central

    Leff, Jonathan W.; Jones, Stuart E.; Prober, Suzanne M.; Barberán, Albert; Borer, Elizabeth T.; Firn, Jennifer L.; Harpole, W. Stanley; Hobbie, Sarah E.; Hofmockel, Kirsten S.; Knops, Johannes M. H.; McCulley, Rebecca L.; La Pierre, Kimberly; Risch, Anita C.; Seabloom, Eric W.; Schütz, Martin; Steenbock, Christopher; Stevens, Carly J.; Fierer, Noah

    2015-01-01

    Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide. PMID:26283343

  5. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe.

    PubMed

    Leff, Jonathan W; Jones, Stuart E; Prober, Suzanne M; Barberán, Albert; Borer, Elizabeth T; Firn, Jennifer L; Harpole, W Stanley; Hobbie, Sarah E; Hofmockel, Kirsten S; Knops, Johannes M H; McCulley, Rebecca L; La Pierre, Kimberly; Risch, Anita C; Seabloom, Eric W; Schütz, Martin; Steenbock, Christopher; Stevens, Carly J; Fierer, Noah

    2015-09-01

    Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.

  6. Subinhibitory Antibiotic Concentrations Mediate Nutrient Use and Competition among Soil Streptomyces

    PubMed Central

    Vaz Jauri, Patricia; Bakker, Matthew G.; Salomon, Christine E.; Kinkel, Linda L.

    2013-01-01

    Though traditionally perceived as weapons, antibiotics are also hypothesized to act as microbial signals in natural habitats. However, while subinhibitory concentrations of antibiotics (SICA) are known to shift bacterial gene expression, specific hypotheses as to how SICA influence the ecology of natural populations are scarce. We explored whether antibiotic ‘signals’, or SICA, have the potential to alter nutrient utilization, niche overlap, and competitive species interactions among Streptomyces populations in soil. For nine diverse Streptomyces isolates, we evaluated nutrient utilization patterns on 95 different nutrient sources in the presence and absence of subinhibitory concentrations of five antibiotics. There were significant changes in nutrient use among Streptomyces isolates, including both increases and decreases in the capacity to use individual nutrients in the presence vs. in the absence of SICA. Isolates varied in their responses to SICA and antibiotics varied in their effects on isolates. Furthermore, for some isolate-isolate-antibiotic combinations, competition-free growth (growth for an isolate on all nutrients that were not utilized by a competing isolate), was increased in the presence of SICA, reducing the potential fitness cost of nutrient competition among those competitors. This suggests that antibiotics may provide a mechanism for bacteria to actively minimize niche overlap among competitors in soil. Thus, in contrast to antagonistic coevolutionary dynamics, antibiotics as signals may mediate coevolutionary displacement among coexisting Streptomyces, thereby hindering the emergence of antibiotic resistant phenotypes. These results contribute to our broad understanding of the ecology and evolutionary biology of antibiotics and microbial signals in nature. PMID:24339897

  7. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  8. [Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration].

    PubMed

    Tang, Wen-guang; Xiao, Xiao-ping; Tang, Hai-ming; Zhang, Hai-lin; Chen, Fu; Chen, Zhong-du; Xue, Jian-fu; Yang, Guang-li

    2015-01-01

    The objective of this study was to assess the effects of tillage and straw returning on soil nutrient and its pools, and soil Cd concentration, and to identify the strategies for rational tillage and remediation of Cd contaminated paddy fields. The experiment was established with no-tillage with straw retention (NTS) , rotary tillage with straw incorporation (RTS) , conventional plow tillage with straw incorporation (CTS), conventional plow tillage with straw removed ( CT) from 2005 to 2013. The results indicated that tillage and rice straw retention had a great impact on soil properties at 0-10 cm soil depth. The soil aeration, and concentrations of soil nutrient and soil Cd increased under CTS, CT, and RTS. Due to the shallow plow layers, soil nutrient pools and the Cd concentration in rice shoot decreased in long-term tilled soil. Under long-term no-tillage, the soil bulk, soil nutrient pools and Cd concentration in rice shoot increased, but concentrations of soil nutrients decreased. In addition, rice straw returning significantly increased the soil nutrient concentrations, cation exchange capacity, depth of plow layer, and soil nutrient pools. However, the Cd in the rice straw was also returned to the soil by rice straw returning, which would not benefit the remediation of soil Cd. Therefore, it is necessary to improve tillage and straw retention practices due to the disadvantages of long-term continuous single tillage method and rice straw returning practices. Some recommended managements (e.g., rotational tillage or subsoiling, reducing straw returning amount, and rotational straw returning) could be good options in enhancing soil fertility and remedying soil pollution.

  9. How do Soil Microbial Enzyme Activities Respond to Changes in Temperature, Carbon, and Nutrient Additions across Gradients in Mineralogy and Nutrient Availability?

    NASA Astrophysics Data System (ADS)

    McCleery, T.; Cusack, D. F.; Reed, S.; Wieder, W. R.; Taylor, P.; Cleveland, C. C.; Chadwick, O.; Vitousek, P.

    2013-12-01

    Microbial enzyme activities are the direct agents of organic matter decomposition, and thus play a crucial role in global carbon (C) cycling. Global change factors like warming and nutrient inputs to soils have the potential to alter the activities of these enzymes, with background site conditions likely driving responses. We hypothesized that enzyme activities in sites with high background nutrient and/or carbon availability would be less sensitive to nutrient additions than nutrient-poor sites. We also hypothesized that sites poor in background nutrients and/or carbon would show greater sensitivity to changes in temperature because of a less robust microbial community. To test our hypothesis we used laboratory temperature incubations combined with long- and short-term nutrient additions to assess changes in enzyme activities for 8 common soil enzymes that acquire nitrogen (N), phosphorus (P) and C from organic matter. We collected mineral soils (0-10 cm depth) from 8 Hawaiian sites that provided maximum variation in nutrient availability and background soil C. Soils were sieved, pooled by site, and homogenized prior to a laboratory addition of a simple C (sucrose) plus N and/or P in full factorial design. The 8 soils were also incubated at 7 different temperatures from 4 - 40 degrees C. We found that temperature sensitivities varied significantly among the sites, and that the laboratory fertilizations altered enzyme activities. Across the 8 sites, laboratory sucrose+N additions nearly doubled P-acquisition enzyme activity (p < 0.05), with the strongest effect in a younger forest soil that was naturally low in N. Similarly, laboratory sucrose+N and sucrose+NP additions significantly increased N-acquiring enzyme activity (p < 0.05), with the strongest effect in a drier, nutrient poor and carbon poor soil. Carbon-acquiring enzyme activities were less responsive, but also increased significantly with additions of sucrose+N and sucrose+NP across sites, with the

  10. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  11. Establishment of five cover crops and total soil nutrient extraction in a humid tropical soil in the Peruvian Amazon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the establishment of five cover crops and their potential to increase soil fertility through nutrient extraction, an experiment was installed in the Research Station of Choclino, San Martin, Peru. Five cover crops were planted: Arachis pintoi Krapov. & W.C. Greg, Calopogonium m...

  12. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

    PubMed

    Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad

    2016-02-01

    Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment.

  13. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability.

    PubMed

    He, Mingzhu; Dijkstra, Feike A; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-11-06

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0-10 cm), middle (10-40 cm) and deep soil layers (40-100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect.

  14. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

    PubMed

    Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad

    2016-02-01

    Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment. PMID:26805616

  15. Nutrient limitation in soils and trees of a treeline ecotone in Rolwaling Himal, Nepal

    NASA Astrophysics Data System (ADS)

    Drollinger, Simon; Müller, Michael; Schickhoff, Udo; Böhner, Jürgen; Scholten, Thomas

    2015-04-01

    At a global scale, tree growth and thus the position of natural alpine treelines is limited by low temperatures. At landscape and local scales, however, the treeline position depends on multiple interactions of influencing factors and mechanisms. The aim of our research is to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors, in a near-natural alpine treeline ecotone of Rolwaling Himal, Nepal. In total 48 plots (20 m x 20 m) were investigated. Three north-facing slopes were separated in four different altitudinal zones with the characteristic vegetation of tree species Rhododendron campanulatum, Abies spectabilis, Betula utilis, Sorbus microphylla and Acer spec. We collected 151 soil horizon samples (Ah, Ae, Bh, Bs), 146 litter layer samples (L), and 146 decomposition layer samples (Of) in 2013, as well as 251 leaves from standing biomass (SB) in 2013 and 2014. All samples were analysed for exchangeable cations or nutrient concentrations of C, N, P, K, Mg, Ca, Mn, Fe and Al. Soil moisture, soil and surface air temperatures were measured by 34 installed sensors. Precipitation and air temperatures were measured by three climate stations. The main pedogenic process is leaching of dissolved organic carbon, aluminium and iron from topsoil to subsoil. Soil types are classified as podzols with generally low nutrient concentrations. Soil acidity is extremely high and humus quality of mineral soils is poor. Our results indicate multilateral interactions and a great spatial variability of essential nutrients within the treeline ecotone. Both, soil nutrients and leave macronutrient concentrations of nitrogen (N), magnesium (Mg), potassium (K) decrease significantly with elevation in the treeline ecotone. Besides, phosphorus (P) foliar concentrations decrease significantly with elevation. Based on regression analyses, low soil temperatures and malnutrition most likely

  16. Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2016-04-01

    Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and

  17. Soil carbon fractions under maize-wheat system: effect of tillage and nutrient management.

    PubMed

    Sandeep, S; Manjaiah, K M; Pal, Sharmistha; Singh, A K

    2016-01-01

    Soil organic carbon plays a major role in sustaining agroecosystems and maintaining environmental quality as it acts as a major source and sink of atmospheric carbon. The present study aims to assess the impact of agricultural management practices on soil organic carbon pools in a maize-wheat cropping system of Indo-Gangetic Plains, India. Soil samples from a split plot design with two tillage systems (bed planting and conventional tillage) and six nutrient treatments (T1 = control, T2 = 120 kg urea-N ha(-1), T3 = T2 (25 % N substituted by FYM), T4 = T2 (25 % N substituted by sewage sludge), T5 = T2 + crop residue, T6 = 100 % organic source (50 % FYM + 25 % biofertilizer + 25 % crop residue) were used for determining the organic carbon pools. Results show that there was a significant improvement in Walkley and Black carbon in soil under integrated and organic nutrient management treatments. KMnO4-oxidizable carbon content of soil varied from 0.63 to 1.50 g kg(-1) in soils and was found to be a better indicator for monitoring the impact of agricultural management practices on quality of soil organic carbon than microbial biomass carbon. Tillage and its interaction were found to significantly influence only those soil organic carbon fractions closely associated with aggregate stability viz, labile polysaccharides and glomalin. The highest amount of C4-derived carbon was found to be in plots receiving recommended doses of N as urea (29 %) followed by control plots (25 %). The carbon management index ranged between 82 to 195 and was better in integrated nutrient sources than ones receiving recommended doses of nutrients through mineral fertilizers alone.

  18. Soil carbon fractions under maize-wheat system: effect of tillage and nutrient management.

    PubMed

    Sandeep, S; Manjaiah, K M; Pal, Sharmistha; Singh, A K

    2016-01-01

    Soil organic carbon plays a major role in sustaining agroecosystems and maintaining environmental quality as it acts as a major source and sink of atmospheric carbon. The present study aims to assess the impact of agricultural management practices on soil organic carbon pools in a maize-wheat cropping system of Indo-Gangetic Plains, India. Soil samples from a split plot design with two tillage systems (bed planting and conventional tillage) and six nutrient treatments (T1 = control, T2 = 120 kg urea-N ha(-1), T3 = T2 (25 % N substituted by FYM), T4 = T2 (25 % N substituted by sewage sludge), T5 = T2 + crop residue, T6 = 100 % organic source (50 % FYM + 25 % biofertilizer + 25 % crop residue) were used for determining the organic carbon pools. Results show that there was a significant improvement in Walkley and Black carbon in soil under integrated and organic nutrient management treatments. KMnO4-oxidizable carbon content of soil varied from 0.63 to 1.50 g kg(-1) in soils and was found to be a better indicator for monitoring the impact of agricultural management practices on quality of soil organic carbon than microbial biomass carbon. Tillage and its interaction were found to significantly influence only those soil organic carbon fractions closely associated with aggregate stability viz, labile polysaccharides and glomalin. The highest amount of C4-derived carbon was found to be in plots receiving recommended doses of N as urea (29 %) followed by control plots (25 %). The carbon management index ranged between 82 to 195 and was better in integrated nutrient sources than ones receiving recommended doses of nutrients through mineral fertilizers alone. PMID:26638156

  19. Testate amoebae and nutrient cycling: peering into the black box of soil ecology.

    PubMed

    Wilkinson, David M

    2008-11-01

    In some areas of ecology and evolution, such as the behavioural ecology of many well-studied bird species, it is increasingly difficult to make surprising new discoveries. However, this is not the case in many areas of soil and/or microbial ecology. Two recent studies suggest that the testate amoebae, a microbial group unfamiliar to most biologists, might play a much larger role in soil nutrient cycling than has hitherto been suspected.

  20. Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem

    USGS Publications Warehouse

    Housman, D.C.; Yeager, C.M.; Darby, B.J.; Sanford, R.L.; Kuske, C.R.; Neher, D.A.; Belnap, J.

    2007-01-01

    Dryland ecosystems have long been considered to have a highly heterogeneous distribution of nutrients and soil biota, with greater concentrations of both in soils under plants relative to interspace soils. We examined the distribution of soil resources in two plant communities (dominated by either the shrub Coleogyne ramosissima or the grass Stipa hymenoides) at two locations. Interspace soils were covered either by early successional biological soil crusts (BSCs) or by later successional BSCs (dominated by nitrogen (N)-fixing cyanobacteria and lichens). For each of the 8 plant type??crust type??locations, we sampled the stem, dripline, and 3 interspace distances around each of 3 plants. Soil analyses revealed that only available potassium (Kav) and ammonium concentrations were consistently greater under plants (7 of 8 sites and 6 of 8 sites, respectively). Nitrate and iron (Fe) were greater under plants at 4 sites, while all other nutrients were greater under plants at less than 50% of the sites. In contrast, calcium, copper, clay, phosphorus (P), and zinc were often greater in the interspace than under the plants. Soil microbial biomass was always greater under the plant compared to the interspace. The community composition of N-fixing bacteria was highly variable, with no distinguishable patterns among microsites. Bacterivorous nematodes and rotifers were consistently more abundant under plants (8 and 7 sites, respectively), and fungivorous and omnivorous nematodes were greater under plants at 5 of the 8 sites. Abundance of other soil biota was greater under plants at less than 50% of the sites, but highly correlated with the availability of N, P, Kav, and Fe. Unlike other ecosystems, the soil biota was only infrequently correlated with organic matter. Lack of plant-driven heterogeneity in soils of this ecosystem is likely due to (1) interspace soils covered with BSCs, (2) little incorporation of above-ground plant litter into soils, and/or (3) root deployment

  1. [Effects of rhizosphere soil permeability on water and nutrient uptake by maize].

    PubMed

    Niu, Wen-quan; Guo, Chao

    2010-11-01

    Aimed to better understand the significance of soil microenvironment in crop growth, a pot experiment was conducted to investigate the effects of rhizosphere soil permeability on the water and nutrient uptake by maize. Under three irrigation levels (600, 400, and 200 ml per pot), three treatments of soil aeration (no tube aeration as the control, tube aeration every two days, and tube aeration every four days) were installed, and the physiological indices of maize were measured. Under the same irrigation levels, soil aeration increased the plant height, leaf area, chlorophyll contents, promoted nutrient adsorption and increased root vitality markedly. At elongation stage, treatment tube aeration every four days had the highest root vitality (8.24 mg x g(-1) x h(-1)) under the irrigation level 600 ml per pot, being significantly higher (66.7%) than that (4.94 mg x g(-1) x h(-1)) of the control. Soil aeration had no significant effects on the transpiration rate of maize, indicating that rhizosphere soil aeration could raise water and nutrient use efficiency, and improve maize growth.

  2. 57Fe Mössbauer spectroscopy investigations of iron oxidation states in the Harmattan dust nutrient contribution to West African soils

    NASA Astrophysics Data System (ADS)

    Adetunji, Jacob

    2014-12-01

    A variety of investigations have been carried out on Harmattan dust over many decades demonstrating the continuing importance of the Harmattan dust phenomenon. The investigations have included elemental enrichment factors, mineralogical nutrient input through dust deposition on the soil, meteorological studies, etc. Harmattan dust is important, not only for its impact on radio communication and low visibility in the shipping lanes over the Atlantic, but also on the livelihood and health of people living in countries over which the dust-laden Harmattan wind blows. However, so far, the aspect of nutrient mineral deposition on the soil has not been thoroughly investigated and requires attention, since the majority of people living in West Africa rely heavily on agriculture. It is therefore relevant to know the useful nutrients in the Harmattan dust deposited on soils of the region. This study is therefore aimed at determining the ferric-ferrous ratio of the iron-bearing minerals contained in the Harmattan dust, so their nutritional contribution can be considered. The Mössbauer technique is a powerful tool for studying the ferric-ferrous ratio and has therefore been used, for the first time, to determine the oxidation states of iron in the dust samples. The results of the analysis show that the Harmattan dust is seriously deficient in ferrous iron, which is the more soluble Fe-ion, needed in the soil for healthy crops and plants in general.

  3. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil

    PubMed Central

    Richardson, Alan E.; Wade, Len J.; Conyers, Mark; Kirkegaard, John A.

    2016-01-01

    Removing carbon dioxide (CO2) from the atmosphere and storing the carbon (C) in resistant soil organic matter (SOM) is a global priority to restore soil fertility and help mitigate climate change. Although it is widely assumed that retaining rather than removing or burning crop residues will increase SOM levels, many studies have failed to demonstrate this. We hypothesised that the microbial nature of resistant SOM provides a predictable nutrient stoichiometry (C:nitrogen, C:phosphorus and C:sulphur–C:N:P:S) to target using supplementary nutrients when incorporating C-rich crop residues into soil. An improvement in the humification efficiency of the soil microbiome as a whole, and thereby C-sequestration, was predicted. In a field study over 5 years, soil organic-C (SOC) stocks to 1.6 m soil depth were increased by 5.5 t C ha-1 where supplementary nutrients were applied with incorporated crop residues, but were reduced by 3.2 t C ha-1 without nutrient addition, with 2.9 t C ha-1 being lost from the 0–10 cm layer. A net difference of 8.7 t C ha-1 was thus achieved in a cropping soil over a 5 year period, despite the same level of C addition. Despite shallow incorporation (0.15 m), more than 50% of the SOC increase occurred below 0.3 m, and as predicted by the stoichiometry, increases in resistant SOC were accompanied by increases in soil NPS at all depths. Interestingly the C:N, C:P and C:S ratios decreased significantly with depth possibly as a consequence of differences in fungi to bacteria ratio. Our results demonstrate that irrespective of the C-input, it is essential to balance the nutrient stoichiometry of added C to better match that of resistant SOM to increase SOC sequestration. This has implications for global practices and policies aimed at increasing SOC sequestration and specifically highlight the need to consider the hidden cost and availability of associated nutrients in building soil-C. PMID:27144282

  4. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil.

    PubMed

    Kirkby, Clive A; Richardson, Alan E; Wade, Len J; Conyers, Mark; Kirkegaard, John A

    2016-01-01

    Removing carbon dioxide (CO2) from the atmosphere and storing the carbon (C) in resistant soil organic matter (SOM) is a global priority to restore soil fertility and help mitigate climate change. Although it is widely assumed that retaining rather than removing or burning crop residues will increase SOM levels, many studies have failed to demonstrate this. We hypothesised that the microbial nature of resistant SOM provides a predictable nutrient stoichiometry (C:nitrogen, C:phosphorus and C:sulphur-C:N:P:S) to target using supplementary nutrients when incorporating C-rich crop residues into soil. An improvement in the humification efficiency of the soil microbiome as a whole, and thereby C-sequestration, was predicted. In a field study over 5 years, soil organic-C (SOC) stocks to 1.6 m soil depth were increased by 5.5 t C ha-1 where supplementary nutrients were applied with incorporated crop residues, but were reduced by 3.2 t C ha-1 without nutrient addition, with 2.9 t C ha-1 being lost from the 0-10 cm layer. A net difference of 8.7 t C ha-1 was thus achieved in a cropping soil over a 5 year period, despite the same level of C addition. Despite shallow incorporation (0.15 m), more than 50% of the SOC increase occurred below 0.3 m, and as predicted by the stoichiometry, increases in resistant SOC were accompanied by increases in soil NPS at all depths. Interestingly the C:N, C:P and C:S ratios decreased significantly with depth possibly as a consequence of differences in fungi to bacteria ratio. Our results demonstrate that irrespective of the C-input, it is essential to balance the nutrient stoichiometry of added C to better match that of resistant SOM to increase SOC sequestration. This has implications for global practices and policies aimed at increasing SOC sequestration and specifically highlight the need to consider the hidden cost and availability of associated nutrients in building soil-C. PMID:27144282

  5. [Status and changes of soil nutrients in rhizosphere of Abelmoschus manihot different planting age].

    PubMed

    Tang, Li-Xia; Tan, Xian-He; Zhang, Yu; Liu, Xiao-Ning

    2013-11-01

    Using soil chemical analysis method and combining with ICP-AES determination of mineral nutrition element content in rhizosphere soil of different planting age Abelmoschus Corolla Results show that along with the increase of planting age, the nitrogen (total N), available P and organic matter in rhizosphere soil of Abelmoschus Corolla content declined year by year and the soil got acidification. Heavy metal element content in agricultural land does not exceed national standards, but the content of element mercury (Hg) in rhizosphere soil of different planting age Abelmoschus Corolla declined. Request of microelement such as manganese (Mn) and zinc (Zn) had a increase tendency, but the content of magnesium (Mg) and sodium (Na) increased, and other nutrient elements had no changed rules or unchanged apparently. Consequently, exploring the change rules of different planting age Abelmoschus Corolla soil in rhizosphere as theoretical guidance of rational fertilization and subducting continuous cropping obstscles.

  6. [Status and changes of soil nutrients in rhizosphere of Abelmoschus manihot different planting age].

    PubMed

    Tang, Li-Xia; Tan, Xian-He; Zhang, Yu; Liu, Xiao-Ning

    2013-11-01

    Using soil chemical analysis method and combining with ICP-AES determination of mineral nutrition element content in rhizosphere soil of different planting age Abelmoschus Corolla Results show that along with the increase of planting age, the nitrogen (total N), available P and organic matter in rhizosphere soil of Abelmoschus Corolla content declined year by year and the soil got acidification. Heavy metal element content in agricultural land does not exceed national standards, but the content of element mercury (Hg) in rhizosphere soil of different planting age Abelmoschus Corolla declined. Request of microelement such as manganese (Mn) and zinc (Zn) had a increase tendency, but the content of magnesium (Mg) and sodium (Na) increased, and other nutrient elements had no changed rules or unchanged apparently. Consequently, exploring the change rules of different planting age Abelmoschus Corolla soil in rhizosphere as theoretical guidance of rational fertilization and subducting continuous cropping obstscles. PMID:24558867

  7. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    PubMed

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation. PMID:27441989

  8. Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients.

    PubMed

    Duchesne, Louis; Ouimet, Rock; Houle, Daniel

    2002-01-01

    Previous studies have shown in noncalcareous soils that acid deposition may have increased soil leaching of basic cations above the input rate from soil weathering and atmospheric depositions. This phenomenon may have increased soil acidity levels, and, as a consequence, may have reduced the availability of these essential nutrients for forest growth. Fourteen plots of the Forest Ecosystem Research and Monitoring Network in Québec were used to examine the relation between post-industrial growth trends of sugar maple (Acer saccharum Marsh.) and acid deposition (N and S), stand decline rate, and soil exchangeable nutrient concentrations. Atmospheric N and S deposition and soil exchangeable acidity were positively associated with stand decline rate, and negatively with the average tree basal area increment trend. The growth rate reduction reached on average 17% in declining stands compared with healthy ones. The results showed a significant sugar maple growth rate reduction since 1960 on acid soils. The appearance of the forest decline phenomenon in Québec can be attributed, at least partially, to soil acidification and acid deposition levels.

  9. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale.

    PubMed

    Li, Yilin; Kronzucker, Herbert J; Shi, Weiming

    2016-01-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world's leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4(+)) and nitrate (NO3(-)), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4(+) and NO3(-) exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0-3.5 mm depth, and O2soil became undetectable at 1.7-4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4(+) > O2water > NO3(-) > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field. PMID:27265522

  10. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    PubMed

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation.

  11. Nutrients and nonessential elements in soil after 11 years of wastewater irrigation.

    PubMed

    Pereira, B F Faria; He, Zhenli; Stoffella, Peter J; Montes, Celia R; Melfi, Adolpho J; Baligar, Virupax C

    2012-01-01

    Irrigation of citrus (Citrus aurantium L. × Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (∼53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH(4+), NO(3-), K(+), Ca(2+), Mg(2+), SO(4)(2-), H(3)BO(3), Cl(-), Fe(2+), Mn(2+), Zn(2+), Co(2+), and Ni(2+), whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO(3-), OH(-), and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season. PMID:22565273

  12. The effect of fire intensity, nutrients, soil microbes, and spatial distance on grassland productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding nutrient limitation is essential for interpreting grassland dynamics and responses to disturbance(s). Effects of fire on the biomass of grassland plants and soil microbes is likely mediated by short-term pulses of limiting resources. We used a replicated fire ecology experiment with ...

  13. Contaminant immobilization and nutrient release by carbonized biomass in water and soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chars contain functional surface groups such as carboxylic, phenolic, hydroxyl, carbonyl, and quinones, in addition to porous structures that can impact essential soil properties such as cation exchange capacity (CEC), pH, and retention of water, nutrients, and pesticides. Physical and chemical pro...

  14. [Optimal operating condition of ICP-aES for determination of soil nutrients extracted by Mehlich 3 through solution simulation].

    PubMed

    Wang, Xiao-li; Cui, Jian-yu; Tang, Ao-han; Han, Wen-xuan; Jiang, Rong-feng

    2010-09-01

    As a key process of fertilization with soil test, the determination of soil effective nutrients has received great attention in recent years. Based on a series of standard solution mixtures, which simulate the soil nutrients extracted by Mehlich 3 (M3) reagent, the optimal operating condition of ICP-AES was explored in a systematic way. The results show that the 20 key nutrient elements (P, K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Cd, Cr, Pb, Ni, Al, B, Mo, S, Si, Se, and As) in the solutions can be determined correctly and proficiently when ICP-AES is set at 0.80 L x min(-1) of carrier gas flux, with observation height 15 mm and power 1200 W. This study supplies a primary experimental foundation for establishing the determination technique of essential nutrient elements, extracted from soils in China with the general soil-nutrient extractant M3 reagent. PMID:21105440

  15. The Importance of Soil Mineralogy to Plant Nutrient Availability in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Nezat, C. A.; Blum, J. D.; Yanai, R. D.; Hamburg, S. P.

    2004-12-01

    In the northeastern U.S., acid deposition poses a threat to nutrient availability, via leaching of base cations (Ca, Mg, K, Na). While silicate mineral weathering may be the source of most base cations released from soils over millennia, more easily weathered minerals may provide nutrients necessary to meet short term demand resulting from acid deposition and forest harvesting. Through sequential leaching of soils and their parent materials, we can determine whether easily soluble trace minerals are potentially available to plants. Previous studies have shown that apatite, a calcium phosphate mineral present in trace amounts, may provide a significant source of Ca to vegetation at the Hubbard Brook Experimental Forest, New Hampshire. In this study, we explore the regional availability of apatite in soils across the northeastern United States. Soils derived from granitoid and sedimentary rocks were collected from 20 sites across the northeast U.S. and sequentially leached to determine relative availability of base cations. A leach using 1M nitric acid extracted Ca and P from soils developed on crystalline parent materials (0.02 to 0.04 mmol Ca/g soil, 0.01 to 0.03 mmol P/g soil). The Ca:P ratio is 5:3, the stoichiometric ratio of apatite. The presence of apatite in these soils was verified by SEM analysis. The lack of K, Na and Si in this leach suggests that silicate mineral dissolution is not the source of Ca. The Ca and P concentrations indicate that amount of apatite varies in granitoid soil parent materials across the northeastern U.S. Sedimentary rock-derived soils did not contain appreciable amounts of apatite. With the exception of carbonate-derived soils, only small concentrations of Ca (<0.006 mmol/g soil) were leached from sedimentary rocks in 1M nitric acid.

  16. Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation.

    PubMed

    van der Waal, Cornelis; Kool, Ada; Meijer, Seline S; Kohi, Edward; Heitkönig, Ignas M A; de Boer, Willem F; van Langevelde, Frank; Grant, Rina C; Peel, Mike J S; Slotow, Rob; de Knegt, Henrik J; Prins, Herbert H T; de Kroon, Hans

    2011-04-01

    In savannas, the tree-grass balance is governed by water, nutrients, fire and herbivory, and their interactions. We studied the hypothesis that herbivores indirectly affect vegetation structure by changing the availability of soil nutrients, which, in turn, alters the competition between trees and grasses. Nine abandoned livestock holding-pen areas (kraals), enriched by dung and urine, were contrasted with nearby control sites in a semi-arid savanna. About 40 years after abandonment, kraal sites still showed high soil concentrations of inorganic N, extractable P, K, Ca and Mg compared to controls. Kraals also had a high plant production potential and offered high quality forage. The intense grazing and high herbivore dung and urine deposition rates in kraals fit the accelerated nutrient cycling model described for fertile systems elsewhere. Data of a concurrent experiment also showed that bush-cleared patches resulted in an increase in impala dung deposition, probably because impala preferred open sites to avoid predation. Kraal sites had very low tree densities compared to control sites, thus the high impala dung deposition rates here may be in part driven by the open structure of kraal sites, which may explain the persistence of nutrients in kraals. Experiments indicated that tree seedlings were increasingly constrained when competing with grasses under fertile conditions, which might explain the low tree recruitment observed in kraals. In conclusion, large herbivores may indirectly keep existing nutrient hotspots such as abandoned kraals structurally open by maintaining a high local soil fertility, which, in turn, constrains woody recruitment in a negative feedback loop. The maintenance of nutrient hotspots such as abandoned kraals by herbivores contributes to the structural heterogeneity of nutrient-poor savanna vegetation. PMID:21225433

  17. Nutrients and bacteria in common contiguous Mississippi soils with and without broiler litter fertilization.

    PubMed

    McLaughlin, Michael R; Brooks, John P; Adeli, Ardeshir; Tewolde, Haile

    2011-01-01

    In Mississippi, spent poultry litter is used as fertilizer. Nutrient and bacterial levels in litter and nutrient levels in litter-fertilized (L+) soil are known, but less is known of bacterial levels in L+ soil. This study compared contiguous L+ and non-litter-fertilized (L-) soils comprising 15 soil types on five farms in April through May 2009. Levels of pH; NO-N; and Mehlich-3-extractable (M3) and water-extractable (WE) P, Ca, K, and Cu were higher in L+ than in L- soil. Total C; total N; NH-N; and M3 and WE Na, Fe, and Zn did not differ in L+ and L- soil. Bacterial levels were higher in 0- to 5-cm than in 5- to 10-cm cores. Levels were higher in L+ than in L- soil for culturally determined heterotrophic plate counts and staphylococci and were lower for total bacteria estimated by quantitative polymerase chain reaction (qPCR) of 16S rRNA, but cultural levels of thermotolerant coliforms, , , and enterococci were not different. Cultural presence/absence (CPA) tests and qPCR for spp., spp., and spp. detected only spp., which did not differ in L+ (CPA = 77% positive samples; mean qPCR = 0.65 log genomic units [gu] g) and L- (CPA = 70% positive samples; mean qPCR = 0 log gu g) soils. Litter applications were associated with higher levels of pH, P, Cu, heterotrophic plate counts, and staphylococci. Fecal indicator and enteric pathogen levels were not affected. We conclude that, although some litter-derived nutrients and bacteria persisted between growing seasons in L+ soils, enteric pathogens did not.

  18. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil.

    PubMed

    Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika

    2016-08-01

    The main challenge for plants growing in nutrient poor, contaminated soil is biomass reduction, nutrient deficiency and presence of heavy metals. Our aim is to overcome these challenges using different microbial combinations in mining-impacted soil and focus on their physiological and biochemical impacts on a model plant system, which has multiple applications. In the current study, sorghum BTx623 seedlings grown in mining-impacted soil in greenhouse were subjected to plant growth promoting bacteria (PGPB or B) alone, PGPB with arbuscular mycorrhizal fungi (My), My alone and control group with no treatment. Root biomass and uptake of most of the elements showed significant increase in all treatment groups in comparison with control. Mycorrhiza group showed the best effect followed by My + B and B groups for uptake of majority of the elements by roots. On the contrary, biomass of both shoot and root was more influenced by B treatment than My + B and My treatments. Metabolomics identified compounds whose levels changed in roots of treatment groups significantly in comparison to control. Upregulation of stearic acid, sorbitol, sebacic acid and ferulic acid correlated positively with biomass and uptake of almost all elements. Two biochemical pathways, fatty acid biosynthesis and galactose metabolism, were regulated in all treatment groups. Three common pathways were upregulated only in My and My + B groups. Our results suggest that PGPB enhanced metabolic activities which resulted in increase in element uptake and sorghum root biomass whether accompanied with mycorrhiza or used solely. PMID:27208643

  19. Soil nutrient additions increase invertebrate herbivore abundances, but not herbivory, across three grassland systems.

    PubMed

    La Pierre, Kimberly J; Smith, Melinda D

    2016-02-01

    Resource availability may influence invertebrate communities, with important consequences for ecosystem function, such as biomass production. We assessed: (1) the effects of experimental soil nutrient additions on invertebrate abundances and feeding rates and (2) the resultant changes in the effects of invertebrates on aboveground plant biomass at three grassland sites spanning the North American Central Plains, across which plant tissue chemistry and biomass vary. Invertebrate communities and rates of herbivory were sampled within a long-term nutrient-addition experiment established at each site along the broad Central Plains precipitation gradient. Additionally, the effects of invertebrates on aboveground plant biomass were determined under ambient and elevated nutrient conditions. At the more mesic sites, invertebrate herbivore abundances increased and their per capita rate of herbivory decreased with nutrient additions. In contrast, at the semi-arid site where plant biomass is low and plant nutrient concentrations are high, invertebrate herbivore abundances did not vary and per capita rates of herbivory increased with nutrient additions. No change in the effect of invertebrate herbivores on aboveground plant biomass was observed at any of the sites. In sum, nutrient additions induced shifts in both plant biomass and leaf nutrient content, which altered invertebrate abundances and feeding rate. However, due to the inverse relationship between changes in herbivore abundance and per capita rates of herbivory, nutrient additions did not alter the effect of invertebrates on aboveground biomass. Overall, we suggest that this inverse response of herbivore abundance and per capita feeding rate may buffer ecosystems against changes in invertebrate damage in response to fluctuations in nutrient levels.

  20. Soils, slopes and source rocks: Application of a soil chemistry model to nutrient delivery to rift lakes

    NASA Astrophysics Data System (ADS)

    Harris, Nicholas B.; Tucker, Gregory E.

    2015-06-01

    The topographic evolution of rift basins may be critical to the deposition of lacustrine source rocks such as the organic-rich Lower Cretaceous shales of the South Atlantic margin. Soils have been proposed as a key link between topography and source rock deposition by providing nutrients for the algae growth in rift lakes. Decreasing topographic relief from active rift to late rift has several effects on soils: soils become thicker and finer, erosion of dead surface and soil organic matter decreases, and the fractionation of precipitation between runoff and infiltration may favor increased infiltration. This hypothesis is tested by application of CENTURY, a complex box model that simulates transfer of nutrients within soil pools. The model is first applied to a rainforest soil, with several parameters individually varied. Infiltration experiments show that the concentrations of C, N and P in groundwater decrease rapidly as infiltration decreases, whether due to increased slope or to decreased precipitation. Increased erosion of surface plant litter and topsoil results in substantially decreased nutrient concentrations in groundwater. Increased sand content in soil causes an increase in nutrient concentration. We integrate these variables in analyzing topographic swathes from the Rio Grande Rift, comparing the southern part of the rift, where topography is relatively old and reduced, to the northern rift. C and P concentrations in groundwater increase as slope gradient decreases, resulting in substantially larger C and P concentrations in groundwater in the southern rift than the northern rift. Nitrogen concentrations in groundwater depends on whether infiltration varies as a function of slope gradient; in experiments where the fraction of infiltrated precipitation decreased with increasing slope, N concentrations was also substantially higher in the southern rift; but in experiments where that fraction was held constant, N concentrations was lower in the southern

  1. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    NASA Astrophysics Data System (ADS)

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  2. Carbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2013-01-01

    Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. Within the 2006 site, two fertilizer regimes were established – one in which plots received 5 g N⋅m-2⋅year-1 and 2.5 g P⋅m-2⋅year-1 and one in which plots received 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems. PMID:24204773

  3. [Effects of nighttime warming on winter wheat root growth and soil nutrient availability].

    PubMed

    Zhang, Ming-Qian; Chen, Jin; Guo, Jia; Tian, Yun-Lu; Yang, Shi-Jia; Zhang, Li; Yang, Bing; Zhang, Wei-Jian

    2013-02-01

    Climate warming has an obvious asymmetry between day and night, with a greater increment of air temperature at nighttime than at daytime. By adopting passive nighttime warming (PNW) system, a two-year field experiment of nighttime warming was conducted in the main production areas of winter wheat in China (Shijiazhuang of Hebei Province, Xuzhou of Jiangsu Province, Xuchang of Henan Province, and Zhenjiang of Jiangsu Province) in 2009 and 2010, with the responses of soil pH and available nutrient contents during the whole growth periods and of wheat root characteristics at heading stage determined. As compared with the control (no nighttime warming), nighttime warming decreased the soil pH and available nutrient contents significantly, and increased the root dry mass and root/shoot ratio to a certain extent. During the whole growth period of winter wheat, nighttime warming decreased the soil pH in Shijiazhuang, Xuzhou, Xuchang, and Zhenjiang averagely by 0.4%, 0.4%, 0.7%, and 0.9%, the soil alkaline nitrogen content averagely by 8.1%, 8.1%, 7.1%, and 6.0%, the soil available phosphorus content averagely by 15.7%, 12.1%, 19.6%, and 25.8%, and the soil available potassium content averagely by 11.5%, 7.6%, 7.6% , and 10.1%, respectively. However, nighttime warming increased the wheat root dry mass at heading stage in Shijiazhuang, Xuzhou, and Zhenjiang averagely by 31. 5% , 27.0%, and 14.5%, and the root/shoot ratio at heading stage in Shijiazhuang, Xuchang, and Zhenjiang averagely by 23.8%, 13.7% and 9.7%, respectively. Our results indicated that nighttime warming could affect the soil nutrient supply and winter wheat growth via affecting the soil chemical properties. PMID:23705390

  4. [Effects of nighttime warming on winter wheat root growth and soil nutrient availability].

    PubMed

    Zhang, Ming-Qian; Chen, Jin; Guo, Jia; Tian, Yun-Lu; Yang, Shi-Jia; Zhang, Li; Yang, Bing; Zhang, Wei-Jian

    2013-02-01

    Climate warming has an obvious asymmetry between day and night, with a greater increment of air temperature at nighttime than at daytime. By adopting passive nighttime warming (PNW) system, a two-year field experiment of nighttime warming was conducted in the main production areas of winter wheat in China (Shijiazhuang of Hebei Province, Xuzhou of Jiangsu Province, Xuchang of Henan Province, and Zhenjiang of Jiangsu Province) in 2009 and 2010, with the responses of soil pH and available nutrient contents during the whole growth periods and of wheat root characteristics at heading stage determined. As compared with the control (no nighttime warming), nighttime warming decreased the soil pH and available nutrient contents significantly, and increased the root dry mass and root/shoot ratio to a certain extent. During the whole growth period of winter wheat, nighttime warming decreased the soil pH in Shijiazhuang, Xuzhou, Xuchang, and Zhenjiang averagely by 0.4%, 0.4%, 0.7%, and 0.9%, the soil alkaline nitrogen content averagely by 8.1%, 8.1%, 7.1%, and 6.0%, the soil available phosphorus content averagely by 15.7%, 12.1%, 19.6%, and 25.8%, and the soil available potassium content averagely by 11.5%, 7.6%, 7.6% , and 10.1%, respectively. However, nighttime warming increased the wheat root dry mass at heading stage in Shijiazhuang, Xuzhou, and Zhenjiang averagely by 31. 5% , 27.0%, and 14.5%, and the root/shoot ratio at heading stage in Shijiazhuang, Xuchang, and Zhenjiang averagely by 23.8%, 13.7% and 9.7%, respectively. Our results indicated that nighttime warming could affect the soil nutrient supply and winter wheat growth via affecting the soil chemical properties.

  5. A Three Dimensional View of Nutrient Hotspots in a Sierra Nevada Forest Soil

    NASA Astrophysics Data System (ADS)

    Johnson, D. W.; Meadows, M. W.; Woodward, C.

    2012-12-01

    In a previous paper, we explored the variability in O horizons and surface soils in two 6 x 6 m plots in the King's River Experimental Watershed (KREW) in the western Sierra Nevada Mountains of California, one of the Critical Zone Observatory sites. Using both traditional soil coring and resin-based methods, we found that hotspots were common for all measured nutrients, especially in water-extractable fractions. We hypothesized that some of these hotspots were due to preferential infiltration of O horizon interflow. In this study, we expand the sampling space vertically by installing resin capsules at the O horizon/mineral soil interface (as in the past), and at 20, 40, and 60 cm in the soil in 16 gridpoints within a 6 x 6 m grid using the WECSA® Access system. Resins were collected after the first precipitation event in the autumn of 2011 and after snowmelt in the spring of 2012, thus providing a three-dimensional view of soil nutrient availability at two different times in exactly the same locations. The data showed considerable spatial variability at all depths, but also suggested vertical connections of hotspots for certain nutrients in that high values were co-located in the same vertical location at different depths. The data also showed clustering of high nutrient values in the deeper depths after the first precipitation event, suggesting the influence of preferential flow with the first fall wetting front. Schematic of resin collector array in soil Na and NH4 concentrations in capsules after first precipitation event.

  6. Influence of soil pH in vegetative filter strips for reducing soluble nutrient transport.

    PubMed

    Rahmana, Atikur; Rahmana, Shafiqur; Cihacek, Larry

    2014-08-01

    Low efficacy of vegetative filter strips (VFS) in reducing soluble nutrients has been reported in research articles. Solubility of phosphorus and nitrogen compounds is largely affected by pH of soil. Changing soil pH may result in a decrease in soluble nutrient transportation through VFS. This study was conducted to evaluate the effect of pH levels of VFS soil on soluble nutrient transport reduction from manure-borne runoff. Soil (loamy sand texture; bulk density 1.3 g cm-3) was treated with calcium carbonate to change pH at different pH treatment levels (5.5-6.5, 6.5-7.5, and 7.5-8.5), soil was packed into galvanized metal boxes, and tall fescue grasses were established in the boxes to simulate VFS. Boxes were placed in an open environment, tilted to a 3.0% slope, and 44.0 L manure-amended water was applied through the VFS by a pump at a rate of 1.45 L min-1. Water samples were collected at the inlet and outlet as well as from the leachate. Samples were analysed for ortho-phosphorus, ammonium nitrogen, nitrate nitrogen, and potassium. Highest transport reductions in ortho-phosphorus (42.4%) and potassium (20.5%) were observed at pH range 7.5-8.5. Ammonium nitrogen transport reduction was the highest at pH level of 6.5-7.5 and was 26.1%. Surface transport reduction in nitrate nitrogen was 100%, but leachate had the highest concentration of nitrate nitrogen. Mass transport reduction also suggested that higher pH in the VFS soil are effective in reducing some soluble nutrients transport.

  7. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    PubMed

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  8. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: Implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological

  9. Nutrient input and removal trends for agricultural soils in nine geographic regions in Arkansas.

    PubMed

    Slaton, Nathan A; Brye, Kristofor R; Daniels, Mike B; Daniel, Tommy C; Norman, Richard J; Miller, David M

    2004-01-01

    Knowledge of the balance between nutrient inputs and removals is required for identifying regions that possess an excess or deficit of nutrients. This assessment describes the balance between the agricultural nutrient inputs and removals for nine geographical districts within Arkansas from 1997 to 2001. The total N, P, and K inputs were summed for each district and included inorganic fertilizer and collectable nutrients excreted as poultry, turkey, dairy, and hog manures. Nutrients removed by harvested crops were summed and subtracted from total nutrient inputs to calculate the net nutrient balance. The net balances for N, P, and K were distributed across the hectarage used for row crop, hay, pasture, or combinations of these land uses. Row-crop agriculture predominates in the eastern one-third and animal agriculture predominates in the western two-thirds of Arkansas. Nutrients derived from poultry litter accounted for >92% of the total transportable manure N, P, and K. The three districts in the eastern one-third of Arkansas contained 95% of the row-crop hectarage and had net N and P balances that were near zero or negative. The six districts in the western two-thirds of Arkansas accounted for 89 to 100% of the animal populations, had positive net balances for N and P, and excess P ranged from 1 to 9 kg P ha(-1) when distributed across row-crop, hay, and pasture hectarage. Transport of excess nutrients, primarily in poultry litter, outside of the districts in western Arkansas is needed to achieve a balance between soil inputs and removals of P and N.

  10. [Effects of continuous cropping of wheat and alfalfa on soil enzyme activities and nutrients].

    PubMed

    Zhang, Li-Qiong; Hao, Ming-De; Zang, Yi-Fei; Li, Li-Xia

    2014-11-01

    Based on a long-term rotation and fertilization experiment in Changwu, Shaanxi, China, we determined the enzymatic activities and nutrients in soils after 27 years continuous cropping of alfalfa and wheat, respectively. The activities of invertase, urease and phosphatase were not affected by fertilization treatment within each cropping system, but they were significantly higher in the alfalfa continuous cropping system than in the wheat continuous cropping system under each fertilization treatment. The activity of hydrogen peroxidase was not affected by the type of cropping system or fertilization treatment. Across the cropping systems, the activities of soil urease, phosphatase and hydrogen peroxidase were higher while soil invertase activity was lower in N, P and manure (NPM) combined treatment compared with the other fertilization treatments. The accumulations of soil organic matter, total nitrogen and available nitrogen were greater in the alfalfa cropping system than in the wheat continuous cropping system, and the NPM treatment could improve the soil fertility.

  11. [Effects of continuous cropping of wheat and alfalfa on soil enzyme activities and nutrients].

    PubMed

    Zhang, Li-Qiong; Hao, Ming-De; Zang, Yi-Fei; Li, Li-Xia

    2014-11-01

    Based on a long-term rotation and fertilization experiment in Changwu, Shaanxi, China, we determined the enzymatic activities and nutrients in soils after 27 years continuous cropping of alfalfa and wheat, respectively. The activities of invertase, urease and phosphatase were not affected by fertilization treatment within each cropping system, but they were significantly higher in the alfalfa continuous cropping system than in the wheat continuous cropping system under each fertilization treatment. The activity of hydrogen peroxidase was not affected by the type of cropping system or fertilization treatment. Across the cropping systems, the activities of soil urease, phosphatase and hydrogen peroxidase were higher while soil invertase activity was lower in N, P and manure (NPM) combined treatment compared with the other fertilization treatments. The accumulations of soil organic matter, total nitrogen and available nitrogen were greater in the alfalfa cropping system than in the wheat continuous cropping system, and the NPM treatment could improve the soil fertility. PMID:25898616

  12. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence

    USGS Publications Warehouse

    Bullen, Thomas D.; Chadwick, Oliver A.

    2016-01-01

    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as

  13. Soil nutrient status determines how elephant utilize trees and shape environments.

    PubMed

    Pretorius, Yolanda; de Boer, Fred W; van der Waal, Cornelis; de Knegt, Henjo J; Grant, Rina C; Knox, Nicky M; Kohi, Edward M; Mwakiwa, Emmanuel; Page, Bruce R; Peel, Mike J S; Skidmore, Andrew K; Slotow, Rob; van Wieren, Sipke E; Prins, Herbert H T

    2011-07-01

    1. Elucidation of the mechanism determining the spatial scale of patch selection by herbivores has been complicated by the way in which resource availability at a specific scale is measured and by vigilance behaviour of the herbivores themselves. To reduce these complications, we studied patch selection by an animal with negligible predation risk, the African elephant. 2. We introduce the concept of nutrient load as the product of patch size, number of patches and local patch nutrient concentration. Nutrient load provides a novel spatially explicit expression of the total available nutrients a herbivore can select from. 3. We hypothesized that elephant would select nutrient-rich patches, based on the nutrient load per 2500 m(2) down to the individual plant scale, and that this selection will depend on the nitrogen and phosphorous contents of plants. 4. We predicted that elephant would cause more adverse impact to trees of lower value to them in order to reach plant parts with higher nutrient concentrations such as bark and root. However, elephant should maintain nutrient-rich trees by inducing coppicing of trees through re-utilization of leaves. 5. Elephant patch selection was measured in a homogenous tree species stand by manipulating the spatial distribution of soil nutrients in a large field experiment using NPK fertilizer. 6. Elephant were able to select nutrient-rich patches and utilized Colophospermum mopane trees inside these patches more than outside, at scales ranging from 2500 down to 100 m(2) . 7. Although both nitrogen and phosphorus contents of leaves from C. mopane trees were higher in fertilized and selected patches, patch choice correlated most strongly with nitrogen content. As predicted, stripping of leaves occurred more in nutrient-rich patches, while adverse impact such as uprooting of trees occurred more in nutrient-poor areas. 8. Our results emphasize the necessity of including scale-dependent selectivity in foraging studies and how elephant

  14. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).

  15. Biochar can be used to recapture essential nutrients from dairy wastewater and improve soil quality

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.

    2014-04-01

    Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available waste biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20 to 43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 t of ammonium-N and 920-4600 t of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of waste biomass.

  16. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    NASA Astrophysics Data System (ADS)

    Hasselquist, N. J.; Germino, M. J.; Sankey, J. B.; Ingram, L. J.; Glenn, N. F.

    2011-08-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m-1 d-1 and 19 g N m-1 d-1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  17. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments.

    PubMed

    Barnes, Rebecca T; Gallagher, Morgan E; Masiello, Caroline A; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent.

  18. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    PubMed Central

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  19. Soil and solid poultry waste nutrient management and water quality.

    PubMed

    Chapman, S L

    1996-07-01

    Concerns about the impacts of nitrogen, phosphorus, and pathogens on surface and ground water quality has forced the poultry industry to implement voluntary waste management guidelines for use by growers. In some states, animal waste guidelines are being enforced by regulatory agencies. Strategies that growers may use to properly dispose of poultry waste include: 1) local land application as a fertilizer; 2) offsite marketing for use as a fertilizer or soil amendment, feed additive, or energy source; and 3) chemical additives that will immobilize nitrogen and phosphorus in the manure or litter. If properly followed, these and other innovative strategies should be adequate to protect surface and ground water quality without adversely affecting the economics of poultry production. PMID:8805204

  20. A mechanistic soil biogeochemistry model with explicit representation of microbial and macrofaunal activities and nutrient cycles

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Manzoni, Stefano; Or, Dani; Paschalis, Athanasios

    2016-04-01

    The potential of a given ecosystem to store and release carbon is inherently linked to soil biogeochemical processes. These processes are deeply connected to the water, energy, and vegetation dynamics above and belowground. Recently, it has been advocated that a mechanistic representation of soil biogeochemistry require: (i) partitioning of soil organic carbon (SOC) pools according to their functional role; (ii) an explicit representation of microbial dynamics; (iii) coupling of carbon and nutrient cycles. While some of these components have been introduced in specialized models, they have been rarely implemented in terrestrial biosphere models and tested in real cases. In this study, we combine a new soil biogeochemistry model with an existing model of land-surface hydrology and vegetation dynamics (T&C). Specifically the soil biogeochemistry component explicitly separates different litter pools and distinguishes SOC in particulate, dissolved and mineral associated fractions. Extracellular enzymes and microbial pools are explicitly represented differentiating the functional roles of bacteria, saprotrophic and mycorrhizal fungi. Microbial activity depends on temperature, soil moisture and litter or SOC stoichiometry. The activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitrogen, phosphorous and potassium. The model accounts for feedbacks between nutrient limitations and plant growth as well as for plant stoichiometric flexibility. In turn, litter input is a function of the simulated vegetation dynamics. Root exudation and export to mycorrhiza are computed based on a nutrient uptake cost function. The combined model is tested to reproduce respiration dynamics and nitrogen cycle in few sites where data were available to test plausibility of results across a range of different metrics. For instance in a Swiss grassland ecosystem, fine root, bacteria, fungal and macrofaunal respiration account for 40%, 23%, 33% and 4% of total belowground

  1. Assessing nutrient losses with soil erosion under different tillage systems and their implications on water quality

    NASA Astrophysics Data System (ADS)

    Munodawafa, Adelaide

    An increased public perception of the role of agriculture in non-point source pollution has stimulated the need for information on the effect of conventional and sustainable agricultural management systems on water quality. While information on run-off and soil erosion is readily available in Zimbabwe, there is dearth of knowledge on the relative losses of nutrients as a result of soil erosion and their effect on water quality. This study sought to quantify the amount of nutrients lost as a result of soil erosion and thus enable conclusions to be drawn on the implications on water quality. Research work was carried out in the semi-arid region of Zimbabwe under granite-derived, inherently infertile sandy soils. Soil erosion was quantified under three tillage systems conventional tillage (CT); mulch ripping (MR); tied ridging (TR) over three years. Run-off and sediments were analysed for N, P and K. The results showed that N and K losses were significantly higher ( p < 0.001) under CT (15.8 and 34.5 kg ha -1 yr -1, respectively) compared to the MR (2.3 and 0.6 kg ha -1 yr -1, respectively) and TR (2.7 and 4.3 kg ha -1 yr -1, respectively). Due to the immobility of P and its small quantities in these soils, P losses were also low across all treatments (<1 kg ha -1 yr -1), however CT had significantly higher losses ( p < 0.001). The study showed that CT results in high losses of nutrients, which would in turn reduce the quality of surface waters, due to high nutrient concentrations of especially, N, which stimulates the growth of algae and other aquatic weeds. The gravity of the situation would be higher, where soils are more fertile. MR and TR were efficient in reducing soil erosion and thus nutrient losses with run-off and sediments. Pollution of surface water sources can be greatly reduced if conservation tillage systems are used.

  2. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.

    PubMed

    Uriarte, María; Turner, Benjamin L; Thompson, Jill; Zimmerman, Jess K

    2015-10-01

    Leaf litter represents an important link between tree community composition, forest productivity and biomass, and ecosystem processes. In forests, the spatial distribution of trees and species-specific differences in leaf litter production and quality are likely to cause spatial heterogeneity in nutrient returns to the forest floor and, therefore, in the redistribution of soil nutrients. Using mapped trees and leaf litter data for 12 tree species in a subtropical forest with a well-documented history of land use, we: (1) parameterized spatially explicit models of leaf litter biomass and nutrient deposition; (2) assessed variation in leaf litter inputs across forest areas with different land use legacies; and (3) determined the degree to which the quantity and quality of leaf litter inputs and soil physical characteristics are associated with spatial heterogeneity in soil nutrient ratios (C:N and N:P). The models captured the effects of tree size and location on spatial variation in leaf litterfall (R² = 0.31-0.79). For all 12 focal species, most of the leaf litter fell less than 5 m away from the source trees, generating fine- scale spatial heterogeneity in leaf litter inputs. Secondary forest species, which dominate areas in earlier successional stages, had lower leaf litter C:N ratios and produced less litter biomass than old-growth specialists. In contrast, P content and N:P ratios did not vary consistently among successional groups. Interspecific variation in leaf litter quality translated into differences in the quantity and quality (C:N) of total leaf litter biomass inputs and among areas with different land use histories. Spatial variation in leaf litter C:N inputs was the major factor associated with heterogeneity in soil C:N ratios relative to soil physical characteristics. In contrast, spatial variation soil N:P was more strongly associated with spatial variation in topography than heterogeneity in leaf litter inputs. The modeling approach presented here

  3. Nutrient uptake by agricultural crops from biochar-amended soils: results from two field experiments in Austria

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Kloss, Stefanie; Wimmer, Bernhard; Soja, Gerhard

    2013-04-01

    The use of biochar as soil amendment is considered as a promising agricultural soil management technique, combining carbon sequestration and soil fertility improvements. These expectations are largely founded on positive experiences with biochar applications to impoverished or degraded tropical soils. The validity of these results for soils in temperate climates needs confirmation from field experiments with typical soils representative for intensive agricultural production areas. Frequently biochar is mixed with other organic additives like compost. As these two materials interact with each other and each one may vary considerably in its basic characteristics, it is difficult to attribute the effects of the combined additive to one of its components and to a specific physico-chemical parameter. Therefore investigations of the amendment efficacy require the study of the pure components to characterize their specific behavior in soil. This is especially important for adsorption behavior of biochar for macro- and micronutrients because in soil there are multiple nutrient sinks that compete with plant roots for vital elements. Therefore this contribution presents results from a field amendment study with pure biochar that had the objective to characterize the macro- and microelement uptake of crops from different soils in two typical Austrian areas of agricultural production. At two locations in North and South-East Austria, two identical field experiments on different soils (Chernozem and Cambisol) were installed in 2011 with varying biochar additions (0, 30 and 90 t/ha) and two nitrogen levels. The biochar was a product from slow pyrolysis of wood (SC Romchar SRL). During the installation of the experiments, the biochar fraction of <2 mm was mixed with surface soil to a depth of 15 cm in plots of 33 m2 each (n=4). Barley (at the Chernozem soil) and maize (at the Cambisol) were cultivated according to standard agricultural practices. The highest crop yields at both

  4. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, Jayne; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of

  5. Land application of tylosin and chlortetracycline swine manure: Impacts to soil nutrients and soil microbial community structure.

    PubMed

    Stone, James J; Dreis, Erin K; Lupo, Christopher D; Clay, Sharon A

    2011-01-01

    The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO(2) generation. The aged tylosin treatment resulted in the greatest degree of CO(2) inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons. PMID:21877979

  6. Land application of tylosin and chlortetracycline swine manure: Impacts to soil nutrients and soil microbial community structure.

    PubMed

    Stone, James J; Dreis, Erin K; Lupo, Christopher D; Clay, Sharon A

    2011-01-01

    The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO(2) generation. The aged tylosin treatment resulted in the greatest degree of CO(2) inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons.

  7. Major element, trace element, nutrient, and radionuclide mobility in a mining by-product-amended soil.

    PubMed

    Douglas, G; Adeney, J; Johnston, K; Wendling, L; Coleman, S

    2012-01-01

    This study investigates the use of a mineral processing by-product, neutralized used acid (NUA), primarily composed of gypsum and Fe-oxyhydroxide, as a soil amendment. A 1489-d turf farm field trial assessed nutrient, trace element, and radionuclide mobility of a soil amended with ∼5% by mass to a depth of 15 cm of NUA. Average PO-P fluxes collected as subsoil leachates were 0.7 and 26.6 kg ha yr for NUA-amended and control sites, respectively, equating to a 97% reduction in PO-P loss after 434 kg P ha was applied. Total nitrogen fluxes in NUA-amended soil leachates were similarly reduced by 82%. Incorporation of NUA conferred major changes in leachate geochemistry with a diverse suite of trace elements depleted within NUA-amended leachates. Gypsum dissolution from NUA resulted in an increase from under- to oversaturation of the soil leachates for a range of Fe- and Ca-minerals including calcite and ferrihydrite, many of which have a well-documented ability to assimilate PO-P and trace elements. Isotopic analysis indicated little Pb addition from NUA. Both Sr and Nd isotope results revealed that NUA and added fertilizer became an important source of Ca to leachate and turf biomass. The NUA-amended soils retained a range of U-Th series radionuclides, with little evidence of transfer to soil leachate or turf biomass. Calculated radioactivity dose rates indicate only a small increment due to NUA amendment. With increased nutrient, trace element, and solute retention, and increased productivity, a range of potential agronomic benefits may be conferred by NUA amendment of soils, in addition to the potential to limit offsite nutrient loss and eutrophication. PMID:23128739

  8. Managing soil nutrients with compost in organic farms of East Georgia

    NASA Astrophysics Data System (ADS)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  9. Modeling Size-Selective Soil Erosion and Nutrient Transport in Flume-Scale Experiments

    NASA Astrophysics Data System (ADS)

    Heng, B. P.; Sander, G. C.; Armstrong, A.; Chandler, J. H.; Quinton, J. N.; Scott, C. F.; Wheatley, A. D.

    2009-12-01

    The erosion of agricultural soils can have severe consequences for surface water quality as well as agricultural productivity. Where surface runoff occurs, it can carry sediment and nutrients quickly and in large quantities into water bodies. It is therefore important to be able to predict with some confidence their movement in overland flow. Since particulate pollutants (such as phosphorus) bind preferentially to the finer soil particles, we need to know the particle size distribution (PSD) of the sediment being transported as well as the bulk quantity. In this paper, we use a size-selective soil erosion model (coupled with the Saint-Venant equations for overland flow) to reproduce flume-scale experimental observations of sediment and nutrient transport dynamics under simulated rainfall. In view of the differences between experimental replicates, we model the experimental runs individually with separate sets of parameters. The model results are promising in relation to the PSD as well as the concentration of sediment in the surface runoff. We show that soil erosion and sediment transport can be significantly affected by seemingly minor topographical differences (measured by close range photogrammetry). We also analyze the optimized parameters for trends that give further insight into erosion processes. Finally, we present a single-parameter nutrient transport model that can reproduce with reasonable accuracy the dynamics of phosphorus export.

  10. Nitrate losses, nutrients and heavy metal accumulation from substrates assembled for urban soils reconstruction.

    PubMed

    Civeira, G; Lavado, R S

    2008-09-01

    Urban soils may suffer mild to severe degradation as a result of physical and chemical alterations. To reconstruct these soils, a new upper horizon must be created, usually through the application of organic matter, one source of which is biosolids. Different soil mixtures were evaluated with regard to loss of nitrates in percolates and the uptake and incorporation of nutrients and heavy metals into plant tissues. The experiment was conducted in trays; treatments were mixtures of biosolids and a coarse material (e.g., sand or pine wood sawdust), combined in different proportions. Randomized trays were seeded with a mix of tall fescue (Festuca arundinacea L.) and perennial ryegrass (Lolium perenne L.). Plant biomass was quantified. Nitrates in percolates were measured, as were nutrients and heavy metals in mixtures and plant tissues. Plants accumulated substantially more N, and biomass was 40% higher, in the treatments with higher levels of biosolids. The same treatments released more nitrogen and resulted in higher percolate nitrate levels. Plants had normal concentrations of all nutrients, except nitrogen, which was low. Heavy metal concentrations were not significantly different among treatments. Based on the analysis of these data, the proportion of biosolids appears to be the most important factor affecting the quality of reconstructed soil and the rate of improvement. The type of coarse material used did not significantly affect the outcome.

  11. The Effects of More Extreme Rainfall Patterns on Infiltration and Nutrient Losses in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2015-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to

  12. Soil Chemical Weathering and Nutrient Budgets along an Earthworm Invasion Chronosequence in a Northern Minnesota Forest

    NASA Astrophysics Data System (ADS)

    Resner, K. E.; Yoo, K.; Sebestyen, S. D.; Aufdenkampe, A. K.; Lyttle, A.; Weinman, B. A.; Blum, A.; Hale, C. M.

    2011-12-01

    We are investigating the impact of exotic earthworms on the rate of nutrient and ion release from soil chemical weathering along an ~200 m invasion chronosequence in a northern Minnesota sugar maple forest. The earthworms belong to three ecological groups that represent different feeding and burrowing behaviors, all of which were introduced from Europe to the previously earthworm-free Great Lakes Region through fishing and agricultural activities. As earthworms digest and mix the soil, we hypothesize that they significantly alter chemical weathering processes by incorporating mineral surfaces to new geochemical environments in their intestines and at different soil depths. The effect of mixing on soil morphology is dramatic, but biogeochemical changes remain largely unknown and therefore are poorly coupled to the current and potential changes in forest ecosystems under the threat of exotic earthworms. We analyze the activities of short-lived isotopes 137-Cs and 210-Pb along with the inorganic chemistry of soil, water, and leaf litter across an invasion transect and link these measurements to the biomass and species composition of exotic earthworms. Earthworms vertically relocate minerals and organic matter largely within the top ~10 cm, which is reflected in the depth profiles of the short-lived isotopes. Among the inorganic nutrients analyzed, Ca is of particular interest due to sugar maple's aptitude for recycling Ca. Fractional mass loss values (tau) of Ca, relative to the soil's parent material, show an enrichment factor of 14 in the least invaded A horizon soils. However, such a high enrichment factor declines dramatically in the heavily invaded soils, suggesting that earthworm activities contribute to leaching Ca. In contrast, the enrichment factor of Fe increases with greater degrees of earthworm invasion, which is consistent with the extraction chemistry data showing greater quantities of pedogenic crystalline iron oxides and greater mineral specific

  13. Influence of Acacia trees on soil nutrient levels in arid lands

    NASA Astrophysics Data System (ADS)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback

  14. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar.

    PubMed

    El-Naggar, Ahmed H; Usman, Adel R A; Al-Omran, Abdulrasoul; Ok, Yong Sik; Ahmad, Mahtab; Al-Wabel, Mohammad I

    2015-11-01

    Many studies have reported the positive effect of biochar on soil carbon sequestration and soil fertility improvement in acidic soils. However, biochar may have different impacts on calcareous sandy soils. A 90-day incubation experiment was conducted to quantify the effects of woody waste biochar (10 g kg(-1)) on CO2-C emissions, K2SO4-extractable C and macro-(N, P and K) and micro-(Fe, Mn, Zn and Cu) nutrient availability in the presence or absence of poultry manure (5 g kg(-1) soil). The following six treatments were applied: (1) conocarpus (Conocarpus erectus L.) waste (CW), (2) conocarpus biochar (BC), (3) poultry manure (PM), (4) PM+CW, (5) PM+BC and (6) untreated soil (CK). Poultry manure increased CO2-C emissions and K2SO4-extractable C, and the highest increases in CO2-C emission rate and cumulative CO2-C and K2SO4-extractable C were observed for the PM+CW treatment. On the contrary, treatments with BC halted the CO2-C emission rate, indicating that the contribution of BC to CO2-C emissions is negligible compared with the soils amended with CW and PM. Furthermore, the combined addition of PM+BC increased available N, P and K compared with the PM or BC treatments. Overall, the incorporation of biochar into calcareous soils might have benefits in carbon sequestration and soil fertility improvement. PMID:26037818

  15. [Responses of Agriophyllum squarrosum phenotypic plasticity to the changes of soil nutrient and moisture contents and population density].

    PubMed

    Huang, Ying-xin; Zhao, Xue-yong; Zhang, Hong-xuan; Luo, Ya-yong; Mao, Wei

    2008-12-01

    This paper studied the phenotypic plasticity of Agriophyllum squarrosum under effects of soil nutrient and moisture contents and population density. The results showed that with the increase of soil nutrient content, the root/shoot ratio of A. squarrosum was decreased from 0.135 to 0.073. However, soil moisture content and population density had less effect on the root/shoot ratio. The plasticity of reproductive allocation of A. squarrosum as responding to the changes of soil nutrient and moisture contents was a "real plasticity", and the allocation was negatively correlated with soil nutrient content but positively correlated with soil moisture content. When soil nutrient content was high or moisture content was low, the reproductive allocation of A. squarrosum changed larger with plant size. Population density had no effects on the reproductive allocation, while plant size conditioned the allocation. Among the three test affecting factors, soil nutrient content had the greatest effects on the morphological characters and biomass of A. squarrosum.

  16. Land application of domestic effluent onto four soil types: plant uptake and nutrient leaching.

    PubMed

    Barton, L; Schipper, L A; Barkle, G F; McLeod, M; Speir, T W; Taylor, M D; McGill, A C; van Schaik, A P; Fitzgerald, N B; Pandey, S P

    2005-01-01

    Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from

  17. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview.

    PubMed

    Demeyer, A; Voundi Nkana, J C; Verloo, M G

    2001-05-01

    Wood industries and power plants generate enormous quantities of wood ash. Disposal in landfills has been for long a common method for removal. New regulations for conserving the environment have raised the costs of landfill disposal and added to the difficulties for acquiring new sites for disposal. Over a few decades a number of studies have been carried out on the utilization of wood ashes in agriculture and forestry as an alternative method for disposal. Because of their properties and their influence on soil chemistry the utilization of wood ashes is particularly suited for the fertility management of tropical acid soils and forest soils. This review principally focuses on ash from the wood industry and power plants and considers its physical, chemical and mineralogical characteristics, its effect on soil properties, on the availability of nutrient elements and on the growth and chemical composition of crops and trees, as well as its impact on the environment. PMID:11272014

  18. Preference and performance of a willow-feeding leaf beetle: soil nutrient and flooding effects on host quality.

    PubMed

    Lower, Steven S; Kirshenbaum, Sheril; Orians, Colin M

    2003-08-01

    The distribution and abundance of herbivores on plants growing under different environmental conditions may depend upon preference and/or performance. Soil nutrients and water availability are key determinants of herbivore distribution, as both influence plant growth and tissue quality. However, the effects of water on plant quality may depend upon the availability of nutrients and vice versa. Surprisingly few studies have examined the interactions between the two. We investigated the effects of soil nutrient and water availability on (1) the growth and chemistry of the silky willow (Salix sericea Marshall), and (2) the preference and performance of the imported willow leaf beetle (Plagiodera versicolora Laichartig). We conducted two common garden experiments using a similar 2x2 fully factorial design with two levels of soil nutrients (low, high) and two levels of water availability (field capacity, flooded). In the first experiment (larval performance), larval development time and pupal weight were not influenced by nutrient or water availability to the plant. This occurred despite the fact that plants in the high nutrient treatments had higher protein concentration and lower foliar concentrations of the phenolic glycoside 2'-cinnamoylsalicortin. In the second experiment (adult preference), we caged four plants (one from each treatment) and released beetles into cages. We found that plant growth and leaf protein depended upon the interaction between nutrient and water availability. Plant growth was greatest in the high nutrient-field capacity treatment and leaf protein was greatest in the high nutrient-flooded treatment. In contrast, adults settled and oviposited preferentially on the high nutrient treatment under flooded conditions, but we found no evidence of interactions between nutrients and water on preference. Thus, at least under flooded conditions nutrients affect adult preference. We also found that foliar protein was correlated positively with adult

  19. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    PubMed

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The

  20. [Spatial heterogeneity of soil organic carbon and nutrients in low mountain area of Changbai Mountains].

    PubMed

    Liu, Ling; Wang, Hai-Yan; Dai, Wei; Yang, Xiao-Iuan; Li, Xu

    2014-09-01

    Soil samples were collected in Jincang Forest Farm, Wangqing Forestry Bureau to study spatial distribution of soil organic carbon (SOC) and nutrients. Geostatistics was used to predict their spatial distribution in the study area, and the prediction results were interpolated using regression-kriging and ordinary kriging. Multiple linear regression was used to study the relationship between SOC and spatial factors. The results showed the SOC density (SOCD) at 0-60 cm was (16.14 ± 4.58) kg · m(-2). Soil organic carbon decreased significantly with the soil depth. With the increasing soil depth, total N, total P, total K, available P and readily available K concentrations decreased. Stepwise regression analysis showed that SOC had good correlation with elevation and cosine of aspect, with the determination coefficient of 0.34 and 0.39, respectively (P < 0.01). Soil organic carbon at 0-20 cm and 0-60 cm soil layers conformed to Gaussian model and exponential model. Compared with ordinary kriging, the prediction accuracy was improved by 18%-58% using regression-kriging. Regression-kriging interpolation was also applied to study spatial heterogeneity of soil total N.

  1. Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo; Kull, Kalevi

    2003-09-01

    Often there are significant positive interspecific relationships between leaf area per unit dry mass (SLA) and foliar phosphorus and nitrogen concentrations ([P] and [N]). Most of these studies have been conducted on moderately acidic soils, and little is known of the generality of these relations as potentially affected by soil characteristics. We investigated foliage mineral composition in relation to leaf structure in a wooded meadow on calcareous alkaline soil, in a bog on strongly acidic soil, and in a flood plain on moderately acidic soil. Foliar nutrient contents and fertilization experiments indicated that foliage physiological activity was co-limited by both P and N availabilities in the wooded meadow, by P in the bog, and by N in the flood plain. In the wooded meadow and in the bog, there were positive relationships between SLA and P concentration ([P]), and no relationship between SLA and nitrogen concentration [N]. Given that the fraction of support tissues generally increases with decreasing SLA, the requirement for mineral nutrients is lower at low SLA. Thus, these contrasting relations between mineral nutrients and SLA suggest that P was distributed in a more "optimal" manner among the leaves with varying structure than N in P-limited communities. In the flood plain, SLA was positively related to both [P] and [N], possibly manifesting a strategy to cope with N limitations by enhancing N turnover, and accordingly, greater P requirement for nucleic acid formation in N-limited soils. Total variation in foliar structural and chemical characteristics was similar in all sites, and was mainly determined by variation among the species. Part of this variability was explained by life form and plant size. [P] was higher in trees than in shrubs, and [P] and P/N ratio increased with increasing total plant height, indicating that P nutrition was improved relative to N nutrition with increasing plant size. Since the capture of less mobile soil elements such as P is

  2. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale

    PubMed Central

    Li, Yilin; Kronzucker, Herbert J.; Shi, Weiming

    2016-01-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world’s leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4+) and nitrate (NO3−), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4+ and NO3− exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0–3.5 mm depth, and O2soil became undetectable at 1.7–4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4+ > O2water > NO3− > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field. PMID:27265522

  3. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale

    NASA Astrophysics Data System (ADS)

    Li, Yilin; Kronzucker, Herbert J.; Shi, Weiming

    2016-06-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world’s leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4+) and nitrate (NO3‑), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4+ and NO3‑ exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0–3.5 mm depth, and O2soil became undetectable at 1.7–4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4+ > O2water > NO3‑ > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field.

  4. Study on Soil Nutrient Management Andfertilization Model in Ningxia County Territorywith Gis

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Zhou, Guomin

    By adopting the GIS technology, this thesis tries to collect and recognize the existing pedological map, the soil nutrient graphic document and other related documents data of Ningxia. And with the classification and filtration to the material, the spatial databases and the attribute database can be established to combine the county territory soil nutrient data and the geography graph together to make the uninteresting form data visualized. Based on the soil nutrient database, the mathematical model is established by means of the design of the regression orthogonal combination. And Through the mathematical model optimization, the quantity of nitrophoskas which is employed at the maximum production rate as well as at the lowest can be obtained. With these, the paper proposes a model which can dispose, judge and analyze all the factors related to the fertilization to achieve the concrete formula and the amount of commonly used fat and the special-purpose compound fat. Therefore, the data analysis and the auxiliary decision-makingenormously facilitate, and the automatization and the rationalization of all kind of crop's fertilization scheme in Ningxia can be realized.

  5. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture.

    PubMed

    Wood, Stephen A; Almaraz, Maya; Bradford, Mark A; McGuire, Krista L; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A; Tully, Katherine L; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture.

  6. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    PubMed Central

    Wood, Stephen A.; Almaraz, Maya; Bradford, Mark A.; McGuire, Krista L.; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A.; Tully, Katherine L.; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture. PMID:25926815

  7. Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: a biofuel crop.

    PubMed

    Chaudhary, Doongar R; Ghosh, Arup

    2013-08-01

    Fly ash (FA) from coal-burning industries may be a potential inorganic soil amendment; the insight of its nutrient release and supply to soil may enhance their agricultural use. The study was conducted to assess the ability of fly ash (a coal fired thermal plant waste) to reduce soil fertility depletion and to study bioaccumulation of mineral nutrients in Jatropha curcas grown on soils amended with fly ash. Fly ash was amended to field soil at six rates (0, 5, 10, 20, 40, and 70 % w/w) on which J. curcas was grown. After 8 months of growth, the height of jatropha plants was significantly increased at 5 and 10 % FA-amended soil, whereas, biomass significantly increased at 5, 10, and 20 % FA-amended soil compared to control soil (0 % FA). Leaf nutrients uptake, followed by stems and roots uptake were highly affected by fly ash amendment to soil. Most of nutrients accumulation were increased up to 20 % fly ash and decreased thereafter. The results of available nutrient analysis of soil revealed that availability of nitrogen, potassium, sulfur, copper, iron, mangnese, and zinc declined significantly at higher levels of fly ash amendments, whereas, availability of phosphorus increased at these levels. However, pH, organic carbon, and available boron were not influenced significantly by fly ash amendment to soil. Microbial biomass C, N, and ratio of microbial-C to organic C were significantly reduced at 20 % fly ash and higher amounts. This study revealed that J. curcas plants could gainfully utilize the nutrients available in fly ash by subsequently amending soil.

  8. Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: a biofuel crop.

    PubMed

    Chaudhary, Doongar R; Ghosh, Arup

    2013-08-01

    Fly ash (FA) from coal-burning industries may be a potential inorganic soil amendment; the insight of its nutrient release and supply to soil may enhance their agricultural use. The study was conducted to assess the ability of fly ash (a coal fired thermal plant waste) to reduce soil fertility depletion and to study bioaccumulation of mineral nutrients in Jatropha curcas grown on soils amended with fly ash. Fly ash was amended to field soil at six rates (0, 5, 10, 20, 40, and 70 % w/w) on which J. curcas was grown. After 8 months of growth, the height of jatropha plants was significantly increased at 5 and 10 % FA-amended soil, whereas, biomass significantly increased at 5, 10, and 20 % FA-amended soil compared to control soil (0 % FA). Leaf nutrients uptake, followed by stems and roots uptake were highly affected by fly ash amendment to soil. Most of nutrients accumulation were increased up to 20 % fly ash and decreased thereafter. The results of available nutrient analysis of soil revealed that availability of nitrogen, potassium, sulfur, copper, iron, mangnese, and zinc declined significantly at higher levels of fly ash amendments, whereas, availability of phosphorus increased at these levels. However, pH, organic carbon, and available boron were not influenced significantly by fly ash amendment to soil. Microbial biomass C, N, and ratio of microbial-C to organic C were significantly reduced at 20 % fly ash and higher amounts. This study revealed that J. curcas plants could gainfully utilize the nutrients available in fly ash by subsequently amending soil. PMID:23318887

  9. Long-term effects of organic and inorganic nutrient sources on soil organic carbon and major nutrients in Vertisols

    NASA Astrophysics Data System (ADS)

    Aladakatti, Y. R.; Hallikeri, S. S.; Nandagavi, R. A.

    2012-04-01

    Field experiment conducted over 10 years at the University of Agricultural Sciences, Dharwad, India, assessed the long-term effects of various sources of organics (farmyard manure {FYM}, vermicompost and cotton crop residue) in conjunction with graded levels of inorganic fertilizers on the soil organic carbon (SOC), available major nutrients and seed cotton yield in cotton- (groundnut - winter Sorghum) rotation system. Main plots comprised FYM (10 Mg/ha), vermicompost (2.5 Mg/ha), cotton crop residue (2.5 Mg/ha) and combination of these organics in various proportions with an absolute control (no organics). No inorganic fertilizes, 50 and 100 % of the recommended dose of fertilizers (RDF) were assigned to the sub plots. The organics were applied every year during rainy season and the inorganic fertilizers as per the University recommended dose to each crop. Initial SOC, available N, P and K were 0.68%, 220, 22.5 and 403 kg/ha, respectively. Results indicated that at the end of tenth year of crop rotation, application of FYM, vermicompost and cotton crop residue either alone or in combination increased the SOC (0.68 to 0.81%), available N (220 to 308 kg/ha), P (22.5 to 33.0 kg/ha) and K (403 to 530 kg/ha) compared to the control plot where no organics were applied. SOC in the control treatment decreased to 0.52% at the end of tenth year from 0.68%. Averaged over five cropping cycles, application of FYM gave significantly higher yields of seed cotton, groundnut pods and sorghum grain over all other organic sources. During fifth cycle of cotton crop or 10th year of rotation, application of FYM along with 100% RDF resulted in the highest productivity and was similar to FYM + 50 % RDF, indicating a saving of 50% chemical fertilizer in these crops. Combination of cotton crop residue and vermicompost were next best alternative sources of organics after FYM in order of preference. Our studies suggest that in the scarcity of good quality manure such as FYM, cotton crop

  10. Dynamics of plant nutrients, utilization and uptake, and soil microbial community in crops under ambient and elevated carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In natural settings such as under field conditions, the plant available soil nutrients in conjunction with other environmental factors such as, solar radiation, temperature, precipitation, and atmospheric carbon dioxide (CO2) concentration determine crop adaptation and productivity. Therefore, crop...

  11. Impact of hydrochar application on soil nutrient dynamics and plant availability

    NASA Astrophysics Data System (ADS)

    Bargmann, I.; Greef, J. M.; Kücke, M.

    2012-04-01

    In order to investigate potentials for the use of HTC-products (hydrochar) in agriculture, the influence of soil application of different hydrochars on soil nutrient dynamics as well as on plant growth and plant nutrient uptake was determined. Hydrochars were produced from sugar beet pulps and brewer's grains by carbonization at 190°C for 4 respectively 12 hours each. Incubation experiments with two soil types showed an increase of soil pH by 0.5 to 2.5 pH units, depending on the amount of hydrochar added and the process conditions (i.e. addition of calcium carbonate during production). The application of HTC to soil decreased the plant available nitrogen to almost zero in the first week after HTC-addition, followed by a slow re-release of nitrate in the following weeks. A similar immobilization of soluble phosphate was observed for one soil type, although to a lower extent. The plant availability of phosphorus in hydrochars and biochars is subject of current trials. Furthermore it is actually investigated to what extend the N immobilization is related to soil microbial activity. Germination tests with barley showed toxic effects of hydrochar application on germination, both by direct contact of grains with HTC as well as by release of gaseous compounds from HTC. Effects differ significantly for different parent materials and pretreatments (washing, drying, storage). The influence of HTC-addition to soil on plant growth and nutrient uptake was investigated in pot experiments with various crop species (barley, phaseolus bean, leek), comparing HTC from different parent materials and process parameters such as carbonization time. With increasing addition of HTC, the N availability was decreased and N contents in the plant were significantly lower compared with the untreated control. The plant growth response was different for each tested crop. On barley, leaf tip necroses were observed, but not on phaseolus. Biomass yield of barley and beans was generally increased

  12. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo.

    PubMed

    Paoli, Gary D; Curran, Lisa M; Slik, J W F

    2008-03-01

    Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8-196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees > or =10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0-20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 +/- 13 stems ha(-1), basal area 39.6 +/- 1.4 m(2) ha(-1) and aboveground biomass 518 +/- 28 Mg ha(-1) (mean +/- SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 +/- 25 Mg ha(-1). Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R (Pearson) = 0.368-0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60-90 cm dbh were negatively related to these

  13. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo.

    PubMed

    Paoli, Gary D; Curran, Lisa M; Slik, J W F

    2008-03-01

    Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8-196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees > or =10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0-20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 +/- 13 stems ha(-1), basal area 39.6 +/- 1.4 m(2) ha(-1) and aboveground biomass 518 +/- 28 Mg ha(-1) (mean +/- SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 +/- 25 Mg ha(-1). Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R (Pearson) = 0.368-0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60-90 cm dbh were negatively related to these

  14. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    PubMed Central

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  15. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    PubMed

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  16. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China

    PubMed Central

    He, Xianjin; Hou, Enqing; Liu, Yang; Wen, Dazhi

    2016-01-01

    Altitude is a determining factor of ecosystem properties and processes in mountains. This study investigated the changes in the concentrations of carbon (C), nitrogen (N), and phosphorus (P) and their ratios in four key ecosystem components (forest floor litter, fine roots, soil, and soil microorganisms) along an altitudinal gradient (from 50 m to 950 m a.s.l.) in subtropical China. The results showed that soil organic C and microbial biomass C concentrations increased linearly with increasing altitude. Similar trends were observed for concentrations of total soil N and microbial biomass N. In contrast, the N concentration of litter and fine roots decreased linearly with altitude. With increasing altitude, litter, fine roots, and soil C:N ratios increased linearly, while the C:N ratio of soil microbial biomass did not change significantly. Phosphorus concentration and C:P and N:P ratios of all ecosystem components generally had nonlinear relationships with altitude. Our results indicate that the altitudinal pattern of plant and soil nutrient status differs among ecosystem components and that the relative importance of P vs. N limitation for ecosystem functions and processes shifts along altitudinal gradients. PMID:27052367

  17. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China

    NASA Astrophysics Data System (ADS)

    He, Xianjin; Hou, Enqing; Liu, Yang; Wen, Dazhi

    2016-04-01

    Altitude is a determining factor of ecosystem properties and processes in mountains. This study investigated the changes in the concentrations of carbon (C), nitrogen (N), and phosphorus (P) and their ratios in four key ecosystem components (forest floor litter, fine roots, soil, and soil microorganisms) along an altitudinal gradient (from 50 m to 950 m a.s.l.) in subtropical China. The results showed that soil organic C and microbial biomass C concentrations increased linearly with increasing altitude. Similar trends were observed for concentrations of total soil N and microbial biomass N. In contrast, the N concentration of litter and fine roots decreased linearly with altitude. With increasing altitude, litter, fine roots, and soil C:N ratios increased linearly, while the C:N ratio of soil microbial biomass did not change significantly. Phosphorus concentration and C:P and N:P ratios of all ecosystem components generally had nonlinear relationships with altitude. Our results indicate that the altitudinal pattern of plant and soil nutrient status differs among ecosystem components and that the relative importance of P vs. N limitation for ecosystem functions and processes shifts along altitudinal gradients.

  18. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China.

    PubMed

    He, Xianjin; Hou, Enqing; Liu, Yang; Wen, Dazhi

    2016-04-07

    Altitude is a determining factor of ecosystem properties and processes in mountains. This study investigated the changes in the concentrations of carbon (C), nitrogen (N), and phosphorus (P) and their ratios in four key ecosystem components (forest floor litter, fine roots, soil, and soil microorganisms) along an altitudinal gradient (from 50 m to 950 m a.s.l.) in subtropical China. The results showed that soil organic C and microbial biomass C concentrations increased linearly with increasing altitude. Similar trends were observed for concentrations of total soil N and microbial biomass N. In contrast, the N concentration of litter and fine roots decreased linearly with altitude. With increasing altitude, litter, fine roots, and soil C:N ratios increased linearly, while the C:N ratio of soil microbial biomass did not change significantly. Phosphorus concentration and C:P and N:P ratios of all ecosystem components generally had nonlinear relationships with altitude. Our results indicate that the altitudinal pattern of plant and soil nutrient status differs among ecosystem components and that the relative importance of P vs. N limitation for ecosystem functions and processes shifts along altitudinal gradients.

  19. Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem.

    PubMed

    Zhang, Ximei; Chen, Quansheng; Han, Xingguo

    2013-01-01

    In many grassland ecosystems, nitrogen (N) and phosphorus (P) are added to improve plant productivity, and the aboveground plant biomass is mowed and stored as hay for the bullamacow. Nutrient addition and mowing affect the biodiversity and ecosystem functioning, and most of the previous studies have primarily focused on their effects on macro-organisms, neglecting the responses of soil microbial communities. In this study, we examined the changes in three community attributes (abundance, richness, and composition) of the entire bacterial kingdom and 16 dominant bacterial phyla/classes in response to mowing, N addition, P addition, and their combinations, by conducting a 5-year experiment in a steppe ecosystem in Inner Mongolia, China. Overall, N addition had a greater effect than mowing and P addition on most of these bacterial groups, as indicated by changes in the abundance, richness and composition in response to these treatments. N addition affected these soil bacterial groups primarily through reducing soil pH and increasing available N content. Meanwhile, the 16 bacterial phyla/classes responded differentially to these experimental treatments, with Acidobacteria, Acidimicrobidae, Deltaproteobacteria, and Gammaproteobacteria being the most sensitive. The changes in the abundance, richness, and composition of various bacterial groups could imply some potential shift in their ecosystem functions. Furthermore, the important role of decreased soil pH caused by N addition in affecting soil bacterial communities suggests the importance of restoring acidified soil to maintain soil bacterial diversity. PMID:24391915

  20. [Characteristics of spatial variation of soil nutrients in sloping field in a gorge karst region, southwest China].

    PubMed

    Fan, Fu-Jing; Song, Tong-Qing; Huang, Guo-Qin; Zeng, Fu-Ping; Peng, Wan-Xia; Du, Hu; Lu, Shi-Yang; Shi, Wei-Wei; Tan, Qiu-Jin

    2014-01-01

    Based on a grid (20 m x 20 m) sampling, spatial heterogeneity and pattern of soil nutrients in sloping field in the gorge karst region, southwestern China, were explored by using classical statistics and geostatistics methods. The results showed that soil nutrient contents in slope field in the canyon karst region were more abundant, where pH value had a weak variation and the soil organic matter (SOM) had a moderate degree of variation. All the soil nutrients had moderate or strong variation with an order of available phosphorus (AP) > total potassium (TK) > SOM > alkaline nitrogen (AN) > total nitrogen (TN) > total phosphorus (TP) > available potassium (AK). All of the soil nutrients had a good spatial autocorrelation and the autocorrelation function performed in the same law of developing from positive to negative direction with the inflection point ranged from 80 to 100 m. In addition, the Moran's I was small for TK and AP while large for other nutrients. Characteristics of spatial variation differed among soil nutrients. Exponential model fitted best for TK and AP, in which the ratio of nugget to sill (C0/(C0 + C)) and the range (A) were small and the fractal dimension (D) was high, showed a strong spatial correlation. Spherical model fitted best for other soil nutrients, with C0/(C0 + C) , the range (A) and D showing a moderate autocorrelation. Kriging analysis clearly indicated that pH, SOM, TN, TP and AN were distributed in a concave pattern, while AP and AK had fragmented patch distribution. Therefore, vegetation, topography, human disturbance and strong heterogeneity of microhabitats are main factors leading to the differences in patterns of soil nutrients on the sloping land in the gorge karst region.

  1. Influences of major nutrient elements on Pb accumulation of two crops from a Pb-contaminated soil.

    PubMed

    Lin, Changcun; Zhu, Tingcheng; Liu, Li; Wang, Deli

    2010-02-15

    To know about the effect of major nutrient elements on various forms of Pb and metal extraction, a greenhouse experiment was conducted to assess the effects of various major nutrient elements on Pb accumulation in two crops (Spinacia oleracea, SO and Sonchus arvensis, SA) in Changchun, China. Results indicated that, for SO, the Pb concentrations in both shoots and roots had no difference with increasing nutrients except for low nutrient treatment (1/2H). For SA, high nutrient treatments (2H and 3H) resulted in higher Pb concentrations in roots than low and standard nutrient treatments (1/2H and C), but high Pb concentration in shoot appeared in low and highest nutrient treatments (1/2H and 3H). The nitrogenous nutrient treatment (2N) had the most effect of increasing Pb concentrations in roots of SO and SA. The potassic and phosphorus nutrient treatments (2K and 2P) had little effect on the Pb concentrations in plant tissues for SO. Pb concentration in SO was lower than SA. Because of the higher total biomass in SO than SA, the ability to Pb accumulation in SO was better than SA. Sequential extraction results indicated that the addition of soil amendments transform soil Pb from bioavailable fractions to non-bioavailable fraction substantially. The results suggest that nitrogen fertilizer for SO and phosphorus fertilizer for SA are the most effective materials for the remediation of Pb-contaminated soils, and increase the tolerance of crops to Pb contamination.

  2. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    USGS Publications Warehouse

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) end low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (<1%) and low moisture (1-3%) contents. We examined the effects of nutrient additions on microorganisms in contaminated soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus

  3. Small Scale Spatial Variability of Soil Properties and Nutrients in a Ferralsol under Corn

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Vidal Vázquez, E.; Pereira de Almeida, V.; Paz-Ferreiro, J.

    2012-04-01

    Spatial variability of soil attributes, both in natural and agricultural landscapes can be rather large. This heterogeneity results from interactions between pedogenetic processes and soil formation factors. In cultivated soils much variability can also occur as a result of land use and management effect, i.e. agricultural systems and practices. Therefore, the main objectives of this work were to investigate the statistical and geostatistical variability of selected properties in a soil cultivated with corn. The experimental work was carried out in Ilha Solteira, São Paulostate, Brazil and the soil was classified as an Oxisol (SSA), i.e. "Latossolo Vermelho" according to the Brazilian Soil Classification System. Eighty-four soil samples were collected at each of two different depths (0-10 and 10-20 cm) from the one-hectare plot studied. Sampling included a combination of grid and nesting schemes in order to allow description of the spatial variability at different scales. Soil texture fractions (sand, silt clay), organic matter content and pH (CaCl2) were determined using standard methods. Moreover, exchangeable bases (Ca, Mg, K), cation exchange capacity (CEC) and P were determined after exchange resin extraction. In the two depths studied, extractable P, K and Mg contents were found to be highly variable (C.V. > 30%), organic matter content and CEC showed a medium variability (C.V. ≈ 15-30%) and base percent saturation and pH exhibited a low variation (< 15%). Experimental semivariograms were computed and modeled and used to map the spatial variability of the study properties. Semivariograms provided a description of the pattern of spatial variability and some insight into possible process affecting the spatial distribution of the assessed soil properties. Sensitivity of nutrient spatial requirements to between field variability was discussed on the basis of the results obtained. In addition, the usefulness of kriging maps to improve and optimize productivity

  4. In situ electrokinetic control of moisture and nutrients in unsaturated soils

    SciTech Connect

    Lindgren, E.R.; Brady, P.V.

    1994-12-31

    Many DOE facilities have unsaturated soils contaminated with metals and organic solvents. Because of the large volumes, in situ remediation is often the most economically attractive remediation technique. The success of many in situ treatment technologies depends critically on the degree to which the movement of water and desired ions can be engineered in the vadose zone. Bioremediation efforts in the vadose zone are limited by the ability to provide moisture and nutrients to contaminant-metabolizing microorganisms. An in situ electrokinetic remediation process has been developed at Sandia National Laboratories (SNL) for use in unsaturated soils, and is presently undergoing field demonstration. The electrokinetic process is not limited by low soil permeabilities and, therefore, provides a level of control not achievable by hydraulic means. Moisture is added to the subsurface in a controlled fashion such that the field capacity is never exceeded, preventing the unwanted mobilization of dissolved contaminants by saturated wetting fronts. The Sandia electrokinetic process can potentially transport both water and nutrients for bioremediation efforts and is compatible with vapor phase in situ techniques such as bioventing. The approach should as bioventing. The approach should lend itself to the directed transport of biodegradable chelating agents and complexed metals from contaminated soils.

  5. Vegetation-atmosphere-soil nutrient feedbacks in the Amazon for different deforestation scenarios

    NASA Astrophysics Data System (ADS)

    Senna, MôNica Carneiro Alves; Costa, Marcos Heil; Pires, Gabrielle Ferreira

    2009-02-01

    In recent decades, large areas of the Amazon forest have been deforested and the rainforest's future may be dependent on climate and soil nutrient feedbacks associated with deforestation. This is a two-way biosphere-atmosphere interaction problem: the response of the regional climate system to the land cover varies with the forest growth, which, in turn, depends on climate and nutrient stress. Nutrient stress also varies with forest age, being most severe for young forests and declining as forests mature. Here we use a coupled climate-biosphere model to investigate how these feedbacks interact to control the secondary forest recovery after different deforestation scenarios, looking for a threshold of deforestation that could cause dangerous interference on the Amazon recovery. Results show that the reduction in rainfall is proportional to the amount of deforestation and is more drastic when the deforested area is higher than 40% of the original forest extent. In addition, this simulated precipitation reduction alone is not sufficient to prevent the rainforest regrowth. However, when the precipitation reduction is associated with a soil nutrient stress, a savannization process may start over southern Amazonia (northern Mato Grosso state), no matter how much is deforested. In this region, a large precipitation reduction in the transition from the dry to the rainy season and an increase in the dry season duration are favorable to the savanna maintenance on nutrient-limited simulations. These results may be a valuable tool for prioritizing forest conservation in this region, which presently has the highest clearing rate in Amazonia.

  6. Mountain pine beetle disturbance effects on soil respiration and nutrient pools

    NASA Astrophysics Data System (ADS)

    Trahan, N. A.; Moore, D. J.; Brayden, B. H.; Dynes, E.; Monson, R. K.

    2011-12-01

    Over the past decade, the mountain pine beetle Dendroctonos ponderosae has infested more than 86 million hectares of high elevation forest in the Western U.S.A. While bark beetles are endemic to western forests and important agents of regeneration, the current mountain pine beetle outbreak is larger than any other on record and the resulting tree mortality has significant consequences for nutrient cycling and regional carbon exchange. We established decade-long parallel disturbance chronosequences in two lodgepole pine (Pinus contorta) forests in Colorado: one composed of mountain pine beetle killed lodgepole stands and one consisting of trees where beetle mortality was simulated by stem girdling. Over the 2010 and 2011 growing season we measured plot level soil respiration fluxes, as well as soil extractable dissolved organic carbon, nitrogen, microbial biomass carbon and nitrogen, and pools of ammonium, nitrate and inorganic phosphorus. We show that soil respiration sharply declines with gross primary productivity after tree mortality, but rebounds during the next 4 years, then declines again from 6-8 years post-disturbance. Soil extractable dissolved organic carbon, microbial biomass carbon, and inorganic phosphorous pools follow the pattern observed in soil respiration fluxes across disturbance age classes for both sites, while patterns in total dissolved nitrogen exhibit site specific variation. Levels of detectable soil nitrate were low and did not significantly change across the chronosequence, while soil ammonium increased in a similar pattern with soil moisture in disturbed plots. These patterns in soil respiration and nutrient pools reflect the loss of autotrophic respiration and rhizodeposition immediately after tree mortality, followed by a pulse in soil efflux linked to the decomposition of older, less labile carbon pools. This pulse is likely controlled by the fall rate of litter, coarse woody debris and the relative impact of post-disturbance water

  7. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? Author(s) 2011. CC Attribution 3.0 License.

  8. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    NASA Astrophysics Data System (ADS)

    Hasselquist, N. J.; Germino, M. J.; Sankey, J. B.; Ingram, L. J.; Glenn, N. F.

    2011-12-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m-1 d-1 and 19 g N m-1 d-1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  9. Skeletal changes in multiparous, nulliparous and ovariectomized mice fed either a nutrient-sufficient or -deficient diet containing cadmium.

    PubMed

    Whelton, B D; Peterson, D P; Moretti, E S; Dare, H; Bhattacharyya, M H

    1997-04-30

    As a simulation of the etiological factors known for Itai-Itai disease, a syndrome characterized by osteomalacia and renal dysfunction in its Japanese victims, female mice were subjected to the individual and combined stresses of dietary cadmium, nutrient-deficient diet, multiparity and ovariectomy; the calcium-depleting effect of each factor was evaluated by determining Ca levels in femur and lumbar vertebrae. At age 68 days, female mice were given nutrient-sufficient (+) or -deficient (-), purified diets containing either 0.25 (environmental), 5, or 50 ppm Cd as CdCl2; the nutritional composition of (-) diet simulated that of food consumed by Japanese victims of Itai-Itai disease. At age 70 days, half of the females began a breeding regimen of six consecutive, 42-day rounds of pregnancy/lactation (PL mice); the remainder were maintained as virgin, non-pregnant controls (NP mice). Limited numbers of PL and NP mice were sacrificed at the end of each reproductive round. PL(+) mice taken at the end of round (R)-6 had successively borne litters in all six rounds, while PL(-) counterparts had nonsuccessively borne only three. At the conclusion of the 252-day reproductive period, remaining females entered the 392-day, post-reproductive phase of the experiment. At age 546 days (mid-R-12), PL females having successfully borne at least three litters were ovariectomized (OV) to mimic human menopause; at the same time, NP females were either ovariectomized or sham-operated (SO). After surgery, all females were maintained to age 714 days (mid-R-16), then sacrificed. During the post-reproductive period, food consumption by females of the same reproductive status was unaffected by elevated levels of Cd or nutrient-deficiencies in diet. However by R-16, Cd at 50 vs. 0.25 ppm had reduced body mass by 11% in both NP and PLOV females, femur and lumbar vertebral calcium content (TCa) by 20 and 25% in the respective groups, and femur and vertebral calcium/dry weight ratios (Ca/DW) by

  10. Vegetation effects on soil water erosion rates and nutrient losses at Santa Catarina highlands, south Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.

    2009-04-01

    subtropical climatic conditions. The area cropped under no tillage in Brazil has increased rapidly since 1990, especially in the southern region. This practice was first introduced in the 1970s as a strategy to control soil erosion and continuous declines in land productivity under conventional tillage systems. No tillage almost entirely keeps the previous crop residue on the surface. In the last 15 years soil and water losses by water erosion have been quantified for different soil tillage systems, diverse crop rotations and successive crop stages under simulated and natural rain conditions. Plot experiments showed that soil losses under no tillage systems with a vegetative cover were 98% lower when compared with conventionally tilled bare soil. Moreover water losses were 60% lower for these conditions. Conventional tillage (plowing + harrowing) in the presence of vegetative cover reduced soil losses and water losses by 80% and 50%, respectively, taken the uncultivated bare soil as a reference. The review includes the effect of vegetative cover on nutrient losses at the studied sites in the Santa Catarina highlands.

  11. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands

    PubMed Central

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  12. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    PubMed

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  13. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    PubMed

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  14. Relationships between Nutrient-Related Plant Traits and Combinations of Soil N and P Fertility Measures

    PubMed Central

    Fujita, Yuki; van Bodegom, Peter M.; Witte, Jan-Philip M.

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility–trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility–trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  15. Soil nutrient budgets following projected corn stover harvest for biofuel production in the conterminous United States

    USGS Publications Warehouse

    Tan, Zhengxi; Liu, Shuguang

    2015-01-01

    Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (−4 ± 35 kg ha−1) and K (−6 ± 36 kg ha−1) and a moderate surplus of P (37 ± 21 kg ha−1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha−1 yr−1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha−1 yr−1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha−1 yr−1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.

  16. Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.

    PubMed

    Fujita, Yuki; van Bodegom, Peter M; Witte, Jan-Philip M

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  17. Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.

    PubMed

    Fujita, Yuki; van Bodegom, Peter M; Witte, Jan-Philip M

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  18. The effect of nutrient deposition on bacterial communities in Arctic tundra soil.

    PubMed

    Campbell, Barbara J; Polson, Shawn W; Hanson, Thomas E; Mack, Michelle C; Schuur, Edward A G

    2010-07-01

    The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C and N were previously observed after long-term nutrient additions. To analyse the role of microbial communities in these losses, we utilized 16S rRNA gene tag pyrosequencing coupled with community-level physiological profiling to describe changes in MAT bacterial communities after short- and long-term nutrient fertilization in four sets of paired control and fertilized MAT soil samples. Bacterial diversity was lower in long-term fertilized plots. The Acidobacteria were one of the most abundant phyla in all soils and distinct differences were noted in the distributions of Acidobacteria subgroups between mineral and organic soil layers that were also affected by fertilization. In addition, Alpha- and Gammaproteobacteria were more abundant in long-term fertilized samples compared with control soils. The dramatic increase in sequences within the Gammaproteobacteria identified as Dyella spp. (order Xanthomonadales) in the long-term fertilized samples was confirmed by quantitative PCR (qPCR) in several samples. Long-term fertilization was also correlated with shifts in the utilization of specific substrates by microbes present in the soils. The combined data indicate that long-term fertilization resulted in a significant change in microbial community structure and function linked to changes in carbon and nitrogen availability and shifts in above-ground plant communities.

  19. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3‑ concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  20. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3- concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  1. Nutrient stoichiometry of temperate trees and effects on the coupled cycles of carbon, nitrogen, and cations in soil

    NASA Astrophysics Data System (ADS)

    Mueller, K. E.; Oleksyn, J.; Hobbie, S. E.; Reich, P.; Chorover, J. D.; Freeman, K. H.; Eissenstat, D.

    2009-12-01

    Nutrient stoichiometry of leaf litter (LL) is a potentially important driver of plant effects on soil biogeochemistry; it is also responsive to environmental perturbations and differs among plant functional groups that may have predictable responses to the environment. Thus variation in LL nutrient stoichiometry may provide a predictive framework for the influence of global change on soil. However, this approach depends on several key, but poorly tested assumptions, including: 1) other plant organs follow similar patterns and have similar effects on soil biogeochemistry, and 2) patterns in leaf traits, functional group dominance, and soil properties across large-spatial scales are predictive at smaller scales. To address these assumptions and test the utility of nutrient stoichiometry as a predictive framework for soil change, we synthesize data on tree stoichiometry and soil biogeochemistry from a long-term (> 30 yr) common garden experiment containing replicated, monoculture plots of 14 temperate tree species. LL nutrient stoichiometry alone is insufficient to explain differences in biogeochemical cycling among tree species, in part due to the dissimilarity of leaf and root traits within species. Notably, different elements and plant organs have independent impacts on soil biogeochemistry. LL nitrogen (N) concentration and lignin:N ratios have small or negligible effects on soil carbon (C), N, and cation cycling, while LL-calcium (Ca) drives differences in litter decomposition and soil pH among species in a manner consistent with nutrient requirements of anecic earthworms. However, LL-Ca effects on C and N cycles in soil appear minor compared to the influences of root N and, unexpectedly, green leaf N, which combine to drive differences in soil N dynamics via unique mechanisms consistent with nutrient requirements of soil microbes and the trees. In turn, soil N dynamics are strongly correlated with soil acidity and C stabilization. By taking into account the

  2. Soil Carbon and Nutrient Changes Associated with Deforestation for Pasture in Southern Costa Rica

    NASA Technical Reports Server (NTRS)

    Huth, Timothy J.; Porder, Stephen; Chaves, Joaquin; Whiteside, Jessica H.

    2012-01-01

    We assessed the effects of deforestation on soil carbon (C) and nutrient stocks in the premontane landscape near Las Cruces Biological Station in southern Costa Rica, where forests were cleared for pasture in the mid-1960s. We excavated six soil pits to a depth of 1 m in both pasture and primary forest, and found that C stocks were 20 kg C per square meters in both settings. Nevertheless, soil delta C-13 suggests 50 percent of the forest-derived soil C above 40 cm depth has turned over since deforestation. Soil nitrogen (N) and phosphorus (P) stocks derived from the soil pits were not significantly different between land uses (P = 0.43 and 0.61, respectively). At a larger spatial scale, however, the ubiquity of ruts produced by cattle-induced erosion indicates that there are substantial soil effects of grazing in this steep landscape. Ruts averaged 13 cm deep and covered 45 percent of the landscape, and thus are evidence of the removal of 0.7 Mg C/ ha/yr, and 70, 9 and 40 kg/ha/yr of N, P and potassium (K), respectively. Subsoils in this region are 10 times less C- and N-rich, and 2 times less P- and K-rich than the topsoil. Thus, rapid topsoil loss may lead to a decline in pasture productivity in the coming decades. These data also suggest that the soil C footprint of deforestation in this landscape may be determined by the fate of soil C as it is transported downstream, rather than C turnover in situ.

  3. Leaching losses of two nutrients and an herbicide from two sandy soils during transient drainage

    SciTech Connect

    Mansell, R.S.; Wheeler, W.B.; Calvert, D.W.

    1980-09-01

    Shallow-tilled (ST) and deep-tilled (DT) plots of an acid, sandy soil were used to measure changes in potassium, nitrogen nitrates, and Terbacil concentrations in subsurface drainage water from the plots. Fertilizer and Terbacil herbicide was applied to the soil. Transient water flow was applied to the plots for a 2-wk period after 7.6 cm of irrigation had been achieved. Drainage water contained higher concentrations of all solutes than did DT drainage water. In the DT soil, the discharges of potassium, nitrogen producing nitrates, and terbacil were only 29.6, 37.0, and 13.9% respectively as large as those in the ST soil. Total cumulative drainage from DT soil was only 51.1% that from ST soil. Thus, relatively small quantities of irrigation and rainfall produced relatively large nutrient discharges. As irrigation was begun soon after fertilizer application, the leaching loss of these solutes would be expected to be greater than if water application had occurred later. 13 references, 8 figures, 5 tables.

  4. Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades.

    PubMed

    Irick, Daniel L; Gu, Binhe; Li, Yuncong C; Inglett, Patrick W; Frederick, Peter C; Ross, Michael S; Wright, Alan L; Ewe, Sharon M L

    2015-11-01

    Differential distribution of nutrients within an ecosystem can offer insight of ecological and physical processes that are otherwise unclear. This study was conducted to determine if enrichment of phosphorus (P) in tree island soils of the Florida Everglades can be explained by bird guano deposition. Concentrations of total carbon, nitrogen (N), and P, and N stable isotope ratio (δ(15)N) were determined on soil samples from 46 tree islands. Total elemental concentrations and δ(15)N were determined on wading bird guano. Sequential chemical extraction of P pools was also performed on guano. Guano contained between 53.1 and 123.7 g-N kg(-1) and 20.7 and 56.7 g-P kg(-1). Most of the P present in guano was extractable by HCl, which ranged from 82 to 97% of the total P. Total P of tree islands classified as having low or high P soils averaged 0.71 and 40.6 g kg(-1), respectively. Tree island soil with high total P concentration was found to have a similar δ(15)N signature and total P concentration as bird guano. Phosphorus concentrations and δ(15)N were positively correlated in tree island soils (r = 0.83, p< 0.0001). Potential input of guano with elevated concentrations of N and P, and (15)N enriched N, relative to other sources suggests that guano deposition in tree island soils is a mechanism contributing to this pattern.

  5. Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades.

    PubMed

    Irick, Daniel L; Gu, Binhe; Li, Yuncong C; Inglett, Patrick W; Frederick, Peter C; Ross, Michael S; Wright, Alan L; Ewe, Sharon M L

    2015-11-01

    Differential distribution of nutrients within an ecosystem can offer insight of ecological and physical processes that are otherwise unclear. This study was conducted to determine if enrichment of phosphorus (P) in tree island soils of the Florida Everglades can be explained by bird guano deposition. Concentrations of total carbon, nitrogen (N), and P, and N stable isotope ratio (δ(15)N) were determined on soil samples from 46 tree islands. Total elemental concentrations and δ(15)N were determined on wading bird guano. Sequential chemical extraction of P pools was also performed on guano. Guano contained between 53.1 and 123.7 g-N kg(-1) and 20.7 and 56.7 g-P kg(-1). Most of the P present in guano was extractable by HCl, which ranged from 82 to 97% of the total P. Total P of tree islands classified as having low or high P soils averaged 0.71 and 40.6 g kg(-1), respectively. Tree island soil with high total P concentration was found to have a similar δ(15)N signature and total P concentration as bird guano. Phosphorus concentrations and δ(15)N were positively correlated in tree island soils (r = 0.83, p< 0.0001). Potential input of guano with elevated concentrations of N and P, and (15)N enriched N, relative to other sources suggests that guano deposition in tree island soils is a mechanism contributing to this pattern. PMID:26057723

  6. Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments.

    PubMed

    Rentz, Jeremy A; Chapman, Brad; Alvarez, Pedro J J; Schnoor, Jerald L

    2003-01-01

    Hybrid poplar trees (Populus deltoides x nigra DN34) were grown in a green-house using hydrocarbon-contaminated soil from a phytoremediation demonstration site in Health, Ohio. Two independent experiments investigated the effect of nutrient addition on poplar growth and the importance of oxygen addition to root development and plant growth. Biomass measurements, poplar height, and leaf color were used as indicators of plant health in the selection of a 10/5/5 NPK fertilizer applied at 1121 kg/ha (112 kg-N, 24.4 kg-P, 46.5 kg-K per ha) to enhance hybrid poplar growth at the Health site. Five passive methods of oxygen delivery were examined, including aeration tubes, gravel addition, and an Oxygen Release Compound (ORC). When ORC was placed in coffee filters above hydrocarbon-contaminated soil, a statistically significant increase of 145% was observed in poplar biomass growth, relative to unamended controls. The ORC in filters also stimulated significant increases in root density. A 15.2-cm interval of soil directly below ORC addition exhibited an increase from 2.6 +/- 1.0 mg/cm3 to 4.8 +/- 1.0 mg/cm3, showing stimulation of root growth in hydrocarbon-stained soil. The positive response of hybrid poplars to oxygen amendments suggests that overcoming oxygen limitation to plants should be considered in phytoremediation projects when soil contamination exerts a high biochemical oxygen demand, such as in former refinery sites.

  7. Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments.

    PubMed

    Rentz, Jeremy A; Chapman, Brad; Alvarez, Pedro J J; Schnoor, Jerald L

    2003-01-01

    Hybrid poplar trees (Populus deltoides x nigra DN34) were grown in a green-house using hydrocarbon-contaminated soil from a phytoremediation demonstration site in Health, Ohio. Two independent experiments investigated the effect of nutrient addition on poplar growth and the importance of oxygen addition to root development and plant growth. Biomass measurements, poplar height, and leaf color were used as indicators of plant health in the selection of a 10/5/5 NPK fertilizer applied at 1121 kg/ha (112 kg-N, 24.4 kg-P, 46.5 kg-K per ha) to enhance hybrid poplar growth at the Health site. Five passive methods of oxygen delivery were examined, including aeration tubes, gravel addition, and an Oxygen Release Compound (ORC). When ORC was placed in coffee filters above hydrocarbon-contaminated soil, a statistically significant increase of 145% was observed in poplar biomass growth, relative to unamended controls. The ORC in filters also stimulated significant increases in root density. A 15.2-cm interval of soil directly below ORC addition exhibited an increase from 2.6 +/- 1.0 mg/cm3 to 4.8 +/- 1.0 mg/cm3, showing stimulation of root growth in hydrocarbon-stained soil. The positive response of hybrid poplars to oxygen amendments suggests that overcoming oxygen limitation to plants should be considered in phytoremediation projects when soil contamination exerts a high biochemical oxygen demand, such as in former refinery sites. PMID:12710235

  8. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China

    NASA Astrophysics Data System (ADS)

    Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G.

    2015-11-01

    Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free-grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties - including soil bulk density, pH, particle size distributions, and proportion of aggregates - showed no significant difference between FG and GE plots. Soil organic carbon, soil available nitrogen, and available phosphorus contents did not differ with grazing exclusion treatments in both the 0-15 and 15-30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at 0-15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil property and nutrient indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommending any policy designed for restoration of degraded soil in alpine grasslands in the future. Nevertheless, because the results of the present study come from a short-term (6-8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long-term continued research.

  9. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China

    NASA Astrophysics Data System (ADS)

    Lu, X.; Yan, Y.; Sun, J.; Zhang, X.; Chen, Y.; Wang, X.; Cheng, G.

    2015-08-01

    Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties, including soil bulk density, pH, particle size distributions, and proportion of aggregates, were not significant different between FG and GE plots. Soil organic carbon, soil available nitrogen, available phosphorus contents did not differ with grazing exclusion treatments in both 0-15 and 15-30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at the 0-15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil properties and nutrients indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommend any policies designed for alpine grasslands degraded soil restoration in the future. Nevertheless, because the results of the present study come from short term (6-8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long term continued research.

  10. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately

  11. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE PAGES

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-18

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3− and POx; representing the sum of PO43−, HPO42− and H2PO4−) and five potential competitors (plantmore » roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed

  12. The influence of soil pH and humus content on received by Mehlich 3 method nutrients analysis results

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Krebstein, Kadri; Rodima, Ako; Kõlli, Raimo; Künnapas, Allan; Rebane, Jaanus; Penu, Priit; Vennik, Kersti; Soobik, Liina

    2015-04-01

    Soils provide vital ecosystem functions, playing an important role in our economy and in healthy living environment. However, soils are increasingly degrading in Europe and at the global level. Knowledge about the content of major plant available nutrients, i.e. calcium, magnesium, potassium and phosphorus, plays an important role in the sustainable soil management. Mobility of nutrients depends directly on the environmental conditions, two of the most important factors are the pH and organic matter content. Therefore it is essential to have correct information about the content and behaviour of the above named elements in soil, both from the environmental and agronomical viewpoint. During the last decades several extracting solutions which are suitable for the evaluation of nutrient status of soils have been developed for this purpose. One of them is called Mehlich 3 which is widely used in USA, Canada and some European countries (e.g. Estonia, Czech Republic) because of its suitability to extract several major plant nutrients from the soil simultaneously. There are several different instrumental methods used for the analysis of nutrient elements in the soil extract. Potassium, magnesium and calcium are widely analysed by the AAS (atomic absorption spectroscopic) method or by the ICP (inductively coupled plasma) spectroscopic methods. Molecular spectroscopy and ICP spectroscopy were used for the phosphorus determination. In 2011 a new multielemental instrumental method MP-AES (microwave plasma atomic emission spectroscopy) was added to them. Due to its lower detection limits and multielemental character, compared with AAS, and lower exploitation costs, compared with ICP, the MP-AES has a good potential to achieve a leading position in soil nutrient analysis in the future. The objective of this study was to investigate: (i) the impact of soil pH and humus content and (ii) applicability of MP-AES instrumental method for the determination of soil nutrients extracted

  13. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    PubMed

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. PMID:24529394

  14. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    PubMed

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively.

  15. Effects of Savanna trees on soil nutrient limitation and carbon-sequestration potential in dry season

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2016-04-01

    Semi-arid savannah ecosystems are under strong pressure from climate and land-use changes, especially around populous areas like Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover and aboveground biomass. Both are major regulators for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4), especially in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and trace-gas fluxes and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca). For each tree, we selected transects with total nine sampling points under and outside the crown. At each sampling point we measured soil and plant biomass carbon (C) and nitrogen (N) content, δ13C, microbial biomass C and N, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as belowground biomass, soil temperature and soil water content. Contents and stocks of C and N fractions, Ca2+, K+ and total CEC decreased up to 50% outside the crown. This was unaffected by the tree species, tree size or other tree characteristics. Water content was below the permanent wilting point and independent from tree cover. In all cases tree litter inputs had far a closer C:N ratio than C4-grass litter. Microbial C:N ratio and CO2 efflux was about 30% higher in open area and strongly dependent on mineral N availability. This indicates N limitation and low microbial C use efficiency in soil under open area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial redistribution of nutrient

  16. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    PubMed

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff. PMID:23033642

  17. Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama

    USGS Publications Warehouse

    Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.

    2008-01-01

    Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K

  18. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens

    PubMed Central

    Emsens, Willem-Jan; Aggenbach, Camiel J. S.; Schoutens, Ken; Smolders, Alfons J. P.; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  19. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens.

    PubMed

    Emsens, Willem-Jan; Aggenbach, Camiel J S; Schoutens, Ken; Smolders, Alfons J P; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen's sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration.

  20. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens.

    PubMed

    Emsens, Willem-Jan; Aggenbach, Camiel J S; Schoutens, Ken; Smolders, Alfons J P; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen's sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  1. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude). PMID:26087933

  2. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude).

  3. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun

    2016-09-01

    Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.

  4. Biomass production, nutrient cycling, and carbon fixation by Salicornia brachiata Roxb.: A promising halophyte for coastal saline soil rehabilitation.

    PubMed

    Rathore, Aditya P; Chaudhary, Doongar R; Jha, Bhavanath

    2016-08-01

    In order to increase our understanding of the interaction of soil-halophyte (Salicornia brachiata) relations and phytoremediation, we investigated the aboveground biomass, carbon fixation, and nutrient composition (N, P, K, Na, Ca, and Mg) of S. brachiata using six sampling sites with varying characteristics over one growing season in intertidal marshes. Simultaneously, soil characteristics and nutrient concentrations were also estimated. There was a significant variation in soil characteristics and nutrient contents spatially (except pH) as well as temporally. Nutrient contents in aboveground biomass of S. brachiata were also significantly differed spatially (except C and Cl) as well as temporally. Aboveground biomass of S. brachiata ranged from 2.51 to 6.07 t/ha at maturity and it was positively correlated with soil electrical conductivity and available Na, whereas negatively with soil pH. The K/Na ratio in plant was below one, showing tolerance to salinity. The aboveground C fixation values ranged from 0.77 to 1.93 C t/ha at all six sampling sites. This study provides new understandings into nutrient cycling-C fixation potential of highly salt-tolerant halophyte S. brachiata growing on intertidal soils of India. S. brachiata have a potential for amelioration of the salinity due to higher Na bioaccumulation factor. PMID:26852782

  5. Interspecific Variation in Compensatory Regrowth to Herbivory Associated with Soil Nutrients in Three Ficus (Moraceae) Saplings

    PubMed Central

    Zhao, Jin; Chen, Jin

    2012-01-01

    Plant compensatory regrowth is an induced process that enhances plant tolerance to herbivory. Plant behavior against herbivores differs between species and depends on resource availability, thus making general predictions related to plant compensatory regrowth difficult. To understand how soil nutrients determine the degree of compensatory regrowth for different plant species, we selected saplings of three Ficus species and treated with herbivore insects and artificial injury in both glasshouse conditions and in the field at two soil nutrient levels. Compensatory regrowth was calculated by biomass, relative growth rate and photosynthetic characteristics. A similar pattern was found in both the glasshouse and in the field for species F. hispida, where overcompensatory regrowth was triggered only under fertile conditions, and full compensatory regrowth occurred under infertile conditions. For F. auriculata, overcompensatory regrowth was stimulated only under infertile conditions and full compensatory regrowth occurred under fertile conditions. Ficus racemosa displayed full compensatory regrowth in both soil nutrient levels, but without overcompensatory regrowth following any of the treatments. The three Ficus species differed in biomass allocation following herbivore damage and artificial injury. The root/shoot ratio of F. hispida decreased largely following herbivore damage and artificial injury, while the root/shoot ratio for F. auriculata increased against damage treatments. The increase of shoot and root size for F. hispida and F. auriculata, respectively, appeared to be caused by a significant increase in photosynthesis. The results indicated that shifts in biomass allocation and increased photosynthesis are two of the mechanisms underlying compensatory regrowth. Contrasting patterns among the three Ficus species suggest that further theoretical and empirical work is necessary to better understand the complexity of the plant responses to herbivore damage. PMID

  6. Nutrient leaching and soil retention in mined land reclaimed with stabilized manure.

    PubMed

    Dere, Ashlee L; Stehouwer, Richard C; Aboukila, Emad; McDonald, Kirsten E

    2012-01-01

    Two environmental problems in Pennsylvania are degraded mined lands and excess manure nutrients from intensive animal production. Manure could be used in mine reclamation, but the large application rates required for sustained biomass production could result in significant nutrient discharge. An abandoned mine site in Schuylkill County, Pennsylvania, was used to test manure nutrient stabilization by composting and by mixing with primary paper mill sludge (PMS). Reclamation treatments were lime and fertilizer, composted poultry manure (78 and 156 Mg ha), and poultry manure (50 Mg ha) mixed with PMS (103 and 184 Mg ha) to achieve C-to-N ratios of 20 and 29. Leachates were collected with zero-tension lysimeters, and during 3 yr following amendment application, <1% of added N leached from the compost treatments. The manure+PMS C:N 29 treatment leached more N than any other treatment (393 kg N ha during 3 yr, 12.4 times more N than compost treatments), mostly as pulses of NO in the first two fall seasons following reclamation. The manure+PMS C:N 20 treatment leached 107 kg N ha during 3 yr. Three years after amendment application, most of the N and P added with the manure-based amendments was retained in the mine soil even though net immobilization of N by PMS appeared to be limited to 3 mo following application. Composting or mixing PMS with manure to achieve a C-to-N ratio of 20 can effectively minimize N leaching, retain added N in mine soil, and provide greater improvement in soil quality than lime and fertilizer amendment.

  7. Effect of Fertilization on Soil Fertility and Nutrient Use Efficiency at Potatoes

    NASA Astrophysics Data System (ADS)

    Neshev, Nesho; Manolov, Ivan

    2016-04-01

    The effect of fertilization on soil fertility, yields and nutrient use efficiency of potatoes grown under field experimental conditions was studied. The trail was conducted on shallow brown forest soil (Cambisols-coarse) during the vegetation periods of 2013 to 2015. The variants of the experiment were: control, N140; P80; K100; N140P80; N140K100; P80K100; N140P80K100; N140P80K100Mg33. The applied fertilization slightly decreased soil's pH after the harvest of potatoes compared to the soil pH their planting. Decreasing of pH was more severe at variant N (from 5,80 to 4,19 in 2014). The mineral nitrogen content in the soil after the harvest of potatoes was lower for the variants P, K and PK. The positive effect of fertilization on soil fertility after the end of the trails was more pronounced at variants NPK and NPKMg. The content of available nitrogen, phosphorus and potassium forms for these variants was the highest for each year. The highest content of mineral nitrogen was observed in 2013 (252,5 and 351,1 mg/1000g, respectively for variants NPK and NPKMg). It was due to extremely dry weather conditions during the vegetation in this year. Soil content of mineral N for the next two years was lower. The same tendency was observed for phosphorus and potassium was observed. In 2013 the P2O5 and K2O content in soil was the highest for the variants with full mineral fertilization - NPK (64,4 and 97,6 mg 100g-1 respectively for P2O5 and K2O) and NPKMg (65,2 and 88,0 mg 100g-1 respectively for P2O5 and K2O). The highest yields were recorded at variants NPK and NPKMg - 24,21 and 22,01 t ha-1, average for the studied period. The yield of variant NPK was 25 % higher than the yield from variant NP and 68 % higher than control. The partial factor productivity (PFPN, PFPP and PFPK) of the applied fertilizers was the highest at variant NPK. The PFPN (80,10 kg kg-1) for the yields of variant N was 57 % lower than the PFPN at variant NPK (180,36 kg kg-1). The PFPP and PFPK at

  8. Examining soil erosion and nutrient accumulation in forested and agriculture lands of the low mountainous area of Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, A. T.; Gomi, T.; Takahisa, F.; Phung, K. V.

    2011-12-01

    We examined soil erosion and nutrient accumulations in the Xuanmai area located in the low mountainous region of Northern Vietnam, based on field investigations and remote sensing approaches. The study area had been degraded by land-use change from forest to agriculture in the last 20 years. In contrast, around the study area, the Vietnam government promoted reforestation projects. Such changes in land-use conditions, which may or may not be associated with vegetation ground cover conditions, potentially alter soil erosion and nutrient accumulation. We selected 10 dominant land-use types including forested land (e.g., Pinus massoniana and Acacia mangium plantation) agriculture land (e.g., Cassava), and bare land. We established three 1 x 1 m plots in each land-use type in September 2010. Vegetation biomass, litter cover, soil erosion (height of soil pedestal), and soil physical (soil bulk density and particle size distribution) and chemical properties (Total soil carbon, nitrate, and phosphorus) were measured. Height of soil pedestal can be a record of soil erosion by rain splash during rainy periods from April to August (prior to our field study). We also conducted remote sensing analysis using Landsat TM images obtained in 1993, 2000, and 2007 for identifying temporal patterns of land-use types. We found that the intensity of soil erosion depended primary on current vegetation ground cover condition with no regard of land-use. Hence, nutrient accumulation varied among vegetation ground cover and soil erosion. Remote sensing analysis suggested that shrub and bare lands had been altered from forested land more recently. Our finding suggested that variability of soil nutrient conditions can be associated with long-term soil erosion and production processes. Findings of our study are that: (1) current vegetation and litter ground cover affected the amount of surface soil erosion, and (2) legacy of land-use can be more critical for soil nutrient accumulation. Both

  9. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    PubMed

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  10. Leaf and soil nitrogen and phosphorus availability in a neotropical rain forest of nutrient-rich soil.

    PubMed

    Martínez-Sánchez, José Luis

    2006-06-01

    The nitrogen and phosphorus supply in a lowland rain forest with a nutrient-rich soil was investigated by means of the leaf N/P quotient. It was hypothesised a high N and P supply to the forest ecosystem with a N and P rich soil. Total N and extractable P were determined in the surface (10 cm) soil of three plots of the forest. Total N was analysed by the Kjeldahl method, and P was extracted with HCI and NH4F. The leaf N/P quotient was evaluated from the senesced leaves of 11 dominant tree species from the mature forest. Samples of 5 g of freshly fallen leaves were collected from three trees of each species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid, and determined by photometry. Concentrations of total N (0.50%, n = 30) and extractable P (4.11 microg g(-1), n = 30) in the soil were high. As expected, P supply was sufficient, but contrary to expected, N supply was low (N/P = 11.8, n = 11).

  11. Impact of Freezing and Thawing on Soil Oxygen Dynamics and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.; Smeaton, C. M.; Parsons, C. T.

    2015-12-01

    Freeze-thaw cycles (FTCs) influence the physical properties, microbial activity, biogeochemistry, nutrient and carbon cycling in soils, and regulate subsurface oxygen (O2) availability, affecting greenhouse gas exchanges between soils and the atmosphere. The ability to monitor changes in O2 levels, which are indicative of aerobic and anaerobic conditions, is key to understanding how changes in the frequency and amplitude of freeze-thaw cycles affect a soil's geochemical conditions and microbial activity. In this study, a highly instrumented soil column experiment was designed to accurately simulate freeze-thaw dynamics under controlled conditions. This design allowed us to reproduce realistic, time- and depth-dependent temperature gradients in the soil column. Continuous O2 levels throughout the soil column were monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Image-processing techniques were used to convert light intensity of high-resolution digital images of the sensor-emitted light into O2 concentrations. Water samples from various depths in the column were collected to monitor pore water composition changes. Headspace gas measurements were used to derive the effluxes of CO2 and CH4 during the experiment. The results indicate that the pulse of oxygen introduced by thawing caused partial and temporal oxidation of previously reduced sulfur and nitrogen species, leading to concomitant changes in pore water SO42- and NO3- concentrations. Pulsed CO2 emission to the headspace was observed at the onset of thawing, indicating that a physical ice barrier had formed during frozen conditions and prevented gas exchange between the soil and atmosphere. CO2 emission was due to a combination of the physical release of gases dissolved in pore water and entrapped below the frozen zone and changing microbial respiration in response to electron acceptor variability (O2, NO3-, SO42-).

  12. [Nutrient leaching and acidification of Southern China coniferous forest red soil under stimulated N deposition].

    PubMed

    Sun, Benhua; Hu, Zhengyi; Lü, Jialong; Zhou, Lina; Xu, Chengkai

    2006-10-01

    In an eight months interval leaching experiment with soil column (10 cm in diameter and 60 cm in height) at 20 degrees C, this paper studied the effects of N deposition on the leaching losses of soil NO -, NH4+ , H+, Ca2+, Mg2+ , K+, and Na+ , and on soil acidification. Soil columns were taken from the coniferous forest experimental plot at the Red Soil Ecological Experiment Station of Chinese Academy of Sciences in Southern China, and the N deposition loads were 0, 7.8, 26 and 52 mg N x month (-1) x column (-1) , respectively. The results indicated that the leaching losses of total exchangeable cations, Ca2+ , and Mg2+ increased with increasing N deposition loads, but K+ and Na+ were little affected. The proportion of net cations leaching loss (difference of cations in eluate and leachate) to total exchangeable cations was 13.9% , 18.6% , 31.8% and 57.9% under 0, 7.8, 26 and 52 mg N x month (-1) column (-1) deposition loads, respectively, and that for exchangeable Ca2+ and Mg2+ was 19. 6%, 25.8% , 45. 3% and 84.8% , and 4.4% , 6.1% , 10. 9% and 17.1% , respectively. The leaching losses of inorganic N, NO3- and H+ also increased with increasing N deposition loads. Topsoil pH decreased with increasing N deposition loads, being 3.85, 3.84, 3.80 and 3.75 under 0, 7.8, 26 and 52 mg N x month (-1) x column(-1) N deposition loads, respectively. N deposition could increase the apparent mineralization rate of soil organic nitrogen, and accelerate the nutrient losses and acidification of coniferous forest red soil.

  13. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.

    PubMed

    Singh, Jay Shankar; Pandey, Vimal Chandra

    2013-03-01

    There are reports that the application of fly ash, compost and press mud or a combination thereof, improves plant growth, soil microbial communities etc. Also, fly ash in combination with farmyard manure or other organic amendments improves soil physico-chemical characteristics, rice yield and microbial processes in paddy fields. However, the knowledge about the impact of fly ash inputs alone or in combination with other organic amendments on soil methanotrophs number in paddy soils is almost lacking. We hypothesized that fly ash application at lower doses in paddy agriculture soil could be a potential amendment to elevate the paddy yields and methanotrophs number. Here we demonstrate the impact of fly ash and press mud inputs on number of methanotrophs, antioxidants, antioxidative enzymatic activities and paddy yields at agriculture farm. The impact of amendments was significant for methanotrophs number, heavy metal concentration, antioxidant contents, antioxidant enzymatic activities and paddy yields. A negative correlation was existed between higher doses of fly ash-treatments and methanotrophs number (R(2)=0.833). The content of antioxidants and enzymatic activities in leaves of higher doses fly ash-treated rice plants increased in response to stresses due to heavy metal toxicity, which was negatively correlated with rice grain yield (R(2)=0.944) and paddy straw yield (R(2)=0.934). A positive correlation was noted between heavy metals concentrations and different antioxidant and enzymatic activities across different fly ash treated plots.The data of this study indicate that heavy metal toxicity of fly ash may cause oxidative stress in the paddy crop and the antioxidants and related enzymes could play a defensive role against phytotoxic damages. We concluded that fly ash at lower doses with press mud seems to offer the potential amendments to improving soil methanotrophs population and paddy crop yields for the nutrient poor agriculture soils.

  14. [Nutrient leaching and acidification of Southern China coniferous forest red soil under stimulated N deposition].

    PubMed

    Sun, Benhua; Hu, Zhengyi; Lü, Jialong; Zhou, Lina; Xu, Chengkai

    2006-10-01

    In an eight months interval leaching experiment with soil column (10 cm in diameter and 60 cm in height) at 20 degrees C, this paper studied the effects of N deposition on the leaching losses of soil NO -, NH4+ , H+, Ca2+, Mg2+ , K+, and Na+ , and on soil acidification. Soil columns were taken from the coniferous forest experimental plot at the Red Soil Ecological Experiment Station of Chinese Academy of Sciences in Southern China, and the N deposition loads were 0, 7.8, 26 and 52 mg N x month (-1) x column (-1) , respectively. The results indicated that the leaching losses of total exchangeable cations, Ca2+ , and Mg2+ increased with increasing N deposition loads, but K+ and Na+ were little affected. The proportion of net cations leaching loss (difference of cations in eluate and leachate) to total exchangeable cations was 13.9% , 18.6% , 31.8% and 57.9% under 0, 7.8, 26 and 52 mg N x month (-1) column (-1) deposition loads, respectively, and that for exchangeable Ca2+ and Mg2+ was 19. 6%, 25.8% , 45. 3% and 84.8% , and 4.4% , 6.1% , 10. 9% and 17.1% , respectively. The leaching losses of inorganic N, NO3- and H+ also increased with increasing N deposition loads. Topsoil pH decreased with increasing N deposition loads, being 3.85, 3.84, 3.80 and 3.75 under 0, 7.8, 26 and 52 mg N x month (-1) x column(-1) N deposition loads, respectively. N deposition could increase the apparent mineralization rate of soil organic nitrogen, and accelerate the nutrient losses and acidification of coniferous forest red soil. PMID:17209377

  15. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth.

    PubMed

    Gavito, M E; Curtis, P S; Mikkelsen, T N; Jakobsen, I

    2001-09-01

    Nutrient requirements for plant growth are expected to rise in response to the predicted changes in CO(2) and temperature. In this context, little attention has been paid to the effects of soil temperature, which limits plant growth at early stages in temperate regions. A factorial growth-room experiment was conducted with winter wheat, varying soil temperature (10 degrees C and 15 degrees C), atmospheric CO(2) concentration (360 and 700 ppm), and N supply (low and high). The hypothesis was that soil temperature would modify root development, biomass allocation and nutrient uptake during vegetative growth and that its effects would interact with atmospheric CO(2) and N availability. Soil temperature effects were confirmed for most of the variables measured and 3-factor interactions were observed for root development, plant biomass components, N-use efficiency, and shoot P content. Importantly, the soil temperature effects were manifest in the absence of any change in air temperature. Changes in root development, nutrient uptake and nutrient-use efficiencies were interpreted as counterbalancing mechanisms for meeting nutrient requirements for plant growth in each situation. Most variables responded to an increase in resource availability in the order: N supply >soil temperature >CO(2).

  16. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau

    PubMed Central

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil “fertile islands” were formed, and the “fertile islands” were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous

  17. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    PubMed

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  18. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition

    PubMed Central

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  19. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition.

    PubMed

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and (15)N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized (15)N following N addition was lowest among treatments. Litter (15)N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  20. Nutrient and hydrology effects on soil respiration in a northern Everglades marsh.

    PubMed

    DeBusk, W F; Reddy, K R

    2003-01-01

    Microbial respiration in peat and overlying plant litter, as influenced by water level and phosphorus enrichment, was evaluated for an Everglades (Florida, USA) marsh ecosystem by measuring CO2 and CH4 release from soil-water microcosms. Intact cores of peat, overlying plant litter, and surface water were collected at seven locations in cattail (Typha domingensis Pers.) and sawgrass (Cladium jamaicense Crantz) stands along a phosphorus (P) enrichment gradient in Water Conservation Area 2A (WCA-2A). Each soil-water microcosm was outfitted with a controlled air circulation system whereby outflow gas from the headspace could be analyzed for CO2 and CH4 to determine flux of C from the soil-water column to the atmosphere. Gaseous C flux was determined for flooded conditions (10-cm water depth) and for water levels of 0, 5, 10, and 15 cm below the peat surface. Overall, decreasing water level resulted in significantly increased C flux, although rates were significantly higher under flooded conditions than under nonflooded, saturated-soil conditions, presumably due to O2 availability associated with algal photosynthesis within the litter layer in the water column. Carbon flux decreased significantly for sites increasingly distant from the primary hydrologic and nutrient inflows to WCA-2A. The microcosm study demonstrated that the C turnover rate was significantly increased by accelerated nutrient loading to the marsh, and was further enhanced by decreasing water level under drained conditions. Our results also demonstrated that photosynthesis within the water column is a potentially important regulator of C mineralization rate in the litter layer of the marsh system.

  1. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2015-03-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3-, and POx (representing the sum of PO43-, HPO42-, and H2PO4-)) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3-, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii

  2. Effects of experimentally modified soil temperatures and nutrient availability on growth and mycorrhization of Pinus cembra at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Gruber, Andreas; Peintner, Ursula; Wieser, Gerhard; Oberhuber, Walter

    2015-04-01

    Soil temperature affects litter decomposition, nutrient uptake, root growth and respiration and it is suggested that soil temperature has direct impact on tree growth at the alpine treeline. We have evaluated the impact of experimentally modified soil temperatures and nutrient availability on growth and mycorrhization of Pinus cembra at the treeline in the Central Eastern Alps (c. 2150 m a.s.l., Tyrol, Austria). Soil temperature in the rooting zone of naturally grown c. 25 year old trees (n=6 trees per treatment) was altered by shading and heat-trapping using non-transparent and glasshouse foils mounted c. 20 cm above soil surface. Additional trees were selected for a nitrogen fertilisation treatment and as controls. During the study period, mean soil temperatures at 10 cm depth were reduced by c. 3°C at the cooled vs. warmed plots. Soil moisture was not influenced due to soil water transport along the slope. Results revealed that changed soil temperatures did not significantly affect tree growth, gas exchange, needle nutrient content and specific leaf area. We also found no significant difference in degree of mycorrhization or number of mycorrhized root tips between treatments. On the other hand, nitrogen fertilization and a reduction of interspecific root competition led to significantly raised radial stem growth. Results indicate that tree growth at the selected study area was not limited by soil temperature, while interspecific competition for nutrients among trees and low stature vegetation (dwarf shrubs, grasses) had significant impact. Therefore, we suggest that root competition with alpine grassland and dwarf-shrub communities will hamper temperature driven advance of alpine treeline in the course of climate warming. Acknowledgements This work was funded by the Austrian Science Fund (FWF Project No. P22836-B16, 'Growth response of Pinus cembra to experimentally modified soil temperatures at the treeline').

  3. [Responses of Manglietia glauca growth to soil nutrients and climatic factors].

    PubMed

    Lu, Li-Hua; He, Ri-Ming; Nong, Rui-Hong; Li, Zhong-Guo

    2014-04-01

    Tree height and diameter of breast height (DBH) as growth characteristics of Manglietia glauca introduced from Vietnam were measured at many sites in south China and responses of M. glauca growth to soil nutrients and climatic factors were analyzed in this study. Annual average increments of tree height and DBH among different planted sites had significant differences. Annual average increments of tree height and DBH had significant positive correlation with soil total N and P, available N and P, but no significant correlation with soil organic matter, total K, available K, indicating that soil N and P contents could be the main affecting factors for the growth of M. glauca. Annual average increment of tree height had significant difference, but annual average increment of DBH had no significant difference at different altitudes. Annual average increment of tree height increased with the altitude from 150 to 550 m, the maximum was at the altitude of 550 m, and then it decreased. It indicated that the most appropriate altitude for M. glauca introduction is 550 m. Annual average increments of tree height and DBH had significant negative correlation with annual average temperature and > or = 10 degrees C accumulated temperature, and significant positive correlation with annual average precipitation, suggesting that annual mean temperature, > or = 10 degrees C accumulated temperature and annual average precipitation could be the main climatic factors influencing the growth of M. glauca. PMID:25011286

  4. Fungi benefit from two decades of increased nutrient availability in tundra heath soil.

    PubMed

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils. Furthermore, the different functional responses suggest that the biomass increase found in both fertilized and warmed plots was mediated via different mechanisms.

  5. Elemental uptake and distribution of nutrients in avocado mesocarp and the impact of soil quality.

    PubMed

    Reddy, Mageshni; Moodley, Roshila; Jonnalagadda, Sreekanth B

    2014-07-01

    The distribution of 14 elements (both essential and non-essential) in the Hass and Fuerte cultivars of avocados grown at six different sites in KwaZulu-Natal, South Africa, was investigated. Soils from the different sites were concurrently analysed for elemental concentration (both total and exchangeable), pH, organic matter and cation exchange capacity. In both varieties of the fruit, concentrations of the elements Cd, Co, Cr, Pb and Se were extremely low with the other elements being in decreasing order of Mg > Ca > Fe > Al > Zn > Mn > Cu > Ni > As. Nutritionally, avocados were found to be a good dietary source of the micronutrients Cu and Mn. In soil, Pb concentrations indicated enrichment (positive geoaccumuluation indices) but this did not influence uptake of the metal by the plant. Statistical analysis was done to evaluate the impact of soil quality parameters on the nutrient composition of the fruits. This analysis indicated the prevalence of complex metal interactions at the soil-plant interface that influenced their uptake by the plant. However, the plant invariably controlled metal uptake according to metabolic needs as evidenced by their accumulation and exclusion.

  6. The Median Isn't the Message: Elucidating Nutrient Hot spots and Hot Moments in a Sierra Nevada Forest Soil

    NASA Astrophysics Data System (ADS)

    Barnes, M. E.; Hart, S. C.; Johnson, D. W.; Meadows, M. W.

    2015-12-01

    Most biogeochemical studies in forests have concentrated on nutrient pools and transformations occurring at relatively large spatial scales (i.e., stand or small catchment), over monthly or annual time scales. Many of these studies have also focused on the average or medial values observed across the spatial or temporal scale studied, discounting outliers. However, extremely high values found consistently (hot spot) or infrequently (hot moment) at a given soil microsite may be critical for nutrient acquisition by organisms and nutrient retention by terrestrial ecosystems. We have been evaluating soil nutrient hot-spot and hot-moment phenomena vertically (to a 60-cm depth) and horizontally (2-m sampling interval within a 6 m x 6 m grid) in two areas within a mixed-conifer, Sierran forest experiencing a Mediterranean-type climate. Nutrient fluxes in space and time were measured using ion exchange resin capsules placed at various depths and collected at two times (first significant precipitation in fall and post-snowmelt in spring) per year. Our previous work over a single year showed that fluxes of Ca2+ and Mg2+ in mineral soil were substantially greater in the spring than in the fall, suggesting that soil water was a major factor in controlling these nutrient fluxes. The opposite pattern was found for NH4+ and Na+, where greater fluxes occurred following the first precipitation event in fall. Here, we report new data over two additional years at these same sites. Over the entire 3-year study, nutrient fluxes were greater in the fall for all mineral soil nutrients except Ca2+ and Mg2+. Calcium fluxes were consistent with previous results; however, Mg2+ demonstrated no statistical significance between fall and spring sampling dates. Generally, the number of high statistical outliers persisted through time for Ca2+ and Mg2+, suggesting hot spots for these nutrients. In contrast, large seasonal and annual changes in the number of high statistical outliers occurred for

  7. [Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow].

    PubMed

    Hu, Lei; Ade, Lu-ji; Zi, Hong-biao; Wang, Chang-ting

    2015-09-01

    To explore the dynamic process of restoration succession in degraded alpine meadow that had been disturbed by plateau zokors in the eastern Tibetan Plateau, we examined soil nutrients and microbial functional diversity using conventional laboratory analysis and the Biolog-ECO microplate method. Our study showed that: 1) The zokors disturbance significantly reduced soil organic matter, total nitrogen, available nitrogen and phosphorus contents, but had no significant effects on soil total phosphorus and potassium contents; 2) Soil microbial carbon utilization efficiency, values of Shannon, Pielou and McIntosh indexes increased with alpine meadow restoration years; 3) Principal component analysis (PCA) showed that carbohydrates and amino acids were the main carbon sources for maintaining soil microbial community; 4) Redundancy analysis ( RDA) indicated that soil pH, soil organic matter, total nitrogen, available nitrogen, and total potassium were the main factors influencing the metabolic rate of soil microbial community and microbial functional diversity. In summary, variations in soil microbial functional diversity at different recovery stages reflected the microbial response to aboveground vegetation, soil microbial composition and soil nutrients.

  8. Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment.

    PubMed

    Li, Xinxin; Zhao, Jing; Walk, Thomas C; Liao, Hong

    2014-03-01

    Expansins are plant cell wall-loosening proteins encoded by a superfamily of genes including α-expansin, β-expansin, expansin-like A, and expansin-like B proteins. They play a variety of biological roles during plant growth and development. Expansin genes have been reported in many plant species, and results primarily from graminaceous members indicate that β-expansins are more abundant in monocots than in dicots. Soybean [Glycine max (L.) Merr] is an important legume crop. This work identified nine β-expansin gene family members in soybean (GmEXPBs) that were divided into two distinct classes based on phylogeny and gene structure, with divergence between the two groups occurring more in introns than in exons. A total of 887 hormone-responsive and environmental stress-related putative cis-elements from 188 families were found in the 2-kb upstream region of GmEXPBs. Variations in number and type of cis-elements associated with each gene indicate that the function of these genes is differentially regulated by these signals. Expression analysis confirmed that the family members were ubiquitously, yet differentially expressed in soybean. Responsiveness to nutrient deficiency stresses and regulation by auxin (indole-3-acetic acid) and cytokinin (6-benzylaminopurine) varied among GmEXPBs. In addition, most β-expansin genes were associated with symbiosis of soybean inoculated with Rhizobium or abuscular mycorrhizal fungi (AMF). Taken together, these results systematically investigate the characteristics of the entire GmEXPB family in soybean and comprise the first report analyzing the relationship of GmEXPBs with rhizobial or AMF symbiosis. This information is a valuable step in the process of understanding the expansin protein functions in soybean and opens avenues for continued researches.

  9. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  10. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    NASA Astrophysics Data System (ADS)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m‑1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m‑1) and moderately (M) saline water (ECw = 3.5 dS m‑1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  11. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    NASA Astrophysics Data System (ADS)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m-1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m-1) and moderately (M) saline water (ECw = 3.5 dS m-1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  12. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Prabu, Periyasamy; Kannan, Narayanasamy

    2013-09-01

    The study was aimed at evaluating the effect of nanosilica and different sources of silicon on soil properties, total bacterial population and maize seed germination. Nanosilica was synthesised using rice husk and characterised. Silica powder was amorphous (50 nm) with >99.9% purity. Sodium silicate treated soil inhibited plant growth promoting rhizobacteria in contrast to nanosilica and other bulk sources. Surface property and effect of soil nutrient content of nanosilica treatment were improved. Colony forming unit (CFU) was doubled in the presence of nanosilica from 4 × 105 CFU (control) to 8 × 105 CFU per gram of soil. The silica and protein content of bacterial biomass clearly showed an increase in uptake of silica with an increase in nanosilica concentration. Nanosilica promoted seed germination percentage (100%) in maize than conventional Si sources. These studies show that nanosilica has favourable effect on beneficial bacterial population and nutrient value of soil. PMID:24028804

  13. Variations in the Composition of Gelling Agents Affect Morphophysiological and Molecular Responses to Deficiencies of Phosphate and Other Nutrients1[C][W][OA

    PubMed Central

    Jain, Ajay; Poling, Michael D.; Smith, Aaron P.; Nagarajan, Vinay K.; Lahner, Brett; Meagher, Richard B.; Raghothama, Kashchandra G.

    2009-01-01

    Low inorganic phosphate (Pi) availability triggers an array of spatiotemporal adaptive responses in Arabidopsis (Arabidopsis thaliana). There are several reports on the effects of Pi deprivation on the root system that have been attributed to different growth conditions and/or inherent genetic variability. Here we show that the gelling agents, largely treated as inert components, significantly affect morphophysiological and molecular responses of the seedlings to deficiencies of Pi and other nutrients. Inductively coupled plasma-mass spectroscopy analysis revealed variable levels of elemental contaminants not only in different types of agar but also in different batches of the same agar. Fluctuating levels of phosphorus (P) in different agar types affected the growth of the seedlings under Pi-deprivation condition. Since P interacts with other elements such as iron, potassium, and sulfur, contaminating effects of these elements in different agars were also evident in the Pi-deficiency-induced morphological and molecular responses. P by itself acted as a contaminant when studying the responses of Arabidopsis to micronutrient (iron and zinc) deficiencies. Together, these results highlighted the likelihood of erroneous interpretations that could be easily drawn from nutrition studies when different agars have been used. As an alternative, we demonstrate the efficacy of a sterile and contamination-free hydroponic system for dissecting morphophysiological and molecular responses of Arabidopsis to different nutrient deficiencies. PMID:19386810

  14. Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra.

    PubMed

    Manjunath, Mallappa; Kanchan, Amrita; Ranjan, Kunal; Venkatachalam, Siddarthan; Prasanna, Radha; Ramakrishnan, Balasubramanian; Hossain, Firoz; Nain, Lata; Shivay, Yashbir Singh; Rai, Awadhesh Bahadur; Singh, Bijendra

    2016-02-01

    Microorganisms in the rhizosphere mediate the cycling of nutrients, their enhanced mobilisation and facilitate their uptake, leading to increased root growth, biomass and yield of plants. We examined the promise of beneficial cyanobacteria and eubacteria as microbial inoculants, applied singly or in combination as consortia or biofilms, to improve growth and yields of okra. Interrelationships among the microbial activities and the micro/macro nutrient dynamics in soils and okra yield characteristics were assessed along with the changes in the soil microbiome. A significant effect of microbial inoculation on alkaline phosphatase activity was recorded both at the mid-crop and harvest stages. Microbial biomass carbon values were highest due to the Anabaena sp. - Providencia sp. (CR1 + PR3) application. The yield of okra ranged from 444.6-478.4 g(-1) plant and a positive correlation (0.69) recorded between yield and root weight. The application of Azotobacter led to the highest root weight and yield. The concentration of Zn at mid-crop stage was 60-70% higher in the Azotobacter sp. and Calothrix sp. inoculated soils, as compared to uninoculated control. Iron concentration in soil was more than 2-3 folds higher than control at the mid-crop stage, especially due to the application of Anabaena-Azotobacter biofilm and Azotobacter sp. Both at the mid-crop and harvest stages, the PCR-DGGE profiles of eubacterial communities were similar among the uninoculated control, the Anabaena sp. - Providencia sp. (CW1 + PW5) and the Anabaena-Azotobacter biofilm treatments. Although the profiles of the Azotobacter, Calothrix and CR1 + PR3 treatments were identical at these stages of growth, the profile of CR1 + PR3 was clearly distinguishable. The performance of the inoculants, particularly Calothrix (T6) and consortium of Anabaena and Providencia (CR1 + PR3; T5), in terms of microbiological and nutrient data, along with generation of distinct PCR-DGGE profiles suggested their

  15. Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra.

    PubMed

    Manjunath, Mallappa; Kanchan, Amrita; Ranjan, Kunal; Venkatachalam, Siddarthan; Prasanna, Radha; Ramakrishnan, Balasubramanian; Hossain, Firoz; Nain, Lata; Shivay, Yashbir Singh; Rai, Awadhesh Bahadur; Singh, Bijendra

    2016-02-01

    Microorganisms in the rhizosphere mediate the cycling of nutrients, their enhanced mobilisation and facilitate their uptake, leading to increased root growth, biomass and yield of plants. We examined the promise of beneficial cyanobacteria and eubacteria as microbial inoculants, applied singly or in combination as consortia or biofilms, to improve growth and yields of okra. Interrelationships among the microbial activities and the micro/macro nutrient dynamics in soils and okra yield characteristics were assessed along with the changes in the soil microbiome. A significant effect of microbial inoculation on alkaline phosphatase activity was recorded both at the mid-crop and harvest stages. Microbial biomass carbon values were highest due to the Anabaena sp. - Providencia sp. (CR1 + PR3) application. The yield of okra ranged from 444.6-478.4 g(-1) plant and a positive correlation (0.69) recorded between yield and root weight. The application of Azotobacter led to the highest root weight and yield. The concentration of Zn at mid-crop stage was 60-70% higher in the Azotobacter sp. and Calothrix sp. inoculated soils, as compared to uninoculated control. Iron concentration in soil was more than 2-3 folds higher than control at the mid-crop stage, especially due to the application of Anabaena-Azotobacter biofilm and Azotobacter sp. Both at the mid-crop and harvest stages, the PCR-DGGE profiles of eubacterial communities were similar among the uninoculated control, the Anabaena sp. - Providencia sp. (CW1 + PW5) and the Anabaena-Azotobacter biofilm treatments. Although the profiles of the Azotobacter, Calothrix and CR1 + PR3 treatments were identical at these stages of growth, the profile of CR1 + PR3 was clearly distinguishable. The performance of the inoculants, particularly Calothrix (T6) and consortium of Anabaena and Providencia (CR1 + PR3; T5), in terms of microbiological and nutrient data, along with generation of distinct PCR-DGGE profiles suggested their

  16. Soil Potassium Deficiency Reduces Cotton Fiber Strength by Accelerating and Shortening Fiber Development

    PubMed Central

    Yang, Jia-Shuo; Hu, Wei; Zhao, Wenqing; Meng, Yali; Chen, Binglin; Wang, Youhua; Zhou, Zhiguo

    2016-01-01

    Low potassium (K)-induced premature senescence in cotton has been observed worldwide, but how it affects cotton fiber properties remain unclear. We hypothesized that K deficiency affects cotton fiber properties by causing disordered fiber development, which may in turn be caused by the induction of a carbohydrate acquisition difficulty. To investigate this issue, we employed a low-K-sensitive cotton cultivar Siza 3 and a low-K-tolerant cultivar Simian 3 and planted them in three regions of different K supply. Data concerning lint yield, Pn and main fiber properties were collected from three years of testing. Soil K deficiency significantly accelerated fiber cellulose accumulation and dehydration processes, which, together with previous findings, suggests that the low-K induced carbohydrate acquisition difficulty could cause disordered fiber development by stimulating the expression of functional proteins such as CDKA (cyclin-dependent kinase). As a result, fiber strength and lint weight were reduced by up to 7.8% and 2.1%, respectively. Additional quantitative analysis revealed that the degree of accelerated fiber development negatively correlated with fiber strength. According to the results of this study, it is feasible to address the effects of soil K deficiency on fiber properties using existing cultivation strategies to prevent premature senescence of cotton plants. PMID:27350236

  17. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    PubMed

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the

  18. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    PubMed Central

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This

  19. Influence of Organic Amendment and Compaction on Nutrient Dynamics in a Saturated Saline-Sodic Soil from the Riparian Zone.

    PubMed

    Miller, J J; Bremer, E; Curtis, T

    2016-07-01

    Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding.

  20. Influence of Organic Amendment and Compaction on Nutrient Dynamics in a Saturated Saline-Sodic Soil from the Riparian Zone.

    PubMed

    Miller, J J; Bremer, E; Curtis, T

    2016-07-01

    Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding. PMID:27380095

  1. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source.

    PubMed

    Reynolds, R; Belnap, J; Reheis, M; Lamothe, P; Luiszer, F

    2001-06-19

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20-30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  2. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.

    PubMed

    Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M

    2016-09-01

    Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.

  3. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source

    USGS Publications Warehouse

    Reynolds, R.; Belnap, Jayne; Lamothe, Paul; Luiszer, Fred

    2001-01-01

    Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20a??30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.

  4. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest.

    PubMed

    Andersen, Kelly M; Endara, Maria Jose; Turner, Benjamin L; Dalling, James W

    2012-02-01

    Two opposing niche processes have been shown to shape the relationship between ecological traits and species distribution patterns: habitat filtering and competitive exclusion. Habitat filtering is expected to select for similar traits among coexisting species that share similar habitat conditions, whereas competitive exclusion is expected to limit the ecological similarity of coexisting species leading to trait differentiation. Here, we explore how functional traits vary among 19 understory palm species that differ in their distribution across a gradient of soil resource availability in lower montane forest in western Panama. We found evidence that habitat filtering influences species distribution patterns and shifts community-wide and intraspecific trait values. Differences in trait values among sites were more strongly related to soil nutrient availability than to variation in light or rainfall. Soil nutrient availability explained a significant amount of variation in site mean trait values for 4 of 15 functional traits. Site mean values of leaf nitrogen and phosphorus increased 37 and 64%, respectively, leaf carbon:nitrogen decreased 38%, and specific leaf area increased 29% with increasing soil nutrient availability. For Geonoma cuneata, the only species occurring at all sites, leaf phosphorus increased 34% and nitrogen:phosphorus decreased 42% with increasing soil nutrients. In addition to among-site variation, most morphological and leaf nutrient traits differed among coexisting species within sites, suggesting these traits may be important for niche differentiation. Hence, a combination of habitat filtering due to turnover in species composition and intraspecific variation along a soil nutrient gradient and site-specific niche differentiation among co-occurring species influences understory palm community structure in this lower montane forest.

  5. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils.

    PubMed

    Li, Long; Li, Shu-Min; Sun, Jian-Hao; Zhou, Li-Li; Bao, Xing-Guo; Zhang, Hong-Gang; Zhang, Fu-Suo

    2007-07-01

    Intercropping, which grows at least two crop species on the same pieces of land at the same time, can increase grain yields greatly. Legume-grass intercrops are known to overyield because of legume nitrogen fixation. However, many agricultural soils are deficient in phosphorus. Here we show that a new mechanism of overyielding, in which phosphorus mobilized by one crop species increases the growth of a second crop species grown in alternate rows, led to large yield increases on phosphorus-deficient soils. In 4 years of field experiments, maize (Zea mays L.) overyielded by 43% and faba bean (Vicia faba L.) overyielded by 26% when intercropped on a low-phosphorus but high-nitrogen soil. We found that overyielding of maize was attributable to below-ground interactions between faba bean and maize in another field experiment. Intercropping with faba bean improved maize grain yield significantly and above-ground biomass marginally significantly, compared with maize grown with wheat, at lower rates of P fertilizer application (<75 kg of P(2)O(5) per hectare), and not significantly at high rate of P application (>112.5 kg of P(2)O(5) per hectare). By using permeable and impermeable root barriers, we found that maize overyielding resulted from its uptake of phosphorus mobilized by the acidification of the rhizosphere via faba bean root release of organic acids and protons. Faba bean overyielded because its growth season and rooting depth differed from maize. The large increase in yields from intercropping on low-phosphorus soils is likely to be especially important on heavily weathered soils.

  6. Soil amendment using poplar woodchips to enhance the treatment of wastewater-originated nutrients.

    PubMed

    Meffe, Raffaella; de Miguel, Ángel; Martínez Hernández, Virtudes; Lillo, Javier; de Bustamante, Irene

    2016-09-15

    Vegetation filters, a nature based wastewater regeneration technology, have been reported as a feasible solution for small municipalities and scattered populations with limited access to sewage networks. However even when such a treatment is properly planned, the leaching of contaminants through the unsaturated zone may occur. The amendment of soil with a readily-labile source of carbon is supposed to ameliorate the removal of contaminants by stimulating microbial activity and enhancing sorption processes. In this study, lab-scale leaching column experiments were carried out to explore if the addition of woodchips to the soil could be a feasible strategy to be integrated in a vegetation filter. Two different types of arrangement of soil and woodchips layers were tested. The soil was collected from an operating vegetation filter treating wastewater of an office building characterised by a high nutrient load. Daily pulse of synthetic wastewater were applied into the columns and effluent samples were collected and analyzed for major ions, total nitrogen (NT), total phosphorous (PT) and chemical oxygen demand (COD). By the end of the experiment, NT, NO3-N and PT soil contents were also measured. Results indicate that amendments with woodchips enhance the elimination of wastewater-originated contaminants. NT removal in the columns with woodchips reaches a value of 99.4%. The main processes responsible for this elimination are NH4-N sorption and nitrification/denitrification. This latter fostered by the reduced redox conditions due to the enhanced microbial activity. High removal of PT (99%) is achieved independently of the woodchips presence due to retention and/or precipitation phenomena. The COD removal efficiency is not affected by the presence of the woodchips. The leaching of organic carbon occurs only during the experimental start-up period. PMID:27288555

  7. Comparison between measurements of black carbon, charcoal and associated nutrients in western Amazonan soils

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. R.; McMichael, C.; Hanlon, C.; Bush, M. B.

    2011-12-01

    To construct fire and climate history and human occupation records from soils and lake sediment profiles, climatologists and anthropologists have traditionally measured charcoal abundances by microscopic image analysis. In contrast, geochemists have developed methods of black carbon (BC) quantification using chemical extraction. We compared charcoal (>0.5 mm particle size) versus BC (measured via the CTO-340 method of Kuhlbusch, 1995) in multiple soil profiles from four western Amazon regions with evidence of pre-Columbian occupation. A secondary goal of this project was to understand the relative influence of climate and humans in the fire and ecological history of the Amazon. BC concentration in soils of the Amazon varied widely from an average of 0.5 mg g 1 in cores around Lake Gentry (southeastern Peru) to 5.5 mg g 1 around Lake Ayauchi (southeastern Ecuador), corresponding to the evidence of greater land use around the latter. Surprising, BC concentrations in habitation horizon soils at Quistococha, near Iquitos, Peru were similar to Lake Gentry, averaging about 0.6 mg g 1. However, BC as a percent of soil organic carbon (SOC) was much more uniform with an average of 12.0, 13.3, 14.6, and 13.0% in Quistococha, Gentry, Ayauchi, and Los Amigos (central-eastern Peru) soils, respectively, suggesting that the same processes that concentrate SOC also concentrate BC. BC may act to protect SOC via sorption or produce SOC via microbial community enhancement. These findings also show that BC is not regionally enriched as it might be were climate to be a predominant factor in BC production, and seem to track land use more closely. Charcoal and BC concentrations were linearly correlated in only about half the soil profiles and neither BC nor charcoal were consistently correlated with chemical anthropogenic indicators such as P or Ca within soil profiles or specific regions. However, there was a statistical covariance between each of these parameters suggesting that each

  8. The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil.

    PubMed

    Muter, Olga; Potapova, Katrina; Limane, Baiba; Sproge, Kristine; Jakobsone, Ida; Cepurnieks, Guntis; Bartkevics, Vadims

    2012-05-15

    The widely used explosive 2,4,6-trinitrotoluene (TNT) has residues that are potentially explosive, toxic, and mutagenic. TNT and other explosives can be degraded by microorganisms; however, biostimulation is needed for process efficiency. To investigate the effectiveness of using biostimulation to degrade TNT, we added varying concentrations of a nutrient amendment consisting of inorganic salts, plant extracts, and molasses to soil and liquid media. For the inoculum we used a consortium of bacteria AM 06 that had exhibited the ability to degrade TNT and which had been previously isolated from explosives-contaminated soils. Phylogenetically, the clones clustered into seven different genera: Klebsiella, Raoultella, Serratia, Stenotrophomonas, Pseudoxanthomonas, Achromobacter and Pseudomonas. The addition of AM 06 consortium to a liquid environment along with 100% nutrient amendment decreased the amount of TNT (and its degradation products) by up to 90% after 14 days incubation. At the total amount of TNT was less than 100 mg/l, the concentration of TNT did not influence the amount of sugar consumed by the bacteria consortium. In soil media, the TNT degradation process was dependent on the concentration of nutrient amendment added. At higher initial concentrations of TNT (500 mg/kg), bioaugmentation (i.e., addition of bacteria inoculum) had a demonstrated effect, especially when nutrient concentrations of 50% and 100% were added to the soil. Findings of this study could further the understanding of the TNT biodegradation processes in water and soil and provide for optimization of the technological conditions for bioremediation.

  9. Soil-Transmitted Helminthiasis and Vitamin A Deficiency: Two Problems, One Policy.

    PubMed

    Strunz, Eric C; Suchdev, Parminder S; Addiss, David G

    2016-01-01

    Vitamin A deficiency (VAD) and soil-transmitted helminthiasis (STH) represent two widely prevalent and often overlapping global health problems. Approximately 75% of countries with moderate or severe VAD are coendemic for STH. We reviewed the literature on the complex relationship between STH and VAD. Treatment for STH significantly increases provitamin A (e.g., β-carotene) levels but is associated with minimal increases in preformed vitamin A (retinol). Interpretation of the data is complicated by variations in STH infection intensity and limitations of vitamin A biomarkers. Despite these challenges, increased coordination of STH and VAD interventions represents an important public health opportunity.

  10. The Median Isn't the Message: Elucidating Nutrient Hot spots and Hot Moments in a Sierra Nevada Forest Soil

    NASA Astrophysics Data System (ADS)

    Hart, S. C.; Meadows, M. W.; Johnson, D. W.

    2014-12-01

    Most biogeochemical studies in forests have concentrated on nutrient pools and transformations occurring at relatively large spatial scales (i.e., stand or small catchment), over monthly or annual time scales. Many of these studies have also focused on the average or medial values observed across the spatial or temporal scale studied, discounting outliers. However, extremely high values found consistently (hot spot) or infrequently (hot moment) at a given soil microsite may be critical for nutrient acquisition by organisms and nutrient retention by terrestrial ecosystems. We have been evaluating soil nutrient hot-spot and hot-moment phenomena vertically (to a 60-cm depth) and horizontally (2-m sampling interval within a 6 m x 6 m grid) in two areas within a mixed-conifer, Sierran forest experiencing a Mediterranean-type climate. Nutrient fluxes in space and time were measured using ion exchange resin capsules placed at various depths and collected at two times (first significant precipitation in fall and post-snowmelt in spring) per year. Our previous work over a single year showed that fluxes of Ca2+ and Mg2+ in mineral soil were substantially greater in the spring (post-snowmelt) than in the fall, suggesting that soil water was a major factor in controlling these nutrient fluxes. The opposite pattern was found for NH4+ and Na+, where greater fluxes occurred following the first precipitation event in fall. Here, we report new data over two additional years at these same sites that allow us to better delineate between nutrient hot spots and hot moments. Overall, our results suggest that microbial-mediated nutrients (e.g., NH4+, NO3-, and PO43-) occur frequently as both hot spots and hot moments within soil, while those that are more abiotically controlled (e.g., Ca2+, Mg2+, and Na+) occur predominately as hot spots. Further elucidation of the mechanisms responsible for nutrient hot spot-hot moment phenomena within soil should be invaluable for improving the

  11. Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK.

    PubMed

    Ockenden, Mary C; Deasy, Clare; Quinton, John N; Surridge, Ben; Stoate, Chris

    2014-03-15

    Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers.

  12. Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK.

    PubMed

    Ockenden, Mary C; Deasy, Clare; Quinton, John N; Surridge, Ben; Stoate, Chris

    2014-03-15

    Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers. PMID:24509365

  13. Effect of trees on the reduction of nutrient concentrations in the soils of cultivated areas.

    PubMed

    Gikas, Georgios D; Tsihrintzis, Vassilios A; Sykas, Dimitrios

    2016-06-01

    The function of trees in reducing nutrient migration to groundwaters in cultivated areas, under Mediterranean climate conditions, is tested. Three cultivated fields were monitored for two cultivation periods. The common characteristic of the three fields was that on one side, they bordered with a poplar tree field. Four different crops were cultivated, and two cultivation periods were monitored. Based on the number of fields (i.e., three) and the cultivation periods (i.e., two), six different conditions (systems) were studied with four crops (i.e., sunflower, cotton, rapeseed, and corn). Soil samples were collected in all systems at the beginning, the middle, and the end of the cultivation period at various sampling sites (i.e., various distances from the tree row) and at various depths, and were analyzed in the laboratory for the determination of ΝΟ3-Ν and P-Olsen. In all systems, the greatest concentration of P-Olsen was measured in the surface layers (0-5, 10-15, and 30-35 cm) and was gradually decreased in the deeper layers (55-60 and 75-80 cm) indicating that P mobility is low. The ΝΟ3-Ν concentration in the deeper layers (55-60 and 75-80 cm) at all sampling sites was equal to or greater than that of the surface layers, indicating that ΝΟ3-Ν has high mobility in soils. At the sampling sites in the soil zone near the tree row, the ΝΟ3-Ν concentration in the deeper layers was lower than that of the surface, indicating that the tree root system takes up nutrients which otherwise would move toward the water table. There was also a reduction observed of the depth-averaged P-Olsen and ΝΟ3-Ν concentrations at the soil zone at a distance of 2.0-3.5 m from the tree row compared to locations more distant from the trees; this reduction ranged between 15 and 50 % and 36 and 54 %, respectively. The results indicate that planting of trees in cultivated fields can contribute to the reduction of nitrate pollution of groundwaters. PMID:27147240

  14. Utilization of ERTS data to detect plant diseases and nutrient deficiencies, soil types and moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L.; Sewell, J. I.; Hilty, J. W.; Rennie, J. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The separation of the Mississippi Delta from the Memphis Association (Loess) is clearly defined in ERTS-1 imagery covering west Tennessee and Mississippi.

  15. Utilization of ERTS data to detect plant diseases and nutrient deficiencies, soil types and moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L. (Principal Investigator); Sewell, J. I.; Hilty, J. W.; Rennie, J. C.

    1973-01-01

    The author has identified the following significant results. Findings demonstrate the feasibility of delineating major terrain features, land uses, and crop species through computerized analyses. Channel 6 appears to give the most information for making separations of this type. By enlarging satellite imagery and visually comparing this with high altitude aerial photographs, locating small terrain features and cropland areas on satellite imagery is greatly facilitated. Forest types are discernable on the 2402 imagery with a #25 filter: pine stands have dark tones, hardwood stands have light tones, and pine-hardwood have intermediate tones. No textural differences are evident on this type of imagery. However, on the 2424 imagery with #89B filter, textural differences are evident but tonal differences are absent. Areas of considerable texture are interpreted as stands of high volume while areas of suppressed texture are of low volume. The 2402 imagery with a #57 filter appears to have little information of importance in timber inventory.

  16. Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity.

    PubMed

    Cébron, Aurélie; Bodrossy, Levente; Stralis-Pavese, Nancy; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-02-01

    Stable isotope probing (SIP) can be used to analyze the active bacterial populations involved in a process by incorporating 13C-labeled substrate into cellular components such as DNA. Relatively long incubation times are often used with laboratory microcosms in order to incorporate sufficient 13C into the DNA of the target organisms. Addition of nutrients can be used to accelerate the processes. However, unnatural concentrations of nutrients may artificially change bacterial diversity and activity. In this study, methanotroph activity and diversity in soil was examined during the consumption of 13CH4 with three DNA-SIP experiments, using microcosms with natural field soil water conditions, the addition of water, and the addition of mineral salts solution. Methanotroph population diversity was studied by targeting 16S rRNA and pmoA genes. Clone library analyses, denaturing gradient gel electrophoresis fingerprinting, and pmoA microarray hybridization analyses were carried out. Most methanotroph diversity (type I and type II methanotrophs) was observed in non-amended SIP microcosms. Although this treatment probably best reflected the in situ environmental conditions, one major disadvantage of this incubation was that the incorporation of 13CH4 was slow and some cross-feeding of 13C occurred, thereby leading to labeling of nonmethanotroph microorganisms. Conversely, microcosms supplemented with mineral salts medium exhibited rapid consumption of 13CH4, resulting in the labeling of a less diverse population of only type I methanotrophs. DNA-SIP incubations using water-amended microcosms yielded faster incorporation of 13C into active methanotrophs while avoiding the cross-feeding of 13C.

  17. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat.

    PubMed

    Saia, Sergio; Rappa, Vito; Ruisi, Paolo; Abenavoli, Maria Rosa; Sunseri, Francesco; Giambalvo, Dario; Frenda, Alfonso S; Martinelli, Federico

    2015-01-01

    In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4 (+)) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3 (-) transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem.

  18. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  19. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat

    PubMed Central

    Saia, Sergio; Rappa, Vito; Ruisi, Paolo; Abenavoli, Maria Rosa; Sunseri, Francesco; Giambalvo, Dario; Frenda, Alfonso S.; Martinelli, Federico

    2015-01-01

    In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4+) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3- transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem. PMID:26483827

  20. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    PubMed

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  1. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil

    PubMed Central

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  2. Effects of Wheat Straw Incorporation on the Availability of Soil Nutrients and Enzyme Activities in Semiarid Areas

    PubMed Central

    Wei, Ting; Zhang, Peng; Wang, Ke; Ding, Ruixia; Yang, Baoping; Nie, Junfeng; Jia, Zhikuan; Han, Qingfang

    2015-01-01

    Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four—year (2007–2011) field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm-2, M: 6000 kg hm-2, and L: 3000 kg hm-2) and no straw incorporation was used as the control (CK). The levels of soil nutrients, soil organic carbon (SOC), soil labile organic carbon (LOC), and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0–40 cm soil layers after straw incorporation treatments, i.e., 9.1–30.5%, 9.8–69.5%, 10.3–27.3%, 0.7–23.4%, and 44.4–49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0–40 cm soil layers were 24.4–31.3%, 9.9–36.4%, and 42.9–65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively. PMID:25880452

  3. Changes in liquid water alter nutrient bioavailability and gas diffusion in frozen antarctic soils contaminated with petroleum hydrocarbons.

    PubMed

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Bioremediation has been used to remediate petroleum hydrocarbon (PHC)-contaminated sites in polar regions; however, limited knowledge exists in understanding how frozen conditions influence factors that regulate microbial activity. We hypothesized that increased liquid water (θ(liquid) ) would affect nutrient supply rates (NSR) and gas diffusion under frozen conditions. If true, management practices that increase θ(liquid) should also increase bioremediation in polar soils by reducing nutrient and oxygen limitations. Influence of θ(liquid) on NSR was determined using diesel-contaminated soil (0-8,000 mg kg(-1)) from Casey Station, Antarctica. The θ(liquid) was altered between 0.007 and 0.035 cm(3) cm(-3) by packing soil cores at different bulk densities. The nutrient supply rate of NH 4+ and NO 3-, as well as gas diffusion coefficient, D(s), were measured at two temperatures, 21°C and -5°C, to correct for bulk density effects. Freezing decreased NSR of both NH 4+ and NO 3-, with θ(liquid) linked to nitrate and ammonia NSR in frozen soil. Similarly for D(s), decreases due to freezing were much more pronounced in soils with low θ(liquid) compared to soils with higher θ(liquid) contents. Additional studies are needed to determine the relationship between degradation rates and θ(liquid) under frozen conditions.

  4. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions.

    PubMed

    Myers-Smith, Isla H; Hik, David S

    2013-10-01

    Shrubs are the largest plant life form in tundra ecosystems; therefore, any changes in the abundance of shrubs will feedback to influence biodiversity, ecosystem function, and climate. The snow-shrub hypothesis asserts that shrub canopies trap snow and insulate soils in winter, increasing the rates of nutrient cycling to create a positive feedback to shrub expansion. However, previous work has not been able to separate the abiotic from the biotic influences of shrub canopies. We conducted a 3-year factorial experiment to determine the influences of canopies on soil temperatures and nutrient cycling parameters by removing ∼0.5 m high willow (Salix spp.) and birch (Betula glandulosa) shrubs, creating artificial shrub canopies and comparing these manipulations to nearby open tundra and shrub patches. Soil temperatures were 4-5°C warmer in January, and 2°C cooler in July under shrub cover. Natural shrub plots had 14-33 cm more snow in January than adjacent open tundra plots. Snow cover and soil temperatures were similar in the manipulated plots when compared with the respective unmanipulated treatments, indicating that shrub canopy cover was a dominant factor influencing the soil thermal regime. Conversely, we found no strong evidence of increased soil decomposition, CO2 fluxes, or nitrate or ammonia adsorbtion under artificial shrub canopy treatments when compared with unmanipulated open tundra. Our results suggest that the abiotic influences of shrub canopy cover alone on nutrient dynamics are weaker than previously asserted.

  5. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation.

    PubMed

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P

    2011-04-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (p<0.05) increase in soil respiration (81.1%), soil microbial biomass carbon (SMBC) (104%) and soil dehydrogenase (DH) (59.2%) compared to the conventional tillage soil. Optimum water supply (3-irrigations) enhanced soil respiration over sub-optimum and supra-optimum irrigations by 13.32% and 79% respectively. Soil dehydrogenase (DH) activity in optimum water regime has also increased by 23.33% and 8.18% respectively over the other two irrigation regimes. Similarly, SMBC has also increased by 12.14% and 27.17% respectively in soil with optimum water supply compared to that of sub-optimum and supra-optimum water regime fields. The maximum increase in soil microbial activities is found when sole organic source (50% Farm Yard Manure+25% biofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner.

  6. Iron deficiency-induced changes in growth reveal differences in nutrient partitioning between two ecotypes of Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancing the nutritional quality of crops is of international importance, and multiple methods have been utilized to increase the nutrient content of legume seeds. Because nutrients mobilized from source leaves to growing reproductive sink tissues greatly contribute to the final composition of the ...

  7. How meristem plasticity in response to soil nutrients and light affects plant growth in four Festuca grass species.

    PubMed

    Sugiyama, Shu-ichi; Gotoh, Minako

    2010-02-01

    Investigation of responses of meristems to environmental conditions is important for understanding the mechanisms and consequences of plant phenotypic plasticity. Here, we examined how meristem plasticity to light and soil nutrients affected leaf growth and relative growth rate (RGR) in fast- and slow-growing Festuca grass species. Activity in shoot apical meristems was measured by leaf appearance rate, and that in leaf meristems by the duration and rate of cell production, which was further divided into single cell cycle time and the number of dividing cells. Light and soil nutrients affected activity in shoot apical meristems similarly. The high nutrient supply increased the number of dividing cells, which was responsible for enhancement of cell production rate; shaded conditions extended the duration of cell production. As a result, leaf length increased under high nutrient and shaded conditions. The RGR was correlated positively with the total meristem size of the shoot under a low nutrient supply, implying inhibition of RGR by cell production under nutrient-limited conditions. Fast-growing species were more plastic for cell production rate and specific leaf area (SLA) but less plastic for RGR than slow-growing species. This study demonstrates that meristem plasticity plays key roles in characterizing environmental responses of plant species.

  8. Advancing analysis of spatio-temporal variations of soil nutrients in the water level fluctuation zone of China's Three Gorges Reservoir using self-organizing map.

    PubMed

    Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa

    2015-01-01

    The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR. PMID:25789612

  9. Advancing Analysis of Spatio-Temporal Variations of Soil Nutrients in the Water Level Fluctuation Zone of China’s Three Gorges Reservoir Using Self-Organizing Map

    PubMed Central

    Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa

    2015-01-01

    The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR. PMID:25789612

  10. Advancing analysis of spatio-temporal variations of soil nutrients in the water level fluctuation zone of China's Three Gorges Reservoir using self-organizing map.

    PubMed

    Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa

    2015-01-01

    The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR.

  11. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.

    PubMed

    NareshKumar, R; Nagendran, R

    2008-08-15

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application.

  12. Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil.

    PubMed

    Newsham, Kevin K; Pearce, David A; Bridge, Paul D

    2010-09-20

    Bacterial community composition was determined by culture-independent PCR-based methods in two soils differing markedly in their water, C, N and P contents sampled from Mars Oasis on Alexander Island, western Antarctic Peninsula. 16S rRNA sequences of the phyla Actinobacteria, Cyanobacteria, α-Proteobacteria and Acidobacteria were commonly (> 8% frequency) obtained from soil. Those of β-, γ- and δ-Proteobacteria, Chloroflexi, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimonadetes and Firmicutes were less frequent. Comparisons of slopes of collector's curves and the Shannon-Weiner diversity index indicated no difference in overall bacterial diversity between the two soils, although sequences of δ-Proteobacteria and the cyanobacterial genus Leptolyngbya were more commonly derived from the soil with the higher water and nutrient content. The data suggest that different levels of soil water, C, N and P have only a minor effect on the bacterial community composition of maritime Antarctic soils. PMID:20006478

  13. Weed management, training, and irrigation practices for organic production of trailing blackberry: II. Soil and plant nutrient concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic production of blackberries is increasing, but there is relatively little known about how production practices affect plant and soil nutrient status. The impact of cultivar (‘Black Diamond’ and ‘Marion’), weed management (weed mat, hand weeding, and no weeding), primocane training time (Augus...

  14. On-site assessment of extractable soil nutrients after long-term biosolids applications to perennial forage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate soil nutrient loading and depth distributions of extractable nitrogen (N), phosphorus (P), and potassium (K) after long-term, continuous annual surface-applications of anaerobically-digested Class B biosolids at a municipal recycling facility in central Te...

  15. Soil erosion and nutrient runoff in corn silage production with kura clover living mulch and winter rye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) harvested for silage is a productive forage crop, but one that can exacerbate soil loss, surface water runoff, and nonpoint source nutrient pollution from agricultural fields. The objective of this research was to compare the effects of using Kura clover (Trifolium ambiguum M. Bie...

  16. Sensing Site-Specific Variability in Soil and Plant Phosphorus and Other Mineral Nutrients by X-Ray Fluorescence Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection and rapid response to in-season changes of soil nutrient availability and plant needs with weather conditions and site-specific characteristics are essential to the optimal performance of an agronomic crop production system. With recent advances in material science, detector design and se...

  17. Effects of geotextile landscape fabric on soil nutrient availability in an organic planting of ‘Marion’ trailing blackberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geotextile landscape fabric, often referred to as weed mat, is becoming a popular option for weed control in many fruit crops, particularly for organic production. The present study was conducted in 2014 to evaluate the effects of landscape fabric relative to hand weeding on soil nutrient availabili...

  18. A novel nanoparticle approach for imaging nutrient uptake by soil bacteria

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Antonopoulos, D. A.; Boyanov, M.; Durall, D. M.; Jones, M. D.; Lai, B.; O'Loughlin, E. J.; Kemner, K. M.

    2014-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout their habitat. Here we use a novel imaging technique with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to measure bacterial uptake of substrates of varying complexity. Cultures of two organisms differing in cell wall structure — Bacillus subtilis and Pseudomonas fluorescens — were grown in one of four ecologically relevant experimental conditions: nitrogen (N) limitation, phosphorus (P) limitation, N and P limitation, or no nutrient limitation. The cultures were then exposed to QDs with and without organic nutrients attached. X-ray fluorescence imaging was performed at 2ID-D at the Advanced Photon Source (APS) to determine the elemental distributions within both planktonic and surface-adhered (i.e, biofilms) cells. Uptake of unconjugated QDs was neglibible, and QDs conjugated to organic substrates varied depending on growth conditions and substrate, suggesting that they are a useful indicator of bacterial ecology. Cellular uptake was similar for the two bacterial species (2212 ± 273 nanoparticles per cm3 of cell volume for B. subtilis and 1682 ± 264 for P. fluorescens). On average, QD assimilation was six times greater when N or P was limiting, and cells took up about twice as much phosphoserine compared to other substrates, likely because it was the only compound providing both N and P. These results showed that regardless of their cell wall structure, bacteria can selectively take up quantifiable levels of QDs based on substrate and environmental conditions. APS

  19. Soil nutrients, land use history and species composition interact to influence tropical N2 fixation

    NASA Astrophysics Data System (ADS)

    Batterman, S. A.; Hall, J.; Van Breugel, M.; Hedin, L. O.

    2011-12-01

    Symbiotic di-nitrogen fixation plays an important role in terrestrial biogeochemical cycles as it can bring in large quantities of nitrogen into ecosystems and provide the nitrogen required for individual plant growth in nitrogen limited environments. Of particular interest is how fixation interacts with nitrogen and phosphorus cycles in heterogeneous tropical forests. Recent advances on this topic using plants grown in a shadehouse show that the interaction of nitrogen and phosphorus control fixation at the level of individual plants and that plants adjust nutrient acquisition strategies with some successes at overcoming nutrient limitation on biomass growth depending on nutrient availability and the strategy employed (Batterman et al. unpublished). Exactly how these results translate to biodiverse tropical forests with heterogeneous resource availabilities and a history of land use disturbances, however, remains largely unresolved. We surveyed fixation across a chronosequence of forest stands in Panama that were at various stages of recovery from the abandonment of cattle pasture. Stands ranged in age from new secondary regrowth to mature forest. We examined nine common species of putative N2 fixing trees and lianas for nodulation, tree size, and abundance for four stands each of four forest ages to determine if species differ in strategies and function. In addition, we measured light availability to each tree and total and bioavailable phosphorus and nitrogen for each stand to examine the interactions of fixation with these biogeochemical cycles. Results were scaled to estimate stand level fixation. We found unique patterns in fixation that contrasted with predictions based on evidence of how fixation interacts with land use and biogeochemical cycles in extra-tropical forests. Soil nutrients showed unexpected patterns in availability across the chronosequence and interacted with fixation. Finally, species displayed distinct differences in temporal patterns in

  20. Impairment of Respiratory Chain under Nutrient Deficiency in Plants: Does it Play a Role in the Regulation of Iron and Sulfur Responsive Genes?

    PubMed Central

    Vigani, Gianpiero; Briat, Jean-François

    2016-01-01

    Plant production and plant product quality strongly depend on the availability of mineral nutrients. Among them, sulfur (S) and iron (Fe) play a central role, as they are needed for many proteins of the respiratory chain. Plant mitochondria play essential bioenergetic and biosynthetic functions as well as they have an important role in signaling processes into the cell. Here, by comparing several transcriptomic data sets from plants impaired in their respiratory function with the genes regulated under Fe or S deficiencies obtained from other data sets, nutrient-responsive genes potentially regulated by hypothetical mitochondrial retrograde signaling pathway are evidenced. It leads us to hypothesize that plant mitochondria could be, therefore, required for regulating the expression of key genes involved both in Fe and S metabolisms. PMID:26779219

  1. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.

    PubMed

    Lilles, Erica B; Astrup, Rasmus; Lefrançois, Marie-Lou; David Coates, K

    2014-12-01

    We developed models to describe the responses of four commonly examined leaf traits (mass per area, weight, area and nitrogen (N) concentration) to gradients of light, soil nutrients and tree height in three conifer species of contrasting shade tolerance. Our observational dataset from the sub-boreal spruce forests of British Columbia included subalpine fir (Abies lasioscarpa [Hook.] Nutt; high shade tolerance), interior spruce (Picea glauca × Picea engelmannii [Moench] Voss; intermediate shade tolerance) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia; low shade tolerance) saplings from 0.18 to 4.87 m tall, in 8-98% of total incident light, from field sites with <17.6 kg ha(-1) to >46.8 kg ha(-1) total dissolved N. Leaf weights and areas showed strong positive responses to light and height, but little or no response to soil nutrients. Parameter estimates indicated that the shape of leaf weight and area responses to light corresponded with shade tolerance ranking for the three species; pine had the most linear response whereas spruce and fir had asymptotic responses. Leaf N concentration responded positively to soil nutrients, negatively to light and idiosyncratically to height. The negative effect of light was only apparent on sites of high soil nutrient availability, and parameter estimates for the shape of the negative response also corresponded to shade tolerance ranking (apine = -0.79, aspruce = -0.15, afir = -0.07). Of the traits we measured, leaf mass per area showed the least response to light, soil nutrient and height gradients. Although it is a common practice in comparisons across many species, characterizing these conifers by mean values of their leaf traits would miss important intraspecific variation across environmental and size gradients. In these forests, parameter estimates representing the intraspecific variability of leaf trait responses can be used to understand relative shade tolerances. PMID

  2. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.

    PubMed

    Lilles, Erica B; Astrup, Rasmus; Lefrançois, Marie-Lou; David Coates, K

    2014-12-01

    We developed models to describe the responses of four commonly examined leaf traits (mass per area, weight, area and nitrogen (N) concentration) to gradients of light, soil nutrients and tree height in three conifer species of contrasting shade tolerance. Our observational dataset from the sub-boreal spruce forests of British Columbia included subalpine fir (Abies lasioscarpa [Hook.] Nutt; high shade tolerance), interior spruce (Picea glauca × Picea engelmannii [Moench] Voss; intermediate shade tolerance) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia; low shade tolerance) saplings from 0.18 to 4.87 m tall, in 8-98% of total incident light, from field sites with <17.6 kg ha(-1) to >46.8 kg ha(-1) total dissolved N. Leaf weights and areas showed strong positive responses to light and height, but little or no response to soil nutrients. Parameter estimates indicated that the shape of leaf weight and area responses to light corresponded with shade tolerance ranking for the three species; pine had the most linear response whereas spruce and fir had asymptotic responses. Leaf N concentration responded positively to soil nutrients, negatively to light and idiosyncratically to height. The negative effect of light was only apparent on sites of high soil nutrient availability, and parameter estimates for the shape of the negative response also corresponded to shade tolerance ranking (apine = -0.79, aspruce = -0.15, afir = -0.07). Of the traits we measured, leaf mass per area showed the least response to light, soil nutrient and height gradients. Although it is a common practice in comparisons across many species, characterizing these conifers by mean values of their leaf traits would miss important intraspecific variation across environmental and size gradients. In these forests, parameter estimates representing the intraspecific variability of leaf trait responses can be used to understand relative shade tolerances.

  3. Lianas always outperform tree seedlings regardless of soil nutrients: results from a long-term fertilization experiment.

    PubMed

    Pasquini, Sarah C; Wright, S Joseph; Santiago, Louis S

    2015-07-01

    Lianas are a prominent growth form in tropical forests, and there is compelling evidence that they are increasing in abundance throughout the Neotropics. While recent evidence shows that soil resources limit tree growth even in deep shade, the degree to which soil resources limit lianas in forest understories, where they coexist with trees for decades, remains unknown. Regardless, the physiological underpinnings of soil resource limitation in deeply shaded tropical habitats remain largely unexplored for either trees or lianas. Theory predicts that lianas should be more limited by soil resources than trees because they occupy the quick-return end of the "leaf economic spectrum," characterized by high rates of photosynthesis, high specific leaf area, short leaf life span, affinity to high-nutrient sites, and greater foliar nutrient concentrations. To address these issues, we asked whether soil resources (nitrogen, phosphorus, and potassium), alone or in combination, applied experimentally for more than a decade would cause significant changes in the morphology or physiology of tree and liana seedlings in a lowland tropical forest. We found evidence for the first time that phosphorus limits the photosynthetic performance of both trees and lianas in deeply shaded understory habitats. More importantly, lianas always showed significantly greater photosynthetic capacity, quenching, and saturating light levels compared to trees across all treatments. We found little evidence for nutrient x growth form interactions, indicating that lianas were not disproportionately favored in nutrient-rich habitats. Tree and liana seedlings differed markedly for six key morphological traits, demonstrating that architectural differences occurred very early in ontogeny prior to lianas finding a trellis (all seedlings were self-supporting). Overall, our results do not support nutrient loading as a mechanism of increasing liana abundance in the Neotropics. Rather, our finding that lianas

  4. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    NASA Astrophysics Data System (ADS)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  5. Long-term changes in nutrient availability after prescribed fire management in a Mediterranean soil

    NASA Astrophysics Data System (ADS)

    Alcañiz, Meritxell; Outeiro, Luis; Francos, Marcos; Farguell, Joaquim; Úbeda, Xavier

    2016-04-01

    The study area is located in the Tivissa Ranges (NE Iberian Peninsula) and the slope is ~35%, at 615 m.a.s.l. The natural vegetation before prescribed fire was composed of the three stratums in which trees (1% of the plot) were Pinus halepensis, shrubs were Ulex parviflorus, Cistus albidus, Rosmarinus officinallis, Erica multiflora and Quercus coccifera (75% of the plot), and herbs (24%) manly composed of Brachypodium retusum. The firemen had two main forest management objectives with the prescribed fire that was carried out on April 2002: (1) to change the dominance from Ulex to Cistus which is less flammable specie, and which would (2) permit the livestock into this area. Nine years after the prescribed fire our study plot was burned again with a low severity fire to manage the accumulation of vegetation. The aim of this study is a) to see the evolution of nutrient availability in the soil during 13 years since the first prescribed fire, and b) to evaluate the use of prescribed fire as a forest management tool. We have five sampling moments: (1) before the first prescribed fire; (2) after; (3) one year after; (4) three years after and (5) thirteen years after. Within the study area was placed a sampling plot with a rectangular 4×18 m structure. The study was carried out with 30 unstructured soil samples which were air-dried and passed through a 2 mm sieve. After that, fine material was prepared to measure different chemicals parameters of soil studied: soil pH [1:2.5], electrical conductivity [1:2.5], potassium, calcium and magnesium. The results show that, while pH is stable during the period studied, electrical conductivity increased after the prescribed fire as it was expected. However, thirteen years after the first prescribed fire the value (167 μS/cm) was markedly lower than before the prescribed fire (326 μS/cm). Changes in nutrient availability depend on the cation valence. Divalent cations (calcium and magnesium) decreased just after the prescribed

  6. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm

    NASA Astrophysics Data System (ADS)

    Nottingham, A. T.; Turner, B. L.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R. D.; Salinas, N.; Meir, P.

    2015-10-01

    Aboveground primary productivity is widely considered to be limited by phosphorus (P) availability in lowland tropical forests and by nitrogen (N) availability in montane tropical forests. However, the extent to which this paradigm applies to belowground processes remains unresolved. We measured indices of soil microbial nutrient status in lowland, sub-montane and montane tropical forests along a natural gradient spanning 3400 m in elevation in the Peruvian Andes. With increasing elevation there were marked increases in soil concentrations of total N, total P, and readily exchangeable P, but a decrease in N mineralization determined by in situ resin bags. Microbial carbon (C) and N increased with increasing elevation, but microbial C : N : P ratios were relatively constant, suggesting homeostasis. The activity of hydrolytic enzymes, which are rich in N, decreased with increasing elevation, while the ratio of enzymes involved in the acquisition of N and P increased with increasing elevation, further indicating an increase in the relative demand for N compared to P with increasing elevation. We conclude that soil microorganisms shift investment in nutrient acquisition from P to N between lowland and montane tropical forests, suggesting that different nutrients regulate soil microbial metabolism and the soil carbon balance in these ecosystems.

  7. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm

    NASA Astrophysics Data System (ADS)

    Nottingham, A. T.; Turner, B. L.; Whitaker, J.; Ostle, N.; McNamara, N. P.; Bardgett, R. D.; Salinas, N.; Meir, P.

    2015-04-01

    Aboveground primary productivity is widely considered to be limited by phosphorus (P) availability in lowland tropical forests and by nitrogen (N) availability in montane tropical forests. However, the extent to which this paradigm applies to belowground processes remains unresolved. We measured indices of soil microbial nutrient status in lowland, sub-montane and montane tropical forests along a natural gradient spanning 3400 m in elevation in the Peruvian Andes. With increasing elevation there were marked increases in soil concentrations of total N, total P, and readily-extractable P, but a decrease in N mineralization determined by in situ resin bags. Microbial carbon (C) and N increased with increasing elevation, but microbial C:N:P ratios were relatively constant, suggesting homeostasis. The activity of hydrolytic enzymes, which are rich in N, decreased with increasing elevation, while the ratios of enzymes involved in the acquisition of N and P increased with increasing elevation, further indicating a shift in the relative demand for N and P by microbial biomass. We conclude that soil microorganisms shift investment in nutrient acquisition from P to N between lowland and montane tropical forests, suggesting that different nutrients regulate soil microbial metabolism and the soil carbon balance in these ecosystems.

  8. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances.

    PubMed

    Powers, Jennifer S; Treseder, Kathleen K; Lerdau, Manuel T

    2005-03-01

    * It is commonly hypothesized that stand-level fine root biomass increases as soil fertility decreases both within and among tropical forests, but few data exist to test this prediction across broad geographic scales. This study investigated the relationships among fine roots, arbuscular mycorrhizal (AM) fungi and soil nutrients in four lowland, neotropical rainforests. * Within each forest, samples were collected from plots that differed in fertility and above-ground biomass, and fine roots, AM hyphae and total soil nutrients were measured. * Among sites, total fine root mass varied by a factor of three, from 237+/-19 g m-2 in Costa Rica to 800+/-116 g m-2 in Brazil (0-40 cm depth). Both root mass and length were negatively correlated to soil nitrogen and phosphorus, but AM hyphae were not related to nutrients, root properties or above-ground biomass. * These results suggest that understanding how soil fertility affects fine roots is an additional factor that may improve the representation of root functions in global biogeochemical models or biome-wide averages of root properties in tropical forests. PMID:15720702

  9. Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements.

    PubMed

    Metali, Faizah; Abu Salim, Kamariah; Tennakoon, Kushan; Burslem, David F R P

    2015-01-01

    Foliar elemental concentrations are predictors of life-history variation and contribute to spatial patterns in biogeochemical cycling. We examined the contributions of habitat association, local soil environment, and elemental interactions to variation in foliar elemental concentrations in tropical trees using methods that account for phylogeny. We sampled top-soils and leaves of 58 tropical trees in heath forest (HF) on nutrient-poor sand and mixed dipterocarp forest (MDF) on nutrient-rich clay soils. A phylogenetic generalized least squares method was used to determine how foliar nutrient and aluminium (Al) concentrations varied in response to habitat distribution, soil chemistry and other elemental concentrations. Foliar nitrogen (N) and Al concentrations were greater for specialists of MDF than for specialists of HF, while foliar calcium (Ca) concentrations showed the opposite trend. Foliar magnesium (Mg) concentrations were lower for generalists than for MDF specialists. Foliar element concentrations were correlated with fine-scale variation in soil chemistry in phylogenetically controlled analyses across species, but there was limited within-species plasticity in foliar elemental concentrations. Among Al accumulators, foliar Al concentration was positively associated with foliar Ca and Mg concentrations, and negatively associated with foliar phosphorus (P) concentrations. The Al-accumulation trait and relationships between foliar elemental and Al concentrations may contribute to species habitat partitioning and ecosystem-level differences in biogeochemical cycles.

  10. Leaf nutrient contents and morphology of invasive tamarisk in different soil conditions in the lower Virgin River

    NASA Astrophysics Data System (ADS)

    Imada, S.; Acharya, K.; Tateno, R.; Yamanaka, N.

    2012-12-01

    Invasive plants can alter ecosystem nitrogen (N) cycling. To increase our understanding of nutrient use strategy of invasive tamarisk (Tamarix spp.) on an arid riparian ecosystem, we examined leaf nutrient contents and morphology of Tamarix ramosissima and its relationship with soil properties in the lower Virgin River floodplain, Nevada, U.S. Leaves were collected in three different locations; near the river, near the stand edge (60-70 m from the river edge) and at 30-40 m from the river edge in the summer of 2011. Leaves were analyzed for carbon (C) and N contents, and specific leaf area (SLA). Soil samples at 10-20 cm depths and under the canopy were also collected for soil water, pH, electrical conductivity (EC) and inorganic nitrogen (NO3- and NH4+) analysis. Results suggested that tree size and SLA increased with decreasing distance from the river, whereas C isotope discrimination did not differ among the samples based on distance from the river. Nitrogen content per unit mass and N isotope discrimination (δ15N) were significantly higher in the trees near the river. Soil NO3- and total inorganic N had positive relationships with δ15N in leaves, which suggests that leaf δ15N may be influenced by N concentrations on the soil surface. Negative correlations were found between soil EC and leaf N contents, suggesting that high soil salinity may decrease Tamarix leaf N and thus limit tree growth.

  11. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  12. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  13. Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus.

    PubMed

    Abrahão, A; Lambers, H; Sawaya, A C H F; Mazzafera, P; Oliveira, R S

    2014-10-01

    In old, phosphorus (P)-impoverished habitats, root specializations such as cluster roots efficiently mobilize and acquire P by releasing large amounts of carboxylates in the rhizosphere. These specialized roots are rarely mycorrhizal. We investigated whether Discocactus placentiformis (Cactaceae), a common species in nutrient-poor campos rupestres over white sands, operates in the same way as other root specializations. Discocactus placentiformis showed no mycorrhizal colonization, but exhibited a sand-binding root specialization with rhizosheath formation. We first provide circumstantial evidence for carboxylate exudation in field material, based on its very high shoot manganese (Mn) concentrations, and then firm evidence, based on exudate analysis. We identified predominantly oxalic acid, but also malic, citric, lactic, succinic, fumaric, and malonic acids. When grown in nutrient solution with P concentrations ranging from 0 to 100 μM, we observed an increase in total carboxylate exudation with decreasing P supply, showing that P deficiency stimulated carboxylate release. Additionally, we tested P solubilization by citric, malic and oxalic acids, and found that they solubilized P from the strongly P-sorbing soil in its native habitat, when the acids were added in combination and in relatively low concentrations. We conclude that the sand-binding root specialization in this nonmycorrhizal cactus functions similar to that of cluster roots, which efficiently enhance P acquisition in other habitats with very low P availability.

  14. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    PubMed

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost

  15. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    PubMed

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost

  16. Diffusion of Nutrients in an Isolated Wetland Resulting From Shallow Pore Water Gradients Affected by Antecedent Soil Conditions.

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Jawitz, J. W.; Dunne, E. J.; Perkins, D. B.

    2007-05-01

    Historically sequestered nutrients in wetland soils may be gradually released to the water column through the process commonly referred to as internal loading. The watershed for Lake Okeechobee, FL (USA) is heavily agricultural and excess nutrients in this area are drained to the Lake by ditches and canals. Formerly isolated, wetlands in this area have also been extensively ditched and drained. In this study, diffusive fluxes of nutrients were calculated using Fick's First Law from shallow pore water gradients, and later compared to fluxes measured by an incubated laboratory experiment on 10-cm intact soil cores from the same sites. Three intact soil cores from a wetland located on an operational beef farm were used to measure total phosphorus (TP), along with soil properties such as porosity, bulk density, and pH. Simultaneously, pore water concentrations of total organic carbon (TOC), total Kjeldahl nitrogen (TKN), and soluble reactive phosphorus (SRP) were also measured at the same three sites for a period of twelve months, and compared to surface water concentrations during flooded periods. A strong correlation between concentration gradients in pore water SRP and those observed in soil TP, suggests that shallow pore water concentrations reflect antecedent soil conditions. If this is true, then fluxes associated with diffusion and advection could greatly affect the total ground water fluxes across the soil-water interface. Fickian diffusive fluxes, estimated six times over a twelve month sampling period, were found to vary between 7-38 mg.m-2.d-1 for TOC, 1-18 mg.m-2.d-1 for TKN, and 0.04-0.86 mg.m-2.d-1 for SRP. While factors such as wetland stage and hydroperiod may have affected the fluxes, it is ultimately the concentration gradients across the soil-water interface that drives diffusive fluxes.

  17. [Spatial variability of soil nutrients and salinity in coastal saline-alkali land based on belt transect method].

    PubMed

    Wang, Na-Na; Qi, Wei; Wang, Dan; Qin, Tian-Tian; Lu, Chao

    2012-06-01

    A north-south transect was established in the saline-alkali land of Yellow River old course at Diaokou of northern Yellow River Delta, Shandong Province of East China to analyze the spatial distribution characteristics of soil nutrients and salinity and related affecting factors by using geostatistics method. In the study area, the nugget/still of soil organic matter, total nitrogen (TN), available phosphorus (AP), and available potassium (AK) contents and soil salinity were 0.38, 0.40, 0.50, 0.32, and 0.34, respectively, which demonstrated that these five parameters were moderately spatial dependence. The soil organic matter and TN contents in this transect had a similar distribution pattern, soil AK content was highly correlated to soil salinity, while soil AP content presented a fluctuated distribution. According to the comprehensive analysis of soil organic matter content and salinity, this transect was classified into three types, i.e., high salinity and low fertility, high salinity and high fertility, and low salinity and high fertility. The spatial distribution pattern of the five soil parameters was closed related to the soil parental material, land use pattern, distance to sea, and road block.

  18. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    PubMed

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  19. Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.

    2014-09-01

    Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available excess biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20-43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 tonnes of ammonium-N and 920-4600 tonnes of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of excess biomass.

  20. Resistance and tolerance of Terminalia sericea trees to simulated herbivore damage under different soil nutrient and moisture conditions.

    PubMed

    Katjiua, Mutjinde L J; Ward, David

    2006-07-01

    Resource availability, degree of herbivore damage, genetic variability, and their interactions influence the allocation of investment by plants to resistance and tolerance traits. We evaluated the independent and interactive effects of soil nutrients and moisture, and simulated the effects of herbivore damage on condensed tannins (resistance) and growth/regrowth (tolerance) traits of Terminalia sericea, a deciduous tree in the Kalahari desert that constitutes a major component of livestock diet. We used a completely crossed randomized-block design experiment to examine the effects of nutrients, water availability, and herbivore damage on regrowth and resistance traits of T. sericea seedlings. Plant height, number of branches, internode length, leaf area, leaf mass for each seedling, combined weight of stems and twigs, and root mass were recorded. Condensed tannin concentrations were 22.5 and 21.5% higher under low nutrients and low soil moisture than under high nutrient and high water treatment levels. Tannin concentrations did not differ significantly between control and experimental seedlings 2 mo after simulated herbivore damage. Tannin concentrations correlated more strongly with growth traits under low- than under high-nutrient conditions. No trade-offs were detected among individual growth traits, nor between growth traits and condensed tannins. T. sericea appeared to invest more in both resistance and regrowth traits when grown under low-nutrient conditions. Investment in the resistance trait (condensed tannin) under high-nutrient conditions was minimal and, to a lesser degree, correlated with plant growth. These results suggest that T. sericea displays both resistance and tolerance strategies, and that the degree to which each is expressed is resource-dependent.

  1. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    PubMed

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments.

  2. [Control of Soil Nutrient Loss of Typical Reforestation Patterns Along the Three Gorges Reservoir Area].

    PubMed

    Wu, Dong; Huang, Zhi-lin; Xiao, Wen-fa; Zeng, Li-xiong

    2015-10-01

    Annual soil nutrient loss characteristics on typical reforestation patterns in watershed along the Three Gorges Reservoir Area were studied based on runoff plot experiment. Runoff and sediment nutrition content from May to October 2014 of typical reforestation patterns including garden plot (tea garden), forest land (Chinese chestnut) and the original slope farmland were determined and then analyzed. The results showed that: (1) After the Returning Farmland to Forest Project the quantity of annual soil nutrient (nitrogen and phosphorus, the sum of them in sediment and runoff) loss decreased. The output of total nitrogen (TN) was in the order of slope farmland (2 444.27 g x hm(-2)) > tea garden (998.70 g x hm(-2)) > Chinese chestnut forest (532.61 g x hm(-2)), and for total phosphorus (TP) loss was slope farmland (1 690.48 g x hm(-2)) > tea garden (488.06 g x hm(-2)) > Chinese chestnut forest (129.00 g x hm(-2)) . Compared with slope farmland, the load of TN and TP output of reforestation patterns decreased 68.68% and 81.75%, respectively. (2) Compared with slope farmland, available nitrogen loss decreased in reforestation patterns. Total nitrate nitrogen (NO3(-)-N) loss ranked in the order of slope farmland (113.79 g x hm(-2)) > tea garden (73.75 g x hm(-2)) > Chinese chestnut forest (56.06 g x hm(-2)) The largest amount of ammonium nitrogen (NH4(+)-N) was found in tea garden (69.34 g x hm(-2)), then in farmland (52.45 g x hm(-2)), and the least in Chinese chestnut forest (47.23 g x hm(-2)). (3) The main route of NO3(-)-N and NH4(+)-N loss was both through runoff, the quantity of NO3(-)-N and NH4(+)-N output in which accounted for 91.4% and 92.2% of the total, respectively. The quantity of TN and TP in sediment accounted for 86.6% and 98.4% of the total. TN and TP loss showed an extremely significant correlation with sediments, which showed that sediment output was the main approach of TN and TP loss. PMID:26841618

  3. Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release.

    PubMed

    Conway, Jon R; Keller, Arturo A

    2016-07-01

    The gravity-driven transport of TiO2, CeO2, and Cu(OH)2 engineered nanomaterials (ENMs) and their effects on soil pH and nutrient release were measured in three unsaturated soils. ENM transport was found to be highly limited in natural soils collected from farmland and grasslands, with the majority of particles being retained in the upper 0-3 cm of the soil profile, while greater transport depth was seen in a commercial potting soil. Physical straining appeared to be the primary mechanism of retention in natural soils as ENMs immediately formed micron-scale aggregates, which was exacerbated by coating particles with Suwannee River natural organic matter (NOM) which promote steric hindrance. Small changes in soil pH were observed in natural soils contaminated with ENMs that were largely independent of ENM type and concentration, but differed from controls. These changes may have been due to enhanced release of naturally present pH-altering ions (Mg(2+), H(+)) in the soil via substitution processes. These results suggest ENMs introduced into soil will likely be highly retained near the source zone. PMID:27108211

  4. Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release.

    PubMed

    Conway, Jon R; Keller, Arturo A

    2016-07-01

    The gravity-driven transport of TiO2, CeO2, and Cu(OH)2 engineered nanomaterials (ENMs) and their effects on soil pH and nutrient release were measured in three unsaturated soils. ENM transport was found to be highly limited in natural soils collected from farmland and grasslands, with the majority of particles being retained in the upper 0-3 cm of the soil profile, while greater transport depth was seen in a commercial potting soil. Physical straining appeared to be the primary mechanism of retention in natural soils as ENMs immediately formed micron-scale aggregates, which was exacerbated by coating particles with Suwannee River natural organic matter (NOM) which promote steric hindrance. Small changes in soil pH were observed in natural soils contaminated with ENMs that were largely independent of ENM type and concentration, but differed from controls. These changes may have been due to enhanced release of naturally present pH-altering ions (Mg(2+), H(+)) in the soil via substitution processes. These results suggest ENMs introduced into soil will likely be highly retained near the source zone.

  5. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China.

    PubMed

    Wang, Dianjie; Shen, Youxin; Li, Yuhui; Huang, Jin

    2016-01-01

    Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC), total nitrogen (N), total phosphorus (P), and potassium (K) in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30%) of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch.

  6. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China

    PubMed Central

    Wang, Dianjie; Shen, Youxin; Li, Yuhui; Huang, Jin

    2016-01-01

    Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC), total nitrogen (N), total phosphorus (P), and potassium (K) in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30%) of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch. PMID:27509199

  7. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China.

    PubMed

    Wang, Dianjie; Shen, Youxin; Li, Yuhui; Huang, Jin

    2016-01-01

    Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC), total nitrogen (N), total phosphorus (P), and potassium (K) in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30%) of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch. PMID:27509199

  8. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland

    PubMed Central

    Wang, W.; Sardans, J.; Zeng, C.; Zhong, C.; Li, Y.; Peñuelas, J.

    2015-01-01

    We studied the impacts of anthropogenic changes in land use on the stoichiometric imbalance of soil carbon (C), nitrogen (N), phosphorus (P) and potassium (K) in Phragmites australis wetlands in the Minjiang River estuary. We compared five areas with different land uses: P. australis wetland (control), grassland, a mudskipper breeding flat, pond aquaculture and rice cropland. Human activity has affected the elemental and stoichiometric compositions of soils through changes in land use. In general, soil C and N concentrations were lower and total soil K concentrations were higher at the sites under human land uses relative to the control site, and total soil P concentrations were generally not significantly different. The close relationship between total soil C and N concentrations in all cases, including fertilization with N, suggested that N was the most limiting nutrient in these wetlands. Lower soil N concentrations and similar soil P concentrations and higher soil K concentrations under human land-use activities suggest that human activity has increased the role of N limitation in these wetlands. Only grassland use increases soil N contents (only in the 0-10 cm of soil). Despite N fertilization, lower soil N concentrations were also observed in the rice cropland, indicating the difficulty of avoiding N limitation in these wetlands. The observed lower soil N:P ratio, together with higher soil P and K availabilities in rice croplands, is consistent with the tendency of human activity to change the competitive relationships of plants, in this case favoring species adapted to high rates of growth (low N:P ratio) and/or favoring plants with high demands for P and K. Both, soil C storage and respiration were higher in grasslands, likely due to the introduction of grasses, which led to a high density of plants, increased grazing activity and soil compaction. Soil C storage and respiration were lower under human land uses, except in the rice cropland, with respect to

  9. Decoupling of soil nutrient cycles as a function of aridity in global drylands.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Gallardo, Antonio; Bowker, Matthew A; Wallenstein, Matthew D; Quero, Jose Luis; Ochoa, Victoria; Gozalo, Beatriz; García-Gómez, Miguel; Soliveres, Santiago; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Escolar, Cristina; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Carreira, José Antonio; Chaieb, Mohamed; Conceição, Abel A; Derak, Mchich; Eldridge, David J; Escudero, Adrián; Espinosa, Carlos I; Gaitán, Juan; Gatica, M Gabriel; Gómez-González, Susana; Guzman, Elizabeth; Gutiérrez, Julio R; Florentino, Adriana; Hepper, Estela; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Liu, Jushan; Mau, Rebecca L; Miriti, Maria; Monerris, Jorge; Naseri, Kamal; Noumi, Zouhaier; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez, Elizabeth; Ramírez-Collantes, David A; Romão, Roberto; Tighe, Matthew; Torres, Duilio; Torres-Díaz, Cristian; Ungar, Eugene D; Val, James; Wamiti, Wanyoike; Wang, Deli; Zaady, Eli

    2013-10-31

    The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.

  10. Iron deficiency chlorosis in plants as related to Fe sources in soil

    NASA Astrophysics Data System (ADS)

    Díaz, I.; Delgado, A.; de Santiago, A.; del Campillo, M. C.; Torrent, J.

    2012-04-01

    Iron deficiency chlorosis (IDC) is a relevant agricultural problem in many areas of the World where calcareous soils are dominant. Although this problem has been traditionally ascribed to the pH-buffering effect of soil carbonates, the content and type of Fe oxides in soil contribute to explain Fe uptake by plants and the incidence of this problem. During the last two decades, it has been demonstrated Fe extraction with oxalate, related to the content of poorly crystalline Fe oxides, was well-correlated with the chlorophyll content of plants and thus with the incidence of IDC. This reveals the contribution of poorly crystalline Fe oxides in soil to Fe availability to plants in calcareous soils, previously shown in microcosm experiments using ferrihydrite as Fe source in the growing media. In order to supply additional information about the contribution of Fe sources in soil to explain the incidence of IDC and to perform accurate methods to predict it, a set of experiments involving different methods to extract soil Fe and plant cultivation in pots to correlate amounts of extracted Fe with the chlorophyll content of plants (measured using the SPAD chlorophyll meter) were performed. The first experiment involved 21 soils and white lupin cultivation, sequential Fe extraction in soil to study Fe forms, and single extractions (DTPA, rapid oxalate and non-buffered hydroxylamine). After that, a set of experiments in pot involving growing of grapevine rootstocks, chickpea, and sunflower were performed, although in this case only single extractions in soil were done. The Fe fraction more closely related to chlorophyll content in plants (r = 0.5, p < 0.05) was the citrate + ascorbate (CA) extraction, which was the fraction that releases most of the Fe related to poorly crystalline Fe oxides, thus revealing the key role of these compounds in Fe supply to plants. Fe extracted with CA was more correlated with chlorophyll content in plants that oxalate extractable Fe, probably

  11. Influence of shrub species and biological soil crust cover on nutrient distribution in a semiarid sand dune area (Negev, Israel)

    NASA Astrophysics Data System (ADS)

    Drahorad, S.; Felix-Henningsen, P.

    2009-04-01

    Deserts are expanding and the restoration of barren lands is of great importance. To achieve this goal the understanding of soil-plant interactions is necessary. In semiarid systems the biogeochemical cycles are strongly linked to "fertile islands" which are surrounded by bare interspaces, areas mostly covered by biological soil crusts. These microbiological communities have great influence runoff, nutrient fixation and soil stability. This spatial horizontal pattern on the surface leads to vertical distribution patterns of nutrients. For a re-established sand dune system in the Negev (Israel) this pattern is highly depending on surface cover. Here unconsolidated sand dunes have been stabilised by the growth of biological soil crust leading to an establishment of perennial shrubs. After 15 years of landuse exclusion a clear spatial pattern in the amount of different soil cations and anions can be proofed. Our results show significant difference for potassium, manganese, calcium, sodium and chloride under biological soil crusts, the chenopod Anabasis articulata and the legume Retama raetam. This redistribution on behalf of biological processes can be shown for 3 study sites along a sharp precipitation gradient (90 mm per year up to 170 mm per year). The comparison of the study sites shows changes in the distribution patterns with increasing precipitation not only due to higher leaching or differences in dust input but changes in plant activity. The plant essential potassium proofs to be the best indicator for redistribution processes. The not plant essential sodium is non-normally distributed as Anabasis articulata and the biological soil crust accumulate this cation. Perennial shrubs and biological soil crusts are important ecosystem engineers. They have the ability to enrich ecosystems with cations and anions. The mechanisms of redistribution depend on soil cover and amount of precipitation and are, contradictory to earlier results, not independent from shrub

  12. D-Galactose Induces a Mitochondrial Complex I Deficiency in Mouse Skeletal Muscle: Potential Benefits of Nutrient Combination in Ameliorating Muscle Impairment

    PubMed Central

    Chang, Liao; Liu, Xin; Liu, Jing; Li, Hua; Yang, Yanshen; Liu, Jia; Guo, Zihao; Xiao, Ke; Zhang, Chen; Liu, Jiankang

    2014-01-01

    Abstract Accumulating research has shown that chronic D-galactose (D-gal) exposure induces symptoms similar to natural aging in animals. Therefore, rodents chronically exposed to D-gal are increasingly used as a model for aging and delay-of-aging pharmacological research. Mitochondrial dysfunction is thought to play a vital role in aging and age-related diseases; however, whether mitochondrial dysfunction plays a significant role in mice exposed to D-gal remains unknown. In the present study, we investigated cognitive dysfunction, locomotor activity, and mitochondrial dysfunction involved in D-gal exposure in mice. We found that D-gal exposure (125 mg/kg/day, 8 weeks) resulted in a serious impairment in grip strength in mice, whereas spatial memory and locomotor coordination remained intact. Interestingly, muscular mitochondrial complex I deficiency occurred in the skeletal muscle of mice exposed to D-gal. Mitochondrial ultrastructure abnormality was implicated as a contributing factor in D-gal-induced muscular impairment. Moreover, three combinations (A, B, and C) of nutrients applied in this study effectively reversed D-gal-induced muscular impairment. Nutrient formulas B and C were especially effective in reversing complex I dysfunction in both skeletal muscle and heart muscle. These findings suggest the following: (1) chronic exposure to D-gal first results in specific muscular impairment in mice, rather than causing general, premature aging; (2) poor skeletal muscle strength induced by D-gal might be due to the mitochondrial dysfunction caused by complex I deficiency; and (3) the nutrient complexes applied in the study attenuated the skeletal muscle impairment, most likely by improving mitochondrial function. PMID:24476218

  13. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.

    PubMed

    Sullivan, Patrick F; Ellison, Sarah B Z; McNown, Robert W; Brownlee, Annalis H; Sveinbjörnsson, Bjartmar

    2015-03-01

    The position of the Arctic treeline, which is a key regulator of surface energy exchange and carbon cycling, is widely thought to be controlled by temperature. Here, we present evidence that soil nutrient availability, rather than temperature, may be the proximate control on growth of treeline trees at our study site in northwest Alaska. We examined constraints on growth and allocation of white spruce in three contrasting habitats. The habitats had similar aboveground climates, but soil temperature declined from the riverside terrace to the forest to the treeline. We identified six lines of evidence that conflict with the hypothesis of direct temperature control and/or point to the importance of soil nutrient availability. First, the magnitude of aboveground growth declined from the terrace to the forest to the treeline, along gradients of diminishing soil nitrogen (N) availability and needle N concentration. Second, peak rates of branch extension, main stem radial and fine-root growth were generally not coincident with seasonal air and soil temperature maxima. At the treeline, in particular, rates of aboveground and fine-root growth declined well before air and soil temperatures reached their seasonal peaks. Third, in contrast with the hypothesis of temperature-limited growth, growing season average net photosynthesis was positively related to the sum of normalized branch extension, main stem radial and fine-root growth across trees and sites. Fourth, needle nonstructural carbohydrate concentration was significantly higher on the terrace, where growth was greatest. Fifth, annual branch extension growth was positively related to snow depth, consistent with the hypothesis that deeper snow promotes microbial activity and greater soil nutrient availability. Finally, the tree ring record revealed a large growth increase during late 20th-century climate warming on the terrace, where soil N availability is relatively high. Meanwhile, trees in the forest and at the

  14. Nutrient depletion from rhizosphere solution by maize grown in soil with long-term compost amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved understanding of rhizosphere chemistry will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective management strategies for applied plant nutrients. With a controlled-climate study, we evaluated in situ changes in macro-nutrient concentrations in the rh...

  15. Exploitation of Nutrient-Rich Soil Patches by Invasive Annual and Native Perennial Grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasion of nutrient-poor habitats may be related to the ability of a species to exploit nutrient-rich microsites. Recent research suggests fast-growing species may have a greater ability to allocate root biomass to nutrient-rich microsites (root foraging precision) than slow growing species. The ...

  16. Effects of nitrogen fertilization on soil nutrient concentration and phosphatase activity and forage nutrient uptake from a grazed pasture system.

    PubMed

    Dillard, Sandra Leanne; Wood, Charles Wesley; Wood, Brenda Hall; Feng, Yucheng; Owsley, Walter Frank; Muntifering, Russell Brian

    2015-05-01

    Over a 3-year period, the effect of differing N-application regimes on soil extractable-P concentration, soil phosphatase activity, and forage P uptake in a P-enriched grazed-pasture system was investigated. In the fall of each year, six 0.28-ha plots were overseeded with triticale ( × Triticosecale rimpaui Wittm.) and crimson clover (Trifolium incarnatum) into a tall fescue (Lolium arundinacea)/bermudagrass (Cynodon dactylon) sod and assigned to 1 of 3 N-fertilizer treatments (n = 2): 100% of N recommendation in a split application (100N), 50% in a single application (50N), and 0% of N recommendation (0N) for triticale. Cattle commenced grazing the following spring and grazed until May. In the summer, plots were overseeded with cowpea (Vigna unguiculata), fertilized at the same rates by reference to N recommendations for bermudagrass, and grazed by cattle until September. There were no effects of N fertilization on soil phosphatase activity, electrical conductivity, or concentrations of water-soluble P. Concentrations of extractable P decreased in plots receiving 50N, but increasing N fertilization to 100N resulted in no further reduction in extractable P. Forage biomass, foliar P concentrations, and forage P mass were not affected by N fertilization rates at the plant-community level, but responses were observed within individual forage species. Results are interpreted to mean that N fertilization at 50% of the agronomic recommendation for the grass component can increase forage P mass of specific forages and decrease soil extractable P, thus providing opportunity for decreasing P losses from grazed pasture.

  17. Effects of nitrogen fertilization on soil nutrient concentration and phosphatase activity and forage nutrient uptake from a grazed pasture system.

    PubMed

    Dillard, Sandra Leanne; Wood, Charles Wesley; Wood, Brenda Hall; Feng, Yucheng; Owsley, Walter Frank; Muntifering, Russell Brian

    2015-05-01

    Over a 3-year period, the effect of differing N-application regimes on soil extractable-P concentration, soil phosphatase activity, and forage P uptake in a P-enriched grazed-pasture system was investigated. In the fall of each year, six 0.28-ha plots were overseeded with triticale ( × Triticosecale rimpaui Wittm.) and crimson clover (Trifolium incarnatum) into a tall fescue (Lolium arundinacea)/bermudagrass (Cynodon dactylon) sod and assigned to 1 of 3 N-fertilizer treatments (n = 2): 100% of N recommendation in a split application (100N), 50% in a single application (50N), and 0% of N recommendation (0N) for triticale. Cattle commenced grazing the following spring and grazed until May. In the summer, plots were overseeded with cowpea (Vigna unguiculata), fertilized at the same rates by reference to N recommendations for bermudagrass, and grazed by cattle until September. There were no effects of N fertilization on soil phosphatase activity, electrical conductivity, or concentrations of water-soluble P. Concentrations of extractable P decreased in plots receiving 50N, but increasing N fertilization to 100N resulted in no further reduction in extractable P. Forage biomass, foliar P concentrations, and forage P mass were not affected by N fertilization rates at the plant-community level, but responses were observed within individual forage species. Results are interpreted to mean that N fertilization at 50% of the agronomic recommendation for the grass component can increase forage P mass of specific forages and decrease soil extractable P, thus providing opportunity for decreasing P losses from grazed pasture. PMID:25728918

  18. Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling

    PubMed Central

    Toro, M.; Azcon, R.; Barea, J.

    1997-01-01

    The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants. PMID:16535730

  19. Determination of Nutrient Laden Preferential Flow Contributing to Hot Spots/Moments in the Soil on a Small Scale

    NASA Astrophysics Data System (ADS)

    Woodward, C.; Johnson, D. W.

    2010-12-01

    Nutrient hot spots/moments in the soil are described by McClain et. al. as “patches [in the soil] that show disproportionately high reaction rates relative to the surrounding matrix, whereas hot moments are defined as short periods of time that exhibit disproportionately high reaction rates relative to longer intervening time periods.” Hot spots/moments are a new field of research and much is unknown of their formation, period of existence in the soil, and hot they effect the surrounding environment. It is believed that they play a pertinent role in the biogeochemical cycling of nutrients and may contribute to nutrient stream loads. The purpose of this study is to understand spatial variability in nutrients on a small scale and to investigate the potential for O-horizon interflow contributing to hot spots/hot moments in the mineral soil. To test this hypothesis small grids were set up in the Critical Zone Observatory (CZO) research station, King’s River Watershed, California. Two grids were 7x7m in size and are composed of; a barrier placed in the O-horizon to truncate interflow, a barrier with a cation/anion UniBest® resin capsule, a capsule with no barrier and a control point. After one year soil cores will be taken at each sampling point and both the organic and mineral horizon will be analyzed for nutrients. Statistical will be performed to determine if the interflow contributed to hot spots/moments in the mineral soil. Two 4x5m grids were also created with 20 sampling points containing leaf litter bags. Out of the 20 bags 10 have barriers around them. These will be left for two years after which the litter bags will be removed and weighed to determine if interflow contributes do decomposition in the organic horizon. The results from this research will be critical for understanding hot spot/moments in the soil on a small scale and what contributes to their formation.

  20. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition

    PubMed Central

    He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782

  1. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition.

    PubMed

    Qian, Yu-Qi; He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer.

  2. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition.

    PubMed

    Qian, Yu-Qi; He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782

  3. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe.

    PubMed

    Dassonville, Nicolas; Vanderhoeven, Sonia; Vanparys, Valérie; Hayez, Mathieu; Gruber, Wolf; Meerts, Pierre

    2008-08-01

    Alien invasive plants are capable of modifying ecosystem function. However, it is difficult to make generalisations because impacts often appear to be species- and site-specific. In this study, we examined the impacts of seven highly invasive plant species in NW Europe (Fallopia japonica, Heracleum mantegazzianum, Impatiens glandulifera, Prunus serotina, Rosa rugosa, Senecio inaequidens, Solidago gigantea) on nutrient pools in the topsoil and the standing biomass. We tested if the impacts follow predictable patterns, across species and sites or, alternatively, if they are entirely idiosyncratic. To that end, we compared invaded and adjacent uninvaded plots in a total of 36 sites with widely divergent soil chemistry and vegetation composition. For all species, invaded plots had increased aboveground biomass and nutrient stocks in standing biomass compared to uninvaded vegetation. This suggests that enhanced nutrient uptake may be a key trait of highly invasive plant species. The magnitude and direction of the impact on topsoil chemical properties were strongly site-specific. A striking finding is that the direction of change in soil properties followed a predictable pattern. Thus, strong positive impacts (higher topsoil nutrient concentrations in invaded plots compared to uninvaded ones) were most often found in sites with initially low nutrient concentrations in the topsoil, while negative impacts were generally found under the opposite conditions. This pattern was significant for potassium, magnesium, phosphorus, manganese and nitrogen. The particular site-specific pattern in the impacts that we observed provides the first evidence that alien invasive species may contribute to a homogenisation of soil conditions in invaded landscapes. PMID:18491146

  4. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations.

    PubMed

    Gaupp-Berghausen, Mailin; Hofer, Martin; Rewald, Boris; Zaller, Johann G

    2015-01-01

    Herbicide use is increasing worldwide both in agriculture and private gardens. However, our knowledge of potential side-effects on non-target soil organisms, even on such eminent ones as earthworms, is still very scarce. In a greenhouse experiment, we assessed the impact of the most widely used glyphosate-based herbicide Roundup on two earthworm species with different feeding strategies. We demonstrate, that the surface casting activity of vertically burrowing earthworms (Lumbricus terrestris) almost ceased three weeks after herbicide application, while the activity of soil dwelling earthworms (Aporrectodea caliginosa) was not affected. Reproduction of the soil dwellers w